xref: /linux/fs/btrfs/free-space-cache.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 
22 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
23 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
24 
25 struct btrfs_trim_range {
26 	u64 start;
27 	u64 bytes;
28 	struct list_head list;
29 };
30 
31 static int link_free_space(struct btrfs_free_space_ctl *ctl,
32 			   struct btrfs_free_space *info);
33 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
34 			      struct btrfs_free_space *info);
35 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
36 			     struct btrfs_trans_handle *trans,
37 			     struct btrfs_io_ctl *io_ctl,
38 			     struct btrfs_path *path);
39 
40 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
41 					       struct btrfs_path *path,
42 					       u64 offset)
43 {
44 	struct btrfs_fs_info *fs_info = root->fs_info;
45 	struct btrfs_key key;
46 	struct btrfs_key location;
47 	struct btrfs_disk_key disk_key;
48 	struct btrfs_free_space_header *header;
49 	struct extent_buffer *leaf;
50 	struct inode *inode = NULL;
51 	unsigned nofs_flag;
52 	int ret;
53 
54 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
55 	key.offset = offset;
56 	key.type = 0;
57 
58 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
59 	if (ret < 0)
60 		return ERR_PTR(ret);
61 	if (ret > 0) {
62 		btrfs_release_path(path);
63 		return ERR_PTR(-ENOENT);
64 	}
65 
66 	leaf = path->nodes[0];
67 	header = btrfs_item_ptr(leaf, path->slots[0],
68 				struct btrfs_free_space_header);
69 	btrfs_free_space_key(leaf, header, &disk_key);
70 	btrfs_disk_key_to_cpu(&location, &disk_key);
71 	btrfs_release_path(path);
72 
73 	/*
74 	 * We are often under a trans handle at this point, so we need to make
75 	 * sure NOFS is set to keep us from deadlocking.
76 	 */
77 	nofs_flag = memalloc_nofs_save();
78 	inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
79 	btrfs_release_path(path);
80 	memalloc_nofs_restore(nofs_flag);
81 	if (IS_ERR(inode))
82 		return inode;
83 
84 	mapping_set_gfp_mask(inode->i_mapping,
85 			mapping_gfp_constraint(inode->i_mapping,
86 			~(__GFP_FS | __GFP_HIGHMEM)));
87 
88 	return inode;
89 }
90 
91 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
92 				      struct btrfs_block_group_cache
93 				      *block_group, struct btrfs_path *path)
94 {
95 	struct inode *inode = NULL;
96 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
97 
98 	spin_lock(&block_group->lock);
99 	if (block_group->inode)
100 		inode = igrab(block_group->inode);
101 	spin_unlock(&block_group->lock);
102 	if (inode)
103 		return inode;
104 
105 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
106 					  block_group->key.objectid);
107 	if (IS_ERR(inode))
108 		return inode;
109 
110 	spin_lock(&block_group->lock);
111 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
112 		btrfs_info(fs_info, "Old style space inode found, converting.");
113 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
114 			BTRFS_INODE_NODATACOW;
115 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
116 	}
117 
118 	if (!block_group->iref) {
119 		block_group->inode = igrab(inode);
120 		block_group->iref = 1;
121 	}
122 	spin_unlock(&block_group->lock);
123 
124 	return inode;
125 }
126 
127 static int __create_free_space_inode(struct btrfs_root *root,
128 				     struct btrfs_trans_handle *trans,
129 				     struct btrfs_path *path,
130 				     u64 ino, u64 offset)
131 {
132 	struct btrfs_key key;
133 	struct btrfs_disk_key disk_key;
134 	struct btrfs_free_space_header *header;
135 	struct btrfs_inode_item *inode_item;
136 	struct extent_buffer *leaf;
137 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
138 	int ret;
139 
140 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
141 	if (ret)
142 		return ret;
143 
144 	/* We inline crc's for the free disk space cache */
145 	if (ino != BTRFS_FREE_INO_OBJECTID)
146 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
147 
148 	leaf = path->nodes[0];
149 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
150 				    struct btrfs_inode_item);
151 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
152 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
153 			     sizeof(*inode_item));
154 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
155 	btrfs_set_inode_size(leaf, inode_item, 0);
156 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
157 	btrfs_set_inode_uid(leaf, inode_item, 0);
158 	btrfs_set_inode_gid(leaf, inode_item, 0);
159 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
160 	btrfs_set_inode_flags(leaf, inode_item, flags);
161 	btrfs_set_inode_nlink(leaf, inode_item, 1);
162 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
163 	btrfs_set_inode_block_group(leaf, inode_item, offset);
164 	btrfs_mark_buffer_dirty(leaf);
165 	btrfs_release_path(path);
166 
167 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
168 	key.offset = offset;
169 	key.type = 0;
170 	ret = btrfs_insert_empty_item(trans, root, path, &key,
171 				      sizeof(struct btrfs_free_space_header));
172 	if (ret < 0) {
173 		btrfs_release_path(path);
174 		return ret;
175 	}
176 
177 	leaf = path->nodes[0];
178 	header = btrfs_item_ptr(leaf, path->slots[0],
179 				struct btrfs_free_space_header);
180 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
181 	btrfs_set_free_space_key(leaf, header, &disk_key);
182 	btrfs_mark_buffer_dirty(leaf);
183 	btrfs_release_path(path);
184 
185 	return 0;
186 }
187 
188 int create_free_space_inode(struct btrfs_fs_info *fs_info,
189 			    struct btrfs_trans_handle *trans,
190 			    struct btrfs_block_group_cache *block_group,
191 			    struct btrfs_path *path)
192 {
193 	int ret;
194 	u64 ino;
195 
196 	ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
197 	if (ret < 0)
198 		return ret;
199 
200 	return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
201 					 block_group->key.objectid);
202 }
203 
204 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
205 				       struct btrfs_block_rsv *rsv)
206 {
207 	u64 needed_bytes;
208 	int ret;
209 
210 	/* 1 for slack space, 1 for updating the inode */
211 	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
212 		btrfs_calc_trans_metadata_size(fs_info, 1);
213 
214 	spin_lock(&rsv->lock);
215 	if (rsv->reserved < needed_bytes)
216 		ret = -ENOSPC;
217 	else
218 		ret = 0;
219 	spin_unlock(&rsv->lock);
220 	return ret;
221 }
222 
223 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
224 				    struct btrfs_block_group_cache *block_group,
225 				    struct inode *inode)
226 {
227 	struct btrfs_root *root = BTRFS_I(inode)->root;
228 	int ret = 0;
229 	bool locked = false;
230 
231 	if (block_group) {
232 		struct btrfs_path *path = btrfs_alloc_path();
233 
234 		if (!path) {
235 			ret = -ENOMEM;
236 			goto fail;
237 		}
238 		locked = true;
239 		mutex_lock(&trans->transaction->cache_write_mutex);
240 		if (!list_empty(&block_group->io_list)) {
241 			list_del_init(&block_group->io_list);
242 
243 			btrfs_wait_cache_io(trans, block_group, path);
244 			btrfs_put_block_group(block_group);
245 		}
246 
247 		/*
248 		 * now that we've truncated the cache away, its no longer
249 		 * setup or written
250 		 */
251 		spin_lock(&block_group->lock);
252 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
253 		spin_unlock(&block_group->lock);
254 		btrfs_free_path(path);
255 	}
256 
257 	btrfs_i_size_write(BTRFS_I(inode), 0);
258 	truncate_pagecache(inode, 0);
259 
260 	/*
261 	 * We skip the throttling logic for free space cache inodes, so we don't
262 	 * need to check for -EAGAIN.
263 	 */
264 	ret = btrfs_truncate_inode_items(trans, root, inode,
265 					 0, BTRFS_EXTENT_DATA_KEY);
266 	if (ret)
267 		goto fail;
268 
269 	ret = btrfs_update_inode(trans, root, inode);
270 
271 fail:
272 	if (locked)
273 		mutex_unlock(&trans->transaction->cache_write_mutex);
274 	if (ret)
275 		btrfs_abort_transaction(trans, ret);
276 
277 	return ret;
278 }
279 
280 static void readahead_cache(struct inode *inode)
281 {
282 	struct file_ra_state *ra;
283 	unsigned long last_index;
284 
285 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
286 	if (!ra)
287 		return;
288 
289 	file_ra_state_init(ra, inode->i_mapping);
290 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
291 
292 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
293 
294 	kfree(ra);
295 }
296 
297 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
298 		       int write)
299 {
300 	int num_pages;
301 	int check_crcs = 0;
302 
303 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
304 
305 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
306 		check_crcs = 1;
307 
308 	/* Make sure we can fit our crcs and generation into the first page */
309 	if (write && check_crcs &&
310 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
311 		return -ENOSPC;
312 
313 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
314 
315 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
316 	if (!io_ctl->pages)
317 		return -ENOMEM;
318 
319 	io_ctl->num_pages = num_pages;
320 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
321 	io_ctl->check_crcs = check_crcs;
322 	io_ctl->inode = inode;
323 
324 	return 0;
325 }
326 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
327 
328 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
329 {
330 	kfree(io_ctl->pages);
331 	io_ctl->pages = NULL;
332 }
333 
334 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
335 {
336 	if (io_ctl->cur) {
337 		io_ctl->cur = NULL;
338 		io_ctl->orig = NULL;
339 	}
340 }
341 
342 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
343 {
344 	ASSERT(io_ctl->index < io_ctl->num_pages);
345 	io_ctl->page = io_ctl->pages[io_ctl->index++];
346 	io_ctl->cur = page_address(io_ctl->page);
347 	io_ctl->orig = io_ctl->cur;
348 	io_ctl->size = PAGE_SIZE;
349 	if (clear)
350 		clear_page(io_ctl->cur);
351 }
352 
353 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
354 {
355 	int i;
356 
357 	io_ctl_unmap_page(io_ctl);
358 
359 	for (i = 0; i < io_ctl->num_pages; i++) {
360 		if (io_ctl->pages[i]) {
361 			ClearPageChecked(io_ctl->pages[i]);
362 			unlock_page(io_ctl->pages[i]);
363 			put_page(io_ctl->pages[i]);
364 		}
365 	}
366 }
367 
368 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
369 				int uptodate)
370 {
371 	struct page *page;
372 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
373 	int i;
374 
375 	for (i = 0; i < io_ctl->num_pages; i++) {
376 		page = find_or_create_page(inode->i_mapping, i, mask);
377 		if (!page) {
378 			io_ctl_drop_pages(io_ctl);
379 			return -ENOMEM;
380 		}
381 		io_ctl->pages[i] = page;
382 		if (uptodate && !PageUptodate(page)) {
383 			btrfs_readpage(NULL, page);
384 			lock_page(page);
385 			if (!PageUptodate(page)) {
386 				btrfs_err(BTRFS_I(inode)->root->fs_info,
387 					   "error reading free space cache");
388 				io_ctl_drop_pages(io_ctl);
389 				return -EIO;
390 			}
391 		}
392 	}
393 
394 	for (i = 0; i < io_ctl->num_pages; i++) {
395 		clear_page_dirty_for_io(io_ctl->pages[i]);
396 		set_page_extent_mapped(io_ctl->pages[i]);
397 	}
398 
399 	return 0;
400 }
401 
402 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
403 {
404 	__le64 *val;
405 
406 	io_ctl_map_page(io_ctl, 1);
407 
408 	/*
409 	 * Skip the csum areas.  If we don't check crcs then we just have a
410 	 * 64bit chunk at the front of the first page.
411 	 */
412 	if (io_ctl->check_crcs) {
413 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
414 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
415 	} else {
416 		io_ctl->cur += sizeof(u64);
417 		io_ctl->size -= sizeof(u64) * 2;
418 	}
419 
420 	val = io_ctl->cur;
421 	*val = cpu_to_le64(generation);
422 	io_ctl->cur += sizeof(u64);
423 }
424 
425 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
426 {
427 	__le64 *gen;
428 
429 	/*
430 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
431 	 * chunk at the front of the first page.
432 	 */
433 	if (io_ctl->check_crcs) {
434 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
435 		io_ctl->size -= sizeof(u64) +
436 			(sizeof(u32) * io_ctl->num_pages);
437 	} else {
438 		io_ctl->cur += sizeof(u64);
439 		io_ctl->size -= sizeof(u64) * 2;
440 	}
441 
442 	gen = io_ctl->cur;
443 	if (le64_to_cpu(*gen) != generation) {
444 		btrfs_err_rl(io_ctl->fs_info,
445 			"space cache generation (%llu) does not match inode (%llu)",
446 				*gen, generation);
447 		io_ctl_unmap_page(io_ctl);
448 		return -EIO;
449 	}
450 	io_ctl->cur += sizeof(u64);
451 	return 0;
452 }
453 
454 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
455 {
456 	u32 *tmp;
457 	u32 crc = ~(u32)0;
458 	unsigned offset = 0;
459 
460 	if (!io_ctl->check_crcs) {
461 		io_ctl_unmap_page(io_ctl);
462 		return;
463 	}
464 
465 	if (index == 0)
466 		offset = sizeof(u32) * io_ctl->num_pages;
467 
468 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
469 			      PAGE_SIZE - offset);
470 	btrfs_csum_final(crc, (u8 *)&crc);
471 	io_ctl_unmap_page(io_ctl);
472 	tmp = page_address(io_ctl->pages[0]);
473 	tmp += index;
474 	*tmp = crc;
475 }
476 
477 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
478 {
479 	u32 *tmp, val;
480 	u32 crc = ~(u32)0;
481 	unsigned offset = 0;
482 
483 	if (!io_ctl->check_crcs) {
484 		io_ctl_map_page(io_ctl, 0);
485 		return 0;
486 	}
487 
488 	if (index == 0)
489 		offset = sizeof(u32) * io_ctl->num_pages;
490 
491 	tmp = page_address(io_ctl->pages[0]);
492 	tmp += index;
493 	val = *tmp;
494 
495 	io_ctl_map_page(io_ctl, 0);
496 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
497 			      PAGE_SIZE - offset);
498 	btrfs_csum_final(crc, (u8 *)&crc);
499 	if (val != crc) {
500 		btrfs_err_rl(io_ctl->fs_info,
501 			"csum mismatch on free space cache");
502 		io_ctl_unmap_page(io_ctl);
503 		return -EIO;
504 	}
505 
506 	return 0;
507 }
508 
509 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
510 			    void *bitmap)
511 {
512 	struct btrfs_free_space_entry *entry;
513 
514 	if (!io_ctl->cur)
515 		return -ENOSPC;
516 
517 	entry = io_ctl->cur;
518 	entry->offset = cpu_to_le64(offset);
519 	entry->bytes = cpu_to_le64(bytes);
520 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
521 		BTRFS_FREE_SPACE_EXTENT;
522 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
523 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
524 
525 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
526 		return 0;
527 
528 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
529 
530 	/* No more pages to map */
531 	if (io_ctl->index >= io_ctl->num_pages)
532 		return 0;
533 
534 	/* map the next page */
535 	io_ctl_map_page(io_ctl, 1);
536 	return 0;
537 }
538 
539 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
540 {
541 	if (!io_ctl->cur)
542 		return -ENOSPC;
543 
544 	/*
545 	 * If we aren't at the start of the current page, unmap this one and
546 	 * map the next one if there is any left.
