xref: /linux/fs/btrfs/free-space-cache.c (revision cff4fa8415a3224a5abdd2b1dd7f431e4ea49366)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include "ctree.h"
24 #include "free-space-cache.h"
25 #include "transaction.h"
26 #include "disk-io.h"
27 #include "extent_io.h"
28 #include "inode-map.h"
29 
30 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
31 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
32 
33 static int link_free_space(struct btrfs_free_space_ctl *ctl,
34 			   struct btrfs_free_space *info);
35 
36 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
37 					       struct btrfs_path *path,
38 					       u64 offset)
39 {
40 	struct btrfs_key key;
41 	struct btrfs_key location;
42 	struct btrfs_disk_key disk_key;
43 	struct btrfs_free_space_header *header;
44 	struct extent_buffer *leaf;
45 	struct inode *inode = NULL;
46 	int ret;
47 
48 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
49 	key.offset = offset;
50 	key.type = 0;
51 
52 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
53 	if (ret < 0)
54 		return ERR_PTR(ret);
55 	if (ret > 0) {
56 		btrfs_release_path(path);
57 		return ERR_PTR(-ENOENT);
58 	}
59 
60 	leaf = path->nodes[0];
61 	header = btrfs_item_ptr(leaf, path->slots[0],
62 				struct btrfs_free_space_header);
63 	btrfs_free_space_key(leaf, header, &disk_key);
64 	btrfs_disk_key_to_cpu(&location, &disk_key);
65 	btrfs_release_path(path);
66 
67 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
68 	if (!inode)
69 		return ERR_PTR(-ENOENT);
70 	if (IS_ERR(inode))
71 		return inode;
72 	if (is_bad_inode(inode)) {
73 		iput(inode);
74 		return ERR_PTR(-ENOENT);
75 	}
76 
77 	inode->i_mapping->flags &= ~__GFP_FS;
78 
79 	return inode;
80 }
81 
82 struct inode *lookup_free_space_inode(struct btrfs_root *root,
83 				      struct btrfs_block_group_cache
84 				      *block_group, struct btrfs_path *path)
85 {
86 	struct inode *inode = NULL;
87 
88 	spin_lock(&block_group->lock);
89 	if (block_group->inode)
90 		inode = igrab(block_group->inode);
91 	spin_unlock(&block_group->lock);
92 	if (inode)
93 		return inode;
94 
95 	inode = __lookup_free_space_inode(root, path,
96 					  block_group->key.objectid);
97 	if (IS_ERR(inode))
98 		return inode;
99 
100 	spin_lock(&block_group->lock);
101 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) {
102 		printk(KERN_INFO "Old style space inode found, converting.\n");
103 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NODATASUM;
104 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
105 	}
106 
107 	if (!btrfs_fs_closing(root->fs_info)) {
108 		block_group->inode = igrab(inode);
109 		block_group->iref = 1;
110 	}
111 	spin_unlock(&block_group->lock);
112 
113 	return inode;
114 }
115 
116 int __create_free_space_inode(struct btrfs_root *root,
117 			      struct btrfs_trans_handle *trans,
118 			      struct btrfs_path *path, u64 ino, u64 offset)
119 {
120 	struct btrfs_key key;
121 	struct btrfs_disk_key disk_key;
122 	struct btrfs_free_space_header *header;
123 	struct btrfs_inode_item *inode_item;
124 	struct extent_buffer *leaf;
125 	int ret;
126 
127 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
128 	if (ret)
129 		return ret;
130 
131 	leaf = path->nodes[0];
132 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
133 				    struct btrfs_inode_item);
134 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
135 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
136 			     sizeof(*inode_item));
137 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
138 	btrfs_set_inode_size(leaf, inode_item, 0);
139 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
140 	btrfs_set_inode_uid(leaf, inode_item, 0);
141 	btrfs_set_inode_gid(leaf, inode_item, 0);
142 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
143 	btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
144 			      BTRFS_INODE_PREALLOC);
145 	btrfs_set_inode_nlink(leaf, inode_item, 1);
146 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
147 	btrfs_set_inode_block_group(leaf, inode_item, offset);
148 	btrfs_mark_buffer_dirty(leaf);
149 	btrfs_release_path(path);
150 
151 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
152 	key.offset = offset;
153 	key.type = 0;
154 
155 	ret = btrfs_insert_empty_item(trans, root, path, &key,
156 				      sizeof(struct btrfs_free_space_header));
157 	if (ret < 0) {
158 		btrfs_release_path(path);
159 		return ret;
160 	}
161 	leaf = path->nodes[0];
162 	header = btrfs_item_ptr(leaf, path->slots[0],
163 				struct btrfs_free_space_header);
164 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
165 	btrfs_set_free_space_key(leaf, header, &disk_key);
166 	btrfs_mark_buffer_dirty(leaf);
167 	btrfs_release_path(path);
168 
169 	return 0;
170 }
171 
172 int create_free_space_inode(struct btrfs_root *root,
173 			    struct btrfs_trans_handle *trans,
174 			    struct btrfs_block_group_cache *block_group,
175 			    struct btrfs_path *path)
176 {
177 	int ret;
178 	u64 ino;
179 
180 	ret = btrfs_find_free_objectid(root, &ino);
181 	if (ret < 0)
182 		return ret;
183 
184 	return __create_free_space_inode(root, trans, path, ino,
185 					 block_group->key.objectid);
186 }
187 
188 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
189 				    struct btrfs_trans_handle *trans,
190 				    struct btrfs_path *path,
191 				    struct inode *inode)
192 {
193 	struct btrfs_block_rsv *rsv;
194 	loff_t oldsize;
195 	int ret = 0;
196 
197 	rsv = trans->block_rsv;
198 	trans->block_rsv = root->orphan_block_rsv;
199 	ret = btrfs_block_rsv_check(trans, root,
200 				    root->orphan_block_rsv,
201 				    0, 5);
202 	if (ret)
203 		return ret;
204 
205 	oldsize = i_size_read(inode);
206 	btrfs_i_size_write(inode, 0);
207 	truncate_pagecache(inode, oldsize, 0);
208 
209 	/*
210 	 * We don't need an orphan item because truncating the free space cache
211 	 * will never be split across transactions.
212 	 */
213 	ret = btrfs_truncate_inode_items(trans, root, inode,
214 					 0, BTRFS_EXTENT_DATA_KEY);
215 
216 	trans->block_rsv = rsv;
217 	if (ret) {
218 		WARN_ON(1);
219 		return ret;
220 	}
221 
222 	ret = btrfs_update_inode(trans, root, inode);
223 	return ret;
224 }
225 
226 static int readahead_cache(struct inode *inode)
227 {
228 	struct file_ra_state *ra;
229 	unsigned long last_index;
230 
231 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
232 	if (!ra)
233 		return -ENOMEM;
234 
235 	file_ra_state_init(ra, inode->i_mapping);
236 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
237 
238 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
239 
240 	kfree(ra);
241 
242 	return 0;
243 }
244 
245 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
246 			    struct btrfs_free_space_ctl *ctl,
247 			    struct btrfs_path *path, u64 offset)
248 {
249 	struct btrfs_free_space_header *header;
250 	struct extent_buffer *leaf;
251 	struct page *page;
252 	struct btrfs_key key;
253 	struct list_head bitmaps;
254 	u64 num_entries;
255 	u64 num_bitmaps;
256 	u64 generation;
257 	pgoff_t index = 0;
258 	int ret = 0;
259 
260 	INIT_LIST_HEAD(&bitmaps);
261 
262 	/* Nothing in the space cache, goodbye */
263 	if (!i_size_read(inode))
264 		goto out;
265 
266 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
267 	key.offset = offset;
268 	key.type = 0;
269 
270 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
271 	if (ret < 0)
272 		goto out;
273 	else if (ret > 0) {
274 		btrfs_release_path(path);
275 		ret = 0;
276 		goto out;
277 	}
278 
279 	ret = -1;
280 
281 	leaf = path->nodes[0];
282 	header = btrfs_item_ptr(leaf, path->slots[0],
283 				struct btrfs_free_space_header);
284 	num_entries = btrfs_free_space_entries(leaf, header);
285 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
286 	generation = btrfs_free_space_generation(leaf, header);
287 	btrfs_release_path(path);
288 
289 	if (BTRFS_I(inode)->generation != generation) {
290 		printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
291 		       " not match free space cache generation (%llu)\n",
292 		       (unsigned long long)BTRFS_I(inode)->generation,
293 		       (unsigned long long)generation);
294 		goto out;
295 	}
296 
297 	if (!num_entries)
298 		goto out;
299 
300 	ret = readahead_cache(inode);
301 	if (ret)
302 		goto out;
303 
304 	while (1) {
305 		struct btrfs_free_space_entry *entry;
306 		struct btrfs_free_space *e;
307 		void *addr;
308 		unsigned long offset = 0;
309 		int need_loop = 0;
310 
311 		if (!num_entries && !num_bitmaps)
312 			break;
313 
314 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
315 		if (!page)
316 			goto free_cache;
317 
318 		if (!PageUptodate(page)) {
319 			btrfs_readpage(NULL, page);
320 			lock_page(page);
321 			if (!PageUptodate(page)) {
322 				unlock_page(page);
323 				page_cache_release(page);
324 				printk(KERN_ERR "btrfs: error reading free "
325 				       "space cache\n");
326 				goto free_cache;
327 			}
328 		}
329 		addr = kmap(page);
330 
331 		if (index == 0) {
332 			u64 *gen;
333 
334 			/*
335 			 * We put a bogus crc in the front of the first page in
336 			 * case old kernels try to mount a fs with the new
337 			 * format to make sure they discard the cache.
