xref: /linux/fs/btrfs/free-space-cache.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31 
32 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
33 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
34 
35 struct btrfs_trim_range {
36 	u64 start;
37 	u64 bytes;
38 	struct list_head list;
39 };
40 
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42 			   struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 			      struct btrfs_free_space *info);
45 
46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47 					       struct btrfs_path *path,
48 					       u64 offset)
49 {
50 	struct btrfs_key key;
51 	struct btrfs_key location;
52 	struct btrfs_disk_key disk_key;
53 	struct btrfs_free_space_header *header;
54 	struct extent_buffer *leaf;
55 	struct inode *inode = NULL;
56 	int ret;
57 
58 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59 	key.offset = offset;
60 	key.type = 0;
61 
62 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63 	if (ret < 0)
64 		return ERR_PTR(ret);
65 	if (ret > 0) {
66 		btrfs_release_path(path);
67 		return ERR_PTR(-ENOENT);
68 	}
69 
70 	leaf = path->nodes[0];
71 	header = btrfs_item_ptr(leaf, path->slots[0],
72 				struct btrfs_free_space_header);
73 	btrfs_free_space_key(leaf, header, &disk_key);
74 	btrfs_disk_key_to_cpu(&location, &disk_key);
75 	btrfs_release_path(path);
76 
77 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
78 	if (!inode)
79 		return ERR_PTR(-ENOENT);
80 	if (IS_ERR(inode))
81 		return inode;
82 	if (is_bad_inode(inode)) {
83 		iput(inode);
84 		return ERR_PTR(-ENOENT);
85 	}
86 
87 	mapping_set_gfp_mask(inode->i_mapping,
88 			mapping_gfp_constraint(inode->i_mapping,
89 			~(__GFP_FS | __GFP_HIGHMEM)));
90 
91 	return inode;
92 }
93 
94 struct inode *lookup_free_space_inode(struct btrfs_root *root,
95 				      struct btrfs_block_group_cache
96 				      *block_group, struct btrfs_path *path)
97 {
98 	struct inode *inode = NULL;
99 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100 
101 	spin_lock(&block_group->lock);
102 	if (block_group->inode)
103 		inode = igrab(block_group->inode);
104 	spin_unlock(&block_group->lock);
105 	if (inode)
106 		return inode;
107 
108 	inode = __lookup_free_space_inode(root, path,
109 					  block_group->key.objectid);
110 	if (IS_ERR(inode))
111 		return inode;
112 
113 	spin_lock(&block_group->lock);
114 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 		btrfs_info(root->fs_info,
116 			"Old style space inode found, converting.");
117 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 			BTRFS_INODE_NODATACOW;
119 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
120 	}
121 
122 	if (!block_group->iref) {
123 		block_group->inode = igrab(inode);
124 		block_group->iref = 1;
125 	}
126 	spin_unlock(&block_group->lock);
127 
128 	return inode;
129 }
130 
131 static int __create_free_space_inode(struct btrfs_root *root,
132 				     struct btrfs_trans_handle *trans,
133 				     struct btrfs_path *path,
134 				     u64 ino, u64 offset)
135 {
136 	struct btrfs_key key;
137 	struct btrfs_disk_key disk_key;
138 	struct btrfs_free_space_header *header;
139 	struct btrfs_inode_item *inode_item;
140 	struct extent_buffer *leaf;
141 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 	int ret;
143 
144 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 	if (ret)
146 		return ret;
147 
148 	/* We inline crc's for the free disk space cache */
149 	if (ino != BTRFS_FREE_INO_OBJECTID)
150 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151 
152 	leaf = path->nodes[0];
153 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 				    struct btrfs_inode_item);
155 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
157 			     sizeof(*inode_item));
158 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 	btrfs_set_inode_size(leaf, inode_item, 0);
160 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 	btrfs_set_inode_uid(leaf, inode_item, 0);
162 	btrfs_set_inode_gid(leaf, inode_item, 0);
163 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 	btrfs_set_inode_flags(leaf, inode_item, flags);
165 	btrfs_set_inode_nlink(leaf, inode_item, 1);
166 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 	btrfs_set_inode_block_group(leaf, inode_item, offset);
168 	btrfs_mark_buffer_dirty(leaf);
169 	btrfs_release_path(path);
170 
171 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172 	key.offset = offset;
173 	key.type = 0;
174 	ret = btrfs_insert_empty_item(trans, root, path, &key,
175 				      sizeof(struct btrfs_free_space_header));
176 	if (ret < 0) {
177 		btrfs_release_path(path);
178 		return ret;
179 	}
180 
181 	leaf = path->nodes[0];
182 	header = btrfs_item_ptr(leaf, path->slots[0],
183 				struct btrfs_free_space_header);
184 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
185 	btrfs_set_free_space_key(leaf, header, &disk_key);
186 	btrfs_mark_buffer_dirty(leaf);
187 	btrfs_release_path(path);
188 
189 	return 0;
190 }
191 
192 int create_free_space_inode(struct btrfs_root *root,
193 			    struct btrfs_trans_handle *trans,
194 			    struct btrfs_block_group_cache *block_group,
195 			    struct btrfs_path *path)
196 {
197 	int ret;
198 	u64 ino;
199 
200 	ret = btrfs_find_free_objectid(root, &ino);
201 	if (ret < 0)
202 		return ret;
203 
204 	return __create_free_space_inode(root, trans, path, ino,
205 					 block_group->key.objectid);
206 }
207 
208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
209 				       struct btrfs_block_rsv *rsv)
210 {
211 	u64 needed_bytes;
212 	int ret;
213 
214 	/* 1 for slack space, 1 for updating the inode */
215 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
216 		btrfs_calc_trans_metadata_size(root, 1);
217 
218 	spin_lock(&rsv->lock);
219 	if (rsv->reserved < needed_bytes)
220 		ret = -ENOSPC;
221 	else
222 		ret = 0;
223 	spin_unlock(&rsv->lock);
224 	return ret;
225 }
226 
227 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
228 				    struct btrfs_trans_handle *trans,
229 				    struct btrfs_block_group_cache *block_group,
230 				    struct inode *inode)
231 {
232 	int ret = 0;
233 	struct btrfs_path *path = btrfs_alloc_path();
234 	bool locked = false;
235 
236 	if (!path) {
237 		ret = -ENOMEM;
238 		goto fail;
239 	}
240 
241 	if (block_group) {
242 		locked = true;
243 		mutex_lock(&trans->transaction->cache_write_mutex);
244 		if (!list_empty(&block_group->io_list)) {
245 			list_del_init(&block_group->io_list);
246 
247 			btrfs_wait_cache_io(root, trans, block_group,
248 					    &block_group->io_ctl, path,
249 					    block_group->key.objectid);
250 			btrfs_put_block_group(block_group);
251 		}
252 
253 		/*
254 		 * now that we've truncated the cache away, its no longer
255 		 * setup or written
256 		 */
257 		spin_lock(&block_group->lock);
258 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 		spin_unlock(&block_group->lock);
260 	}
261 	btrfs_free_path(path);
262 
263 	btrfs_i_size_write(inode, 0);
264 	truncate_pagecache(inode, 0);
265 
266 	/*
267 	 * We don't need an orphan item because truncating the free space cache
268 	 * will never be split across transactions.
269 	 * We don't need to check for -EAGAIN because we're a free space
270 	 * cache inode
271 	 */
272 	ret = btrfs_truncate_inode_items(trans, root, inode,
273 					 0, BTRFS_EXTENT_DATA_KEY);
274 	if (ret)
275 		goto fail;
276 
277 	ret = btrfs_update_inode(trans, root, inode);
278 
279 fail:
280 	if (locked)
281 		mutex_unlock(&trans->transaction->cache_write_mutex);
282 	if (ret)
283 		btrfs_abort_transaction(trans, ret);
284 
285 	return ret;
286 }
287 
288 static int readahead_cache(struct inode *inode)
289 {
290 	struct file_ra_state *ra;
291 	unsigned long last_index;
292 
293 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
294 	if (!ra)
295 		return -ENOMEM;
296 
297 	file_ra_state_init(ra, inode->i_mapping);
298 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
299 
300 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
301 
302 	kfree(ra);
303 
304 	return 0;
305 }
306 
307 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
308 		       struct btrfs_root *root, int write)
309 {
310 	int num_pages;
311 	int check_crcs = 0;
312 
313 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
314 
315 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
316 		check_crcs = 1;
317 
318 	/* Make sure we can fit our crcs into the first page */
319 	if (write && check_crcs &&
320 	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
321 		return -ENOSPC;
322 
323 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
324 
325 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
326 	if (!io_ctl->pages)
327 		return -ENOMEM;
328 
329 	io_ctl->num_pages = num_pages;
330 	io_ctl->root = root;
331 	io_ctl->check_crcs = check_crcs;
332 	io_ctl->inode = inode;
333 
334 	return 0;
335 }
336 
337 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
338 {
339 	kfree(io_ctl->pages);
340 	io_ctl->pages = NULL;
341 }
342 
343 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
344 {
345 	if (io_ctl->cur) {
346 		io_ctl->cur = NULL;
347 		io_ctl->orig = NULL;
348 	}
349 }
350 
351 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
352 {
353 	ASSERT(io_ctl->index < io_ctl->num_pages);
354 	io_ctl->page = io_ctl->pages[io_ctl->index++];
355 	io_ctl->cur = page_address(io_ctl->page);
356 	io_ctl->orig = io_ctl->cur;
357 	io_ctl->size = PAGE_SIZE;
358 	if (clear)
359 		memset(io_ctl->cur, 0, PAGE_SIZE);
360 }
361 
362 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
363 {
364 	int i;
365 
366 	io_ctl_unmap_page(io_ctl);
367 
368 	for (i = 0; i < io_ctl->num_pages; i++) {
369 		if (io_ctl->pages[i]) {
370 			ClearPageChecked(io_ctl->pages[i]);
371 			unlock_page(io_ctl->pages[i]);
372 			put_page(io_ctl->pages[i]);
373 		}
374 	}
375 }
376 
377 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378 				int uptodate)
379 {
380 	struct page *page;
381 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
382 	int i;
383 
384 	for (i = 0; i < io_ctl->num_pages; i++) {
385 		page = find_or_create_page(inode->i_mapping, i, mask);
386 		if (!page) {
387 			io_ctl_drop_pages(io_ctl);
388 			return -ENOMEM;
389 		}
390 		io_ctl->pages[i] = page;
391 		if (uptodate && !PageUptodate(page)) {
392 			btrfs_readpage(NULL, page);
393 			lock_page(page);
394 			if (!PageUptodate(page)) {
395 				btrfs_err(BTRFS_I(inode)->root->fs_info,
396 					   "error reading free space cache");
397 				io_ctl_drop_pages(io_ctl);
398 				return -EIO;
399 			}
400 		}
401 	}
402 
403 	for (i = 0; i < io_ctl->num_pages; i++) {
404 		clear_page_dirty_for_io(io_ctl->pages[i]);
405 		set_page_extent_mapped(io_ctl->pages[i]);
406 	}
407 
408 	return 0;
409 }
410 
411 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
412 {
413 	__le64 *val;
414 
415 	io_ctl_map_page(io_ctl, 1);
416 
417 	/*
418 	 * Skip the csum areas.  If we don't check crcs then we just have a
419 	 * 64bit chunk at the front of the first page.
420 	 */
421 	if (io_ctl->check_crcs) {
422 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
423 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
424 	} else {
425 		io_ctl->cur += sizeof(u64);
426 		io_ctl->size -= sizeof(u64) * 2;
427 	}
428 
429 	val = io_ctl->cur;
430 	*val = cpu_to_le64(generation);
431 	io_ctl->cur += sizeof(u64);
432 }
433 
434 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435 {
436 	__le64 *gen;
437 
438 	/*
439 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
440 	 * chunk at the front of the first page.
441 	 */
442 	if (io_ctl->check_crcs) {
443 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
444 		io_ctl->size -= sizeof(u64) +
445 			(sizeof(u32) * io_ctl->num_pages);
446 	} else {
447 		io_ctl->cur += sizeof(u64);
448 		io_ctl->size -= sizeof(u64) * 2;
449 	}
450 
451 	gen = io_ctl->cur;
452 	if (le64_to_cpu(*gen) != generation) {
453 		btrfs_err_rl(io_ctl->root->fs_info,
454 			"space cache generation (%llu) does not match inode (%llu)",
455 				*gen, generation);
456 		io_ctl_unmap_page(io_ctl);
457 		return -EIO;
458 	}
459 	io_ctl->cur += sizeof(u64);
460 	return 0;
461 }
462 
463 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464 {
465 	u32 *tmp;
466 	u32 crc = ~(u32)0;
467 	unsigned offset = 0;
468 
469 	if (!io_ctl->check_crcs) {
470 		io_ctl_unmap_page(io_ctl);
471 		return;
472 	}
473 
474 	if (index == 0)
475 		offset = sizeof(u32) * io_ctl->num_pages;
476 
477 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
478 			      PAGE_SIZE - offset);
479 	btrfs_csum_final(crc, (char *)&crc);
480 	io_ctl_unmap_page(io_ctl);
481 	tmp = page_address(io_ctl->pages[0]);
482 	tmp += index;
483 	*tmp = crc;
484 }
485 
486 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
487 {
488 	u32 *tmp, val;
489 	u32 crc = ~(u32)0;
490 	unsigned offset = 0;
491 
492 	if (!io_ctl->check_crcs) {
493 		io_ctl_map_page(io_ctl, 0);
494 		return 0;
495 	}
496 
497 	if (index == 0)
498 		offset = sizeof(u32) * io_ctl->num_pages;
499 
500 	tmp = page_address(io_ctl->pages[0]);
501 	tmp += index;
502 	val = *tmp;
503 
504 	io_ctl_map_page(io_ctl, 0);
505 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
506 			      PAGE_SIZE - offset);
507 	btrfs_csum_final(crc, (char *)&crc);
508 	if (val != crc) {
509 		btrfs_err_rl(io_ctl->root->fs_info,
510 			"csum mismatch on free space cache");
511 		io_ctl_unmap_page(io_ctl);
512 		return -EIO;
513 	}
514 
515 	return 0;
516 }
517 
518 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
519 			    void *bitmap)
520 {
521 	struct btrfs_free_space_entry *entry;
522 
523 	if (!io_ctl->cur)
524 		return -ENOSPC;
525 
526 	entry = io_ctl->cur;
527 	entry->offset = cpu_to_le64(offset);
528 	entry->bytes = cpu_to_le64(bytes);
529 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
530 		BTRFS_FREE_SPACE_EXTENT;
531 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
532 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
533 
534 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
535 		return 0;
536 
537 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 
539 	/* No more pages to map */
540 	if (io_ctl->index >= io_ctl->num_pages)
541 		return 0;
542 
543 	/* map the next page */
544 	io_ctl_map_page(io_ctl, 1);
545 	return 0;
546 }
547 
548 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
549 {
550 	if (!io_ctl->cur)
551 		return -ENOSPC;
552 
553 	/*
554 	 * If we aren't at the start of the current page, unmap this one and
555 	 * map the next one if there is any left.