547 	 */
548 	if (io_ctl->cur != io_ctl->orig) {
549 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
550 		if (io_ctl->index >= io_ctl->num_pages)
551 			return -ENOSPC;
552 		io_ctl_map_page(io_ctl, 0);
553 	}
554 
555 	copy_page(io_ctl->cur, bitmap);
556 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
557 	if (io_ctl->index < io_ctl->num_pages)
558 		io_ctl_map_page(io_ctl, 0);
559 	return 0;
560 }
561 
562 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
563 {
564 	/*
565 	 * If we're not on the boundary we know we've modified the page and we
566 	 * need to crc the page.
567 	 */
568 	if (io_ctl->cur != io_ctl->orig)
569 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
570 	else
571 		io_ctl_unmap_page(io_ctl);
572 
573 	while (io_ctl->index < io_ctl->num_pages) {
574 		io_ctl_map_page(io_ctl, 1);
575 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
576 	}
577 }
578 
579 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
580 			    struct btrfs_free_space *entry, u8 *type)
581 {
582 	struct btrfs_free_space_entry *e;
583 	int ret;
584 
585 	if (!io_ctl->cur) {
586 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
587 		if (ret)
588 			return ret;
589 	}
590 
591 	e = io_ctl->cur;
592 	entry->offset = le64_to_cpu(e->offset);
593 	entry->bytes = le64_to_cpu(e->bytes);
594 	*type = e->type;
595 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
596 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
597 
598 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
599 		return 0;
600 
601 	io_ctl_unmap_page(io_ctl);
602 
603 	return 0;
604 }
605 
606 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
607 			      struct btrfs_free_space *entry)
608 {
609 	int ret;
610 
611 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
612 	if (ret)
613 		return ret;
614 
615 	copy_page(entry->bitmap, io_ctl->cur);
616 	io_ctl_unmap_page(io_ctl);
617 
618 	return 0;
619 }
620 
621 /*
622  * Since we attach pinned extents after the fact we can have contiguous sections
623  * of free space that are split up in entries.  This poses a problem with the
624  * tree logging stuff since it could have allocated across what appears to be 2
625  * entries since we would have merged the entries when adding the pinned extents
626  * back to the free space cache.  So run through the space cache that we just
627  * loaded and merge contiguous entries.  This will make the log replay stuff not
628  * blow up and it will make for nicer allocator behavior.
629  */
630 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
631 {
632 	struct btrfs_free_space *e, *prev = NULL;
633 	struct rb_node *n;
634 
635 again:
636 	spin_lock(&ctl->tree_lock);
637 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
638 		e = rb_entry(n, struct btrfs_free_space, offset_index);
639 		if (!prev)
640 			goto next;
641 		if (e->bitmap || prev->bitmap)
642 			goto next;
643 		if (prev->offset + prev->bytes == e->offset) {
644 			unlink_free_space(ctl, prev);
645 			unlink_free_space(ctl, e);
646 			prev->bytes += e->bytes;
647 			kmem_cache_free(btrfs_free_space_cachep, e);
648 			link_free_space(ctl, prev);
649 			prev = NULL;
650 			spin_unlock(&ctl->tree_lock);
651 			goto again;
652 		}
653 next:
654 		prev = e;
655 	}
656 	spin_unlock(&ctl->tree_lock);
657 }
658 
659 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
660 				   struct btrfs_free_space_ctl *ctl,
661 				   struct btrfs_path *path, u64 offset)
662 {
663 	struct btrfs_fs_info *fs_info = root->fs_info;
664 	struct btrfs_free_space_header *header;
665 	struct extent_buffer *leaf;
666 	struct btrfs_io_ctl io_ctl;
667 	struct btrfs_key key;
668 	struct btrfs_free_space *e, *n;
669 	LIST_HEAD(bitmaps);
670 	u64 num_entries;
671 	u64 num_bitmaps;
672 	u64 generation;
673 	u8 type;
674 	int ret = 0;
675 
676 	/* Nothing in the space cache, goodbye */
677 	if (!i_size_read(inode))
678 		return 0;
679 
680 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
681 	key.offset = offset;
682 	key.type = 0;
683 
684 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
685 	if (ret < 0)
686 		return 0;
687 	else if (ret > 0) {
688 		btrfs_release_path(path);
689 		return 0;
690 	}
691 
692 	ret = -1;
693 
694 	leaf = path->nodes[0];
695 	header = btrfs_item_ptr(leaf, path->slots[0],
696 				struct btrfs_free_space_header);
697 	num_entries = btrfs_free_space_entries(leaf, header);
698 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
699 	generation = btrfs_free_space_generation(leaf, header);
700 	btrfs_release_path(path);
701 
702 	if (!BTRFS_I(inode)->generation) {
703 		btrfs_info(fs_info,
704 			   "the free space cache file (%llu) is invalid, skip it",
705 			   offset);
706 		return 0;
707 	}
708 
709 	if (BTRFS_I(inode)->generation != generation) {
710 		btrfs_err(fs_info,
711 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
712 			  BTRFS_I(inode)->generation, generation);
713 		return 0;
714 	}
715 
716 	if (!num_entries)
717 		return 0;
718 
719 	ret = io_ctl_init(&io_ctl, inode, 0);
720 	if (ret)
721 		return ret;
722 
723 	readahead_cache(inode);
724 
725 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
726 	if (ret)
727 		goto out;
728 
729 	ret = io_ctl_check_crc(&io_ctl, 0);
730 	if (ret)
731 		goto free_cache;
732 
733 	ret = io_ctl_check_generation(&io_ctl, generation);
734 	if (ret)
735 		goto free_cache;
736 
737 	while (num_entries) {
738 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
739 				      GFP_NOFS);
740 		if (!e)
741 			goto free_cache;
742 
743 		ret = io_ctl_read_entry(&io_ctl, e, &type);
744 		if (ret) {
745 			kmem_cache_free(btrfs_free_space_cachep, e);
746 			goto free_cache;
747 		}
748 
749 		if (!e->bytes) {
750 			kmem_cache_free(btrfs_free_space_cachep, e);
751 			goto free_cache;
752 		}
753 
754 		if (type == BTRFS_FREE_SPACE_EXTENT) {
755 			spin_lock(&ctl->tree_lock);
756 			ret = link_free_space(ctl, e);
757 			spin_unlock(&ctl->tree_lock);
758 			if (ret) {
759 				btrfs_err(fs_info,
760 					"Duplicate entries in free space cache, dumping");
761 				kmem_cache_free(btrfs_free_space_cachep, e);
762 				goto free_cache;
763 			}
764 		} else {
765 			ASSERT(num_bitmaps);
766 			num_bitmaps--;
767 			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
768 			if (!e->bitmap) {
769 				kmem_cache_free(
770 					btrfs_free_space_cachep, e);
771 				goto free_cache;
772 			}
773 			spin_lock(&ctl->tree_lock);
774 			ret = link_free_space(ctl, e);
775 			ctl->total_bitmaps++;
776 			ctl->op->recalc_thresholds(ctl);
777 			spin_unlock(&ctl->tree_lock);
778 			if (ret) {
779 				btrfs_err(fs_info,
780 					"Duplicate entries in free space cache, dumping");
781 				kmem_cache_free(btrfs_free_space_cachep, e);
782 				goto free_cache;
783 			}
784 			list_add_tail(&e->list, &bitmaps);
785 		}
786 
787 		num_entries--;
788 	}
789 
790 	io_ctl_unmap_page(&io_ctl);
791 
792 	/*
793 	 * We add the bitmaps at the end of the entries in order that
794 	 * the bitmap entries are added to the cache.
795 	 */
796 	list_for_each_entry_safe(e, n, &bitmaps, list) {
797 		list_del_init(&e->list);
798 		ret = io_ctl_read_bitmap(&io_ctl, e);
799 		if (ret)
800 			goto free_cache;
801 	}
802 
803 	io_ctl_drop_pages(&io_ctl);
804 	merge_space_tree(ctl);
805 	ret = 1;
806 out:
807 	io_ctl_free(&io_ctl);
808 	return ret;
809 free_cache:
810 	io_ctl_drop_pages(&io_ctl);
811 	__btrfs_remove_free_space_cache(ctl);
812 	goto out;
813 }
814 
815 int load_free_space_cache(struct btrfs_fs_info *fs_info,
816 			  struct btrfs_block_group_cache *block_group)
817 {
818 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
819 	struct inode *inode;
820 	struct btrfs_path *path;
821 	int ret = 0;
822 	bool matched;
823 	u64 used = btrfs_block_group_used(&block_group->item);
824 
825 	/*
826 	 * If this block group has been marked to be cleared for one reason or
827 	 * another then we can't trust the on disk cache, so just return.
828 	 */
829 	spin_lock(&block_group->lock);
830 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
831 		spin_unlock(&block_group->lock);
832 		return 0;
833 	}
834 	spin_unlock(&block_group->lock);
835 
836 	path = btrfs_alloc_path();
837 	if (!path)
838 		return 0;
839 	path->search_commit_root = 1;
840 	path->skip_locking = 1;
841 
842 	/*
843 	 * We must pass a path with search_commit_root set to btrfs_iget in
844 	 * order to avoid a deadlock when allocating extents for the tree root.
845 	 *
846 	 * When we are COWing an extent buffer from the tree root, when looking
847 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
848 	 * block group without its free space cache loaded. When we find one
849 	 * we must load its space cache which requires reading its free space
850 	 * cache's inode item from the root tree. If this inode item is located
851 	 * in the same leaf that we started COWing before, then we end up in
852 	 * deadlock on the extent buffer (trying to read lock it when we
853 	 * previously write locked it).
854 	 *
855 	 * It's safe to read the inode item using the commit root because
856 	 * block groups, once loaded, stay in memory forever (until they are
857 	 * removed) as well as their space caches once loaded. New block groups
858 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
859 	 * we will never try to read their inode item while the fs is mounted.
860 	 */
861 	inode = lookup_free_space_inode(fs_info, block_group, path);
862 	if (IS_ERR(inode)) {
863 		btrfs_free_path(path);
864 		return 0;
865 	}
866 
867 	/* We may have converted the inode and made the cache invalid. */
868 	spin_lock(&block_group->lock);
869 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
870 		spin_unlock(&block_group->lock);
871 		btrfs_free_path(path);
872 		goto out;
873 	}
874 	spin_unlock(&block_group->lock);
875 
876 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
877 				      path, block_group->key.objectid);
878 	btrfs_free_path(path);
879 	if (ret <= 0)
880 		goto out;
881 
882 	spin_lock(&ctl->tree_lock);
883 	matched = (ctl->free_space == (block_group->key.offset - used -
884 				       block_group->bytes_super));
885 	spin_unlock(&ctl->tree_lock);
886 
887 	if (!matched) {
888 		__btrfs_remove_free_space_cache(ctl);
889 		btrfs_warn(fs_info,
890 			   "block group %llu has wrong amount of free space",
891 			   block_group->key.objectid);
892 		ret = -1;
893 	}
894 out:
895 	if (ret < 0) {
896 		/* This cache is bogus, make sure it gets cleared */
897 		spin_lock(&block_group->lock);
898 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
899 		spin_unlock(&block_group->lock);
900 		ret = 0;
901 
902 		btrfs_warn(fs_info,
903 			   "failed to load free space cache for block group %llu, rebuilding it now",
904 			   block_group->key.objectid);
905 	}
906 
907 	iput(inode);
908 	return ret;
909 }
910 
911 static noinline_for_stack
912 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
913 			      struct btrfs_free_space_ctl *ctl,
914 			      struct btrfs_block_group_cache *block_group,
915 			      int *entries, int *bitmaps,
916 			      struct list_head *bitmap_list)
917 {
918 	int ret;
919 	struct btrfs_free_cluster *cluster = NULL;
920 	struct btrfs_free_cluster *cluster_locked = NULL;
921 	struct rb_node *node = rb_first(&ctl->free_space_offset);
922 	struct btrfs_trim_range *trim_entry;
923 
924 	/* Get the cluster for this block_group if it exists */
925 	if (block_group && !list_empty(&block_group->cluster_list)) {
926 		cluster = list_entry(block_group->cluster_list.next,
927 				     struct btrfs_free_cluster,
928 				     block_group_list);
929 	}
930 
931 	if (!node && cluster) {
932 		cluster_locked = cluster;
933 		spin_lock(&cluster_locked->lock);
934 		node = rb_first(&cluster->root);
935 		cluster = NULL;
936 	}
937 
938 	/* Write out the extent entries */
939 	while (node) {
940 		struct btrfs_free_space *e;
941 
942 		e = rb_entry(node, struct btrfs_free_space, offset_index);
943 		*entries += 1;
944 
945 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
946 				       e->bitmap);
947 		if (ret)
948 			goto fail;
949 
950 		if (e->bitmap) {
951 			list_add_tail(&e->list, bitmap_list);
952 			*bitmaps += 1;
953 		}
954 		node = rb_next(node);
955 		if (!node && cluster) {
956 			node = rb_first(&cluster->root);
957 			cluster_locked = cluster;
958 			spin_lock(&cluster_locked->lock);
959 			cluster = NULL;
960 		}
961 	}
962 	if (cluster_locked) {
963 		spin_unlock(&cluster_locked->lock);
964 		cluster_locked = NULL;
965 	}
966 
967 	/*
968 	 * Make sure we don't miss any range that was removed from our rbtree
969 	 * because trimming is running. Otherwise after a umount+mount (or crash
970 	 * after committing the transaction) we would leak free space and get
971 	 * an inconsistent free space cache report from fsck.
