xref: /linux/fs/btrfs/free-space-cache.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 
22 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
23 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
24 
25 struct btrfs_trim_range {
26 	u64 start;
27 	u64 bytes;
28 	struct list_head list;
29 };
30 
31 static int link_free_space(struct btrfs_free_space_ctl *ctl,
32 			   struct btrfs_free_space *info);
33 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
34 			      struct btrfs_free_space *info);
35 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
36 			     struct btrfs_trans_handle *trans,
37 			     struct btrfs_io_ctl *io_ctl,
38 			     struct btrfs_path *path);
39 
40 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
41 					       struct btrfs_path *path,
42 					       u64 offset)
43 {
44 	struct btrfs_fs_info *fs_info = root->fs_info;
45 	struct btrfs_key key;
46 	struct btrfs_key location;
47 	struct btrfs_disk_key disk_key;
48 	struct btrfs_free_space_header *header;
49 	struct extent_buffer *leaf;
50 	struct inode *inode = NULL;
51 	unsigned nofs_flag;
52 	int ret;
53 
54 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
55 	key.offset = offset;
56 	key.type = 0;
57 
58 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
59 	if (ret < 0)
60 		return ERR_PTR(ret);
61 	if (ret > 0) {
62 		btrfs_release_path(path);
63 		return ERR_PTR(-ENOENT);
64 	}
65 
66 	leaf = path->nodes[0];
67 	header = btrfs_item_ptr(leaf, path->slots[0],
68 				struct btrfs_free_space_header);
69 	btrfs_free_space_key(leaf, header, &disk_key);
70 	btrfs_disk_key_to_cpu(&location, &disk_key);
71 	btrfs_release_path(path);
72 
73 	/*
74 	 * We are often under a trans handle at this point, so we need to make
75 	 * sure NOFS is set to keep us from deadlocking.
76 	 */
77 	nofs_flag = memalloc_nofs_save();
78 	inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
79 	btrfs_release_path(path);
80 	memalloc_nofs_restore(nofs_flag);
81 	if (IS_ERR(inode))
82 		return inode;
83 
84 	mapping_set_gfp_mask(inode->i_mapping,
85 			mapping_gfp_constraint(inode->i_mapping,
86 			~(__GFP_FS | __GFP_HIGHMEM)));
87 
88 	return inode;
89 }
90 
91 struct inode *lookup_free_space_inode(
92 		struct btrfs_block_group_cache *block_group,
93 		struct btrfs_path *path)
94 {
95 	struct btrfs_fs_info *fs_info = block_group->fs_info;
96 	struct inode *inode = NULL;
97 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
98 
99 	spin_lock(&block_group->lock);
100 	if (block_group->inode)
101 		inode = igrab(block_group->inode);
102 	spin_unlock(&block_group->lock);
103 	if (inode)
104 		return inode;
105 
106 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
107 					  block_group->key.objectid);
108 	if (IS_ERR(inode))
109 		return inode;
110 
111 	spin_lock(&block_group->lock);
112 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
113 		btrfs_info(fs_info, "Old style space inode found, converting.");
114 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
115 			BTRFS_INODE_NODATACOW;
116 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
117 	}
118 
119 	if (!block_group->iref) {
120 		block_group->inode = igrab(inode);
121 		block_group->iref = 1;
122 	}
123 	spin_unlock(&block_group->lock);
124 
125 	return inode;
126 }
127 
128 static int __create_free_space_inode(struct btrfs_root *root,
129 				     struct btrfs_trans_handle *trans,
130 				     struct btrfs_path *path,
131 				     u64 ino, u64 offset)
132 {
133 	struct btrfs_key key;
134 	struct btrfs_disk_key disk_key;
135 	struct btrfs_free_space_header *header;
136 	struct btrfs_inode_item *inode_item;
137 	struct extent_buffer *leaf;
138 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
139 	int ret;
140 
141 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
142 	if (ret)
143 		return ret;
144 
145 	/* We inline crc's for the free disk space cache */
146 	if (ino != BTRFS_FREE_INO_OBJECTID)
147 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
148 
149 	leaf = path->nodes[0];
150 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
151 				    struct btrfs_inode_item);
152 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
153 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
154 			     sizeof(*inode_item));
155 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
156 	btrfs_set_inode_size(leaf, inode_item, 0);
157 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
158 	btrfs_set_inode_uid(leaf, inode_item, 0);
159 	btrfs_set_inode_gid(leaf, inode_item, 0);
160 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
161 	btrfs_set_inode_flags(leaf, inode_item, flags);
162 	btrfs_set_inode_nlink(leaf, inode_item, 1);
163 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
164 	btrfs_set_inode_block_group(leaf, inode_item, offset);
165 	btrfs_mark_buffer_dirty(leaf);
166 	btrfs_release_path(path);
167 
168 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
169 	key.offset = offset;
170 	key.type = 0;
171 	ret = btrfs_insert_empty_item(trans, root, path, &key,
172 				      sizeof(struct btrfs_free_space_header));
173 	if (ret < 0) {
174 		btrfs_release_path(path);
175 		return ret;
176 	}
177 
178 	leaf = path->nodes[0];
179 	header = btrfs_item_ptr(leaf, path->slots[0],
180 				struct btrfs_free_space_header);
181 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
182 	btrfs_set_free_space_key(leaf, header, &disk_key);
183 	btrfs_mark_buffer_dirty(leaf);
184 	btrfs_release_path(path);
185 
186 	return 0;
187 }
188 
189 int create_free_space_inode(struct btrfs_trans_handle *trans,
190 			    struct btrfs_block_group_cache *block_group,
191 			    struct btrfs_path *path)
192 {
193 	int ret;
194 	u64 ino;
195 
196 	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
197 	if (ret < 0)
198 		return ret;
199 
200 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
201 					 ino, block_group->key.objectid);
202 }
203 
204 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
205 				       struct btrfs_block_rsv *rsv)
206 {
207 	u64 needed_bytes;
208 	int ret;
209 
210 	/* 1 for slack space, 1 for updating the inode */
211 	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
212 		btrfs_calc_trans_metadata_size(fs_info, 1);
213 
214 	spin_lock(&rsv->lock);
215 	if (rsv->reserved < needed_bytes)
216 		ret = -ENOSPC;
217 	else
218 		ret = 0;
219 	spin_unlock(&rsv->lock);
220 	return ret;
221 }
222 
223 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
224 				    struct btrfs_block_group_cache *block_group,
225 				    struct inode *inode)
226 {
227 	struct btrfs_root *root = BTRFS_I(inode)->root;
228 	int ret = 0;
229 	bool locked = false;
230 
231 	if (block_group) {
232 		struct btrfs_path *path = btrfs_alloc_path();
233 
234 		if (!path) {
235 			ret = -ENOMEM;
236 			goto fail;
237 		}
238 		locked = true;
239 		mutex_lock(&trans->transaction->cache_write_mutex);
240 		if (!list_empty(&block_group->io_list)) {
241 			list_del_init(&block_group->io_list);
242 
243 			btrfs_wait_cache_io(trans, block_group, path);
244 			btrfs_put_block_group(block_group);
245 		}
246 
247 		/*
248 		 * now that we've truncated the cache away, its no longer
249 		 * setup or written
250 		 */
251 		spin_lock(&block_group->lock);
252 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
253 		spin_unlock(&block_group->lock);
254 		btrfs_free_path(path);
255 	}
256 
257 	btrfs_i_size_write(BTRFS_I(inode), 0);
258 	truncate_pagecache(inode, 0);
259 
260 	/*
261 	 * We skip the throttling logic for free space cache inodes, so we don't
262 	 * need to check for -EAGAIN.