338 			 */
339 			addr += sizeof(u64);
340 			offset += sizeof(u64);
341 
342 			gen = addr;
343 			if (*gen != BTRFS_I(inode)->generation) {
344 				printk(KERN_ERR "btrfs: space cache generation"
345 				       " (%llu) does not match inode (%llu)\n",
346 				       (unsigned long long)*gen,
347 				       (unsigned long long)
348 				       BTRFS_I(inode)->generation);
349 				kunmap(page);
350 				unlock_page(page);
351 				page_cache_release(page);
352 				goto free_cache;
353 			}
354 			addr += sizeof(u64);
355 			offset += sizeof(u64);
356 		}
357 		entry = addr;
358 
359 		while (1) {
360 			if (!num_entries)
361 				break;
362 
363 			need_loop = 1;
364 			e = kmem_cache_zalloc(btrfs_free_space_cachep,
365 					      GFP_NOFS);
366 			if (!e) {
367 				kunmap(page);
368 				unlock_page(page);
369 				page_cache_release(page);
370 				goto free_cache;
371 			}
372 
373 			e->offset = le64_to_cpu(entry->offset);
374 			e->bytes = le64_to_cpu(entry->bytes);
375 			if (!e->bytes) {
376 				kunmap(page);
377 				kmem_cache_free(btrfs_free_space_cachep, e);
378 				unlock_page(page);
379 				page_cache_release(page);
380 				goto free_cache;
381 			}
382 
383 			if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
384 				spin_lock(&ctl->tree_lock);
385 				ret = link_free_space(ctl, e);
386 				spin_unlock(&ctl->tree_lock);
387 				if (ret) {
388 					printk(KERN_ERR "Duplicate entries in "
389 					       "free space cache, dumping\n");
390 					kunmap(page);
391 					unlock_page(page);
392 					page_cache_release(page);
393 					goto free_cache;
394 				}
395 			} else {
396 				e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
397 				if (!e->bitmap) {
398 					kunmap(page);
399 					kmem_cache_free(
400 						btrfs_free_space_cachep, e);
401 					unlock_page(page);
402 					page_cache_release(page);
403 					goto free_cache;
404 				}
405 				spin_lock(&ctl->tree_lock);
406 				ret = link_free_space(ctl, e);
407 				ctl->total_bitmaps++;
408 				ctl->op->recalc_thresholds(ctl);
409 				spin_unlock(&ctl->tree_lock);
410 				if (ret) {
411 					printk(KERN_ERR "Duplicate entries in "
412 					       "free space cache, dumping\n");
413 					kunmap(page);
414 					unlock_page(page);
415 					page_cache_release(page);
416 					goto free_cache;
417 				}
418 				list_add_tail(&e->list, &bitmaps);
419 			}
420 
421 			num_entries--;
422 			offset += sizeof(struct btrfs_free_space_entry);
423 			if (offset + sizeof(struct btrfs_free_space_entry) >=
424 			    PAGE_CACHE_SIZE)
425 				break;
426 			entry++;
427 		}
428 
429 		/*
430 		 * We read an entry out of this page, we need to move on to the
431 		 * next page.
432 		 */
433 		if (need_loop) {
434 			kunmap(page);
435 			goto next;
436 		}
437 
438 		/*
439 		 * We add the bitmaps at the end of the entries in order that
440 		 * the bitmap entries are added to the cache.
441 		 */
442 		e = list_entry(bitmaps.next, struct btrfs_free_space, list);
443 		list_del_init(&e->list);
444 		memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
445 		kunmap(page);
446 		num_bitmaps--;
447 next:
448 		unlock_page(page);
449 		page_cache_release(page);
450 		index++;
451 	}
452 
453 	ret = 1;
454 out:
455 	return ret;
456 free_cache:
457 	__btrfs_remove_free_space_cache(ctl);
458 	goto out;
459 }
460 
461 int load_free_space_cache(struct btrfs_fs_info *fs_info,
462 			  struct btrfs_block_group_cache *block_group)
463 {
464 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
465 	struct btrfs_root *root = fs_info->tree_root;
466 	struct inode *inode;
467 	struct btrfs_path *path;
468 	int ret;
469 	bool matched;
470 	u64 used = btrfs_block_group_used(&block_group->item);
471 
472 	/*
473 	 * If we're unmounting then just return, since this does a search on the
474 	 * normal root and not the commit root and we could deadlock.
475 	 */
476 	if (btrfs_fs_closing(fs_info))
477 		return 0;
478 
479 	/*
480 	 * If this block group has been marked to be cleared for one reason or
481 	 * another then we can't trust the on disk cache, so just return.
482 	 */
483 	spin_lock(&block_group->lock);
484 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
485 		spin_unlock(&block_group->lock);
486 		return 0;
487 	}
488 	spin_unlock(&block_group->lock);
489 
490 	path = btrfs_alloc_path();
491 	if (!path)
492 		return 0;
493 
494 	inode = lookup_free_space_inode(root, block_group, path);
495 	if (IS_ERR(inode)) {
496 		btrfs_free_path(path);
497 		return 0;
498 	}
499 
500 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
501 				      path, block_group->key.objectid);
502 	btrfs_free_path(path);
503 	if (ret <= 0)
504 		goto out;
505 
506 	spin_lock(&ctl->tree_lock);
507 	matched = (ctl->free_space == (block_group->key.offset - used -
508 				       block_group->bytes_super));
509 	spin_unlock(&ctl->tree_lock);
510 
511 	if (!matched) {
512 		__btrfs_remove_free_space_cache(ctl);
513 		printk(KERN_ERR "block group %llu has an wrong amount of free "
514 		       "space\n", block_group->key.objectid);
515 		ret = -1;
516 	}
517 out:
518 	if (ret < 0) {
519 		/* This cache is bogus, make sure it gets cleared */
520 		spin_lock(&block_group->lock);
521 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
522 		spin_unlock(&block_group->lock);
523 		ret = 0;
524 
525 		printk(KERN_ERR "btrfs: failed to load free space cache "
526 		       "for block group %llu\n", block_group->key.objectid);
527 	}
528 
529 	iput(inode);
530 	return ret;
531 }
532 
533 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
534 			    struct btrfs_free_space_ctl *ctl,
535 			    struct btrfs_block_group_cache *block_group,
536 			    struct btrfs_trans_handle *trans,
537 			    struct btrfs_path *path, u64 offset)
538 {
539 	struct btrfs_free_space_header *header;
540 	struct extent_buffer *leaf;
541 	struct rb_node *node;
542 	struct list_head *pos, *n;
543 	struct page **pages;
544 	struct page *page;
545 	struct extent_state *cached_state = NULL;
546 	struct btrfs_free_cluster *cluster = NULL;
547 	struct extent_io_tree *unpin = NULL;
548 	struct list_head bitmap_list;
549 	struct btrfs_key key;
550 	u64 start, end, len;
551 	u64 bytes = 0;
552 	u32 crc = ~(u32)0;
553 	int index = 0, num_pages = 0;
554 	int entries = 0;
555 	int bitmaps = 0;
556 	int ret = -1;
557 	bool next_page = false;
558 	bool out_of_space = false;
559 
560 	INIT_LIST_HEAD(&bitmap_list);
561 
562 	node = rb_first(&ctl->free_space_offset);
563 	if (!node)
564 		return 0;
565 
566 	if (!i_size_read(inode))
567 		return -1;
568 
569 	num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
570 		PAGE_CACHE_SHIFT;
571 
572 	filemap_write_and_wait(inode->i_mapping);
573 	btrfs_wait_ordered_range(inode, inode->i_size &
574 				 ~(root->sectorsize - 1), (u64)-1);
575 
576 	pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
577 	if (!pages)
578 		return -1;
579 
580 	/* Get the cluster for this block_group if it exists */
581 	if (block_group && !list_empty(&block_group->cluster_list))
582 		cluster = list_entry(block_group->cluster_list.next,
583 				     struct btrfs_free_cluster,
584 				     block_group_list);
585 
586 	/*
587 	 * We shouldn't have switched the pinned extents yet so this is the
588 	 * right one
589 	 */
590 	unpin = root->fs_info->pinned_extents;
591 
592 	/*
593 	 * Lock all pages first so we can lock the extent safely.
594 	 *
595 	 * NOTE: Because we hold the ref the entire time we're going to write to
596 	 * the page find_get_page should never fail, so we don't do a check
597 	 * after find_get_page at this point.  Just putting this here so people
598 	 * know and don't freak out.
599 	 */
600 	while (index < num_pages) {
601 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
602 		if (!page) {
603 			int i;
604 
605 			for (i = 0; i < num_pages; i++) {
606 				unlock_page(pages[i]);
607 				page_cache_release(pages[i]);
608 			}
609 			goto out;
610 		}
611 		pages[index] = page;
612 		index++;
613 	}
614 
615 	index = 0;
616 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
617 			 0, &cached_state, GFP_NOFS);
618 
619 	/*
620 	 * When searching for pinned extents, we need to start at our start
621 	 * offset.
622 	 */
623 	if (block_group)
624 		start = block_group->key.objectid;
625 
626 	/* Write out the extent entries */
627 	do {
628 		struct btrfs_free_space_entry *entry;
629 		void *addr, *orig;
630 		unsigned long offset = 0;
631 
632 		next_page = false;
633 
634 		if (index >= num_pages) {
635 			out_of_space = true;
636 			break;
637 		}
638 
639 		page = pages[index];
640 
641 		orig = addr = kmap(page);
642 		if (index == 0) {
643 			u64 *gen;
644 
645 			/*
646 			 * We're going to put in a bogus crc for this page to
647 			 * make sure that old kernels who aren't aware of this
648 			 * format will be sure to discard the cache.
