xref: /linux/fs/btrfs/free-space-cache.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 
31 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
33 
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 			   struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 			      struct btrfs_free_space *info);
38 
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 					       struct btrfs_path *path,
41 					       u64 offset)
42 {
43 	struct btrfs_key key;
44 	struct btrfs_key location;
45 	struct btrfs_disk_key disk_key;
46 	struct btrfs_free_space_header *header;
47 	struct extent_buffer *leaf;
48 	struct inode *inode = NULL;
49 	int ret;
50 
51 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52 	key.offset = offset;
53 	key.type = 0;
54 
55 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 	if (ret < 0)
57 		return ERR_PTR(ret);
58 	if (ret > 0) {
59 		btrfs_release_path(path);
60 		return ERR_PTR(-ENOENT);
61 	}
62 
63 	leaf = path->nodes[0];
64 	header = btrfs_item_ptr(leaf, path->slots[0],
65 				struct btrfs_free_space_header);
66 	btrfs_free_space_key(leaf, header, &disk_key);
67 	btrfs_disk_key_to_cpu(&location, &disk_key);
68 	btrfs_release_path(path);
69 
70 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 	if (!inode)
72 		return ERR_PTR(-ENOENT);
73 	if (IS_ERR(inode))
74 		return inode;
75 	if (is_bad_inode(inode)) {
76 		iput(inode);
77 		return ERR_PTR(-ENOENT);
78 	}
79 
80 	mapping_set_gfp_mask(inode->i_mapping,
81 			mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
82 
83 	return inode;
84 }
85 
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 				      struct btrfs_block_group_cache
88 				      *block_group, struct btrfs_path *path)
89 {
90 	struct inode *inode = NULL;
91 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92 
93 	spin_lock(&block_group->lock);
94 	if (block_group->inode)
95 		inode = igrab(block_group->inode);
96 	spin_unlock(&block_group->lock);
97 	if (inode)
98 		return inode;
99 
100 	inode = __lookup_free_space_inode(root, path,
101 					  block_group->key.objectid);
102 	if (IS_ERR(inode))
103 		return inode;
104 
105 	spin_lock(&block_group->lock);
106 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 		printk(KERN_INFO "Old style space inode found, converting.\n");
108 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
109 			BTRFS_INODE_NODATACOW;
110 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
111 	}
112 
113 	if (!block_group->iref) {
114 		block_group->inode = igrab(inode);
115 		block_group->iref = 1;
116 	}
117 	spin_unlock(&block_group->lock);
118 
119 	return inode;
120 }
121 
122 int __create_free_space_inode(struct btrfs_root *root,
123 			      struct btrfs_trans_handle *trans,
124 			      struct btrfs_path *path, u64 ino, u64 offset)
125 {
126 	struct btrfs_key key;
127 	struct btrfs_disk_key disk_key;
128 	struct btrfs_free_space_header *header;
129 	struct btrfs_inode_item *inode_item;
130 	struct extent_buffer *leaf;
131 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
132 	int ret;
133 
134 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
135 	if (ret)
136 		return ret;
137 
138 	/* We inline crc's for the free disk space cache */
139 	if (ino != BTRFS_FREE_INO_OBJECTID)
140 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
141 
142 	leaf = path->nodes[0];
143 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
144 				    struct btrfs_inode_item);
145 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
146 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
147 			     sizeof(*inode_item));
148 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
149 	btrfs_set_inode_size(leaf, inode_item, 0);
150 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
151 	btrfs_set_inode_uid(leaf, inode_item, 0);
152 	btrfs_set_inode_gid(leaf, inode_item, 0);
153 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
154 	btrfs_set_inode_flags(leaf, inode_item, flags);
155 	btrfs_set_inode_nlink(leaf, inode_item, 1);
156 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
157 	btrfs_set_inode_block_group(leaf, inode_item, offset);
158 	btrfs_mark_buffer_dirty(leaf);
159 	btrfs_release_path(path);
160 
161 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
162 	key.offset = offset;
163 	key.type = 0;
164 
165 	ret = btrfs_insert_empty_item(trans, root, path, &key,
166 				      sizeof(struct btrfs_free_space_header));
167 	if (ret < 0) {
168 		btrfs_release_path(path);
169 		return ret;
170 	}
171 	leaf = path->nodes[0];
172 	header = btrfs_item_ptr(leaf, path->slots[0],
173 				struct btrfs_free_space_header);
174 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
175 	btrfs_set_free_space_key(leaf, header, &disk_key);
176 	btrfs_mark_buffer_dirty(leaf);
177 	btrfs_release_path(path);
178 
179 	return 0;
180 }
181 
182 int create_free_space_inode(struct btrfs_root *root,
183 			    struct btrfs_trans_handle *trans,
184 			    struct btrfs_block_group_cache *block_group,
185 			    struct btrfs_path *path)
186 {
187 	int ret;
188 	u64 ino;
189 
190 	ret = btrfs_find_free_objectid(root, &ino);
191 	if (ret < 0)
192 		return ret;
193 
194 	return __create_free_space_inode(root, trans, path, ino,
195 					 block_group->key.objectid);
196 }
197 
198 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
199 				    struct btrfs_trans_handle *trans,
200 				    struct btrfs_path *path,
201 				    struct inode *inode)
202 {
203 	struct btrfs_block_rsv *rsv;
204 	u64 needed_bytes;
205 	loff_t oldsize;
206 	int ret = 0;
207 
208 	rsv = trans->block_rsv;
209 	trans->block_rsv = &root->fs_info->global_block_rsv;
210 
211 	/* 1 for slack space, 1 for updating the inode */
212 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
213 		btrfs_calc_trans_metadata_size(root, 1);
214 
215 	spin_lock(&trans->block_rsv->lock);
216 	if (trans->block_rsv->reserved < needed_bytes) {
217 		spin_unlock(&trans->block_rsv->lock);
218 		trans->block_rsv = rsv;
219 		return -ENOSPC;
220 	}
221 	spin_unlock(&trans->block_rsv->lock);
222 
223 	oldsize = i_size_read(inode);
224 	btrfs_i_size_write(inode, 0);
225 	truncate_pagecache(inode, oldsize, 0);
226 
227 	/*
228 	 * We don't need an orphan item because truncating the free space cache
229 	 * will never be split across transactions.
230 	 */
231 	ret = btrfs_truncate_inode_items(trans, root, inode,
232 					 0, BTRFS_EXTENT_DATA_KEY);
233 
234 	if (ret) {
235 		trans->block_rsv = rsv;
236 		btrfs_abort_transaction(trans, root, ret);
237 		return ret;
238 	}
239 
240 	ret = btrfs_update_inode(trans, root, inode);
241 	if (ret)
242 		btrfs_abort_transaction(trans, root, ret);
243 	trans->block_rsv = rsv;
244 
245 	return ret;
246 }
247 
248 static int readahead_cache(struct inode *inode)
249 {
250 	struct file_ra_state *ra;
251 	unsigned long last_index;
252 
253 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
254 	if (!ra)
255 		return -ENOMEM;
256 
257 	file_ra_state_init(ra, inode->i_mapping);
258 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
259 
260 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
261 
262 	kfree(ra);
263 
264 	return 0;
265 }
266 
267 struct io_ctl {
268 	void *cur, *orig;
269 	struct page *page;
270 	struct page **pages;
271 	struct btrfs_root *root;
272 	unsigned long size;
273 	int index;
274 	int num_pages;
275 	unsigned check_crcs:1;
276 };
277 
278 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
279 		       struct btrfs_root *root)
280 {
281 	memset(io_ctl, 0, sizeof(struct io_ctl));
282 	io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
283 		PAGE_CACHE_SHIFT;
284 	io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
285 				GFP_NOFS);
286 	if (!io_ctl->pages)
287 		return -ENOMEM;
288 	io_ctl->root = root;
289 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
290 		io_ctl->check_crcs = 1;
291 	return 0;
292 }
293 
294 static void io_ctl_free(struct io_ctl *io_ctl)
295 {
296 	kfree(io_ctl->pages);
297 }
298 
299 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
300 {
301 	if (io_ctl->cur) {
302 		kunmap(io_ctl->page);
303 		io_ctl->cur = NULL;
304 		io_ctl->orig = NULL;
305 	}
306 }
307 
308 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
309 {
310 	BUG_ON(io_ctl->index >= io_ctl->num_pages);
311 	io_ctl->page = io_ctl->pages[io_ctl->index++];
312 	io_ctl->cur = kmap(io_ctl->page);
313 	io_ctl->orig = io_ctl->cur;
314 	io_ctl->size = PAGE_CACHE_SIZE;
315 	if (clear)
316 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
317 }
318 
319 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
320 {
321 	int i;
322 
323 	io_ctl_unmap_page(io_ctl);
324 
325 	for (i = 0; i < io_ctl->num_pages; i++) {
326 		if (io_ctl->pages[i]) {
327 			ClearPageChecked(io_ctl->pages[i]);
328 			unlock_page(io_ctl->pages[i]);
329 			page_cache_release(io_ctl->pages[i]);
330 		}
331 	}
332 }
333 
334 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
335 				int uptodate)
336 {
337 	struct page *page;
338 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
339 	int i;
340 
341 	for (i = 0; i < io_ctl->num_pages; i++) {
342 		page = find_or_create_page(inode->i_mapping, i, mask);
343 		if (!page) {
344 			io_ctl_drop_pages(io_ctl);
345 			return -ENOMEM;
346 		}
347 		io_ctl->pages[i] = page;
348 		if (uptodate && !PageUptodate(page)) {
349 			btrfs_readpage(NULL, page);
350 			lock_page(page);
351 			if (!PageUptodate(page)) {
352 				printk(KERN_ERR "btrfs: error reading free "
353 				       "space cache\n");
354 				io_ctl_drop_pages(io_ctl);
355 				return -EIO;
356 			}
357 		}
358 	}
359 
360 	for (i = 0; i < io_ctl->num_pages; i++) {
361 		clear_page_dirty_for_io(io_ctl->pages[i]);
362 		set_page_extent_mapped(io_ctl->pages[i]);
363 	}
364 
365 	return 0;
366 }
367 
368 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
369 {
370 	__le64 *val;
371 
372 	io_ctl_map_page(io_ctl, 1);
373 
374 	/*
375 	 * Skip the csum areas.  If we don't check crcs then we just have a
376 	 * 64bit chunk at the front of the first page.
377 	 */
378 	if (io_ctl->check_crcs) {
379 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
380 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
381 	} else {
382 		io_ctl->cur += sizeof(u64);
383 		io_ctl->size -= sizeof(u64) * 2;
384 	}
385 
386 	val = io_ctl->cur;
387 	*val = cpu_to_le64(generation);
388 	io_ctl->cur += sizeof(u64);
389 }
390 
391 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
392 {
393 	__le64 *gen;
394 
395 	/*
396 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
397 	 * chunk at the front of the first page.