263 	 */
264 	ret = btrfs_truncate_inode_items(trans, root, inode,
265 					 0, BTRFS_EXTENT_DATA_KEY);
266 	if (ret)
267 		goto fail;
268 
269 	ret = btrfs_update_inode(trans, root, inode);
270 
271 fail:
272 	if (locked)
273 		mutex_unlock(&trans->transaction->cache_write_mutex);
274 	if (ret)
275 		btrfs_abort_transaction(trans, ret);
276 
277 	return ret;
278 }
279 
280 static void readahead_cache(struct inode *inode)
281 {
282 	struct file_ra_state *ra;
283 	unsigned long last_index;
284 
285 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
286 	if (!ra)
287 		return;
288 
289 	file_ra_state_init(ra, inode->i_mapping);
290 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
291 
292 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
293 
294 	kfree(ra);
295 }
296 
297 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
298 		       int write)
299 {
300 	int num_pages;
301 	int check_crcs = 0;
302 
303 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
304 
305 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
306 		check_crcs = 1;
307 
308 	/* Make sure we can fit our crcs and generation into the first page */
309 	if (write && check_crcs &&
310 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
311 		return -ENOSPC;
312 
313 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
314 
315 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
316 	if (!io_ctl->pages)
317 		return -ENOMEM;
318 
319 	io_ctl->num_pages = num_pages;
320 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
321 	io_ctl->check_crcs = check_crcs;
322 	io_ctl->inode = inode;
323 
324 	return 0;
325 }
326 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
327 
328 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
329 {
330 	kfree(io_ctl->pages);
331 	io_ctl->pages = NULL;
332 }
333 
334 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
335 {
336 	if (io_ctl->cur) {
337 		io_ctl->cur = NULL;
338 		io_ctl->orig = NULL;
339 	}
340 }
341 
342 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
343 {
344 	ASSERT(io_ctl->index < io_ctl->num_pages);
345 	io_ctl->page = io_ctl->pages[io_ctl->index++];
346 	io_ctl->cur = page_address(io_ctl->page);
347 	io_ctl->orig = io_ctl->cur;
348 	io_ctl->size = PAGE_SIZE;
349 	if (clear)
350 		clear_page(io_ctl->cur);
351 }
352 
353 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
354 {
355 	int i;
356 
357 	io_ctl_unmap_page(io_ctl);
358 
359 	for (i = 0; i < io_ctl->num_pages; i++) {
360 		if (io_ctl->pages[i]) {
361 			ClearPageChecked(io_ctl->pages[i]);
362 			unlock_page(io_ctl->pages[i]);
363 			put_page(io_ctl->pages[i]);
364 		}
365 	}
366 }
367 
368 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
369 				int uptodate)
370 {
371 	struct page *page;
372 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
373 	int i;
374 
375 	for (i = 0; i < io_ctl->num_pages; i++) {
376 		page = find_or_create_page(inode->i_mapping, i, mask);
377 		if (!page) {
378 			io_ctl_drop_pages(io_ctl);
379 			return -ENOMEM;
380 		}
381 		io_ctl->pages[i] = page;
382 		if (uptodate && !PageUptodate(page)) {
383 			btrfs_readpage(NULL, page);
384 			lock_page(page);
385 			if (!PageUptodate(page)) {
386 				btrfs_err(BTRFS_I(inode)->root->fs_info,
387 					   "error reading free space cache");
388 				io_ctl_drop_pages(io_ctl);
389 				return -EIO;
390 			}
391 		}
392 	}
393 
394 	for (i = 0; i < io_ctl->num_pages; i++) {
395 		clear_page_dirty_for_io(io_ctl->pages[i]);
396 		set_page_extent_mapped(io_ctl->pages[i]);
397 	}
398 
399 	return 0;
400 }
401 
402 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
403 {
404 	__le64 *val;
405 
406 	io_ctl_map_page(io_ctl, 1);
407 
408 	/*
409 	 * Skip the csum areas.  If we don't check crcs then we just have a
410 	 * 64bit chunk at the front of the first page.
411 	 */
412 	if (io_ctl->check_crcs) {
413 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
414 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
415 	} else {
416 		io_ctl->cur += sizeof(u64);
417 		io_ctl->size -= sizeof(u64) * 2;
418 	}
419 
420 	val = io_ctl->cur;
421 	*val = cpu_to_le64(generation);
422 	io_ctl->cur += sizeof(u64);
423 }
424 
425 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
426 {
427 	__le64 *gen;
428 
429 	/*
430 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
431 	 * chunk at the front of the first page.
432 	 */
433 	if (io_ctl->check_crcs) {
434 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
435 		io_ctl->size -= sizeof(u64) +
436 			(sizeof(u32) * io_ctl->num_pages);
437 	} else {
438 		io_ctl->cur += sizeof(u64);
439 		io_ctl->size -= sizeof(u64) * 2;
440 	}
441 
442 	gen = io_ctl->cur;
443 	if (le64_to_cpu(*gen) != generation) {
444 		btrfs_err_rl(io_ctl->fs_info,
445 			"space cache generation (%llu) does not match inode (%llu)",
446 				*gen, generation);
447 		io_ctl_unmap_page(io_ctl);
448 		return -EIO;
449 	}
450 	io_ctl->cur += sizeof(u64);
451 	return 0;
452 }
453 
454 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
455 {
456 	u32 *tmp;
457 	u32 crc = ~(u32)0;
458 	unsigned offset = 0;
459 
460 	if (!io_ctl->check_crcs) {
461 		io_ctl_unmap_page(io_ctl);
462 		return;
463 	}
464 
465 	if (index == 0)
466 		offset = sizeof(u32) * io_ctl->num_pages;
467 
468 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
469 			      PAGE_SIZE - offset);
470 	btrfs_csum_final(crc, (u8 *)&crc);
471 	io_ctl_unmap_page(io_ctl);
472 	tmp = page_address(io_ctl->pages[0]);
473 	tmp += index;
474 	*tmp = crc;
475 }
476 
477 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
478 {
479 	u32 *tmp, val;
480 	u32 crc = ~(u32)0;
481 	unsigned offset = 0;
482 
483 	if (!io_ctl->check_crcs) {
484 		io_ctl_map_page(io_ctl, 0);
485 		return 0;
486 	}
487 
488 	if (index == 0)
489 		offset = sizeof(u32) * io_ctl->num_pages;
490 
491 	tmp = page_address(io_ctl->pages[0]);
492 	tmp += index;
493 	val = *tmp;
494 
495 	io_ctl_map_page(io_ctl, 0);
496 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
497 			      PAGE_SIZE - offset);
498 	btrfs_csum_final(crc, (u8 *)&crc);
499 	if (val != crc) {
500 		btrfs_err_rl(io_ctl->fs_info,
501 			"csum mismatch on free space cache");
502 		io_ctl_unmap_page(io_ctl);
503 		return -EIO;
504 	}
505 
506 	return 0;
507 }
508 
509 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
510 			    void *bitmap)
511 {
512 	struct btrfs_free_space_entry *entry;
513 
514 	if (!io_ctl->cur)
515 		return -ENOSPC;
516 
517 	entry = io_ctl->cur;
518 	entry->offset = cpu_to_le64(offset);
519 	entry->bytes = cpu_to_le64(bytes);
520 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
521 		BTRFS_FREE_SPACE_EXTENT;
522 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
523 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
524 
525 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
526 		return 0;
527 
528 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
529 
530 	/* No more pages to map */
531 	if (io_ctl->index >= io_ctl->num_pages)
532 		return 0;
533 
534 	/* map the next page */
535 	io_ctl_map_page(io_ctl, 1);
536 	return 0;
537 }
538 
539 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
540 {
541 	if (!io_ctl->cur)
542 		return -ENOSPC;
543 
544 	/*
545 	 * If we aren't at the start of the current page, unmap this one and
546 	 * map the next one if there is any left.
