1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "fs.h"
16 #include "messages.h"
17 #include "misc.h"
18 #include "free-space-cache.h"
19 #include "transaction.h"
20 #include "disk-io.h"
21 #include "extent_io.h"
22 #include "space-info.h"
23 #include "block-group.h"
24 #include "discard.h"
25 #include "subpage.h"
26 #include "inode-item.h"
27 #include "accessors.h"
28 #include "file-item.h"
29 #include "file.h"
30 #include "super.h"
31
32 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
33 #define MAX_CACHE_BYTES_PER_GIG SZ_64K
34 #define FORCE_EXTENT_THRESHOLD SZ_1M
35
36 static struct kmem_cache *btrfs_free_space_cachep;
37 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
38
39 struct btrfs_trim_range {
40 u64 start;
41 u64 bytes;
42 struct list_head list;
43 };
44
45 static int link_free_space(struct btrfs_free_space_ctl *ctl,
46 struct btrfs_free_space *info);
47 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
48 struct btrfs_free_space *info, bool update_stat);
49 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
50 struct btrfs_free_space *bitmap_info, u64 *offset,
51 u64 *bytes, bool for_alloc);
52 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
53 struct btrfs_free_space *bitmap_info);
54 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
55 struct btrfs_free_space *info, u64 offset,
56 u64 bytes, bool update_stats);
57
btrfs_crc32c_final(u32 crc,u8 * result)58 static void btrfs_crc32c_final(u32 crc, u8 *result)
59 {
60 put_unaligned_le32(~crc, result);
61 }
62
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)63 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
64 {
65 struct btrfs_free_space *info;
66 struct rb_node *node;
67
68 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
69 info = rb_entry(node, struct btrfs_free_space, offset_index);
70 if (!info->bitmap) {
71 unlink_free_space(ctl, info, true);
72 kmem_cache_free(btrfs_free_space_cachep, info);
73 } else {
74 free_bitmap(ctl, info);
75 }
76
77 cond_resched_lock(&ctl->tree_lock);
78 }
79 }
80
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)81 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
82 struct btrfs_path *path,
83 u64 offset)
84 {
85 struct btrfs_key key;
86 struct btrfs_key location;
87 struct btrfs_disk_key disk_key;
88 struct btrfs_free_space_header *header;
89 struct extent_buffer *leaf;
90 struct inode *inode = NULL;
91 unsigned nofs_flag;
92 int ret;
93
94 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
95 key.offset = offset;
96 key.type = 0;
97
98 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
99 if (ret < 0)
100 return ERR_PTR(ret);
101 if (ret > 0) {
102 btrfs_release_path(path);
103 return ERR_PTR(-ENOENT);
104 }
105
106 leaf = path->nodes[0];
107 header = btrfs_item_ptr(leaf, path->slots[0],
108 struct btrfs_free_space_header);
109 btrfs_free_space_key(leaf, header, &disk_key);
110 btrfs_disk_key_to_cpu(&location, &disk_key);
111 btrfs_release_path(path);
112
113 /*
114 * We are often under a trans handle at this point, so we need to make
115 * sure NOFS is set to keep us from deadlocking.
116 */
117 nofs_flag = memalloc_nofs_save();
118 inode = btrfs_iget_path(location.objectid, root, path);
119 btrfs_release_path(path);
120 memalloc_nofs_restore(nofs_flag);
121 if (IS_ERR(inode))
122 return inode;
123
124 mapping_set_gfp_mask(inode->i_mapping,
125 mapping_gfp_constraint(inode->i_mapping,
126 ~(__GFP_FS | __GFP_HIGHMEM)));
127
128 return inode;
129 }
130
lookup_free_space_inode(struct btrfs_block_group * block_group,struct btrfs_path * path)131 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
132 struct btrfs_path *path)
133 {
134 struct btrfs_fs_info *fs_info = block_group->fs_info;
135 struct inode *inode = NULL;
136 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
137
138 spin_lock(&block_group->lock);
139 if (block_group->inode)
140 inode = igrab(&block_group->inode->vfs_inode);
141 spin_unlock(&block_group->lock);
142 if (inode)
143 return inode;
144
145 inode = __lookup_free_space_inode(fs_info->tree_root, path,
146 block_group->start);
147 if (IS_ERR(inode))
148 return inode;
149
150 spin_lock(&block_group->lock);
151 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
152 btrfs_info(fs_info, "Old style space inode found, converting.");
153 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
154 BTRFS_INODE_NODATACOW;
155 block_group->disk_cache_state = BTRFS_DC_CLEAR;
156 }
157
158 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
159 block_group->inode = BTRFS_I(igrab(inode));
160 spin_unlock(&block_group->lock);
161
162 return inode;
163 }
164
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)165 static int __create_free_space_inode(struct btrfs_root *root,
166 struct btrfs_trans_handle *trans,
167 struct btrfs_path *path,
168 u64 ino, u64 offset)
169 {
170 struct btrfs_key key;
171 struct btrfs_disk_key disk_key;
172 struct btrfs_free_space_header *header;
173 struct btrfs_inode_item *inode_item;
174 struct extent_buffer *leaf;
175 /* We inline CRCs for the free disk space cache */
176 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
177 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
178 int ret;
179
180 ret = btrfs_insert_empty_inode(trans, root, path, ino);
181 if (ret)
182 return ret;
183
184 leaf = path->nodes[0];
185 inode_item = btrfs_item_ptr(leaf, path->slots[0],
186 struct btrfs_inode_item);
187 btrfs_item_key(leaf, &disk_key, path->slots[0]);
188 memzero_extent_buffer(leaf, (unsigned long)inode_item,
189 sizeof(*inode_item));
190 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
191 btrfs_set_inode_size(leaf, inode_item, 0);
192 btrfs_set_inode_nbytes(leaf, inode_item, 0);
193 btrfs_set_inode_uid(leaf, inode_item, 0);
194 btrfs_set_inode_gid(leaf, inode_item, 0);
195 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
196 btrfs_set_inode_flags(leaf, inode_item, flags);
197 btrfs_set_inode_nlink(leaf, inode_item, 1);
198 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
199 btrfs_set_inode_block_group(leaf, inode_item, offset);
200 btrfs_mark_buffer_dirty(trans, leaf);
201 btrfs_release_path(path);
202
203 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
204 key.offset = offset;
205 key.type = 0;
206 ret = btrfs_insert_empty_item(trans, root, path, &key,
207 sizeof(struct btrfs_free_space_header));
208 if (ret < 0) {
209 btrfs_release_path(path);
210 return ret;
211 }
212
213 leaf = path->nodes[0];
214 header = btrfs_item_ptr(leaf, path->slots[0],
215 struct btrfs_free_space_header);
216 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
217 btrfs_set_free_space_key(leaf, header, &disk_key);
218 btrfs_mark_buffer_dirty(trans, leaf);
219 btrfs_release_path(path);
220
221 return 0;
222 }
223
create_free_space_inode(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)224 int create_free_space_inode(struct btrfs_trans_handle *trans,
225 struct btrfs_block_group *block_group,
226 struct btrfs_path *path)
227 {
228 int ret;
229 u64 ino;
230
231 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
232 if (ret < 0)
233 return ret;
234
235 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
236 ino, block_group->start);
237 }
238
239 /*
240 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
241 * handles lookup, otherwise it takes ownership and iputs the inode.
242 * Don't reuse an inode pointer after passing it into this function.
243 */
btrfs_remove_free_space_inode(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_block_group * block_group)244 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
245 struct inode *inode,
246 struct btrfs_block_group *block_group)
247 {
248 struct btrfs_path *path;
249 struct btrfs_key key;
250 int ret = 0;
251
252 path = btrfs_alloc_path();
253 if (!path)
254 return -ENOMEM;
255
256 if (!inode)
257 inode = lookup_free_space_inode(block_group, path);
258 if (IS_ERR(inode)) {
259 if (PTR_ERR(inode) != -ENOENT)
260 ret = PTR_ERR(inode);
261 goto out;
262 }
263 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
264 if (ret) {
265 btrfs_add_delayed_iput(BTRFS_I(inode));
266 goto out;
267 }
268 clear_nlink(inode);
269 /* One for the block groups ref */
270 spin_lock(&block_group->lock);
271 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
272 block_group->inode = NULL;
273 spin_unlock(&block_group->lock);
274 iput(inode);
275 } else {
276 spin_unlock(&block_group->lock);
277 }
278 /* One for the lookup ref */
279 btrfs_add_delayed_iput(BTRFS_I(inode));
280
281 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
282 key.type = 0;
283 key.offset = block_group->start;
284 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
285 -1, 1);
286 if (ret) {
287 if (ret > 0)
288 ret = 0;
289 goto out;
290 }
291 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
292 out:
293 btrfs_free_path(path);
294 return ret;
295 }
296
btrfs_truncate_free_space_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct inode * vfs_inode)297 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
298 struct btrfs_block_group *block_group,
299 struct inode *vfs_inode)
300 {
301 struct btrfs_truncate_control control = {
302 .inode = BTRFS_I(vfs_inode),
303 .new_size = 0,
304 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
305 .min_type = BTRFS_EXTENT_DATA_KEY,
306 .clear_extent_range = true,
307 };
308 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
309 struct btrfs_root *root = inode->root;
310 struct extent_state *cached_state = NULL;
311 int ret = 0;
312 bool locked = false;
313
314 if (block_group) {
315 struct btrfs_path *path = btrfs_alloc_path();
316
317 if (!path) {
318 ret = -ENOMEM;
319 goto fail;
320 }
321 locked = true;
322 mutex_lock(&trans->transaction->cache_write_mutex);
323 if (!list_empty(&block_group->io_list)) {
324 list_del_init(&block_group->io_list);
325
326 btrfs_wait_cache_io(trans, block_group, path);
327 btrfs_put_block_group(block_group);
328 }
329
330 /*
331 * now that we've truncated the cache away, its no longer
332 * setup or written
333 */
334 spin_lock(&block_group->lock);
335 block_group->disk_cache_state = BTRFS_DC_CLEAR;
336 spin_unlock(&block_group->lock);
337 btrfs_free_path(path);
338 }
339
340 btrfs_i_size_write(inode, 0);
341 truncate_pagecache(vfs_inode, 0);
342
343 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
344 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
345
346 /*
347 * We skip the throttling logic for free space cache inodes, so we don't
348 * need to check for -EAGAIN.
349 */
350 ret = btrfs_truncate_inode_items(trans, root, &control);
351
352 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
353 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
354
355 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
356 if (ret)
357 goto fail;
358
359 ret = btrfs_update_inode(trans, inode);
360
361 fail:
362 if (locked)
363 mutex_unlock(&trans->transaction->cache_write_mutex);
364 if (ret)
365 btrfs_abort_transaction(trans, ret);
366
367 return ret;
368 }
369
readahead_cache(struct inode * inode)370 static void readahead_cache(struct inode *inode)
371 {
372 struct file_ra_state ra;
373 unsigned long last_index;
374
375 file_ra_state_init(&ra, inode->i_mapping);
376 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
377
378 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
379 }
380
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,int write)381 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
382 int write)
383 {
384 int num_pages;
385
386 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
387
388 /* Make sure we can fit our crcs and generation into the first page */
389 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
390 return -ENOSPC;
391
392 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
393
394 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
395 if (!io_ctl->pages)
396 return -ENOMEM;
397
398 io_ctl->num_pages = num_pages;
399 io_ctl->fs_info = inode_to_fs_info(inode);
400 io_ctl->inode = inode;
401
402 return 0;
403 }
404 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
405
io_ctl_free(struct btrfs_io_ctl * io_ctl)406 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
407 {
408 kfree(io_ctl->pages);
409 io_ctl->pages = NULL;
410 }
411
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)412 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
413 {
414 if (io_ctl->cur) {
415 io_ctl->cur = NULL;
416 io_ctl->orig = NULL;
417 }
418 }
419
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)420 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
421 {
422 ASSERT(io_ctl->index < io_ctl->num_pages);
423 io_ctl->page = io_ctl->pages[io_ctl->index++];
424 io_ctl->cur = page_address(io_ctl->page);
425 io_ctl->orig = io_ctl->cur;
426 io_ctl->size = PAGE_SIZE;
427 if (clear)
428 clear_page(io_ctl->cur);
429 }
430
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)431 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
432 {
433 int i;
434
435 io_ctl_unmap_page(io_ctl);
436
437 for (i = 0; i < io_ctl->num_pages; i++) {
438 if (io_ctl->pages[i]) {
439 btrfs_folio_clear_checked(io_ctl->fs_info,
440 page_folio(io_ctl->pages[i]),
441 page_offset(io_ctl->pages[i]),
442 PAGE_SIZE);
443 unlock_page(io_ctl->pages[i]);
444 put_page(io_ctl->pages[i]);
445 }
446 }
447 }
448
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,bool uptodate)449 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
450 {
451 struct page *page;
452 struct inode *inode = io_ctl->inode;
453 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
454 int i;
455
456 for (i = 0; i < io_ctl->num_pages; i++) {
457 int ret;
458
459 page = find_or_create_page(inode->i_mapping, i, mask);
460 if (!page) {
461 io_ctl_drop_pages(io_ctl);
462 return -ENOMEM;
463 }
464
465 ret = set_page_extent_mapped(page);
466 if (ret < 0) {
467 unlock_page(page);
468 put_page(page);
469 io_ctl_drop_pages(io_ctl);
470 return ret;
471 }
472
473 io_ctl->pages[i] = page;
474 if (uptodate && !PageUptodate(page)) {
475 btrfs_read_folio(NULL, page_folio(page));
476 lock_page(page);
477 if (page->mapping != inode->i_mapping) {
478 btrfs_err(BTRFS_I(inode)->root->fs_info,
479 "free space cache page truncated");
480 io_ctl_drop_pages(io_ctl);
481 return -EIO;
482 }
483 if (!PageUptodate(page)) {
484 btrfs_err(BTRFS_I(inode)->root->fs_info,
485 "error reading free space cache");
486 io_ctl_drop_pages(io_ctl);
487 return -EIO;
488 }
489 }
490 }
491
492 for (i = 0; i < io_ctl->num_pages; i++)
493 clear_page_dirty_for_io(io_ctl->pages[i]);
494
495 return 0;
496 }
497
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)498 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
499 {
500 io_ctl_map_page(io_ctl, 1);
501
502 /*
503 * Skip the csum areas. If we don't check crcs then we just have a
504 * 64bit chunk at the front of the first page.
505 */
506 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
507 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
508
509 put_unaligned_le64(generation, io_ctl->cur);
510 io_ctl->cur += sizeof(u64);
511 }
512
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)513 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
514 {
515 u64 cache_gen;
516
517 /*
518 * Skip the crc area. If we don't check crcs then we just have a 64bit
519 * chunk at the front of the first page.
520 */
521 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
522 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
523
524 cache_gen = get_unaligned_le64(io_ctl->cur);
525 if (cache_gen != generation) {
526 btrfs_err_rl(io_ctl->fs_info,
527 "space cache generation (%llu) does not match inode (%llu)",
528 cache_gen, generation);
529 io_ctl_unmap_page(io_ctl);
530 return -EIO;
531 }
532 io_ctl->cur += sizeof(u64);
533 return 0;
534 }
535
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)536 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
537 {
538 u32 *tmp;
539 u32 crc = ~(u32)0;
540 unsigned offset = 0;
541
542 if (index == 0)
543 offset = sizeof(u32) * io_ctl->num_pages;
544
545 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
546 btrfs_crc32c_final(crc, (u8 *)&crc);
547 io_ctl_unmap_page(io_ctl);
548 tmp = page_address(io_ctl->pages[0]);
549 tmp += index;
550 *tmp = crc;
551 }
552
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)553 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
554 {
555 u32 *tmp, val;
556 u32 crc = ~(u32)0;
557 unsigned offset = 0;
558
559 if (index == 0)
560 offset = sizeof(u32) * io_ctl->num_pages;
561
562 tmp = page_address(io_ctl->pages[0]);
563 tmp += index;
564 val = *tmp;
565
566 io_ctl_map_page(io_ctl, 0);
567 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
568 btrfs_crc32c_final(crc, (u8 *)&crc);
569 if (val != crc) {
570 btrfs_err_rl(io_ctl->fs_info,
571 "csum mismatch on free space cache");
572 io_ctl_unmap_page(io_ctl);
573 return -EIO;
574 }
575
576 return 0;
577 }
578
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)579 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
580 void *bitmap)
581 {
582 struct btrfs_free_space_entry *entry;
583
584 if (!io_ctl->cur)
585 return -ENOSPC;
586
587 entry = io_ctl->cur;
588 put_unaligned_le64(offset, &entry->offset);
589 put_unaligned_le64(bytes, &entry->bytes);
590 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
591 BTRFS_FREE_SPACE_EXTENT;
592 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
593 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
594
595 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
596 return 0;
597
598 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
599
600 /* No more pages to map */
601 if (io_ctl->index >= io_ctl->num_pages)
602 return 0;
603
604 /* map the next page */
605 io_ctl_map_page(io_ctl, 1);
606 return 0;
607 }
608
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)609 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
610 {
611 if (!io_ctl->cur)
612 return -ENOSPC;
613
614 /*
615 * If we aren't at the start of the current page, unmap this one and
616 * map the next one if there is any left.