972 	 */
973 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
974 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
975 				       trim_entry->bytes, NULL);
976 		if (ret)
977 			goto fail;
978 		*entries += 1;
979 	}
980 
981 	return 0;
982 fail:
983 	if (cluster_locked)
984 		spin_unlock(&cluster_locked->lock);
985 	return -ENOSPC;
986 }
987 
988 static noinline_for_stack int
989 update_cache_item(struct btrfs_trans_handle *trans,
990 		  struct btrfs_root *root,
991 		  struct inode *inode,
992 		  struct btrfs_path *path, u64 offset,
993 		  int entries, int bitmaps)
994 {
995 	struct btrfs_key key;
996 	struct btrfs_free_space_header *header;
997 	struct extent_buffer *leaf;
998 	int ret;
999 
1000 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1001 	key.offset = offset;
1002 	key.type = 0;
1003 
1004 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1005 	if (ret < 0) {
1006 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1007 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1008 		goto fail;
1009 	}
1010 	leaf = path->nodes[0];
1011 	if (ret > 0) {
1012 		struct btrfs_key found_key;
1013 		ASSERT(path->slots[0]);
1014 		path->slots[0]--;
1015 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1016 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1017 		    found_key.offset != offset) {
1018 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1019 					 inode->i_size - 1,
1020 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1021 					 NULL);
1022 			btrfs_release_path(path);
1023 			goto fail;
1024 		}
1025 	}
1026 
1027 	BTRFS_I(inode)->generation = trans->transid;
1028 	header = btrfs_item_ptr(leaf, path->slots[0],
1029 				struct btrfs_free_space_header);
1030 	btrfs_set_free_space_entries(leaf, header, entries);
1031 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1032 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1033 	btrfs_mark_buffer_dirty(leaf);
1034 	btrfs_release_path(path);
1035 
1036 	return 0;
1037 
1038 fail:
1039 	return -1;
1040 }
1041 
1042 static noinline_for_stack int
1043 write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1044 			    struct btrfs_block_group_cache *block_group,
1045 			    struct btrfs_io_ctl *io_ctl,
1046 			    int *entries)
1047 {
1048 	u64 start, extent_start, extent_end, len;
1049 	struct extent_io_tree *unpin = NULL;
1050 	int ret;
1051 
1052 	if (!block_group)
1053 		return 0;
1054 
1055 	/*
1056 	 * We want to add any pinned extents to our free space cache
1057 	 * so we don't leak the space
1058 	 *
1059 	 * We shouldn't have switched the pinned extents yet so this is the
1060 	 * right one
1061 	 */
1062 	unpin = fs_info->pinned_extents;
1063 
1064 	start = block_group->key.objectid;
1065 
1066 	while (start < block_group->key.objectid + block_group->key.offset) {
1067 		ret = find_first_extent_bit(unpin, start,
1068 					    &extent_start, &extent_end,
1069 					    EXTENT_DIRTY, NULL);
1070 		if (ret)
1071 			return 0;
1072 
1073 		/* This pinned extent is out of our range */
1074 		if (extent_start >= block_group->key.objectid +
1075 		    block_group->key.offset)
1076 			return 0;
1077 
1078 		extent_start = max(extent_start, start);
1079 		extent_end = min(block_group->key.objectid +
1080 				 block_group->key.offset, extent_end + 1);
1081 		len = extent_end - extent_start;
1082 
1083 		*entries += 1;
1084 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1085 		if (ret)
1086 			return -ENOSPC;
1087 
1088 		start = extent_end;
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 static noinline_for_stack int
1095 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1096 {
1097 	struct btrfs_free_space *entry, *next;
1098 	int ret;
1099 
1100 	/* Write out the bitmaps */
1101 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1102 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1103 		if (ret)
1104 			return -ENOSPC;
1105 		list_del_init(&entry->list);
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 static int flush_dirty_cache(struct inode *inode)
1112 {
1113 	int ret;
1114 
1115 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1116 	if (ret)
1117 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1118 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1119 
1120 	return ret;
1121 }
1122 
1123 static void noinline_for_stack
1124 cleanup_bitmap_list(struct list_head *bitmap_list)
1125 {
1126 	struct btrfs_free_space *entry, *next;
1127 
1128 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1129 		list_del_init(&entry->list);
1130 }
1131 
1132 static void noinline_for_stack
1133 cleanup_write_cache_enospc(struct inode *inode,
1134 			   struct btrfs_io_ctl *io_ctl,
1135 			   struct extent_state **cached_state)
1136 {
1137 	io_ctl_drop_pages(io_ctl);
1138 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1139 			     i_size_read(inode) - 1, cached_state);
1140 }
1141 
1142 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1143 				 struct btrfs_trans_handle *trans,
1144 				 struct btrfs_block_group_cache *block_group,
1145 				 struct btrfs_io_ctl *io_ctl,
1146 				 struct btrfs_path *path, u64 offset)
1147 {
1148 	int ret;
1149 	struct inode *inode = io_ctl->inode;
1150 
1151 	if (!inode)
1152 		return 0;
1153 
1154 	/* Flush the dirty pages in the cache file. */
1155 	ret = flush_dirty_cache(inode);
1156 	if (ret)
1157 		goto out;
1158 
1159 	/* Update the cache item to tell everyone this cache file is valid. */
1160 	ret = update_cache_item(trans, root, inode, path, offset,
1161 				io_ctl->entries, io_ctl->bitmaps);
1162 out:
1163 	io_ctl_free(io_ctl);
1164 	if (ret) {
1165 		invalidate_inode_pages2(inode->i_mapping);
1166 		BTRFS_I(inode)->generation = 0;
1167 		if (block_group) {
1168 #ifdef DEBUG
1169 			btrfs_err(root->fs_info,
1170 				  "failed to write free space cache for block group %llu",
1171 				  block_group->key.objectid);
1172 #endif
1173 		}
1174 	}
1175 	btrfs_update_inode(trans, root, inode);
1176 
1177 	if (block_group) {
1178 		/* the dirty list is protected by the dirty_bgs_lock */
1179 		spin_lock(&trans->transaction->dirty_bgs_lock);
1180 
1181 		/* the disk_cache_state is protected by the block group lock */
1182 		spin_lock(&block_group->lock);
1183 
1184 		/*
1185 		 * only mark this as written if we didn't get put back on
1186 		 * the dirty list while waiting for IO.   Otherwise our
1187 		 * cache state won't be right, and we won't get written again
1188 		 */
1189 		if (!ret && list_empty(&block_group->dirty_list))
1190 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1191 		else if (ret)
1192 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1193 
1194 		spin_unlock(&block_group->lock);
1195 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1196 		io_ctl->inode = NULL;
1197 		iput(inode);
1198 	}
1199 
1200 	return ret;
1201 
1202 }
1203 
1204 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1205 				    struct btrfs_trans_handle *trans,
1206 				    struct btrfs_io_ctl *io_ctl,
1207 				    struct btrfs_path *path)
1208 {
1209 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1210 }
1211 
1212 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1213 			struct btrfs_block_group_cache *block_group,
1214 			struct btrfs_path *path)
1215 {
1216 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1217 				     block_group, &block_group->io_ctl,
1218 				     path, block_group->key.objectid);
1219 }
1220 
1221 /**
1222  * __btrfs_write_out_cache - write out cached info to an inode
1223  * @root - the root the inode belongs to
1224  * @ctl - the free space cache we are going to write out
1225  * @block_group - the block_group for this cache if it belongs to a block_group
1226  * @trans - the trans handle
1227  *
1228  * This function writes out a free space cache struct to disk for quick recovery
1229  * on mount.  This will return 0 if it was successful in writing the cache out,
1230  * or an errno if it was not.
1231  */
1232 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1233 				   struct btrfs_free_space_ctl *ctl,
1234 				   struct btrfs_block_group_cache *block_group,
1235 				   struct btrfs_io_ctl *io_ctl,
1236 				   struct btrfs_trans_handle *trans)
1237 {
1238 	struct btrfs_fs_info *fs_info = root->fs_info;
1239 	struct extent_state *cached_state = NULL;
1240 	LIST_HEAD(bitmap_list);
1241 	int entries = 0;
1242 	int bitmaps = 0;
1243 	int ret;
1244 	int must_iput = 0;
1245 
1246 	if (!i_size_read(inode))
1247 		return -EIO;
1248 
1249 	WARN_ON(io_ctl->pages);
1250 	ret = io_ctl_init(io_ctl, inode, 1);
1251 	if (ret)
1252 		return ret;
1253 
1254 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1255 		down_write(&block_group->data_rwsem);
1256 		spin_lock(&block_group->lock);
1257 		if (block_group->delalloc_bytes) {
1258 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1259 			spin_unlock(&block_group->lock);
1260 			up_write(&block_group->data_rwsem);
1261 			BTRFS_I(inode)->generation = 0;
1262 			ret = 0;
1263 			must_iput = 1;
1264 			goto out;
1265 		}
1266 		spin_unlock(&block_group->lock);
1267 	}
1268 
1269 	/* Lock all pages first so we can lock the extent safely. */
1270 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1271 	if (ret)
1272 		goto out_unlock;
1273 
1274 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1275 			 &cached_state);
1276 
1277 	io_ctl_set_generation(io_ctl, trans->transid);
1278 
1279 	mutex_lock(&ctl->cache_writeout_mutex);
1280 	/* Write out the extent entries in the free space cache */
1281 	spin_lock(&ctl->tree_lock);
1282 	ret = write_cache_extent_entries(io_ctl, ctl,
1283 					 block_group, &entries, &bitmaps,
1284 					 &bitmap_list);
1285 	if (ret)
1286 		goto out_nospc_locked;
1287 
1288 	/*
1289 	 * Some spaces that are freed in the current transaction are pinned,
1290 	 * they will be added into free space cache after the transaction is
1291 	 * committed, we shouldn't lose them.
1292 	 *
1293 	 * If this changes while we are working we'll get added back to
1294 	 * the dirty list and redo it.  No locking needed
1295 	 */
1296 	ret = write_pinned_extent_entries(fs_info, block_group,
1297 					  io_ctl, &entries);
1298 	if (ret)
1299 		goto out_nospc_locked;
1300 
1301 	/*
1302 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1303 	 * locked while doing it because a concurrent trim can be manipulating
1304 	 * or freeing the bitmap.
1305 	 */
1306 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1307 	spin_unlock(&ctl->tree_lock);
1308 	mutex_unlock(&ctl->cache_writeout_mutex);
1309 	if (ret)
1310 		goto out_nospc;
1311 
1312 	/* Zero out the rest of the pages just to make sure */
1313 	io_ctl_zero_remaining_pages(io_ctl);
1314 
1315 	/* Everything is written out, now we dirty the pages in the file. */
1316 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1317 				i_size_read(inode), &cached_state);
1318 	if (ret)
1319 		goto out_nospc;
1320 
1321 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1322 		up_write(&block_group->data_rwsem);
1323 	/*
1324 	 * Release the pages and unlock the extent, we will flush
1325 	 * them out later
1326 	 */
1327 	io_ctl_drop_pages(io_ctl);
1328 
1329 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1330 			     i_size_read(inode) - 1, &cached_state);
1331 
1332 	/*
1333 	 * at this point the pages are under IO and we're happy,
1334 	 * The caller is responsible for waiting on them and updating the
1335 	 * the cache and the inode
1336 	 */
1337 	io_ctl->entries = entries;
1338 	io_ctl->bitmaps = bitmaps;
1339 
1340 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1341 	if (ret)
1342 		goto out;
1343 
1344 	return 0;
1345 
1346 out:
1347 	io_ctl->inode = NULL;
1348 	io_ctl_free(io_ctl);
1349 	if (ret) {
1350 		invalidate_inode_pages2(inode->i_mapping);
1351 		BTRFS_I(inode)->generation = 0;
1352 	}
1353 	btrfs_update_inode(trans, root, inode);
1354 	if (must_iput)
1355 		iput(inode);
1356 	return ret;
1357 
1358 out_nospc_locked:
1359 	cleanup_bitmap_list(&bitmap_list);
1360 	spin_unlock(&ctl->tree_lock);
1361 	mutex_unlock(&ctl->cache_writeout_mutex);
1362 
1363 out_nospc:
1364 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1365 
1366 out_unlock:
1367 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1368 		up_write(&block_group->data_rwsem);
1369 
1370 	goto out;
1371 }
1372 
1373 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1374 			  struct btrfs_trans_handle *trans,
1375 			  struct btrfs_block_group_cache *block_group,
1376 			  struct btrfs_path *path)
1377 {
1378 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1379 	struct inode *inode;
1380 	int ret = 0;
1381 
1382 	spin_lock(&block_group->lock);
1383 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1384 		spin_unlock(&block_group->lock);
1385 		return 0;
1386 	}
1387 	spin_unlock(&block_group->lock);
1388 
1389 	inode = lookup_free_space_inode(fs_info, block_group, path);
1390 	if (IS_ERR(inode))
1391 		return 0;
1392 
1393 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1394 				block_group, &block_group->io_ctl, trans);
1395 	if (ret) {
1396 #ifdef DEBUG
1397 		btrfs_err(fs_info,
1398 			  "failed to write free space cache for block group %llu",
1399 			  block_group->key.objectid);
1400 #endif
1401 		spin_lock(&block_group->lock);
1402 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1403 		spin_unlock(&block_group->lock);
1404 
1405 		block_group->io_ctl.inode = NULL;
1406 		iput(inode);
1407 	}
1408 
1409 	/*
1410 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1411 	 * to wait for IO and put the inode
1412 	 */
1413 
1414 	return ret;
1415 }
1416 
1417 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1418 					  u64 offset)
1419 {
1420 	ASSERT(offset >= bitmap_start);
1421 	offset -= bitmap_start;
1422 	return (unsigned long)(div_u64(offset, unit));
1423 }
1424 
1425 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1426 {
1427 	return (unsigned long)(div_u64(bytes, unit));
1428 }
1429 
1430 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1431 				   u64 offset)
1432 {
1433 	u64 bitmap_start;
1434 	u64 bytes_per_bitmap;
1435 
1436 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1437 	bitmap_start = offset - ctl->start;
1438 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1439 	bitmap_start *= bytes_per_bitmap;
1440 	bitmap_start += ctl->start;
1441 
1442 	return bitmap_start;
1443 }
1444 
1445 static int tree_insert_offset(struct rb_root *root, u64 offset,
1446 			      struct rb_node *node, int bitmap)
1447 {
1448 	struct rb_node **p = &root->rb_node;
1449 	struct rb_node *parent = NULL;
1450 	struct btrfs_free_space *info;
1451 
1452 	while (*p) {
1453 		parent = *p;
1454 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1455 
1456 		if (offset < info->offset) {
1457 			p = &(*p)->rb_left;
1458 		} else if (offset > info->offset) {
1459 			p = &(*p)->rb_right;
1460 		} else {
1461 			/*
1462 			 * we could have a bitmap entry and an extent entry
1463 			 * share the same offset.  If this is the case, we want
1464 			 * the extent entry to always be found first if we do a
1465 			 * linear search through the tree, since we want to have
1466 			 * the quickest allocation time, and allocating from an
1467 			 * extent is faster than allocating from a bitmap.  So
1468 			 * if we're inserting a bitmap and we find an entry at
1469 			 * this offset, we want to go right, or after this entry
1470 			 * logically.  If we are inserting an extent and we've
1471 			 * found a bitmap, we want to go left, or before
1472 			 * logically.