547 	 */
548 	if (io_ctl->cur != io_ctl->orig) {
549 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
550 		if (io_ctl->index >= io_ctl->num_pages)
551 			return -ENOSPC;
552 		io_ctl_map_page(io_ctl, 0);
553 	}
554 
555 	copy_page(io_ctl->cur, bitmap);
556 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
557 	if (io_ctl->index < io_ctl->num_pages)
558 		io_ctl_map_page(io_ctl, 0);
559 	return 0;
560 }
561 
562 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
563 {
564 	/*
565 	 * If we're not on the boundary we know we've modified the page and we
566 	 * need to crc the page.
567 	 */
568 	if (io_ctl->cur != io_ctl->orig)
569 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
570 	else
571 		io_ctl_unmap_page(io_ctl);
572 
573 	while (io_ctl->index < io_ctl->num_pages) {
574 		io_ctl_map_page(io_ctl, 1);
575 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
576 	}
577 }
578 
579 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
580 			    struct btrfs_free_space *entry, u8 *type)
581 {
582 	struct btrfs_free_space_entry *e;
583 	int ret;
584 
585 	if (!io_ctl->cur) {
586 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
587 		if (ret)
588 			return ret;
589 	}
590 
591 	e = io_ctl->cur;
592 	entry->offset = le64_to_cpu(e->offset);
593 	entry->bytes = le64_to_cpu(e->bytes);
594 	*type = e->type;
595 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
596 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
597 
598 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
599 		return 0;
600 
601 	io_ctl_unmap_page(io_ctl);
602 
603 	return 0;
604 }
605 
606 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
607 			      struct btrfs_free_space *entry)
608 {
609 	int ret;
610 
611 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
612 	if (ret)
613 		return ret;
614 
615 	copy_page(entry->bitmap, io_ctl->cur);
616 	io_ctl_unmap_page(io_ctl);
617 
618 	return 0;
619 }
620 
621 /*
622  * Since we attach pinned extents after the fact we can have contiguous sections
623  * of free space that are split up in entries.  This poses a problem with the
624  * tree logging stuff since it could have allocated across what appears to be 2
625  * entries since we would have merged the entries when adding the pinned extents
626  * back to the free space cache.  So run through the space cache that we just
627  * loaded and merge contiguous entries.  This will make the log replay stuff not
628  * blow up and it will make for nicer allocator behavior.
629  */
630 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
631 {
632 	struct btrfs_free_space *e, *prev = NULL;
633 	struct rb_node *n;
634 
635 again:
636 	spin_lock(&ctl->tree_lock);
637 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
638 		e = rb_entry(n, struct btrfs_free_space, offset_index);
639 		if (!prev)
640 			goto next;
641 		if (e->bitmap || prev->bitmap)
642 			goto next;
643 		if (prev->offset + prev->bytes == e->offset) {
644 			unlink_free_space(ctl, prev);
645 			unlink_free_space(ctl, e);
646 			prev->bytes += e->bytes;
647 			kmem_cache_free(btrfs_free_space_cachep, e);
648 			link_free_space(ctl, prev);
649 			prev = NULL;
650 			spin_unlock(&ctl->tree_lock);
651 			goto again;
652 		}
653 next:
654 		prev = e;
655 	}
656 	spin_unlock(&ctl->tree_lock);
657 }
658 
659 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
660 				   struct btrfs_free_space_ctl *ctl,
661 				   struct btrfs_path *path, u64 offset)
662 {
663 	struct btrfs_fs_info *fs_info = root->fs_info;
664 	struct btrfs_free_space_header *header;
665 	struct extent_buffer *leaf;
666 	struct btrfs_io_ctl io_ctl;
667 	struct btrfs_key key;
668 	struct btrfs_free_space *e, *n;
669 	LIST_HEAD(bitmaps);
670 	u64 num_entries;
671 	u64 num_bitmaps;
672 	u64 generation;
673 	u8 type;
674 	int ret = 0;
675 
676 	/* Nothing in the space cache, goodbye */
677 	if (!i_size_read(inode))
678 		return 0;
679 
680 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
681 	key.offset = offset;
682 	key.type = 0;
683 
684 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
685 	if (ret < 0)
686 		return 0;
687 	else if (ret > 0) {
688 		btrfs_release_path(path);
689 		return 0;
690 	}
691 
692 	ret = -1;
693 
694 	leaf = path->nodes[0];
695 	header = btrfs_item_ptr(leaf, path->slots[0],
696 				struct btrfs_free_space_header);
697 	num_entries = btrfs_free_space_entries(leaf, header);
698 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
699 	generation = btrfs_free_space_generation(leaf, header);
700 	btrfs_release_path(path);
701 
702 	if (!BTRFS_I(inode)->generation) {
703 		btrfs_info(fs_info,
704 			   "the free space cache file (%llu) is invalid, skip it",
705 			   offset);
706 		return 0;
707 	}
708 
709 	if (BTRFS_I(inode)->generation != generation) {
710 		btrfs_err(fs_info,
711 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
712 			  BTRFS_I(inode)->generation, generation);
713 		return 0;
714 	}
715 
716 	if (!num_entries)
717 		return 0;
718 
719 	ret = io_ctl_init(&io_ctl, inode, 0);
720 	if (ret)
721 		return ret;
722 
723 	readahead_cache(inode);
724 
725 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
726 	if (ret)
727 		goto out;
728 
729 	ret = io_ctl_check_crc(&io_ctl, 0);
730 	if (ret)
731 		goto free_cache;
732 
733 	ret = io_ctl_check_generation(&io_ctl, generation);
734 	if (ret)
735 		goto free_cache;
736 
737 	while (num_entries) {
738 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
739 				      GFP_NOFS);
740 		if (!e)
741 			goto free_cache;
742 
743 		ret = io_ctl_read_entry(&io_ctl, e, &type);
744 		if (ret) {
745 			kmem_cache_free(btrfs_free_space_cachep, e);
746 			goto free_cache;
747 		}
748 
749 		if (!e->bytes) {
750 			kmem_cache_free(btrfs_free_space_cachep, e);
751 			goto free_cache;
752 		}
753 
754 		if (type == BTRFS_FREE_SPACE_EXTENT) {
755 			spin_lock(&ctl->tree_lock);
756 			ret = link_free_space(ctl, e);
757 			spin_unlock(&ctl->tree_lock);
758 			if (ret) {
759 				btrfs_err(fs_info,
760 					"Duplicate entries in free space cache, dumping");
761 				kmem_cache_free(btrfs_free_space_cachep, e);
762 				goto free_cache;
763 			}
764 		} else {
765 			ASSERT(num_bitmaps);
766 			num_bitmaps--;
767 			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
768 			if (!e->bitmap) {
769 				kmem_cache_free(
770 					btrfs_free_space_cachep, e);
771 				goto free_cache;
772 			}
773 			spin_lock(&ctl->tree_lock);
774 			ret = link_free_space(ctl, e);
775 			ctl->total_bitmaps++;
776 			ctl->op->recalc_thresholds(ctl);
777 			spin_unlock(&ctl->tree_lock);
778 			if (ret) {
779 				btrfs_err(fs_info,
780 					"Duplicate entries in free space cache, dumping");
781 				kmem_cache_free(btrfs_free_space_cachep, e);
782 				goto free_cache;
783 			}
784 			list_add_tail(&e->list, &bitmaps);
785 		}
786 
787 		num_entries--;
788 	}
789 
790 	io_ctl_unmap_page(&io_ctl);
791 
792 	/*
793 	 * We add the bitmaps at the end of the entries in order that
794 	 * the bitmap entries are added to the cache.