556 	 */
557 	if (io_ctl->cur != io_ctl->orig) {
558 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
559 		if (io_ctl->index >= io_ctl->num_pages)
560 			return -ENOSPC;
561 		io_ctl_map_page(io_ctl, 0);
562 	}
563 
564 	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
565 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
566 	if (io_ctl->index < io_ctl->num_pages)
567 		io_ctl_map_page(io_ctl, 0);
568 	return 0;
569 }
570 
571 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
572 {
573 	/*
574 	 * If we're not on the boundary we know we've modified the page and we
575 	 * need to crc the page.
576 	 */
577 	if (io_ctl->cur != io_ctl->orig)
578 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
579 	else
580 		io_ctl_unmap_page(io_ctl);
581 
582 	while (io_ctl->index < io_ctl->num_pages) {
583 		io_ctl_map_page(io_ctl, 1);
584 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
585 	}
586 }
587 
588 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
589 			    struct btrfs_free_space *entry, u8 *type)
590 {
591 	struct btrfs_free_space_entry *e;
592 	int ret;
593 
594 	if (!io_ctl->cur) {
595 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
596 		if (ret)
597 			return ret;
598 	}
599 
600 	e = io_ctl->cur;
601 	entry->offset = le64_to_cpu(e->offset);
602 	entry->bytes = le64_to_cpu(e->bytes);
603 	*type = e->type;
604 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
605 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
606 
607 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
608 		return 0;
609 
610 	io_ctl_unmap_page(io_ctl);
611 
612 	return 0;
613 }
614 
615 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
616 			      struct btrfs_free_space *entry)
617 {
618 	int ret;
619 
620 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
621 	if (ret)
622 		return ret;
623 
624 	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
625 	io_ctl_unmap_page(io_ctl);
626 
627 	return 0;
628 }
629 
630 /*
631  * Since we attach pinned extents after the fact we can have contiguous sections
632  * of free space that are split up in entries.  This poses a problem with the
633  * tree logging stuff since it could have allocated across what appears to be 2
634  * entries since we would have merged the entries when adding the pinned extents
635  * back to the free space cache.  So run through the space cache that we just
636  * loaded and merge contiguous entries.  This will make the log replay stuff not
637  * blow up and it will make for nicer allocator behavior.
638  */
639 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
640 {
641 	struct btrfs_free_space *e, *prev = NULL;
642 	struct rb_node *n;
643 
644 again:
645 	spin_lock(&ctl->tree_lock);
646 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
647 		e = rb_entry(n, struct btrfs_free_space, offset_index);
648 		if (!prev)
649 			goto next;
650 		if (e->bitmap || prev->bitmap)
651 			goto next;
652 		if (prev->offset + prev->bytes == e->offset) {
653 			unlink_free_space(ctl, prev);
654 			unlink_free_space(ctl, e);
655 			prev->bytes += e->bytes;
656 			kmem_cache_free(btrfs_free_space_cachep, e);
657 			link_free_space(ctl, prev);
658 			prev = NULL;
659 			spin_unlock(&ctl->tree_lock);
660 			goto again;
661 		}
662 next:
663 		prev = e;
664 	}
665 	spin_unlock(&ctl->tree_lock);
666 }
667 
668 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
669 				   struct btrfs_free_space_ctl *ctl,
670 				   struct btrfs_path *path, u64 offset)
671 {
672 	struct btrfs_free_space_header *header;
673 	struct extent_buffer *leaf;
674 	struct btrfs_io_ctl io_ctl;
675 	struct btrfs_key key;
676 	struct btrfs_free_space *e, *n;
677 	LIST_HEAD(bitmaps);
678 	u64 num_entries;
679 	u64 num_bitmaps;
680 	u64 generation;
681 	u8 type;
682 	int ret = 0;
683 
684 	/* Nothing in the space cache, goodbye */
685 	if (!i_size_read(inode))
686 		return 0;
687 
688 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
689 	key.offset = offset;
690 	key.type = 0;
691 
692 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
693 	if (ret < 0)
694 		return 0;
695 	else if (ret > 0) {
696 		btrfs_release_path(path);
697 		return 0;
698 	}
699 
700 	ret = -1;
701 
702 	leaf = path->nodes[0];
703 	header = btrfs_item_ptr(leaf, path->slots[0],
704 				struct btrfs_free_space_header);
705 	num_entries = btrfs_free_space_entries(leaf, header);
706 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
707 	generation = btrfs_free_space_generation(leaf, header);
708 	btrfs_release_path(path);
709 
710 	if (!BTRFS_I(inode)->generation) {
711 		btrfs_info(root->fs_info,
712 			   "The free space cache file (%llu) is invalid. skip it\n",
713 			   offset);
714 		return 0;
715 	}
716 
717 	if (BTRFS_I(inode)->generation != generation) {
718 		btrfs_err(root->fs_info,
719 			"free space inode generation (%llu) did not match free space cache generation (%llu)",
720 			BTRFS_I(inode)->generation, generation);
721 		return 0;
722 	}
723 
724 	if (!num_entries)
725 		return 0;
726 
727 	ret = io_ctl_init(&io_ctl, inode, root, 0);
728 	if (ret)
729 		return ret;
730 
731 	ret = readahead_cache(inode);
732 	if (ret)
733 		goto out;
734 
735 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
736 	if (ret)
737 		goto out;
738 
739 	ret = io_ctl_check_crc(&io_ctl, 0);
740 	if (ret)
741 		goto free_cache;
742 
743 	ret = io_ctl_check_generation(&io_ctl, generation);
744 	if (ret)
745 		goto free_cache;
746 
747 	while (num_entries) {
748 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
749 				      GFP_NOFS);
750 		if (!e)
751 			goto free_cache;
752 
753 		ret = io_ctl_read_entry(&io_ctl, e, &type);
754 		if (ret) {
755 			kmem_cache_free(btrfs_free_space_cachep, e);
756 			goto free_cache;
757 		}
758 
759 		if (!e->bytes) {
760 			kmem_cache_free(btrfs_free_space_cachep, e);
761 			goto free_cache;
762 		}
763 
764 		if (type == BTRFS_FREE_SPACE_EXTENT) {
765 			spin_lock(&ctl->tree_lock);
766 			ret = link_free_space(ctl, e);
767 			spin_unlock(&ctl->tree_lock);
768 			if (ret) {
769 				btrfs_err(root->fs_info,
770 					"Duplicate entries in free space cache, dumping");
771 				kmem_cache_free(btrfs_free_space_cachep, e);
772 				goto free_cache;
773 			}
774 		} else {
775 			ASSERT(num_bitmaps);
776 			num_bitmaps--;
777 			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
778 			if (!e->bitmap) {
779 				kmem_cache_free(
780 					btrfs_free_space_cachep, e);
781 				goto free_cache;
782 			}
783 			spin_lock(&ctl->tree_lock);
784 			ret = link_free_space(ctl, e);
785 			ctl->total_bitmaps++;
786 			ctl->op->recalc_thresholds(ctl);
787 			spin_unlock(&ctl->tree_lock);
788 			if (ret) {
789 				btrfs_err(root->fs_info,
790 					"Duplicate entries in free space cache, dumping");
791 				kmem_cache_free(btrfs_free_space_cachep, e);
792 				goto free_cache;
793 			}
794 			list_add_tail(&e->list, &bitmaps);
795 		}
796 
797 		num_entries--;
798 	}
799 
800 	io_ctl_unmap_page(&io_ctl);
801 
802 	/*
803 	 * We add the bitmaps at the end of the entries in order that
804 	 * the bitmap entries are added to the cache.
805 	 */
806 	list_for_each_entry_safe(e, n, &bitmaps, list) {
807 		list_del_init(&e->list);
808 		ret = io_ctl_read_bitmap(&io_ctl, e);
809 		if (ret)
810 			goto free_cache;
811 	}
812 
813 	io_ctl_drop_pages(&io_ctl);
814 	merge_space_tree(ctl);
815 	ret = 1;
816 out:
817 	io_ctl_free(&io_ctl);
818 	return ret;
819 free_cache:
820 	io_ctl_drop_pages(&io_ctl);
821 	__btrfs_remove_free_space_cache(ctl);
822 	goto out;
823 }
824 
825 int load_free_space_cache(struct btrfs_fs_info *fs_info,
826 			  struct btrfs_block_group_cache *block_group)
827 {
828 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
829 	struct btrfs_root *root = fs_info->tree_root;
830 	struct inode *inode;
831 	struct btrfs_path *path;
832 	int ret = 0;
833 	bool matched;
834 	u64 used = btrfs_block_group_used(&block_group->item);
835 
836 	/*
837 	 * If this block group has been marked to be cleared for one reason or
838 	 * another then we can't trust the on disk cache, so just return.
839 	 */
840 	spin_lock(&block_group->lock);
841 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
842 		spin_unlock(&block_group->lock);
843 		return 0;
844 	}
845 	spin_unlock(&block_group->lock);
846 
847 	path = btrfs_alloc_path();
848 	if (!path)
849 		return 0;
850 	path->search_commit_root = 1;
851 	path->skip_locking = 1;
852 
853 	inode = lookup_free_space_inode(root, block_group, path);
854 	if (IS_ERR(inode)) {
855 		btrfs_free_path(path);
856 		return 0;
857 	}
858 
859 	/* We may have converted the inode and made the cache invalid. */
860 	spin_lock(&block_group->lock);
861 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
862 		spin_unlock(&block_group->lock);
863 		btrfs_free_path(path);
864 		goto out;
865 	}
866 	spin_unlock(&block_group->lock);
867 
868 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
869 				      path, block_group->key.objectid);
870 	btrfs_free_path(path);
871 	if (ret <= 0)
872 		goto out;
873 
874 	spin_lock(&ctl->tree_lock);
875 	matched = (ctl->free_space == (block_group->key.offset - used -
876 				       block_group->bytes_super));
877 	spin_unlock(&ctl->tree_lock);
878 
879 	if (!matched) {
880 		__btrfs_remove_free_space_cache(ctl);
881 		btrfs_warn(fs_info,
882 			   "block group %llu has wrong amount of free space",
883 			   block_group->key.objectid);
884 		ret = -1;
885 	}
886 out:
887 	if (ret < 0) {
888 		/* This cache is bogus, make sure it gets cleared */
889 		spin_lock(&block_group->lock);
890 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
891 		spin_unlock(&block_group->lock);
892 		ret = 0;
893 
894 		btrfs_warn(fs_info,
895 			   "failed to load free space cache for block group %llu, rebuilding it now",
896 			   block_group->key.objectid);
897 	}
898 
899 	iput(inode);
900 	return ret;
901 }
902 
903 static noinline_for_stack
904 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
905 			      struct btrfs_free_space_ctl *ctl,
906 			      struct btrfs_block_group_cache *block_group,
907 			      int *entries, int *bitmaps,
908 			      struct list_head *bitmap_list)
909 {
910 	int ret;
911 	struct btrfs_free_cluster *cluster = NULL;
912 	struct btrfs_free_cluster *cluster_locked = NULL;
913 	struct rb_node *node = rb_first(&ctl->free_space_offset);
914 	struct btrfs_trim_range *trim_entry;
915 
916 	/* Get the cluster for this block_group if it exists */
917 	if (block_group && !list_empty(&block_group->cluster_list)) {
918 		cluster = list_entry(block_group->cluster_list.next,
919 				     struct btrfs_free_cluster,
920 				     block_group_list);
921 	}
922 
923 	if (!node && cluster) {
924 		cluster_locked = cluster;
925 		spin_lock(&cluster_locked->lock);
926 		node = rb_first(&cluster->root);
927 		cluster = NULL;
928 	}
929 
930 	/* Write out the extent entries */
931 	while (node) {
932 		struct btrfs_free_space *e;
933 
934 		e = rb_entry(node, struct btrfs_free_space, offset_index);
935 		*entries += 1;
936 
937 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
938 				       e->bitmap);
939 		if (ret)
940 			goto fail;
941 
942 		if (e->bitmap) {
943 			list_add_tail(&e->list, bitmap_list);
944 			*bitmaps += 1;
945 		}
946 		node = rb_next(node);
947 		if (!node && cluster) {
948 			node = rb_first(&cluster->root);
949 			cluster_locked = cluster;
950 			spin_lock(&cluster_locked->lock);
951 			cluster = NULL;
952 		}
953 	}
954 	if (cluster_locked) {
955 		spin_unlock(&cluster_locked->lock);
956 		cluster_locked = NULL;
957 	}
958 
959 	/*
960 	 * Make sure we don't miss any range that was removed from our rbtree
961 	 * because trimming is running. Otherwise after a umount+mount (or crash
962 	 * after committing the transaction) we would leak free space and get
963 	 * an inconsistent free space cache report from fsck.