617 */
618 if (io_ctl->cur != io_ctl->orig) {
619 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
620 if (io_ctl->index >= io_ctl->num_pages)
621 return -ENOSPC;
622 io_ctl_map_page(io_ctl, 0);
623 }
624
625 copy_page(io_ctl->cur, bitmap);
626 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
627 if (io_ctl->index < io_ctl->num_pages)
628 io_ctl_map_page(io_ctl, 0);
629 return 0;
630 }
631
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)632 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
633 {
634 /*
635 * If we're not on the boundary we know we've modified the page and we
636 * need to crc the page.
637 */
638 if (io_ctl->cur != io_ctl->orig)
639 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
640 else
641 io_ctl_unmap_page(io_ctl);
642
643 while (io_ctl->index < io_ctl->num_pages) {
644 io_ctl_map_page(io_ctl, 1);
645 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
646 }
647 }
648
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)649 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
650 struct btrfs_free_space *entry, u8 *type)
651 {
652 struct btrfs_free_space_entry *e;
653 int ret;
654
655 if (!io_ctl->cur) {
656 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
657 if (ret)
658 return ret;
659 }
660
661 e = io_ctl->cur;
662 entry->offset = get_unaligned_le64(&e->offset);
663 entry->bytes = get_unaligned_le64(&e->bytes);
664 *type = e->type;
665 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
666 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
667
668 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
669 return 0;
670
671 io_ctl_unmap_page(io_ctl);
672
673 return 0;
674 }
675
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)676 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
677 struct btrfs_free_space *entry)
678 {
679 int ret;
680
681 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
682 if (ret)
683 return ret;
684
685 copy_page(entry->bitmap, io_ctl->cur);
686 io_ctl_unmap_page(io_ctl);
687
688 return 0;
689 }
690
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)691 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
692 {
693 struct btrfs_block_group *block_group = ctl->block_group;
694 u64 max_bytes;
695 u64 bitmap_bytes;
696 u64 extent_bytes;
697 u64 size = block_group->length;
698 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
699 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
700
701 max_bitmaps = max_t(u64, max_bitmaps, 1);
702
703 if (ctl->total_bitmaps > max_bitmaps)
704 btrfs_err(block_group->fs_info,
705 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
706 block_group->start, block_group->length,
707 ctl->total_bitmaps, ctl->unit, max_bitmaps,
708 bytes_per_bg);
709 ASSERT(ctl->total_bitmaps <= max_bitmaps);
710
711 /*
712 * We are trying to keep the total amount of memory used per 1GiB of
713 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
714 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
715 * bitmaps, we may end up using more memory than this.
716 */
717 if (size < SZ_1G)
718 max_bytes = MAX_CACHE_BYTES_PER_GIG;
719 else
720 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
721
722 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
723
724 /*
725 * we want the extent entry threshold to always be at most 1/2 the max
726 * bytes we can have, or whatever is less than that.
727 */
728 extent_bytes = max_bytes - bitmap_bytes;
729 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
730
731 ctl->extents_thresh =
732 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
733 }
734
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)735 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
736 struct btrfs_free_space_ctl *ctl,
737 struct btrfs_path *path, u64 offset)
738 {
739 struct btrfs_fs_info *fs_info = root->fs_info;
740 struct btrfs_free_space_header *header;
741 struct extent_buffer *leaf;
742 struct btrfs_io_ctl io_ctl;
743 struct btrfs_key key;
744 struct btrfs_free_space *e, *n;
745 LIST_HEAD(bitmaps);
746 u64 num_entries;
747 u64 num_bitmaps;
748 u64 generation;
749 u8 type;
750 int ret = 0;
751
752 /* Nothing in the space cache, goodbye */
753 if (!i_size_read(inode))
754 return 0;
755
756 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
757 key.offset = offset;
758 key.type = 0;
759
760 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
761 if (ret < 0)
762 return 0;
763 else if (ret > 0) {
764 btrfs_release_path(path);
765 return 0;
766 }
767
768 ret = -1;
769
770 leaf = path->nodes[0];
771 header = btrfs_item_ptr(leaf, path->slots[0],
772 struct btrfs_free_space_header);
773 num_entries = btrfs_free_space_entries(leaf, header);
774 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
775 generation = btrfs_free_space_generation(leaf, header);
776 btrfs_release_path(path);
777
778 if (!BTRFS_I(inode)->generation) {
779 btrfs_info(fs_info,
780 "the free space cache file (%llu) is invalid, skip it",
781 offset);
782 return 0;
783 }
784
785 if (BTRFS_I(inode)->generation != generation) {
786 btrfs_err(fs_info,
787 "free space inode generation (%llu) did not match free space cache generation (%llu)",
788 BTRFS_I(inode)->generation, generation);
789 return 0;
790 }
791
792 if (!num_entries)
793 return 0;
794
795 ret = io_ctl_init(&io_ctl, inode, 0);
796 if (ret)
797 return ret;
798
799 readahead_cache(inode);
800
801 ret = io_ctl_prepare_pages(&io_ctl, true);
802 if (ret)
803 goto out;
804
805 ret = io_ctl_check_crc(&io_ctl, 0);
806 if (ret)
807 goto free_cache;
808
809 ret = io_ctl_check_generation(&io_ctl, generation);
810 if (ret)
811 goto free_cache;
812
813 while (num_entries) {
814 e = kmem_cache_zalloc(btrfs_free_space_cachep,
815 GFP_NOFS);
816 if (!e) {
817 ret = -ENOMEM;
818 goto free_cache;
819 }
820
821 ret = io_ctl_read_entry(&io_ctl, e, &type);
822 if (ret) {
823 kmem_cache_free(btrfs_free_space_cachep, e);
824 goto free_cache;
825 }
826
827 if (!e->bytes) {
828 ret = -1;
829 kmem_cache_free(btrfs_free_space_cachep, e);
830 goto free_cache;
831 }
832
833 if (type == BTRFS_FREE_SPACE_EXTENT) {
834 spin_lock(&ctl->tree_lock);
835 ret = link_free_space(ctl, e);
836 spin_unlock(&ctl->tree_lock);
837 if (ret) {
838 btrfs_err(fs_info,
839 "Duplicate entries in free space cache, dumping");
840 kmem_cache_free(btrfs_free_space_cachep, e);
841 goto free_cache;
842 }
843 } else {
844 ASSERT(num_bitmaps);
845 num_bitmaps--;
846 e->bitmap = kmem_cache_zalloc(
847 btrfs_free_space_bitmap_cachep, GFP_NOFS);
848 if (!e->bitmap) {
849 ret = -ENOMEM;
850 kmem_cache_free(
851 btrfs_free_space_cachep, e);
852 goto free_cache;
853 }
854 spin_lock(&ctl->tree_lock);
855 ret = link_free_space(ctl, e);
856 if (ret) {
857 spin_unlock(&ctl->tree_lock);
858 btrfs_err(fs_info,
859 "Duplicate entries in free space cache, dumping");
860 kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
861 kmem_cache_free(btrfs_free_space_cachep, e);
862 goto free_cache;
863 }
864 ctl->total_bitmaps++;
865 recalculate_thresholds(ctl);
866 spin_unlock(&ctl->tree_lock);
867 list_add_tail(&e->list, &bitmaps);
868 }
869
870 num_entries--;
871 }
872
873 io_ctl_unmap_page(&io_ctl);
874
875 /*
876 * We add the bitmaps at the end of the entries in order that
877 * the bitmap entries are added to the cache.
878 */
879 list_for_each_entry_safe(e, n, &bitmaps, list) {
880 list_del_init(&e->list);
881 ret = io_ctl_read_bitmap(&io_ctl, e);
882 if (ret)
883 goto free_cache;
884 }
885
886 io_ctl_drop_pages(&io_ctl);
887 ret = 1;
888 out:
889 io_ctl_free(&io_ctl);
890 return ret;
891 free_cache:
892 io_ctl_drop_pages(&io_ctl);
893
894 spin_lock(&ctl->tree_lock);
895 __btrfs_remove_free_space_cache(ctl);
896 spin_unlock(&ctl->tree_lock);
897 goto out;
898 }
899
copy_free_space_cache(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)900 static int copy_free_space_cache(struct btrfs_block_group *block_group,
901 struct btrfs_free_space_ctl *ctl)
902 {
903 struct btrfs_free_space *info;
904 struct rb_node *n;
905 int ret = 0;
906
907 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
908 info = rb_entry(n, struct btrfs_free_space, offset_index);
909 if (!info->bitmap) {
910 const u64 offset = info->offset;
911 const u64 bytes = info->bytes;
912
913 unlink_free_space(ctl, info, true);
914 spin_unlock(&ctl->tree_lock);
915 kmem_cache_free(btrfs_free_space_cachep, info);
916 ret = btrfs_add_free_space(block_group, offset, bytes);
917 spin_lock(&ctl->tree_lock);
918 } else {
919 u64 offset = info->offset;
920 u64 bytes = ctl->unit;
921
922 ret = search_bitmap(ctl, info, &offset, &bytes, false);
923 if (ret == 0) {
924 bitmap_clear_bits(ctl, info, offset, bytes, true);
925 spin_unlock(&ctl->tree_lock);
926 ret = btrfs_add_free_space(block_group, offset,
927 bytes);
928 spin_lock(&ctl->tree_lock);
929 } else {
930 free_bitmap(ctl, info);
931 ret = 0;
932 }
933 }
934 cond_resched_lock(&ctl->tree_lock);
935 }
936 return ret;
937 }
938
939 static struct lock_class_key btrfs_free_space_inode_key;
940
load_free_space_cache(struct btrfs_block_group * block_group)941 int load_free_space_cache(struct btrfs_block_group *block_group)
942 {
943 struct btrfs_fs_info *fs_info = block_group->fs_info;
944 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
945 struct btrfs_free_space_ctl tmp_ctl = {};
946 struct inode *inode;
947 struct btrfs_path *path;
948 int ret = 0;
949 bool matched;
950 u64 used = block_group->used;
951
952 /*
953 * Because we could potentially discard our loaded free space, we want
954 * to load everything into a temporary structure first, and then if it's
955 * valid copy it all into the actual free space ctl.
956 */
957 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
958
959 /*
960 * If this block group has been marked to be cleared for one reason or
961 * another then we can't trust the on disk cache, so just return.
962 */
963 spin_lock(&block_group->lock);
964 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
965 spin_unlock(&block_group->lock);
966 return 0;
967 }
968 spin_unlock(&block_group->lock);
969
970 path = btrfs_alloc_path();
971 if (!path)
972 return 0;
973 path->search_commit_root = 1;
974 path->skip_locking = 1;
975
976 /*
977 * We must pass a path with search_commit_root set to btrfs_iget in
978 * order to avoid a deadlock when allocating extents for the tree root.
979 *
980 * When we are COWing an extent buffer from the tree root, when looking
981 * for a free extent, at extent-tree.c:find_free_extent(), we can find
982 * block group without its free space cache loaded. When we find one
983 * we must load its space cache which requires reading its free space
984 * cache's inode item from the root tree. If this inode item is located
985 * in the same leaf that we started COWing before, then we end up in
986 * deadlock on the extent buffer (trying to read lock it when we
987 * previously write locked it).
988 *
989 * It's safe to read the inode item using the commit root because
990 * block groups, once loaded, stay in memory forever (until they are
991 * removed) as well as their space caches once loaded. New block groups
992 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
993 * we will never try to read their inode item while the fs is mounted.
994 */
995 inode = lookup_free_space_inode(block_group, path);
996 if (IS_ERR(inode)) {
997 btrfs_free_path(path);
998 return 0;
999 }
1000
1001 /* We may have converted the inode and made the cache invalid. */
1002 spin_lock(&block_group->lock);
1003 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1004 spin_unlock(&block_group->lock);
1005 btrfs_free_path(path);
1006 goto out;
1007 }
1008 spin_unlock(&block_group->lock);
1009
1010 /*
1011 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1012 * free space inodes to prevent false positives related to locks for normal
1013 * inodes.
1014 */
1015 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1016 &btrfs_free_space_inode_key);
1017
1018 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1019 path, block_group->start);
1020 btrfs_free_path(path);
1021 if (ret <= 0)
1022 goto out;
1023
1024 matched = (tmp_ctl.free_space == (block_group->length - used -
1025 block_group->bytes_super));
1026
1027 if (matched) {
1028 spin_lock(&tmp_ctl.tree_lock);
1029 ret = copy_free_space_cache(block_group, &tmp_ctl);
1030 spin_unlock(&tmp_ctl.tree_lock);
1031 /*
1032 * ret == 1 means we successfully loaded the free space cache,
1033 * so we need to re-set it here.
1034 */
1035 if (ret == 0)
1036 ret = 1;
1037 } else {
1038 /*
1039 * We need to call the _locked variant so we don't try to update
1040 * the discard counters.
1041 */
1042 spin_lock(&tmp_ctl.tree_lock);
1043 __btrfs_remove_free_space_cache(&tmp_ctl);
1044 spin_unlock(&tmp_ctl.tree_lock);
1045 btrfs_warn(fs_info,
1046 "block group %llu has wrong amount of free space",
1047 block_group->start);
1048 ret = -1;
1049 }
1050 out:
1051 if (ret < 0) {
1052 /* This cache is bogus, make sure it gets cleared */
1053 spin_lock(&block_group->lock);
1054 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1055 spin_unlock(&block_group->lock);
1056 ret = 0;
1057
1058 btrfs_warn(fs_info,
1059 "failed to load free space cache for block group %llu, rebuilding it now",
1060 block_group->start);
1061 }
1062
1063 spin_lock(&ctl->tree_lock);
1064 btrfs_discard_update_discardable(block_group);
1065 spin_unlock(&ctl->tree_lock);
1066 iput(inode);
1067 return ret;
1068 }
1069
1070 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)1071 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1072 struct btrfs_free_space_ctl *ctl,
1073 struct btrfs_block_group *block_group,
1074 int *entries, int *bitmaps,
1075 struct list_head *bitmap_list)
1076 {
1077 int ret;
1078 struct btrfs_free_cluster *cluster = NULL;
1079 struct btrfs_free_cluster *cluster_locked = NULL;
1080 struct rb_node *node = rb_first(&ctl->free_space_offset);
1081 struct btrfs_trim_range *trim_entry;
1082
1083 /* Get the cluster for this block_group if it exists */
1084 if (block_group && !list_empty(&block_group->cluster_list)) {
1085 cluster = list_entry(block_group->cluster_list.next,
1086 struct btrfs_free_cluster,
1087 block_group_list);
1088 }
1089
1090 if (!node && cluster) {
1091 cluster_locked = cluster;
1092 spin_lock(&cluster_locked->lock);
1093 node = rb_first(&cluster->root);
1094 cluster = NULL;
1095 }
1096
1097 /* Write out the extent entries */
1098 while (node) {
1099 struct btrfs_free_space *e;
1100
1101 e = rb_entry(node, struct btrfs_free_space, offset_index);
1102 *entries += 1;
1103
1104 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1105 e->bitmap);
1106 if (ret)
1107 goto fail;
1108
1109 if (e->bitmap) {
1110 list_add_tail(&e->list, bitmap_list);
1111 *bitmaps += 1;
1112 }
1113 node = rb_next(node);
1114 if (!node && cluster) {
1115 node = rb_first(&cluster->root);
1116 cluster_locked = cluster;
1117 spin_lock(&cluster_locked->lock);
1118 cluster = NULL;
1119 }
1120 }
1121 if (cluster_locked) {
1122 spin_unlock(&cluster_locked->lock);
1123 cluster_locked = NULL;
1124 }
1125
1126 /*
1127 * Make sure we don't miss any range that was removed from our rbtree
1128 * because trimming is running. Otherwise after a umount+mount (or crash
1129 * after committing the transaction) we would leak free space and get
1130 * an inconsistent free space cache report from fsck.