795 	 */
796 	list_for_each_entry_safe(e, n, &bitmaps, list) {
797 		list_del_init(&e->list);
798 		ret = io_ctl_read_bitmap(&io_ctl, e);
799 		if (ret)
800 			goto free_cache;
801 	}
802 
803 	io_ctl_drop_pages(&io_ctl);
804 	merge_space_tree(ctl);
805 	ret = 1;
806 out:
807 	io_ctl_free(&io_ctl);
808 	return ret;
809 free_cache:
810 	io_ctl_drop_pages(&io_ctl);
811 	__btrfs_remove_free_space_cache(ctl);
812 	goto out;
813 }
814 
815 int load_free_space_cache(struct btrfs_block_group_cache *block_group)
816 {
817 	struct btrfs_fs_info *fs_info = block_group->fs_info;
818 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
819 	struct inode *inode;
820 	struct btrfs_path *path;
821 	int ret = 0;
822 	bool matched;
823 	u64 used = btrfs_block_group_used(&block_group->item);
824 
825 	/*
826 	 * If this block group has been marked to be cleared for one reason or
827 	 * another then we can't trust the on disk cache, so just return.
828 	 */
829 	spin_lock(&block_group->lock);
830 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
831 		spin_unlock(&block_group->lock);
832 		return 0;
833 	}
834 	spin_unlock(&block_group->lock);
835 
836 	path = btrfs_alloc_path();
837 	if (!path)
838 		return 0;
839 	path->search_commit_root = 1;
840 	path->skip_locking = 1;
841 
842 	/*
843 	 * We must pass a path with search_commit_root set to btrfs_iget in
844 	 * order to avoid a deadlock when allocating extents for the tree root.
845 	 *
846 	 * When we are COWing an extent buffer from the tree root, when looking
847 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
848 	 * block group without its free space cache loaded. When we find one
849 	 * we must load its space cache which requires reading its free space
850 	 * cache's inode item from the root tree. If this inode item is located
851 	 * in the same leaf that we started COWing before, then we end up in
852 	 * deadlock on the extent buffer (trying to read lock it when we
853 	 * previously write locked it).
854 	 *
855 	 * It's safe to read the inode item using the commit root because
856 	 * block groups, once loaded, stay in memory forever (until they are
857 	 * removed) as well as their space caches once loaded. New block groups
858 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
859 	 * we will never try to read their inode item while the fs is mounted.
860 	 */
861 	inode = lookup_free_space_inode(block_group, path);
862 	if (IS_ERR(inode)) {
863 		btrfs_free_path(path);
864 		return 0;
865 	}
866 
867 	/* We may have converted the inode and made the cache invalid. */
868 	spin_lock(&block_group->lock);
869 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
870 		spin_unlock(&block_group->lock);
871 		btrfs_free_path(path);
872 		goto out;
873 	}
874 	spin_unlock(&block_group->lock);
875 
876 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
877 				      path, block_group->key.objectid);
878 	btrfs_free_path(path);
879 	if (ret <= 0)
880 		goto out;
881 
882 	spin_lock(&ctl->tree_lock);
883 	matched = (ctl->free_space == (block_group->key.offset - used -
884 				       block_group->bytes_super));
885 	spin_unlock(&ctl->tree_lock);
886 
887 	if (!matched) {
888 		__btrfs_remove_free_space_cache(ctl);
889 		btrfs_warn(fs_info,
890 			   "block group %llu has wrong amount of free space",
891 			   block_group->key.objectid);
892 		ret = -1;
893 	}
894 out:
895 	if (ret < 0) {
896 		/* This cache is bogus, make sure it gets cleared */
897 		spin_lock(&block_group->lock);
898 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
899 		spin_unlock(&block_group->lock);
900 		ret = 0;
901 
902 		btrfs_warn(fs_info,
903 			   "failed to load free space cache for block group %llu, rebuilding it now",
904 			   block_group->key.objectid);
905 	}
906 
907 	iput(inode);
908 	return ret;
909 }
910 
911 static noinline_for_stack
912 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
913 			      struct btrfs_free_space_ctl *ctl,
914 			      struct btrfs_block_group_cache *block_group,
915 			      int *entries, int *bitmaps,
916 			      struct list_head *bitmap_list)
917 {
918 	int ret;
919 	struct btrfs_free_cluster *cluster = NULL;
920 	struct btrfs_free_cluster *cluster_locked = NULL;
921 	struct rb_node *node = rb_first(&ctl->free_space_offset);
922 	struct btrfs_trim_range *trim_entry;
923 
924 	/* Get the cluster for this block_group if it exists */
925 	if (block_group && !list_empty(&block_group->cluster_list)) {
926 		cluster = list_entry(block_group->cluster_list.next,
927 				     struct btrfs_free_cluster,
928 				     block_group_list);
929 	}
930 
931 	if (!node && cluster) {
932 		cluster_locked = cluster;
933 		spin_lock(&cluster_locked->lock);
934 		node = rb_first(&cluster->root);
935 		cluster = NULL;
936 	}
937 
938 	/* Write out the extent entries */
939 	while (node) {
940 		struct btrfs_free_space *e;
941 
942 		e = rb_entry(node, struct btrfs_free_space, offset_index);
943 		*entries += 1;
944 
945 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
946 				       e->bitmap);
947 		if (ret)
948 			goto fail;
949 
950 		if (e->bitmap) {
951 			list_add_tail(&e->list, bitmap_list);
952 			*bitmaps += 1;
953 		}
954 		node = rb_next(node);
955 		if (!node && cluster) {
956 			node = rb_first(&cluster->root);
957 			cluster_locked = cluster;
958 			spin_lock(&cluster_locked->lock);
959 			cluster = NULL;
960 		}
961 	}
962 	if (cluster_locked) {
963 		spin_unlock(&cluster_locked->lock);
964 		cluster_locked = NULL;
965 	}
966 
967 	/*
968 	 * Make sure we don't miss any range that was removed from our rbtree
969 	 * because trimming is running. Otherwise after a umount+mount (or crash
970 	 * after committing the transaction) we would leak free space and get
971 	 * an inconsistent free space cache report from fsck.