398 	 */
399 	if (io_ctl->check_crcs) {
400 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
401 		io_ctl->size -= sizeof(u64) +
402 			(sizeof(u32) * io_ctl->num_pages);
403 	} else {
404 		io_ctl->cur += sizeof(u64);
405 		io_ctl->size -= sizeof(u64) * 2;
406 	}
407 
408 	gen = io_ctl->cur;
409 	if (le64_to_cpu(*gen) != generation) {
410 		printk_ratelimited(KERN_ERR "btrfs: space cache generation "
411 				   "(%Lu) does not match inode (%Lu)\n", *gen,
412 				   generation);
413 		io_ctl_unmap_page(io_ctl);
414 		return -EIO;
415 	}
416 	io_ctl->cur += sizeof(u64);
417 	return 0;
418 }
419 
420 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
421 {
422 	u32 *tmp;
423 	u32 crc = ~(u32)0;
424 	unsigned offset = 0;
425 
426 	if (!io_ctl->check_crcs) {
427 		io_ctl_unmap_page(io_ctl);
428 		return;
429 	}
430 
431 	if (index == 0)
432 		offset = sizeof(u32) * io_ctl->num_pages;
433 
434 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
435 			      PAGE_CACHE_SIZE - offset);
436 	btrfs_csum_final(crc, (char *)&crc);
437 	io_ctl_unmap_page(io_ctl);
438 	tmp = kmap(io_ctl->pages[0]);
439 	tmp += index;
440 	*tmp = crc;
441 	kunmap(io_ctl->pages[0]);
442 }
443 
444 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
445 {
446 	u32 *tmp, val;
447 	u32 crc = ~(u32)0;
448 	unsigned offset = 0;
449 
450 	if (!io_ctl->check_crcs) {
451 		io_ctl_map_page(io_ctl, 0);
452 		return 0;
453 	}
454 
455 	if (index == 0)
456 		offset = sizeof(u32) * io_ctl->num_pages;
457 
458 	tmp = kmap(io_ctl->pages[0]);
459 	tmp += index;
460 	val = *tmp;
461 	kunmap(io_ctl->pages[0]);
462 
463 	io_ctl_map_page(io_ctl, 0);
464 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
465 			      PAGE_CACHE_SIZE - offset);
466 	btrfs_csum_final(crc, (char *)&crc);
467 	if (val != crc) {
468 		printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
469 				   "space cache\n");
470 		io_ctl_unmap_page(io_ctl);
471 		return -EIO;
472 	}
473 
474 	return 0;
475 }
476 
477 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
478 			    void *bitmap)
479 {
480 	struct btrfs_free_space_entry *entry;
481 
482 	if (!io_ctl->cur)
483 		return -ENOSPC;
484 
485 	entry = io_ctl->cur;
486 	entry->offset = cpu_to_le64(offset);
487 	entry->bytes = cpu_to_le64(bytes);
488 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
489 		BTRFS_FREE_SPACE_EXTENT;
490 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
491 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
492 
493 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
494 		return 0;
495 
496 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
497 
498 	/* No more pages to map */
499 	if (io_ctl->index >= io_ctl->num_pages)
500 		return 0;
501 
502 	/* map the next page */
503 	io_ctl_map_page(io_ctl, 1);
504 	return 0;
505 }
506 
507 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
508 {
509 	if (!io_ctl->cur)
510 		return -ENOSPC;
511 
512 	/*
513 	 * If we aren't at the start of the current page, unmap this one and
514 	 * map the next one if there is any left.
515 	 */
516 	if (io_ctl->cur != io_ctl->orig) {
517 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
518 		if (io_ctl->index >= io_ctl->num_pages)
519 			return -ENOSPC;
520 		io_ctl_map_page(io_ctl, 0);
521 	}
522 
523 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
524 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
525 	if (io_ctl->index < io_ctl->num_pages)
526 		io_ctl_map_page(io_ctl, 0);
527 	return 0;
528 }
529 
530 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
531 {
532 	/*
533 	 * If we're not on the boundary we know we've modified the page and we
534 	 * need to crc the page.
535 	 */
536 	if (io_ctl->cur != io_ctl->orig)
537 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 	else
539 		io_ctl_unmap_page(io_ctl);
540 
541 	while (io_ctl->index < io_ctl->num_pages) {
542 		io_ctl_map_page(io_ctl, 1);
543 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
544 	}
545 }
546 
547 static int io_ctl_read_entry(struct io_ctl *io_ctl,
548 			    struct btrfs_free_space *entry, u8 *type)
549 {
550 	struct btrfs_free_space_entry *e;
551 	int ret;
552 
553 	if (!io_ctl->cur) {
554 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
555 		if (ret)
556 			return ret;
557 	}
558 
559 	e = io_ctl->cur;
560 	entry->offset = le64_to_cpu(e->offset);
561 	entry->bytes = le64_to_cpu(e->bytes);
562 	*type = e->type;
563 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
564 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
565 
566 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
567 		return 0;
568 
569 	io_ctl_unmap_page(io_ctl);
570 
571 	return 0;
572 }
573 
574 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
575 			      struct btrfs_free_space *entry)
576 {
577 	int ret;
578 
579 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
580 	if (ret)
581 		return ret;
582 
583 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
584 	io_ctl_unmap_page(io_ctl);
585 
586 	return 0;
587 }
588 
589 /*
590  * Since we attach pinned extents after the fact we can have contiguous sections
591  * of free space that are split up in entries.  This poses a problem with the
592  * tree logging stuff since it could have allocated across what appears to be 2
593  * entries since we would have merged the entries when adding the pinned extents
594  * back to the free space cache.  So run through the space cache that we just
595  * loaded and merge contiguous entries.  This will make the log replay stuff not
596  * blow up and it will make for nicer allocator behavior.
597  */
598 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
599 {
600 	struct btrfs_free_space *e, *prev = NULL;
601 	struct rb_node *n;
602 
603 again:
604 	spin_lock(&ctl->tree_lock);
605 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
606 		e = rb_entry(n, struct btrfs_free_space, offset_index);
607 		if (!prev)
608 			goto next;
609 		if (e->bitmap || prev->bitmap)
610 			goto next;
611 		if (prev->offset + prev->bytes == e->offset) {
612 			unlink_free_space(ctl, prev);
613 			unlink_free_space(ctl, e);
614 			prev->bytes += e->bytes;
615 			kmem_cache_free(btrfs_free_space_cachep, e);
616 			link_free_space(ctl, prev);
617 			prev = NULL;
618 			spin_unlock(&ctl->tree_lock);
619 			goto again;
620 		}
621 next:
622 		prev = e;
623 	}
624 	spin_unlock(&ctl->tree_lock);
625 }
626 
627 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
628 			    struct btrfs_free_space_ctl *ctl,
629 			    struct btrfs_path *path, u64 offset)
630 {
631 	struct btrfs_free_space_header *header;
632 	struct extent_buffer *leaf;
633 	struct io_ctl io_ctl;
634 	struct btrfs_key key;
635 	struct btrfs_free_space *e, *n;
636 	struct list_head bitmaps;
637 	u64 num_entries;
638 	u64 num_bitmaps;
639 	u64 generation;
640 	u8 type;
641 	int ret = 0;
642 
643 	INIT_LIST_HEAD(&bitmaps);
644 
645 	/* Nothing in the space cache, goodbye */
646 	if (!i_size_read(inode))
647 		return 0;
648 
649 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
650 	key.offset = offset;
651 	key.type = 0;
652 
653 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
654 	if (ret < 0)
655 		return 0;
656 	else if (ret > 0) {
657 		btrfs_release_path(path);
658 		return 0;
659 	}
660 
661 	ret = -1;
662 
663 	leaf = path->nodes[0];
664 	header = btrfs_item_ptr(leaf, path->slots[0],
665 				struct btrfs_free_space_header);
666 	num_entries = btrfs_free_space_entries(leaf, header);
667 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
668 	generation = btrfs_free_space_generation(leaf, header);
669 	btrfs_release_path(path);
670 
671 	if (BTRFS_I(inode)->generation != generation) {
672 		printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
673 		       " not match free space cache generation (%llu)\n",
674 		       (unsigned long long)BTRFS_I(inode)->generation,
675 		       (unsigned long long)generation);
676 		return 0;
677 	}
678 
679 	if (!num_entries)
680 		return 0;
681 
682 	ret = io_ctl_init(&io_ctl, inode, root);
683 	if (ret)
684 		return ret;
685 
686 	ret = readahead_cache(inode);
687 	if (ret)
688 		goto out;
689 
690 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
691 	if (ret)
692 		goto out;
693 
694 	ret = io_ctl_check_crc(&io_ctl, 0);
695 	if (ret)
696 		goto free_cache;
697 
698 	ret = io_ctl_check_generation(&io_ctl, generation);
699 	if (ret)
700 		goto free_cache;
701 
702 	while (num_entries) {
703 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
704 				      GFP_NOFS);
705 		if (!e)
706 			goto free_cache;
707 
708 		ret = io_ctl_read_entry(&io_ctl, e, &type);
709 		if (ret) {
710 			kmem_cache_free(btrfs_free_space_cachep, e);
711 			goto free_cache;
712 		}
713 
714 		if (!e->bytes) {
715 			kmem_cache_free(btrfs_free_space_cachep, e);
716 			goto free_cache;
717 		}
718 
719 		if (type == BTRFS_FREE_SPACE_EXTENT) {
720 			spin_lock(&ctl->tree_lock);
721 			ret = link_free_space(ctl, e);
722 			spin_unlock(&ctl->tree_lock);
723 			if (ret) {
724 				printk(KERN_ERR "Duplicate entries in "
725 				       "free space cache, dumping\n");
726 				kmem_cache_free(btrfs_free_space_cachep, e);
727 				goto free_cache;
728 			}
729 		} else {
730 			BUG_ON(!num_bitmaps);
731 			num_bitmaps--;
732 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
733 			if (!e->bitmap) {
734 				kmem_cache_free(
735 					btrfs_free_space_cachep, e);
736 				goto free_cache;
737 			}
738 			spin_lock(&ctl->tree_lock);
739 			ret = link_free_space(ctl, e);
740 			ctl->total_bitmaps++;
741 			ctl->op->recalc_thresholds(ctl);
742 			spin_unlock(&ctl->tree_lock);
743 			if (ret) {
744 				printk(KERN_ERR "Duplicate entries in "
745 				       "free space cache, dumping\n");
746 				kmem_cache_free(btrfs_free_space_cachep, e);
747 				goto free_cache;
748 			}
749 			list_add_tail(&e->list, &bitmaps);
750 		}
751 
752 		num_entries--;
753 	}
754 
755 	io_ctl_unmap_page(&io_ctl);
756 
757 	/*
758 	 * We add the bitmaps at the end of the entries in order that
759 	 * the bitmap entries are added to the cache.
760 	 */
761 	list_for_each_entry_safe(e, n, &bitmaps, list) {
762 		list_del_init(&e->list);
763 		ret = io_ctl_read_bitmap(&io_ctl, e);
764 		if (ret)
765 			goto free_cache;
766 	}
767 
768 	io_ctl_drop_pages(&io_ctl);
769 	merge_space_tree(ctl);
770 	ret = 1;
771 out:
772 	io_ctl_free(&io_ctl);
773 	return ret;
774 free_cache:
775 	io_ctl_drop_pages(&io_ctl);
776 	__btrfs_remove_free_space_cache(ctl);
777 	goto out;
778 }
779 
780 int load_free_space_cache(struct btrfs_fs_info *fs_info,
781 			  struct btrfs_block_group_cache *block_group)
782 {
783 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
784 	struct btrfs_root *root = fs_info->tree_root;
785 	struct inode *inode;
786 	struct btrfs_path *path;
787 	int ret = 0;
788 	bool matched;
789 	u64 used = btrfs_block_group_used(&block_group->item);
790 
791 	/*
792 	 * If this block group has been marked to be cleared for one reason or
793 	 * another then we can't trust the on disk cache, so just return.