1473 			 */
1474 			if (bitmap) {
1475 				if (info->bitmap) {
1476 					WARN_ON_ONCE(1);
1477 					return -EEXIST;
1478 				}
1479 				p = &(*p)->rb_right;
1480 			} else {
1481 				if (!info->bitmap) {
1482 					WARN_ON_ONCE(1);
1483 					return -EEXIST;
1484 				}
1485 				p = &(*p)->rb_left;
1486 			}
1487 		}
1488 	}
1489 
1490 	rb_link_node(node, parent, p);
1491 	rb_insert_color(node, root);
1492 
1493 	return 0;
1494 }
1495 
1496 /*
1497  * searches the tree for the given offset.
1498  *
1499  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1500  * want a section that has at least bytes size and comes at or after the given
1501  * offset.
1502  */
1503 static struct btrfs_free_space *
1504 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1505 		   u64 offset, int bitmap_only, int fuzzy)
1506 {
1507 	struct rb_node *n = ctl->free_space_offset.rb_node;
1508 	struct btrfs_free_space *entry, *prev = NULL;
1509 
1510 	/* find entry that is closest to the 'offset' */
1511 	while (1) {
1512 		if (!n) {
1513 			entry = NULL;
1514 			break;
1515 		}
1516 
1517 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1518 		prev = entry;
1519 
1520 		if (offset < entry->offset)
1521 			n = n->rb_left;
1522 		else if (offset > entry->offset)
1523 			n = n->rb_right;
1524 		else
1525 			break;
1526 	}
1527 
1528 	if (bitmap_only) {
1529 		if (!entry)
1530 			return NULL;
1531 		if (entry->bitmap)
1532 			return entry;
1533 
1534 		/*
1535 		 * bitmap entry and extent entry may share same offset,
1536 		 * in that case, bitmap entry comes after extent entry.
1537 		 */
1538 		n = rb_next(n);
1539 		if (!n)
1540 			return NULL;
1541 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1542 		if (entry->offset != offset)
1543 			return NULL;
1544 
1545 		WARN_ON(!entry->bitmap);
1546 		return entry;
1547 	} else if (entry) {
1548 		if (entry->bitmap) {
1549 			/*
1550 			 * if previous extent entry covers the offset,
1551 			 * we should return it instead of the bitmap entry
1552 			 */
1553 			n = rb_prev(&entry->offset_index);
1554 			if (n) {
1555 				prev = rb_entry(n, struct btrfs_free_space,
1556 						offset_index);
1557 				if (!prev->bitmap &&
1558 				    prev->offset + prev->bytes > offset)
1559 					entry = prev;
1560 			}
1561 		}
1562 		return entry;
1563 	}
1564 
1565 	if (!prev)
1566 		return NULL;
1567 
1568 	/* find last entry before the 'offset' */
1569 	entry = prev;
1570 	if (entry->offset > offset) {
1571 		n = rb_prev(&entry->offset_index);
1572 		if (n) {
1573 			entry = rb_entry(n, struct btrfs_free_space,
1574 					offset_index);
1575 			ASSERT(entry->offset <= offset);
1576 		} else {
1577 			if (fuzzy)
1578 				return entry;
1579 			else
1580 				return NULL;
1581 		}
1582 	}
1583 
1584 	if (entry->bitmap) {
1585 		n = rb_prev(&entry->offset_index);
1586 		if (n) {
1587 			prev = rb_entry(n, struct btrfs_free_space,
1588 					offset_index);
1589 			if (!prev->bitmap &&
1590 			    prev->offset + prev->bytes > offset)
1591 				return prev;
1592 		}
1593 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1594 			return entry;
1595 	} else if (entry->offset + entry->bytes > offset)
1596 		return entry;
1597 
1598 	if (!fuzzy)
1599 		return NULL;
1600 
1601 	while (1) {
1602 		if (entry->bitmap) {
1603 			if (entry->offset + BITS_PER_BITMAP *
1604 			    ctl->unit > offset)
1605 				break;
1606 		} else {
1607 			if (entry->offset + entry->bytes > offset)
1608 				break;
1609 		}
1610 
1611 		n = rb_next(&entry->offset_index);
1612 		if (!n)
1613 			return NULL;
1614 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1615 	}
1616 	return entry;
1617 }
1618 
1619 static inline void
1620 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1621 		    struct btrfs_free_space *info)
1622 {
1623 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1624 	ctl->free_extents--;
1625 }
1626 
1627 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1628 			      struct btrfs_free_space *info)
1629 {
1630 	__unlink_free_space(ctl, info);
1631 	ctl->free_space -= info->bytes;
1632 }
1633 
1634 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1635 			   struct btrfs_free_space *info)
1636 {
1637 	int ret = 0;
1638 
1639 	ASSERT(info->bytes || info->bitmap);
1640 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1641 				 &info->offset_index, (info->bitmap != NULL));
1642 	if (ret)
1643 		return ret;
1644 
1645 	ctl->free_space += info->bytes;
1646 	ctl->free_extents++;
1647 	return ret;
1648 }
1649 
1650 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1651 {
1652 	struct btrfs_block_group_cache *block_group = ctl->private;
1653 	u64 max_bytes;
1654 	u64 bitmap_bytes;
1655 	u64 extent_bytes;
1656 	u64 size = block_group->key.offset;
1657 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1658 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1659 
1660 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1661 
1662 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1663 
1664 	/*
1665 	 * The goal is to keep the total amount of memory used per 1gb of space
1666 	 * at or below 32k, so we need to adjust how much memory we allow to be
1667 	 * used by extent based free space tracking
1668 	 */
1669 	if (size < SZ_1G)
1670 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1671 	else
1672 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1673 
1674 	/*
1675 	 * we want to account for 1 more bitmap than what we have so we can make
1676 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1677 	 * we add more bitmaps.
1678 	 */
1679 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1680 
1681 	if (bitmap_bytes >= max_bytes) {
1682 		ctl->extents_thresh = 0;
1683 		return;
1684 	}
1685 
1686 	/*
1687 	 * we want the extent entry threshold to always be at most 1/2 the max
1688 	 * bytes we can have, or whatever is less than that.
1689 	 */
1690 	extent_bytes = max_bytes - bitmap_bytes;
1691 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1692 
1693 	ctl->extents_thresh =
1694 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1695 }
1696 
1697 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1698 				       struct btrfs_free_space *info,
1699 				       u64 offset, u64 bytes)
1700 {
1701 	unsigned long start, count;
1702 
1703 	start = offset_to_bit(info->offset, ctl->unit, offset);
1704 	count = bytes_to_bits(bytes, ctl->unit);
1705 	ASSERT(start + count <= BITS_PER_BITMAP);
1706 
1707 	bitmap_clear(info->bitmap, start, count);
1708 
1709 	info->bytes -= bytes;
1710 	if (info->max_extent_size > ctl->unit)
1711 		info->max_extent_size = 0;
1712 }
1713 
1714 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1715 			      struct btrfs_free_space *info, u64 offset,
1716 			      u64 bytes)
1717 {
1718 	__bitmap_clear_bits(ctl, info, offset, bytes);
1719 	ctl->free_space -= bytes;
1720 }
1721 
1722 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1723 			    struct btrfs_free_space *info, u64 offset,
1724 			    u64 bytes)
1725 {
1726 	unsigned long start, count;
1727 
1728 	start = offset_to_bit(info->offset, ctl->unit, offset);
1729 	count = bytes_to_bits(bytes, ctl->unit);
1730 	ASSERT(start + count <= BITS_PER_BITMAP);
1731 
1732 	bitmap_set(info->bitmap, start, count);
1733 
1734 	info->bytes += bytes;
1735 	ctl->free_space += bytes;
1736 }
1737 
1738 /*
1739  * If we can not find suitable extent, we will use bytes to record
1740  * the size of the max extent.
1741  */
1742 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1743 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1744 			 u64 *bytes, bool for_alloc)
1745 {
1746 	unsigned long found_bits = 0;
1747 	unsigned long max_bits = 0;
1748 	unsigned long bits, i;
1749 	unsigned long next_zero;
1750 	unsigned long extent_bits;
1751 
1752 	/*
1753 	 * Skip searching the bitmap if we don't have a contiguous section that
1754 	 * is large enough for this allocation.
1755 	 */
1756 	if (for_alloc &&
1757 	    bitmap_info->max_extent_size &&
1758 	    bitmap_info->max_extent_size < *bytes) {
1759 		*bytes = bitmap_info->max_extent_size;
1760 		return -1;
1761 	}
1762 
1763 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1764 			  max_t(u64, *offset, bitmap_info->offset));
1765 	bits = bytes_to_bits(*bytes, ctl->unit);
1766 
1767 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1768 		if (for_alloc && bits == 1) {
1769 			found_bits = 1;
1770 			break;
1771 		}
1772 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1773 					       BITS_PER_BITMAP, i);
1774 		extent_bits = next_zero - i;
1775 		if (extent_bits >= bits) {
1776 			found_bits = extent_bits;
1777 			break;
1778 		} else if (extent_bits > max_bits) {
1779 			max_bits = extent_bits;
1780 		}
1781 		i = next_zero;
1782 	}
1783 
1784 	if (found_bits) {
1785 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1786 		*bytes = (u64)(found_bits) * ctl->unit;
1787 		return 0;
1788 	}
1789 
1790 	*bytes = (u64)(max_bits) * ctl->unit;
1791 	bitmap_info->max_extent_size = *bytes;
1792 	return -1;
1793 }
1794 
1795 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1796 {
1797 	if (entry->bitmap)
1798 		return entry->max_extent_size;
1799 	return entry->bytes;
1800 }
1801 
1802 /* Cache the size of the max extent in bytes */
1803 static struct btrfs_free_space *
1804 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1805 		unsigned long align, u64 *max_extent_size)
1806 {
1807 	struct btrfs_free_space *entry;
1808 	struct rb_node *node;
1809 	u64 tmp;
1810 	u64 align_off;
1811 	int ret;
1812 
1813 	if (!ctl->free_space_offset.rb_node)
1814 		goto out;
1815 
1816 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1817 	if (!entry)
1818 		goto out;
1819 
1820 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1821 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1822 		if (entry->bytes < *bytes) {
1823 			*max_extent_size = max(get_max_extent_size(entry),
1824 					       *max_extent_size);
1825 			continue;
1826 		}
1827 
1828 		/* make sure the space returned is big enough
1829 		 * to match our requested alignment
1830 		 */
1831 		if (*bytes >= align) {
1832 			tmp = entry->offset - ctl->start + align - 1;
1833 			tmp = div64_u64(tmp, align);
1834 			tmp = tmp * align + ctl->start;
1835 			align_off = tmp - entry->offset;
1836 		} else {
1837 			align_off = 0;
1838 			tmp = entry->offset;
1839 		}
1840 
1841 		if (entry->bytes < *bytes + align_off) {
1842 			*max_extent_size = max(get_max_extent_size(entry),
1843 					       *max_extent_size);
1844 			continue;
1845 		}
1846 
1847 		if (entry->bitmap) {
1848 			u64 size = *bytes;
1849 
1850 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1851 			if (!ret) {
1852 				*offset = tmp;
1853 				*bytes = size;
1854 				return entry;
1855 			} else {
1856 				*max_extent_size =
1857 					max(get_max_extent_size(entry),
1858 					    *max_extent_size);
1859 			}
1860 			continue;
1861 		}
1862 
1863 		*offset = tmp;
1864 		*bytes = entry->bytes - align_off;
1865 		return entry;
1866 	}
1867 out:
1868 	return NULL;
1869 }
1870 
1871 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1872 			   struct btrfs_free_space *info, u64 offset)
1873 {
1874 	info->offset = offset_to_bitmap(ctl, offset);
1875 	info->bytes = 0;
1876 	INIT_LIST_HEAD(&info->list);
1877 	link_free_space(ctl, info);
1878 	ctl->total_bitmaps++;
1879 
1880 	ctl->op->recalc_thresholds(ctl);
1881 }
1882 
1883 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1884 			struct btrfs_free_space *bitmap_info)
1885 {
1886 	unlink_free_space(ctl, bitmap_info);
1887 	kfree(bitmap_info->bitmap);
1888 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1889 	ctl->total_bitmaps--;
1890 	ctl->op->recalc_thresholds(ctl);
1891 }
1892 
1893 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1894 			      struct btrfs_free_space *bitmap_info,
1895 			      u64 *offset, u64 *bytes)
1896 {
1897 	u64 end;
1898 	u64 search_start, search_bytes;
1899 	int ret;
1900 
1901 again:
1902 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1903 
1904 	/*
1905 	 * We need to search for bits in this bitmap.  We could only cover some
1906 	 * of the extent in this bitmap thanks to how we add space, so we need
1907 	 * to search for as much as it as we can and clear that amount, and then
1908 	 * go searching for the next bit.