1131 */
1132 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1133 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1134 trim_entry->bytes, NULL);
1135 if (ret)
1136 goto fail;
1137 *entries += 1;
1138 }
1139
1140 return 0;
1141 fail:
1142 if (cluster_locked)
1143 spin_unlock(&cluster_locked->lock);
1144 return -ENOSPC;
1145 }
1146
1147 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)1148 update_cache_item(struct btrfs_trans_handle *trans,
1149 struct btrfs_root *root,
1150 struct inode *inode,
1151 struct btrfs_path *path, u64 offset,
1152 int entries, int bitmaps)
1153 {
1154 struct btrfs_key key;
1155 struct btrfs_free_space_header *header;
1156 struct extent_buffer *leaf;
1157 int ret;
1158
1159 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1160 key.offset = offset;
1161 key.type = 0;
1162
1163 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1164 if (ret < 0) {
1165 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1166 EXTENT_DELALLOC, NULL);
1167 goto fail;
1168 }
1169 leaf = path->nodes[0];
1170 if (ret > 0) {
1171 struct btrfs_key found_key;
1172 ASSERT(path->slots[0]);
1173 path->slots[0]--;
1174 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1175 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1176 found_key.offset != offset) {
1177 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1178 inode->i_size - 1, EXTENT_DELALLOC,
1179 NULL);
1180 btrfs_release_path(path);
1181 goto fail;
1182 }
1183 }
1184
1185 BTRFS_I(inode)->generation = trans->transid;
1186 header = btrfs_item_ptr(leaf, path->slots[0],
1187 struct btrfs_free_space_header);
1188 btrfs_set_free_space_entries(leaf, header, entries);
1189 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1190 btrfs_set_free_space_generation(leaf, header, trans->transid);
1191 btrfs_mark_buffer_dirty(trans, leaf);
1192 btrfs_release_path(path);
1193
1194 return 0;
1195
1196 fail:
1197 return -1;
1198 }
1199
write_pinned_extent_entries(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1200 static noinline_for_stack int write_pinned_extent_entries(
1201 struct btrfs_trans_handle *trans,
1202 struct btrfs_block_group *block_group,
1203 struct btrfs_io_ctl *io_ctl,
1204 int *entries)
1205 {
1206 u64 start, extent_start, extent_end, len;
1207 struct extent_io_tree *unpin = NULL;
1208 int ret;
1209
1210 if (!block_group)
1211 return 0;
1212
1213 /*
1214 * We want to add any pinned extents to our free space cache
1215 * so we don't leak the space
1216 *
1217 * We shouldn't have switched the pinned extents yet so this is the
1218 * right one
1219 */
1220 unpin = &trans->transaction->pinned_extents;
1221
1222 start = block_group->start;
1223
1224 while (start < block_group->start + block_group->length) {
1225 if (!find_first_extent_bit(unpin, start,
1226 &extent_start, &extent_end,
1227 EXTENT_DIRTY, NULL))
1228 return 0;
1229
1230 /* This pinned extent is out of our range */
1231 if (extent_start >= block_group->start + block_group->length)
1232 return 0;
1233
1234 extent_start = max(extent_start, start);
1235 extent_end = min(block_group->start + block_group->length,
1236 extent_end + 1);
1237 len = extent_end - extent_start;
1238
1239 *entries += 1;
1240 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1241 if (ret)
1242 return -ENOSPC;
1243
1244 start = extent_end;
1245 }
1246
1247 return 0;
1248 }
1249
1250 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1251 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1252 {
1253 struct btrfs_free_space *entry, *next;
1254 int ret;
1255
1256 /* Write out the bitmaps */
1257 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1258 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1259 if (ret)
1260 return -ENOSPC;
1261 list_del_init(&entry->list);
1262 }
1263
1264 return 0;
1265 }
1266
flush_dirty_cache(struct inode * inode)1267 static int flush_dirty_cache(struct inode *inode)
1268 {
1269 int ret;
1270
1271 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
1272 if (ret)
1273 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1274 EXTENT_DELALLOC, NULL);
1275
1276 return ret;
1277 }
1278
1279 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1280 cleanup_bitmap_list(struct list_head *bitmap_list)
1281 {
1282 struct btrfs_free_space *entry, *next;
1283
1284 list_for_each_entry_safe(entry, next, bitmap_list, list)
1285 list_del_init(&entry->list);
1286 }
1287
1288 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state)1289 cleanup_write_cache_enospc(struct inode *inode,
1290 struct btrfs_io_ctl *io_ctl,
1291 struct extent_state **cached_state)
1292 {
1293 io_ctl_drop_pages(io_ctl);
1294 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1295 cached_state);
1296 }
1297
__btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1298 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1299 struct btrfs_trans_handle *trans,
1300 struct btrfs_block_group *block_group,
1301 struct btrfs_io_ctl *io_ctl,
1302 struct btrfs_path *path, u64 offset)
1303 {
1304 int ret;
1305 struct inode *inode = io_ctl->inode;
1306
1307 if (!inode)
1308 return 0;
1309
1310 /* Flush the dirty pages in the cache file. */
1311 ret = flush_dirty_cache(inode);
1312 if (ret)
1313 goto out;
1314
1315 /* Update the cache item to tell everyone this cache file is valid. */
1316 ret = update_cache_item(trans, root, inode, path, offset,
1317 io_ctl->entries, io_ctl->bitmaps);
1318 out:
1319 if (ret) {
1320 invalidate_inode_pages2(inode->i_mapping);
1321 BTRFS_I(inode)->generation = 0;
1322 if (block_group)
1323 btrfs_debug(root->fs_info,
1324 "failed to write free space cache for block group %llu error %d",
1325 block_group->start, ret);
1326 }
1327 btrfs_update_inode(trans, BTRFS_I(inode));
1328
1329 if (block_group) {
1330 /* the dirty list is protected by the dirty_bgs_lock */
1331 spin_lock(&trans->transaction->dirty_bgs_lock);
1332
1333 /* the disk_cache_state is protected by the block group lock */
1334 spin_lock(&block_group->lock);
1335
1336 /*
1337 * only mark this as written if we didn't get put back on
1338 * the dirty list while waiting for IO. Otherwise our
1339 * cache state won't be right, and we won't get written again
1340 */
1341 if (!ret && list_empty(&block_group->dirty_list))
1342 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1343 else if (ret)
1344 block_group->disk_cache_state = BTRFS_DC_ERROR;
1345
1346 spin_unlock(&block_group->lock);
1347 spin_unlock(&trans->transaction->dirty_bgs_lock);
1348 io_ctl->inode = NULL;
1349 iput(inode);
1350 }
1351
1352 return ret;
1353
1354 }
1355
btrfs_wait_cache_io(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1356 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1357 struct btrfs_block_group *block_group,
1358 struct btrfs_path *path)
1359 {
1360 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1361 block_group, &block_group->io_ctl,
1362 path, block_group->start);
1363 }
1364
1365 /*
1366 * Write out cached info to an inode.
1367 *
1368 * @inode: freespace inode we are writing out
1369 * @ctl: free space cache we are going to write out
1370 * @block_group: block_group for this cache if it belongs to a block_group
1371 * @io_ctl: holds context for the io
1372 * @trans: the trans handle
1373 *
1374 * This function writes out a free space cache struct to disk for quick recovery
1375 * on mount. This will return 0 if it was successful in writing the cache out,
1376 * or an errno if it was not.
1377 */
__btrfs_write_out_cache(struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans)1378 static int __btrfs_write_out_cache(struct inode *inode,
1379 struct btrfs_free_space_ctl *ctl,
1380 struct btrfs_block_group *block_group,
1381 struct btrfs_io_ctl *io_ctl,
1382 struct btrfs_trans_handle *trans)
1383 {
1384 struct extent_state *cached_state = NULL;
1385 LIST_HEAD(bitmap_list);
1386 int entries = 0;
1387 int bitmaps = 0;
1388 int ret;
1389 int must_iput = 0;
1390
1391 if (!i_size_read(inode))
1392 return -EIO;
1393
1394 WARN_ON(io_ctl->pages);
1395 ret = io_ctl_init(io_ctl, inode, 1);
1396 if (ret)
1397 return ret;
1398
1399 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1400 down_write(&block_group->data_rwsem);
1401 spin_lock(&block_group->lock);
1402 if (block_group->delalloc_bytes) {
1403 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1404 spin_unlock(&block_group->lock);
1405 up_write(&block_group->data_rwsem);
1406 BTRFS_I(inode)->generation = 0;
1407 ret = 0;
1408 must_iput = 1;
1409 goto out;
1410 }
1411 spin_unlock(&block_group->lock);
1412 }
1413
1414 /* Lock all pages first so we can lock the extent safely. */
1415 ret = io_ctl_prepare_pages(io_ctl, false);
1416 if (ret)
1417 goto out_unlock;
1418
1419 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1420 &cached_state);
1421
1422 io_ctl_set_generation(io_ctl, trans->transid);
1423
1424 mutex_lock(&ctl->cache_writeout_mutex);
1425 /* Write out the extent entries in the free space cache */
1426 spin_lock(&ctl->tree_lock);
1427 ret = write_cache_extent_entries(io_ctl, ctl,
1428 block_group, &entries, &bitmaps,
1429 &bitmap_list);
1430 if (ret)
1431 goto out_nospc_locked;
1432
1433 /*
1434 * Some spaces that are freed in the current transaction are pinned,
1435 * they will be added into free space cache after the transaction is
1436 * committed, we shouldn't lose them.
1437 *
1438 * If this changes while we are working we'll get added back to
1439 * the dirty list and redo it. No locking needed
1440 */
1441 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1442 if (ret)
1443 goto out_nospc_locked;
1444
1445 /*
1446 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1447 * locked while doing it because a concurrent trim can be manipulating
1448 * or freeing the bitmap.
1449 */
1450 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1451 spin_unlock(&ctl->tree_lock);
1452 mutex_unlock(&ctl->cache_writeout_mutex);
1453 if (ret)
1454 goto out_nospc;
1455
1456 /* Zero out the rest of the pages just to make sure */
1457 io_ctl_zero_remaining_pages(io_ctl);
1458
1459 /* Everything is written out, now we dirty the pages in the file. */
1460 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1461 io_ctl->num_pages, 0, i_size_read(inode),
1462 &cached_state, false);
1463 if (ret)
1464 goto out_nospc;
1465
1466 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1467 up_write(&block_group->data_rwsem);
1468 /*
1469 * Release the pages and unlock the extent, we will flush
1470 * them out later
1471 */
1472 io_ctl_drop_pages(io_ctl);
1473 io_ctl_free(io_ctl);
1474
1475 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1476 &cached_state);
1477
1478 /*
1479 * at this point the pages are under IO and we're happy,
1480 * The caller is responsible for waiting on them and updating
1481 * the cache and the inode
1482 */
1483 io_ctl->entries = entries;
1484 io_ctl->bitmaps = bitmaps;
1485
1486 ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
1487 if (ret)
1488 goto out;
1489
1490 return 0;
1491
1492 out_nospc_locked:
1493 cleanup_bitmap_list(&bitmap_list);
1494 spin_unlock(&ctl->tree_lock);
1495 mutex_unlock(&ctl->cache_writeout_mutex);
1496
1497 out_nospc:
1498 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1499
1500 out_unlock:
1501 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1502 up_write(&block_group->data_rwsem);
1503
1504 out:
1505 io_ctl->inode = NULL;
1506 io_ctl_free(io_ctl);
1507 if (ret) {
1508 invalidate_inode_pages2(inode->i_mapping);
1509 BTRFS_I(inode)->generation = 0;
1510 }
1511 btrfs_update_inode(trans, BTRFS_I(inode));
1512 if (must_iput)
1513 iput(inode);
1514 return ret;
1515 }
1516
btrfs_write_out_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1517 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1518 struct btrfs_block_group *block_group,
1519 struct btrfs_path *path)
1520 {
1521 struct btrfs_fs_info *fs_info = trans->fs_info;
1522 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1523 struct inode *inode;
1524 int ret = 0;
1525
1526 spin_lock(&block_group->lock);
1527 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1528 spin_unlock(&block_group->lock);
1529 return 0;
1530 }
1531 spin_unlock(&block_group->lock);
1532
1533 inode = lookup_free_space_inode(block_group, path);
1534 if (IS_ERR(inode))
1535 return 0;
1536
1537 ret = __btrfs_write_out_cache(inode, ctl, block_group,
1538 &block_group->io_ctl, trans);
1539 if (ret) {
1540 btrfs_debug(fs_info,
1541 "failed to write free space cache for block group %llu error %d",
1542 block_group->start, ret);
1543 spin_lock(&block_group->lock);
1544 block_group->disk_cache_state = BTRFS_DC_ERROR;
1545 spin_unlock(&block_group->lock);
1546
1547 block_group->io_ctl.inode = NULL;
1548 iput(inode);
1549 }
1550
1551 /*
1552 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1553 * to wait for IO and put the inode
1554 */
1555
1556 return ret;
1557 }
1558
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1559 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1560 u64 offset)
1561 {
1562 ASSERT(offset >= bitmap_start);
1563 offset -= bitmap_start;
1564 return (unsigned long)(div_u64(offset, unit));
1565 }
1566
bytes_to_bits(u64 bytes,u32 unit)1567 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1568 {
1569 return (unsigned long)(div_u64(bytes, unit));
1570 }
1571
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1572 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1573 u64 offset)
1574 {
1575 u64 bitmap_start;
1576 u64 bytes_per_bitmap;
1577
1578 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1579 bitmap_start = offset - ctl->start;
1580 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1581 bitmap_start *= bytes_per_bitmap;
1582 bitmap_start += ctl->start;
1583
1584 return bitmap_start;
1585 }
1586
tree_insert_offset(struct btrfs_free_space_ctl * ctl,struct btrfs_free_cluster * cluster,struct btrfs_free_space * new_entry)1587 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1588 struct btrfs_free_cluster *cluster,
1589 struct btrfs_free_space *new_entry)
1590 {
1591 struct rb_root *root;
1592 struct rb_node **p;
1593 struct rb_node *parent = NULL;
1594
1595 lockdep_assert_held(&ctl->tree_lock);
1596
1597 if (cluster) {
1598 lockdep_assert_held(&cluster->lock);
1599 root = &cluster->root;
1600 } else {
1601 root = &ctl->free_space_offset;
1602 }
1603
1604 p = &root->rb_node;
1605
1606 while (*p) {
1607 struct btrfs_free_space *info;
1608
1609 parent = *p;
1610 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1611
1612 if (new_entry->offset < info->offset) {
1613 p = &(*p)->rb_left;
1614 } else if (new_entry->offset > info->offset) {
1615 p = &(*p)->rb_right;
1616 } else {
1617 /*
1618 * we could have a bitmap entry and an extent entry
1619 * share the same offset. If this is the case, we want
1620 * the extent entry to always be found first if we do a
1621 * linear search through the tree, since we want to have
1622 * the quickest allocation time, and allocating from an
1623 * extent is faster than allocating from a bitmap. So
1624 * if we're inserting a bitmap and we find an entry at
1625 * this offset, we want to go right, or after this entry
1626 * logically. If we are inserting an extent and we've
1627 * found a bitmap, we want to go left, or before
1628 * logically.
1629 */
1630 if (new_entry->bitmap) {
1631 if (info->bitmap) {
1632 WARN_ON_ONCE(1);
1633 return -EEXIST;
1634 }
1635 p = &(*p)->rb_right;
1636 } else {
1637 if (!info->bitmap) {
1638 WARN_ON_ONCE(1);
1639 return -EEXIST;
1640 }
1641 p = &(*p)->rb_left;
1642 }
1643 }
1644 }
1645
1646 rb_link_node(&new_entry->offset_index, parent, p);
1647 rb_insert_color(&new_entry->offset_index, root);
1648
1649 return 0;
1650 }
1651
1652 /*
1653 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1654 * searched through the bitmap and figured out the largest ->max_extent_size,
1655 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1656 * allocator the wrong thing, we want to use the actual real max_extent_size
1657 * we've found already if it's larger, or we want to use ->bytes.