794 	 */
795 	spin_lock(&block_group->lock);
796 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
797 		spin_unlock(&block_group->lock);
798 		return 0;
799 	}
800 	spin_unlock(&block_group->lock);
801 
802 	path = btrfs_alloc_path();
803 	if (!path)
804 		return 0;
805 	path->search_commit_root = 1;
806 	path->skip_locking = 1;
807 
808 	inode = lookup_free_space_inode(root, block_group, path);
809 	if (IS_ERR(inode)) {
810 		btrfs_free_path(path);
811 		return 0;
812 	}
813 
814 	/* We may have converted the inode and made the cache invalid. */
815 	spin_lock(&block_group->lock);
816 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
817 		spin_unlock(&block_group->lock);
818 		btrfs_free_path(path);
819 		goto out;
820 	}
821 	spin_unlock(&block_group->lock);
822 
823 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
824 				      path, block_group->key.objectid);
825 	btrfs_free_path(path);
826 	if (ret <= 0)
827 		goto out;
828 
829 	spin_lock(&ctl->tree_lock);
830 	matched = (ctl->free_space == (block_group->key.offset - used -
831 				       block_group->bytes_super));
832 	spin_unlock(&ctl->tree_lock);
833 
834 	if (!matched) {
835 		__btrfs_remove_free_space_cache(ctl);
836 		printk(KERN_ERR "block group %llu has an wrong amount of free "
837 		       "space\n", block_group->key.objectid);
838 		ret = -1;
839 	}
840 out:
841 	if (ret < 0) {
842 		/* This cache is bogus, make sure it gets cleared */
843 		spin_lock(&block_group->lock);
844 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
845 		spin_unlock(&block_group->lock);
846 		ret = 0;
847 
848 		printk(KERN_ERR "btrfs: failed to load free space cache "
849 		       "for block group %llu\n", block_group->key.objectid);
850 	}
851 
852 	iput(inode);
853 	return ret;
854 }
855 
856 /**
857  * __btrfs_write_out_cache - write out cached info to an inode
858  * @root - the root the inode belongs to
859  * @ctl - the free space cache we are going to write out
860  * @block_group - the block_group for this cache if it belongs to a block_group
861  * @trans - the trans handle
862  * @path - the path to use
863  * @offset - the offset for the key we'll insert
864  *
865  * This function writes out a free space cache struct to disk for quick recovery
866  * on mount.  This will return 0 if it was successfull in writing the cache out,
867  * and -1 if it was not.
868  */
869 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
870 			    struct btrfs_free_space_ctl *ctl,
871 			    struct btrfs_block_group_cache *block_group,
872 			    struct btrfs_trans_handle *trans,
873 			    struct btrfs_path *path, u64 offset)
874 {
875 	struct btrfs_free_space_header *header;
876 	struct extent_buffer *leaf;
877 	struct rb_node *node;
878 	struct list_head *pos, *n;
879 	struct extent_state *cached_state = NULL;
880 	struct btrfs_free_cluster *cluster = NULL;
881 	struct extent_io_tree *unpin = NULL;
882 	struct io_ctl io_ctl;
883 	struct list_head bitmap_list;
884 	struct btrfs_key key;
885 	u64 start, extent_start, extent_end, len;
886 	int entries = 0;
887 	int bitmaps = 0;
888 	int ret;
889 	int err = -1;
890 
891 	INIT_LIST_HEAD(&bitmap_list);
892 
893 	if (!i_size_read(inode))
894 		return -1;
895 
896 	ret = io_ctl_init(&io_ctl, inode, root);
897 	if (ret)
898 		return -1;
899 
900 	/* Get the cluster for this block_group if it exists */
901 	if (block_group && !list_empty(&block_group->cluster_list))
902 		cluster = list_entry(block_group->cluster_list.next,
903 				     struct btrfs_free_cluster,
904 				     block_group_list);
905 
906 	/* Lock all pages first so we can lock the extent safely. */
907 	io_ctl_prepare_pages(&io_ctl, inode, 0);
908 
909 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
910 			 0, &cached_state);
911 
912 	node = rb_first(&ctl->free_space_offset);
913 	if (!node && cluster) {
914 		node = rb_first(&cluster->root);
915 		cluster = NULL;
916 	}
917 
918 	/* Make sure we can fit our crcs into the first page */
919 	if (io_ctl.check_crcs &&
920 	    (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
921 		WARN_ON(1);
922 		goto out_nospc;
923 	}
924 
925 	io_ctl_set_generation(&io_ctl, trans->transid);
926 
927 	/* Write out the extent entries */
928 	while (node) {
929 		struct btrfs_free_space *e;
930 
931 		e = rb_entry(node, struct btrfs_free_space, offset_index);
932 		entries++;
933 
934 		ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
935 				       e->bitmap);
936 		if (ret)
937 			goto out_nospc;
938 
939 		if (e->bitmap) {
940 			list_add_tail(&e->list, &bitmap_list);
941 			bitmaps++;
942 		}
943 		node = rb_next(node);
944 		if (!node && cluster) {
945 			node = rb_first(&cluster->root);
946 			cluster = NULL;
947 		}
948 	}
949 
950 	/*
951 	 * We want to add any pinned extents to our free space cache
952 	 * so we don't leak the space
953 	 */
954 
955 	/*
956 	 * We shouldn't have switched the pinned extents yet so this is the
957 	 * right one
958 	 */
959 	unpin = root->fs_info->pinned_extents;
960 
961 	if (block_group)
962 		start = block_group->key.objectid;
963 
964 	while (block_group && (start < block_group->key.objectid +
965 			       block_group->key.offset)) {
966 		ret = find_first_extent_bit(unpin, start,
967 					    &extent_start, &extent_end,
968 					    EXTENT_DIRTY, NULL);
969 		if (ret) {
970 			ret = 0;
971 			break;
972 		}
973 
974 		/* This pinned extent is out of our range */
975 		if (extent_start >= block_group->key.objectid +
976 		    block_group->key.offset)
977 			break;
978 
979 		extent_start = max(extent_start, start);
980 		extent_end = min(block_group->key.objectid +
981 				 block_group->key.offset, extent_end + 1);
982 		len = extent_end - extent_start;
983 
984 		entries++;
985 		ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
986 		if (ret)
987 			goto out_nospc;
988 
989 		start = extent_end;
990 	}
991 
992 	/* Write out the bitmaps */
993 	list_for_each_safe(pos, n, &bitmap_list) {
994 		struct btrfs_free_space *entry =
995 			list_entry(pos, struct btrfs_free_space, list);
996 
997 		ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
998 		if (ret)
999 			goto out_nospc;
1000 		list_del_init(&entry->list);
1001 	}
1002 
1003 	/* Zero out the rest of the pages just to make sure */
1004 	io_ctl_zero_remaining_pages(&io_ctl);
1005 
1006 	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1007 				0, i_size_read(inode), &cached_state);
1008 	io_ctl_drop_pages(&io_ctl);
1009 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1010 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1011 
1012 	if (ret)
1013 		goto out;
1014 
1015 
1016 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1017 
1018 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1019 	key.offset = offset;
1020 	key.type = 0;
1021 
1022 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1023 	if (ret < 0) {
1024 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1025 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1026 				 GFP_NOFS);
1027 		goto out;
1028 	}
1029 	leaf = path->nodes[0];
1030 	if (ret > 0) {
1031 		struct btrfs_key found_key;
1032 		BUG_ON(!path->slots[0]);
1033 		path->slots[0]--;
1034 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1035 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1036 		    found_key.offset != offset) {
1037 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1038 					 inode->i_size - 1,
1039 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1040 					 NULL, GFP_NOFS);
1041 			btrfs_release_path(path);
1042 			goto out;
1043 		}
1044 	}
1045 
1046 	BTRFS_I(inode)->generation = trans->transid;
1047 	header = btrfs_item_ptr(leaf, path->slots[0],
1048 				struct btrfs_free_space_header);
1049 	btrfs_set_free_space_entries(leaf, header, entries);
1050 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1051 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1052 	btrfs_mark_buffer_dirty(leaf);
1053 	btrfs_release_path(path);
1054 
1055 	err = 0;
1056 out:
1057 	io_ctl_free(&io_ctl);
1058 	if (err) {
1059 		invalidate_inode_pages2(inode->i_mapping);
1060 		BTRFS_I(inode)->generation = 0;
1061 	}
1062 	btrfs_update_inode(trans, root, inode);
1063 	return err;
1064 
1065 out_nospc:
1066 	list_for_each_safe(pos, n, &bitmap_list) {
1067 		struct btrfs_free_space *entry =
1068 			list_entry(pos, struct btrfs_free_space, list);
1069 		list_del_init(&entry->list);
1070 	}
1071 	io_ctl_drop_pages(&io_ctl);
1072 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1073 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1074 	goto out;
1075 }
1076 
1077 int btrfs_write_out_cache(struct btrfs_root *root,
1078 			  struct btrfs_trans_handle *trans,
1079 			  struct btrfs_block_group_cache *block_group,
1080 			  struct btrfs_path *path)
1081 {
1082 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1083 	struct inode *inode;
1084 	int ret = 0;
1085 
1086 	root = root->fs_info->tree_root;
1087 
1088 	spin_lock(&block_group->lock);
1089 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1090 		spin_unlock(&block_group->lock);
1091 		return 0;
1092 	}
1093 	spin_unlock(&block_group->lock);
1094 
1095 	inode = lookup_free_space_inode(root, block_group, path);
1096 	if (IS_ERR(inode))
1097 		return 0;
1098 
1099 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1100 				      path, block_group->key.objectid);
1101 	if (ret) {
1102 		spin_lock(&block_group->lock);
1103 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1104 		spin_unlock(&block_group->lock);
1105 		ret = 0;
1106 #ifdef DEBUG
1107 		printk(KERN_ERR "btrfs: failed to write free space cache "
1108 		       "for block group %llu\n", block_group->key.objectid);
1109 #endif
1110 	}
1111 
1112 	iput(inode);
1113 	return ret;
1114 }
1115 
1116 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1117 					  u64 offset)
1118 {
1119 	BUG_ON(offset < bitmap_start);
1120 	offset -= bitmap_start;
1121 	return (unsigned long)(div_u64(offset, unit));
1122 }
1123 
1124 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1125 {
1126 	return (unsigned long)(div_u64(bytes, unit));
1127 }
1128 
1129 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1130 				   u64 offset)
1131 {
1132 	u64 bitmap_start;
1133 	u64 bytes_per_bitmap;
1134 
1135 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1136 	bitmap_start = offset - ctl->start;
1137 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1138 	bitmap_start *= bytes_per_bitmap;
1139 	bitmap_start += ctl->start;
1140 
1141 	return bitmap_start;
1142 }
1143 
1144 static int tree_insert_offset(struct rb_root *root, u64 offset,
1145 			      struct rb_node *node, int bitmap)
1146 {
1147 	struct rb_node **p = &root->rb_node;
1148 	struct rb_node *parent = NULL;
1149 	struct btrfs_free_space *info;
1150 
1151 	while (*p) {
1152 		parent = *p;
1153 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1154 
1155 		if (offset < info->offset) {
1156 			p = &(*p)->rb_left;
1157 		} else if (offset > info->offset) {
1158 			p = &(*p)->rb_right;
1159 		} else {
1160 			/*
1161 			 * we could have a bitmap entry and an extent entry
1162 			 * share the same offset.  If this is the case, we want
1163 			 * the extent entry to always be found first if we do a
1164 			 * linear search through the tree, since we want to have
1165 			 * the quickest allocation time, and allocating from an
1166 			 * extent is faster than allocating from a bitmap.  So
1167 			 * if we're inserting a bitmap and we find an entry at
1168 			 * this offset, we want to go right, or after this entry
1169 			 * logically.  If we are inserting an extent and we've
1170 			 * found a bitmap, we want to go left, or before
1171 			 * logically.