1909 	 */
1910 	search_start = *offset;
1911 	search_bytes = ctl->unit;
1912 	search_bytes = min(search_bytes, end - search_start + 1);
1913 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1914 			    false);
1915 	if (ret < 0 || search_start != *offset)
1916 		return -EINVAL;
1917 
1918 	/* We may have found more bits than what we need */
1919 	search_bytes = min(search_bytes, *bytes);
1920 
1921 	/* Cannot clear past the end of the bitmap */
1922 	search_bytes = min(search_bytes, end - search_start + 1);
1923 
1924 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1925 	*offset += search_bytes;
1926 	*bytes -= search_bytes;
1927 
1928 	if (*bytes) {
1929 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1930 		if (!bitmap_info->bytes)
1931 			free_bitmap(ctl, bitmap_info);
1932 
1933 		/*
1934 		 * no entry after this bitmap, but we still have bytes to
1935 		 * remove, so something has gone wrong.
1936 		 */
1937 		if (!next)
1938 			return -EINVAL;
1939 
1940 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1941 				       offset_index);
1942 
1943 		/*
1944 		 * if the next entry isn't a bitmap we need to return to let the
1945 		 * extent stuff do its work.
1946 		 */
1947 		if (!bitmap_info->bitmap)
1948 			return -EAGAIN;
1949 
1950 		/*
1951 		 * Ok the next item is a bitmap, but it may not actually hold
1952 		 * the information for the rest of this free space stuff, so
1953 		 * look for it, and if we don't find it return so we can try
1954 		 * everything over again.
1955 		 */
1956 		search_start = *offset;
1957 		search_bytes = ctl->unit;
1958 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1959 				    &search_bytes, false);
1960 		if (ret < 0 || search_start != *offset)
1961 			return -EAGAIN;
1962 
1963 		goto again;
1964 	} else if (!bitmap_info->bytes)
1965 		free_bitmap(ctl, bitmap_info);
1966 
1967 	return 0;
1968 }
1969 
1970 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1971 			       struct btrfs_free_space *info, u64 offset,
1972 			       u64 bytes)
1973 {
1974 	u64 bytes_to_set = 0;
1975 	u64 end;
1976 
1977 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1978 
1979 	bytes_to_set = min(end - offset, bytes);
1980 
1981 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1982 
1983 	/*
1984 	 * We set some bytes, we have no idea what the max extent size is
1985 	 * anymore.
1986 	 */
1987 	info->max_extent_size = 0;
1988 
1989 	return bytes_to_set;
1990 
1991 }
1992 
1993 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1994 		      struct btrfs_free_space *info)
1995 {
1996 	struct btrfs_block_group_cache *block_group = ctl->private;
1997 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1998 	bool forced = false;
1999 
2000 #ifdef CONFIG_BTRFS_DEBUG
2001 	if (btrfs_should_fragment_free_space(block_group))
2002 		forced = true;
2003 #endif
2004 
2005 	/*
2006 	 * If we are below the extents threshold then we can add this as an
2007 	 * extent, and don't have to deal with the bitmap
2008 	 */
2009 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2010 		/*
2011 		 * If this block group has some small extents we don't want to
2012 		 * use up all of our free slots in the cache with them, we want
2013 		 * to reserve them to larger extents, however if we have plenty
2014 		 * of cache left then go ahead an dadd them, no sense in adding
2015 		 * the overhead of a bitmap if we don't have to.
2016 		 */
2017 		if (info->bytes <= fs_info->sectorsize * 4) {
2018 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2019 				return false;
2020 		} else {
2021 			return false;
2022 		}
2023 	}
2024 
2025 	/*
2026 	 * The original block groups from mkfs can be really small, like 8
2027 	 * megabytes, so don't bother with a bitmap for those entries.  However
2028 	 * some block groups can be smaller than what a bitmap would cover but
2029 	 * are still large enough that they could overflow the 32k memory limit,
2030 	 * so allow those block groups to still be allowed to have a bitmap
2031 	 * entry.
2032 	 */
2033 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2034 		return false;
2035 
2036 	return true;
2037 }
2038 
2039 static const struct btrfs_free_space_op free_space_op = {
2040 	.recalc_thresholds	= recalculate_thresholds,
2041 	.use_bitmap		= use_bitmap,
2042 };
2043 
2044 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2045 			      struct btrfs_free_space *info)
2046 {
2047 	struct btrfs_free_space *bitmap_info;
2048 	struct btrfs_block_group_cache *block_group = NULL;
2049 	int added = 0;
2050 	u64 bytes, offset, bytes_added;
2051 	int ret;
2052 
2053 	bytes = info->bytes;
2054 	offset = info->offset;
2055 
2056 	if (!ctl->op->use_bitmap(ctl, info))
2057 		return 0;
2058 
2059 	if (ctl->op == &free_space_op)
2060 		block_group = ctl->private;
2061 again:
2062 	/*
2063 	 * Since we link bitmaps right into the cluster we need to see if we
2064 	 * have a cluster here, and if so and it has our bitmap we need to add
2065 	 * the free space to that bitmap.
2066 	 */
2067 	if (block_group && !list_empty(&block_group->cluster_list)) {
2068 		struct btrfs_free_cluster *cluster;
2069 		struct rb_node *node;
2070 		struct btrfs_free_space *entry;
2071 
2072 		cluster = list_entry(block_group->cluster_list.next,
2073 				     struct btrfs_free_cluster,
2074 				     block_group_list);
2075 		spin_lock(&cluster->lock);
2076 		node = rb_first(&cluster->root);
2077 		if (!node) {
2078 			spin_unlock(&cluster->lock);
2079 			goto no_cluster_bitmap;
2080 		}
2081 
2082 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2083 		if (!entry->bitmap) {
2084 			spin_unlock(&cluster->lock);
2085 			goto no_cluster_bitmap;
2086 		}
2087 
2088 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2089 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2090 							  offset, bytes);
2091 			bytes -= bytes_added;
2092 			offset += bytes_added;
2093 		}
2094 		spin_unlock(&cluster->lock);
2095 		if (!bytes) {
2096 			ret = 1;
2097 			goto out;
2098 		}
2099 	}
2100 
2101 no_cluster_bitmap:
2102 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2103 					 1, 0);
2104 	if (!bitmap_info) {
2105 		ASSERT(added == 0);
2106 		goto new_bitmap;
2107 	}
2108 
2109 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2110 	bytes -= bytes_added;
2111 	offset += bytes_added;
2112 	added = 0;
2113 
2114 	if (!bytes) {
2115 		ret = 1;
2116 		goto out;
2117 	} else
2118 		goto again;
2119 
2120 new_bitmap:
2121 	if (info && info->bitmap) {
2122 		add_new_bitmap(ctl, info, offset);
2123 		added = 1;
2124 		info = NULL;
2125 		goto again;
2126 	} else {
2127 		spin_unlock(&ctl->tree_lock);
2128 
2129 		/* no pre-allocated info, allocate a new one */
2130 		if (!info) {
2131 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2132 						 GFP_NOFS);
2133 			if (!info) {
2134 				spin_lock(&ctl->tree_lock);
2135 				ret = -ENOMEM;
2136 				goto out;
2137 			}
2138 		}
2139 
2140 		/* allocate the bitmap */
2141 		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2142 		spin_lock(&ctl->tree_lock);
2143 		if (!info->bitmap) {
2144 			ret = -ENOMEM;
2145 			goto out;
2146 		}
2147 		goto again;
2148 	}
2149 
2150 out:
2151 	if (info) {
2152 		kfree(info->bitmap);
2153 		kmem_cache_free(btrfs_free_space_cachep, info);
2154 	}
2155 
2156 	return ret;
2157 }
2158 
2159 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2160 			  struct btrfs_free_space *info, bool update_stat)
2161 {
2162 	struct btrfs_free_space *left_info;
2163 	struct btrfs_free_space *right_info;
2164 	bool merged = false;
2165 	u64 offset = info->offset;
2166 	u64 bytes = info->bytes;
2167 
2168 	/*
2169 	 * first we want to see if there is free space adjacent to the range we
2170 	 * are adding, if there is remove that struct and add a new one to
2171 	 * cover the entire range
2172 	 */
2173 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2174 	if (right_info && rb_prev(&right_info->offset_index))
2175 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2176 				     struct btrfs_free_space, offset_index);
2177 	else
2178 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2179 
2180 	if (right_info && !right_info->bitmap) {
2181 		if (update_stat)
2182 			unlink_free_space(ctl, right_info);
2183 		else
2184 			__unlink_free_space(ctl, right_info);
2185 		info->bytes += right_info->bytes;
2186 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2187 		merged = true;
2188 	}
2189 
2190 	if (left_info && !left_info->bitmap &&
2191 	    left_info->offset + left_info->bytes == offset) {
2192 		if (update_stat)
2193 			unlink_free_space(ctl, left_info);
2194 		else
2195 			__unlink_free_space(ctl, left_info);
2196 		info->offset = left_info->offset;
2197 		info->bytes += left_info->bytes;
2198 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2199 		merged = true;
2200 	}
2201 
2202 	return merged;
2203 }
2204 
2205 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2206 				     struct btrfs_free_space *info,
2207 				     bool update_stat)
2208 {
2209 	struct btrfs_free_space *bitmap;
2210 	unsigned long i;
2211 	unsigned long j;
2212 	const u64 end = info->offset + info->bytes;
2213 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2214 	u64 bytes;
2215 
2216 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2217 	if (!bitmap)
2218 		return false;
2219 
2220 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2221 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2222 	if (j == i)
2223 		return false;
2224 	bytes = (j - i) * ctl->unit;
2225 	info->bytes += bytes;
2226 
2227 	if (update_stat)
2228 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2229 	else
2230 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2231 
2232 	if (!bitmap->bytes)
2233 		free_bitmap(ctl, bitmap);
2234 
2235 	return true;
2236 }
2237 
2238 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2239 				       struct btrfs_free_space *info,
2240 				       bool update_stat)
2241 {
2242 	struct btrfs_free_space *bitmap;
2243 	u64 bitmap_offset;
2244 	unsigned long i;
2245 	unsigned long j;
2246 	unsigned long prev_j;
2247 	u64 bytes;
2248 
2249 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2250 	/* If we're on a boundary, try the previous logical bitmap. */
2251 	if (bitmap_offset == info->offset) {
2252 		if (info->offset == 0)
2253 			return false;
2254 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2255 	}
2256 
2257 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2258 	if (!bitmap)
2259 		return false;
2260 
2261 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2262 	j = 0;
2263 	prev_j = (unsigned long)-1;
2264 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2265 		if (j > i)
2266 			break;
2267 		prev_j = j;
2268 	}
2269 	if (prev_j == i)
2270 		return false;
2271 
2272 	if (prev_j == (unsigned long)-1)
2273 		bytes = (i + 1) * ctl->unit;
2274 	else
2275 		bytes = (i - prev_j) * ctl->unit;
2276 
2277 	info->offset -= bytes;
2278 	info->bytes += bytes;
2279 
2280 	if (update_stat)
2281 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2282 	else
2283 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2284 
2285 	if (!bitmap->bytes)
2286 		free_bitmap(ctl, bitmap);
2287 
2288 	return true;
2289 }
2290 
2291 /*
2292  * We prefer always to allocate from extent entries, both for clustered and
2293  * non-clustered allocation requests. So when attempting to add a new extent
2294  * entry, try to see if there's adjacent free space in bitmap entries, and if
2295  * there is, migrate that space from the bitmaps to the extent.
2296  * Like this we get better chances of satisfying space allocation requests
2297  * because we attempt to satisfy them based on a single cache entry, and never
2298  * on 2 or more entries - even if the entries represent a contiguous free space
2299  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2300  * ends).
2301  */
2302 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2303 			      struct btrfs_free_space *info,
2304 			      bool update_stat)
2305 {
2306 	/*
2307 	 * Only work with disconnected entries, as we can change their offset,
2308 	 * and must be extent entries.
2309 	 */
2310 	ASSERT(!info->bitmap);
2311 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2312 
2313 	if (ctl->total_bitmaps > 0) {
2314 		bool stole_end;
2315 		bool stole_front = false;
2316 
2317 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2318 		if (ctl->total_bitmaps > 0)
2319 			stole_front = steal_from_bitmap_to_front(ctl, info,
2320 								 update_stat);
2321 
2322 		if (stole_end || stole_front)
2323 			try_merge_free_space(ctl, info, update_stat);
2324 	}
2325 }
2326 
2327 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2328 			   struct btrfs_free_space_ctl *ctl,
2329 			   u64 offset, u64 bytes)
2330 {
2331 	struct btrfs_free_space *info;
2332 	int ret = 0;
2333 
2334 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2335 	if (!info)
2336 		return -ENOMEM;
2337 
2338 	info->offset = offset;
2339 	info->bytes = bytes;
2340 	RB_CLEAR_NODE(&info->offset_index);
2341 
2342 	spin_lock(&ctl->tree_lock);
2343 
2344 	if (try_merge_free_space(ctl, info, true))
2345 		goto link;
2346 
2347 	/*
2348 	 * There was no extent directly to the left or right of this new
2349 	 * extent then we know we're going to have to allocate a new extent, so
2350 	 * before we do that see if we need to drop this into a bitmap
2351 	 */
2352 	ret = insert_into_bitmap(ctl, info);
2353 	if (ret < 0) {
2354 		goto out;
2355 	} else if (ret) {
2356 		ret = 0;
2357 		goto out;
2358 	}
2359 link:
2360 	/*
2361 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2362 	 * going to add the new free space to existing bitmap entries - because
2363 	 * that would mean unnecessary work that would be reverted. Therefore
2364 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2365 	 */
2366 	steal_from_bitmap(ctl, info, true);
2367 
2368 	ret = link_free_space(ctl, info);
2369 	if (ret)
2370 		kmem_cache_free(btrfs_free_space_cachep, info);
2371 out:
2372 	spin_unlock(&ctl->tree_lock);
2373 
2374 	if (ret) {
2375 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2376 		ASSERT(ret != -EEXIST);
2377 	}
2378 
2379 	return ret;
2380 }
2381 
2382 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2383 			    u64 offset, u64 bytes)
2384 {
2385 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2386 	struct btrfs_free_space *info;
2387 	int ret;
2388 	bool re_search = false;
2389 
2390 	spin_lock(&ctl->tree_lock);
2391 
2392 again:
2393 	ret = 0;
2394 	if (!bytes)
2395 		goto out_lock;
2396 
2397 	info = tree_search_offset(ctl, offset, 0, 0);
2398 	if (!info) {
2399 		/*
2400 		 * oops didn't find an extent that matched the space we wanted
2401 		 * to remove, look for a bitmap instead
2402 		 */
2403 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2404 					  1, 0);
2405 		if (!info) {
2406 			/*
2407 			 * If we found a partial bit of our free space in a
2408 			 * bitmap but then couldn't find the other part this may
2409 			 * be a problem, so WARN about it.