649 			 */
650 			addr += sizeof(u64);
651 			offset += sizeof(u64);
652 
653 			gen = addr;
654 			*gen = trans->transid;
655 			addr += sizeof(u64);
656 			offset += sizeof(u64);
657 		}
658 		entry = addr;
659 
660 		memset(addr, 0, PAGE_CACHE_SIZE - offset);
661 		while (node && !next_page) {
662 			struct btrfs_free_space *e;
663 
664 			e = rb_entry(node, struct btrfs_free_space, offset_index);
665 			entries++;
666 
667 			entry->offset = cpu_to_le64(e->offset);
668 			entry->bytes = cpu_to_le64(e->bytes);
669 			if (e->bitmap) {
670 				entry->type = BTRFS_FREE_SPACE_BITMAP;
671 				list_add_tail(&e->list, &bitmap_list);
672 				bitmaps++;
673 			} else {
674 				entry->type = BTRFS_FREE_SPACE_EXTENT;
675 			}
676 			node = rb_next(node);
677 			if (!node && cluster) {
678 				node = rb_first(&cluster->root);
679 				cluster = NULL;
680 			}
681 			offset += sizeof(struct btrfs_free_space_entry);
682 			if (offset + sizeof(struct btrfs_free_space_entry) >=
683 			    PAGE_CACHE_SIZE)
684 				next_page = true;
685 			entry++;
686 		}
687 
688 		/*
689 		 * We want to add any pinned extents to our free space cache
690 		 * so we don't leak the space
691 		 */
692 		while (block_group && !next_page &&
693 		       (start < block_group->key.objectid +
694 			block_group->key.offset)) {
695 			ret = find_first_extent_bit(unpin, start, &start, &end,
696 						    EXTENT_DIRTY);
697 			if (ret) {
698 				ret = 0;
699 				break;
700 			}
701 
702 			/* This pinned extent is out of our range */
703 			if (start >= block_group->key.objectid +
704 			    block_group->key.offset)
705 				break;
706 
707 			len = block_group->key.objectid +
708 				block_group->key.offset - start;
709 			len = min(len, end + 1 - start);
710 
711 			entries++;
712 			entry->offset = cpu_to_le64(start);
713 			entry->bytes = cpu_to_le64(len);
714 			entry->type = BTRFS_FREE_SPACE_EXTENT;
715 
716 			start = end + 1;
717 			offset += sizeof(struct btrfs_free_space_entry);
718 			if (offset + sizeof(struct btrfs_free_space_entry) >=
719 			    PAGE_CACHE_SIZE)
720 				next_page = true;
721 			entry++;
722 		}
723 
724 		/* Generate bogus crc value */
725 		if (index == 0) {
726 			u32 *tmp;
727 			crc = btrfs_csum_data(root, orig + sizeof(u64), crc,
728 					      PAGE_CACHE_SIZE - sizeof(u64));
729 			btrfs_csum_final(crc, (char *)&crc);
730 			crc++;
731 			tmp = orig;
732 			*tmp = crc;
733 		}
734 
735 		kunmap(page);
736 
737 		bytes += PAGE_CACHE_SIZE;
738 
739 		index++;
740 	} while (node || next_page);
741 
742 	/* Write out the bitmaps */
743 	list_for_each_safe(pos, n, &bitmap_list) {
744 		void *addr;
745 		struct btrfs_free_space *entry =
746 			list_entry(pos, struct btrfs_free_space, list);
747 
748 		if (index >= num_pages) {
749 			out_of_space = true;
750 			break;
751 		}
752 		page = pages[index];
753 
754 		addr = kmap(page);
755 		memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
756 		kunmap(page);
757 		bytes += PAGE_CACHE_SIZE;
758 
759 		list_del_init(&entry->list);
760 		index++;
761 	}
762 
763 	if (out_of_space) {
764 		btrfs_drop_pages(pages, num_pages);
765 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
766 				     i_size_read(inode) - 1, &cached_state,
767 				     GFP_NOFS);
768 		ret = 0;
769 		goto out;
770 	}
771 
772 	/* Zero out the rest of the pages just to make sure */
773 	while (index < num_pages) {
774 		void *addr;
775 
776 		page = pages[index];
777 		addr = kmap(page);
778 		memset(addr, 0, PAGE_CACHE_SIZE);
779 		kunmap(page);
780 		bytes += PAGE_CACHE_SIZE;
781 		index++;
782 	}
783 
784 	ret = btrfs_dirty_pages(root, inode, pages, num_pages, 0,
785 					    bytes, &cached_state);
786 	btrfs_drop_pages(pages, num_pages);
787 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
788 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
789 
790 	if (ret) {
791 		ret = 0;
792 		goto out;
793 	}
794 
795 	BTRFS_I(inode)->generation = trans->transid;
796 
797 	filemap_write_and_wait(inode->i_mapping);
798 
799 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
800 	key.offset = offset;
801 	key.type = 0;
802 
803 	ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
804 	if (ret < 0) {
805 		ret = -1;
806 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
807 				 EXTENT_DIRTY | EXTENT_DELALLOC |
808 				 EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
809 		goto out;
810 	}
811 	leaf = path->nodes[0];
812 	if (ret > 0) {
813 		struct btrfs_key found_key;
814 		BUG_ON(!path->slots[0]);
815 		path->slots[0]--;
816 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
817 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
818 		    found_key.offset != offset) {
819 			ret = -1;
820 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
821 					 EXTENT_DIRTY | EXTENT_DELALLOC |
822 					 EXTENT_DO_ACCOUNTING, 0, 0, NULL,
823 					 GFP_NOFS);
824 			btrfs_release_path(path);
825 			goto out;
826 		}
827 	}
828 	header = btrfs_item_ptr(leaf, path->slots[0],
829 				struct btrfs_free_space_header);
830 	btrfs_set_free_space_entries(leaf, header, entries);
831 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
832 	btrfs_set_free_space_generation(leaf, header, trans->transid);
833 	btrfs_mark_buffer_dirty(leaf);
834 	btrfs_release_path(path);
835 
836 	ret = 1;
837 
838 out:
839 	kfree(pages);
840 	if (ret != 1) {
841 		invalidate_inode_pages2_range(inode->i_mapping, 0, index);
842 		BTRFS_I(inode)->generation = 0;
843 	}
844 	btrfs_update_inode(trans, root, inode);
845 	return ret;
846 }
847 
848 int btrfs_write_out_cache(struct btrfs_root *root,
849 			  struct btrfs_trans_handle *trans,
850 			  struct btrfs_block_group_cache *block_group,
851 			  struct btrfs_path *path)
852 {
853 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
854 	struct inode *inode;
855 	int ret = 0;
856 
857 	root = root->fs_info->tree_root;
858 
859 	spin_lock(&block_group->lock);
860 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
861 		spin_unlock(&block_group->lock);
862 		return 0;
863 	}
864 	spin_unlock(&block_group->lock);
865 
866 	inode = lookup_free_space_inode(root, block_group, path);
867 	if (IS_ERR(inode))
868 		return 0;
869 
870 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
871 				      path, block_group->key.objectid);
872 	if (ret < 0) {
873 		spin_lock(&block_group->lock);
874 		block_group->disk_cache_state = BTRFS_DC_ERROR;
875 		spin_unlock(&block_group->lock);
876 		ret = 0;
877 
878 		printk(KERN_ERR "btrfs: failed to write free space cace "
879 		       "for block group %llu\n", block_group->key.objectid);
880 	}
881 
882 	iput(inode);
883 	return ret;
884 }
885 
886 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
887 					  u64 offset)
888 {
889 	BUG_ON(offset < bitmap_start);
890 	offset -= bitmap_start;
891 	return (unsigned long)(div_u64(offset, unit));
892 }
893 
894 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
895 {
896 	return (unsigned long)(div_u64(bytes, unit));
897 }
898 
899 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
900 				   u64 offset)
901 {
902 	u64 bitmap_start;
903 	u64 bytes_per_bitmap;
904 
905 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
906 	bitmap_start = offset - ctl->start;
907 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
908 	bitmap_start *= bytes_per_bitmap;
909 	bitmap_start += ctl->start;
910 
911 	return bitmap_start;
912 }
913 
914 static int tree_insert_offset(struct rb_root *root, u64 offset,
915 			      struct rb_node *node, int bitmap)
916 {
917 	struct rb_node **p = &root->rb_node;
918 	struct rb_node *parent = NULL;
919 	struct btrfs_free_space *info;
920 
921 	while (*p) {
922 		parent = *p;
923 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
924 
925 		if (offset < info->offset) {
926 			p = &(*p)->rb_left;
927 		} else if (offset > info->offset) {
928 			p = &(*p)->rb_right;
929 		} else {
930 			/*
931 			 * we could have a bitmap entry and an extent entry
932 			 * share the same offset.  If this is the case, we want
933 			 * the extent entry to always be found first if we do a
934 			 * linear search through the tree, since we want to have
935 			 * the quickest allocation time, and allocating from an
936 			 * extent is faster than allocating from a bitmap.  So
937 			 * if we're inserting a bitmap and we find an entry at
938 			 * this offset, we want to go right, or after this entry
939 			 * logically.  If we are inserting an extent and we've
940 			 * found a bitmap, we want to go left, or before
941 			 * logically.
942 			 */
943 			if (bitmap) {
944 				if (info->bitmap) {
945 					WARN_ON_ONCE(1);
946 					return -EEXIST;
947 				}
948 				p = &(*p)->rb_right;
949 			} else {
950 				if (!info->bitmap) {
951 					WARN_ON_ONCE(1);
952 					return -EEXIST;
953 				}
954 				p = &(*p)->rb_left;
955 			}
956 		}
957 	}
958 
959 	rb_link_node(node, parent, p);
960 	rb_insert_color(node, root);
961 
962 	return 0;
963 }
964 
965 /*
966  * searches the tree for the given offset.
967  *
968  * fuzzy - If this is set, then we are trying to make an allocation, and we just
969  * want a section that has at least bytes size and comes at or after the given
970  * offset.
971  */
972 static struct btrfs_free_space *
973 tree_search_offset(struct btrfs_free_space_ctl *ctl,
974 		   u64 offset, int bitmap_only, int fuzzy)
975 {
976 	struct rb_node *n = ctl->free_space_offset.rb_node;
977 	struct btrfs_free_space *entry, *prev = NULL;
978 
979 	/* find entry that is closest to the 'offset' */
980 	while (1) {
981 		if (!n) {
982 			entry = NULL;
983 			break;
984 		}
985 
986 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
987 		prev = entry;
988 
989 		if (offset < entry->offset)
990 			n = n->rb_left;
991 		else if (offset > entry->offset)
992 			n = n->rb_right;
993 		else
994 			break;
995 	}
996 
997 	if (bitmap_only) {
998 		if (!entry)
999 			return NULL;
1000 		if (entry->bitmap)
1001 			return entry;
1002 
1003 		/*
1004 		 * bitmap entry and extent entry may share same offset,
1005 		 * in that case, bitmap entry comes after extent entry.