1172 			 */
1173 			if (bitmap) {
1174 				if (info->bitmap) {
1175 					WARN_ON_ONCE(1);
1176 					return -EEXIST;
1177 				}
1178 				p = &(*p)->rb_right;
1179 			} else {
1180 				if (!info->bitmap) {
1181 					WARN_ON_ONCE(1);
1182 					return -EEXIST;
1183 				}
1184 				p = &(*p)->rb_left;
1185 			}
1186 		}
1187 	}
1188 
1189 	rb_link_node(node, parent, p);
1190 	rb_insert_color(node, root);
1191 
1192 	return 0;
1193 }
1194 
1195 /*
1196  * searches the tree for the given offset.
1197  *
1198  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1199  * want a section that has at least bytes size and comes at or after the given
1200  * offset.
1201  */
1202 static struct btrfs_free_space *
1203 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1204 		   u64 offset, int bitmap_only, int fuzzy)
1205 {
1206 	struct rb_node *n = ctl->free_space_offset.rb_node;
1207 	struct btrfs_free_space *entry, *prev = NULL;
1208 
1209 	/* find entry that is closest to the 'offset' */
1210 	while (1) {
1211 		if (!n) {
1212 			entry = NULL;
1213 			break;
1214 		}
1215 
1216 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1217 		prev = entry;
1218 
1219 		if (offset < entry->offset)
1220 			n = n->rb_left;
1221 		else if (offset > entry->offset)
1222 			n = n->rb_right;
1223 		else
1224 			break;
1225 	}
1226 
1227 	if (bitmap_only) {
1228 		if (!entry)
1229 			return NULL;
1230 		if (entry->bitmap)
1231 			return entry;
1232 
1233 		/*
1234 		 * bitmap entry and extent entry may share same offset,
1235 		 * in that case, bitmap entry comes after extent entry.
1236 		 */
1237 		n = rb_next(n);
1238 		if (!n)
1239 			return NULL;
1240 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1241 		if (entry->offset != offset)
1242 			return NULL;
1243 
1244 		WARN_ON(!entry->bitmap);
1245 		return entry;
1246 	} else if (entry) {
1247 		if (entry->bitmap) {
1248 			/*
1249 			 * if previous extent entry covers the offset,
1250 			 * we should return it instead of the bitmap entry
1251 			 */
1252 			n = rb_prev(&entry->offset_index);
1253 			if (n) {
1254 				prev = rb_entry(n, struct btrfs_free_space,
1255 						offset_index);
1256 				if (!prev->bitmap &&
1257 				    prev->offset + prev->bytes > offset)
1258 					entry = prev;
1259 			}
1260 		}
1261 		return entry;
1262 	}
1263 
1264 	if (!prev)
1265 		return NULL;
1266 
1267 	/* find last entry before the 'offset' */
1268 	entry = prev;
1269 	if (entry->offset > offset) {
1270 		n = rb_prev(&entry->offset_index);
1271 		if (n) {
1272 			entry = rb_entry(n, struct btrfs_free_space,
1273 					offset_index);
1274 			BUG_ON(entry->offset > offset);
1275 		} else {
1276 			if (fuzzy)
1277 				return entry;
1278 			else
1279 				return NULL;
1280 		}
1281 	}
1282 
1283 	if (entry->bitmap) {
1284 		n = rb_prev(&entry->offset_index);
1285 		if (n) {
1286 			prev = rb_entry(n, struct btrfs_free_space,
1287 					offset_index);
1288 			if (!prev->bitmap &&
1289 			    prev->offset + prev->bytes > offset)
1290 				return prev;
1291 		}
1292 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1293 			return entry;
1294 	} else if (entry->offset + entry->bytes > offset)
1295 		return entry;
1296 
1297 	if (!fuzzy)
1298 		return NULL;
1299 
1300 	while (1) {
1301 		if (entry->bitmap) {
1302 			if (entry->offset + BITS_PER_BITMAP *
1303 			    ctl->unit > offset)
1304 				break;
1305 		} else {
1306 			if (entry->offset + entry->bytes > offset)
1307 				break;
1308 		}
1309 
1310 		n = rb_next(&entry->offset_index);
1311 		if (!n)
1312 			return NULL;
1313 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1314 	}
1315 	return entry;
1316 }
1317 
1318 static inline void
1319 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1320 		    struct btrfs_free_space *info)
1321 {
1322 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1323 	ctl->free_extents--;
1324 }
1325 
1326 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1327 			      struct btrfs_free_space *info)
1328 {
1329 	__unlink_free_space(ctl, info);
1330 	ctl->free_space -= info->bytes;
1331 }
1332 
1333 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1334 			   struct btrfs_free_space *info)
1335 {
1336 	int ret = 0;
1337 
1338 	BUG_ON(!info->bitmap && !info->bytes);
1339 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1340 				 &info->offset_index, (info->bitmap != NULL));
1341 	if (ret)
1342 		return ret;
1343 
1344 	ctl->free_space += info->bytes;
1345 	ctl->free_extents++;
1346 	return ret;
1347 }
1348 
1349 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1350 {
1351 	struct btrfs_block_group_cache *block_group = ctl->private;
1352 	u64 max_bytes;
1353 	u64 bitmap_bytes;
1354 	u64 extent_bytes;
1355 	u64 size = block_group->key.offset;
1356 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1357 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1358 
1359 	max_bitmaps = max(max_bitmaps, 1);
1360 
1361 	BUG_ON(ctl->total_bitmaps > max_bitmaps);
1362 
1363 	/*
1364 	 * The goal is to keep the total amount of memory used per 1gb of space
1365 	 * at or below 32k, so we need to adjust how much memory we allow to be
1366 	 * used by extent based free space tracking
1367 	 */
1368 	if (size < 1024 * 1024 * 1024)
1369 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1370 	else
1371 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1372 			div64_u64(size, 1024 * 1024 * 1024);
1373 
1374 	/*
1375 	 * we want to account for 1 more bitmap than what we have so we can make
1376 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1377 	 * we add more bitmaps.
1378 	 */
1379 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1380 
1381 	if (bitmap_bytes >= max_bytes) {
1382 		ctl->extents_thresh = 0;
1383 		return;
1384 	}
1385 
1386 	/*
1387 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1388 	 * bytes we can have, or whatever is less than that.
1389 	 */
1390 	extent_bytes = max_bytes - bitmap_bytes;
1391 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1392 
1393 	ctl->extents_thresh =
1394 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1395 }
1396 
1397 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1398 				       struct btrfs_free_space *info,
1399 				       u64 offset, u64 bytes)
1400 {
1401 	unsigned long start, count;
1402 
1403 	start = offset_to_bit(info->offset, ctl->unit, offset);
1404 	count = bytes_to_bits(bytes, ctl->unit);
1405 	BUG_ON(start + count > BITS_PER_BITMAP);
1406 
1407 	bitmap_clear(info->bitmap, start, count);
1408 
1409 	info->bytes -= bytes;
1410 }
1411 
1412 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1413 			      struct btrfs_free_space *info, u64 offset,
1414 			      u64 bytes)
1415 {
1416 	__bitmap_clear_bits(ctl, info, offset, bytes);
1417 	ctl->free_space -= bytes;
1418 }
1419 
1420 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1421 			    struct btrfs_free_space *info, u64 offset,
1422 			    u64 bytes)
1423 {
1424 	unsigned long start, count;
1425 
1426 	start = offset_to_bit(info->offset, ctl->unit, offset);
1427 	count = bytes_to_bits(bytes, ctl->unit);
1428 	BUG_ON(start + count > BITS_PER_BITMAP);
1429 
1430 	bitmap_set(info->bitmap, start, count);
1431 
1432 	info->bytes += bytes;
1433 	ctl->free_space += bytes;
1434 }
1435 
1436 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1437 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1438 			 u64 *bytes)
1439 {
1440 	unsigned long found_bits = 0;
1441 	unsigned long bits, i;
1442 	unsigned long next_zero;
1443 
1444 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1445 			  max_t(u64, *offset, bitmap_info->offset));
1446 	bits = bytes_to_bits(*bytes, ctl->unit);
1447 
1448 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1449 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1450 					       BITS_PER_BITMAP, i);
1451 		if ((next_zero - i) >= bits) {
1452 			found_bits = next_zero - i;
1453 			break;
1454 		}
1455 		i = next_zero;
1456 	}
1457 
1458 	if (found_bits) {
1459 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1460 		*bytes = (u64)(found_bits) * ctl->unit;
1461 		return 0;
1462 	}
1463 
1464 	return -1;
1465 }
1466 
1467 static struct btrfs_free_space *
1468 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1469 		unsigned long align)
1470 {
1471 	struct btrfs_free_space *entry;
1472 	struct rb_node *node;
1473 	u64 ctl_off;
1474 	u64 tmp;
1475 	u64 align_off;
1476 	int ret;
1477 
1478 	if (!ctl->free_space_offset.rb_node)
1479 		return NULL;
1480 
1481 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1482 	if (!entry)
1483 		return NULL;
1484 
1485 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1486 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1487 		if (entry->bytes < *bytes)
1488 			continue;
1489 
1490 		/* make sure the space returned is big enough
1491 		 * to match our requested alignment
1492 		 */
1493 		if (*bytes >= align) {
1494 			ctl_off = entry->offset - ctl->start;
1495 			tmp = ctl_off + align - 1;;
1496 			do_div(tmp, align);
1497 			tmp = tmp * align + ctl->start;
1498 			align_off = tmp - entry->offset;
1499 		} else {
1500 			align_off = 0;
1501 			tmp = entry->offset;
1502 		}
1503 
1504 		if (entry->bytes < *bytes + align_off)
1505 			continue;
1506 
1507 		if (entry->bitmap) {
1508 			ret = search_bitmap(ctl, entry, &tmp, bytes);
1509 			if (!ret) {
1510 				*offset = tmp;
1511 				return entry;
1512 			}
1513 			continue;
1514 		}
1515 
1516 		*offset = tmp;
1517 		*bytes = entry->bytes - align_off;
1518 		return entry;
1519 	}
1520 
1521 	return NULL;
1522 }
1523 
1524 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1525 			   struct btrfs_free_space *info, u64 offset)
1526 {
1527 	info->offset = offset_to_bitmap(ctl, offset);
1528 	info->bytes = 0;
1529 	INIT_LIST_HEAD(&info->list);
1530 	link_free_space(ctl, info);
1531 	ctl->total_bitmaps++;
1532 
1533 	ctl->op->recalc_thresholds(ctl);
1534 }
1535 
1536 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1537 			struct btrfs_free_space *bitmap_info)
1538 {
1539 	unlink_free_space(ctl, bitmap_info);
1540 	kfree(bitmap_info->bitmap);
1541 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1542 	ctl->total_bitmaps--;
1543 	ctl->op->recalc_thresholds(ctl);
1544 }
1545 
1546 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1547 			      struct btrfs_free_space *bitmap_info,
1548 			      u64 *offset, u64 *bytes)
1549 {
1550 	u64 end;
1551 	u64 search_start, search_bytes;
1552 	int ret;
1553 
1554 again:
1555 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1556 
1557 	/*
1558 	 * We need to search for bits in this bitmap.  We could only cover some
1559 	 * of the extent in this bitmap thanks to how we add space, so we need
1560 	 * to search for as much as it as we can and clear that amount, and then
1561 	 * go searching for the next bit.