2410 			 */
2411 			WARN_ON(re_search);
2412 			goto out_lock;
2413 		}
2414 	}
2415 
2416 	re_search = false;
2417 	if (!info->bitmap) {
2418 		unlink_free_space(ctl, info);
2419 		if (offset == info->offset) {
2420 			u64 to_free = min(bytes, info->bytes);
2421 
2422 			info->bytes -= to_free;
2423 			info->offset += to_free;
2424 			if (info->bytes) {
2425 				ret = link_free_space(ctl, info);
2426 				WARN_ON(ret);
2427 			} else {
2428 				kmem_cache_free(btrfs_free_space_cachep, info);
2429 			}
2430 
2431 			offset += to_free;
2432 			bytes -= to_free;
2433 			goto again;
2434 		} else {
2435 			u64 old_end = info->bytes + info->offset;
2436 
2437 			info->bytes = offset - info->offset;
2438 			ret = link_free_space(ctl, info);
2439 			WARN_ON(ret);
2440 			if (ret)
2441 				goto out_lock;
2442 
2443 			/* Not enough bytes in this entry to satisfy us */
2444 			if (old_end < offset + bytes) {
2445 				bytes -= old_end - offset;
2446 				offset = old_end;
2447 				goto again;
2448 			} else if (old_end == offset + bytes) {
2449 				/* all done */
2450 				goto out_lock;
2451 			}
2452 			spin_unlock(&ctl->tree_lock);
2453 
2454 			ret = btrfs_add_free_space(block_group, offset + bytes,
2455 						   old_end - (offset + bytes));
2456 			WARN_ON(ret);
2457 			goto out;
2458 		}
2459 	}
2460 
2461 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2462 	if (ret == -EAGAIN) {
2463 		re_search = true;
2464 		goto again;
2465 	}
2466 out_lock:
2467 	spin_unlock(&ctl->tree_lock);
2468 out:
2469 	return ret;
2470 }
2471 
2472 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2473 			   u64 bytes)
2474 {
2475 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2476 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2477 	struct btrfs_free_space *info;
2478 	struct rb_node *n;
2479 	int count = 0;
2480 
2481 	spin_lock(&ctl->tree_lock);
2482 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2483 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2484 		if (info->bytes >= bytes && !block_group->ro)
2485 			count++;
2486 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2487 			   info->offset, info->bytes,
2488 		       (info->bitmap) ? "yes" : "no");
2489 	}
2490 	spin_unlock(&ctl->tree_lock);
2491 	btrfs_info(fs_info, "block group has cluster?: %s",
2492 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2493 	btrfs_info(fs_info,
2494 		   "%d blocks of free space at or bigger than bytes is", count);
2495 }
2496 
2497 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2498 {
2499 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2500 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2501 
2502 	spin_lock_init(&ctl->tree_lock);
2503 	ctl->unit = fs_info->sectorsize;
2504 	ctl->start = block_group->key.objectid;
2505 	ctl->private = block_group;
2506 	ctl->op = &free_space_op;
2507 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2508 	mutex_init(&ctl->cache_writeout_mutex);
2509 
2510 	/*
2511 	 * we only want to have 32k of ram per block group for keeping
2512 	 * track of free space, and if we pass 1/2 of that we want to
2513 	 * start converting things over to using bitmaps
2514 	 */
2515 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2516 }
2517 
2518 /*
2519  * for a given cluster, put all of its extents back into the free
2520  * space cache.  If the block group passed doesn't match the block group
2521  * pointed to by the cluster, someone else raced in and freed the
2522  * cluster already.  In that case, we just return without changing anything
2523  */
2524 static int
2525 __btrfs_return_cluster_to_free_space(
2526 			     struct btrfs_block_group_cache *block_group,
2527 			     struct btrfs_free_cluster *cluster)
2528 {
2529 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2530 	struct btrfs_free_space *entry;
2531 	struct rb_node *node;
2532 
2533 	spin_lock(&cluster->lock);
2534 	if (cluster->block_group != block_group)
2535 		goto out;
2536 
2537 	cluster->block_group = NULL;
2538 	cluster->window_start = 0;
2539 	list_del_init(&cluster->block_group_list);
2540 
2541 	node = rb_first(&cluster->root);
2542 	while (node) {
2543 		bool bitmap;
2544 
2545 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2546 		node = rb_next(&entry->offset_index);
2547 		rb_erase(&entry->offset_index, &cluster->root);
2548 		RB_CLEAR_NODE(&entry->offset_index);
2549 
2550 		bitmap = (entry->bitmap != NULL);
2551 		if (!bitmap) {
2552 			try_merge_free_space(ctl, entry, false);
2553 			steal_from_bitmap(ctl, entry, false);
2554 		}
2555 		tree_insert_offset(&ctl->free_space_offset,
2556 				   entry->offset, &entry->offset_index, bitmap);
2557 	}
2558 	cluster->root = RB_ROOT;
2559 
2560 out:
2561 	spin_unlock(&cluster->lock);
2562 	btrfs_put_block_group(block_group);
2563 	return 0;
2564 }
2565 
2566 static void __btrfs_remove_free_space_cache_locked(
2567 				struct btrfs_free_space_ctl *ctl)
2568 {
2569 	struct btrfs_free_space *info;
2570 	struct rb_node *node;
2571 
2572 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2573 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2574 		if (!info->bitmap) {
2575 			unlink_free_space(ctl, info);
2576 			kmem_cache_free(btrfs_free_space_cachep, info);
2577 		} else {
2578 			free_bitmap(ctl, info);
2579 		}
2580 
2581 		cond_resched_lock(&ctl->tree_lock);
2582 	}
2583 }
2584 
2585 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2586 {
2587 	spin_lock(&ctl->tree_lock);
2588 	__btrfs_remove_free_space_cache_locked(ctl);
2589 	spin_unlock(&ctl->tree_lock);
2590 }
2591 
2592 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2593 {
2594 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2595 	struct btrfs_free_cluster *cluster;
2596 	struct list_head *head;
2597 
2598 	spin_lock(&ctl->tree_lock);
2599 	while ((head = block_group->cluster_list.next) !=
2600 	       &block_group->cluster_list) {
2601 		cluster = list_entry(head, struct btrfs_free_cluster,
2602 				     block_group_list);
2603 
2604 		WARN_ON(cluster->block_group != block_group);
2605 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2606 
2607 		cond_resched_lock(&ctl->tree_lock);
2608 	}
2609 	__btrfs_remove_free_space_cache_locked(ctl);
2610 	spin_unlock(&ctl->tree_lock);
2611 
2612 }
2613 
2614 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2615 			       u64 offset, u64 bytes, u64 empty_size,
2616 			       u64 *max_extent_size)
2617 {
2618 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2619 	struct btrfs_free_space *entry = NULL;
2620 	u64 bytes_search = bytes + empty_size;
2621 	u64 ret = 0;
2622 	u64 align_gap = 0;
2623 	u64 align_gap_len = 0;
2624 
2625 	spin_lock(&ctl->tree_lock);
2626 	entry = find_free_space(ctl, &offset, &bytes_search,
2627 				block_group->full_stripe_len, max_extent_size);
2628 	if (!entry)
2629 		goto out;
2630 
2631 	ret = offset;
2632 	if (entry->bitmap) {
2633 		bitmap_clear_bits(ctl, entry, offset, bytes);
2634 		if (!entry->bytes)
2635 			free_bitmap(ctl, entry);
2636 	} else {
2637 		unlink_free_space(ctl, entry);
2638 		align_gap_len = offset - entry->offset;
2639 		align_gap = entry->offset;
2640 
2641 		entry->offset = offset + bytes;
2642 		WARN_ON(entry->bytes < bytes + align_gap_len);
2643 
2644 		entry->bytes -= bytes + align_gap_len;
2645 		if (!entry->bytes)
2646 			kmem_cache_free(btrfs_free_space_cachep, entry);
2647 		else
2648 			link_free_space(ctl, entry);
2649 	}
2650 out:
2651 	spin_unlock(&ctl->tree_lock);
2652 
2653 	if (align_gap_len)
2654 		__btrfs_add_free_space(block_group->fs_info, ctl,
2655 				       align_gap, align_gap_len);
2656 	return ret;
2657 }
2658 
2659 /*
2660  * given a cluster, put all of its extents back into the free space
2661  * cache.  If a block group is passed, this function will only free
2662  * a cluster that belongs to the passed block group.
2663  *
2664  * Otherwise, it'll get a reference on the block group pointed to by the
2665  * cluster and remove the cluster from it.
2666  */
2667 int btrfs_return_cluster_to_free_space(
2668 			       struct btrfs_block_group_cache *block_group,
2669 			       struct btrfs_free_cluster *cluster)
2670 {
2671 	struct btrfs_free_space_ctl *ctl;
2672 	int ret;
2673 
2674 	/* first, get a safe pointer to the block group */
2675 	spin_lock(&cluster->lock);
2676 	if (!block_group) {
2677 		block_group = cluster->block_group;
2678 		if (!block_group) {
2679 			spin_unlock(&cluster->lock);
2680 			return 0;
2681 		}
2682 	} else if (cluster->block_group != block_group) {
2683 		/* someone else has already freed it don't redo their work */
2684 		spin_unlock(&cluster->lock);
2685 		return 0;
2686 	}
2687 	atomic_inc(&block_group->count);
2688 	spin_unlock(&cluster->lock);
2689 
2690 	ctl = block_group->free_space_ctl;
2691 
2692 	/* now return any extents the cluster had on it */
2693 	spin_lock(&ctl->tree_lock);
2694 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2695 	spin_unlock(&ctl->tree_lock);
2696 
2697 	/* finally drop our ref */
2698 	btrfs_put_block_group(block_group);
2699 	return ret;
2700 }
2701 
2702 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2703 				   struct btrfs_free_cluster *cluster,
2704 				   struct btrfs_free_space *entry,
2705 				   u64 bytes, u64 min_start,
2706 				   u64 *max_extent_size)
2707 {
2708 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2709 	int err;
2710 	u64 search_start = cluster->window_start;
2711 	u64 search_bytes = bytes;
2712 	u64 ret = 0;
2713 
2714 	search_start = min_start;
2715 	search_bytes = bytes;
2716 
2717 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2718 	if (err) {
2719 		*max_extent_size = max(get_max_extent_size(entry),
2720 				       *max_extent_size);
2721 		return 0;
2722 	}
2723 
2724 	ret = search_start;
2725 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2726 
2727 	return ret;
2728 }
2729 
2730 /*
2731  * given a cluster, try to allocate 'bytes' from it, returns 0
2732  * if it couldn't find anything suitably large, or a logical disk offset
2733  * if things worked out
2734  */
2735 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2736 			     struct btrfs_free_cluster *cluster, u64 bytes,
2737 			     u64 min_start, u64 *max_extent_size)
2738 {
2739 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2740 	struct btrfs_free_space *entry = NULL;
2741 	struct rb_node *node;
2742 	u64 ret = 0;
2743 
2744 	spin_lock(&cluster->lock);
2745 	if (bytes > cluster->max_size)
2746 		goto out;
2747 
2748 	if (cluster->block_group != block_group)
2749 		goto out;
2750 
2751 	node = rb_first(&cluster->root);
2752 	if (!node)
2753 		goto out;
2754 
2755 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2756 	while (1) {
2757 		if (entry->bytes < bytes)
2758 			*max_extent_size = max(get_max_extent_size(entry),
2759 					       *max_extent_size);
2760 
2761 		if (entry->bytes < bytes ||
2762 		    (!entry->bitmap && entry->offset < min_start)) {
2763 			node = rb_next(&entry->offset_index);
2764 			if (!node)
2765 				break;
2766 			entry = rb_entry(node, struct btrfs_free_space,
2767 					 offset_index);
2768 			continue;
2769 		}
2770 
2771 		if (entry->bitmap) {
2772 			ret = btrfs_alloc_from_bitmap(block_group,
2773 						      cluster, entry, bytes,
2774 						      cluster->window_start,
2775 						      max_extent_size);
2776 			if (ret == 0) {
2777 				node = rb_next(&entry->offset_index);
2778 				if (!node)
2779 					break;
2780 				entry = rb_entry(node, struct btrfs_free_space,
2781 						 offset_index);
2782 				continue;
2783 			}
2784 			cluster->window_start += bytes;
2785 		} else {
2786 			ret = entry->offset;
2787 
2788 			entry->offset += bytes;
2789 			entry->bytes -= bytes;
2790 		}
2791 
2792 		if (entry->bytes == 0)
2793 			rb_erase(&entry->offset_index, &cluster->root);
2794 		break;
2795 	}
2796 out:
2797 	spin_unlock(&cluster->lock);
2798 
2799 	if (!ret)
2800 		return 0;
2801 
2802 	spin_lock(&ctl->tree_lock);
2803 
2804 	ctl->free_space -= bytes;
2805 	if (entry->bytes == 0) {
2806 		ctl->free_extents--;
2807 		if (entry->bitmap) {
2808 			kfree(entry->bitmap);
2809 			ctl->total_bitmaps--;
2810 			ctl->op->recalc_thresholds(ctl);
2811 		}
2812 		kmem_cache_free(btrfs_free_space_cachep, entry);
2813 	}
2814 
2815 	spin_unlock(&ctl->tree_lock);
2816 
2817 	return ret;
2818 }
2819 
2820 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2821 				struct btrfs_free_space *entry,
2822 				struct btrfs_free_cluster *cluster,
2823 				u64 offset, u64 bytes,
2824 				u64 cont1_bytes, u64 min_bytes)
2825 {
2826 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2827 	unsigned long next_zero;
2828 	unsigned long i;
2829 	unsigned long want_bits;
2830 	unsigned long min_bits;
2831 	unsigned long found_bits;
2832 	unsigned long max_bits = 0;
2833 	unsigned long start = 0;
2834 	unsigned long total_found = 0;
2835 	int ret;
2836 
2837 	i = offset_to_bit(entry->offset, ctl->unit,
2838 			  max_t(u64, offset, entry->offset));
2839 	want_bits = bytes_to_bits(bytes, ctl->unit);
2840 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2841 
2842 	/*
2843 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2844 	 * fragmented.