1658 *
1659 * This matters because find_free_space() will skip entries who's ->bytes is
1660 * less than the required bytes. So if we didn't search down this bitmap, we
1661 * may pick some previous entry that has a smaller ->max_extent_size than we
1662 * have. For example, assume we have two entries, one that has
1663 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1664 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1665 * call into find_free_space(), and return with max_extent_size == 4K, because
1666 * that first bitmap entry had ->max_extent_size set, but the second one did
1667 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1668 * 8K contiguous range.
1669 *
1670 * Consider the other case, we have 2 8K chunks in that second entry and still
1671 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1672 * allocator comes in it'll fully search our second bitmap, and this time it'll
1673 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1674 * right allocation the next loop through.
1675 */
get_max_extent_size(const struct btrfs_free_space * entry)1676 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1677 {
1678 if (entry->bitmap && entry->max_extent_size)
1679 return entry->max_extent_size;
1680 return entry->bytes;
1681 }
1682
1683 /*
1684 * We want the largest entry to be leftmost, so this is inverted from what you'd
1685 * normally expect.
1686 */
entry_less(struct rb_node * node,const struct rb_node * parent)1687 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1688 {
1689 const struct btrfs_free_space *entry, *exist;
1690
1691 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1692 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1693 return get_max_extent_size(exist) < get_max_extent_size(entry);
1694 }
1695
1696 /*
1697 * searches the tree for the given offset.
1698 *
1699 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1700 * want a section that has at least bytes size and comes at or after the given
1701 * offset.
1702 */
1703 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1704 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1705 u64 offset, int bitmap_only, int fuzzy)
1706 {
1707 struct rb_node *n = ctl->free_space_offset.rb_node;
1708 struct btrfs_free_space *entry = NULL, *prev = NULL;
1709
1710 lockdep_assert_held(&ctl->tree_lock);
1711
1712 /* find entry that is closest to the 'offset' */
1713 while (n) {
1714 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1715 prev = entry;
1716
1717 if (offset < entry->offset)
1718 n = n->rb_left;
1719 else if (offset > entry->offset)
1720 n = n->rb_right;
1721 else
1722 break;
1723
1724 entry = NULL;
1725 }
1726
1727 if (bitmap_only) {
1728 if (!entry)
1729 return NULL;
1730 if (entry->bitmap)
1731 return entry;
1732
1733 /*
1734 * bitmap entry and extent entry may share same offset,
1735 * in that case, bitmap entry comes after extent entry.
1736 */
1737 n = rb_next(n);
1738 if (!n)
1739 return NULL;
1740 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1741 if (entry->offset != offset)
1742 return NULL;
1743
1744 WARN_ON(!entry->bitmap);
1745 return entry;
1746 } else if (entry) {
1747 if (entry->bitmap) {
1748 /*
1749 * if previous extent entry covers the offset,
1750 * we should return it instead of the bitmap entry
1751 */
1752 n = rb_prev(&entry->offset_index);
1753 if (n) {
1754 prev = rb_entry(n, struct btrfs_free_space,
1755 offset_index);
1756 if (!prev->bitmap &&
1757 prev->offset + prev->bytes > offset)
1758 entry = prev;
1759 }
1760 }
1761 return entry;
1762 }
1763
1764 if (!prev)
1765 return NULL;
1766
1767 /* find last entry before the 'offset' */
1768 entry = prev;
1769 if (entry->offset > offset) {
1770 n = rb_prev(&entry->offset_index);
1771 if (n) {
1772 entry = rb_entry(n, struct btrfs_free_space,
1773 offset_index);
1774 ASSERT(entry->offset <= offset);
1775 } else {
1776 if (fuzzy)
1777 return entry;
1778 else
1779 return NULL;
1780 }
1781 }
1782
1783 if (entry->bitmap) {
1784 n = rb_prev(&entry->offset_index);
1785 if (n) {
1786 prev = rb_entry(n, struct btrfs_free_space,
1787 offset_index);
1788 if (!prev->bitmap &&
1789 prev->offset + prev->bytes > offset)
1790 return prev;
1791 }
1792 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1793 return entry;
1794 } else if (entry->offset + entry->bytes > offset)
1795 return entry;
1796
1797 if (!fuzzy)
1798 return NULL;
1799
1800 while (1) {
1801 n = rb_next(&entry->offset_index);
1802 if (!n)
1803 return NULL;
1804 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1805 if (entry->bitmap) {
1806 if (entry->offset + BITS_PER_BITMAP *
1807 ctl->unit > offset)
1808 break;
1809 } else {
1810 if (entry->offset + entry->bytes > offset)
1811 break;
1812 }
1813 }
1814 return entry;
1815 }
1816
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)1817 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1818 struct btrfs_free_space *info,
1819 bool update_stat)
1820 {
1821 lockdep_assert_held(&ctl->tree_lock);
1822
1823 rb_erase(&info->offset_index, &ctl->free_space_offset);
1824 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1825 ctl->free_extents--;
1826
1827 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1828 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1829 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1830 }
1831
1832 if (update_stat)
1833 ctl->free_space -= info->bytes;
1834 }
1835
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1836 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1837 struct btrfs_free_space *info)
1838 {
1839 int ret = 0;
1840
1841 lockdep_assert_held(&ctl->tree_lock);
1842
1843 ASSERT(info->bytes || info->bitmap);
1844 ret = tree_insert_offset(ctl, NULL, info);
1845 if (ret)
1846 return ret;
1847
1848 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1849
1850 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1851 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1852 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1853 }
1854
1855 ctl->free_space += info->bytes;
1856 ctl->free_extents++;
1857 return ret;
1858 }
1859
relink_bitmap_entry(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1860 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1861 struct btrfs_free_space *info)
1862 {
1863 ASSERT(info->bitmap);
1864
1865 /*
1866 * If our entry is empty it's because we're on a cluster and we don't
1867 * want to re-link it into our ctl bytes index.
1868 */
1869 if (RB_EMPTY_NODE(&info->bytes_index))
1870 return;
1871
1872 lockdep_assert_held(&ctl->tree_lock);
1873
1874 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1875 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1876 }
1877
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,bool update_stat)1878 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1879 struct btrfs_free_space *info,
1880 u64 offset, u64 bytes, bool update_stat)
1881 {
1882 unsigned long start, count, end;
1883 int extent_delta = -1;
1884
1885 start = offset_to_bit(info->offset, ctl->unit, offset);
1886 count = bytes_to_bits(bytes, ctl->unit);
1887 end = start + count;
1888 ASSERT(end <= BITS_PER_BITMAP);
1889
1890 bitmap_clear(info->bitmap, start, count);
1891
1892 info->bytes -= bytes;
1893 if (info->max_extent_size > ctl->unit)
1894 info->max_extent_size = 0;
1895
1896 relink_bitmap_entry(ctl, info);
1897
1898 if (start && test_bit(start - 1, info->bitmap))
1899 extent_delta++;
1900
1901 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1902 extent_delta++;
1903
1904 info->bitmap_extents += extent_delta;
1905 if (!btrfs_free_space_trimmed(info)) {
1906 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1907 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1908 }
1909
1910 if (update_stat)
1911 ctl->free_space -= bytes;
1912 }
1913
btrfs_bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1914 static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1915 struct btrfs_free_space *info, u64 offset,
1916 u64 bytes)
1917 {
1918 unsigned long start, count, end;
1919 int extent_delta = 1;
1920
1921 start = offset_to_bit(info->offset, ctl->unit, offset);
1922 count = bytes_to_bits(bytes, ctl->unit);
1923 end = start + count;
1924 ASSERT(end <= BITS_PER_BITMAP);
1925
1926 bitmap_set(info->bitmap, start, count);
1927
1928 /*
1929 * We set some bytes, we have no idea what the max extent size is
1930 * anymore.
1931 */
1932 info->max_extent_size = 0;
1933 info->bytes += bytes;
1934 ctl->free_space += bytes;
1935
1936 relink_bitmap_entry(ctl, info);
1937
1938 if (start && test_bit(start - 1, info->bitmap))
1939 extent_delta--;
1940
1941 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1942 extent_delta--;
1943
1944 info->bitmap_extents += extent_delta;
1945 if (!btrfs_free_space_trimmed(info)) {
1946 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1947 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1948 }
1949 }
1950
1951 /*
1952 * If we can not find suitable extent, we will use bytes to record
1953 * the size of the max extent.
1954 */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1955 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1956 struct btrfs_free_space *bitmap_info, u64 *offset,
1957 u64 *bytes, bool for_alloc)
1958 {
1959 unsigned long found_bits = 0;
1960 unsigned long max_bits = 0;
1961 unsigned long bits, i;
1962 unsigned long next_zero;
1963 unsigned long extent_bits;
1964
1965 /*
1966 * Skip searching the bitmap if we don't have a contiguous section that
1967 * is large enough for this allocation.
1968 */
1969 if (for_alloc &&
1970 bitmap_info->max_extent_size &&
1971 bitmap_info->max_extent_size < *bytes) {
1972 *bytes = bitmap_info->max_extent_size;
1973 return -1;
1974 }
1975
1976 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1977 max_t(u64, *offset, bitmap_info->offset));
1978 bits = bytes_to_bits(*bytes, ctl->unit);
1979
1980 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1981 if (for_alloc && bits == 1) {
1982 found_bits = 1;
1983 break;
1984 }
1985 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1986 BITS_PER_BITMAP, i);
1987 extent_bits = next_zero - i;
1988 if (extent_bits >= bits) {
1989 found_bits = extent_bits;
1990 break;
1991 } else if (extent_bits > max_bits) {
1992 max_bits = extent_bits;
1993 }
1994 i = next_zero;
1995 }
1996
1997 if (found_bits) {
1998 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1999 *bytes = (u64)(found_bits) * ctl->unit;
2000 return 0;
2001 }
2002
2003 *bytes = (u64)(max_bits) * ctl->unit;
2004 bitmap_info->max_extent_size = *bytes;
2005 relink_bitmap_entry(ctl, bitmap_info);
2006 return -1;
2007 }
2008
2009 /* Cache the size of the max extent in bytes */
2010 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size,bool use_bytes_index)2011 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2012 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2013 {
2014 struct btrfs_free_space *entry;
2015 struct rb_node *node;
2016 u64 tmp;
2017 u64 align_off;
2018 int ret;
2019
2020 if (!ctl->free_space_offset.rb_node)
2021 goto out;
2022 again:
2023 if (use_bytes_index) {
2024 node = rb_first_cached(&ctl->free_space_bytes);
2025 } else {
2026 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2027 0, 1);
2028 if (!entry)
2029 goto out;
2030 node = &entry->offset_index;
2031 }
2032
2033 for (; node; node = rb_next(node)) {
2034 if (use_bytes_index)
2035 entry = rb_entry(node, struct btrfs_free_space,
2036 bytes_index);
2037 else
2038 entry = rb_entry(node, struct btrfs_free_space,
2039 offset_index);
2040
2041 /*
2042 * If we are using the bytes index then all subsequent entries
2043 * in this tree are going to be < bytes, so simply set the max
2044 * extent size and exit the loop.
2045 *
2046 * If we're using the offset index then we need to keep going
2047 * through the rest of the tree.
2048 */
2049 if (entry->bytes < *bytes) {
2050 *max_extent_size = max(get_max_extent_size(entry),
2051 *max_extent_size);
2052 if (use_bytes_index)
2053 break;
2054 continue;
2055 }
2056
2057 /* make sure the space returned is big enough
2058 * to match our requested alignment
2059 */
2060 if (*bytes >= align) {
2061 tmp = entry->offset - ctl->start + align - 1;
2062 tmp = div64_u64(tmp, align);
2063 tmp = tmp * align + ctl->start;
2064 align_off = tmp - entry->offset;
2065 } else {
2066 align_off = 0;
2067 tmp = entry->offset;
2068 }
2069
2070 /*
2071 * We don't break here if we're using the bytes index because we
2072 * may have another entry that has the correct alignment that is
2073 * the right size, so we don't want to miss that possibility.
2074 * At worst this adds another loop through the logic, but if we
2075 * broke here we could prematurely ENOSPC.
2076 */
2077 if (entry->bytes < *bytes + align_off) {
2078 *max_extent_size = max(get_max_extent_size(entry),
2079 *max_extent_size);
2080 continue;
2081 }
2082
2083 if (entry->bitmap) {
2084 struct rb_node *old_next = rb_next(node);
2085 u64 size = *bytes;
2086
2087 ret = search_bitmap(ctl, entry, &tmp, &size, true);
2088 if (!ret) {
2089 *offset = tmp;
2090 *bytes = size;
2091 return entry;
2092 } else {
2093 *max_extent_size =
2094 max(get_max_extent_size(entry),
2095 *max_extent_size);
2096 }
2097
2098 /*
2099 * The bitmap may have gotten re-arranged in the space
2100 * index here because the max_extent_size may have been
2101 * updated. Start from the beginning again if this
2102 * happened.
2103 */
2104 if (use_bytes_index && old_next != rb_next(node))
2105 goto again;
2106 continue;
2107 }
2108
2109 *offset = tmp;
2110 *bytes = entry->bytes - align_off;
2111 return entry;
2112 }
2113 out:
2114 return NULL;
2115 }
2116
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)2117 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2118 struct btrfs_free_space *info, u64 offset)
2119 {
2120 info->offset = offset_to_bitmap(ctl, offset);
2121 info->bytes = 0;
2122 info->bitmap_extents = 0;
2123 INIT_LIST_HEAD(&info->list);
2124 link_free_space(ctl, info);
2125 ctl->total_bitmaps++;
2126 recalculate_thresholds(ctl);
2127 }
2128
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)2129 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2130 struct btrfs_free_space *bitmap_info)
2131 {
2132 /*
2133 * Normally when this is called, the bitmap is completely empty. However,
2134 * if we are blowing up the free space cache for one reason or another
2135 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2136 * we may leave stats on the table.
2137 */
2138 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2139 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2140 bitmap_info->bitmap_extents;
2141 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2142
2143 }
2144 unlink_free_space(ctl, bitmap_info, true);
2145 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2146 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2147 ctl->total_bitmaps--;
2148 recalculate_thresholds(ctl);
2149 }
2150
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)2151 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2152 struct btrfs_free_space *bitmap_info,
2153 u64 *offset, u64 *bytes)
2154 {
2155 u64 end;
2156 u64 search_start, search_bytes;
2157 int ret;
2158
2159 again:
2160 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2161
2162 /*
2163 * We need to search for bits in this bitmap. We could only cover some
2164 * of the extent in this bitmap thanks to how we add space, so we need
2165 * to search for as much as it as we can and clear that amount, and then
2166 * go searching for the next bit.
2167 */
2168 search_start = *offset;
2169 search_bytes = ctl->unit;
2170 search_bytes = min(search_bytes, end - search_start + 1);
2171 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2172 false);
2173 if (ret < 0 || search_start != *offset)
2174 return -EINVAL;
2175
2176 /* We may have found more bits than what we need */
2177 search_bytes = min(search_bytes, *bytes);
2178
2179 /* Cannot clear past the end of the bitmap */
2180 search_bytes = min(search_bytes, end - search_start + 1);
2181
2182 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2183 *offset += search_bytes;
2184 *bytes -= search_bytes;
2185
2186 if (*bytes) {
2187 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2188 if (!bitmap_info->bytes)
2189 free_bitmap(ctl, bitmap_info);
2190
2191 /*
2192 * no entry after this bitmap, but we still have bytes to
2193 * remove, so something has gone wrong.
2194 */
2195 if (!next)
2196 return -EINVAL;
2197
2198 bitmap_info = rb_entry(next, struct btrfs_free_space,
2199 offset_index);
2200
2201 /*
2202 * if the next entry isn't a bitmap we need to return to let the
2203 * extent stuff do its work.
2204 */
2205 if (!bitmap_info->bitmap)
2206 return -EAGAIN;
2207
2208 /*
2209 * Ok the next item is a bitmap, but it may not actually hold
2210 * the information for the rest of this free space stuff, so
2211 * look for it, and if we don't find it return so we can try
2212 * everything over again.