1006 		 */
1007 		n = rb_next(n);
1008 		if (!n)
1009 			return NULL;
1010 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1011 		if (entry->offset != offset)
1012 			return NULL;
1013 
1014 		WARN_ON(!entry->bitmap);
1015 		return entry;
1016 	} else if (entry) {
1017 		if (entry->bitmap) {
1018 			/*
1019 			 * if previous extent entry covers the offset,
1020 			 * we should return it instead of the bitmap entry
1021 			 */
1022 			n = &entry->offset_index;
1023 			while (1) {
1024 				n = rb_prev(n);
1025 				if (!n)
1026 					break;
1027 				prev = rb_entry(n, struct btrfs_free_space,
1028 						offset_index);
1029 				if (!prev->bitmap) {
1030 					if (prev->offset + prev->bytes > offset)
1031 						entry = prev;
1032 					break;
1033 				}
1034 			}
1035 		}
1036 		return entry;
1037 	}
1038 
1039 	if (!prev)
1040 		return NULL;
1041 
1042 	/* find last entry before the 'offset' */
1043 	entry = prev;
1044 	if (entry->offset > offset) {
1045 		n = rb_prev(&entry->offset_index);
1046 		if (n) {
1047 			entry = rb_entry(n, struct btrfs_free_space,
1048 					offset_index);
1049 			BUG_ON(entry->offset > offset);
1050 		} else {
1051 			if (fuzzy)
1052 				return entry;
1053 			else
1054 				return NULL;
1055 		}
1056 	}
1057 
1058 	if (entry->bitmap) {
1059 		n = &entry->offset_index;
1060 		while (1) {
1061 			n = rb_prev(n);
1062 			if (!n)
1063 				break;
1064 			prev = rb_entry(n, struct btrfs_free_space,
1065 					offset_index);
1066 			if (!prev->bitmap) {
1067 				if (prev->offset + prev->bytes > offset)
1068 					return prev;
1069 				break;
1070 			}
1071 		}
1072 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1073 			return entry;
1074 	} else if (entry->offset + entry->bytes > offset)
1075 		return entry;
1076 
1077 	if (!fuzzy)
1078 		return NULL;
1079 
1080 	while (1) {
1081 		if (entry->bitmap) {
1082 			if (entry->offset + BITS_PER_BITMAP *
1083 			    ctl->unit > offset)
1084 				break;
1085 		} else {
1086 			if (entry->offset + entry->bytes > offset)
1087 				break;
1088 		}
1089 
1090 		n = rb_next(&entry->offset_index);
1091 		if (!n)
1092 			return NULL;
1093 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1094 	}
1095 	return entry;
1096 }
1097 
1098 static inline void
1099 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1100 		    struct btrfs_free_space *info)
1101 {
1102 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1103 	ctl->free_extents--;
1104 }
1105 
1106 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1107 			      struct btrfs_free_space *info)
1108 {
1109 	__unlink_free_space(ctl, info);
1110 	ctl->free_space -= info->bytes;
1111 }
1112 
1113 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1114 			   struct btrfs_free_space *info)
1115 {
1116 	int ret = 0;
1117 
1118 	BUG_ON(!info->bitmap && !info->bytes);
1119 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1120 				 &info->offset_index, (info->bitmap != NULL));
1121 	if (ret)
1122 		return ret;
1123 
1124 	ctl->free_space += info->bytes;
1125 	ctl->free_extents++;
1126 	return ret;
1127 }
1128 
1129 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1130 {
1131 	struct btrfs_block_group_cache *block_group = ctl->private;
1132 	u64 max_bytes;
1133 	u64 bitmap_bytes;
1134 	u64 extent_bytes;
1135 	u64 size = block_group->key.offset;
1136 	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1137 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1138 
1139 	BUG_ON(ctl->total_bitmaps > max_bitmaps);
1140 
1141 	/*
1142 	 * The goal is to keep the total amount of memory used per 1gb of space
1143 	 * at or below 32k, so we need to adjust how much memory we allow to be
1144 	 * used by extent based free space tracking
1145 	 */
1146 	if (size < 1024 * 1024 * 1024)
1147 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1148 	else
1149 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1150 			div64_u64(size, 1024 * 1024 * 1024);
1151 
1152 	/*
1153 	 * we want to account for 1 more bitmap than what we have so we can make
1154 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1155 	 * we add more bitmaps.
1156 	 */
1157 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1158 
1159 	if (bitmap_bytes >= max_bytes) {
1160 		ctl->extents_thresh = 0;
1161 		return;
1162 	}
1163 
1164 	/*
1165 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1166 	 * bytes we can have, or whatever is less than that.
1167 	 */
1168 	extent_bytes = max_bytes - bitmap_bytes;
1169 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1170 
1171 	ctl->extents_thresh =
1172 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1173 }
1174 
1175 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1176 				       struct btrfs_free_space *info,
1177 				       u64 offset, u64 bytes)
1178 {
1179 	unsigned long start, count;
1180 
1181 	start = offset_to_bit(info->offset, ctl->unit, offset);
1182 	count = bytes_to_bits(bytes, ctl->unit);
1183 	BUG_ON(start + count > BITS_PER_BITMAP);
1184 
1185 	bitmap_clear(info->bitmap, start, count);
1186 
1187 	info->bytes -= bytes;
1188 }
1189 
1190 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1191 			      struct btrfs_free_space *info, u64 offset,
1192 			      u64 bytes)
1193 {
1194 	__bitmap_clear_bits(ctl, info, offset, bytes);
1195 	ctl->free_space -= bytes;
1196 }
1197 
1198 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1199 			    struct btrfs_free_space *info, u64 offset,
1200 			    u64 bytes)
1201 {
1202 	unsigned long start, count;
1203 
1204 	start = offset_to_bit(info->offset, ctl->unit, offset);
1205 	count = bytes_to_bits(bytes, ctl->unit);
1206 	BUG_ON(start + count > BITS_PER_BITMAP);
1207 
1208 	bitmap_set(info->bitmap, start, count);
1209 
1210 	info->bytes += bytes;
1211 	ctl->free_space += bytes;
1212 }
1213 
1214 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1215 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1216 			 u64 *bytes)
1217 {
1218 	unsigned long found_bits = 0;
1219 	unsigned long bits, i;
1220 	unsigned long next_zero;
1221 
1222 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1223 			  max_t(u64, *offset, bitmap_info->offset));
1224 	bits = bytes_to_bits(*bytes, ctl->unit);
1225 
1226 	for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1227 	     i < BITS_PER_BITMAP;
1228 	     i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1229 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1230 					       BITS_PER_BITMAP, i);
1231 		if ((next_zero - i) >= bits) {
1232 			found_bits = next_zero - i;
1233 			break;
1234 		}
1235 		i = next_zero;
1236 	}
1237 
1238 	if (found_bits) {
1239 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1240 		*bytes = (u64)(found_bits) * ctl->unit;
1241 		return 0;
1242 	}
1243 
1244 	return -1;
1245 }
1246 
1247 static struct btrfs_free_space *
1248 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1249 {
1250 	struct btrfs_free_space *entry;
1251 	struct rb_node *node;
1252 	int ret;
1253 
1254 	if (!ctl->free_space_offset.rb_node)
1255 		return NULL;
1256 
1257 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1258 	if (!entry)
1259 		return NULL;
1260 
1261 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1262 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1263 		if (entry->bytes < *bytes)
1264 			continue;
1265 
1266 		if (entry->bitmap) {
1267 			ret = search_bitmap(ctl, entry, offset, bytes);
1268 			if (!ret)
1269 				return entry;
1270 			continue;
1271 		}
1272 
1273 		*offset = entry->offset;
1274 		*bytes = entry->bytes;
1275 		return entry;
1276 	}
1277 
1278 	return NULL;
1279 }
1280 
1281 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1282 			   struct btrfs_free_space *info, u64 offset)
1283 {
1284 	info->offset = offset_to_bitmap(ctl, offset);
1285 	info->bytes = 0;
1286 	link_free_space(ctl, info);
1287 	ctl->total_bitmaps++;
1288 
1289 	ctl->op->recalc_thresholds(ctl);
1290 }
1291 
1292 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1293 			struct btrfs_free_space *bitmap_info)
1294 {
1295 	unlink_free_space(ctl, bitmap_info);
1296 	kfree(bitmap_info->bitmap);
1297 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1298 	ctl->total_bitmaps--;
1299 	ctl->op->recalc_thresholds(ctl);
1300 }
1301 
1302 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1303 			      struct btrfs_free_space *bitmap_info,
1304 			      u64 *offset, u64 *bytes)
1305 {
1306 	u64 end;
1307 	u64 search_start, search_bytes;
1308 	int ret;
1309 
1310 again:
1311 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1312 
1313 	/*
1314 	 * XXX - this can go away after a few releases.
1315 	 *
1316 	 * since the only user of btrfs_remove_free_space is the tree logging
1317 	 * stuff, and the only way to test that is under crash conditions, we
1318 	 * want to have this debug stuff here just in case somethings not
1319 	 * working.  Search the bitmap for the space we are trying to use to
1320 	 * make sure its actually there.  If its not there then we need to stop
1321 	 * because something has gone wrong.
1322 	 */
1323 	search_start = *offset;
1324 	search_bytes = *bytes;
1325 	search_bytes = min(search_bytes, end - search_start + 1);
1326 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1327 	BUG_ON(ret < 0 || search_start != *offset);
1328 
1329 	if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1330 		bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
1331 		*bytes -= end - *offset + 1;
1332 		*offset = end + 1;
1333 	} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1334 		bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
1335 		*bytes = 0;
1336 	}
1337 
1338 	if (*bytes) {
1339 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1340 		if (!bitmap_info->bytes)
1341 			free_bitmap(ctl, bitmap_info);
1342 
1343 		/*
1344 		 * no entry after this bitmap, but we still have bytes to
1345 		 * remove, so something has gone wrong.
1346 		 */
1347 		if (!next)
1348 			return -EINVAL;
1349 
1350 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1351 				       offset_index);
1352 
1353 		/*
1354 		 * if the next entry isn't a bitmap we need to return to let the
1355 		 * extent stuff do its work.
1356 		 */
1357 		if (!bitmap_info->bitmap)
1358 			return -EAGAIN;
1359 
1360 		/*
1361 		 * Ok the next item is a bitmap, but it may not actually hold
1362 		 * the information for the rest of this free space stuff, so
1363 		 * look for it, and if we don't find it return so we can try
1364 		 * everything over again.