2845 	 */
2846 	if (entry->max_extent_size &&
2847 	    entry->max_extent_size < cont1_bytes)
2848 		return -ENOSPC;
2849 again:
2850 	found_bits = 0;
2851 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2852 		next_zero = find_next_zero_bit(entry->bitmap,
2853 					       BITS_PER_BITMAP, i);
2854 		if (next_zero - i >= min_bits) {
2855 			found_bits = next_zero - i;
2856 			if (found_bits > max_bits)
2857 				max_bits = found_bits;
2858 			break;
2859 		}
2860 		if (next_zero - i > max_bits)
2861 			max_bits = next_zero - i;
2862 		i = next_zero;
2863 	}
2864 
2865 	if (!found_bits) {
2866 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2867 		return -ENOSPC;
2868 	}
2869 
2870 	if (!total_found) {
2871 		start = i;
2872 		cluster->max_size = 0;
2873 	}
2874 
2875 	total_found += found_bits;
2876 
2877 	if (cluster->max_size < found_bits * ctl->unit)
2878 		cluster->max_size = found_bits * ctl->unit;
2879 
2880 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2881 		i = next_zero + 1;
2882 		goto again;
2883 	}
2884 
2885 	cluster->window_start = start * ctl->unit + entry->offset;
2886 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2887 	ret = tree_insert_offset(&cluster->root, entry->offset,
2888 				 &entry->offset_index, 1);
2889 	ASSERT(!ret); /* -EEXIST; Logic error */
2890 
2891 	trace_btrfs_setup_cluster(block_group, cluster,
2892 				  total_found * ctl->unit, 1);
2893 	return 0;
2894 }
2895 
2896 /*
2897  * This searches the block group for just extents to fill the cluster with.
2898  * Try to find a cluster with at least bytes total bytes, at least one
2899  * extent of cont1_bytes, and other clusters of at least min_bytes.
2900  */
2901 static noinline int
2902 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2903 			struct btrfs_free_cluster *cluster,
2904 			struct list_head *bitmaps, u64 offset, u64 bytes,
2905 			u64 cont1_bytes, u64 min_bytes)
2906 {
2907 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2908 	struct btrfs_free_space *first = NULL;
2909 	struct btrfs_free_space *entry = NULL;
2910 	struct btrfs_free_space *last;
2911 	struct rb_node *node;
2912 	u64 window_free;
2913 	u64 max_extent;
2914 	u64 total_size = 0;
2915 
2916 	entry = tree_search_offset(ctl, offset, 0, 1);
2917 	if (!entry)
2918 		return -ENOSPC;
2919 
2920 	/*
2921 	 * We don't want bitmaps, so just move along until we find a normal
2922 	 * extent entry.
2923 	 */
2924 	while (entry->bitmap || entry->bytes < min_bytes) {
2925 		if (entry->bitmap && list_empty(&entry->list))
2926 			list_add_tail(&entry->list, bitmaps);
2927 		node = rb_next(&entry->offset_index);
2928 		if (!node)
2929 			return -ENOSPC;
2930 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2931 	}
2932 
2933 	window_free = entry->bytes;
2934 	max_extent = entry->bytes;
2935 	first = entry;
2936 	last = entry;
2937 
2938 	for (node = rb_next(&entry->offset_index); node;
2939 	     node = rb_next(&entry->offset_index)) {
2940 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2941 
2942 		if (entry->bitmap) {
2943 			if (list_empty(&entry->list))
2944 				list_add_tail(&entry->list, bitmaps);
2945 			continue;
2946 		}
2947 
2948 		if (entry->bytes < min_bytes)
2949 			continue;
2950 
2951 		last = entry;
2952 		window_free += entry->bytes;
2953 		if (entry->bytes > max_extent)
2954 			max_extent = entry->bytes;
2955 	}
2956 
2957 	if (window_free < bytes || max_extent < cont1_bytes)
2958 		return -ENOSPC;
2959 
2960 	cluster->window_start = first->offset;
2961 
2962 	node = &first->offset_index;
2963 
2964 	/*
2965 	 * now we've found our entries, pull them out of the free space
2966 	 * cache and put them into the cluster rbtree
2967 	 */
2968 	do {
2969 		int ret;
2970 
2971 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2972 		node = rb_next(&entry->offset_index);
2973 		if (entry->bitmap || entry->bytes < min_bytes)
2974 			continue;
2975 
2976 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2977 		ret = tree_insert_offset(&cluster->root, entry->offset,
2978 					 &entry->offset_index, 0);
2979 		total_size += entry->bytes;
2980 		ASSERT(!ret); /* -EEXIST; Logic error */
2981 	} while (node && entry != last);
2982 
2983 	cluster->max_size = max_extent;
2984 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2985 	return 0;
2986 }
2987 
2988 /*
2989  * This specifically looks for bitmaps that may work in the cluster, we assume
2990  * that we have already failed to find extents that will work.
2991  */
2992 static noinline int
2993 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2994 		     struct btrfs_free_cluster *cluster,
2995 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2996 		     u64 cont1_bytes, u64 min_bytes)
2997 {
2998 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2999 	struct btrfs_free_space *entry = NULL;
3000 	int ret = -ENOSPC;
3001 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3002 
3003 	if (ctl->total_bitmaps == 0)
3004 		return -ENOSPC;
3005 
3006 	/*
3007 	 * The bitmap that covers offset won't be in the list unless offset
3008 	 * is just its start offset.
3009 	 */
3010 	if (!list_empty(bitmaps))
3011 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3012 
3013 	if (!entry || entry->offset != bitmap_offset) {
3014 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3015 		if (entry && list_empty(&entry->list))
3016 			list_add(&entry->list, bitmaps);
3017 	}
3018 
3019 	list_for_each_entry(entry, bitmaps, list) {
3020 		if (entry->bytes < bytes)
3021 			continue;
3022 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3023 					   bytes, cont1_bytes, min_bytes);
3024 		if (!ret)
3025 			return 0;
3026 	}
3027 
3028 	/*
3029 	 * The bitmaps list has all the bitmaps that record free space
3030 	 * starting after offset, so no more search is required.
3031 	 */
3032 	return -ENOSPC;
3033 }
3034 
3035 /*
3036  * here we try to find a cluster of blocks in a block group.  The goal
3037  * is to find at least bytes+empty_size.
3038  * We might not find them all in one contiguous area.
3039  *
3040  * returns zero and sets up cluster if things worked out, otherwise
3041  * it returns -enospc
3042  */
3043 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3044 			     struct btrfs_block_group_cache *block_group,
3045 			     struct btrfs_free_cluster *cluster,
3046 			     u64 offset, u64 bytes, u64 empty_size)
3047 {
3048 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3049 	struct btrfs_free_space *entry, *tmp;
3050 	LIST_HEAD(bitmaps);
3051 	u64 min_bytes;
3052 	u64 cont1_bytes;
3053 	int ret;
3054 
3055 	/*
3056 	 * Choose the minimum extent size we'll require for this
3057 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3058 	 * For metadata, allow allocates with smaller extents.  For
3059 	 * data, keep it dense.
3060 	 */
3061 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3062 		cont1_bytes = min_bytes = bytes + empty_size;
3063 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3064 		cont1_bytes = bytes;
3065 		min_bytes = fs_info->sectorsize;
3066 	} else {
3067 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3068 		min_bytes = fs_info->sectorsize;
3069 	}
3070 
3071 	spin_lock(&ctl->tree_lock);
3072 
3073 	/*
3074 	 * If we know we don't have enough space to make a cluster don't even
3075 	 * bother doing all the work to try and find one.
3076 	 */
3077 	if (ctl->free_space < bytes) {
3078 		spin_unlock(&ctl->tree_lock);
3079 		return -ENOSPC;
3080 	}
3081 
3082 	spin_lock(&cluster->lock);
3083 
3084 	/* someone already found a cluster, hooray */
3085 	if (cluster->block_group) {
3086 		ret = 0;
3087 		goto out;
3088 	}
3089 
3090 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3091 				 min_bytes);
3092 
3093 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3094 				      bytes + empty_size,
3095 				      cont1_bytes, min_bytes);
3096 	if (ret)
3097 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3098 					   offset, bytes + empty_size,
3099 					   cont1_bytes, min_bytes);
3100 
3101 	/* Clear our temporary list */
3102 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3103 		list_del_init(&entry->list);
3104 
3105 	if (!ret) {
3106 		atomic_inc(&block_group->count);
3107 		list_add_tail(&cluster->block_group_list,
3108 			      &block_group->cluster_list);
3109 		cluster->block_group = block_group;
3110 	} else {
3111 		trace_btrfs_failed_cluster_setup(block_group);
3112 	}
3113 out:
3114 	spin_unlock(&cluster->lock);
3115 	spin_unlock(&ctl->tree_lock);
3116 
3117 	return ret;
3118 }
3119 
3120 /*
3121  * simple code to zero out a cluster
3122  */
3123 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3124 {
3125 	spin_lock_init(&cluster->lock);
3126 	spin_lock_init(&cluster->refill_lock);
3127 	cluster->root = RB_ROOT;
3128 	cluster->max_size = 0;
3129 	cluster->fragmented = false;
3130 	INIT_LIST_HEAD(&cluster->block_group_list);
3131 	cluster->block_group = NULL;
3132 }
3133 
3134 static int do_trimming(struct btrfs_block_group_cache *block_group,
3135 		       u64 *total_trimmed, u64 start, u64 bytes,
3136 		       u64 reserved_start, u64 reserved_bytes,
3137 		       struct btrfs_trim_range *trim_entry)
3138 {
3139 	struct btrfs_space_info *space_info = block_group->space_info;
3140 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3141 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3142 	int ret;
3143 	int update = 0;
3144 	u64 trimmed = 0;
3145 
3146 	spin_lock(&space_info->lock);
3147 	spin_lock(&block_group->lock);
3148 	if (!block_group->ro) {
3149 		block_group->reserved += reserved_bytes;
3150 		space_info->bytes_reserved += reserved_bytes;
3151 		update = 1;
3152 	}
3153 	spin_unlock(&block_group->lock);
3154 	spin_unlock(&space_info->lock);
3155 
3156 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3157 	if (!ret)
3158 		*total_trimmed += trimmed;
3159 
3160 	mutex_lock(&ctl->cache_writeout_mutex);
3161 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3162 	list_del(&trim_entry->list);
3163 	mutex_unlock(&ctl->cache_writeout_mutex);
3164 
3165 	if (update) {
3166 		spin_lock(&space_info->lock);
3167 		spin_lock(&block_group->lock);
3168 		if (block_group->ro)
3169 			space_info->bytes_readonly += reserved_bytes;
3170 		block_group->reserved -= reserved_bytes;
3171 		space_info->bytes_reserved -= reserved_bytes;
3172 		spin_unlock(&space_info->lock);
3173 		spin_unlock(&block_group->lock);
3174 	}
3175 
3176 	return ret;
3177 }
3178 
3179 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3180 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3181 {
3182 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3183 	struct btrfs_free_space *entry;
3184 	struct rb_node *node;
3185 	int ret = 0;
3186 	u64 extent_start;
3187 	u64 extent_bytes;
3188 	u64 bytes;
3189 
3190 	while (start < end) {
3191 		struct btrfs_trim_range trim_entry;
3192 
3193 		mutex_lock(&ctl->cache_writeout_mutex);
3194 		spin_lock(&ctl->tree_lock);
3195 
3196 		if (ctl->free_space < minlen) {
3197 			spin_unlock(&ctl->tree_lock);
3198 			mutex_unlock(&ctl->cache_writeout_mutex);
3199 			break;
3200 		}
3201 
3202 		entry = tree_search_offset(ctl, start, 0, 1);
3203 		if (!entry) {
3204 			spin_unlock(&ctl->tree_lock);
3205 			mutex_unlock(&ctl->cache_writeout_mutex);
3206 			break;
3207 		}
3208 
3209 		/* skip bitmaps */
3210 		while (entry->bitmap) {
3211 			node = rb_next(&entry->offset_index);
3212 			if (!node) {
3213 				spin_unlock(&ctl->tree_lock);
3214 				mutex_unlock(&ctl->cache_writeout_mutex);
3215 				goto out;
3216 			}
3217 			entry = rb_entry(node, struct btrfs_free_space,
3218 					 offset_index);
3219 		}
3220 
3221 		if (entry->offset >= end) {
3222 			spin_unlock(&ctl->tree_lock);
3223 			mutex_unlock(&ctl->cache_writeout_mutex);
3224 			break;
3225 		}
3226 
3227 		extent_start = entry->offset;
3228 		extent_bytes = entry->bytes;
3229 		start = max(start, extent_start);
3230 		bytes = min(extent_start + extent_bytes, end) - start;
3231 		if (bytes < minlen) {
3232 			spin_unlock(&ctl->tree_lock);
3233 			mutex_unlock(&ctl->cache_writeout_mutex);
3234 			goto next;
3235 		}
3236 
3237 		unlink_free_space(ctl, entry);
3238 		kmem_cache_free(btrfs_free_space_cachep, entry);
3239 
3240 		spin_unlock(&ctl->tree_lock);
3241 		trim_entry.start = extent_start;
3242 		trim_entry.bytes = extent_bytes;
3243 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3244 		mutex_unlock(&ctl->cache_writeout_mutex);
3245 
3246 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3247 				  extent_start, extent_bytes, &trim_entry);
3248 		if (ret)
3249 			break;
3250 next:
3251 		start += bytes;
3252 
3253 		if (fatal_signal_pending(current)) {
3254 			ret = -ERESTARTSYS;
3255 			break;
3256 		}
3257 
3258 		cond_resched();
3259 	}
3260 out:
3261 	return ret;
3262 }
3263 
3264 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3265 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3266 {
3267 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3268 	struct btrfs_free_space *entry;
3269 	int ret = 0;
3270 	int ret2;
3271 	u64 bytes;
3272 	u64 offset = offset_to_bitmap(ctl, start);
3273 
3274 	while (offset < end) {
3275 		bool next_bitmap = false;
3276 		struct btrfs_trim_range trim_entry;
3277 
3278 		mutex_lock(&ctl->cache_writeout_mutex);
3279 		spin_lock(&ctl->tree_lock);
3280 
3281 		if (ctl->free_space < minlen) {
3282 			spin_unlock(&ctl->tree_lock);
3283 			mutex_unlock(&ctl->cache_writeout_mutex);
3284 			break;
3285 		}
3286 
3287 		entry = tree_search_offset(ctl, offset, 1, 0);
3288 		if (!entry) {
3289 			spin_unlock(&ctl->tree_lock);
3290 			mutex_unlock(&ctl->cache_writeout_mutex);
3291 			next_bitmap = true;
3292 			goto next;
3293 		}
3294 
3295 		bytes = minlen;
3296 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3297 		if (ret2 || start >= end) {
3298 			spin_unlock(&ctl->tree_lock);
3299 			mutex_unlock(&ctl->cache_writeout_mutex);
3300 			next_bitmap = true;
3301 			goto next;
3302 		}
3303 
3304 		bytes = min(bytes, end - start);
3305 		if (bytes < minlen) {
3306 			spin_unlock(&ctl->tree_lock);
3307 			mutex_unlock(&ctl->cache_writeout_mutex);
3308 			goto next;
3309 		}
3310 
3311 		bitmap_clear_bits(ctl, entry, start, bytes);
3312 		if (entry->bytes == 0)
3313 			free_bitmap(ctl, entry);
3314 
3315 		spin_unlock(&ctl->tree_lock);
3316 		trim_entry.start = start;
3317 		trim_entry.bytes = bytes;
3318 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3319 		mutex_unlock(&ctl->cache_writeout_mutex);
3320 
3321 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3322 				  start, bytes, &trim_entry);
3323 		if (ret)
3324 			break;
3325 next:
3326 		if (next_bitmap) {
3327 			offset += BITS_PER_BITMAP * ctl->unit;
3328 		} else {
3329 			start += bytes;
3330 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3331 				offset += BITS_PER_BITMAP * ctl->unit;
3332 		}
3333 
3334 		if (fatal_signal_pending(current)) {
3335 			ret = -ERESTARTSYS;
3336 			break;
3337 		}
3338 
3339 		cond_resched();
3340 	}
3341 
3342 	return ret;
3343 }
3344 
3345 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3346 {
3347 	atomic_inc(&cache->trimming);
3348 }
3349 
3350 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3351 {
3352 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3353 	struct extent_map_tree *em_tree;
3354 	struct extent_map *em;
3355 	bool cleanup;
3356 
3357 	spin_lock(&block_group->lock);
3358 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3359 		   block_group->removed);
3360 	spin_unlock(&block_group->lock);
3361 
3362 	if (cleanup) {
3363 		mutex_lock(&fs_info->chunk_mutex);
3364 		em_tree = &fs_info->mapping_tree.map_tree;
3365 		write_lock(&em_tree->lock);
3366 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3367 					   1);
3368 		BUG_ON(!em); /* logic error, can't happen */
3369 		/*
3370 		 * remove_extent_mapping() will delete us from the pinned_chunks
3371 		 * list, which is protected by the chunk mutex.