972 	 */
973 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
974 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
975 				       trim_entry->bytes, NULL);
976 		if (ret)
977 			goto fail;
978 		*entries += 1;
979 	}
980 
981 	return 0;
982 fail:
983 	if (cluster_locked)
984 		spin_unlock(&cluster_locked->lock);
985 	return -ENOSPC;
986 }
987 
988 static noinline_for_stack int
989 update_cache_item(struct btrfs_trans_handle *trans,
990 		  struct btrfs_root *root,
991 		  struct inode *inode,
992 		  struct btrfs_path *path, u64 offset,
993 		  int entries, int bitmaps)
994 {
995 	struct btrfs_key key;
996 	struct btrfs_free_space_header *header;
997 	struct extent_buffer *leaf;
998 	int ret;
999 
1000 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1001 	key.offset = offset;
1002 	key.type = 0;
1003 
1004 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1005 	if (ret < 0) {
1006 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1007 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1008 		goto fail;
1009 	}
1010 	leaf = path->nodes[0];
1011 	if (ret > 0) {
1012 		struct btrfs_key found_key;
1013 		ASSERT(path->slots[0]);
1014 		path->slots[0]--;
1015 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1016 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1017 		    found_key.offset != offset) {
1018 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1019 					 inode->i_size - 1,
1020 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1021 					 NULL);
1022 			btrfs_release_path(path);
1023 			goto fail;
1024 		}
1025 	}
1026 
1027 	BTRFS_I(inode)->generation = trans->transid;
1028 	header = btrfs_item_ptr(leaf, path->slots[0],
1029 				struct btrfs_free_space_header);
1030 	btrfs_set_free_space_entries(leaf, header, entries);
1031 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1032 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1033 	btrfs_mark_buffer_dirty(leaf);
1034 	btrfs_release_path(path);
1035 
1036 	return 0;
1037 
1038 fail:
1039 	return -1;
1040 }
1041 
1042 static noinline_for_stack int write_pinned_extent_entries(
1043 			    struct btrfs_block_group_cache *block_group,
1044 			    struct btrfs_io_ctl *io_ctl,
1045 			    int *entries)
1046 {
1047 	u64 start, extent_start, extent_end, len;
1048 	struct extent_io_tree *unpin = NULL;
1049 	int ret;
1050 
1051 	if (!block_group)
1052 		return 0;
1053 
1054 	/*
1055 	 * We want to add any pinned extents to our free space cache
1056 	 * so we don't leak the space
1057 	 *
1058 	 * We shouldn't have switched the pinned extents yet so this is the
1059 	 * right one
1060 	 */
1061 	unpin = block_group->fs_info->pinned_extents;
1062 
1063 	start = block_group->key.objectid;
1064 
1065 	while (start < block_group->key.objectid + block_group->key.offset) {
1066 		ret = find_first_extent_bit(unpin, start,
1067 					    &extent_start, &extent_end,
1068 					    EXTENT_DIRTY, NULL);
1069 		if (ret)
1070 			return 0;
1071 
1072 		/* This pinned extent is out of our range */
1073 		if (extent_start >= block_group->key.objectid +
1074 		    block_group->key.offset)
1075 			return 0;
1076 
1077 		extent_start = max(extent_start, start);
1078 		extent_end = min(block_group->key.objectid +
1079 				 block_group->key.offset, extent_end + 1);
1080 		len = extent_end - extent_start;
1081 
1082 		*entries += 1;
1083 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1084 		if (ret)
1085 			return -ENOSPC;
1086 
1087 		start = extent_end;
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 static noinline_for_stack int
1094 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1095 {
1096 	struct btrfs_free_space *entry, *next;
1097 	int ret;
1098 
1099 	/* Write out the bitmaps */
1100 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1101 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1102 		if (ret)
1103 			return -ENOSPC;
1104 		list_del_init(&entry->list);
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 static int flush_dirty_cache(struct inode *inode)
1111 {
1112 	int ret;
1113 
1114 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1115 	if (ret)
1116 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1117 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1118 
1119 	return ret;
1120 }
1121 
1122 static void noinline_for_stack
1123 cleanup_bitmap_list(struct list_head *bitmap_list)
1124 {
1125 	struct btrfs_free_space *entry, *next;
1126 
1127 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1128 		list_del_init(&entry->list);
1129 }
1130 
1131 static void noinline_for_stack
1132 cleanup_write_cache_enospc(struct inode *inode,
1133 			   struct btrfs_io_ctl *io_ctl,
1134 			   struct extent_state **cached_state)
1135 {
1136 	io_ctl_drop_pages(io_ctl);
1137 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1138 			     i_size_read(inode) - 1, cached_state);
1139 }
1140 
1141 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1142 				 struct btrfs_trans_handle *trans,
1143 				 struct btrfs_block_group_cache *block_group,
1144 				 struct btrfs_io_ctl *io_ctl,
1145 				 struct btrfs_path *path, u64 offset)
1146 {
1147 	int ret;
1148 	struct inode *inode = io_ctl->inode;
1149 
1150 	if (!inode)
1151 		return 0;
1152 
1153 	/* Flush the dirty pages in the cache file. */
1154 	ret = flush_dirty_cache(inode);
1155 	if (ret)
1156 		goto out;
1157 
1158 	/* Update the cache item to tell everyone this cache file is valid. */
1159 	ret = update_cache_item(trans, root, inode, path, offset,
1160 				io_ctl->entries, io_ctl->bitmaps);
1161 out:
1162 	io_ctl_free(io_ctl);
1163 	if (ret) {
1164 		invalidate_inode_pages2(inode->i_mapping);
1165 		BTRFS_I(inode)->generation = 0;
1166 		if (block_group) {
1167 #ifdef DEBUG
1168 			btrfs_err(root->fs_info,
1169 				  "failed to write free space cache for block group %llu",
1170 				  block_group->key.objectid);
1171 #endif
1172 		}
1173 	}
1174 	btrfs_update_inode(trans, root, inode);
1175 
1176 	if (block_group) {
1177 		/* the dirty list is protected by the dirty_bgs_lock */
1178 		spin_lock(&trans->transaction->dirty_bgs_lock);
1179 
1180 		/* the disk_cache_state is protected by the block group lock */
1181 		spin_lock(&block_group->lock);
1182 
1183 		/*
1184 		 * only mark this as written if we didn't get put back on
1185 		 * the dirty list while waiting for IO.   Otherwise our
1186 		 * cache state won't be right, and we won't get written again
1187 		 */
1188 		if (!ret && list_empty(&block_group->dirty_list))
1189 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1190 		else if (ret)
1191 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1192 
1193 		spin_unlock(&block_group->lock);
1194 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1195 		io_ctl->inode = NULL;
1196 		iput(inode);
1197 	}
1198 
1199 	return ret;
1200 
1201 }
1202 
1203 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1204 				    struct btrfs_trans_handle *trans,
1205 				    struct btrfs_io_ctl *io_ctl,
1206 				    struct btrfs_path *path)
1207 {
1208 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1209 }
1210 
1211 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1212 			struct btrfs_block_group_cache *block_group,
1213 			struct btrfs_path *path)
1214 {
1215 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1216 				     block_group, &block_group->io_ctl,
1217 				     path, block_group->key.objectid);
1218 }
1219 
1220 /**
1221  * __btrfs_write_out_cache - write out cached info to an inode
1222  * @root - the root the inode belongs to
1223  * @ctl - the free space cache we are going to write out
1224  * @block_group - the block_group for this cache if it belongs to a block_group
1225  * @trans - the trans handle
1226  *
1227  * This function writes out a free space cache struct to disk for quick recovery
1228  * on mount.  This will return 0 if it was successful in writing the cache out,
1229  * or an errno if it was not.