2213 */
2214 search_start = *offset;
2215 search_bytes = ctl->unit;
2216 ret = search_bitmap(ctl, bitmap_info, &search_start,
2217 &search_bytes, false);
2218 if (ret < 0 || search_start != *offset)
2219 return -EAGAIN;
2220
2221 goto again;
2222 } else if (!bitmap_info->bytes)
2223 free_bitmap(ctl, bitmap_info);
2224
2225 return 0;
2226 }
2227
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2228 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2229 struct btrfs_free_space *info, u64 offset,
2230 u64 bytes, enum btrfs_trim_state trim_state)
2231 {
2232 u64 bytes_to_set = 0;
2233 u64 end;
2234
2235 /*
2236 * This is a tradeoff to make bitmap trim state minimal. We mark the
2237 * whole bitmap untrimmed if at any point we add untrimmed regions.
2238 */
2239 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2240 if (btrfs_free_space_trimmed(info)) {
2241 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2242 info->bitmap_extents;
2243 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2244 }
2245 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2246 }
2247
2248 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2249
2250 bytes_to_set = min(end - offset, bytes);
2251
2252 btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
2253
2254 return bytes_to_set;
2255
2256 }
2257
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2258 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2259 struct btrfs_free_space *info)
2260 {
2261 struct btrfs_block_group *block_group = ctl->block_group;
2262 struct btrfs_fs_info *fs_info = block_group->fs_info;
2263 bool forced = false;
2264
2265 #ifdef CONFIG_BTRFS_DEBUG
2266 if (btrfs_should_fragment_free_space(block_group))
2267 forced = true;
2268 #endif
2269
2270 /* This is a way to reclaim large regions from the bitmaps. */
2271 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2272 return false;
2273
2274 /*
2275 * If we are below the extents threshold then we can add this as an
2276 * extent, and don't have to deal with the bitmap
2277 */
2278 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2279 /*
2280 * If this block group has some small extents we don't want to
2281 * use up all of our free slots in the cache with them, we want
2282 * to reserve them to larger extents, however if we have plenty
2283 * of cache left then go ahead an dadd them, no sense in adding
2284 * the overhead of a bitmap if we don't have to.
2285 */
2286 if (info->bytes <= fs_info->sectorsize * 8) {
2287 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2288 return false;
2289 } else {
2290 return false;
2291 }
2292 }
2293
2294 /*
2295 * The original block groups from mkfs can be really small, like 8
2296 * megabytes, so don't bother with a bitmap for those entries. However
2297 * some block groups can be smaller than what a bitmap would cover but
2298 * are still large enough that they could overflow the 32k memory limit,
2299 * so allow those block groups to still be allowed to have a bitmap
2300 * entry.
2301 */
2302 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2303 return false;
2304
2305 return true;
2306 }
2307
2308 static const struct btrfs_free_space_op free_space_op = {
2309 .use_bitmap = use_bitmap,
2310 };
2311
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2312 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2313 struct btrfs_free_space *info)
2314 {
2315 struct btrfs_free_space *bitmap_info;
2316 struct btrfs_block_group *block_group = NULL;
2317 int added = 0;
2318 u64 bytes, offset, bytes_added;
2319 enum btrfs_trim_state trim_state;
2320 int ret;
2321
2322 bytes = info->bytes;
2323 offset = info->offset;
2324 trim_state = info->trim_state;
2325
2326 if (!ctl->op->use_bitmap(ctl, info))
2327 return 0;
2328
2329 if (ctl->op == &free_space_op)
2330 block_group = ctl->block_group;
2331 again:
2332 /*
2333 * Since we link bitmaps right into the cluster we need to see if we
2334 * have a cluster here, and if so and it has our bitmap we need to add
2335 * the free space to that bitmap.
2336 */
2337 if (block_group && !list_empty(&block_group->cluster_list)) {
2338 struct btrfs_free_cluster *cluster;
2339 struct rb_node *node;
2340 struct btrfs_free_space *entry;
2341
2342 cluster = list_entry(block_group->cluster_list.next,
2343 struct btrfs_free_cluster,
2344 block_group_list);
2345 spin_lock(&cluster->lock);
2346 node = rb_first(&cluster->root);
2347 if (!node) {
2348 spin_unlock(&cluster->lock);
2349 goto no_cluster_bitmap;
2350 }
2351
2352 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2353 if (!entry->bitmap) {
2354 spin_unlock(&cluster->lock);
2355 goto no_cluster_bitmap;
2356 }
2357
2358 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2359 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2360 bytes, trim_state);
2361 bytes -= bytes_added;
2362 offset += bytes_added;
2363 }
2364 spin_unlock(&cluster->lock);
2365 if (!bytes) {
2366 ret = 1;
2367 goto out;
2368 }
2369 }
2370
2371 no_cluster_bitmap:
2372 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2373 1, 0);
2374 if (!bitmap_info) {
2375 ASSERT(added == 0);
2376 goto new_bitmap;
2377 }
2378
2379 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2380 trim_state);
2381 bytes -= bytes_added;
2382 offset += bytes_added;
2383 added = 0;
2384
2385 if (!bytes) {
2386 ret = 1;
2387 goto out;
2388 } else
2389 goto again;
2390
2391 new_bitmap:
2392 if (info && info->bitmap) {
2393 add_new_bitmap(ctl, info, offset);
2394 added = 1;
2395 info = NULL;
2396 goto again;
2397 } else {
2398 spin_unlock(&ctl->tree_lock);
2399
2400 /* no pre-allocated info, allocate a new one */
2401 if (!info) {
2402 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2403 GFP_NOFS);
2404 if (!info) {
2405 spin_lock(&ctl->tree_lock);
2406 ret = -ENOMEM;
2407 goto out;
2408 }
2409 }
2410
2411 /* allocate the bitmap */
2412 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2413 GFP_NOFS);
2414 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2415 spin_lock(&ctl->tree_lock);
2416 if (!info->bitmap) {
2417 ret = -ENOMEM;
2418 goto out;
2419 }
2420 goto again;
2421 }
2422
2423 out:
2424 if (info) {
2425 if (info->bitmap)
2426 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2427 info->bitmap);
2428 kmem_cache_free(btrfs_free_space_cachep, info);
2429 }
2430
2431 return ret;
2432 }
2433
2434 /*
2435 * Free space merging rules:
2436 * 1) Merge trimmed areas together
2437 * 2) Let untrimmed areas coalesce with trimmed areas
2438 * 3) Always pull neighboring regions from bitmaps
2439 *
2440 * The above rules are for when we merge free space based on btrfs_trim_state.
2441 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2442 * same reason: to promote larger extent regions which makes life easier for
2443 * find_free_extent(). Rule 2 enables coalescing based on the common path
2444 * being returning free space from btrfs_finish_extent_commit(). So when free
2445 * space is trimmed, it will prevent aggregating trimmed new region and
2446 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2447 * and provide find_free_extent() with the largest extents possible hoping for
2448 * the reuse path.
2449 */
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2450 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2451 struct btrfs_free_space *info, bool update_stat)
2452 {
2453 struct btrfs_free_space *left_info = NULL;
2454 struct btrfs_free_space *right_info;
2455 bool merged = false;
2456 u64 offset = info->offset;
2457 u64 bytes = info->bytes;
2458 const bool is_trimmed = btrfs_free_space_trimmed(info);
2459 struct rb_node *right_prev = NULL;
2460
2461 /*
2462 * first we want to see if there is free space adjacent to the range we
2463 * are adding, if there is remove that struct and add a new one to
2464 * cover the entire range
2465 */
2466 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2467 if (right_info)
2468 right_prev = rb_prev(&right_info->offset_index);
2469
2470 if (right_prev)
2471 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2472 else if (!right_info)
2473 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2474
2475 /* See try_merge_free_space() comment. */
2476 if (right_info && !right_info->bitmap &&
2477 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2478 unlink_free_space(ctl, right_info, update_stat);
2479 info->bytes += right_info->bytes;
2480 kmem_cache_free(btrfs_free_space_cachep, right_info);
2481 merged = true;
2482 }
2483
2484 /* See try_merge_free_space() comment. */
2485 if (left_info && !left_info->bitmap &&
2486 left_info->offset + left_info->bytes == offset &&
2487 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2488 unlink_free_space(ctl, left_info, update_stat);
2489 info->offset = left_info->offset;
2490 info->bytes += left_info->bytes;
2491 kmem_cache_free(btrfs_free_space_cachep, left_info);
2492 merged = true;
2493 }
2494
2495 return merged;
2496 }
2497
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2498 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2499 struct btrfs_free_space *info,
2500 bool update_stat)
2501 {
2502 struct btrfs_free_space *bitmap;
2503 unsigned long i;
2504 unsigned long j;
2505 const u64 end = info->offset + info->bytes;
2506 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2507 u64 bytes;
2508
2509 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2510 if (!bitmap)
2511 return false;
2512
2513 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2514 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2515 if (j == i)
2516 return false;
2517 bytes = (j - i) * ctl->unit;
2518 info->bytes += bytes;
2519
2520 /* See try_merge_free_space() comment. */
2521 if (!btrfs_free_space_trimmed(bitmap))
2522 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2523
2524 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2525
2526 if (!bitmap->bytes)
2527 free_bitmap(ctl, bitmap);
2528
2529 return true;
2530 }
2531
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2532 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2533 struct btrfs_free_space *info,
2534 bool update_stat)
2535 {
2536 struct btrfs_free_space *bitmap;
2537 u64 bitmap_offset;
2538 unsigned long i;
2539 unsigned long j;
2540 unsigned long prev_j;
2541 u64 bytes;
2542
2543 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2544 /* If we're on a boundary, try the previous logical bitmap. */
2545 if (bitmap_offset == info->offset) {
2546 if (info->offset == 0)
2547 return false;
2548 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2549 }
2550
2551 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2552 if (!bitmap)
2553 return false;
2554
2555 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2556 j = 0;
2557 prev_j = (unsigned long)-1;
2558 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2559 if (j > i)
2560 break;
2561 prev_j = j;
2562 }
2563 if (prev_j == i)
2564 return false;
2565
2566 if (prev_j == (unsigned long)-1)
2567 bytes = (i + 1) * ctl->unit;
2568 else
2569 bytes = (i - prev_j) * ctl->unit;
2570
2571 info->offset -= bytes;
2572 info->bytes += bytes;
2573
2574 /* See try_merge_free_space() comment. */
2575 if (!btrfs_free_space_trimmed(bitmap))
2576 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2577
2578 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2579
2580 if (!bitmap->bytes)
2581 free_bitmap(ctl, bitmap);
2582
2583 return true;
2584 }
2585
2586 /*
2587 * We prefer always to allocate from extent entries, both for clustered and
2588 * non-clustered allocation requests. So when attempting to add a new extent
2589 * entry, try to see if there's adjacent free space in bitmap entries, and if
2590 * there is, migrate that space from the bitmaps to the extent.
2591 * Like this we get better chances of satisfying space allocation requests
2592 * because we attempt to satisfy them based on a single cache entry, and never
2593 * on 2 or more entries - even if the entries represent a contiguous free space
2594 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2595 * ends).
2596 */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2597 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2598 struct btrfs_free_space *info,
2599 bool update_stat)
2600 {
2601 /*
2602 * Only work with disconnected entries, as we can change their offset,
2603 * and must be extent entries.
2604 */
2605 ASSERT(!info->bitmap);
2606 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2607
2608 if (ctl->total_bitmaps > 0) {
2609 bool stole_end;
2610 bool stole_front = false;
2611
2612 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2613 if (ctl->total_bitmaps > 0)
2614 stole_front = steal_from_bitmap_to_front(ctl, info,
2615 update_stat);
2616
2617 if (stole_end || stole_front)
2618 try_merge_free_space(ctl, info, update_stat);
2619 }
2620 }
2621
__btrfs_add_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2622 static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2623 u64 offset, u64 bytes,
2624 enum btrfs_trim_state trim_state)
2625 {
2626 struct btrfs_fs_info *fs_info = block_group->fs_info;
2627 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2628 struct btrfs_free_space *info;
2629 int ret = 0;
2630 u64 filter_bytes = bytes;
2631
2632 ASSERT(!btrfs_is_zoned(fs_info));
2633
2634 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2635 if (!info)
2636 return -ENOMEM;
2637
2638 info->offset = offset;
2639 info->bytes = bytes;
2640 info->trim_state = trim_state;
2641 RB_CLEAR_NODE(&info->offset_index);
2642 RB_CLEAR_NODE(&info->bytes_index);
2643
2644 spin_lock(&ctl->tree_lock);
2645
2646 if (try_merge_free_space(ctl, info, true))
2647 goto link;
2648
2649 /*
2650 * There was no extent directly to the left or right of this new
2651 * extent then we know we're going to have to allocate a new extent, so
2652 * before we do that see if we need to drop this into a bitmap
2653 */
2654 ret = insert_into_bitmap(ctl, info);
2655 if (ret < 0) {
2656 goto out;
2657 } else if (ret) {
2658 ret = 0;
2659 goto out;
2660 }
2661 link:
2662 /*
2663 * Only steal free space from adjacent bitmaps if we're sure we're not
2664 * going to add the new free space to existing bitmap entries - because
2665 * that would mean unnecessary work that would be reverted. Therefore
2666 * attempt to steal space from bitmaps if we're adding an extent entry.
2667 */
2668 steal_from_bitmap(ctl, info, true);
2669
2670 filter_bytes = max(filter_bytes, info->bytes);
2671
2672 ret = link_free_space(ctl, info);
2673 if (ret)
2674 kmem_cache_free(btrfs_free_space_cachep, info);
2675 out:
2676 btrfs_discard_update_discardable(block_group);
2677 spin_unlock(&ctl->tree_lock);
2678
2679 if (ret) {
2680 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2681 ASSERT(ret != -EEXIST);
2682 }
2683
2684 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2685 btrfs_discard_check_filter(block_group, filter_bytes);
2686 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2687 }
2688
2689 return ret;
2690 }
2691
__btrfs_add_free_space_zoned(struct btrfs_block_group * block_group,u64 bytenr,u64 size,bool used)2692 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2693 u64 bytenr, u64 size, bool used)
2694 {
2695 struct btrfs_space_info *sinfo = block_group->space_info;
2696 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2697 u64 offset = bytenr - block_group->start;
2698 u64 to_free, to_unusable;
2699 int bg_reclaim_threshold = 0;
2700 bool initial;
2701 u64 reclaimable_unusable;
2702
2703 spin_lock(&block_group->lock);
2704
2705 initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
2706 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2707 if (!initial)
2708 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2709
2710 if (!used)
2711 to_free = size;
2712 else if (initial)
2713 to_free = block_group->zone_capacity;
2714 else if (offset >= block_group->alloc_offset)
2715 to_free = size;
2716 else if (offset + size <= block_group->alloc_offset)
2717 to_free = 0;
2718 else
2719 to_free = offset + size - block_group->alloc_offset;
2720 to_unusable = size - to_free;
2721
2722 spin_lock(&ctl->tree_lock);
2723 ctl->free_space += to_free;
2724 spin_unlock(&ctl->tree_lock);
2725 /*
2726 * If the block group is read-only, we should account freed space into
2727 * bytes_readonly.
2728 */
2729 if (!block_group->ro) {
2730 block_group->zone_unusable += to_unusable;
2731 WARN_ON(block_group->zone_unusable > block_group->length);
2732 }
2733 if (!used) {
2734 block_group->alloc_offset -= size;
2735 }
2736
2737 reclaimable_unusable = block_group->zone_unusable -
2738 (block_group->length - block_group->zone_capacity);
2739 /* All the region is now unusable. Mark it as unused and reclaim */
2740 if (block_group->zone_unusable == block_group->length) {
2741 btrfs_mark_bg_unused(block_group);
2742 } else if (bg_reclaim_threshold &&
2743 reclaimable_unusable >=
2744 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2745 btrfs_mark_bg_to_reclaim(block_group);
2746 }
2747
2748 spin_unlock(&block_group->lock);
2749
2750 return 0;
2751 }
2752
btrfs_add_free_space(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2753 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2754 u64 bytenr, u64 size)
2755 {
2756 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2757
2758 if (btrfs_is_zoned(block_group->fs_info))
2759 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2760 true);
2761
2762 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2763 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2764
2765 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2766 }
2767
btrfs_add_free_space_unused(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2768 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2769 u64 bytenr, u64 size)
2770 {
2771 if (btrfs_is_zoned(block_group->fs_info))
2772 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2773 false);
2774
2775 return btrfs_add_free_space(block_group, bytenr, size);
2776 }
2777
2778 /*
2779 * This is a subtle distinction because when adding free space back in general,
2780 * we want it to be added as untrimmed for async. But in the case where we add
2781 * it on loading of a block group, we want to consider it trimmed.