1365 		 */
1366 		search_start = *offset;
1367 		search_bytes = *bytes;
1368 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1369 				    &search_bytes);
1370 		if (ret < 0 || search_start != *offset)
1371 			return -EAGAIN;
1372 
1373 		goto again;
1374 	} else if (!bitmap_info->bytes)
1375 		free_bitmap(ctl, bitmap_info);
1376 
1377 	return 0;
1378 }
1379 
1380 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1381 			       struct btrfs_free_space *info, u64 offset,
1382 			       u64 bytes)
1383 {
1384 	u64 bytes_to_set = 0;
1385 	u64 end;
1386 
1387 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1388 
1389 	bytes_to_set = min(end - offset, bytes);
1390 
1391 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1392 
1393 	return bytes_to_set;
1394 
1395 }
1396 
1397 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1398 		      struct btrfs_free_space *info)
1399 {
1400 	struct btrfs_block_group_cache *block_group = ctl->private;
1401 
1402 	/*
1403 	 * If we are below the extents threshold then we can add this as an
1404 	 * extent, and don't have to deal with the bitmap
1405 	 */
1406 	if (ctl->free_extents < ctl->extents_thresh) {
1407 		/*
1408 		 * If this block group has some small extents we don't want to
1409 		 * use up all of our free slots in the cache with them, we want
1410 		 * to reserve them to larger extents, however if we have plent
1411 		 * of cache left then go ahead an dadd them, no sense in adding
1412 		 * the overhead of a bitmap if we don't have to.
1413 		 */
1414 		if (info->bytes <= block_group->sectorsize * 4) {
1415 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1416 				return false;
1417 		} else {
1418 			return false;
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * some block groups are so tiny they can't be enveloped by a bitmap, so
1424 	 * don't even bother to create a bitmap for this
1425 	 */
1426 	if (BITS_PER_BITMAP * block_group->sectorsize >
1427 	    block_group->key.offset)
1428 		return false;
1429 
1430 	return true;
1431 }
1432 
1433 static struct btrfs_free_space_op free_space_op = {
1434 	.recalc_thresholds	= recalculate_thresholds,
1435 	.use_bitmap		= use_bitmap,
1436 };
1437 
1438 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1439 			      struct btrfs_free_space *info)
1440 {
1441 	struct btrfs_free_space *bitmap_info;
1442 	struct btrfs_block_group_cache *block_group = NULL;
1443 	int added = 0;
1444 	u64 bytes, offset, bytes_added;
1445 	int ret;
1446 
1447 	bytes = info->bytes;
1448 	offset = info->offset;
1449 
1450 	if (!ctl->op->use_bitmap(ctl, info))
1451 		return 0;
1452 
1453 	if (ctl->op == &free_space_op)
1454 		block_group = ctl->private;
1455 again:
1456 	/*
1457 	 * Since we link bitmaps right into the cluster we need to see if we
1458 	 * have a cluster here, and if so and it has our bitmap we need to add
1459 	 * the free space to that bitmap.
1460 	 */
1461 	if (block_group && !list_empty(&block_group->cluster_list)) {
1462 		struct btrfs_free_cluster *cluster;
1463 		struct rb_node *node;
1464 		struct btrfs_free_space *entry;
1465 
1466 		cluster = list_entry(block_group->cluster_list.next,
1467 				     struct btrfs_free_cluster,
1468 				     block_group_list);
1469 		spin_lock(&cluster->lock);
1470 		node = rb_first(&cluster->root);
1471 		if (!node) {
1472 			spin_unlock(&cluster->lock);
1473 			goto no_cluster_bitmap;
1474 		}
1475 
1476 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1477 		if (!entry->bitmap) {
1478 			spin_unlock(&cluster->lock);
1479 			goto no_cluster_bitmap;
1480 		}
1481 
1482 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1483 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1484 							  offset, bytes);
1485 			bytes -= bytes_added;
1486 			offset += bytes_added;
1487 		}
1488 		spin_unlock(&cluster->lock);
1489 		if (!bytes) {
1490 			ret = 1;
1491 			goto out;
1492 		}
1493 	}
1494 
1495 no_cluster_bitmap:
1496 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1497 					 1, 0);
1498 	if (!bitmap_info) {
1499 		BUG_ON(added);
1500 		goto new_bitmap;
1501 	}
1502 
1503 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1504 	bytes -= bytes_added;
1505 	offset += bytes_added;
1506 	added = 0;
1507 
1508 	if (!bytes) {
1509 		ret = 1;
1510 		goto out;
1511 	} else
1512 		goto again;
1513 
1514 new_bitmap:
1515 	if (info && info->bitmap) {
1516 		add_new_bitmap(ctl, info, offset);
1517 		added = 1;
1518 		info = NULL;
1519 		goto again;
1520 	} else {
1521 		spin_unlock(&ctl->tree_lock);
1522 
1523 		/* no pre-allocated info, allocate a new one */
1524 		if (!info) {
1525 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1526 						 GFP_NOFS);
1527 			if (!info) {
1528 				spin_lock(&ctl->tree_lock);
1529 				ret = -ENOMEM;
1530 				goto out;
1531 			}
1532 		}
1533 
1534 		/* allocate the bitmap */
1535 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1536 		spin_lock(&ctl->tree_lock);
1537 		if (!info->bitmap) {
1538 			ret = -ENOMEM;
1539 			goto out;
1540 		}
1541 		goto again;
1542 	}
1543 
1544 out:
1545 	if (info) {
1546 		if (info->bitmap)
1547 			kfree(info->bitmap);
1548 		kmem_cache_free(btrfs_free_space_cachep, info);
1549 	}
1550 
1551 	return ret;
1552 }
1553 
1554 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1555 			  struct btrfs_free_space *info, bool update_stat)
1556 {
1557 	struct btrfs_free_space *left_info;
1558 	struct btrfs_free_space *right_info;
1559 	bool merged = false;
1560 	u64 offset = info->offset;
1561 	u64 bytes = info->bytes;
1562 
1563 	/*
1564 	 * first we want to see if there is free space adjacent to the range we
1565 	 * are adding, if there is remove that struct and add a new one to
1566 	 * cover the entire range
1567 	 */
1568 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1569 	if (right_info && rb_prev(&right_info->offset_index))
1570 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1571 				     struct btrfs_free_space, offset_index);
1572 	else
1573 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1574 
1575 	if (right_info && !right_info->bitmap) {
1576 		if (update_stat)
1577 			unlink_free_space(ctl, right_info);
1578 		else
1579 			__unlink_free_space(ctl, right_info);
1580 		info->bytes += right_info->bytes;
1581 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1582 		merged = true;
1583 	}
1584 
1585 	if (left_info && !left_info->bitmap &&
1586 	    left_info->offset + left_info->bytes == offset) {
1587 		if (update_stat)
1588 			unlink_free_space(ctl, left_info);
1589 		else
1590 			__unlink_free_space(ctl, left_info);
1591 		info->offset = left_info->offset;
1592 		info->bytes += left_info->bytes;
1593 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1594 		merged = true;
1595 	}
1596 
1597 	return merged;
1598 }
1599 
1600 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1601 			   u64 offset, u64 bytes)
1602 {
1603 	struct btrfs_free_space *info;
1604 	int ret = 0;
1605 
1606 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1607 	if (!info)
1608 		return -ENOMEM;
1609 
1610 	info->offset = offset;
1611 	info->bytes = bytes;
1612 
1613 	spin_lock(&ctl->tree_lock);
1614 
1615 	if (try_merge_free_space(ctl, info, true))
1616 		goto link;
1617 
1618 	/*
1619 	 * There was no extent directly to the left or right of this new
1620 	 * extent then we know we're going to have to allocate a new extent, so
1621 	 * before we do that see if we need to drop this into a bitmap
1622 	 */
1623 	ret = insert_into_bitmap(ctl, info);
1624 	if (ret < 0) {
1625 		goto out;
1626 	} else if (ret) {
1627 		ret = 0;
1628 		goto out;
1629 	}
1630 link:
1631 	ret = link_free_space(ctl, info);
1632 	if (ret)
1633 		kmem_cache_free(btrfs_free_space_cachep, info);
1634 out:
1635 	spin_unlock(&ctl->tree_lock);
1636 
1637 	if (ret) {
1638 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1639 		BUG_ON(ret == -EEXIST);
1640 	}
1641 
1642 	return ret;
1643 }
1644 
1645 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1646 			    u64 offset, u64 bytes)
1647 {
1648 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1649 	struct btrfs_free_space *info;
1650 	struct btrfs_free_space *next_info = NULL;
1651 	int ret = 0;
1652 
1653 	spin_lock(&ctl->tree_lock);
1654 
1655 again:
1656 	info = tree_search_offset(ctl, offset, 0, 0);
1657 	if (!info) {
1658 		/*
1659 		 * oops didn't find an extent that matched the space we wanted
1660 		 * to remove, look for a bitmap instead
1661 		 */
1662 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1663 					  1, 0);
1664 		if (!info) {
1665 			WARN_ON(1);
1666 			goto out_lock;