1562 	 */
1563 	search_start = *offset;
1564 	search_bytes = ctl->unit;
1565 	search_bytes = min(search_bytes, end - search_start + 1);
1566 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1567 	BUG_ON(ret < 0 || search_start != *offset);
1568 
1569 	/* We may have found more bits than what we need */
1570 	search_bytes = min(search_bytes, *bytes);
1571 
1572 	/* Cannot clear past the end of the bitmap */
1573 	search_bytes = min(search_bytes, end - search_start + 1);
1574 
1575 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1576 	*offset += search_bytes;
1577 	*bytes -= search_bytes;
1578 
1579 	if (*bytes) {
1580 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1581 		if (!bitmap_info->bytes)
1582 			free_bitmap(ctl, bitmap_info);
1583 
1584 		/*
1585 		 * no entry after this bitmap, but we still have bytes to
1586 		 * remove, so something has gone wrong.
1587 		 */
1588 		if (!next)
1589 			return -EINVAL;
1590 
1591 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1592 				       offset_index);
1593 
1594 		/*
1595 		 * if the next entry isn't a bitmap we need to return to let the
1596 		 * extent stuff do its work.
1597 		 */
1598 		if (!bitmap_info->bitmap)
1599 			return -EAGAIN;
1600 
1601 		/*
1602 		 * Ok the next item is a bitmap, but it may not actually hold
1603 		 * the information for the rest of this free space stuff, so
1604 		 * look for it, and if we don't find it return so we can try
1605 		 * everything over again.
1606 		 */
1607 		search_start = *offset;
1608 		search_bytes = ctl->unit;
1609 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1610 				    &search_bytes);
1611 		if (ret < 0 || search_start != *offset)
1612 			return -EAGAIN;
1613 
1614 		goto again;
1615 	} else if (!bitmap_info->bytes)
1616 		free_bitmap(ctl, bitmap_info);
1617 
1618 	return 0;
1619 }
1620 
1621 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1622 			       struct btrfs_free_space *info, u64 offset,
1623 			       u64 bytes)
1624 {
1625 	u64 bytes_to_set = 0;
1626 	u64 end;
1627 
1628 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1629 
1630 	bytes_to_set = min(end - offset, bytes);
1631 
1632 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1633 
1634 	return bytes_to_set;
1635 
1636 }
1637 
1638 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1639 		      struct btrfs_free_space *info)
1640 {
1641 	struct btrfs_block_group_cache *block_group = ctl->private;
1642 
1643 	/*
1644 	 * If we are below the extents threshold then we can add this as an
1645 	 * extent, and don't have to deal with the bitmap
1646 	 */
1647 	if (ctl->free_extents < ctl->extents_thresh) {
1648 		/*
1649 		 * If this block group has some small extents we don't want to
1650 		 * use up all of our free slots in the cache with them, we want
1651 		 * to reserve them to larger extents, however if we have plent
1652 		 * of cache left then go ahead an dadd them, no sense in adding
1653 		 * the overhead of a bitmap if we don't have to.
1654 		 */
1655 		if (info->bytes <= block_group->sectorsize * 4) {
1656 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1657 				return false;
1658 		} else {
1659 			return false;
1660 		}
1661 	}
1662 
1663 	/*
1664 	 * The original block groups from mkfs can be really small, like 8
1665 	 * megabytes, so don't bother with a bitmap for those entries.  However
1666 	 * some block groups can be smaller than what a bitmap would cover but
1667 	 * are still large enough that they could overflow the 32k memory limit,
1668 	 * so allow those block groups to still be allowed to have a bitmap
1669 	 * entry.
1670 	 */
1671 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1672 		return false;
1673 
1674 	return true;
1675 }
1676 
1677 static struct btrfs_free_space_op free_space_op = {
1678 	.recalc_thresholds	= recalculate_thresholds,
1679 	.use_bitmap		= use_bitmap,
1680 };
1681 
1682 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1683 			      struct btrfs_free_space *info)
1684 {
1685 	struct btrfs_free_space *bitmap_info;
1686 	struct btrfs_block_group_cache *block_group = NULL;
1687 	int added = 0;
1688 	u64 bytes, offset, bytes_added;
1689 	int ret;
1690 
1691 	bytes = info->bytes;
1692 	offset = info->offset;
1693 
1694 	if (!ctl->op->use_bitmap(ctl, info))
1695 		return 0;
1696 
1697 	if (ctl->op == &free_space_op)
1698 		block_group = ctl->private;
1699 again:
1700 	/*
1701 	 * Since we link bitmaps right into the cluster we need to see if we
1702 	 * have a cluster here, and if so and it has our bitmap we need to add
1703 	 * the free space to that bitmap.
1704 	 */
1705 	if (block_group && !list_empty(&block_group->cluster_list)) {
1706 		struct btrfs_free_cluster *cluster;
1707 		struct rb_node *node;
1708 		struct btrfs_free_space *entry;
1709 
1710 		cluster = list_entry(block_group->cluster_list.next,
1711 				     struct btrfs_free_cluster,
1712 				     block_group_list);
1713 		spin_lock(&cluster->lock);
1714 		node = rb_first(&cluster->root);
1715 		if (!node) {
1716 			spin_unlock(&cluster->lock);
1717 			goto no_cluster_bitmap;
1718 		}
1719 
1720 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1721 		if (!entry->bitmap) {
1722 			spin_unlock(&cluster->lock);
1723 			goto no_cluster_bitmap;
1724 		}
1725 
1726 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1727 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1728 							  offset, bytes);
1729 			bytes -= bytes_added;
1730 			offset += bytes_added;
1731 		}
1732 		spin_unlock(&cluster->lock);
1733 		if (!bytes) {
1734 			ret = 1;
1735 			goto out;
1736 		}
1737 	}
1738 
1739 no_cluster_bitmap:
1740 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1741 					 1, 0);
1742 	if (!bitmap_info) {
1743 		BUG_ON(added);
1744 		goto new_bitmap;
1745 	}
1746 
1747 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1748 	bytes -= bytes_added;
1749 	offset += bytes_added;
1750 	added = 0;
1751 
1752 	if (!bytes) {
1753 		ret = 1;
1754 		goto out;
1755 	} else
1756 		goto again;
1757 
1758 new_bitmap:
1759 	if (info && info->bitmap) {
1760 		add_new_bitmap(ctl, info, offset);
1761 		added = 1;
1762 		info = NULL;
1763 		goto again;
1764 	} else {
1765 		spin_unlock(&ctl->tree_lock);
1766 
1767 		/* no pre-allocated info, allocate a new one */
1768 		if (!info) {
1769 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1770 						 GFP_NOFS);
1771 			if (!info) {
1772 				spin_lock(&ctl->tree_lock);
1773 				ret = -ENOMEM;
1774 				goto out;
1775 			}
1776 		}
1777 
1778 		/* allocate the bitmap */
1779 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1780 		spin_lock(&ctl->tree_lock);
1781 		if (!info->bitmap) {
1782 			ret = -ENOMEM;
1783 			goto out;
1784 		}
1785 		goto again;
1786 	}
1787 
1788 out:
1789 	if (info) {
1790 		if (info->bitmap)
1791 			kfree(info->bitmap);
1792 		kmem_cache_free(btrfs_free_space_cachep, info);
1793 	}
1794 
1795 	return ret;
1796 }
1797 
1798 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1799 			  struct btrfs_free_space *info, bool update_stat)
1800 {
1801 	struct btrfs_free_space *left_info;
1802 	struct btrfs_free_space *right_info;
1803 	bool merged = false;
1804 	u64 offset = info->offset;
1805 	u64 bytes = info->bytes;
1806 
1807 	/*
1808 	 * first we want to see if there is free space adjacent to the range we
1809 	 * are adding, if there is remove that struct and add a new one to
1810 	 * cover the entire range
1811 	 */
1812 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1813 	if (right_info && rb_prev(&right_info->offset_index))
1814 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1815 				     struct btrfs_free_space, offset_index);
1816 	else
1817 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1818 
1819 	if (right_info && !right_info->bitmap) {
1820 		if (update_stat)
1821 			unlink_free_space(ctl, right_info);
1822 		else
1823 			__unlink_free_space(ctl, right_info);
1824 		info->bytes += right_info->bytes;
1825 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1826 		merged = true;
1827 	}
1828 
1829 	if (left_info && !left_info->bitmap &&
1830 	    left_info->offset + left_info->bytes == offset) {
1831 		if (update_stat)
1832 			unlink_free_space(ctl, left_info);
1833 		else
1834 			__unlink_free_space(ctl, left_info);
1835 		info->offset = left_info->offset;
1836 		info->bytes += left_info->bytes;
1837 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1838 		merged = true;
1839 	}
1840 
1841 	return merged;
1842 }
1843 
1844 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1845 			   u64 offset, u64 bytes)
1846 {
1847 	struct btrfs_free_space *info;
1848 	int ret = 0;
1849 
1850 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1851 	if (!info)
1852 		return -ENOMEM;
1853 
1854 	info->offset = offset;
1855 	info->bytes = bytes;
1856 
1857 	spin_lock(&ctl->tree_lock);
1858 
1859 	if (try_merge_free_space(ctl, info, true))
1860 		goto link;
1861 
1862 	/*
1863 	 * There was no extent directly to the left or right of this new
1864 	 * extent then we know we're going to have to allocate a new extent, so
1865 	 * before we do that see if we need to drop this into a bitmap
1866 	 */
1867 	ret = insert_into_bitmap(ctl, info);
1868 	if (ret < 0) {
1869 		goto out;
1870 	} else if (ret) {
1871 		ret = 0;
1872 		goto out;
1873 	}
1874 link:
1875 	ret = link_free_space(ctl, info);
1876 	if (ret)
1877 		kmem_cache_free(btrfs_free_space_cachep, info);
1878 out:
1879 	spin_unlock(&ctl->tree_lock);
1880 
1881 	if (ret) {
1882 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1883 		BUG_ON(ret == -EEXIST);
1884 	}
1885 
1886 	return ret;
1887 }
1888 
1889 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1890 			    u64 offset, u64 bytes)
1891 {
1892 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1893 	struct btrfs_free_space *info;
1894 	int ret;
1895 	bool re_search = false;
1896 
1897 	spin_lock(&ctl->tree_lock);
1898 
1899 again:
1900 	ret = 0;
1901 	if (!bytes)
1902 		goto out_lock;
1903 
1904 	info = tree_search_offset(ctl, offset, 0, 0);
1905 	if (!info) {
1906 		/*
1907 		 * oops didn't find an extent that matched the space we wanted
1908 		 * to remove, look for a bitmap instead
1909 		 */
1910 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1911 					  1, 0);
1912 		if (!info) {
1913 			/*
1914 			 * If we found a partial bit of our free space in a
1915 			 * bitmap but then couldn't find the other part this may
1916 			 * be a problem, so WARN about it.