1230  */
1231 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1232 				   struct btrfs_free_space_ctl *ctl,
1233 				   struct btrfs_block_group_cache *block_group,
1234 				   struct btrfs_io_ctl *io_ctl,
1235 				   struct btrfs_trans_handle *trans)
1236 {
1237 	struct extent_state *cached_state = NULL;
1238 	LIST_HEAD(bitmap_list);
1239 	int entries = 0;
1240 	int bitmaps = 0;
1241 	int ret;
1242 	int must_iput = 0;
1243 
1244 	if (!i_size_read(inode))
1245 		return -EIO;
1246 
1247 	WARN_ON(io_ctl->pages);
1248 	ret = io_ctl_init(io_ctl, inode, 1);
1249 	if (ret)
1250 		return ret;
1251 
1252 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1253 		down_write(&block_group->data_rwsem);
1254 		spin_lock(&block_group->lock);
1255 		if (block_group->delalloc_bytes) {
1256 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1257 			spin_unlock(&block_group->lock);
1258 			up_write(&block_group->data_rwsem);
1259 			BTRFS_I(inode)->generation = 0;
1260 			ret = 0;
1261 			must_iput = 1;
1262 			goto out;
1263 		}
1264 		spin_unlock(&block_group->lock);
1265 	}
1266 
1267 	/* Lock all pages first so we can lock the extent safely. */
1268 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1269 	if (ret)
1270 		goto out_unlock;
1271 
1272 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1273 			 &cached_state);
1274 
1275 	io_ctl_set_generation(io_ctl, trans->transid);
1276 
1277 	mutex_lock(&ctl->cache_writeout_mutex);
1278 	/* Write out the extent entries in the free space cache */
1279 	spin_lock(&ctl->tree_lock);
1280 	ret = write_cache_extent_entries(io_ctl, ctl,
1281 					 block_group, &entries, &bitmaps,
1282 					 &bitmap_list);
1283 	if (ret)
1284 		goto out_nospc_locked;
1285 
1286 	/*
1287 	 * Some spaces that are freed in the current transaction are pinned,
1288 	 * they will be added into free space cache after the transaction is
1289 	 * committed, we shouldn't lose them.
1290 	 *
1291 	 * If this changes while we are working we'll get added back to
1292 	 * the dirty list and redo it.  No locking needed
1293 	 */
1294 	ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1295 	if (ret)
1296 		goto out_nospc_locked;
1297 
1298 	/*
1299 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1300 	 * locked while doing it because a concurrent trim can be manipulating
1301 	 * or freeing the bitmap.
1302 	 */
1303 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1304 	spin_unlock(&ctl->tree_lock);
1305 	mutex_unlock(&ctl->cache_writeout_mutex);
1306 	if (ret)
1307 		goto out_nospc;
1308 
1309 	/* Zero out the rest of the pages just to make sure */
1310 	io_ctl_zero_remaining_pages(io_ctl);
1311 
1312 	/* Everything is written out, now we dirty the pages in the file. */
1313 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1314 				i_size_read(inode), &cached_state);
1315 	if (ret)
1316 		goto out_nospc;
1317 
1318 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1319 		up_write(&block_group->data_rwsem);
1320 	/*
1321 	 * Release the pages and unlock the extent, we will flush
1322 	 * them out later
1323 	 */
1324 	io_ctl_drop_pages(io_ctl);
1325 
1326 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1327 			     i_size_read(inode) - 1, &cached_state);
1328 
1329 	/*
1330 	 * at this point the pages are under IO and we're happy,
1331 	 * The caller is responsible for waiting on them and updating the
1332 	 * the cache and the inode
1333 	 */
1334 	io_ctl->entries = entries;
1335 	io_ctl->bitmaps = bitmaps;
1336 
1337 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1338 	if (ret)
1339 		goto out;
1340 
1341 	return 0;
1342 
1343 out:
1344 	io_ctl->inode = NULL;
1345 	io_ctl_free(io_ctl);
1346 	if (ret) {
1347 		invalidate_inode_pages2(inode->i_mapping);
1348 		BTRFS_I(inode)->generation = 0;
1349 	}
1350 	btrfs_update_inode(trans, root, inode);
1351 	if (must_iput)
1352 		iput(inode);
1353 	return ret;
1354 
1355 out_nospc_locked:
1356 	cleanup_bitmap_list(&bitmap_list);
1357 	spin_unlock(&ctl->tree_lock);
1358 	mutex_unlock(&ctl->cache_writeout_mutex);
1359 
1360 out_nospc:
1361 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1362 
1363 out_unlock:
1364 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1365 		up_write(&block_group->data_rwsem);
1366 
1367 	goto out;
1368 }
1369 
1370 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1371 			  struct btrfs_block_group_cache *block_group,
1372 			  struct btrfs_path *path)
1373 {
1374 	struct btrfs_fs_info *fs_info = trans->fs_info;
1375 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1376 	struct inode *inode;
1377 	int ret = 0;
1378 
1379 	spin_lock(&block_group->lock);
1380 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1381 		spin_unlock(&block_group->lock);
1382 		return 0;
1383 	}
1384 	spin_unlock(&block_group->lock);
1385 
1386 	inode = lookup_free_space_inode(block_group, path);
1387 	if (IS_ERR(inode))
1388 		return 0;
1389 
1390 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1391 				block_group, &block_group->io_ctl, trans);
1392 	if (ret) {
1393 #ifdef DEBUG
1394 		btrfs_err(fs_info,
1395 			  "failed to write free space cache for block group %llu",
1396 			  block_group->key.objectid);
1397 #endif
1398 		spin_lock(&block_group->lock);
1399 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1400 		spin_unlock(&block_group->lock);
1401 
1402 		block_group->io_ctl.inode = NULL;
1403 		iput(inode);
1404 	}
1405 
1406 	/*
1407 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1408 	 * to wait for IO and put the inode
1409 	 */
1410 
1411 	return ret;
1412 }
1413 
1414 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1415 					  u64 offset)
1416 {
1417 	ASSERT(offset >= bitmap_start);
1418 	offset -= bitmap_start;
1419 	return (unsigned long)(div_u64(offset, unit));
1420 }
1421 
1422 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1423 {
1424 	return (unsigned long)(div_u64(bytes, unit));
1425 }
1426 
1427 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1428 				   u64 offset)
1429 {
1430 	u64 bitmap_start;
1431 	u64 bytes_per_bitmap;
1432 
1433 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1434 	bitmap_start = offset - ctl->start;
1435 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1436 	bitmap_start *= bytes_per_bitmap;
1437 	bitmap_start += ctl->start;
1438 
1439 	return bitmap_start;
1440 }
1441 
1442 static int tree_insert_offset(struct rb_root *root, u64 offset,
1443 			      struct rb_node *node, int bitmap)
1444 {
1445 	struct rb_node **p = &root->rb_node;
1446 	struct rb_node *parent = NULL;
1447 	struct btrfs_free_space *info;
1448 
1449 	while (*p) {
1450 		parent = *p;
1451 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1452 
1453 		if (offset < info->offset) {
1454 			p = &(*p)->rb_left;
1455 		} else if (offset > info->offset) {
1456 			p = &(*p)->rb_right;
1457 		} else {
1458 			/*
1459 			 * we could have a bitmap entry and an extent entry
1460 			 * share the same offset.  If this is the case, we want
1461 			 * the extent entry to always be found first if we do a
1462 			 * linear search through the tree, since we want to have
1463 			 * the quickest allocation time, and allocating from an
1464 			 * extent is faster than allocating from a bitmap.  So
1465 			 * if we're inserting a bitmap and we find an entry at
1466 			 * this offset, we want to go right, or after this entry
1467 			 * logically.  If we are inserting an extent and we've
1468 			 * found a bitmap, we want to go left, or before
1469 			 * logically.