1667 		}
1668 	}
1669 
1670 	if (info->bytes < bytes && rb_next(&info->offset_index)) {
1671 		u64 end;
1672 		next_info = rb_entry(rb_next(&info->offset_index),
1673 					     struct btrfs_free_space,
1674 					     offset_index);
1675 
1676 		if (next_info->bitmap)
1677 			end = next_info->offset +
1678 			      BITS_PER_BITMAP * ctl->unit - 1;
1679 		else
1680 			end = next_info->offset + next_info->bytes;
1681 
1682 		if (next_info->bytes < bytes ||
1683 		    next_info->offset > offset || offset > end) {
1684 			printk(KERN_CRIT "Found free space at %llu, size %llu,"
1685 			      " trying to use %llu\n",
1686 			      (unsigned long long)info->offset,
1687 			      (unsigned long long)info->bytes,
1688 			      (unsigned long long)bytes);
1689 			WARN_ON(1);
1690 			ret = -EINVAL;
1691 			goto out_lock;
1692 		}
1693 
1694 		info = next_info;
1695 	}
1696 
1697 	if (info->bytes == bytes) {
1698 		unlink_free_space(ctl, info);
1699 		if (info->bitmap) {
1700 			kfree(info->bitmap);
1701 			ctl->total_bitmaps--;
1702 		}
1703 		kmem_cache_free(btrfs_free_space_cachep, info);
1704 		goto out_lock;
1705 	}
1706 
1707 	if (!info->bitmap && info->offset == offset) {
1708 		unlink_free_space(ctl, info);
1709 		info->offset += bytes;
1710 		info->bytes -= bytes;
1711 		link_free_space(ctl, info);
1712 		goto out_lock;
1713 	}
1714 
1715 	if (!info->bitmap && info->offset <= offset &&
1716 	    info->offset + info->bytes >= offset + bytes) {
1717 		u64 old_start = info->offset;
1718 		/*
1719 		 * we're freeing space in the middle of the info,
1720 		 * this can happen during tree log replay
1721 		 *
1722 		 * first unlink the old info and then
1723 		 * insert it again after the hole we're creating
1724 		 */
1725 		unlink_free_space(ctl, info);
1726 		if (offset + bytes < info->offset + info->bytes) {
1727 			u64 old_end = info->offset + info->bytes;
1728 
1729 			info->offset = offset + bytes;
1730 			info->bytes = old_end - info->offset;
1731 			ret = link_free_space(ctl, info);
1732 			WARN_ON(ret);
1733 			if (ret)
1734 				goto out_lock;
1735 		} else {
1736 			/* the hole we're creating ends at the end
1737 			 * of the info struct, just free the info
1738 			 */
1739 			kmem_cache_free(btrfs_free_space_cachep, info);
1740 		}
1741 		spin_unlock(&ctl->tree_lock);
1742 
1743 		/* step two, insert a new info struct to cover
1744 		 * anything before the hole
1745 		 */
1746 		ret = btrfs_add_free_space(block_group, old_start,
1747 					   offset - old_start);
1748 		WARN_ON(ret);
1749 		goto out;
1750 	}
1751 
1752 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1753 	if (ret == -EAGAIN)
1754 		goto again;
1755 	BUG_ON(ret);
1756 out_lock:
1757 	spin_unlock(&ctl->tree_lock);
1758 out:
1759 	return ret;
1760 }
1761 
1762 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1763 			   u64 bytes)
1764 {
1765 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1766 	struct btrfs_free_space *info;
1767 	struct rb_node *n;
1768 	int count = 0;
1769 
1770 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1771 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1772 		if (info->bytes >= bytes)
1773 			count++;
1774 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1775 		       (unsigned long long)info->offset,
1776 		       (unsigned long long)info->bytes,
1777 		       (info->bitmap) ? "yes" : "no");
1778 	}
1779 	printk(KERN_INFO "block group has cluster?: %s\n",
1780 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
1781 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1782 	       "\n", count);
1783 }
1784 
1785 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
1786 {
1787 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1788 
1789 	spin_lock_init(&ctl->tree_lock);
1790 	ctl->unit = block_group->sectorsize;
1791 	ctl->start = block_group->key.objectid;
1792 	ctl->private = block_group;
1793 	ctl->op = &free_space_op;
1794 
1795 	/*
1796 	 * we only want to have 32k of ram per block group for keeping
1797 	 * track of free space, and if we pass 1/2 of that we want to
1798 	 * start converting things over to using bitmaps
1799 	 */
1800 	ctl->extents_thresh = ((1024 * 32) / 2) /
1801 				sizeof(struct btrfs_free_space);
1802 }
1803 
1804 /*
1805  * for a given cluster, put all of its extents back into the free
1806  * space cache.  If the block group passed doesn't match the block group
1807  * pointed to by the cluster, someone else raced in and freed the
1808  * cluster already.  In that case, we just return without changing anything
1809  */
1810 static int
1811 __btrfs_return_cluster_to_free_space(
1812 			     struct btrfs_block_group_cache *block_group,
1813 			     struct btrfs_free_cluster *cluster)
1814 {
1815 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1816 	struct btrfs_free_space *entry;
1817 	struct rb_node *node;
1818 
1819 	spin_lock(&cluster->lock);
1820 	if (cluster->block_group != block_group)
1821 		goto out;
1822 
1823 	cluster->block_group = NULL;
1824 	cluster->window_start = 0;
1825 	list_del_init(&cluster->block_group_list);
1826 
1827 	node = rb_first(&cluster->root);
1828 	while (node) {
1829 		bool bitmap;
1830 
1831 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1832 		node = rb_next(&entry->offset_index);
1833 		rb_erase(&entry->offset_index, &cluster->root);
1834 
1835 		bitmap = (entry->bitmap != NULL);
1836 		if (!bitmap)
1837 			try_merge_free_space(ctl, entry, false);
1838 		tree_insert_offset(&ctl->free_space_offset,
1839 				   entry->offset, &entry->offset_index, bitmap);
1840 	}
1841 	cluster->root = RB_ROOT;
1842 
1843 out:
1844 	spin_unlock(&cluster->lock);
1845 	btrfs_put_block_group(block_group);
1846 	return 0;
1847 }
1848 
1849 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
1850 {
1851 	struct btrfs_free_space *info;
1852 	struct rb_node *node;
1853 
1854 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
1855 		info = rb_entry(node, struct btrfs_free_space, offset_index);
1856 		if (!info->bitmap) {
1857 			unlink_free_space(ctl, info);
1858 			kmem_cache_free(btrfs_free_space_cachep, info);
1859 		} else {
1860 			free_bitmap(ctl, info);
1861 		}
1862 		if (need_resched()) {
1863 			spin_unlock(&ctl->tree_lock);
1864 			cond_resched();
1865 			spin_lock(&ctl->tree_lock);
1866 		}
1867 	}
1868 }
1869 
1870 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
1871 {
1872 	spin_lock(&ctl->tree_lock);
1873 	__btrfs_remove_free_space_cache_locked(ctl);
1874 	spin_unlock(&ctl->tree_lock);
1875 }
1876 
1877 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
1878 {
1879 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1880 	struct btrfs_free_cluster *cluster;
1881 	struct list_head *head;
1882 
1883 	spin_lock(&ctl->tree_lock);
1884 	while ((head = block_group->cluster_list.next) !=
1885 	       &block_group->cluster_list) {
1886 		cluster = list_entry(head, struct btrfs_free_cluster,
1887 				     block_group_list);
1888 
1889 		WARN_ON(cluster->block_group != block_group);
1890 		__btrfs_return_cluster_to_free_space(block_group, cluster);
1891 		if (need_resched()) {
1892 			spin_unlock(&ctl->tree_lock);
1893 			cond_resched();
1894 			spin_lock(&ctl->tree_lock);
1895 		}
1896 	}
1897 	__btrfs_remove_free_space_cache_locked(ctl);
1898 	spin_unlock(&ctl->tree_lock);
1899 
1900 }
1901 
1902 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
1903 			       u64 offset, u64 bytes, u64 empty_size)
1904 {
1905 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1906 	struct btrfs_free_space *entry = NULL;
1907 	u64 bytes_search = bytes + empty_size;
1908 	u64 ret = 0;
1909 
1910 	spin_lock(&ctl->tree_lock);
1911 	entry = find_free_space(ctl, &offset, &bytes_search);
1912 	if (!entry)
1913 		goto out;
1914 
1915 	ret = offset;
1916 	if (entry->bitmap) {
1917 		bitmap_clear_bits(ctl, entry, offset, bytes);
1918 		if (!entry->bytes)
1919 			free_bitmap(ctl, entry);
1920 	} else {
1921 		unlink_free_space(ctl, entry);
1922 		entry->offset += bytes;
1923 		entry->bytes -= bytes;
1924 		if (!entry->bytes)
1925 			kmem_cache_free(btrfs_free_space_cachep, entry);
1926 		else
1927 			link_free_space(ctl, entry);
1928 	}
1929 
1930 out:
1931 	spin_unlock(&ctl->tree_lock);
1932 
1933 	return ret;
1934 }
1935 
1936 /*
1937  * given a cluster, put all of its extents back into the free space
1938  * cache.  If a block group is passed, this function will only free
1939  * a cluster that belongs to the passed block group.
1940  *
1941  * Otherwise, it'll get a reference on the block group pointed to by the
1942  * cluster and remove the cluster from it.