964 	 */
965 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
966 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
967 				       trim_entry->bytes, NULL);
968 		if (ret)
969 			goto fail;
970 		*entries += 1;
971 	}
972 
973 	return 0;
974 fail:
975 	if (cluster_locked)
976 		spin_unlock(&cluster_locked->lock);
977 	return -ENOSPC;
978 }
979 
980 static noinline_for_stack int
981 update_cache_item(struct btrfs_trans_handle *trans,
982 		  struct btrfs_root *root,
983 		  struct inode *inode,
984 		  struct btrfs_path *path, u64 offset,
985 		  int entries, int bitmaps)
986 {
987 	struct btrfs_key key;
988 	struct btrfs_free_space_header *header;
989 	struct extent_buffer *leaf;
990 	int ret;
991 
992 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
993 	key.offset = offset;
994 	key.type = 0;
995 
996 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
997 	if (ret < 0) {
998 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
999 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1000 				 GFP_NOFS);
1001 		goto fail;
1002 	}
1003 	leaf = path->nodes[0];
1004 	if (ret > 0) {
1005 		struct btrfs_key found_key;
1006 		ASSERT(path->slots[0]);
1007 		path->slots[0]--;
1008 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1009 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1010 		    found_key.offset != offset) {
1011 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1012 					 inode->i_size - 1,
1013 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1014 					 NULL, GFP_NOFS);
1015 			btrfs_release_path(path);
1016 			goto fail;
1017 		}
1018 	}
1019 
1020 	BTRFS_I(inode)->generation = trans->transid;
1021 	header = btrfs_item_ptr(leaf, path->slots[0],
1022 				struct btrfs_free_space_header);
1023 	btrfs_set_free_space_entries(leaf, header, entries);
1024 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1025 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1026 	btrfs_mark_buffer_dirty(leaf);
1027 	btrfs_release_path(path);
1028 
1029 	return 0;
1030 
1031 fail:
1032 	return -1;
1033 }
1034 
1035 static noinline_for_stack int
1036 write_pinned_extent_entries(struct btrfs_root *root,
1037 			    struct btrfs_block_group_cache *block_group,
1038 			    struct btrfs_io_ctl *io_ctl,
1039 			    int *entries)
1040 {
1041 	u64 start, extent_start, extent_end, len;
1042 	struct extent_io_tree *unpin = NULL;
1043 	int ret;
1044 
1045 	if (!block_group)
1046 		return 0;
1047 
1048 	/*
1049 	 * We want to add any pinned extents to our free space cache
1050 	 * so we don't leak the space
1051 	 *
1052 	 * We shouldn't have switched the pinned extents yet so this is the
1053 	 * right one
1054 	 */
1055 	unpin = root->fs_info->pinned_extents;
1056 
1057 	start = block_group->key.objectid;
1058 
1059 	while (start < block_group->key.objectid + block_group->key.offset) {
1060 		ret = find_first_extent_bit(unpin, start,
1061 					    &extent_start, &extent_end,
1062 					    EXTENT_DIRTY, NULL);
1063 		if (ret)
1064 			return 0;
1065 
1066 		/* This pinned extent is out of our range */
1067 		if (extent_start >= block_group->key.objectid +
1068 		    block_group->key.offset)
1069 			return 0;
1070 
1071 		extent_start = max(extent_start, start);
1072 		extent_end = min(block_group->key.objectid +
1073 				 block_group->key.offset, extent_end + 1);
1074 		len = extent_end - extent_start;
1075 
1076 		*entries += 1;
1077 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1078 		if (ret)
1079 			return -ENOSPC;
1080 
1081 		start = extent_end;
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 static noinline_for_stack int
1088 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1089 {
1090 	struct btrfs_free_space *entry, *next;
1091 	int ret;
1092 
1093 	/* Write out the bitmaps */
1094 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1095 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1096 		if (ret)
1097 			return -ENOSPC;
1098 		list_del_init(&entry->list);
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static int flush_dirty_cache(struct inode *inode)
1105 {
1106 	int ret;
1107 
1108 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1109 	if (ret)
1110 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1111 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1112 				 GFP_NOFS);
1113 
1114 	return ret;
1115 }
1116 
1117 static void noinline_for_stack
1118 cleanup_bitmap_list(struct list_head *bitmap_list)
1119 {
1120 	struct btrfs_free_space *entry, *next;
1121 
1122 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1123 		list_del_init(&entry->list);
1124 }
1125 
1126 static void noinline_for_stack
1127 cleanup_write_cache_enospc(struct inode *inode,
1128 			   struct btrfs_io_ctl *io_ctl,
1129 			   struct extent_state **cached_state,
1130 			   struct list_head *bitmap_list)
1131 {
1132 	io_ctl_drop_pages(io_ctl);
1133 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1134 			     i_size_read(inode) - 1, cached_state,
1135 			     GFP_NOFS);
1136 }
1137 
1138 int btrfs_wait_cache_io(struct btrfs_root *root,
1139 			struct btrfs_trans_handle *trans,
1140 			struct btrfs_block_group_cache *block_group,
1141 			struct btrfs_io_ctl *io_ctl,
1142 			struct btrfs_path *path, u64 offset)
1143 {
1144 	int ret;
1145 	struct inode *inode = io_ctl->inode;
1146 
1147 	if (!inode)
1148 		return 0;
1149 
1150 	if (block_group)
1151 		root = root->fs_info->tree_root;
1152 
1153 	/* Flush the dirty pages in the cache file. */
1154 	ret = flush_dirty_cache(inode);
1155 	if (ret)
1156 		goto out;
1157 
1158 	/* Update the cache item to tell everyone this cache file is valid. */
1159 	ret = update_cache_item(trans, root, inode, path, offset,
1160 				io_ctl->entries, io_ctl->bitmaps);
1161 out:
1162 	io_ctl_free(io_ctl);
1163 	if (ret) {
1164 		invalidate_inode_pages2(inode->i_mapping);
1165 		BTRFS_I(inode)->generation = 0;
1166 		if (block_group) {
1167 #ifdef DEBUG
1168 			btrfs_err(root->fs_info,
1169 				"failed to write free space cache for block group %llu",
1170 				block_group->key.objectid);
1171 #endif
1172 		}
1173 	}
1174 	btrfs_update_inode(trans, root, inode);
1175 
1176 	if (block_group) {
1177 		/* the dirty list is protected by the dirty_bgs_lock */
1178 		spin_lock(&trans->transaction->dirty_bgs_lock);
1179 
1180 		/* the disk_cache_state is protected by the block group lock */
1181 		spin_lock(&block_group->lock);
1182 
1183 		/*
1184 		 * only mark this as written if we didn't get put back on
1185 		 * the dirty list while waiting for IO.   Otherwise our
1186 		 * cache state won't be right, and we won't get written again
1187 		 */
1188 		if (!ret && list_empty(&block_group->dirty_list))
1189 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1190 		else if (ret)
1191 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1192 
1193 		spin_unlock(&block_group->lock);
1194 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1195 		io_ctl->inode = NULL;
1196 		iput(inode);
1197 	}
1198 
1199 	return ret;
1200 
1201 }
1202 
1203 /**
1204  * __btrfs_write_out_cache - write out cached info to an inode
1205  * @root - the root the inode belongs to
1206  * @ctl - the free space cache we are going to write out
1207  * @block_group - the block_group for this cache if it belongs to a block_group
1208  * @trans - the trans handle
1209  * @path - the path to use
1210  * @offset - the offset for the key we'll insert
1211  *
1212  * This function writes out a free space cache struct to disk for quick recovery
1213  * on mount.  This will return 0 if it was successful in writing the cache out,
1214  * or an errno if it was not.
1215  */
1216 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1217 				   struct btrfs_free_space_ctl *ctl,
1218 				   struct btrfs_block_group_cache *block_group,
1219 				   struct btrfs_io_ctl *io_ctl,
1220 				   struct btrfs_trans_handle *trans,
1221 				   struct btrfs_path *path, u64 offset)
1222 {
1223 	struct extent_state *cached_state = NULL;
1224 	LIST_HEAD(bitmap_list);
1225 	int entries = 0;
1226 	int bitmaps = 0;
1227 	int ret;
1228 	int must_iput = 0;
1229 
1230 	if (!i_size_read(inode))
1231 		return -EIO;
1232 
1233 	WARN_ON(io_ctl->pages);
1234 	ret = io_ctl_init(io_ctl, inode, root, 1);
1235 	if (ret)
1236 		return ret;
1237 
1238 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1239 		down_write(&block_group->data_rwsem);
1240 		spin_lock(&block_group->lock);
1241 		if (block_group->delalloc_bytes) {
1242 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1243 			spin_unlock(&block_group->lock);
1244 			up_write(&block_group->data_rwsem);
1245 			BTRFS_I(inode)->generation = 0;
1246 			ret = 0;
1247 			must_iput = 1;
1248 			goto out;
1249 		}
1250 		spin_unlock(&block_group->lock);
1251 	}
1252 
1253 	/* Lock all pages first so we can lock the extent safely. */
1254 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1255 	if (ret)
1256 		goto out;
1257 
1258 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1259 			 &cached_state);
1260 
1261 	io_ctl_set_generation(io_ctl, trans->transid);
1262 
1263 	mutex_lock(&ctl->cache_writeout_mutex);
1264 	/* Write out the extent entries in the free space cache */
1265 	spin_lock(&ctl->tree_lock);
1266 	ret = write_cache_extent_entries(io_ctl, ctl,
1267 					 block_group, &entries, &bitmaps,
1268 					 &bitmap_list);
1269 	if (ret)
1270 		goto out_nospc_locked;
1271 
1272 	/*
1273 	 * Some spaces that are freed in the current transaction are pinned,
1274 	 * they will be added into free space cache after the transaction is
1275 	 * committed, we shouldn't lose them.
1276 	 *
1277 	 * If this changes while we are working we'll get added back to
1278 	 * the dirty list and redo it.  No locking needed
1279 	 */
1280 	ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1281 	if (ret)
1282 		goto out_nospc_locked;
1283 
1284 	/*
1285 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1286 	 * locked while doing it because a concurrent trim can be manipulating
1287 	 * or freeing the bitmap.
1288 	 */
1289 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1290 	spin_unlock(&ctl->tree_lock);
1291 	mutex_unlock(&ctl->cache_writeout_mutex);
1292 	if (ret)
1293 		goto out_nospc;
1294 
1295 	/* Zero out the rest of the pages just to make sure */
1296 	io_ctl_zero_remaining_pages(io_ctl);
1297 
1298 	/* Everything is written out, now we dirty the pages in the file. */
1299 	ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1300 				0, i_size_read(inode), &cached_state);
1301 	if (ret)
1302 		goto out_nospc;
1303 
1304 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1305 		up_write(&block_group->data_rwsem);
1306 	/*
1307 	 * Release the pages and unlock the extent, we will flush
1308 	 * them out later
1309 	 */
1310 	io_ctl_drop_pages(io_ctl);
1311 
1312 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1313 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1314 
1315 	/*
1316 	 * at this point the pages are under IO and we're happy,
1317 	 * The caller is responsible for waiting on them and updating the
1318 	 * the cache and the inode
1319 	 */
1320 	io_ctl->entries = entries;
1321 	io_ctl->bitmaps = bitmaps;
1322 
1323 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1324 	if (ret)
1325 		goto out;
1326 
1327 	return 0;
1328 
1329 out:
1330 	io_ctl->inode = NULL;
1331 	io_ctl_free(io_ctl);
1332 	if (ret) {
1333 		invalidate_inode_pages2(inode->i_mapping);
1334 		BTRFS_I(inode)->generation = 0;
1335 	}
1336 	btrfs_update_inode(trans, root, inode);
1337 	if (must_iput)
1338 		iput(inode);
1339 	return ret;
1340 
1341 out_nospc_locked:
1342 	cleanup_bitmap_list(&bitmap_list);
1343 	spin_unlock(&ctl->tree_lock);
1344 	mutex_unlock(&ctl->cache_writeout_mutex);
1345 
1346 out_nospc:
1347 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1348 
1349 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1350 		up_write(&block_group->data_rwsem);
1351 
1352 	goto out;
1353 }
1354 
1355 int btrfs_write_out_cache(struct btrfs_root *root,
1356 			  struct btrfs_trans_handle *trans,
1357 			  struct btrfs_block_group_cache *block_group,
1358 			  struct btrfs_path *path)
1359 {
1360 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1361 	struct inode *inode;
1362 	int ret = 0;
1363 
1364 	root = root->fs_info->tree_root;
1365 
1366 	spin_lock(&block_group->lock);
1367 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1368 		spin_unlock(&block_group->lock);
1369 		return 0;
1370 	}
1371 	spin_unlock(&block_group->lock);
1372 
1373 	inode = lookup_free_space_inode(root, block_group, path);
1374 	if (IS_ERR(inode))
1375 		return 0;
1376 
1377 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1378 				      &block_group->io_ctl, trans,
1379 				      path, block_group->key.objectid);
1380 	if (ret) {
1381 #ifdef DEBUG
1382 		btrfs_err(root->fs_info,
1383 			"failed to write free space cache for block group %llu",
1384 			block_group->key.objectid);
1385 #endif
1386 		spin_lock(&block_group->lock);
1387 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1388 		spin_unlock(&block_group->lock);
1389 
1390 		block_group->io_ctl.inode = NULL;
1391 		iput(inode);
1392 	}
1393 
1394 	/*
1395 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1396 	 * to wait for IO and put the inode
1397 	 */
1398 
1399 	return ret;
1400 }
1401 
1402 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1403 					  u64 offset)
1404 {
1405 	ASSERT(offset >= bitmap_start);
1406 	offset -= bitmap_start;
1407 	return (unsigned long)(div_u64(offset, unit));
1408 }
1409 
1410 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1411 {
1412 	return (unsigned long)(div_u64(bytes, unit));
1413 }
1414 
1415 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1416 				   u64 offset)
1417 {
1418 	u64 bitmap_start;
1419 	u64 bytes_per_bitmap;
1420 
1421 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1422 	bitmap_start = offset - ctl->start;
1423 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1424 	bitmap_start *= bytes_per_bitmap;
1425 	bitmap_start += ctl->start;
1426 
1427 	return bitmap_start;
1428 }
1429 
1430 static int tree_insert_offset(struct rb_root *root, u64 offset,
1431 			      struct rb_node *node, int bitmap)
1432 {
1433 	struct rb_node **p = &root->rb_node;
1434 	struct rb_node *parent = NULL;
1435 	struct btrfs_free_space *info;
1436 
1437 	while (*p) {
1438 		parent = *p;
1439 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1440 
1441 		if (offset < info->offset) {
1442 			p = &(*p)->rb_left;
1443 		} else if (offset > info->offset) {
1444 			p = &(*p)->rb_right;
1445 		} else {
1446 			/*
1447 			 * we could have a bitmap entry and an extent entry
1448 			 * share the same offset.  If this is the case, we want
1449 			 * the extent entry to always be found first if we do a
1450 			 * linear search through the tree, since we want to have
1451 			 * the quickest allocation time, and allocating from an
1452 			 * extent is faster than allocating from a bitmap.  So
1453 			 * if we're inserting a bitmap and we find an entry at
1454 			 * this offset, we want to go right, or after this entry
1455 			 * logically.  If we are inserting an extent and we've
1456 			 * found a bitmap, we want to go left, or before
1457 			 * logically.