3372 		 */
3373 		remove_extent_mapping(em_tree, em);
3374 		write_unlock(&em_tree->lock);
3375 		mutex_unlock(&fs_info->chunk_mutex);
3376 
3377 		/* once for us and once for the tree */
3378 		free_extent_map(em);
3379 		free_extent_map(em);
3380 
3381 		/*
3382 		 * We've left one free space entry and other tasks trimming
3383 		 * this block group have left 1 entry each one. Free them.
3384 		 */
3385 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3386 	}
3387 }
3388 
3389 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3390 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3391 {
3392 	int ret;
3393 
3394 	*trimmed = 0;
3395 
3396 	spin_lock(&block_group->lock);
3397 	if (block_group->removed) {
3398 		spin_unlock(&block_group->lock);
3399 		return 0;
3400 	}
3401 	btrfs_get_block_group_trimming(block_group);
3402 	spin_unlock(&block_group->lock);
3403 
3404 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3405 	if (ret)
3406 		goto out;
3407 
3408 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3409 out:
3410 	btrfs_put_block_group_trimming(block_group);
3411 	return ret;
3412 }
3413 
3414 /*
3415  * Find the left-most item in the cache tree, and then return the
3416  * smallest inode number in the item.
3417  *
3418  * Note: the returned inode number may not be the smallest one in
3419  * the tree, if the left-most item is a bitmap.
3420  */
3421 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3422 {
3423 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3424 	struct btrfs_free_space *entry = NULL;
3425 	u64 ino = 0;
3426 
3427 	spin_lock(&ctl->tree_lock);
3428 
3429 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3430 		goto out;
3431 
3432 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3433 			 struct btrfs_free_space, offset_index);
3434 
3435 	if (!entry->bitmap) {
3436 		ino = entry->offset;
3437 
3438 		unlink_free_space(ctl, entry);
3439 		entry->offset++;
3440 		entry->bytes--;
3441 		if (!entry->bytes)
3442 			kmem_cache_free(btrfs_free_space_cachep, entry);
3443 		else
3444 			link_free_space(ctl, entry);
3445 	} else {
3446 		u64 offset = 0;
3447 		u64 count = 1;
3448 		int ret;
3449 
3450 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3451 		/* Logic error; Should be empty if it can't find anything */
3452 		ASSERT(!ret);
3453 
3454 		ino = offset;
3455 		bitmap_clear_bits(ctl, entry, offset, 1);
3456 		if (entry->bytes == 0)
3457 			free_bitmap(ctl, entry);
3458 	}
3459 out:
3460 	spin_unlock(&ctl->tree_lock);
3461 
3462 	return ino;
3463 }
3464 
3465 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3466 				    struct btrfs_path *path)
3467 {
3468 	struct inode *inode = NULL;
3469 
3470 	spin_lock(&root->ino_cache_lock);
3471 	if (root->ino_cache_inode)
3472 		inode = igrab(root->ino_cache_inode);
3473 	spin_unlock(&root->ino_cache_lock);
3474 	if (inode)
3475 		return inode;
3476 
3477 	inode = __lookup_free_space_inode(root, path, 0);
3478 	if (IS_ERR(inode))
3479 		return inode;
3480 
3481 	spin_lock(&root->ino_cache_lock);
3482 	if (!btrfs_fs_closing(root->fs_info))
3483 		root->ino_cache_inode = igrab(inode);
3484 	spin_unlock(&root->ino_cache_lock);
3485 
3486 	return inode;
3487 }
3488 
3489 int create_free_ino_inode(struct btrfs_root *root,
3490 			  struct btrfs_trans_handle *trans,
3491 			  struct btrfs_path *path)
3492 {
3493 	return __create_free_space_inode(root, trans, path,
3494 					 BTRFS_FREE_INO_OBJECTID, 0);
3495 }
3496 
3497 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3498 {
3499 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3500 	struct btrfs_path *path;
3501 	struct inode *inode;
3502 	int ret = 0;
3503 	u64 root_gen = btrfs_root_generation(&root->root_item);
3504 
3505 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3506 		return 0;
3507 
3508 	/*
3509 	 * If we're unmounting then just return, since this does a search on the
3510 	 * normal root and not the commit root and we could deadlock.
3511 	 */
3512 	if (btrfs_fs_closing(fs_info))
3513 		return 0;
3514 
3515 	path = btrfs_alloc_path();
3516 	if (!path)
3517 		return 0;
3518 
3519 	inode = lookup_free_ino_inode(root, path);
3520 	if (IS_ERR(inode))
3521 		goto out;
3522 
3523 	if (root_gen != BTRFS_I(inode)->generation)
3524 		goto out_put;
3525 
3526 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3527 
3528 	if (ret < 0)
3529 		btrfs_err(fs_info,
3530 			"failed to load free ino cache for root %llu",
3531 			root->root_key.objectid);
3532 out_put:
3533 	iput(inode);
3534 out:
3535 	btrfs_free_path(path);
3536 	return ret;
3537 }
3538 
3539 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3540 			      struct btrfs_trans_handle *trans,
3541 			      struct btrfs_path *path,
3542 			      struct inode *inode)
3543 {
3544 	struct btrfs_fs_info *fs_info = root->fs_info;
3545 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3546 	int ret;
3547 	struct btrfs_io_ctl io_ctl;
3548 	bool release_metadata = true;
3549 
3550 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3551 		return 0;
3552 
3553 	memset(&io_ctl, 0, sizeof(io_ctl));
3554 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3555 	if (!ret) {
3556 		/*
3557 		 * At this point writepages() didn't error out, so our metadata
3558 		 * reservation is released when the writeback finishes, at
3559 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3560 		 * with or without an error.
3561 		 */
3562 		release_metadata = false;
3563 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3564 	}
3565 
3566 	if (ret) {
3567 		if (release_metadata)
3568 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3569 					inode->i_size, true);
3570 #ifdef DEBUG
3571 		btrfs_err(fs_info,
3572 			  "failed to write free ino cache for root %llu",
3573 			  root->root_key.objectid);
3574 #endif
3575 	}
3576 
3577 	return ret;
3578 }
3579 
3580 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3581 /*
3582  * Use this if you need to make a bitmap or extent entry specifically, it
3583  * doesn't do any of the merging that add_free_space does, this acts a lot like
3584  * how the free space cache loading stuff works, so you can get really weird
3585  * configurations.
3586  */
3587 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3588 			      u64 offset, u64 bytes, bool bitmap)
3589 {
3590 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3591 	struct btrfs_free_space *info = NULL, *bitmap_info;
3592 	void *map = NULL;
3593 	u64 bytes_added;
3594 	int ret;
3595 
3596 again:
3597 	if (!info) {
3598 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3599 		if (!info)
3600 			return -ENOMEM;
3601 	}
3602 
3603 	if (!bitmap) {
3604 		spin_lock(&ctl->tree_lock);
3605 		info->offset = offset;
3606 		info->bytes = bytes;
3607 		info->max_extent_size = 0;
3608 		ret = link_free_space(ctl, info);
3609 		spin_unlock(&ctl->tree_lock);
3610 		if (ret)
3611 			kmem_cache_free(btrfs_free_space_cachep, info);
3612 		return ret;
3613 	}
3614 
3615 	if (!map) {
3616 		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3617 		if (!map) {
3618 			kmem_cache_free(btrfs_free_space_cachep, info);
3619 			return -ENOMEM;
3620 		}
3621 	}
3622 
3623 	spin_lock(&ctl->tree_lock);
3624 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3625 					 1, 0);
3626 	if (!bitmap_info) {
3627 		info->bitmap = map;
3628 		map = NULL;
3629 		add_new_bitmap(ctl, info, offset);
3630 		bitmap_info = info;
3631 		info = NULL;
3632 	}
3633 
3634 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3635 
3636 	bytes -= bytes_added;
3637 	offset += bytes_added;
3638 	spin_unlock(&ctl->tree_lock);
3639 
3640 	if (bytes)
3641 		goto again;
3642 
3643 	if (info)
3644 		kmem_cache_free(btrfs_free_space_cachep, info);
3645 	kfree(map);
3646 	return 0;
3647 }
3648 
3649 /*
3650  * Checks to see if the given range is in the free space cache.  This is really
3651  * just used to check the absence of space, so if there is free space in the
3652  * range at all we will return 1.
3653  */
3654 int test_check_exists(struct btrfs_block_group_cache *cache,
3655 		      u64 offset, u64 bytes)
3656 {
3657 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3658 	struct btrfs_free_space *info;
3659 	int ret = 0;
3660 
3661 	spin_lock(&ctl->tree_lock);
3662 	info = tree_search_offset(ctl, offset, 0, 0);
3663 	if (!info) {
3664 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3665 					  1, 0);
3666 		if (!info)
3667 			goto out;
3668 	}
3669 
3670 have_info:
3671 	if (info->bitmap) {
3672 		u64 bit_off, bit_bytes;
3673 		struct rb_node *n;
3674 		struct btrfs_free_space *tmp;
3675 
3676 		bit_off = offset;
3677 		bit_bytes = ctl->unit;
3678 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3679 		if (!ret) {
3680 			if (bit_off == offset) {
3681 				ret = 1;
3682 				goto out;
3683 			} else if (bit_off > offset &&
3684 				   offset + bytes > bit_off) {
3685 				ret = 1;
3686 				goto out;
3687 			}
3688 		}
3689 
3690 		n = rb_prev(&info->offset_index);
3691 		while (n) {
3692 			tmp = rb_entry(n, struct btrfs_free_space,
3693 				       offset_index);
3694 			if (tmp->offset + tmp->bytes < offset)
3695 				break;
3696 			if (offset + bytes < tmp->offset) {
3697 				n = rb_prev(&tmp->offset_index);
3698 				continue;
3699 			}
3700 			info = tmp;
3701 			goto have_info;
3702 		}
3703 
3704 		n = rb_next(&info->offset_index);
3705 		while (n) {
3706 			tmp = rb_entry(n, struct btrfs_free_space,
3707 				       offset_index);
3708 			if (offset + bytes < tmp->offset)
3709 				break;
3710 			if (tmp->offset + tmp->bytes < offset) {
3711 				n = rb_next(&tmp->offset_index);
3712 				continue;
3713 			}
3714 			info = tmp;
3715 			goto have_info;
3716 		}
3717 
3718 		ret = 0;
3719 		goto out;
3720 	}
3721 
3722 	if (info->offset == offset) {
3723 		ret = 1;
3724 		goto out;
3725 	}
3726 
3727 	if (offset > info->offset && offset < info->offset + info->bytes)
3728 		ret = 1;
3729 out:
3730 	spin_unlock(&ctl->tree_lock);
3731 	return ret;
3732 }
3733 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3734