1470 			 */
1471 			if (bitmap) {
1472 				if (info->bitmap) {
1473 					WARN_ON_ONCE(1);
1474 					return -EEXIST;
1475 				}
1476 				p = &(*p)->rb_right;
1477 			} else {
1478 				if (!info->bitmap) {
1479 					WARN_ON_ONCE(1);
1480 					return -EEXIST;
1481 				}
1482 				p = &(*p)->rb_left;
1483 			}
1484 		}
1485 	}
1486 
1487 	rb_link_node(node, parent, p);
1488 	rb_insert_color(node, root);
1489 
1490 	return 0;
1491 }
1492 
1493 /*
1494  * searches the tree for the given offset.
1495  *
1496  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1497  * want a section that has at least bytes size and comes at or after the given
1498  * offset.
1499  */
1500 static struct btrfs_free_space *
1501 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1502 		   u64 offset, int bitmap_only, int fuzzy)
1503 {
1504 	struct rb_node *n = ctl->free_space_offset.rb_node;
1505 	struct btrfs_free_space *entry, *prev = NULL;
1506 
1507 	/* find entry that is closest to the 'offset' */
1508 	while (1) {
1509 		if (!n) {
1510 			entry = NULL;
1511 			break;
1512 		}
1513 
1514 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1515 		prev = entry;
1516 
1517 		if (offset < entry->offset)
1518 			n = n->rb_left;
1519 		else if (offset > entry->offset)
1520 			n = n->rb_right;
1521 		else
1522 			break;
1523 	}
1524 
1525 	if (bitmap_only) {
1526 		if (!entry)
1527 			return NULL;
1528 		if (entry->bitmap)
1529 			return entry;
1530 
1531 		/*
1532 		 * bitmap entry and extent entry may share same offset,
1533 		 * in that case, bitmap entry comes after extent entry.
1534 		 */
1535 		n = rb_next(n);
1536 		if (!n)
1537 			return NULL;
1538 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1539 		if (entry->offset != offset)
1540 			return NULL;
1541 
1542 		WARN_ON(!entry->bitmap);
1543 		return entry;
1544 	} else if (entry) {
1545 		if (entry->bitmap) {
1546 			/*
1547 			 * if previous extent entry covers the offset,
1548 			 * we should return it instead of the bitmap entry
1549 			 */
1550 			n = rb_prev(&entry->offset_index);
1551 			if (n) {
1552 				prev = rb_entry(n, struct btrfs_free_space,
1553 						offset_index);
1554 				if (!prev->bitmap &&
1555 				    prev->offset + prev->bytes > offset)
1556 					entry = prev;
1557 			}
1558 		}
1559 		return entry;
1560 	}
1561 
1562 	if (!prev)
1563 		return NULL;
1564 
1565 	/* find last entry before the 'offset' */
1566 	entry = prev;
1567 	if (entry->offset > offset) {
1568 		n = rb_prev(&entry->offset_index);
1569 		if (n) {
1570 			entry = rb_entry(n, struct btrfs_free_space,
1571 					offset_index);
1572 			ASSERT(entry->offset <= offset);
1573 		} else {
1574 			if (fuzzy)
1575 				return entry;
1576 			else
1577 				return NULL;
1578 		}
1579 	}
1580 
1581 	if (entry->bitmap) {
1582 		n = rb_prev(&entry->offset_index);
1583 		if (n) {
1584 			prev = rb_entry(n, struct btrfs_free_space,
1585 					offset_index);
1586 			if (!prev->bitmap &&
1587 			    prev->offset + prev->bytes > offset)
1588 				return prev;
1589 		}
1590 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1591 			return entry;
1592 	} else if (entry->offset + entry->bytes > offset)
1593 		return entry;
1594 
1595 	if (!fuzzy)
1596 		return NULL;
1597 
1598 	while (1) {
1599 		if (entry->bitmap) {
1600 			if (entry->offset + BITS_PER_BITMAP *
1601 			    ctl->unit > offset)
1602 				break;
1603 		} else {
1604 			if (entry->offset + entry->bytes > offset)
1605 				break;
1606 		}
1607 
1608 		n = rb_next(&entry->offset_index);
1609 		if (!n)
1610 			return NULL;
1611 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1612 	}
1613 	return entry;
1614 }
1615 
1616 static inline void
1617 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1618 		    struct btrfs_free_space *info)
1619 {
1620 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1621 	ctl->free_extents--;
1622 }
1623 
1624 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1625 			      struct btrfs_free_space *info)
1626 {
1627 	__unlink_free_space(ctl, info);
1628 	ctl->free_space -= info->bytes;
1629 }
1630 
1631 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1632 			   struct btrfs_free_space *info)
1633 {
1634 	int ret = 0;
1635 
1636 	ASSERT(info->bytes || info->bitmap);
1637 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1638 				 &info->offset_index, (info->bitmap != NULL));
1639 	if (ret)
1640 		return ret;
1641 
1642 	ctl->free_space += info->bytes;
1643 	ctl->free_extents++;
1644 	return ret;
1645 }
1646 
1647 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1648 {
1649 	struct btrfs_block_group_cache *block_group = ctl->private;
1650 	u64 max_bytes;
1651 	u64 bitmap_bytes;
1652 	u64 extent_bytes;
1653 	u64 size = block_group->key.offset;
1654 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1655 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1656 
1657 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1658 
1659 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1660 
1661 	/*
1662 	 * The goal is to keep the total amount of memory used per 1gb of space
1663 	 * at or below 32k, so we need to adjust how much memory we allow to be
1664 	 * used by extent based free space tracking
1665 	 */
1666 	if (size < SZ_1G)
1667 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1668 	else
1669 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1670 
1671 	/*
1672 	 * we want to account for 1 more bitmap than what we have so we can make
1673 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1674 	 * we add more bitmaps.
1675 	 */
1676 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1677 
1678 	if (bitmap_bytes >= max_bytes) {
1679 		ctl->extents_thresh = 0;
1680 		return;
1681 	}
1682 
1683 	/*
1684 	 * we want the extent entry threshold to always be at most 1/2 the max
1685 	 * bytes we can have, or whatever is less than that.
1686 	 */
1687 	extent_bytes = max_bytes - bitmap_bytes;
1688 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1689 
1690 	ctl->extents_thresh =
1691 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1692 }
1693 
1694 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1695 				       struct btrfs_free_space *info,
1696 				       u64 offset, u64 bytes)
1697 {
1698 	unsigned long start, count;
1699 
1700 	start = offset_to_bit(info->offset, ctl->unit, offset);
1701 	count = bytes_to_bits(bytes, ctl->unit);
1702 	ASSERT(start + count <= BITS_PER_BITMAP);
1703 
1704 	bitmap_clear(info->bitmap, start, count);
1705 
1706 	info->bytes -= bytes;
1707 	if (info->max_extent_size > ctl->unit)
1708 		info->max_extent_size = 0;
1709 }
1710 
1711 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1712 			      struct btrfs_free_space *info, u64 offset,
1713 			      u64 bytes)
1714 {
1715 	__bitmap_clear_bits(ctl, info, offset, bytes);
1716 	ctl->free_space -= bytes;
1717 }
1718 
1719 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1720 			    struct btrfs_free_space *info, u64 offset,
1721 			    u64 bytes)
1722 {
1723 	unsigned long start, count;
1724 
1725 	start = offset_to_bit(info->offset, ctl->unit, offset);
1726 	count = bytes_to_bits(bytes, ctl->unit);
1727 	ASSERT(start + count <= BITS_PER_BITMAP);
1728 
1729 	bitmap_set(info->bitmap, start, count);
1730 
1731 	info->bytes += bytes;
1732 	ctl->free_space += bytes;
1733 }
1734 
1735 /*
1736  * If we can not find suitable extent, we will use bytes to record
1737  * the size of the max extent.