1917 			 */
1918 			WARN_ON(re_search);
1919 			goto out_lock;
1920 		}
1921 	}
1922 
1923 	re_search = false;
1924 	if (!info->bitmap) {
1925 		unlink_free_space(ctl, info);
1926 		if (offset == info->offset) {
1927 			u64 to_free = min(bytes, info->bytes);
1928 
1929 			info->bytes -= to_free;
1930 			info->offset += to_free;
1931 			if (info->bytes) {
1932 				ret = link_free_space(ctl, info);
1933 				WARN_ON(ret);
1934 			} else {
1935 				kmem_cache_free(btrfs_free_space_cachep, info);
1936 			}
1937 
1938 			offset += to_free;
1939 			bytes -= to_free;
1940 			goto again;
1941 		} else {
1942 			u64 old_end = info->bytes + info->offset;
1943 
1944 			info->bytes = offset - info->offset;
1945 			ret = link_free_space(ctl, info);
1946 			WARN_ON(ret);
1947 			if (ret)
1948 				goto out_lock;
1949 
1950 			/* Not enough bytes in this entry to satisfy us */
1951 			if (old_end < offset + bytes) {
1952 				bytes -= old_end - offset;
1953 				offset = old_end;
1954 				goto again;
1955 			} else if (old_end == offset + bytes) {
1956 				/* all done */
1957 				goto out_lock;
1958 			}
1959 			spin_unlock(&ctl->tree_lock);
1960 
1961 			ret = btrfs_add_free_space(block_group, offset + bytes,
1962 						   old_end - (offset + bytes));
1963 			WARN_ON(ret);
1964 			goto out;
1965 		}
1966 	}
1967 
1968 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1969 	if (ret == -EAGAIN) {
1970 		re_search = true;
1971 		goto again;
1972 	}
1973 	BUG_ON(ret); /* logic error */
1974 out_lock:
1975 	spin_unlock(&ctl->tree_lock);
1976 out:
1977 	return ret;
1978 }
1979 
1980 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1981 			   u64 bytes)
1982 {
1983 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1984 	struct btrfs_free_space *info;
1985 	struct rb_node *n;
1986 	int count = 0;
1987 
1988 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1989 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1990 		if (info->bytes >= bytes && !block_group->ro)
1991 			count++;
1992 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1993 		       (unsigned long long)info->offset,
1994 		       (unsigned long long)info->bytes,
1995 		       (info->bitmap) ? "yes" : "no");
1996 	}
1997 	printk(KERN_INFO "block group has cluster?: %s\n",
1998 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
1999 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
2000 	       "\n", count);
2001 }
2002 
2003 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2004 {
2005 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2006 
2007 	spin_lock_init(&ctl->tree_lock);
2008 	ctl->unit = block_group->sectorsize;
2009 	ctl->start = block_group->key.objectid;
2010 	ctl->private = block_group;
2011 	ctl->op = &free_space_op;
2012 
2013 	/*
2014 	 * we only want to have 32k of ram per block group for keeping
2015 	 * track of free space, and if we pass 1/2 of that we want to
2016 	 * start converting things over to using bitmaps
2017 	 */
2018 	ctl->extents_thresh = ((1024 * 32) / 2) /
2019 				sizeof(struct btrfs_free_space);
2020 }
2021 
2022 /*
2023  * for a given cluster, put all of its extents back into the free
2024  * space cache.  If the block group passed doesn't match the block group
2025  * pointed to by the cluster, someone else raced in and freed the
2026  * cluster already.  In that case, we just return without changing anything
2027  */
2028 static int
2029 __btrfs_return_cluster_to_free_space(
2030 			     struct btrfs_block_group_cache *block_group,
2031 			     struct btrfs_free_cluster *cluster)
2032 {
2033 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2034 	struct btrfs_free_space *entry;
2035 	struct rb_node *node;
2036 
2037 	spin_lock(&cluster->lock);
2038 	if (cluster->block_group != block_group)
2039 		goto out;
2040 
2041 	cluster->block_group = NULL;
2042 	cluster->window_start = 0;
2043 	list_del_init(&cluster->block_group_list);
2044 
2045 	node = rb_first(&cluster->root);
2046 	while (node) {
2047 		bool bitmap;
2048 
2049 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2050 		node = rb_next(&entry->offset_index);
2051 		rb_erase(&entry->offset_index, &cluster->root);
2052 
2053 		bitmap = (entry->bitmap != NULL);
2054 		if (!bitmap)
2055 			try_merge_free_space(ctl, entry, false);
2056 		tree_insert_offset(&ctl->free_space_offset,
2057 				   entry->offset, &entry->offset_index, bitmap);
2058 	}
2059 	cluster->root = RB_ROOT;
2060 
2061 out:
2062 	spin_unlock(&cluster->lock);
2063 	btrfs_put_block_group(block_group);
2064 	return 0;
2065 }
2066 
2067 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
2068 {
2069 	struct btrfs_free_space *info;
2070 	struct rb_node *node;
2071 
2072 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2073 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2074 		if (!info->bitmap) {
2075 			unlink_free_space(ctl, info);
2076 			kmem_cache_free(btrfs_free_space_cachep, info);
2077 		} else {
2078 			free_bitmap(ctl, info);
2079 		}
2080 		if (need_resched()) {
2081 			spin_unlock(&ctl->tree_lock);
2082 			cond_resched();
2083 			spin_lock(&ctl->tree_lock);
2084 		}
2085 	}
2086 }
2087 
2088 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2089 {
2090 	spin_lock(&ctl->tree_lock);
2091 	__btrfs_remove_free_space_cache_locked(ctl);
2092 	spin_unlock(&ctl->tree_lock);
2093 }
2094 
2095 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2096 {
2097 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2098 	struct btrfs_free_cluster *cluster;
2099 	struct list_head *head;
2100 
2101 	spin_lock(&ctl->tree_lock);
2102 	while ((head = block_group->cluster_list.next) !=
2103 	       &block_group->cluster_list) {
2104 		cluster = list_entry(head, struct btrfs_free_cluster,
2105 				     block_group_list);
2106 
2107 		WARN_ON(cluster->block_group != block_group);
2108 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2109 		if (need_resched()) {
2110 			spin_unlock(&ctl->tree_lock);
2111 			cond_resched();
2112 			spin_lock(&ctl->tree_lock);
2113 		}
2114 	}
2115 	__btrfs_remove_free_space_cache_locked(ctl);
2116 	spin_unlock(&ctl->tree_lock);
2117 
2118 }
2119 
2120 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2121 			       u64 offset, u64 bytes, u64 empty_size)
2122 {
2123 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2124 	struct btrfs_free_space *entry = NULL;
2125 	u64 bytes_search = bytes + empty_size;
2126 	u64 ret = 0;
2127 	u64 align_gap = 0;
2128 	u64 align_gap_len = 0;
2129 
2130 	spin_lock(&ctl->tree_lock);
2131 	entry = find_free_space(ctl, &offset, &bytes_search,
2132 				block_group->full_stripe_len);
2133 	if (!entry)
2134 		goto out;
2135 
2136 	ret = offset;
2137 	if (entry->bitmap) {
2138 		bitmap_clear_bits(ctl, entry, offset, bytes);
2139 		if (!entry->bytes)
2140 			free_bitmap(ctl, entry);
2141 	} else {
2142 
2143 		unlink_free_space(ctl, entry);
2144 		align_gap_len = offset - entry->offset;
2145 		align_gap = entry->offset;
2146 
2147 		entry->offset = offset + bytes;
2148 		WARN_ON(entry->bytes < bytes + align_gap_len);
2149 
2150 		entry->bytes -= bytes + align_gap_len;
2151 		if (!entry->bytes)
2152 			kmem_cache_free(btrfs_free_space_cachep, entry);
2153 		else
2154 			link_free_space(ctl, entry);
2155 	}
2156 
2157 out:
2158 	spin_unlock(&ctl->tree_lock);
2159 
2160 	if (align_gap_len)
2161 		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
2162 	return ret;
2163 }
2164 
2165 /*
2166  * given a cluster, put all of its extents back into the free space
2167  * cache.  If a block group is passed, this function will only free
2168  * a cluster that belongs to the passed block group.
2169  *
2170  * Otherwise, it'll get a reference on the block group pointed to by the
2171  * cluster and remove the cluster from it.