1458 			 */
1459 			if (bitmap) {
1460 				if (info->bitmap) {
1461 					WARN_ON_ONCE(1);
1462 					return -EEXIST;
1463 				}
1464 				p = &(*p)->rb_right;
1465 			} else {
1466 				if (!info->bitmap) {
1467 					WARN_ON_ONCE(1);
1468 					return -EEXIST;
1469 				}
1470 				p = &(*p)->rb_left;
1471 			}
1472 		}
1473 	}
1474 
1475 	rb_link_node(node, parent, p);
1476 	rb_insert_color(node, root);
1477 
1478 	return 0;
1479 }
1480 
1481 /*
1482  * searches the tree for the given offset.
1483  *
1484  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1485  * want a section that has at least bytes size and comes at or after the given
1486  * offset.
1487  */
1488 static struct btrfs_free_space *
1489 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1490 		   u64 offset, int bitmap_only, int fuzzy)
1491 {
1492 	struct rb_node *n = ctl->free_space_offset.rb_node;
1493 	struct btrfs_free_space *entry, *prev = NULL;
1494 
1495 	/* find entry that is closest to the 'offset' */
1496 	while (1) {
1497 		if (!n) {
1498 			entry = NULL;
1499 			break;
1500 		}
1501 
1502 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1503 		prev = entry;
1504 
1505 		if (offset < entry->offset)
1506 			n = n->rb_left;
1507 		else if (offset > entry->offset)
1508 			n = n->rb_right;
1509 		else
1510 			break;
1511 	}
1512 
1513 	if (bitmap_only) {
1514 		if (!entry)
1515 			return NULL;
1516 		if (entry->bitmap)
1517 			return entry;
1518 
1519 		/*
1520 		 * bitmap entry and extent entry may share same offset,
1521 		 * in that case, bitmap entry comes after extent entry.
1522 		 */
1523 		n = rb_next(n);
1524 		if (!n)
1525 			return NULL;
1526 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1527 		if (entry->offset != offset)
1528 			return NULL;
1529 
1530 		WARN_ON(!entry->bitmap);
1531 		return entry;
1532 	} else if (entry) {
1533 		if (entry->bitmap) {
1534 			/*
1535 			 * if previous extent entry covers the offset,
1536 			 * we should return it instead of the bitmap entry
1537 			 */
1538 			n = rb_prev(&entry->offset_index);
1539 			if (n) {
1540 				prev = rb_entry(n, struct btrfs_free_space,
1541 						offset_index);
1542 				if (!prev->bitmap &&
1543 				    prev->offset + prev->bytes > offset)
1544 					entry = prev;
1545 			}
1546 		}
1547 		return entry;
1548 	}
1549 
1550 	if (!prev)
1551 		return NULL;
1552 
1553 	/* find last entry before the 'offset' */
1554 	entry = prev;
1555 	if (entry->offset > offset) {
1556 		n = rb_prev(&entry->offset_index);
1557 		if (n) {
1558 			entry = rb_entry(n, struct btrfs_free_space,
1559 					offset_index);
1560 			ASSERT(entry->offset <= offset);
1561 		} else {
1562 			if (fuzzy)
1563 				return entry;
1564 			else
1565 				return NULL;
1566 		}
1567 	}
1568 
1569 	if (entry->bitmap) {
1570 		n = rb_prev(&entry->offset_index);
1571 		if (n) {
1572 			prev = rb_entry(n, struct btrfs_free_space,
1573 					offset_index);
1574 			if (!prev->bitmap &&
1575 			    prev->offset + prev->bytes > offset)
1576 				return prev;
1577 		}
1578 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1579 			return entry;
1580 	} else if (entry->offset + entry->bytes > offset)
1581 		return entry;
1582 
1583 	if (!fuzzy)
1584 		return NULL;
1585 
1586 	while (1) {
1587 		if (entry->bitmap) {
1588 			if (entry->offset + BITS_PER_BITMAP *
1589 			    ctl->unit > offset)
1590 				break;
1591 		} else {
1592 			if (entry->offset + entry->bytes > offset)
1593 				break;
1594 		}
1595 
1596 		n = rb_next(&entry->offset_index);
1597 		if (!n)
1598 			return NULL;
1599 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1600 	}
1601 	return entry;
1602 }
1603 
1604 static inline void
1605 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1606 		    struct btrfs_free_space *info)
1607 {
1608 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1609 	ctl->free_extents--;
1610 }
1611 
1612 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1613 			      struct btrfs_free_space *info)
1614 {
1615 	__unlink_free_space(ctl, info);
1616 	ctl->free_space -= info->bytes;
1617 }
1618 
1619 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1620 			   struct btrfs_free_space *info)
1621 {
1622 	int ret = 0;
1623 
1624 	ASSERT(info->bytes || info->bitmap);
1625 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1626 				 &info->offset_index, (info->bitmap != NULL));
1627 	if (ret)
1628 		return ret;
1629 
1630 	ctl->free_space += info->bytes;
1631 	ctl->free_extents++;
1632 	return ret;
1633 }
1634 
1635 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1636 {
1637 	struct btrfs_block_group_cache *block_group = ctl->private;
1638 	u64 max_bytes;
1639 	u64 bitmap_bytes;
1640 	u64 extent_bytes;
1641 	u64 size = block_group->key.offset;
1642 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1643 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1644 
1645 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1646 
1647 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1648 
1649 	/*
1650 	 * The goal is to keep the total amount of memory used per 1gb of space
1651 	 * at or below 32k, so we need to adjust how much memory we allow to be
1652 	 * used by extent based free space tracking
1653 	 */
1654 	if (size < SZ_1G)
1655 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1656 	else
1657 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1658 
1659 	/*
1660 	 * we want to account for 1 more bitmap than what we have so we can make
1661 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1662 	 * we add more bitmaps.
1663 	 */
1664 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1665 
1666 	if (bitmap_bytes >= max_bytes) {
1667 		ctl->extents_thresh = 0;
1668 		return;
1669 	}
1670 
1671 	/*
1672 	 * we want the extent entry threshold to always be at most 1/2 the max
1673 	 * bytes we can have, or whatever is less than that.
1674 	 */
1675 	extent_bytes = max_bytes - bitmap_bytes;
1676 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1677 
1678 	ctl->extents_thresh =
1679 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1680 }
1681 
1682 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1683 				       struct btrfs_free_space *info,
1684 				       u64 offset, u64 bytes)
1685 {
1686 	unsigned long start, count;
1687 
1688 	start = offset_to_bit(info->offset, ctl->unit, offset);
1689 	count = bytes_to_bits(bytes, ctl->unit);
1690 	ASSERT(start + count <= BITS_PER_BITMAP);
1691 
1692 	bitmap_clear(info->bitmap, start, count);
1693 
1694 	info->bytes -= bytes;
1695 }
1696 
1697 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1698 			      struct btrfs_free_space *info, u64 offset,
1699 			      u64 bytes)
1700 {
1701 	__bitmap_clear_bits(ctl, info, offset, bytes);
1702 	ctl->free_space -= bytes;
1703 }
1704 
1705 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1706 			    struct btrfs_free_space *info, u64 offset,
1707 			    u64 bytes)
1708 {
1709 	unsigned long start, count;
1710 
1711 	start = offset_to_bit(info->offset, ctl->unit, offset);
1712 	count = bytes_to_bits(bytes, ctl->unit);
1713 	ASSERT(start + count <= BITS_PER_BITMAP);
1714 
1715 	bitmap_set(info->bitmap, start, count);
1716 
1717 	info->bytes += bytes;
1718 	ctl->free_space += bytes;
1719 }
1720 
1721 /*
1722  * If we can not find suitable extent, we will use bytes to record
1723  * the size of the max extent.
1724  */
1725 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1726 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1727 			 u64 *bytes, bool for_alloc)
1728 {
1729 	unsigned long found_bits = 0;
1730 	unsigned long max_bits = 0;
1731 	unsigned long bits, i;
1732 	unsigned long next_zero;
1733 	unsigned long extent_bits;
1734 
1735 	/*
1736 	 * Skip searching the bitmap if we don't have a contiguous section that
1737 	 * is large enough for this allocation.
1738 	 */
1739 	if (for_alloc &&
1740 	    bitmap_info->max_extent_size &&
1741 	    bitmap_info->max_extent_size < *bytes) {
1742 		*bytes = bitmap_info->max_extent_size;
1743 		return -1;
1744 	}
1745 
1746 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1747 			  max_t(u64, *offset, bitmap_info->offset));
1748 	bits = bytes_to_bits(*bytes, ctl->unit);
1749 
1750 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1751 		if (for_alloc && bits == 1) {
1752 			found_bits = 1;
1753 			break;
1754 		}
1755 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1756 					       BITS_PER_BITMAP, i);
1757 		extent_bits = next_zero - i;
1758 		if (extent_bits >= bits) {
1759 			found_bits = extent_bits;
1760 			break;
1761 		} else if (extent_bits > max_bits) {
1762 			max_bits = extent_bits;
1763 		}
1764 		i = next_zero;
1765 	}
1766 
1767 	if (found_bits) {
1768 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1769 		*bytes = (u64)(found_bits) * ctl->unit;
1770 		return 0;
1771 	}
1772 
1773 	*bytes = (u64)(max_bits) * ctl->unit;
1774 	bitmap_info->max_extent_size = *bytes;
1775 	return -1;
1776 }
1777 
1778 /* Cache the size of the max extent in bytes */
1779 static struct btrfs_free_space *
1780 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1781 		unsigned long align, u64 *max_extent_size)
1782 {
1783 	struct btrfs_free_space *entry;
1784 	struct rb_node *node;
1785 	u64 tmp;
1786 	u64 align_off;
1787 	int ret;
1788 
1789 	if (!ctl->free_space_offset.rb_node)
1790 		goto out;
1791 
1792 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1793 	if (!entry)
1794 		goto out;
1795 
1796 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1797 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1798 		if (entry->bytes < *bytes) {
1799 			if (entry->bytes > *max_extent_size)
1800 				*max_extent_size = entry->bytes;
1801 			continue;
1802 		}
1803 
1804 		/* make sure the space returned is big enough
1805 		 * to match our requested alignment
1806 		 */
1807 		if (*bytes >= align) {
1808 			tmp = entry->offset - ctl->start + align - 1;
1809 			tmp = div64_u64(tmp, align);
1810 			tmp = tmp * align + ctl->start;
1811 			align_off = tmp - entry->offset;
1812 		} else {
1813 			align_off = 0;
1814 			tmp = entry->offset;
1815 		}
1816 
1817 		if (entry->bytes < *bytes + align_off) {
1818 			if (entry->bytes > *max_extent_size)
1819 				*max_extent_size = entry->bytes;
1820 			continue;
1821 		}
1822 
1823 		if (entry->bitmap) {
1824 			u64 size = *bytes;
1825 
1826 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1827 			if (!ret) {
1828 				*offset = tmp;
1829 				*bytes = size;
1830 				return entry;
1831 			} else if (size > *max_extent_size) {
1832 				*max_extent_size = size;
1833 			}
1834 			continue;
1835 		}
1836 
1837 		*offset = tmp;
1838 		*bytes = entry->bytes - align_off;
1839 		return entry;
1840 	}
1841 out:
1842 	return NULL;
1843 }
1844 
1845 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1846 			   struct btrfs_free_space *info, u64 offset)
1847 {
1848 	info->offset = offset_to_bitmap(ctl, offset);
1849 	info->bytes = 0;
1850 	INIT_LIST_HEAD(&info->list);
1851 	link_free_space(ctl, info);
1852 	ctl->total_bitmaps++;
1853 
1854 	ctl->op->recalc_thresholds(ctl);
1855 }
1856 
1857 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1858 			struct btrfs_free_space *bitmap_info)
1859 {
1860 	unlink_free_space(ctl, bitmap_info);
1861 	kfree(bitmap_info->bitmap);
1862 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1863 	ctl->total_bitmaps--;
1864 	ctl->op->recalc_thresholds(ctl);
1865 }
1866 
1867 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1868 			      struct btrfs_free_space *bitmap_info,
1869 			      u64 *offset, u64 *bytes)
1870 {
1871 	u64 end;
1872 	u64 search_start, search_bytes;
1873 	int ret;
1874 
1875 again:
1876 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1877 
1878 	/*
1879 	 * We need to search for bits in this bitmap.  We could only cover some
1880 	 * of the extent in this bitmap thanks to how we add space, so we need
1881 	 * to search for as much as it as we can and clear that amount, and then
1882 	 * go searching for the next bit.
1883 	 */
1884 	search_start = *offset;
1885 	search_bytes = ctl->unit;
1886 	search_bytes = min(search_bytes, end - search_start + 1);
1887 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1888 			    false);
1889 	if (ret < 0 || search_start != *offset)
1890 		return -EINVAL;
1891 
1892 	/* We may have found more bits than what we need */
1893 	search_bytes = min(search_bytes, *bytes);
1894 
1895 	/* Cannot clear past the end of the bitmap */
1896 	search_bytes = min(search_bytes, end - search_start + 1);
1897 
1898 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1899 	*offset += search_bytes;
1900 	*bytes -= search_bytes;
1901 
1902 	if (*bytes) {
1903 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1904 		if (!bitmap_info->bytes)
1905 			free_bitmap(ctl, bitmap_info);
1906 
1907 		/*
1908 		 * no entry after this bitmap, but we still have bytes to
1909 		 * remove, so something has gone wrong.