1943  */
1944 int btrfs_return_cluster_to_free_space(
1945 			       struct btrfs_block_group_cache *block_group,
1946 			       struct btrfs_free_cluster *cluster)
1947 {
1948 	struct btrfs_free_space_ctl *ctl;
1949 	int ret;
1950 
1951 	/* first, get a safe pointer to the block group */
1952 	spin_lock(&cluster->lock);
1953 	if (!block_group) {
1954 		block_group = cluster->block_group;
1955 		if (!block_group) {
1956 			spin_unlock(&cluster->lock);
1957 			return 0;
1958 		}
1959 	} else if (cluster->block_group != block_group) {
1960 		/* someone else has already freed it don't redo their work */
1961 		spin_unlock(&cluster->lock);
1962 		return 0;
1963 	}
1964 	atomic_inc(&block_group->count);
1965 	spin_unlock(&cluster->lock);
1966 
1967 	ctl = block_group->free_space_ctl;
1968 
1969 	/* now return any extents the cluster had on it */
1970 	spin_lock(&ctl->tree_lock);
1971 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
1972 	spin_unlock(&ctl->tree_lock);
1973 
1974 	/* finally drop our ref */
1975 	btrfs_put_block_group(block_group);
1976 	return ret;
1977 }
1978 
1979 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
1980 				   struct btrfs_free_cluster *cluster,
1981 				   struct btrfs_free_space *entry,
1982 				   u64 bytes, u64 min_start)
1983 {
1984 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1985 	int err;
1986 	u64 search_start = cluster->window_start;
1987 	u64 search_bytes = bytes;
1988 	u64 ret = 0;
1989 
1990 	search_start = min_start;
1991 	search_bytes = bytes;
1992 
1993 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
1994 	if (err)
1995 		return 0;
1996 
1997 	ret = search_start;
1998 	__bitmap_clear_bits(ctl, entry, ret, bytes);
1999 
2000 	return ret;
2001 }
2002 
2003 /*
2004  * given a cluster, try to allocate 'bytes' from it, returns 0
2005  * if it couldn't find anything suitably large, or a logical disk offset
2006  * if things worked out
2007  */
2008 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2009 			     struct btrfs_free_cluster *cluster, u64 bytes,
2010 			     u64 min_start)
2011 {
2012 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2013 	struct btrfs_free_space *entry = NULL;
2014 	struct rb_node *node;
2015 	u64 ret = 0;
2016 
2017 	spin_lock(&cluster->lock);
2018 	if (bytes > cluster->max_size)
2019 		goto out;
2020 
2021 	if (cluster->block_group != block_group)
2022 		goto out;
2023 
2024 	node = rb_first(&cluster->root);
2025 	if (!node)
2026 		goto out;
2027 
2028 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2029 	while(1) {
2030 		if (entry->bytes < bytes ||
2031 		    (!entry->bitmap && entry->offset < min_start)) {
2032 			node = rb_next(&entry->offset_index);
2033 			if (!node)
2034 				break;
2035 			entry = rb_entry(node, struct btrfs_free_space,
2036 					 offset_index);
2037 			continue;
2038 		}
2039 
2040 		if (entry->bitmap) {
2041 			ret = btrfs_alloc_from_bitmap(block_group,
2042 						      cluster, entry, bytes,
2043 						      min_start);
2044 			if (ret == 0) {
2045 				node = rb_next(&entry->offset_index);
2046 				if (!node)
2047 					break;
2048 				entry = rb_entry(node, struct btrfs_free_space,
2049 						 offset_index);
2050 				continue;
2051 			}
2052 		} else {
2053 			ret = entry->offset;
2054 
2055 			entry->offset += bytes;
2056 			entry->bytes -= bytes;
2057 		}
2058 
2059 		if (entry->bytes == 0)
2060 			rb_erase(&entry->offset_index, &cluster->root);
2061 		break;
2062 	}
2063 out:
2064 	spin_unlock(&cluster->lock);
2065 
2066 	if (!ret)
2067 		return 0;
2068 
2069 	spin_lock(&ctl->tree_lock);
2070 
2071 	ctl->free_space -= bytes;
2072 	if (entry->bytes == 0) {
2073 		ctl->free_extents--;
2074 		if (entry->bitmap) {
2075 			kfree(entry->bitmap);
2076 			ctl->total_bitmaps--;
2077 			ctl->op->recalc_thresholds(ctl);
2078 		}
2079 		kmem_cache_free(btrfs_free_space_cachep, entry);
2080 	}
2081 
2082 	spin_unlock(&ctl->tree_lock);
2083 
2084 	return ret;
2085 }
2086 
2087 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2088 				struct btrfs_free_space *entry,
2089 				struct btrfs_free_cluster *cluster,
2090 				u64 offset, u64 bytes, u64 min_bytes)
2091 {
2092 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2093 	unsigned long next_zero;
2094 	unsigned long i;
2095 	unsigned long search_bits;
2096 	unsigned long total_bits;
2097 	unsigned long found_bits;
2098 	unsigned long start = 0;
2099 	unsigned long total_found = 0;
2100 	int ret;
2101 	bool found = false;
2102 
2103 	i = offset_to_bit(entry->offset, block_group->sectorsize,
2104 			  max_t(u64, offset, entry->offset));
2105 	search_bits = bytes_to_bits(bytes, block_group->sectorsize);
2106 	total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2107 
2108 again:
2109 	found_bits = 0;
2110 	for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2111 	     i < BITS_PER_BITMAP;
2112 	     i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2113 		next_zero = find_next_zero_bit(entry->bitmap,
2114 					       BITS_PER_BITMAP, i);
2115 		if (next_zero - i >= search_bits) {
2116 			found_bits = next_zero - i;
2117 			break;
2118 		}
2119 		i = next_zero;
2120 	}
2121 
2122 	if (!found_bits)
2123 		return -ENOSPC;
2124 
2125 	if (!found) {
2126 		start = i;
2127 		found = true;
2128 	}
2129 
2130 	total_found += found_bits;
2131 
2132 	if (cluster->max_size < found_bits * block_group->sectorsize)
2133 		cluster->max_size = found_bits * block_group->sectorsize;
2134 
2135 	if (total_found < total_bits) {
2136 		i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
2137 		if (i - start > total_bits * 2) {
2138 			total_found = 0;
2139 			cluster->max_size = 0;
2140 			found = false;
2141 		}
2142 		goto again;
2143 	}
2144 
2145 	cluster->window_start = start * block_group->sectorsize +
2146 		entry->offset;
2147 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2148 	ret = tree_insert_offset(&cluster->root, entry->offset,
2149 				 &entry->offset_index, 1);
2150 	BUG_ON(ret);
2151 
2152 	return 0;
2153 }
2154 
2155 /*
2156  * This searches the block group for just extents to fill the cluster with.
2157  */
2158 static noinline int
2159 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2160 			struct btrfs_free_cluster *cluster,
2161 			struct list_head *bitmaps, u64 offset, u64 bytes,
2162 			u64 min_bytes)
2163 {
2164 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2165 	struct btrfs_free_space *first = NULL;
2166 	struct btrfs_free_space *entry = NULL;
2167 	struct btrfs_free_space *prev = NULL;
2168 	struct btrfs_free_space *last;
2169 	struct rb_node *node;
2170 	u64 window_start;
2171 	u64 window_free;
2172 	u64 max_extent;
2173 	u64 max_gap = 128 * 1024;
2174 
2175 	entry = tree_search_offset(ctl, offset, 0, 1);
2176 	if (!entry)
2177 		return -ENOSPC;
2178 
2179 	/*
2180 	 * We don't want bitmaps, so just move along until we find a normal
2181 	 * extent entry.
2182 	 */
2183 	while (entry->bitmap) {
2184 		if (list_empty(&entry->list))
2185 			list_add_tail(&entry->list, bitmaps);
2186 		node = rb_next(&entry->offset_index);
2187 		if (!node)
2188 			return -ENOSPC;
2189 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2190 	}
2191 
2192 	window_start = entry->offset;
2193 	window_free = entry->bytes;
2194 	max_extent = entry->bytes;
2195 	first = entry;
2196 	last = entry;
2197 	prev = entry;
2198 
2199 	while (window_free <= min_bytes) {
2200 		node = rb_next(&entry->offset_index);
2201 		if (!node)
2202 			return -ENOSPC;
2203 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2204 
2205 		if (entry->bitmap) {
2206 			if (list_empty(&entry->list))
2207 				list_add_tail(&entry->list, bitmaps);
2208 			continue;
2209 		}
2210 
2211 		/*
2212 		 * we haven't filled the empty size and the window is
2213 		 * very large.  reset and try again
2214 		 */
2215 		if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
2216 		    entry->offset - window_start > (min_bytes * 2)) {
2217 			first = entry;
2218 			window_start = entry->offset;
2219 			window_free = entry->bytes;
2220 			last = entry;
2221 			max_extent = entry->bytes;
2222 		} else {
2223 			last = entry;
2224 			window_free += entry->bytes;
2225 			if (entry->bytes > max_extent)
2226 				max_extent = entry->bytes;
2227 		}
2228 		prev = entry;
2229 	}
2230 
2231 	cluster->window_start = first->offset;
2232 
2233 	node = &first->offset_index;
2234 
2235 	/*
2236 	 * now we've found our entries, pull them out of the free space
2237 	 * cache and put them into the cluster rbtree
2238 	 */
2239 	do {
2240 		int ret;
2241 
2242 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2243 		node = rb_next(&entry->offset_index);
2244 		if (entry->bitmap)
2245 			continue;
2246 
2247 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2248 		ret = tree_insert_offset(&cluster->root, entry->offset,
2249 					 &entry->offset_index, 0);
2250 		BUG_ON(ret);
2251 	} while (node && entry != last);
2252 
2253 	cluster->max_size = max_extent;
2254 
2255 	return 0;
2256 }
2257 
2258 /*
2259  * This specifically looks for bitmaps that may work in the cluster, we assume
2260  * that we have already failed to find extents that will work.
2261  */
2262 static noinline int
2263 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2264 		     struct btrfs_free_cluster *cluster,
2265 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2266 		     u64 min_bytes)
2267 {
2268 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2269 	struct btrfs_free_space *entry;
2270 	struct rb_node *node;
2271 	int ret = -ENOSPC;
2272 
2273 	if (ctl->total_bitmaps == 0)
2274 		return -ENOSPC;
2275 
2276 	/*
2277 	 * First check our cached list of bitmaps and see if there is an entry
2278 	 * here that will work.
2279 	 */
2280 	list_for_each_entry(entry, bitmaps, list) {
2281 		if (entry->bytes < min_bytes)
2282 			continue;
2283 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2284 					   bytes, min_bytes);
2285 		if (!ret)
2286 			return 0;
2287 	}
2288 
2289 	/*
2290 	 * If we do have entries on our list and we are here then we didn't find
2291 	 * anything, so go ahead and get the next entry after the last entry in
2292 	 * this list and start the search from there.
2293 	 */
2294 	if (!list_empty(bitmaps)) {
2295 		entry = list_entry(bitmaps->prev, struct btrfs_free_space,
2296 				   list);
2297 		node = rb_next(&entry->offset_index);
2298 		if (!node)
2299 			return -ENOSPC;
2300 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2301 		goto search;
2302 	}
2303 
2304 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 0, 1);
2305 	if (!entry)
2306 		return -ENOSPC;
2307 
2308 search:
2309 	node = &entry->offset_index;
2310 	do {
2311 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2312 		node = rb_next(&entry->offset_index);
2313 		if (!entry->bitmap)
2314 			continue;
2315 		if (entry->bytes < min_bytes)
2316 			continue;
2317 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2318 					   bytes, min_bytes);
2319 	} while (ret && node);
2320 
2321 	return ret;
2322 }
2323 
2324 /*
2325  * here we try to find a cluster of blocks in a block group.  The goal
2326  * is to find at least bytes free and up to empty_size + bytes free.
2327  * We might not find them all in one contiguous area.