2782 */
btrfs_add_free_space_async_trimmed(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2783 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2784 u64 bytenr, u64 size)
2785 {
2786 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2787
2788 if (btrfs_is_zoned(block_group->fs_info))
2789 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2790 true);
2791
2792 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2793 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2794 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2795
2796 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2797 }
2798
btrfs_remove_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes)2799 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2800 u64 offset, u64 bytes)
2801 {
2802 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2803 struct btrfs_free_space *info;
2804 int ret;
2805 bool re_search = false;
2806
2807 if (btrfs_is_zoned(block_group->fs_info)) {
2808 /*
2809 * This can happen with conventional zones when replaying log.
2810 * Since the allocation info of tree-log nodes are not recorded
2811 * to the extent-tree, calculate_alloc_pointer() failed to
2812 * advance the allocation pointer after last allocated tree log
2813 * node blocks.
2814 *
2815 * This function is called from
2816 * btrfs_pin_extent_for_log_replay() when replaying the log.
2817 * Advance the pointer not to overwrite the tree-log nodes.
2818 */
2819 if (block_group->start + block_group->alloc_offset <
2820 offset + bytes) {
2821 block_group->alloc_offset =
2822 offset + bytes - block_group->start;
2823 }
2824 return 0;
2825 }
2826
2827 spin_lock(&ctl->tree_lock);
2828
2829 again:
2830 ret = 0;
2831 if (!bytes)
2832 goto out_lock;
2833
2834 info = tree_search_offset(ctl, offset, 0, 0);
2835 if (!info) {
2836 /*
2837 * oops didn't find an extent that matched the space we wanted
2838 * to remove, look for a bitmap instead
2839 */
2840 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2841 1, 0);
2842 if (!info) {
2843 /*
2844 * If we found a partial bit of our free space in a
2845 * bitmap but then couldn't find the other part this may
2846 * be a problem, so WARN about it.
2847 */
2848 WARN_ON(re_search);
2849 goto out_lock;
2850 }
2851 }
2852
2853 re_search = false;
2854 if (!info->bitmap) {
2855 unlink_free_space(ctl, info, true);
2856 if (offset == info->offset) {
2857 u64 to_free = min(bytes, info->bytes);
2858
2859 info->bytes -= to_free;
2860 info->offset += to_free;
2861 if (info->bytes) {
2862 ret = link_free_space(ctl, info);
2863 WARN_ON(ret);
2864 } else {
2865 kmem_cache_free(btrfs_free_space_cachep, info);
2866 }
2867
2868 offset += to_free;
2869 bytes -= to_free;
2870 goto again;
2871 } else {
2872 u64 old_end = info->bytes + info->offset;
2873
2874 info->bytes = offset - info->offset;
2875 ret = link_free_space(ctl, info);
2876 WARN_ON(ret);
2877 if (ret)
2878 goto out_lock;
2879
2880 /* Not enough bytes in this entry to satisfy us */
2881 if (old_end < offset + bytes) {
2882 bytes -= old_end - offset;
2883 offset = old_end;
2884 goto again;
2885 } else if (old_end == offset + bytes) {
2886 /* all done */
2887 goto out_lock;
2888 }
2889 spin_unlock(&ctl->tree_lock);
2890
2891 ret = __btrfs_add_free_space(block_group,
2892 offset + bytes,
2893 old_end - (offset + bytes),
2894 info->trim_state);
2895 WARN_ON(ret);
2896 goto out;
2897 }
2898 }
2899
2900 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2901 if (ret == -EAGAIN) {
2902 re_search = true;
2903 goto again;
2904 }
2905 out_lock:
2906 btrfs_discard_update_discardable(block_group);
2907 spin_unlock(&ctl->tree_lock);
2908 out:
2909 return ret;
2910 }
2911
btrfs_dump_free_space(struct btrfs_block_group * block_group,u64 bytes)2912 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2913 u64 bytes)
2914 {
2915 struct btrfs_fs_info *fs_info = block_group->fs_info;
2916 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2917 struct btrfs_free_space *info;
2918 struct rb_node *n;
2919 int count = 0;
2920
2921 /*
2922 * Zoned btrfs does not use free space tree and cluster. Just print
2923 * out the free space after the allocation offset.
2924 */
2925 if (btrfs_is_zoned(fs_info)) {
2926 btrfs_info(fs_info, "free space %llu active %d",
2927 block_group->zone_capacity - block_group->alloc_offset,
2928 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2929 &block_group->runtime_flags));
2930 return;
2931 }
2932
2933 spin_lock(&ctl->tree_lock);
2934 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2935 info = rb_entry(n, struct btrfs_free_space, offset_index);
2936 if (info->bytes >= bytes && !block_group->ro)
2937 count++;
2938 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2939 info->offset, info->bytes,
2940 (info->bitmap) ? "yes" : "no");
2941 }
2942 spin_unlock(&ctl->tree_lock);
2943 btrfs_info(fs_info, "block group has cluster?: %s",
2944 list_empty(&block_group->cluster_list) ? "no" : "yes");
2945 btrfs_info(fs_info,
2946 "%d free space entries at or bigger than %llu bytes",
2947 count, bytes);
2948 }
2949
btrfs_init_free_space_ctl(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)2950 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2951 struct btrfs_free_space_ctl *ctl)
2952 {
2953 struct btrfs_fs_info *fs_info = block_group->fs_info;
2954
2955 spin_lock_init(&ctl->tree_lock);
2956 ctl->unit = fs_info->sectorsize;
2957 ctl->start = block_group->start;
2958 ctl->block_group = block_group;
2959 ctl->op = &free_space_op;
2960 ctl->free_space_bytes = RB_ROOT_CACHED;
2961 INIT_LIST_HEAD(&ctl->trimming_ranges);
2962 mutex_init(&ctl->cache_writeout_mutex);
2963
2964 /*
2965 * we only want to have 32k of ram per block group for keeping
2966 * track of free space, and if we pass 1/2 of that we want to
2967 * start converting things over to using bitmaps
2968 */
2969 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2970 }
2971
2972 /*
2973 * for a given cluster, put all of its extents back into the free
2974 * space cache. If the block group passed doesn't match the block group
2975 * pointed to by the cluster, someone else raced in and freed the
2976 * cluster already. In that case, we just return without changing anything
2977 */
__btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)2978 static void __btrfs_return_cluster_to_free_space(
2979 struct btrfs_block_group *block_group,
2980 struct btrfs_free_cluster *cluster)
2981 {
2982 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2983 struct rb_node *node;
2984
2985 lockdep_assert_held(&ctl->tree_lock);
2986
2987 spin_lock(&cluster->lock);
2988 if (cluster->block_group != block_group) {
2989 spin_unlock(&cluster->lock);
2990 return;
2991 }
2992
2993 cluster->block_group = NULL;
2994 cluster->window_start = 0;
2995 list_del_init(&cluster->block_group_list);
2996
2997 node = rb_first(&cluster->root);
2998 while (node) {
2999 struct btrfs_free_space *entry;
3000
3001 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3002 node = rb_next(&entry->offset_index);
3003 rb_erase(&entry->offset_index, &cluster->root);
3004 RB_CLEAR_NODE(&entry->offset_index);
3005
3006 if (!entry->bitmap) {
3007 /* Merging treats extents as if they were new */
3008 if (!btrfs_free_space_trimmed(entry)) {
3009 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3010 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3011 entry->bytes;
3012 }
3013
3014 try_merge_free_space(ctl, entry, false);
3015 steal_from_bitmap(ctl, entry, false);
3016
3017 /* As we insert directly, update these statistics */
3018 if (!btrfs_free_space_trimmed(entry)) {
3019 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3020 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3021 entry->bytes;
3022 }
3023 }
3024 tree_insert_offset(ctl, NULL, entry);
3025 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3026 entry_less);
3027 }
3028 cluster->root = RB_ROOT;
3029 spin_unlock(&cluster->lock);
3030 btrfs_put_block_group(block_group);
3031 }
3032
btrfs_remove_free_space_cache(struct btrfs_block_group * block_group)3033 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3034 {
3035 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3036 struct btrfs_free_cluster *cluster;
3037 struct list_head *head;
3038
3039 spin_lock(&ctl->tree_lock);
3040 while ((head = block_group->cluster_list.next) !=
3041 &block_group->cluster_list) {
3042 cluster = list_entry(head, struct btrfs_free_cluster,
3043 block_group_list);
3044
3045 WARN_ON(cluster->block_group != block_group);
3046 __btrfs_return_cluster_to_free_space(block_group, cluster);
3047
3048 cond_resched_lock(&ctl->tree_lock);
3049 }
3050 __btrfs_remove_free_space_cache(ctl);
3051 btrfs_discard_update_discardable(block_group);
3052 spin_unlock(&ctl->tree_lock);
3053
3054 }
3055
3056 /*
3057 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3058 */
btrfs_is_free_space_trimmed(struct btrfs_block_group * block_group)3059 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3060 {
3061 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3062 struct btrfs_free_space *info;
3063 struct rb_node *node;
3064 bool ret = true;
3065
3066 spin_lock(&ctl->tree_lock);
3067 node = rb_first(&ctl->free_space_offset);
3068
3069 while (node) {
3070 info = rb_entry(node, struct btrfs_free_space, offset_index);
3071
3072 if (!btrfs_free_space_trimmed(info)) {
3073 ret = false;
3074 break;
3075 }
3076
3077 node = rb_next(node);
3078 }
3079
3080 spin_unlock(&ctl->tree_lock);
3081 return ret;
3082 }
3083
btrfs_find_space_for_alloc(struct btrfs_block_group * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)3084 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3085 u64 offset, u64 bytes, u64 empty_size,
3086 u64 *max_extent_size)
3087 {
3088 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3089 struct btrfs_discard_ctl *discard_ctl =
3090 &block_group->fs_info->discard_ctl;
3091 struct btrfs_free_space *entry = NULL;
3092 u64 bytes_search = bytes + empty_size;
3093 u64 ret = 0;
3094 u64 align_gap = 0;
3095 u64 align_gap_len = 0;
3096 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3097 bool use_bytes_index = (offset == block_group->start);
3098
3099 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3100
3101 spin_lock(&ctl->tree_lock);
3102 entry = find_free_space(ctl, &offset, &bytes_search,
3103 block_group->full_stripe_len, max_extent_size,
3104 use_bytes_index);
3105 if (!entry)
3106 goto out;
3107
3108 ret = offset;
3109 if (entry->bitmap) {
3110 bitmap_clear_bits(ctl, entry, offset, bytes, true);
3111
3112 if (!btrfs_free_space_trimmed(entry))
3113 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3114
3115 if (!entry->bytes)
3116 free_bitmap(ctl, entry);
3117 } else {
3118 unlink_free_space(ctl, entry, true);
3119 align_gap_len = offset - entry->offset;
3120 align_gap = entry->offset;
3121 align_gap_trim_state = entry->trim_state;
3122
3123 if (!btrfs_free_space_trimmed(entry))
3124 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3125
3126 entry->offset = offset + bytes;
3127 WARN_ON(entry->bytes < bytes + align_gap_len);
3128
3129 entry->bytes -= bytes + align_gap_len;
3130 if (!entry->bytes)
3131 kmem_cache_free(btrfs_free_space_cachep, entry);
3132 else
3133 link_free_space(ctl, entry);
3134 }
3135 out:
3136 btrfs_discard_update_discardable(block_group);
3137 spin_unlock(&ctl->tree_lock);
3138
3139 if (align_gap_len)
3140 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
3141 align_gap_trim_state);
3142 return ret;
3143 }
3144
3145 /*
3146 * given a cluster, put all of its extents back into the free space
3147 * cache. If a block group is passed, this function will only free
3148 * a cluster that belongs to the passed block group.
3149 *
3150 * Otherwise, it'll get a reference on the block group pointed to by the
3151 * cluster and remove the cluster from it.
3152 */
btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)3153 void btrfs_return_cluster_to_free_space(
3154 struct btrfs_block_group *block_group,
3155 struct btrfs_free_cluster *cluster)
3156 {
3157 struct btrfs_free_space_ctl *ctl;
3158
3159 /* first, get a safe pointer to the block group */
3160 spin_lock(&cluster->lock);
3161 if (!block_group) {
3162 block_group = cluster->block_group;
3163 if (!block_group) {
3164 spin_unlock(&cluster->lock);
3165 return;
3166 }
3167 } else if (cluster->block_group != block_group) {
3168 /* someone else has already freed it don't redo their work */
3169 spin_unlock(&cluster->lock);
3170 return;
3171 }
3172 btrfs_get_block_group(block_group);
3173 spin_unlock(&cluster->lock);
3174
3175 ctl = block_group->free_space_ctl;
3176
3177 /* now return any extents the cluster had on it */
3178 spin_lock(&ctl->tree_lock);
3179 __btrfs_return_cluster_to_free_space(block_group, cluster);
3180 spin_unlock(&ctl->tree_lock);
3181
3182 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3183
3184 /* finally drop our ref */
3185 btrfs_put_block_group(block_group);
3186 }
3187
btrfs_alloc_from_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)3188 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3189 struct btrfs_free_cluster *cluster,
3190 struct btrfs_free_space *entry,
3191 u64 bytes, u64 min_start,
3192 u64 *max_extent_size)
3193 {
3194 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3195 int err;
3196 u64 search_start = cluster->window_start;
3197 u64 search_bytes = bytes;
3198 u64 ret = 0;
3199
3200 search_start = min_start;
3201 search_bytes = bytes;
3202
3203 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3204 if (err) {
3205 *max_extent_size = max(get_max_extent_size(entry),
3206 *max_extent_size);
3207 return 0;
3208 }
3209
3210 ret = search_start;
3211 bitmap_clear_bits(ctl, entry, ret, bytes, false);
3212
3213 return ret;
3214 }
3215
3216 /*
3217 * given a cluster, try to allocate 'bytes' from it, returns 0
3218 * if it couldn't find anything suitably large, or a logical disk offset
3219 * if things worked out
3220 */
btrfs_alloc_from_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)3221 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3222 struct btrfs_free_cluster *cluster, u64 bytes,
3223 u64 min_start, u64 *max_extent_size)
3224 {
3225 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3226 struct btrfs_discard_ctl *discard_ctl =
3227 &block_group->fs_info->discard_ctl;
3228 struct btrfs_free_space *entry = NULL;
3229 struct rb_node *node;
3230 u64 ret = 0;
3231
3232 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3233
3234 spin_lock(&cluster->lock);
3235 if (bytes > cluster->max_size)
3236 goto out;
3237
3238 if (cluster->block_group != block_group)
3239 goto out;
3240
3241 node = rb_first(&cluster->root);
3242 if (!node)
3243 goto out;
3244
3245 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3246 while (1) {
3247 if (entry->bytes < bytes)
3248 *max_extent_size = max(get_max_extent_size(entry),
3249 *max_extent_size);
3250
3251 if (entry->bytes < bytes ||
3252 (!entry->bitmap && entry->offset < min_start)) {
3253 node = rb_next(&entry->offset_index);
3254 if (!node)
3255 break;
3256 entry = rb_entry(node, struct btrfs_free_space,
3257 offset_index);
3258 continue;
3259 }
3260
3261 if (entry->bitmap) {
3262 ret = btrfs_alloc_from_bitmap(block_group,
3263 cluster, entry, bytes,
3264 cluster->window_start,
3265 max_extent_size);
3266 if (ret == 0) {
3267 node = rb_next(&entry->offset_index);
3268 if (!node)
3269 break;
3270 entry = rb_entry(node, struct btrfs_free_space,
3271 offset_index);
3272 continue;
3273 }
3274 cluster->window_start += bytes;
3275 } else {
3276 ret = entry->offset;
3277
3278 entry->offset += bytes;
3279 entry->bytes -= bytes;
3280 }
3281
3282 break;
3283 }
3284 out:
3285 spin_unlock(&cluster->lock);
3286
3287 if (!ret)
3288 return 0;
3289
3290 spin_lock(&ctl->tree_lock);
3291
3292 if (!btrfs_free_space_trimmed(entry))
3293 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3294
3295 ctl->free_space -= bytes;
3296 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3297 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3298
3299 spin_lock(&cluster->lock);
3300 if (entry->bytes == 0) {
3301 rb_erase(&entry->offset_index, &cluster->root);
3302 ctl->free_extents--;
3303 if (entry->bitmap) {
3304 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3305 entry->bitmap);
3306 ctl->total_bitmaps--;
3307 recalculate_thresholds(ctl);
3308 } else if (!btrfs_free_space_trimmed(entry)) {
3309 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3310 }
3311 kmem_cache_free(btrfs_free_space_cachep, entry);
3312 }
3313
3314 spin_unlock(&cluster->lock);
3315 spin_unlock(&ctl->tree_lock);
3316
3317 return ret;
3318 }
3319
btrfs_bitmap_cluster(struct btrfs_block_group * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3320 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3321 struct btrfs_free_space *entry,
3322 struct btrfs_free_cluster *cluster,
3323 u64 offset, u64 bytes,
3324 u64 cont1_bytes, u64 min_bytes)
3325 {
3326 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3327 unsigned long next_zero;
3328 unsigned long i;
3329 unsigned long want_bits;
3330 unsigned long min_bits;
3331 unsigned long found_bits;
3332 unsigned long max_bits = 0;
3333 unsigned long start = 0;
3334 unsigned long total_found = 0;
3335 int ret;
3336
3337 lockdep_assert_held(&ctl->tree_lock);
3338
3339 i = offset_to_bit(entry->offset, ctl->unit,
3340 max_t(u64, offset, entry->offset));
3341 want_bits = bytes_to_bits(bytes, ctl->unit);
3342 min_bits = bytes_to_bits(min_bytes, ctl->unit);
3343
3344 /*
3345 * Don't bother looking for a cluster in this bitmap if it's heavily
3346 * fragmented.