1910 		 */
1911 		if (!next)
1912 			return -EINVAL;
1913 
1914 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1915 				       offset_index);
1916 
1917 		/*
1918 		 * if the next entry isn't a bitmap we need to return to let the
1919 		 * extent stuff do its work.
1920 		 */
1921 		if (!bitmap_info->bitmap)
1922 			return -EAGAIN;
1923 
1924 		/*
1925 		 * Ok the next item is a bitmap, but it may not actually hold
1926 		 * the information for the rest of this free space stuff, so
1927 		 * look for it, and if we don't find it return so we can try
1928 		 * everything over again.
1929 		 */
1930 		search_start = *offset;
1931 		search_bytes = ctl->unit;
1932 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1933 				    &search_bytes, false);
1934 		if (ret < 0 || search_start != *offset)
1935 			return -EAGAIN;
1936 
1937 		goto again;
1938 	} else if (!bitmap_info->bytes)
1939 		free_bitmap(ctl, bitmap_info);
1940 
1941 	return 0;
1942 }
1943 
1944 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1945 			       struct btrfs_free_space *info, u64 offset,
1946 			       u64 bytes)
1947 {
1948 	u64 bytes_to_set = 0;
1949 	u64 end;
1950 
1951 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1952 
1953 	bytes_to_set = min(end - offset, bytes);
1954 
1955 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1956 
1957 	/*
1958 	 * We set some bytes, we have no idea what the max extent size is
1959 	 * anymore.
1960 	 */
1961 	info->max_extent_size = 0;
1962 
1963 	return bytes_to_set;
1964 
1965 }
1966 
1967 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1968 		      struct btrfs_free_space *info)
1969 {
1970 	struct btrfs_block_group_cache *block_group = ctl->private;
1971 	bool forced = false;
1972 
1973 #ifdef CONFIG_BTRFS_DEBUG
1974 	if (btrfs_should_fragment_free_space(block_group->fs_info->extent_root,
1975 					     block_group))
1976 		forced = true;
1977 #endif
1978 
1979 	/*
1980 	 * If we are below the extents threshold then we can add this as an
1981 	 * extent, and don't have to deal with the bitmap
1982 	 */
1983 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1984 		/*
1985 		 * If this block group has some small extents we don't want to
1986 		 * use up all of our free slots in the cache with them, we want
1987 		 * to reserve them to larger extents, however if we have plenty
1988 		 * of cache left then go ahead an dadd them, no sense in adding
1989 		 * the overhead of a bitmap if we don't have to.
1990 		 */
1991 		if (info->bytes <= block_group->sectorsize * 4) {
1992 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1993 				return false;
1994 		} else {
1995 			return false;
1996 		}
1997 	}
1998 
1999 	/*
2000 	 * The original block groups from mkfs can be really small, like 8
2001 	 * megabytes, so don't bother with a bitmap for those entries.  However
2002 	 * some block groups can be smaller than what a bitmap would cover but
2003 	 * are still large enough that they could overflow the 32k memory limit,
2004 	 * so allow those block groups to still be allowed to have a bitmap
2005 	 * entry.
2006 	 */
2007 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2008 		return false;
2009 
2010 	return true;
2011 }
2012 
2013 static const struct btrfs_free_space_op free_space_op = {
2014 	.recalc_thresholds	= recalculate_thresholds,
2015 	.use_bitmap		= use_bitmap,
2016 };
2017 
2018 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2019 			      struct btrfs_free_space *info)
2020 {
2021 	struct btrfs_free_space *bitmap_info;
2022 	struct btrfs_block_group_cache *block_group = NULL;
2023 	int added = 0;
2024 	u64 bytes, offset, bytes_added;
2025 	int ret;
2026 
2027 	bytes = info->bytes;
2028 	offset = info->offset;
2029 
2030 	if (!ctl->op->use_bitmap(ctl, info))
2031 		return 0;
2032 
2033 	if (ctl->op == &free_space_op)
2034 		block_group = ctl->private;
2035 again:
2036 	/*
2037 	 * Since we link bitmaps right into the cluster we need to see if we
2038 	 * have a cluster here, and if so and it has our bitmap we need to add
2039 	 * the free space to that bitmap.
2040 	 */
2041 	if (block_group && !list_empty(&block_group->cluster_list)) {
2042 		struct btrfs_free_cluster *cluster;
2043 		struct rb_node *node;
2044 		struct btrfs_free_space *entry;
2045 
2046 		cluster = list_entry(block_group->cluster_list.next,
2047 				     struct btrfs_free_cluster,
2048 				     block_group_list);
2049 		spin_lock(&cluster->lock);
2050 		node = rb_first(&cluster->root);
2051 		if (!node) {
2052 			spin_unlock(&cluster->lock);
2053 			goto no_cluster_bitmap;
2054 		}
2055 
2056 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2057 		if (!entry->bitmap) {
2058 			spin_unlock(&cluster->lock);
2059 			goto no_cluster_bitmap;
2060 		}
2061 
2062 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2063 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2064 							  offset, bytes);
2065 			bytes -= bytes_added;
2066 			offset += bytes_added;
2067 		}
2068 		spin_unlock(&cluster->lock);
2069 		if (!bytes) {
2070 			ret = 1;
2071 			goto out;
2072 		}
2073 	}
2074 
2075 no_cluster_bitmap:
2076 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2077 					 1, 0);
2078 	if (!bitmap_info) {
2079 		ASSERT(added == 0);
2080 		goto new_bitmap;
2081 	}
2082 
2083 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2084 	bytes -= bytes_added;
2085 	offset += bytes_added;
2086 	added = 0;
2087 
2088 	if (!bytes) {
2089 		ret = 1;
2090 		goto out;
2091 	} else
2092 		goto again;
2093 
2094 new_bitmap:
2095 	if (info && info->bitmap) {
2096 		add_new_bitmap(ctl, info, offset);
2097 		added = 1;
2098 		info = NULL;
2099 		goto again;
2100 	} else {
2101 		spin_unlock(&ctl->tree_lock);
2102 
2103 		/* no pre-allocated info, allocate a new one */
2104 		if (!info) {
2105 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2106 						 GFP_NOFS);
2107 			if (!info) {
2108 				spin_lock(&ctl->tree_lock);
2109 				ret = -ENOMEM;
2110 				goto out;
2111 			}
2112 		}
2113 
2114 		/* allocate the bitmap */
2115 		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2116 		spin_lock(&ctl->tree_lock);
2117 		if (!info->bitmap) {
2118 			ret = -ENOMEM;
2119 			goto out;
2120 		}
2121 		goto again;
2122 	}
2123 
2124 out:
2125 	if (info) {
2126 		if (info->bitmap)
2127 			kfree(info->bitmap);
2128 		kmem_cache_free(btrfs_free_space_cachep, info);
2129 	}
2130 
2131 	return ret;
2132 }
2133 
2134 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2135 			  struct btrfs_free_space *info, bool update_stat)
2136 {
2137 	struct btrfs_free_space *left_info;
2138 	struct btrfs_free_space *right_info;
2139 	bool merged = false;
2140 	u64 offset = info->offset;
2141 	u64 bytes = info->bytes;
2142 
2143 	/*
2144 	 * first we want to see if there is free space adjacent to the range we
2145 	 * are adding, if there is remove that struct and add a new one to
2146 	 * cover the entire range
2147 	 */
2148 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2149 	if (right_info && rb_prev(&right_info->offset_index))
2150 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2151 				     struct btrfs_free_space, offset_index);
2152 	else
2153 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2154 
2155 	if (right_info && !right_info->bitmap) {
2156 		if (update_stat)
2157 			unlink_free_space(ctl, right_info);
2158 		else
2159 			__unlink_free_space(ctl, right_info);
2160 		info->bytes += right_info->bytes;
2161 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2162 		merged = true;
2163 	}
2164 
2165 	if (left_info && !left_info->bitmap &&
2166 	    left_info->offset + left_info->bytes == offset) {
2167 		if (update_stat)
2168 			unlink_free_space(ctl, left_info);
2169 		else
2170 			__unlink_free_space(ctl, left_info);
2171 		info->offset = left_info->offset;
2172 		info->bytes += left_info->bytes;
2173 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2174 		merged = true;
2175 	}
2176 
2177 	return merged;
2178 }
2179 
2180 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2181 				     struct btrfs_free_space *info,
2182 				     bool update_stat)
2183 {
2184 	struct btrfs_free_space *bitmap;
2185 	unsigned long i;
2186 	unsigned long j;
2187 	const u64 end = info->offset + info->bytes;
2188 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2189 	u64 bytes;
2190 
2191 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2192 	if (!bitmap)
2193 		return false;
2194 
2195 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2196 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2197 	if (j == i)
2198 		return false;
2199 	bytes = (j - i) * ctl->unit;
2200 	info->bytes += bytes;
2201 
2202 	if (update_stat)
2203 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2204 	else
2205 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2206 
2207 	if (!bitmap->bytes)
2208 		free_bitmap(ctl, bitmap);
2209 
2210 	return true;
2211 }
2212 
2213 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2214 				       struct btrfs_free_space *info,
2215 				       bool update_stat)
2216 {
2217 	struct btrfs_free_space *bitmap;
2218 	u64 bitmap_offset;
2219 	unsigned long i;
2220 	unsigned long j;
2221 	unsigned long prev_j;
2222 	u64 bytes;
2223 
2224 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2225 	/* If we're on a boundary, try the previous logical bitmap. */
2226 	if (bitmap_offset == info->offset) {
2227 		if (info->offset == 0)
2228 			return false;
2229 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2230 	}
2231 
2232 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2233 	if (!bitmap)
2234 		return false;
2235 
2236 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2237 	j = 0;
2238 	prev_j = (unsigned long)-1;
2239 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2240 		if (j > i)
2241 			break;
2242 		prev_j = j;
2243 	}
2244 	if (prev_j == i)
2245 		return false;
2246 
2247 	if (prev_j == (unsigned long)-1)
2248 		bytes = (i + 1) * ctl->unit;
2249 	else
2250 		bytes = (i - prev_j) * ctl->unit;
2251 
2252 	info->offset -= bytes;
2253 	info->bytes += bytes;
2254 
2255 	if (update_stat)
2256 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2257 	else
2258 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2259 
2260 	if (!bitmap->bytes)
2261 		free_bitmap(ctl, bitmap);
2262 
2263 	return true;
2264 }
2265 
2266 /*
2267  * We prefer always to allocate from extent entries, both for clustered and
2268  * non-clustered allocation requests. So when attempting to add a new extent
2269  * entry, try to see if there's adjacent free space in bitmap entries, and if
2270  * there is, migrate that space from the bitmaps to the extent.
2271  * Like this we get better chances of satisfying space allocation requests
2272  * because we attempt to satisfy them based on a single cache entry, and never
2273  * on 2 or more entries - even if the entries represent a contiguous free space
2274  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2275  * ends).
2276  */
2277 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2278 			      struct btrfs_free_space *info,
2279 			      bool update_stat)
2280 {
2281 	/*
2282 	 * Only work with disconnected entries, as we can change their offset,
2283 	 * and must be extent entries.
2284 	 */
2285 	ASSERT(!info->bitmap);
2286 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2287 
2288 	if (ctl->total_bitmaps > 0) {
2289 		bool stole_end;
2290 		bool stole_front = false;
2291 
2292 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2293 		if (ctl->total_bitmaps > 0)
2294 			stole_front = steal_from_bitmap_to_front(ctl, info,
2295 								 update_stat);
2296 
2297 		if (stole_end || stole_front)
2298 			try_merge_free_space(ctl, info, update_stat);
2299 	}
2300 }
2301 
2302 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2303 			   struct btrfs_free_space_ctl *ctl,
2304 			   u64 offset, u64 bytes)
2305 {
2306 	struct btrfs_free_space *info;
2307 	int ret = 0;
2308 
2309 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2310 	if (!info)
2311 		return -ENOMEM;
2312 
2313 	info->offset = offset;
2314 	info->bytes = bytes;
2315 	RB_CLEAR_NODE(&info->offset_index);
2316 
2317 	spin_lock(&ctl->tree_lock);
2318 
2319 	if (try_merge_free_space(ctl, info, true))
2320 		goto link;
2321 
2322 	/*
2323 	 * There was no extent directly to the left or right of this new
2324 	 * extent then we know we're going to have to allocate a new extent, so
2325 	 * before we do that see if we need to drop this into a bitmap
2326 	 */
2327 	ret = insert_into_bitmap(ctl, info);
2328 	if (ret < 0) {
2329 		goto out;
2330 	} else if (ret) {
2331 		ret = 0;
2332 		goto out;
2333 	}
2334 link:
2335 	/*
2336 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2337 	 * going to add the new free space to existing bitmap entries - because
2338 	 * that would mean unnecessary work that would be reverted. Therefore
2339 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2340 	 */
2341 	steal_from_bitmap(ctl, info, true);
2342 
2343 	ret = link_free_space(ctl, info);
2344 	if (ret)
2345 		kmem_cache_free(btrfs_free_space_cachep, info);
2346 out:
2347 	spin_unlock(&ctl->tree_lock);
2348 
2349 	if (ret) {
2350 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2351 		ASSERT(ret != -EEXIST);
2352 	}
2353 
2354 	return ret;
2355 }
2356 
2357 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2358 			    u64 offset, u64 bytes)
2359 {
2360 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2361 	struct btrfs_free_space *info;
2362 	int ret;
2363 	bool re_search = false;
2364 
2365 	spin_lock(&ctl->tree_lock);
2366 
2367 again:
2368 	ret = 0;
2369 	if (!bytes)
2370 		goto out_lock;
2371 
2372 	info = tree_search_offset(ctl, offset, 0, 0);
2373 	if (!info) {
2374 		/*
2375 		 * oops didn't find an extent that matched the space we wanted
2376 		 * to remove, look for a bitmap instead
2377 		 */
2378 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2379 					  1, 0);
2380 		if (!info) {
2381 			/*
2382 			 * If we found a partial bit of our free space in a
2383 			 * bitmap but then couldn't find the other part this may
2384 			 * be a problem, so WARN about it.