2328  *
2329  * returns zero and sets up cluster if things worked out, otherwise
2330  * it returns -enospc
2331  */
2332 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2333 			     struct btrfs_root *root,
2334 			     struct btrfs_block_group_cache *block_group,
2335 			     struct btrfs_free_cluster *cluster,
2336 			     u64 offset, u64 bytes, u64 empty_size)
2337 {
2338 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2339 	struct list_head bitmaps;
2340 	struct btrfs_free_space *entry, *tmp;
2341 	u64 min_bytes;
2342 	int ret;
2343 
2344 	/* for metadata, allow allocates with more holes */
2345 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2346 		min_bytes = bytes + empty_size;
2347 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2348 		/*
2349 		 * we want to do larger allocations when we are
2350 		 * flushing out the delayed refs, it helps prevent
2351 		 * making more work as we go along.
2352 		 */
2353 		if (trans->transaction->delayed_refs.flushing)
2354 			min_bytes = max(bytes, (bytes + empty_size) >> 1);
2355 		else
2356 			min_bytes = max(bytes, (bytes + empty_size) >> 4);
2357 	} else
2358 		min_bytes = max(bytes, (bytes + empty_size) >> 2);
2359 
2360 	spin_lock(&ctl->tree_lock);
2361 
2362 	/*
2363 	 * If we know we don't have enough space to make a cluster don't even
2364 	 * bother doing all the work to try and find one.
2365 	 */
2366 	if (ctl->free_space < min_bytes) {
2367 		spin_unlock(&ctl->tree_lock);
2368 		return -ENOSPC;
2369 	}
2370 
2371 	spin_lock(&cluster->lock);
2372 
2373 	/* someone already found a cluster, hooray */
2374 	if (cluster->block_group) {
2375 		ret = 0;
2376 		goto out;
2377 	}
2378 
2379 	INIT_LIST_HEAD(&bitmaps);
2380 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2381 				      bytes, min_bytes);
2382 	if (ret)
2383 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2384 					   offset, bytes, min_bytes);
2385 
2386 	/* Clear our temporary list */
2387 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2388 		list_del_init(&entry->list);
2389 
2390 	if (!ret) {
2391 		atomic_inc(&block_group->count);
2392 		list_add_tail(&cluster->block_group_list,
2393 			      &block_group->cluster_list);
2394 		cluster->block_group = block_group;
2395 	}
2396 out:
2397 	spin_unlock(&cluster->lock);
2398 	spin_unlock(&ctl->tree_lock);
2399 
2400 	return ret;
2401 }
2402 
2403 /*
2404  * simple code to zero out a cluster
2405  */
2406 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2407 {
2408 	spin_lock_init(&cluster->lock);
2409 	spin_lock_init(&cluster->refill_lock);
2410 	cluster->root = RB_ROOT;
2411 	cluster->max_size = 0;
2412 	INIT_LIST_HEAD(&cluster->block_group_list);
2413 	cluster->block_group = NULL;
2414 }
2415 
2416 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2417 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2418 {
2419 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2420 	struct btrfs_free_space *entry = NULL;
2421 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2422 	u64 bytes = 0;
2423 	u64 actually_trimmed;
2424 	int ret = 0;
2425 
2426 	*trimmed = 0;
2427 
2428 	while (start < end) {
2429 		spin_lock(&ctl->tree_lock);
2430 
2431 		if (ctl->free_space < minlen) {
2432 			spin_unlock(&ctl->tree_lock);
2433 			break;
2434 		}
2435 
2436 		entry = tree_search_offset(ctl, start, 0, 1);
2437 		if (!entry)
2438 			entry = tree_search_offset(ctl,
2439 						   offset_to_bitmap(ctl, start),
2440 						   1, 1);
2441 
2442 		if (!entry || entry->offset >= end) {
2443 			spin_unlock(&ctl->tree_lock);
2444 			break;
2445 		}
2446 
2447 		if (entry->bitmap) {
2448 			ret = search_bitmap(ctl, entry, &start, &bytes);
2449 			if (!ret) {
2450 				if (start >= end) {
2451 					spin_unlock(&ctl->tree_lock);
2452 					break;
2453 				}
2454 				bytes = min(bytes, end - start);
2455 				bitmap_clear_bits(ctl, entry, start, bytes);
2456 				if (entry->bytes == 0)
2457 					free_bitmap(ctl, entry);
2458 			} else {
2459 				start = entry->offset + BITS_PER_BITMAP *
2460 					block_group->sectorsize;
2461 				spin_unlock(&ctl->tree_lock);
2462 				ret = 0;
2463 				continue;
2464 			}
2465 		} else {
2466 			start = entry->offset;
2467 			bytes = min(entry->bytes, end - start);
2468 			unlink_free_space(ctl, entry);
2469 			kmem_cache_free(btrfs_free_space_cachep, entry);
2470 		}
2471 
2472 		spin_unlock(&ctl->tree_lock);
2473 
2474 		if (bytes >= minlen) {
2475 			int update_ret;
2476 			update_ret = btrfs_update_reserved_bytes(block_group,
2477 								 bytes, 1, 1);
2478 
2479 			ret = btrfs_error_discard_extent(fs_info->extent_root,
2480 							 start,
2481 							 bytes,
2482 							 &actually_trimmed);
2483 
2484 			btrfs_add_free_space(block_group, start, bytes);
2485 			if (!update_ret)
2486 				btrfs_update_reserved_bytes(block_group,
2487 							    bytes, 0, 1);
2488 
2489 			if (ret)
2490 				break;
2491 			*trimmed += actually_trimmed;
2492 		}
2493 		start += bytes;
2494 		bytes = 0;
2495 
2496 		if (fatal_signal_pending(current)) {
2497 			ret = -ERESTARTSYS;
2498 			break;
2499 		}
2500 
2501 		cond_resched();
2502 	}
2503 
2504 	return ret;
2505 }
2506 
2507 /*
2508  * Find the left-most item in the cache tree, and then return the
2509  * smallest inode number in the item.
2510  *
2511  * Note: the returned inode number may not be the smallest one in
2512  * the tree, if the left-most item is a bitmap.
2513  */
2514 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2515 {
2516 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2517 	struct btrfs_free_space *entry = NULL;
2518 	u64 ino = 0;
2519 
2520 	spin_lock(&ctl->tree_lock);
2521 
2522 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2523 		goto out;
2524 
2525 	entry = rb_entry(rb_first(&ctl->free_space_offset),
2526 			 struct btrfs_free_space, offset_index);
2527 
2528 	if (!entry->bitmap) {
2529 		ino = entry->offset;
2530 
2531 		unlink_free_space(ctl, entry);
2532 		entry->offset++;
2533 		entry->bytes--;
2534 		if (!entry->bytes)
2535 			kmem_cache_free(btrfs_free_space_cachep, entry);
2536 		else
2537 			link_free_space(ctl, entry);
2538 	} else {
2539 		u64 offset = 0;
2540 		u64 count = 1;
2541 		int ret;
2542 
2543 		ret = search_bitmap(ctl, entry, &offset, &count);
2544 		BUG_ON(ret);
2545 
2546 		ino = offset;
2547 		bitmap_clear_bits(ctl, entry, offset, 1);
2548 		if (entry->bytes == 0)
2549 			free_bitmap(ctl, entry);
2550 	}
2551 out:
2552 	spin_unlock(&ctl->tree_lock);
2553 
2554 	return ino;
2555 }
2556 
2557 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2558 				    struct btrfs_path *path)
2559 {
2560 	struct inode *inode = NULL;
2561 
2562 	spin_lock(&root->cache_lock);
2563 	if (root->cache_inode)
2564 		inode = igrab(root->cache_inode);
2565 	spin_unlock(&root->cache_lock);
2566 	if (inode)
2567 		return inode;
2568 
2569 	inode = __lookup_free_space_inode(root, path, 0);
2570 	if (IS_ERR(inode))
2571 		return inode;
2572 
2573 	spin_lock(&root->cache_lock);
2574 	if (!btrfs_fs_closing(root->fs_info))
2575 		root->cache_inode = igrab(inode);
2576 	spin_unlock(&root->cache_lock);
2577 
2578 	return inode;
2579 }
2580 
2581 int create_free_ino_inode(struct btrfs_root *root,
2582 			  struct btrfs_trans_handle *trans,
2583 			  struct btrfs_path *path)
2584 {
2585 	return __create_free_space_inode(root, trans, path,
2586 					 BTRFS_FREE_INO_OBJECTID, 0);
2587 }
2588 
2589 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2590 {
2591 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2592 	struct btrfs_path *path;
2593 	struct inode *inode;
2594 	int ret = 0;
2595 	u64 root_gen = btrfs_root_generation(&root->root_item);
2596 
2597 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2598 		return 0;
2599 
2600 	/*
2601 	 * If we're unmounting then just return, since this does a search on the
2602 	 * normal root and not the commit root and we could deadlock.
2603 	 */
2604 	if (btrfs_fs_closing(fs_info))
2605 		return 0;
2606 
2607 	path = btrfs_alloc_path();
2608 	if (!path)
2609 		return 0;
2610 
2611 	inode = lookup_free_ino_inode(root, path);
2612 	if (IS_ERR(inode))
2613 		goto out;
2614 
2615 	if (root_gen != BTRFS_I(inode)->generation)
2616 		goto out_put;
2617 
2618 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
2619 
2620 	if (ret < 0)
2621 		printk(KERN_ERR "btrfs: failed to load free ino cache for "
2622 		       "root %llu\n", root->root_key.objectid);
2623 out_put:
2624 	iput(inode);
2625 out:
2626 	btrfs_free_path(path);
2627 	return ret;
2628 }
2629 
2630 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2631 			      struct btrfs_trans_handle *trans,
2632 			      struct btrfs_path *path)
2633 {
2634 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2635 	struct inode *inode;
2636 	int ret;
2637 
2638 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2639 		return 0;
2640 
2641 	inode = lookup_free_ino_inode(root, path);
2642 	if (IS_ERR(inode))
2643 		return 0;
2644 
2645 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2646 	if (ret < 0)
2647 		printk(KERN_ERR "btrfs: failed to write free ino cache "
2648 		       "for root %llu\n", root->root_key.objectid);
2649 
2650 	iput(inode);
2651 	return ret;
2652 }
2653