3347 */
3348 if (entry->max_extent_size &&
3349 entry->max_extent_size < cont1_bytes)
3350 return -ENOSPC;
3351 again:
3352 found_bits = 0;
3353 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3354 next_zero = find_next_zero_bit(entry->bitmap,
3355 BITS_PER_BITMAP, i);
3356 if (next_zero - i >= min_bits) {
3357 found_bits = next_zero - i;
3358 if (found_bits > max_bits)
3359 max_bits = found_bits;
3360 break;
3361 }
3362 if (next_zero - i > max_bits)
3363 max_bits = next_zero - i;
3364 i = next_zero;
3365 }
3366
3367 if (!found_bits) {
3368 entry->max_extent_size = (u64)max_bits * ctl->unit;
3369 return -ENOSPC;
3370 }
3371
3372 if (!total_found) {
3373 start = i;
3374 cluster->max_size = 0;
3375 }
3376
3377 total_found += found_bits;
3378
3379 if (cluster->max_size < found_bits * ctl->unit)
3380 cluster->max_size = found_bits * ctl->unit;
3381
3382 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3383 i = next_zero + 1;
3384 goto again;
3385 }
3386
3387 cluster->window_start = start * ctl->unit + entry->offset;
3388 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3389 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3390
3391 /*
3392 * We need to know if we're currently on the normal space index when we
3393 * manipulate the bitmap so that we know we need to remove and re-insert
3394 * it into the space_index tree. Clear the bytes_index node here so the
3395 * bitmap manipulation helpers know not to mess with the space_index
3396 * until this bitmap entry is added back into the normal cache.
3397 */
3398 RB_CLEAR_NODE(&entry->bytes_index);
3399
3400 ret = tree_insert_offset(ctl, cluster, entry);
3401 ASSERT(!ret); /* -EEXIST; Logic error */
3402
3403 trace_btrfs_setup_cluster(block_group, cluster,
3404 total_found * ctl->unit, 1);
3405 return 0;
3406 }
3407
3408 /*
3409 * This searches the block group for just extents to fill the cluster with.
3410 * Try to find a cluster with at least bytes total bytes, at least one
3411 * extent of cont1_bytes, and other clusters of at least min_bytes.
3412 */
3413 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3414 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3415 struct btrfs_free_cluster *cluster,
3416 struct list_head *bitmaps, u64 offset, u64 bytes,
3417 u64 cont1_bytes, u64 min_bytes)
3418 {
3419 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3420 struct btrfs_free_space *first = NULL;
3421 struct btrfs_free_space *entry = NULL;
3422 struct btrfs_free_space *last;
3423 struct rb_node *node;
3424 u64 window_free;
3425 u64 max_extent;
3426 u64 total_size = 0;
3427
3428 lockdep_assert_held(&ctl->tree_lock);
3429
3430 entry = tree_search_offset(ctl, offset, 0, 1);
3431 if (!entry)
3432 return -ENOSPC;
3433
3434 /*
3435 * We don't want bitmaps, so just move along until we find a normal
3436 * extent entry.
3437 */
3438 while (entry->bitmap || entry->bytes < min_bytes) {
3439 if (entry->bitmap && list_empty(&entry->list))
3440 list_add_tail(&entry->list, bitmaps);
3441 node = rb_next(&entry->offset_index);
3442 if (!node)
3443 return -ENOSPC;
3444 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3445 }
3446
3447 window_free = entry->bytes;
3448 max_extent = entry->bytes;
3449 first = entry;
3450 last = entry;
3451
3452 for (node = rb_next(&entry->offset_index); node;
3453 node = rb_next(&entry->offset_index)) {
3454 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3455
3456 if (entry->bitmap) {
3457 if (list_empty(&entry->list))
3458 list_add_tail(&entry->list, bitmaps);
3459 continue;
3460 }
3461
3462 if (entry->bytes < min_bytes)
3463 continue;
3464
3465 last = entry;
3466 window_free += entry->bytes;
3467 if (entry->bytes > max_extent)
3468 max_extent = entry->bytes;
3469 }
3470
3471 if (window_free < bytes || max_extent < cont1_bytes)
3472 return -ENOSPC;
3473
3474 cluster->window_start = first->offset;
3475
3476 node = &first->offset_index;
3477
3478 /*
3479 * now we've found our entries, pull them out of the free space
3480 * cache and put them into the cluster rbtree
3481 */
3482 do {
3483 int ret;
3484
3485 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3486 node = rb_next(&entry->offset_index);
3487 if (entry->bitmap || entry->bytes < min_bytes)
3488 continue;
3489
3490 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3491 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3492 ret = tree_insert_offset(ctl, cluster, entry);
3493 total_size += entry->bytes;
3494 ASSERT(!ret); /* -EEXIST; Logic error */
3495 } while (node && entry != last);
3496
3497 cluster->max_size = max_extent;
3498 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3499 return 0;
3500 }
3501
3502 /*
3503 * This specifically looks for bitmaps that may work in the cluster, we assume
3504 * that we have already failed to find extents that will work.
3505 */
3506 static noinline int
setup_cluster_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3507 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3508 struct btrfs_free_cluster *cluster,
3509 struct list_head *bitmaps, u64 offset, u64 bytes,
3510 u64 cont1_bytes, u64 min_bytes)
3511 {
3512 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3513 struct btrfs_free_space *entry = NULL;
3514 int ret = -ENOSPC;
3515 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3516
3517 if (ctl->total_bitmaps == 0)
3518 return -ENOSPC;
3519
3520 /*
3521 * The bitmap that covers offset won't be in the list unless offset
3522 * is just its start offset.
3523 */
3524 if (!list_empty(bitmaps))
3525 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3526
3527 if (!entry || entry->offset != bitmap_offset) {
3528 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3529 if (entry && list_empty(&entry->list))
3530 list_add(&entry->list, bitmaps);
3531 }
3532
3533 list_for_each_entry(entry, bitmaps, list) {
3534 if (entry->bytes < bytes)
3535 continue;
3536 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3537 bytes, cont1_bytes, min_bytes);
3538 if (!ret)
3539 return 0;
3540 }
3541
3542 /*
3543 * The bitmaps list has all the bitmaps that record free space
3544 * starting after offset, so no more search is required.
3545 */
3546 return -ENOSPC;
3547 }
3548
3549 /*
3550 * here we try to find a cluster of blocks in a block group. The goal
3551 * is to find at least bytes+empty_size.
3552 * We might not find them all in one contiguous area.
3553 *
3554 * returns zero and sets up cluster if things worked out, otherwise
3555 * it returns -enospc
3556 */
btrfs_find_space_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3557 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3558 struct btrfs_free_cluster *cluster,
3559 u64 offset, u64 bytes, u64 empty_size)
3560 {
3561 struct btrfs_fs_info *fs_info = block_group->fs_info;
3562 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3563 struct btrfs_free_space *entry, *tmp;
3564 LIST_HEAD(bitmaps);
3565 u64 min_bytes;
3566 u64 cont1_bytes;
3567 int ret;
3568
3569 /*
3570 * Choose the minimum extent size we'll require for this
3571 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3572 * For metadata, allow allocates with smaller extents. For
3573 * data, keep it dense.
3574 */
3575 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3576 cont1_bytes = bytes + empty_size;
3577 min_bytes = cont1_bytes;
3578 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3579 cont1_bytes = bytes;
3580 min_bytes = fs_info->sectorsize;
3581 } else {
3582 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3583 min_bytes = fs_info->sectorsize;
3584 }
3585
3586 spin_lock(&ctl->tree_lock);
3587
3588 /*
3589 * If we know we don't have enough space to make a cluster don't even
3590 * bother doing all the work to try and find one.
3591 */
3592 if (ctl->free_space < bytes) {
3593 spin_unlock(&ctl->tree_lock);
3594 return -ENOSPC;
3595 }
3596
3597 spin_lock(&cluster->lock);
3598
3599 /* someone already found a cluster, hooray */
3600 if (cluster->block_group) {
3601 ret = 0;
3602 goto out;
3603 }
3604
3605 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3606 min_bytes);
3607
3608 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3609 bytes + empty_size,
3610 cont1_bytes, min_bytes);
3611 if (ret)
3612 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3613 offset, bytes + empty_size,
3614 cont1_bytes, min_bytes);
3615
3616 /* Clear our temporary list */
3617 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3618 list_del_init(&entry->list);
3619
3620 if (!ret) {
3621 btrfs_get_block_group(block_group);
3622 list_add_tail(&cluster->block_group_list,
3623 &block_group->cluster_list);
3624 cluster->block_group = block_group;
3625 } else {
3626 trace_btrfs_failed_cluster_setup(block_group);
3627 }
3628 out:
3629 spin_unlock(&cluster->lock);
3630 spin_unlock(&ctl->tree_lock);
3631
3632 return ret;
3633 }
3634
3635 /*
3636 * simple code to zero out a cluster
3637 */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3638 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3639 {
3640 spin_lock_init(&cluster->lock);
3641 spin_lock_init(&cluster->refill_lock);
3642 cluster->root = RB_ROOT;
3643 cluster->max_size = 0;
3644 cluster->fragmented = false;
3645 INIT_LIST_HEAD(&cluster->block_group_list);
3646 cluster->block_group = NULL;
3647 }
3648
do_trimming(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,enum btrfs_trim_state reserved_trim_state,struct btrfs_trim_range * trim_entry)3649 static int do_trimming(struct btrfs_block_group *block_group,
3650 u64 *total_trimmed, u64 start, u64 bytes,
3651 u64 reserved_start, u64 reserved_bytes,
3652 enum btrfs_trim_state reserved_trim_state,
3653 struct btrfs_trim_range *trim_entry)
3654 {
3655 struct btrfs_space_info *space_info = block_group->space_info;
3656 struct btrfs_fs_info *fs_info = block_group->fs_info;
3657 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3658 int ret;
3659 int update = 0;
3660 const u64 end = start + bytes;
3661 const u64 reserved_end = reserved_start + reserved_bytes;
3662 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3663 u64 trimmed = 0;
3664
3665 spin_lock(&space_info->lock);
3666 spin_lock(&block_group->lock);
3667 if (!block_group->ro) {
3668 block_group->reserved += reserved_bytes;
3669 space_info->bytes_reserved += reserved_bytes;
3670 update = 1;
3671 }
3672 spin_unlock(&block_group->lock);
3673 spin_unlock(&space_info->lock);
3674
3675 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3676 if (!ret) {
3677 *total_trimmed += trimmed;
3678 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3679 }
3680
3681 mutex_lock(&ctl->cache_writeout_mutex);
3682 if (reserved_start < start)
3683 __btrfs_add_free_space(block_group, reserved_start,
3684 start - reserved_start,
3685 reserved_trim_state);
3686 if (end < reserved_end)
3687 __btrfs_add_free_space(block_group, end, reserved_end - end,
3688 reserved_trim_state);
3689 __btrfs_add_free_space(block_group, start, bytes, trim_state);
3690 list_del(&trim_entry->list);
3691 mutex_unlock(&ctl->cache_writeout_mutex);
3692
3693 if (update) {
3694 spin_lock(&space_info->lock);
3695 spin_lock(&block_group->lock);
3696 if (block_group->ro)
3697 space_info->bytes_readonly += reserved_bytes;
3698 block_group->reserved -= reserved_bytes;
3699 space_info->bytes_reserved -= reserved_bytes;
3700 spin_unlock(&block_group->lock);
3701 spin_unlock(&space_info->lock);
3702 }
3703
3704 return ret;
3705 }
3706
3707 /*
3708 * If @async is set, then we will trim 1 region and return.
3709 */
trim_no_bitmap(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,bool async)3710 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3711 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3712 bool async)
3713 {
3714 struct btrfs_discard_ctl *discard_ctl =
3715 &block_group->fs_info->discard_ctl;
3716 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3717 struct btrfs_free_space *entry;
3718 struct rb_node *node;
3719 int ret = 0;
3720 u64 extent_start;
3721 u64 extent_bytes;
3722 enum btrfs_trim_state extent_trim_state;
3723 u64 bytes;
3724 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3725
3726 while (start < end) {
3727 struct btrfs_trim_range trim_entry;
3728
3729 mutex_lock(&ctl->cache_writeout_mutex);
3730 spin_lock(&ctl->tree_lock);
3731
3732 if (ctl->free_space < minlen)
3733 goto out_unlock;
3734
3735 entry = tree_search_offset(ctl, start, 0, 1);
3736 if (!entry)
3737 goto out_unlock;
3738
3739 /* Skip bitmaps and if async, already trimmed entries */
3740 while (entry->bitmap ||
3741 (async && btrfs_free_space_trimmed(entry))) {
3742 node = rb_next(&entry->offset_index);
3743 if (!node)
3744 goto out_unlock;
3745 entry = rb_entry(node, struct btrfs_free_space,
3746 offset_index);
3747 }
3748
3749 if (entry->offset >= end)
3750 goto out_unlock;
3751
3752 extent_start = entry->offset;
3753 extent_bytes = entry->bytes;
3754 extent_trim_state = entry->trim_state;
3755 if (async) {
3756 start = entry->offset;
3757 bytes = entry->bytes;
3758 if (bytes < minlen) {
3759 spin_unlock(&ctl->tree_lock);
3760 mutex_unlock(&ctl->cache_writeout_mutex);
3761 goto next;
3762 }
3763 unlink_free_space(ctl, entry, true);
3764 /*
3765 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3766 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3767 * X when we come back around. So trim it now.