2385 			 */
2386 			WARN_ON(re_search);
2387 			goto out_lock;
2388 		}
2389 	}
2390 
2391 	re_search = false;
2392 	if (!info->bitmap) {
2393 		unlink_free_space(ctl, info);
2394 		if (offset == info->offset) {
2395 			u64 to_free = min(bytes, info->bytes);
2396 
2397 			info->bytes -= to_free;
2398 			info->offset += to_free;
2399 			if (info->bytes) {
2400 				ret = link_free_space(ctl, info);
2401 				WARN_ON(ret);
2402 			} else {
2403 				kmem_cache_free(btrfs_free_space_cachep, info);
2404 			}
2405 
2406 			offset += to_free;
2407 			bytes -= to_free;
2408 			goto again;
2409 		} else {
2410 			u64 old_end = info->bytes + info->offset;
2411 
2412 			info->bytes = offset - info->offset;
2413 			ret = link_free_space(ctl, info);
2414 			WARN_ON(ret);
2415 			if (ret)
2416 				goto out_lock;
2417 
2418 			/* Not enough bytes in this entry to satisfy us */
2419 			if (old_end < offset + bytes) {
2420 				bytes -= old_end - offset;
2421 				offset = old_end;
2422 				goto again;
2423 			} else if (old_end == offset + bytes) {
2424 				/* all done */
2425 				goto out_lock;
2426 			}
2427 			spin_unlock(&ctl->tree_lock);
2428 
2429 			ret = btrfs_add_free_space(block_group, offset + bytes,
2430 						   old_end - (offset + bytes));
2431 			WARN_ON(ret);
2432 			goto out;
2433 		}
2434 	}
2435 
2436 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2437 	if (ret == -EAGAIN) {
2438 		re_search = true;
2439 		goto again;
2440 	}
2441 out_lock:
2442 	spin_unlock(&ctl->tree_lock);
2443 out:
2444 	return ret;
2445 }
2446 
2447 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2448 			   u64 bytes)
2449 {
2450 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2451 	struct btrfs_free_space *info;
2452 	struct rb_node *n;
2453 	int count = 0;
2454 
2455 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2456 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2457 		if (info->bytes >= bytes && !block_group->ro)
2458 			count++;
2459 		btrfs_crit(block_group->fs_info,
2460 			   "entry offset %llu, bytes %llu, bitmap %s",
2461 			   info->offset, info->bytes,
2462 		       (info->bitmap) ? "yes" : "no");
2463 	}
2464 	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2465 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2466 	btrfs_info(block_group->fs_info,
2467 		   "%d blocks of free space at or bigger than bytes is", count);
2468 }
2469 
2470 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2471 {
2472 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2473 
2474 	spin_lock_init(&ctl->tree_lock);
2475 	ctl->unit = block_group->sectorsize;
2476 	ctl->start = block_group->key.objectid;
2477 	ctl->private = block_group;
2478 	ctl->op = &free_space_op;
2479 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2480 	mutex_init(&ctl->cache_writeout_mutex);
2481 
2482 	/*
2483 	 * we only want to have 32k of ram per block group for keeping
2484 	 * track of free space, and if we pass 1/2 of that we want to
2485 	 * start converting things over to using bitmaps
2486 	 */
2487 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2488 }
2489 
2490 /*
2491  * for a given cluster, put all of its extents back into the free
2492  * space cache.  If the block group passed doesn't match the block group
2493  * pointed to by the cluster, someone else raced in and freed the
2494  * cluster already.  In that case, we just return without changing anything
2495  */
2496 static int
2497 __btrfs_return_cluster_to_free_space(
2498 			     struct btrfs_block_group_cache *block_group,
2499 			     struct btrfs_free_cluster *cluster)
2500 {
2501 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2502 	struct btrfs_free_space *entry;
2503 	struct rb_node *node;
2504 
2505 	spin_lock(&cluster->lock);
2506 	if (cluster->block_group != block_group)
2507 		goto out;
2508 
2509 	cluster->block_group = NULL;
2510 	cluster->window_start = 0;
2511 	list_del_init(&cluster->block_group_list);
2512 
2513 	node = rb_first(&cluster->root);
2514 	while (node) {
2515 		bool bitmap;
2516 
2517 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2518 		node = rb_next(&entry->offset_index);
2519 		rb_erase(&entry->offset_index, &cluster->root);
2520 		RB_CLEAR_NODE(&entry->offset_index);
2521 
2522 		bitmap = (entry->bitmap != NULL);
2523 		if (!bitmap) {
2524 			try_merge_free_space(ctl, entry, false);
2525 			steal_from_bitmap(ctl, entry, false);
2526 		}
2527 		tree_insert_offset(&ctl->free_space_offset,
2528 				   entry->offset, &entry->offset_index, bitmap);
2529 	}
2530 	cluster->root = RB_ROOT;
2531 
2532 out:
2533 	spin_unlock(&cluster->lock);
2534 	btrfs_put_block_group(block_group);
2535 	return 0;
2536 }
2537 
2538 static void __btrfs_remove_free_space_cache_locked(
2539 				struct btrfs_free_space_ctl *ctl)
2540 {
2541 	struct btrfs_free_space *info;
2542 	struct rb_node *node;
2543 
2544 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2545 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2546 		if (!info->bitmap) {
2547 			unlink_free_space(ctl, info);
2548 			kmem_cache_free(btrfs_free_space_cachep, info);
2549 		} else {
2550 			free_bitmap(ctl, info);
2551 		}
2552 
2553 		cond_resched_lock(&ctl->tree_lock);
2554 	}
2555 }
2556 
2557 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2558 {
2559 	spin_lock(&ctl->tree_lock);
2560 	__btrfs_remove_free_space_cache_locked(ctl);
2561 	spin_unlock(&ctl->tree_lock);
2562 }
2563 
2564 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2565 {
2566 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2567 	struct btrfs_free_cluster *cluster;
2568 	struct list_head *head;
2569 
2570 	spin_lock(&ctl->tree_lock);
2571 	while ((head = block_group->cluster_list.next) !=
2572 	       &block_group->cluster_list) {
2573 		cluster = list_entry(head, struct btrfs_free_cluster,
2574 				     block_group_list);
2575 
2576 		WARN_ON(cluster->block_group != block_group);
2577 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2578 
2579 		cond_resched_lock(&ctl->tree_lock);
2580 	}
2581 	__btrfs_remove_free_space_cache_locked(ctl);
2582 	spin_unlock(&ctl->tree_lock);
2583 
2584 }
2585 
2586 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2587 			       u64 offset, u64 bytes, u64 empty_size,
2588 			       u64 *max_extent_size)
2589 {
2590 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2591 	struct btrfs_free_space *entry = NULL;
2592 	u64 bytes_search = bytes + empty_size;
2593 	u64 ret = 0;
2594 	u64 align_gap = 0;
2595 	u64 align_gap_len = 0;
2596 
2597 	spin_lock(&ctl->tree_lock);
2598 	entry = find_free_space(ctl, &offset, &bytes_search,
2599 				block_group->full_stripe_len, max_extent_size);
2600 	if (!entry)
2601 		goto out;
2602 
2603 	ret = offset;
2604 	if (entry->bitmap) {
2605 		bitmap_clear_bits(ctl, entry, offset, bytes);
2606 		if (!entry->bytes)
2607 			free_bitmap(ctl, entry);
2608 	} else {
2609 		unlink_free_space(ctl, entry);
2610 		align_gap_len = offset - entry->offset;
2611 		align_gap = entry->offset;
2612 
2613 		entry->offset = offset + bytes;
2614 		WARN_ON(entry->bytes < bytes + align_gap_len);
2615 
2616 		entry->bytes -= bytes + align_gap_len;
2617 		if (!entry->bytes)
2618 			kmem_cache_free(btrfs_free_space_cachep, entry);
2619 		else
2620 			link_free_space(ctl, entry);
2621 	}
2622 out:
2623 	spin_unlock(&ctl->tree_lock);
2624 
2625 	if (align_gap_len)
2626 		__btrfs_add_free_space(block_group->fs_info, ctl,
2627 				       align_gap, align_gap_len);
2628 	return ret;
2629 }
2630 
2631 /*
2632  * given a cluster, put all of its extents back into the free space
2633  * cache.  If a block group is passed, this function will only free
2634  * a cluster that belongs to the passed block group.
2635  *
2636  * Otherwise, it'll get a reference on the block group pointed to by the
2637  * cluster and remove the cluster from it.
2638  */
2639 int btrfs_return_cluster_to_free_space(
2640 			       struct btrfs_block_group_cache *block_group,
2641 			       struct btrfs_free_cluster *cluster)
2642 {
2643 	struct btrfs_free_space_ctl *ctl;
2644 	int ret;
2645 
2646 	/* first, get a safe pointer to the block group */
2647 	spin_lock(&cluster->lock);
2648 	if (!block_group) {
2649 		block_group = cluster->block_group;
2650 		if (!block_group) {
2651 			spin_unlock(&cluster->lock);
2652 			return 0;
2653 		}
2654 	} else if (cluster->block_group != block_group) {
2655 		/* someone else has already freed it don't redo their work */
2656 		spin_unlock(&cluster->lock);
2657 		return 0;
2658 	}
2659 	atomic_inc(&block_group->count);
2660 	spin_unlock(&cluster->lock);
2661 
2662 	ctl = block_group->free_space_ctl;
2663 
2664 	/* now return any extents the cluster had on it */
2665 	spin_lock(&ctl->tree_lock);
2666 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2667 	spin_unlock(&ctl->tree_lock);
2668 
2669 	/* finally drop our ref */
2670 	btrfs_put_block_group(block_group);
2671 	return ret;
2672 }
2673 
2674 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2675 				   struct btrfs_free_cluster *cluster,
2676 				   struct btrfs_free_space *entry,
2677 				   u64 bytes, u64 min_start,
2678 				   u64 *max_extent_size)
2679 {
2680 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2681 	int err;
2682 	u64 search_start = cluster->window_start;
2683 	u64 search_bytes = bytes;
2684 	u64 ret = 0;
2685 
2686 	search_start = min_start;
2687 	search_bytes = bytes;
2688 
2689 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2690 	if (err) {
2691 		if (search_bytes > *max_extent_size)
2692 			*max_extent_size = search_bytes;
2693 		return 0;
2694 	}
2695 
2696 	ret = search_start;
2697 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2698 
2699 	return ret;
2700 }
2701 
2702 /*
2703  * given a cluster, try to allocate 'bytes' from it, returns 0
2704  * if it couldn't find anything suitably large, or a logical disk offset
2705  * if things worked out
2706  */
2707 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2708 			     struct btrfs_free_cluster *cluster, u64 bytes,
2709 			     u64 min_start, u64 *max_extent_size)
2710 {
2711 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2712 	struct btrfs_free_space *entry = NULL;
2713 	struct rb_node *node;
2714 	u64 ret = 0;
2715 
2716 	spin_lock(&cluster->lock);
2717 	if (bytes > cluster->max_size)
2718 		goto out;
2719 
2720 	if (cluster->block_group != block_group)
2721 		goto out;
2722 
2723 	node = rb_first(&cluster->root);
2724 	if (!node)
2725 		goto out;
2726 
2727 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2728 	while (1) {
2729 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2730 			*max_extent_size = entry->bytes;
2731 
2732 		if (entry->bytes < bytes ||
2733 		    (!entry->bitmap && entry->offset < min_start)) {
2734 			node = rb_next(&entry->offset_index);
2735 			if (!node)
2736 				break;
2737 			entry = rb_entry(node, struct btrfs_free_space,
2738 					 offset_index);
2739 			continue;
2740 		}
2741 
2742 		if (entry->bitmap) {
2743 			ret = btrfs_alloc_from_bitmap(block_group,
2744 						      cluster, entry, bytes,
2745 						      cluster->window_start,
2746 						      max_extent_size);
2747 			if (ret == 0) {
2748 				node = rb_next(&entry->offset_index);
2749 				if (!node)
2750 					break;
2751 				entry = rb_entry(node, struct btrfs_free_space,
2752 						 offset_index);
2753 				continue;
2754 			}
2755 			cluster->window_start += bytes;
2756 		} else {
2757 			ret = entry->offset;
2758 
2759 			entry->offset += bytes;
2760 			entry->bytes -= bytes;
2761 		}
2762 
2763 		if (entry->bytes == 0)
2764 			rb_erase(&entry->offset_index, &cluster->root);
2765 		break;
2766 	}
2767 out:
2768 	spin_unlock(&cluster->lock);
2769 
2770 	if (!ret)
2771 		return 0;
2772 
2773 	spin_lock(&ctl->tree_lock);
2774 
2775 	ctl->free_space -= bytes;
2776 	if (entry->bytes == 0) {
2777 		ctl->free_extents--;
2778 		if (entry->bitmap) {
2779 			kfree(entry->bitmap);
2780 			ctl->total_bitmaps--;
2781 			ctl->op->recalc_thresholds(ctl);
2782 		}
2783 		kmem_cache_free(btrfs_free_space_cachep, entry);
2784 	}
2785 
2786 	spin_unlock(&ctl->tree_lock);
2787 
2788 	return ret;
2789 }
2790 
2791 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2792 				struct btrfs_free_space *entry,
2793 				struct btrfs_free_cluster *cluster,
2794 				u64 offset, u64 bytes,
2795 				u64 cont1_bytes, u64 min_bytes)
2796 {
2797 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2798 	unsigned long next_zero;
2799 	unsigned long i;
2800 	unsigned long want_bits;
2801 	unsigned long min_bits;
2802 	unsigned long found_bits;
2803 	unsigned long max_bits = 0;
2804 	unsigned long start = 0;
2805 	unsigned long total_found = 0;
2806 	int ret;
2807 
2808 	i = offset_to_bit(entry->offset, ctl->unit,
2809 			  max_t(u64, offset, entry->offset));
2810 	want_bits = bytes_to_bits(bytes, ctl->unit);
2811 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2812 
2813 	/*
2814 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2815 	 * fragmented.