2172  */
2173 int btrfs_return_cluster_to_free_space(
2174 			       struct btrfs_block_group_cache *block_group,
2175 			       struct btrfs_free_cluster *cluster)
2176 {
2177 	struct btrfs_free_space_ctl *ctl;
2178 	int ret;
2179 
2180 	/* first, get a safe pointer to the block group */
2181 	spin_lock(&cluster->lock);
2182 	if (!block_group) {
2183 		block_group = cluster->block_group;
2184 		if (!block_group) {
2185 			spin_unlock(&cluster->lock);
2186 			return 0;
2187 		}
2188 	} else if (cluster->block_group != block_group) {
2189 		/* someone else has already freed it don't redo their work */
2190 		spin_unlock(&cluster->lock);
2191 		return 0;
2192 	}
2193 	atomic_inc(&block_group->count);
2194 	spin_unlock(&cluster->lock);
2195 
2196 	ctl = block_group->free_space_ctl;
2197 
2198 	/* now return any extents the cluster had on it */
2199 	spin_lock(&ctl->tree_lock);
2200 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2201 	spin_unlock(&ctl->tree_lock);
2202 
2203 	/* finally drop our ref */
2204 	btrfs_put_block_group(block_group);
2205 	return ret;
2206 }
2207 
2208 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2209 				   struct btrfs_free_cluster *cluster,
2210 				   struct btrfs_free_space *entry,
2211 				   u64 bytes, u64 min_start)
2212 {
2213 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2214 	int err;
2215 	u64 search_start = cluster->window_start;
2216 	u64 search_bytes = bytes;
2217 	u64 ret = 0;
2218 
2219 	search_start = min_start;
2220 	search_bytes = bytes;
2221 
2222 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2223 	if (err)
2224 		return 0;
2225 
2226 	ret = search_start;
2227 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2228 
2229 	return ret;
2230 }
2231 
2232 /*
2233  * given a cluster, try to allocate 'bytes' from it, returns 0
2234  * if it couldn't find anything suitably large, or a logical disk offset
2235  * if things worked out
2236  */
2237 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2238 			     struct btrfs_free_cluster *cluster, u64 bytes,
2239 			     u64 min_start)
2240 {
2241 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2242 	struct btrfs_free_space *entry = NULL;
2243 	struct rb_node *node;
2244 	u64 ret = 0;
2245 
2246 	spin_lock(&cluster->lock);
2247 	if (bytes > cluster->max_size)
2248 		goto out;
2249 
2250 	if (cluster->block_group != block_group)
2251 		goto out;
2252 
2253 	node = rb_first(&cluster->root);
2254 	if (!node)
2255 		goto out;
2256 
2257 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2258 	while(1) {
2259 		if (entry->bytes < bytes ||
2260 		    (!entry->bitmap && entry->offset < min_start)) {
2261 			node = rb_next(&entry->offset_index);
2262 			if (!node)
2263 				break;
2264 			entry = rb_entry(node, struct btrfs_free_space,
2265 					 offset_index);
2266 			continue;
2267 		}
2268 
2269 		if (entry->bitmap) {
2270 			ret = btrfs_alloc_from_bitmap(block_group,
2271 						      cluster, entry, bytes,
2272 						      cluster->window_start);
2273 			if (ret == 0) {
2274 				node = rb_next(&entry->offset_index);
2275 				if (!node)
2276 					break;
2277 				entry = rb_entry(node, struct btrfs_free_space,
2278 						 offset_index);
2279 				continue;
2280 			}
2281 			cluster->window_start += bytes;
2282 		} else {
2283 			ret = entry->offset;
2284 
2285 			entry->offset += bytes;
2286 			entry->bytes -= bytes;
2287 		}
2288 
2289 		if (entry->bytes == 0)
2290 			rb_erase(&entry->offset_index, &cluster->root);
2291 		break;
2292 	}
2293 out:
2294 	spin_unlock(&cluster->lock);
2295 
2296 	if (!ret)
2297 		return 0;
2298 
2299 	spin_lock(&ctl->tree_lock);
2300 
2301 	ctl->free_space -= bytes;
2302 	if (entry->bytes == 0) {
2303 		ctl->free_extents--;
2304 		if (entry->bitmap) {
2305 			kfree(entry->bitmap);
2306 			ctl->total_bitmaps--;
2307 			ctl->op->recalc_thresholds(ctl);
2308 		}
2309 		kmem_cache_free(btrfs_free_space_cachep, entry);
2310 	}
2311 
2312 	spin_unlock(&ctl->tree_lock);
2313 
2314 	return ret;
2315 }
2316 
2317 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2318 				struct btrfs_free_space *entry,
2319 				struct btrfs_free_cluster *cluster,
2320 				u64 offset, u64 bytes,
2321 				u64 cont1_bytes, u64 min_bytes)
2322 {
2323 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2324 	unsigned long next_zero;
2325 	unsigned long i;
2326 	unsigned long want_bits;
2327 	unsigned long min_bits;
2328 	unsigned long found_bits;
2329 	unsigned long start = 0;
2330 	unsigned long total_found = 0;
2331 	int ret;
2332 
2333 	i = offset_to_bit(entry->offset, ctl->unit,
2334 			  max_t(u64, offset, entry->offset));
2335 	want_bits = bytes_to_bits(bytes, ctl->unit);
2336 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2337 
2338 again:
2339 	found_bits = 0;
2340 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2341 		next_zero = find_next_zero_bit(entry->bitmap,
2342 					       BITS_PER_BITMAP, i);
2343 		if (next_zero - i >= min_bits) {
2344 			found_bits = next_zero - i;
2345 			break;
2346 		}
2347 		i = next_zero;
2348 	}
2349 
2350 	if (!found_bits)
2351 		return -ENOSPC;
2352 
2353 	if (!total_found) {
2354 		start = i;
2355 		cluster->max_size = 0;
2356 	}
2357 
2358 	total_found += found_bits;
2359 
2360 	if (cluster->max_size < found_bits * ctl->unit)
2361 		cluster->max_size = found_bits * ctl->unit;
2362 
2363 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2364 		i = next_zero + 1;
2365 		goto again;
2366 	}
2367 
2368 	cluster->window_start = start * ctl->unit + entry->offset;
2369 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2370 	ret = tree_insert_offset(&cluster->root, entry->offset,
2371 				 &entry->offset_index, 1);
2372 	BUG_ON(ret); /* -EEXIST; Logic error */
2373 
2374 	trace_btrfs_setup_cluster(block_group, cluster,
2375 				  total_found * ctl->unit, 1);
2376 	return 0;
2377 }
2378 
2379 /*
2380  * This searches the block group for just extents to fill the cluster with.
2381  * Try to find a cluster with at least bytes total bytes, at least one
2382  * extent of cont1_bytes, and other clusters of at least min_bytes.
2383  */
2384 static noinline int
2385 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2386 			struct btrfs_free_cluster *cluster,
2387 			struct list_head *bitmaps, u64 offset, u64 bytes,
2388 			u64 cont1_bytes, u64 min_bytes)
2389 {
2390 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2391 	struct btrfs_free_space *first = NULL;
2392 	struct btrfs_free_space *entry = NULL;
2393 	struct btrfs_free_space *last;
2394 	struct rb_node *node;
2395 	u64 window_start;
2396 	u64 window_free;
2397 	u64 max_extent;
2398 	u64 total_size = 0;
2399 
2400 	entry = tree_search_offset(ctl, offset, 0, 1);
2401 	if (!entry)
2402 		return -ENOSPC;
2403 
2404 	/*
2405 	 * We don't want bitmaps, so just move along until we find a normal
2406 	 * extent entry.
2407 	 */
2408 	while (entry->bitmap || entry->bytes < min_bytes) {
2409 		if (entry->bitmap && list_empty(&entry->list))
2410 			list_add_tail(&entry->list, bitmaps);
2411 		node = rb_next(&entry->offset_index);
2412 		if (!node)
2413 			return -ENOSPC;
2414 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2415 	}
2416 
2417 	window_start = entry->offset;
2418 	window_free = entry->bytes;
2419 	max_extent = entry->bytes;
2420 	first = entry;
2421 	last = entry;
2422 
2423 	for (node = rb_next(&entry->offset_index); node;
2424 	     node = rb_next(&entry->offset_index)) {
2425 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2426 
2427 		if (entry->bitmap) {
2428 			if (list_empty(&entry->list))
2429 				list_add_tail(&entry->list, bitmaps);
2430 			continue;
2431 		}
2432 
2433 		if (entry->bytes < min_bytes)
2434 			continue;
2435 
2436 		last = entry;
2437 		window_free += entry->bytes;
2438 		if (entry->bytes > max_extent)
2439 			max_extent = entry->bytes;
2440 	}
2441 
2442 	if (window_free < bytes || max_extent < cont1_bytes)
2443 		return -ENOSPC;
2444 
2445 	cluster->window_start = first->offset;
2446 
2447 	node = &first->offset_index;
2448 
2449 	/*
2450 	 * now we've found our entries, pull them out of the free space
2451 	 * cache and put them into the cluster rbtree
2452 	 */
2453 	do {
2454 		int ret;
2455 
2456 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2457 		node = rb_next(&entry->offset_index);
2458 		if (entry->bitmap || entry->bytes < min_bytes)
2459 			continue;
2460 
2461 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2462 		ret = tree_insert_offset(&cluster->root, entry->offset,
2463 					 &entry->offset_index, 0);
2464 		total_size += entry->bytes;
2465 		BUG_ON(ret); /* -EEXIST; Logic error */
2466 	} while (node && entry != last);
2467 
2468 	cluster->max_size = max_extent;
2469 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2470 	return 0;
2471 }
2472 
2473 /*
2474  * This specifically looks for bitmaps that may work in the cluster, we assume
2475  * that we have already failed to find extents that will work.
2476  */
2477 static noinline int
2478 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2479 		     struct btrfs_free_cluster *cluster,
2480 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2481 		     u64 cont1_bytes, u64 min_bytes)
2482 {
2483 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2484 	struct btrfs_free_space *entry;
2485 	int ret = -ENOSPC;
2486 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2487 
2488 	if (ctl->total_bitmaps == 0)
2489 		return -ENOSPC;
2490 
2491 	/*
2492 	 * The bitmap that covers offset won't be in the list unless offset
2493 	 * is just its start offset.
2494 	 */
2495 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2496 	if (entry->offset != bitmap_offset) {
2497 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2498 		if (entry && list_empty(&entry->list))
2499 			list_add(&entry->list, bitmaps);
2500 	}
2501 
2502 	list_for_each_entry(entry, bitmaps, list) {
2503 		if (entry->bytes < bytes)
2504 			continue;
2505 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2506 					   bytes, cont1_bytes, min_bytes);
2507 		if (!ret)
2508 			return 0;
2509 	}
2510 
2511 	/*
2512 	 * The bitmaps list has all the bitmaps that record free space
2513 	 * starting after offset, so no more search is required.
2514 	 */
2515 	return -ENOSPC;
2516 }
2517 
2518 /*
2519  * here we try to find a cluster of blocks in a block group.  The goal
2520  * is to find at least bytes+empty_size.
2521  * We might not find them all in one contiguous area.
2522  *
2523  * returns zero and sets up cluster if things worked out, otherwise
2524  * it returns -enospc
2525  */
2526 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2527 			     struct btrfs_root *root,
2528 			     struct btrfs_block_group_cache *block_group,
2529 			     struct btrfs_free_cluster *cluster,
2530 			     u64 offset, u64 bytes, u64 empty_size)
2531 {
2532 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2533 	struct btrfs_free_space *entry, *tmp;
2534 	LIST_HEAD(bitmaps);
2535 	u64 min_bytes;
2536 	u64 cont1_bytes;
2537 	int ret;
2538 
2539 	/*
2540 	 * Choose the minimum extent size we'll require for this
2541 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2542 	 * For metadata, allow allocates with smaller extents.  For
2543 	 * data, keep it dense.
2544 	 */
2545 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2546 		cont1_bytes = min_bytes = bytes + empty_size;
2547 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2548 		cont1_bytes = bytes;
2549 		min_bytes = block_group->sectorsize;
2550 	} else {
2551 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2552 		min_bytes = block_group->sectorsize;
2553 	}
2554 
2555 	spin_lock(&ctl->tree_lock);
2556 
2557 	/*
2558 	 * If we know we don't have enough space to make a cluster don't even
2559 	 * bother doing all the work to try and find one.