3768 */
3769 if (max_discard_size &&
3770 bytes >= (max_discard_size +
3771 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3772 bytes = max_discard_size;
3773 extent_bytes = max_discard_size;
3774 entry->offset += max_discard_size;
3775 entry->bytes -= max_discard_size;
3776 link_free_space(ctl, entry);
3777 } else {
3778 kmem_cache_free(btrfs_free_space_cachep, entry);
3779 }
3780 } else {
3781 start = max(start, extent_start);
3782 bytes = min(extent_start + extent_bytes, end) - start;
3783 if (bytes < minlen) {
3784 spin_unlock(&ctl->tree_lock);
3785 mutex_unlock(&ctl->cache_writeout_mutex);
3786 goto next;
3787 }
3788
3789 unlink_free_space(ctl, entry, true);
3790 kmem_cache_free(btrfs_free_space_cachep, entry);
3791 }
3792
3793 spin_unlock(&ctl->tree_lock);
3794 trim_entry.start = extent_start;
3795 trim_entry.bytes = extent_bytes;
3796 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3797 mutex_unlock(&ctl->cache_writeout_mutex);
3798
3799 ret = do_trimming(block_group, total_trimmed, start, bytes,
3800 extent_start, extent_bytes, extent_trim_state,
3801 &trim_entry);
3802 if (ret) {
3803 block_group->discard_cursor = start + bytes;
3804 break;
3805 }
3806 next:
3807 start += bytes;
3808 block_group->discard_cursor = start;
3809 if (async && *total_trimmed)
3810 break;
3811
3812 if (btrfs_trim_interrupted()) {
3813 ret = -ERESTARTSYS;
3814 break;
3815 }
3816
3817 cond_resched();
3818 }
3819
3820 return ret;
3821
3822 out_unlock:
3823 block_group->discard_cursor = btrfs_block_group_end(block_group);
3824 spin_unlock(&ctl->tree_lock);
3825 mutex_unlock(&ctl->cache_writeout_mutex);
3826
3827 return ret;
3828 }
3829
3830 /*
3831 * If we break out of trimming a bitmap prematurely, we should reset the
3832 * trimming bit. In a rather contrieved case, it's possible to race here so
3833 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3834 *
3835 * start = start of bitmap
3836 * end = near end of bitmap
3837 *
3838 * Thread 1: Thread 2:
3839 * trim_bitmaps(start)
3840 * trim_bitmaps(end)
3841 * end_trimming_bitmap()
3842 * reset_trimming_bitmap()
3843 */
reset_trimming_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)3844 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3845 {
3846 struct btrfs_free_space *entry;
3847
3848 spin_lock(&ctl->tree_lock);
3849 entry = tree_search_offset(ctl, offset, 1, 0);
3850 if (entry) {
3851 if (btrfs_free_space_trimmed(entry)) {
3852 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3853 entry->bitmap_extents;
3854 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3855 }
3856 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3857 }
3858
3859 spin_unlock(&ctl->tree_lock);
3860 }
3861
end_trimming_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * entry)3862 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3863 struct btrfs_free_space *entry)
3864 {
3865 if (btrfs_free_space_trimming_bitmap(entry)) {
3866 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3867 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3868 entry->bitmap_extents;
3869 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3870 }
3871 }
3872
3873 /*
3874 * If @async is set, then we will trim 1 region and return.
3875 */
trim_bitmaps(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)3876 static int trim_bitmaps(struct btrfs_block_group *block_group,
3877 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3878 u64 maxlen, bool async)
3879 {
3880 struct btrfs_discard_ctl *discard_ctl =
3881 &block_group->fs_info->discard_ctl;
3882 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3883 struct btrfs_free_space *entry;
3884 int ret = 0;
3885 int ret2;
3886 u64 bytes;
3887 u64 offset = offset_to_bitmap(ctl, start);
3888 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3889
3890 while (offset < end) {
3891 bool next_bitmap = false;
3892 struct btrfs_trim_range trim_entry;
3893
3894 mutex_lock(&ctl->cache_writeout_mutex);
3895 spin_lock(&ctl->tree_lock);
3896
3897 if (ctl->free_space < minlen) {
3898 block_group->discard_cursor =
3899 btrfs_block_group_end(block_group);
3900 spin_unlock(&ctl->tree_lock);
3901 mutex_unlock(&ctl->cache_writeout_mutex);
3902 break;
3903 }
3904
3905 entry = tree_search_offset(ctl, offset, 1, 0);
3906 /*
3907 * Bitmaps are marked trimmed lossily now to prevent constant
3908 * discarding of the same bitmap (the reason why we are bound
3909 * by the filters). So, retrim the block group bitmaps when we
3910 * are preparing to punt to the unused_bgs list. This uses
3911 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3912 * which is the only discard index which sets minlen to 0.
3913 */
3914 if (!entry || (async && minlen && start == offset &&
3915 btrfs_free_space_trimmed(entry))) {
3916 spin_unlock(&ctl->tree_lock);
3917 mutex_unlock(&ctl->cache_writeout_mutex);
3918 next_bitmap = true;
3919 goto next;
3920 }
3921
3922 /*
3923 * Async discard bitmap trimming begins at by setting the start
3924 * to be key.objectid and the offset_to_bitmap() aligns to the
3925 * start of the bitmap. This lets us know we are fully
3926 * scanning the bitmap rather than only some portion of it.
3927 */
3928 if (start == offset)
3929 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3930
3931 bytes = minlen;
3932 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3933 if (ret2 || start >= end) {
3934 /*
3935 * We lossily consider a bitmap trimmed if we only skip
3936 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3937 */
3938 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3939 end_trimming_bitmap(ctl, entry);
3940 else
3941 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3942 spin_unlock(&ctl->tree_lock);
3943 mutex_unlock(&ctl->cache_writeout_mutex);
3944 next_bitmap = true;
3945 goto next;
3946 }
3947
3948 /*
3949 * We already trimmed a region, but are using the locking above
3950 * to reset the trim_state.
3951 */
3952 if (async && *total_trimmed) {
3953 spin_unlock(&ctl->tree_lock);
3954 mutex_unlock(&ctl->cache_writeout_mutex);
3955 goto out;
3956 }
3957
3958 bytes = min(bytes, end - start);
3959 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3960 spin_unlock(&ctl->tree_lock);
3961 mutex_unlock(&ctl->cache_writeout_mutex);
3962 goto next;
3963 }
3964
3965 /*
3966 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3967 * If X < @minlen, we won't trim X when we come back around.
3968 * So trim it now. We differ here from trimming extents as we
3969 * don't keep individual state per bit.
3970 */
3971 if (async &&
3972 max_discard_size &&
3973 bytes > (max_discard_size + minlen))
3974 bytes = max_discard_size;
3975
3976 bitmap_clear_bits(ctl, entry, start, bytes, true);
3977 if (entry->bytes == 0)
3978 free_bitmap(ctl, entry);
3979
3980 spin_unlock(&ctl->tree_lock);
3981 trim_entry.start = start;
3982 trim_entry.bytes = bytes;
3983 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3984 mutex_unlock(&ctl->cache_writeout_mutex);
3985
3986 ret = do_trimming(block_group, total_trimmed, start, bytes,
3987 start, bytes, 0, &trim_entry);
3988 if (ret) {
3989 reset_trimming_bitmap(ctl, offset);
3990 block_group->discard_cursor =
3991 btrfs_block_group_end(block_group);
3992 break;
3993 }
3994 next:
3995 if (next_bitmap) {
3996 offset += BITS_PER_BITMAP * ctl->unit;
3997 start = offset;
3998 } else {
3999 start += bytes;
4000 }
4001 block_group->discard_cursor = start;
4002
4003 if (btrfs_trim_interrupted()) {
4004 if (start != offset)
4005 reset_trimming_bitmap(ctl, offset);
4006 ret = -ERESTARTSYS;
4007 break;
4008 }
4009
4010 cond_resched();
4011 }
4012
4013 if (offset >= end)
4014 block_group->discard_cursor = end;
4015
4016 out:
4017 return ret;
4018 }
4019
btrfs_trim_block_group(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)4020 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4021 u64 *trimmed, u64 start, u64 end, u64 minlen)
4022 {
4023 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4024 int ret;
4025 u64 rem = 0;
4026
4027 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4028
4029 *trimmed = 0;
4030
4031 spin_lock(&block_group->lock);
4032 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4033 spin_unlock(&block_group->lock);
4034 return 0;
4035 }
4036 btrfs_freeze_block_group(block_group);
4037 spin_unlock(&block_group->lock);
4038
4039 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4040 if (ret)
4041 goto out;
4042
4043 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4044 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4045 /* If we ended in the middle of a bitmap, reset the trimming flag */
4046 if (rem)
4047 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4048 out:
4049 btrfs_unfreeze_block_group(block_group);
4050 return ret;
4051 }
4052
btrfs_trim_block_group_extents(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,bool async)4053 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4054 u64 *trimmed, u64 start, u64 end, u64 minlen,
4055 bool async)
4056 {
4057 int ret;
4058
4059 *trimmed = 0;
4060
4061 spin_lock(&block_group->lock);
4062 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4063 spin_unlock(&block_group->lock);
4064 return 0;
4065 }
4066 btrfs_freeze_block_group(block_group);
4067 spin_unlock(&block_group->lock);
4068
4069 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4070 btrfs_unfreeze_block_group(block_group);
4071
4072 return ret;
4073 }
4074
btrfs_trim_block_group_bitmaps(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)4075 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4076 u64 *trimmed, u64 start, u64 end, u64 minlen,
4077 u64 maxlen, bool async)
4078 {
4079 int ret;
4080
4081 *trimmed = 0;
4082
4083 spin_lock(&block_group->lock);
4084 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4085 spin_unlock(&block_group->lock);
4086 return 0;
4087 }
4088 btrfs_freeze_block_group(block_group);
4089 spin_unlock(&block_group->lock);
4090
4091 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4092 async);
4093
4094 btrfs_unfreeze_block_group(block_group);
4095
4096 return ret;
4097 }
4098
btrfs_free_space_cache_v1_active(struct btrfs_fs_info * fs_info)4099 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4100 {
4101 return btrfs_super_cache_generation(fs_info->super_copy);
4102 }
4103
cleanup_free_space_cache_v1(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans)4104 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4105 struct btrfs_trans_handle *trans)
4106 {
4107 struct btrfs_block_group *block_group;
4108 struct rb_node *node;
4109 int ret = 0;
4110
4111 btrfs_info(fs_info, "cleaning free space cache v1");
4112
4113 node = rb_first_cached(&fs_info->block_group_cache_tree);
4114 while (node) {
4115 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4116 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4117 if (ret)
4118 goto out;
4119 node = rb_next(node);
4120 }
4121 out:
4122 return ret;
4123 }
4124
btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info * fs_info,bool active)4125 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4126 {
4127 struct btrfs_trans_handle *trans;
4128 int ret;
4129
4130 /*
4131 * update_super_roots will appropriately set or unset
4132 * super_copy->cache_generation based on SPACE_CACHE and
4133 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4134 * transaction commit whether we are enabling space cache v1 and don't
4135 * have any other work to do, or are disabling it and removing free
4136 * space inodes.
4137 */
4138 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4139 if (IS_ERR(trans))
4140 return PTR_ERR(trans);
4141
4142 if (!active) {
4143 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4144 ret = cleanup_free_space_cache_v1(fs_info, trans);
4145 if (ret) {
4146 btrfs_abort_transaction(trans, ret);
4147 btrfs_end_transaction(trans);
4148 goto out;
4149 }
4150 }
4151
4152 ret = btrfs_commit_transaction(trans);
4153 out:
4154 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4155
4156 return ret;
4157 }
4158
btrfs_free_space_init(void)4159 int __init btrfs_free_space_init(void)
4160 {
4161 btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4162 if (!btrfs_free_space_cachep)
4163 return -ENOMEM;
4164
4165 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4166 PAGE_SIZE, PAGE_SIZE,
4167 0, NULL);
4168 if (!btrfs_free_space_bitmap_cachep) {
4169 kmem_cache_destroy(btrfs_free_space_cachep);
4170 return -ENOMEM;
4171 }
4172
4173 return 0;
4174 }
4175
btrfs_free_space_exit(void)4176 void __cold btrfs_free_space_exit(void)
4177 {
4178 kmem_cache_destroy(btrfs_free_space_cachep);
4179 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4180 }
4181
4182 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4183 /*
4184 * Use this if you need to make a bitmap or extent entry specifically, it
4185 * doesn't do any of the merging that add_free_space does, this acts a lot like
4186 * how the free space cache loading stuff works, so you can get really weird
4187 * configurations.
4188 */
test_add_free_space_entry(struct btrfs_block_group * cache,u64 offset,u64 bytes,bool bitmap)4189 int test_add_free_space_entry(struct btrfs_block_group *cache,
4190 u64 offset, u64 bytes, bool bitmap)
4191 {
4192 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4193 struct btrfs_free_space *info = NULL, *bitmap_info;
4194 void *map = NULL;
4195 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4196 u64 bytes_added;
4197 int ret;
4198
4199 again:
4200 if (!info) {
4201 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4202 if (!info)
4203 return -ENOMEM;
4204 }
4205
4206 if (!bitmap) {
4207 spin_lock(&ctl->tree_lock);
4208 info->offset = offset;
4209 info->bytes = bytes;
4210 info->max_extent_size = 0;
4211 ret = link_free_space(ctl, info);
4212 spin_unlock(&ctl->tree_lock);
4213 if (ret)
4214 kmem_cache_free(btrfs_free_space_cachep, info);
4215 return ret;
4216 }
4217
4218 if (!map) {
4219 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4220 if (!map) {
4221 kmem_cache_free(btrfs_free_space_cachep, info);
4222 return -ENOMEM;
4223 }
4224 }
4225
4226 spin_lock(&ctl->tree_lock);
4227 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4228 1, 0);
4229 if (!bitmap_info) {
4230 info->bitmap = map;
4231 map = NULL;
4232 add_new_bitmap(ctl, info, offset);
4233 bitmap_info = info;
4234 info = NULL;
4235 }
4236
4237 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4238 trim_state);
4239
4240 bytes -= bytes_added;
4241 offset += bytes_added;
4242 spin_unlock(&ctl->tree_lock);
4243
4244 if (bytes)
4245 goto again;
4246
4247 if (info)
4248 kmem_cache_free(btrfs_free_space_cachep, info);
4249 if (map)
4250 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4251 return 0;
4252 }
4253
4254 /*
4255 * Checks to see if the given range is in the free space cache. This is really
4256 * just used to check the absence of space, so if there is free space in the
4257 * range at all we will return 1.
4258 */
test_check_exists(struct btrfs_block_group * cache,u64 offset,u64 bytes)4259 int test_check_exists(struct btrfs_block_group *cache,
4260 u64 offset, u64 bytes)
4261 {
4262 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4263 struct btrfs_free_space *info;
4264 int ret = 0;
4265
4266 spin_lock(&ctl->tree_lock);
4267 info = tree_search_offset(ctl, offset, 0, 0);
4268 if (!info) {
4269 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4270 1, 0);
4271 if (!info)
4272 goto out;
4273 }
4274
4275 have_info:
4276 if (info->bitmap) {
4277 u64 bit_off, bit_bytes;
4278 struct rb_node *n;
4279 struct btrfs_free_space *tmp;
4280
4281 bit_off = offset;
4282 bit_bytes = ctl->unit;
4283 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4284 if (!ret) {
4285 if (bit_off == offset) {
4286 ret = 1;
4287 goto out;
4288 } else if (bit_off > offset &&
4289 offset + bytes > bit_off) {
4290 ret = 1;
4291 goto out;
4292 }
4293 }
4294
4295 n = rb_prev(&info->offset_index);
4296 while (n) {
4297 tmp = rb_entry(n, struct btrfs_free_space,
4298 offset_index);
4299 if (tmp->offset + tmp->bytes < offset)
4300 break;
4301 if (offset + bytes < tmp->offset) {
4302 n = rb_prev(&tmp->offset_index);
4303 continue;
4304 }
4305 info = tmp;
4306 goto have_info;
4307 }
4308
4309 n = rb_next(&info->offset_index);
4310 while (n) {
4311 tmp = rb_entry(n, struct btrfs_free_space,
4312 offset_index);
4313 if (offset + bytes < tmp->offset)
4314 break;
4315 if (tmp->offset + tmp->bytes < offset) {
4316 n = rb_next(&tmp->offset_index);
4317 continue;
4318 }
4319 info = tmp;
4320 goto have_info;
4321 }
4322
4323 ret = 0;
4324 goto out;
4325 }
4326
4327 if (info->offset == offset) {
4328 ret = 1;
4329 goto out;
4330 }
4331
4332 if (offset > info->offset && offset < info->offset + info->bytes)
4333 ret = 1;
4334 out:
4335 spin_unlock(&ctl->tree_lock);
4336 return ret;
4337 }
4338 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4339