2816 	 */
2817 	if (entry->max_extent_size &&
2818 	    entry->max_extent_size < cont1_bytes)
2819 		return -ENOSPC;
2820 again:
2821 	found_bits = 0;
2822 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2823 		next_zero = find_next_zero_bit(entry->bitmap,
2824 					       BITS_PER_BITMAP, i);
2825 		if (next_zero - i >= min_bits) {
2826 			found_bits = next_zero - i;
2827 			if (found_bits > max_bits)
2828 				max_bits = found_bits;
2829 			break;
2830 		}
2831 		if (next_zero - i > max_bits)
2832 			max_bits = next_zero - i;
2833 		i = next_zero;
2834 	}
2835 
2836 	if (!found_bits) {
2837 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2838 		return -ENOSPC;
2839 	}
2840 
2841 	if (!total_found) {
2842 		start = i;
2843 		cluster->max_size = 0;
2844 	}
2845 
2846 	total_found += found_bits;
2847 
2848 	if (cluster->max_size < found_bits * ctl->unit)
2849 		cluster->max_size = found_bits * ctl->unit;
2850 
2851 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2852 		i = next_zero + 1;
2853 		goto again;
2854 	}
2855 
2856 	cluster->window_start = start * ctl->unit + entry->offset;
2857 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2858 	ret = tree_insert_offset(&cluster->root, entry->offset,
2859 				 &entry->offset_index, 1);
2860 	ASSERT(!ret); /* -EEXIST; Logic error */
2861 
2862 	trace_btrfs_setup_cluster(block_group, cluster,
2863 				  total_found * ctl->unit, 1);
2864 	return 0;
2865 }
2866 
2867 /*
2868  * This searches the block group for just extents to fill the cluster with.
2869  * Try to find a cluster with at least bytes total bytes, at least one
2870  * extent of cont1_bytes, and other clusters of at least min_bytes.
2871  */
2872 static noinline int
2873 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2874 			struct btrfs_free_cluster *cluster,
2875 			struct list_head *bitmaps, u64 offset, u64 bytes,
2876 			u64 cont1_bytes, u64 min_bytes)
2877 {
2878 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2879 	struct btrfs_free_space *first = NULL;
2880 	struct btrfs_free_space *entry = NULL;
2881 	struct btrfs_free_space *last;
2882 	struct rb_node *node;
2883 	u64 window_free;
2884 	u64 max_extent;
2885 	u64 total_size = 0;
2886 
2887 	entry = tree_search_offset(ctl, offset, 0, 1);
2888 	if (!entry)
2889 		return -ENOSPC;
2890 
2891 	/*
2892 	 * We don't want bitmaps, so just move along until we find a normal
2893 	 * extent entry.
2894 	 */
2895 	while (entry->bitmap || entry->bytes < min_bytes) {
2896 		if (entry->bitmap && list_empty(&entry->list))
2897 			list_add_tail(&entry->list, bitmaps);
2898 		node = rb_next(&entry->offset_index);
2899 		if (!node)
2900 			return -ENOSPC;
2901 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2902 	}
2903 
2904 	window_free = entry->bytes;
2905 	max_extent = entry->bytes;
2906 	first = entry;
2907 	last = entry;
2908 
2909 	for (node = rb_next(&entry->offset_index); node;
2910 	     node = rb_next(&entry->offset_index)) {
2911 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2912 
2913 		if (entry->bitmap) {
2914 			if (list_empty(&entry->list))
2915 				list_add_tail(&entry->list, bitmaps);
2916 			continue;
2917 		}
2918 
2919 		if (entry->bytes < min_bytes)
2920 			continue;
2921 
2922 		last = entry;
2923 		window_free += entry->bytes;
2924 		if (entry->bytes > max_extent)
2925 			max_extent = entry->bytes;
2926 	}
2927 
2928 	if (window_free < bytes || max_extent < cont1_bytes)
2929 		return -ENOSPC;
2930 
2931 	cluster->window_start = first->offset;
2932 
2933 	node = &first->offset_index;
2934 
2935 	/*
2936 	 * now we've found our entries, pull them out of the free space
2937 	 * cache and put them into the cluster rbtree
2938 	 */
2939 	do {
2940 		int ret;
2941 
2942 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2943 		node = rb_next(&entry->offset_index);
2944 		if (entry->bitmap || entry->bytes < min_bytes)
2945 			continue;
2946 
2947 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2948 		ret = tree_insert_offset(&cluster->root, entry->offset,
2949 					 &entry->offset_index, 0);
2950 		total_size += entry->bytes;
2951 		ASSERT(!ret); /* -EEXIST; Logic error */
2952 	} while (node && entry != last);
2953 
2954 	cluster->max_size = max_extent;
2955 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2956 	return 0;
2957 }
2958 
2959 /*
2960  * This specifically looks for bitmaps that may work in the cluster, we assume
2961  * that we have already failed to find extents that will work.
2962  */
2963 static noinline int
2964 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2965 		     struct btrfs_free_cluster *cluster,
2966 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2967 		     u64 cont1_bytes, u64 min_bytes)
2968 {
2969 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2970 	struct btrfs_free_space *entry = NULL;
2971 	int ret = -ENOSPC;
2972 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2973 
2974 	if (ctl->total_bitmaps == 0)
2975 		return -ENOSPC;
2976 
2977 	/*
2978 	 * The bitmap that covers offset won't be in the list unless offset
2979 	 * is just its start offset.
2980 	 */
2981 	if (!list_empty(bitmaps))
2982 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2983 
2984 	if (!entry || entry->offset != bitmap_offset) {
2985 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2986 		if (entry && list_empty(&entry->list))
2987 			list_add(&entry->list, bitmaps);
2988 	}
2989 
2990 	list_for_each_entry(entry, bitmaps, list) {
2991 		if (entry->bytes < bytes)
2992 			continue;
2993 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2994 					   bytes, cont1_bytes, min_bytes);
2995 		if (!ret)
2996 			return 0;
2997 	}
2998 
2999 	/*
3000 	 * The bitmaps list has all the bitmaps that record free space
3001 	 * starting after offset, so no more search is required.
3002 	 */
3003 	return -ENOSPC;
3004 }
3005 
3006 /*
3007  * here we try to find a cluster of blocks in a block group.  The goal
3008  * is to find at least bytes+empty_size.
3009  * We might not find them all in one contiguous area.
3010  *
3011  * returns zero and sets up cluster if things worked out, otherwise
3012  * it returns -enospc
3013  */
3014 int btrfs_find_space_cluster(struct btrfs_root *root,
3015 			     struct btrfs_block_group_cache *block_group,
3016 			     struct btrfs_free_cluster *cluster,
3017 			     u64 offset, u64 bytes, u64 empty_size)
3018 {
3019 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3020 	struct btrfs_free_space *entry, *tmp;
3021 	LIST_HEAD(bitmaps);
3022 	u64 min_bytes;
3023 	u64 cont1_bytes;
3024 	int ret;
3025 
3026 	/*
3027 	 * Choose the minimum extent size we'll require for this
3028 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3029 	 * For metadata, allow allocates with smaller extents.  For
3030 	 * data, keep it dense.
3031 	 */
3032 	if (btrfs_test_opt(root->fs_info, SSD_SPREAD)) {
3033 		cont1_bytes = min_bytes = bytes + empty_size;
3034 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3035 		cont1_bytes = bytes;
3036 		min_bytes = block_group->sectorsize;
3037 	} else {
3038 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3039 		min_bytes = block_group->sectorsize;
3040 	}
3041 
3042 	spin_lock(&ctl->tree_lock);
3043 
3044 	/*
3045 	 * If we know we don't have enough space to make a cluster don't even
3046 	 * bother doing all the work to try and find one.
3047 	 */
3048 	if (ctl->free_space < bytes) {
3049 		spin_unlock(&ctl->tree_lock);
3050 		return -ENOSPC;
3051 	}
3052 
3053 	spin_lock(&cluster->lock);
3054 
3055 	/* someone already found a cluster, hooray */
3056 	if (cluster->block_group) {
3057 		ret = 0;
3058 		goto out;
3059 	}
3060 
3061 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3062 				 min_bytes);
3063 
3064 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3065 				      bytes + empty_size,
3066 				      cont1_bytes, min_bytes);
3067 	if (ret)
3068 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3069 					   offset, bytes + empty_size,
3070 					   cont1_bytes, min_bytes);
3071 
3072 	/* Clear our temporary list */
3073 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3074 		list_del_init(&entry->list);
3075 
3076 	if (!ret) {
3077 		atomic_inc(&block_group->count);
3078 		list_add_tail(&cluster->block_group_list,
3079 			      &block_group->cluster_list);
3080 		cluster->block_group = block_group;
3081 	} else {
3082 		trace_btrfs_failed_cluster_setup(block_group);
3083 	}
3084 out:
3085 	spin_unlock(&cluster->lock);
3086 	spin_unlock(&ctl->tree_lock);
3087 
3088 	return ret;
3089 }
3090 
3091 /*
3092  * simple code to zero out a cluster
3093  */
3094 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3095 {
3096 	spin_lock_init(&cluster->lock);
3097 	spin_lock_init(&cluster->refill_lock);
3098 	cluster->root = RB_ROOT;
3099 	cluster->max_size = 0;
3100 	cluster->fragmented = false;
3101 	INIT_LIST_HEAD(&cluster->block_group_list);
3102 	cluster->block_group = NULL;
3103 }
3104 
3105 static int do_trimming(struct btrfs_block_group_cache *block_group,
3106 		       u64 *total_trimmed, u64 start, u64 bytes,
3107 		       u64 reserved_start, u64 reserved_bytes,
3108 		       struct btrfs_trim_range *trim_entry)
3109 {
3110 	struct btrfs_space_info *space_info = block_group->space_info;
3111 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3112 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3113 	int ret;
3114 	int update = 0;
3115 	u64 trimmed = 0;
3116 
3117 	spin_lock(&space_info->lock);
3118 	spin_lock(&block_group->lock);
3119 	if (!block_group->ro) {
3120 		block_group->reserved += reserved_bytes;
3121 		space_info->bytes_reserved += reserved_bytes;
3122 		update = 1;
3123 	}
3124 	spin_unlock(&block_group->lock);
3125 	spin_unlock(&space_info->lock);
3126 
3127 	ret = btrfs_discard_extent(fs_info->extent_root,
3128 				   start, bytes, &trimmed);
3129 	if (!ret)
3130 		*total_trimmed += trimmed;
3131 
3132 	mutex_lock(&ctl->cache_writeout_mutex);
3133 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3134 	list_del(&trim_entry->list);
3135 	mutex_unlock(&ctl->cache_writeout_mutex);
3136 
3137 	if (update) {
3138 		spin_lock(&space_info->lock);
3139 		spin_lock(&block_group->lock);
3140 		if (block_group->ro)
3141 			space_info->bytes_readonly += reserved_bytes;
3142 		block_group->reserved -= reserved_bytes;
3143 		space_info->bytes_reserved -= reserved_bytes;
3144 		spin_unlock(&space_info->lock);
3145 		spin_unlock(&block_group->lock);
3146 	}
3147 
3148 	return ret;
3149 }
3150 
3151 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3152 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3153 {
3154 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3155 	struct btrfs_free_space *entry;
3156 	struct rb_node *node;
3157 	int ret = 0;
3158 	u64 extent_start;
3159 	u64 extent_bytes;
3160 	u64 bytes;
3161 
3162 	while (start < end) {
3163 		struct btrfs_trim_range trim_entry;
3164 
3165 		mutex_lock(&ctl->cache_writeout_mutex);
3166 		spin_lock(&ctl->tree_lock);
3167 
3168 		if (ctl->free_space < minlen) {
3169 			spin_unlock(&ctl->tree_lock);
3170 			mutex_unlock(&ctl->cache_writeout_mutex);
3171 			break;
3172 		}
3173 
3174 		entry = tree_search_offset(ctl, start, 0, 1);
3175 		if (!entry) {
3176 			spin_unlock(&ctl->tree_lock);
3177 			mutex_unlock(&ctl->cache_writeout_mutex);
3178 			break;
3179 		}
3180 
3181 		/* skip bitmaps */
3182 		while (entry->bitmap) {
3183 			node = rb_next(&entry->offset_index);
3184 			if (!node) {
3185 				spin_unlock(&ctl->tree_lock);
3186 				mutex_unlock(&ctl->cache_writeout_mutex);
3187 				goto out;
3188 			}
3189 			entry = rb_entry(node, struct btrfs_free_space,
3190 					 offset_index);
3191 		}
3192 
3193 		if (entry->offset >= end) {
3194 			spin_unlock(&ctl->tree_lock);
3195 			mutex_unlock(&ctl->cache_writeout_mutex);
3196 			break;
3197 		}
3198 
3199 		extent_start = entry->offset;
3200 		extent_bytes = entry->bytes;
3201 		start = max(start, extent_start);
3202 		bytes = min(extent_start + extent_bytes, end) - start;
3203 		if (bytes < minlen) {
3204 			spin_unlock(&ctl->tree_lock);
3205 			mutex_unlock(&ctl->cache_writeout_mutex);
3206 			goto next;
3207 		}
3208 
3209 		unlink_free_space(ctl, entry);
3210 		kmem_cache_free(btrfs_free_space_cachep, entry);
3211 
3212 		spin_unlock(&ctl->tree_lock);
3213 		trim_entry.start = extent_start;
3214 		trim_entry.bytes = extent_bytes;
3215 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3216 		mutex_unlock(&ctl->cache_writeout_mutex);
3217 
3218 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3219 				  extent_start, extent_bytes, &trim_entry);
3220 		if (ret)
3221 			break;
3222 next:
3223 		start += bytes;
3224 
3225 		if (fatal_signal_pending(current)) {
3226 			ret = -ERESTARTSYS;
3227 			break;
3228 		}
3229 
3230 		cond_resched();
3231 	}
3232 out:
3233 	return ret;
3234 }
3235 
3236 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3237 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3238 {
3239 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3240 	struct btrfs_free_space *entry;
3241 	int ret = 0;
3242 	int ret2;
3243 	u64 bytes;
3244 	u64 offset = offset_to_bitmap(ctl, start);
3245 
3246 	while (offset < end) {
3247 		bool next_bitmap = false;
3248 		struct btrfs_trim_range trim_entry;
3249 
3250 		mutex_lock(&ctl->cache_writeout_mutex);
3251 		spin_lock(&ctl->tree_lock);
3252 
3253 		if (ctl->free_space < minlen) {
3254 			spin_unlock(&ctl->tree_lock);
3255 			mutex_unlock(&ctl->cache_writeout_mutex);
3256 			break;
3257 		}
3258 
3259 		entry = tree_search_offset(ctl, offset, 1, 0);
3260 		if (!entry) {
3261 			spin_unlock(&ctl->tree_lock);
3262 			mutex_unlock(&ctl->cache_writeout_mutex);
3263 			next_bitmap = true;
3264 			goto next;
3265 		}
3266 
3267 		bytes = minlen;
3268 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3269 		if (ret2 || start >= end) {
3270 			spin_unlock(&ctl->tree_lock);
3271 			mutex_unlock(&ctl->cache_writeout_mutex);
3272 			next_bitmap = true;
3273 			goto next;
3274 		}
3275 
3276 		bytes = min(bytes, end - start);
3277 		if (bytes < minlen) {
3278 			spin_unlock(&ctl->tree_lock);
3279 			mutex_unlock(&ctl->cache_writeout_mutex);
3280 			goto next;
3281 		}
3282 
3283 		bitmap_clear_bits(ctl, entry, start, bytes);
3284 		if (entry->bytes == 0)
3285 			free_bitmap(ctl, entry);
3286 
3287 		spin_unlock(&ctl->tree_lock);
3288 		trim_entry.start = start;
3289 		trim_entry.bytes = bytes;
3290 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3291 		mutex_unlock(&ctl->cache_writeout_mutex);
3292 
3293 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3294 				  start, bytes, &trim_entry);
3295 		if (ret)
3296 			break;
3297 next:
3298 		if (next_bitmap) {
3299 			offset += BITS_PER_BITMAP * ctl->unit;
3300 		} else {
3301 			start += bytes;
3302 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3303 				offset += BITS_PER_BITMAP * ctl->unit;
3304 		}
3305 
3306 		if (fatal_signal_pending(current)) {
3307 			ret = -ERESTARTSYS;
3308 			break;
3309 		}
3310 
3311 		cond_resched();
3312 	}
3313 
3314 	return ret;
3315 }
3316 
3317 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3318 {
3319 	atomic_inc(&cache->trimming);
3320 }
3321 
3322 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3323 {
3324 	struct extent_map_tree *em_tree;
3325 	struct extent_map *em;
3326 	bool cleanup;
3327 
3328 	spin_lock(&block_group->lock);
3329 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3330 		   block_group->removed);
3331 	spin_unlock(&block_group->lock);
3332 
3333 	if (cleanup) {
3334 		lock_chunks(block_group->fs_info->chunk_root);
3335 		em_tree = &block_group->fs_info->mapping_tree.map_tree;
3336 		write_lock(&em_tree->lock);
3337 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3338 					   1);
3339 		BUG_ON(!em); /* logic error, can't happen */
3340 		/*
3341 		 * remove_extent_mapping() will delete us from the pinned_chunks
3342 		 * list, which is protected by the chunk mutex.