2560 	 */
2561 	if (ctl->free_space < bytes) {
2562 		spin_unlock(&ctl->tree_lock);
2563 		return -ENOSPC;
2564 	}
2565 
2566 	spin_lock(&cluster->lock);
2567 
2568 	/* someone already found a cluster, hooray */
2569 	if (cluster->block_group) {
2570 		ret = 0;
2571 		goto out;
2572 	}
2573 
2574 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2575 				 min_bytes);
2576 
2577 	INIT_LIST_HEAD(&bitmaps);
2578 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2579 				      bytes + empty_size,
2580 				      cont1_bytes, min_bytes);
2581 	if (ret)
2582 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2583 					   offset, bytes + empty_size,
2584 					   cont1_bytes, min_bytes);
2585 
2586 	/* Clear our temporary list */
2587 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2588 		list_del_init(&entry->list);
2589 
2590 	if (!ret) {
2591 		atomic_inc(&block_group->count);
2592 		list_add_tail(&cluster->block_group_list,
2593 			      &block_group->cluster_list);
2594 		cluster->block_group = block_group;
2595 	} else {
2596 		trace_btrfs_failed_cluster_setup(block_group);
2597 	}
2598 out:
2599 	spin_unlock(&cluster->lock);
2600 	spin_unlock(&ctl->tree_lock);
2601 
2602 	return ret;
2603 }
2604 
2605 /*
2606  * simple code to zero out a cluster
2607  */
2608 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2609 {
2610 	spin_lock_init(&cluster->lock);
2611 	spin_lock_init(&cluster->refill_lock);
2612 	cluster->root = RB_ROOT;
2613 	cluster->max_size = 0;
2614 	INIT_LIST_HEAD(&cluster->block_group_list);
2615 	cluster->block_group = NULL;
2616 }
2617 
2618 static int do_trimming(struct btrfs_block_group_cache *block_group,
2619 		       u64 *total_trimmed, u64 start, u64 bytes,
2620 		       u64 reserved_start, u64 reserved_bytes)
2621 {
2622 	struct btrfs_space_info *space_info = block_group->space_info;
2623 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2624 	int ret;
2625 	int update = 0;
2626 	u64 trimmed = 0;
2627 
2628 	spin_lock(&space_info->lock);
2629 	spin_lock(&block_group->lock);
2630 	if (!block_group->ro) {
2631 		block_group->reserved += reserved_bytes;
2632 		space_info->bytes_reserved += reserved_bytes;
2633 		update = 1;
2634 	}
2635 	spin_unlock(&block_group->lock);
2636 	spin_unlock(&space_info->lock);
2637 
2638 	ret = btrfs_error_discard_extent(fs_info->extent_root,
2639 					 start, bytes, &trimmed);
2640 	if (!ret)
2641 		*total_trimmed += trimmed;
2642 
2643 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2644 
2645 	if (update) {
2646 		spin_lock(&space_info->lock);
2647 		spin_lock(&block_group->lock);
2648 		if (block_group->ro)
2649 			space_info->bytes_readonly += reserved_bytes;
2650 		block_group->reserved -= reserved_bytes;
2651 		space_info->bytes_reserved -= reserved_bytes;
2652 		spin_unlock(&space_info->lock);
2653 		spin_unlock(&block_group->lock);
2654 	}
2655 
2656 	return ret;
2657 }
2658 
2659 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2660 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2661 {
2662 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2663 	struct btrfs_free_space *entry;
2664 	struct rb_node *node;
2665 	int ret = 0;
2666 	u64 extent_start;
2667 	u64 extent_bytes;
2668 	u64 bytes;
2669 
2670 	while (start < end) {
2671 		spin_lock(&ctl->tree_lock);
2672 
2673 		if (ctl->free_space < minlen) {
2674 			spin_unlock(&ctl->tree_lock);
2675 			break;
2676 		}
2677 
2678 		entry = tree_search_offset(ctl, start, 0, 1);
2679 		if (!entry) {
2680 			spin_unlock(&ctl->tree_lock);
2681 			break;
2682 		}
2683 
2684 		/* skip bitmaps */
2685 		while (entry->bitmap) {
2686 			node = rb_next(&entry->offset_index);
2687 			if (!node) {
2688 				spin_unlock(&ctl->tree_lock);
2689 				goto out;
2690 			}
2691 			entry = rb_entry(node, struct btrfs_free_space,
2692 					 offset_index);
2693 		}
2694 
2695 		if (entry->offset >= end) {
2696 			spin_unlock(&ctl->tree_lock);
2697 			break;
2698 		}
2699 
2700 		extent_start = entry->offset;
2701 		extent_bytes = entry->bytes;
2702 		start = max(start, extent_start);
2703 		bytes = min(extent_start + extent_bytes, end) - start;
2704 		if (bytes < minlen) {
2705 			spin_unlock(&ctl->tree_lock);
2706 			goto next;
2707 		}
2708 
2709 		unlink_free_space(ctl, entry);
2710 		kmem_cache_free(btrfs_free_space_cachep, entry);
2711 
2712 		spin_unlock(&ctl->tree_lock);
2713 
2714 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2715 				  extent_start, extent_bytes);
2716 		if (ret)
2717 			break;
2718 next:
2719 		start += bytes;
2720 
2721 		if (fatal_signal_pending(current)) {
2722 			ret = -ERESTARTSYS;
2723 			break;
2724 		}
2725 
2726 		cond_resched();
2727 	}
2728 out:
2729 	return ret;
2730 }
2731 
2732 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2733 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2734 {
2735 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2736 	struct btrfs_free_space *entry;
2737 	int ret = 0;
2738 	int ret2;
2739 	u64 bytes;
2740 	u64 offset = offset_to_bitmap(ctl, start);
2741 
2742 	while (offset < end) {
2743 		bool next_bitmap = false;
2744 
2745 		spin_lock(&ctl->tree_lock);
2746 
2747 		if (ctl->free_space < minlen) {
2748 			spin_unlock(&ctl->tree_lock);
2749 			break;
2750 		}
2751 
2752 		entry = tree_search_offset(ctl, offset, 1, 0);
2753 		if (!entry) {
2754 			spin_unlock(&ctl->tree_lock);
2755 			next_bitmap = true;
2756 			goto next;
2757 		}
2758 
2759 		bytes = minlen;
2760 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
2761 		if (ret2 || start >= end) {
2762 			spin_unlock(&ctl->tree_lock);
2763 			next_bitmap = true;
2764 			goto next;
2765 		}
2766 
2767 		bytes = min(bytes, end - start);
2768 		if (bytes < minlen) {
2769 			spin_unlock(&ctl->tree_lock);
2770 			goto next;
2771 		}
2772 
2773 		bitmap_clear_bits(ctl, entry, start, bytes);
2774 		if (entry->bytes == 0)
2775 			free_bitmap(ctl, entry);
2776 
2777 		spin_unlock(&ctl->tree_lock);
2778 
2779 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2780 				  start, bytes);
2781 		if (ret)
2782 			break;
2783 next:
2784 		if (next_bitmap) {
2785 			offset += BITS_PER_BITMAP * ctl->unit;
2786 		} else {
2787 			start += bytes;
2788 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2789 				offset += BITS_PER_BITMAP * ctl->unit;
2790 		}
2791 
2792 		if (fatal_signal_pending(current)) {
2793 			ret = -ERESTARTSYS;
2794 			break;
2795 		}
2796 
2797 		cond_resched();
2798 	}
2799 
2800 	return ret;
2801 }
2802 
2803 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2804 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2805 {
2806 	int ret;
2807 
2808 	*trimmed = 0;
2809 
2810 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2811 	if (ret)
2812 		return ret;
2813 
2814 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2815 
2816 	return ret;
2817 }
2818 
2819 /*
2820  * Find the left-most item in the cache tree, and then return the
2821  * smallest inode number in the item.
2822  *
2823  * Note: the returned inode number may not be the smallest one in
2824  * the tree, if the left-most item is a bitmap.
2825  */
2826 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2827 {
2828 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2829 	struct btrfs_free_space *entry = NULL;
2830 	u64 ino = 0;
2831 
2832 	spin_lock(&ctl->tree_lock);
2833 
2834 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2835 		goto out;
2836 
2837 	entry = rb_entry(rb_first(&ctl->free_space_offset),
2838 			 struct btrfs_free_space, offset_index);
2839 
2840 	if (!entry->bitmap) {
2841 		ino = entry->offset;
2842 
2843 		unlink_free_space(ctl, entry);
2844 		entry->offset++;
2845 		entry->bytes--;
2846 		if (!entry->bytes)
2847 			kmem_cache_free(btrfs_free_space_cachep, entry);
2848 		else
2849 			link_free_space(ctl, entry);
2850 	} else {
2851 		u64 offset = 0;
2852 		u64 count = 1;
2853 		int ret;
2854 
2855 		ret = search_bitmap(ctl, entry, &offset, &count);
2856 		/* Logic error; Should be empty if it can't find anything */
2857 		BUG_ON(ret);
2858 
2859 		ino = offset;
2860 		bitmap_clear_bits(ctl, entry, offset, 1);
2861 		if (entry->bytes == 0)
2862 			free_bitmap(ctl, entry);
2863 	}
2864 out:
2865 	spin_unlock(&ctl->tree_lock);
2866 
2867 	return ino;
2868 }
2869 
2870 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2871 				    struct btrfs_path *path)
2872 {
2873 	struct inode *inode = NULL;
2874 
2875 	spin_lock(&root->cache_lock);
2876 	if (root->cache_inode)
2877 		inode = igrab(root->cache_inode);
2878 	spin_unlock(&root->cache_lock);
2879 	if (inode)
2880 		return inode;
2881 
2882 	inode = __lookup_free_space_inode(root, path, 0);
2883 	if (IS_ERR(inode))
2884 		return inode;
2885 
2886 	spin_lock(&root->cache_lock);
2887 	if (!btrfs_fs_closing(root->fs_info))
2888 		root->cache_inode = igrab(inode);
2889 	spin_unlock(&root->cache_lock);
2890 
2891 	return inode;
2892 }
2893 
2894 int create_free_ino_inode(struct btrfs_root *root,
2895 			  struct btrfs_trans_handle *trans,
2896 			  struct btrfs_path *path)
2897 {
2898 	return __create_free_space_inode(root, trans, path,
2899 					 BTRFS_FREE_INO_OBJECTID, 0);
2900 }
2901 
2902 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2903 {
2904 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2905 	struct btrfs_path *path;
2906 	struct inode *inode;
2907 	int ret = 0;
2908 	u64 root_gen = btrfs_root_generation(&root->root_item);
2909 
2910 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2911 		return 0;
2912 
2913 	/*
2914 	 * If we're unmounting then just return, since this does a search on the
2915 	 * normal root and not the commit root and we could deadlock.
2916 	 */
2917 	if (btrfs_fs_closing(fs_info))
2918 		return 0;
2919 
2920 	path = btrfs_alloc_path();
2921 	if (!path)
2922 		return 0;
2923 
2924 	inode = lookup_free_ino_inode(root, path);
2925 	if (IS_ERR(inode))
2926 		goto out;
2927 
2928 	if (root_gen != BTRFS_I(inode)->generation)
2929 		goto out_put;
2930 
2931 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
2932 
2933 	if (ret < 0)
2934 		printk(KERN_ERR "btrfs: failed to load free ino cache for "
2935 		       "root %llu\n", root->root_key.objectid);
2936 out_put:
2937 	iput(inode);
2938 out:
2939 	btrfs_free_path(path);
2940 	return ret;
2941 }
2942 
2943 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2944 			      struct btrfs_trans_handle *trans,
2945 			      struct btrfs_path *path)
2946 {
2947 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2948 	struct inode *inode;
2949 	int ret;
2950 
2951 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2952 		return 0;
2953 
2954 	inode = lookup_free_ino_inode(root, path);
2955 	if (IS_ERR(inode))
2956 		return 0;
2957 
2958 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2959 	if (ret) {
2960 		btrfs_delalloc_release_metadata(inode, inode->i_size);
2961 #ifdef DEBUG
2962 		printk(KERN_ERR "btrfs: failed to write free ino cache "
2963 		       "for root %llu\n", root->root_key.objectid);
2964 #endif
2965 	}
2966 
2967 	iput(inode);
2968 	return ret;
2969 }
2970