3343 		 */
3344 		remove_extent_mapping(em_tree, em);
3345 		write_unlock(&em_tree->lock);
3346 		unlock_chunks(block_group->fs_info->chunk_root);
3347 
3348 		/* once for us and once for the tree */
3349 		free_extent_map(em);
3350 		free_extent_map(em);
3351 
3352 		/*
3353 		 * We've left one free space entry and other tasks trimming
3354 		 * this block group have left 1 entry each one. Free them.
3355 		 */
3356 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3357 	}
3358 }
3359 
3360 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3361 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3362 {
3363 	int ret;
3364 
3365 	*trimmed = 0;
3366 
3367 	spin_lock(&block_group->lock);
3368 	if (block_group->removed) {
3369 		spin_unlock(&block_group->lock);
3370 		return 0;
3371 	}
3372 	btrfs_get_block_group_trimming(block_group);
3373 	spin_unlock(&block_group->lock);
3374 
3375 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3376 	if (ret)
3377 		goto out;
3378 
3379 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3380 out:
3381 	btrfs_put_block_group_trimming(block_group);
3382 	return ret;
3383 }
3384 
3385 /*
3386  * Find the left-most item in the cache tree, and then return the
3387  * smallest inode number in the item.
3388  *
3389  * Note: the returned inode number may not be the smallest one in
3390  * the tree, if the left-most item is a bitmap.
3391  */
3392 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3393 {
3394 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3395 	struct btrfs_free_space *entry = NULL;
3396 	u64 ino = 0;
3397 
3398 	spin_lock(&ctl->tree_lock);
3399 
3400 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3401 		goto out;
3402 
3403 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3404 			 struct btrfs_free_space, offset_index);
3405 
3406 	if (!entry->bitmap) {
3407 		ino = entry->offset;
3408 
3409 		unlink_free_space(ctl, entry);
3410 		entry->offset++;
3411 		entry->bytes--;
3412 		if (!entry->bytes)
3413 			kmem_cache_free(btrfs_free_space_cachep, entry);
3414 		else
3415 			link_free_space(ctl, entry);
3416 	} else {
3417 		u64 offset = 0;
3418 		u64 count = 1;
3419 		int ret;
3420 
3421 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3422 		/* Logic error; Should be empty if it can't find anything */
3423 		ASSERT(!ret);
3424 
3425 		ino = offset;
3426 		bitmap_clear_bits(ctl, entry, offset, 1);
3427 		if (entry->bytes == 0)
3428 			free_bitmap(ctl, entry);
3429 	}
3430 out:
3431 	spin_unlock(&ctl->tree_lock);
3432 
3433 	return ino;
3434 }
3435 
3436 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3437 				    struct btrfs_path *path)
3438 {
3439 	struct inode *inode = NULL;
3440 
3441 	spin_lock(&root->ino_cache_lock);
3442 	if (root->ino_cache_inode)
3443 		inode = igrab(root->ino_cache_inode);
3444 	spin_unlock(&root->ino_cache_lock);
3445 	if (inode)
3446 		return inode;
3447 
3448 	inode = __lookup_free_space_inode(root, path, 0);
3449 	if (IS_ERR(inode))
3450 		return inode;
3451 
3452 	spin_lock(&root->ino_cache_lock);
3453 	if (!btrfs_fs_closing(root->fs_info))
3454 		root->ino_cache_inode = igrab(inode);
3455 	spin_unlock(&root->ino_cache_lock);
3456 
3457 	return inode;
3458 }
3459 
3460 int create_free_ino_inode(struct btrfs_root *root,
3461 			  struct btrfs_trans_handle *trans,
3462 			  struct btrfs_path *path)
3463 {
3464 	return __create_free_space_inode(root, trans, path,
3465 					 BTRFS_FREE_INO_OBJECTID, 0);
3466 }
3467 
3468 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3469 {
3470 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3471 	struct btrfs_path *path;
3472 	struct inode *inode;
3473 	int ret = 0;
3474 	u64 root_gen = btrfs_root_generation(&root->root_item);
3475 
3476 	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
3477 		return 0;
3478 
3479 	/*
3480 	 * If we're unmounting then just return, since this does a search on the
3481 	 * normal root and not the commit root and we could deadlock.
3482 	 */
3483 	if (btrfs_fs_closing(fs_info))
3484 		return 0;
3485 
3486 	path = btrfs_alloc_path();
3487 	if (!path)
3488 		return 0;
3489 
3490 	inode = lookup_free_ino_inode(root, path);
3491 	if (IS_ERR(inode))
3492 		goto out;
3493 
3494 	if (root_gen != BTRFS_I(inode)->generation)
3495 		goto out_put;
3496 
3497 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3498 
3499 	if (ret < 0)
3500 		btrfs_err(fs_info,
3501 			"failed to load free ino cache for root %llu",
3502 			root->root_key.objectid);
3503 out_put:
3504 	iput(inode);
3505 out:
3506 	btrfs_free_path(path);
3507 	return ret;
3508 }
3509 
3510 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3511 			      struct btrfs_trans_handle *trans,
3512 			      struct btrfs_path *path,
3513 			      struct inode *inode)
3514 {
3515 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3516 	int ret;
3517 	struct btrfs_io_ctl io_ctl;
3518 	bool release_metadata = true;
3519 
3520 	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
3521 		return 0;
3522 
3523 	memset(&io_ctl, 0, sizeof(io_ctl));
3524 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3525 				      trans, path, 0);
3526 	if (!ret) {
3527 		/*
3528 		 * At this point writepages() didn't error out, so our metadata
3529 		 * reservation is released when the writeback finishes, at
3530 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3531 		 * with or without an error.
3532 		 */
3533 		release_metadata = false;
3534 		ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3535 	}
3536 
3537 	if (ret) {
3538 		if (release_metadata)
3539 			btrfs_delalloc_release_metadata(inode, inode->i_size);
3540 #ifdef DEBUG
3541 		btrfs_err(root->fs_info,
3542 			"failed to write free ino cache for root %llu",
3543 			root->root_key.objectid);
3544 #endif
3545 	}
3546 
3547 	return ret;
3548 }
3549 
3550 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3551 /*
3552  * Use this if you need to make a bitmap or extent entry specifically, it
3553  * doesn't do any of the merging that add_free_space does, this acts a lot like
3554  * how the free space cache loading stuff works, so you can get really weird
3555  * configurations.
3556  */
3557 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3558 			      u64 offset, u64 bytes, bool bitmap)
3559 {
3560 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3561 	struct btrfs_free_space *info = NULL, *bitmap_info;
3562 	void *map = NULL;
3563 	u64 bytes_added;
3564 	int ret;
3565 
3566 again:
3567 	if (!info) {
3568 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3569 		if (!info)
3570 			return -ENOMEM;
3571 	}
3572 
3573 	if (!bitmap) {
3574 		spin_lock(&ctl->tree_lock);
3575 		info->offset = offset;
3576 		info->bytes = bytes;
3577 		info->max_extent_size = 0;
3578 		ret = link_free_space(ctl, info);
3579 		spin_unlock(&ctl->tree_lock);
3580 		if (ret)
3581 			kmem_cache_free(btrfs_free_space_cachep, info);
3582 		return ret;
3583 	}
3584 
3585 	if (!map) {
3586 		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3587 		if (!map) {
3588 			kmem_cache_free(btrfs_free_space_cachep, info);
3589 			return -ENOMEM;
3590 		}
3591 	}
3592 
3593 	spin_lock(&ctl->tree_lock);
3594 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3595 					 1, 0);
3596 	if (!bitmap_info) {
3597 		info->bitmap = map;
3598 		map = NULL;
3599 		add_new_bitmap(ctl, info, offset);
3600 		bitmap_info = info;
3601 		info = NULL;
3602 	}
3603 
3604 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3605 
3606 	bytes -= bytes_added;
3607 	offset += bytes_added;
3608 	spin_unlock(&ctl->tree_lock);
3609 
3610 	if (bytes)
3611 		goto again;
3612 
3613 	if (info)
3614 		kmem_cache_free(btrfs_free_space_cachep, info);
3615 	if (map)
3616 		kfree(map);
3617 	return 0;
3618 }
3619 
3620 /*
3621  * Checks to see if the given range is in the free space cache.  This is really
3622  * just used to check the absence of space, so if there is free space in the
3623  * range at all we will return 1.
3624  */
3625 int test_check_exists(struct btrfs_block_group_cache *cache,
3626 		      u64 offset, u64 bytes)
3627 {
3628 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3629 	struct btrfs_free_space *info;
3630 	int ret = 0;
3631 
3632 	spin_lock(&ctl->tree_lock);
3633 	info = tree_search_offset(ctl, offset, 0, 0);
3634 	if (!info) {
3635 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3636 					  1, 0);
3637 		if (!info)
3638 			goto out;
3639 	}
3640 
3641 have_info:
3642 	if (info->bitmap) {
3643 		u64 bit_off, bit_bytes;
3644 		struct rb_node *n;
3645 		struct btrfs_free_space *tmp;
3646 
3647 		bit_off = offset;
3648 		bit_bytes = ctl->unit;
3649 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3650 		if (!ret) {
3651 			if (bit_off == offset) {
3652 				ret = 1;
3653 				goto out;
3654 			} else if (bit_off > offset &&
3655 				   offset + bytes > bit_off) {
3656 				ret = 1;
3657 				goto out;
3658 			}
3659 		}
3660 
3661 		n = rb_prev(&info->offset_index);
3662 		while (n) {
3663 			tmp = rb_entry(n, struct btrfs_free_space,
3664 				       offset_index);
3665 			if (tmp->offset + tmp->bytes < offset)
3666 				break;
3667 			if (offset + bytes < tmp->offset) {
3668 				n = rb_prev(&tmp->offset_index);
3669 				continue;
3670 			}
3671 			info = tmp;
3672 			goto have_info;
3673 		}
3674 
3675 		n = rb_next(&info->offset_index);
3676 		while (n) {
3677 			tmp = rb_entry(n, struct btrfs_free_space,
3678 				       offset_index);
3679 			if (offset + bytes < tmp->offset)
3680 				break;
3681 			if (tmp->offset + tmp->bytes < offset) {
3682 				n = rb_next(&tmp->offset_index);
3683 				continue;
3684 			}
3685 			info = tmp;
3686 			goto have_info;
3687 		}
3688 
3689 		ret = 0;
3690 		goto out;
3691 	}
3692 
3693 	if (info->offset == offset) {
3694 		ret = 1;
3695 		goto out;
3696 	}
3697 
3698 	if (offset > info->offset && offset < info->offset + info->bytes)
3699 		ret = 1;
3700 out:
3701 	spin_unlock(&ctl->tree_lock);
3702 	return ret;
3703 }
3704 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3705