1738  */
1739 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1740 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1741 			 u64 *bytes, bool for_alloc)
1742 {
1743 	unsigned long found_bits = 0;
1744 	unsigned long max_bits = 0;
1745 	unsigned long bits, i;
1746 	unsigned long next_zero;
1747 	unsigned long extent_bits;
1748 
1749 	/*
1750 	 * Skip searching the bitmap if we don't have a contiguous section that
1751 	 * is large enough for this allocation.
1752 	 */
1753 	if (for_alloc &&
1754 	    bitmap_info->max_extent_size &&
1755 	    bitmap_info->max_extent_size < *bytes) {
1756 		*bytes = bitmap_info->max_extent_size;
1757 		return -1;
1758 	}
1759 
1760 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1761 			  max_t(u64, *offset, bitmap_info->offset));
1762 	bits = bytes_to_bits(*bytes, ctl->unit);
1763 
1764 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1765 		if (for_alloc && bits == 1) {
1766 			found_bits = 1;
1767 			break;
1768 		}
1769 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1770 					       BITS_PER_BITMAP, i);
1771 		extent_bits = next_zero - i;
1772 		if (extent_bits >= bits) {
1773 			found_bits = extent_bits;
1774 			break;
1775 		} else if (extent_bits > max_bits) {
1776 			max_bits = extent_bits;
1777 		}
1778 		i = next_zero;
1779 	}
1780 
1781 	if (found_bits) {
1782 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1783 		*bytes = (u64)(found_bits) * ctl->unit;
1784 		return 0;
1785 	}
1786 
1787 	*bytes = (u64)(max_bits) * ctl->unit;
1788 	bitmap_info->max_extent_size = *bytes;
1789 	return -1;
1790 }
1791 
1792 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1793 {
1794 	if (entry->bitmap)
1795 		return entry->max_extent_size;
1796 	return entry->bytes;
1797 }
1798 
1799 /* Cache the size of the max extent in bytes */
1800 static struct btrfs_free_space *
1801 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1802 		unsigned long align, u64 *max_extent_size)
1803 {
1804 	struct btrfs_free_space *entry;
1805 	struct rb_node *node;
1806 	u64 tmp;
1807 	u64 align_off;
1808 	int ret;
1809 
1810 	if (!ctl->free_space_offset.rb_node)
1811 		goto out;
1812 
1813 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1814 	if (!entry)
1815 		goto out;
1816 
1817 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1818 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1819 		if (entry->bytes < *bytes) {
1820 			*max_extent_size = max(get_max_extent_size(entry),
1821 					       *max_extent_size);
1822 			continue;
1823 		}
1824 
1825 		/* make sure the space returned is big enough
1826 		 * to match our requested alignment
1827 		 */
1828 		if (*bytes >= align) {
1829 			tmp = entry->offset - ctl->start + align - 1;
1830 			tmp = div64_u64(tmp, align);
1831 			tmp = tmp * align + ctl->start;
1832 			align_off = tmp - entry->offset;
1833 		} else {
1834 			align_off = 0;
1835 			tmp = entry->offset;
1836 		}
1837 
1838 		if (entry->bytes < *bytes + align_off) {
1839 			*max_extent_size = max(get_max_extent_size(entry),
1840 					       *max_extent_size);
1841 			continue;
1842 		}
1843 
1844 		if (entry->bitmap) {
1845 			u64 size = *bytes;
1846 
1847 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1848 			if (!ret) {
1849 				*offset = tmp;
1850 				*bytes = size;
1851 				return entry;
1852 			} else {
1853 				*max_extent_size =
1854 					max(get_max_extent_size(entry),
1855 					    *max_extent_size);
1856 			}
1857 			continue;
1858 		}
1859 
1860 		*offset = tmp;
1861 		*bytes = entry->bytes - align_off;
1862 		return entry;
1863 	}
1864 out:
1865 	return NULL;
1866 }
1867 
1868 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1869 			   struct btrfs_free_space *info, u64 offset)
1870 {
1871 	info->offset = offset_to_bitmap(ctl, offset);
1872 	info->bytes = 0;
1873 	INIT_LIST_HEAD(&info->list);
1874 	link_free_space(ctl, info);
1875 	ctl->total_bitmaps++;
1876 
1877 	ctl->op->recalc_thresholds(ctl);
1878 }
1879 
1880 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1881 			struct btrfs_free_space *bitmap_info)
1882 {
1883 	unlink_free_space(ctl, bitmap_info);
1884 	kfree(bitmap_info->bitmap);
1885 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1886 	ctl->total_bitmaps--;
1887 	ctl->op->recalc_thresholds(ctl);
1888 }
1889 
1890 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1891 			      struct btrfs_free_space *bitmap_info,
1892 			      u64 *offset, u64 *bytes)
1893 {
1894 	u64 end;
1895 	u64 search_start, search_bytes;
1896 	int ret;
1897 
1898 again:
1899 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1900 
1901 	/*
1902 	 * We need to search for bits in this bitmap.  We could only cover some
1903 	 * of the extent in this bitmap thanks to how we add space, so we need
1904 	 * to search for as much as it as we can and clear that amount, and then
1905 	 * go searching for the next bit.
1906 	 */
1907 	search_start = *offset;
1908 	search_bytes = ctl->unit;
1909 	search_bytes = min(search_bytes, end - search_start + 1);
1910 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1911 			    false);
1912 	if (ret < 0 || search_start != *offset)
1913 		return -EINVAL;
1914 
1915 	/* We may have found more bits than what we need */
1916 	search_bytes = min(search_bytes, *bytes);
1917 
1918 	/* Cannot clear past the end of the bitmap */
1919 	search_bytes = min(search_bytes, end - search_start + 1);
1920 
1921 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1922 	*offset += search_bytes;
1923 	*bytes -= search_bytes;
1924 
1925 	if (*bytes) {
1926 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1927 		if (!bitmap_info->bytes)
1928 			free_bitmap(ctl, bitmap_info);
1929 
1930 		/*
1931 		 * no entry after this bitmap, but we still have bytes to
1932 		 * remove, so something has gone wrong.
1933 		 */
1934 		if (!next)
1935 			return -EINVAL;
1936 
1937 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1938 				       offset_index);
1939 
1940 		/*
1941 		 * if the next entry isn't a bitmap we need to return to let the
1942 		 * extent stuff do its work.
1943 		 */
1944 		if (!bitmap_info->bitmap)
1945 			return -EAGAIN;
1946 
1947 		/*
1948 		 * Ok the next item is a bitmap, but it may not actually hold
1949 		 * the information for the rest of this free space stuff, so
1950 		 * look for it, and if we don't find it return so we can try
1951 		 * everything over again.
1952 		 */
1953 		search_start = *offset;
1954 		search_bytes = ctl->unit;
1955 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1956 				    &search_bytes, false);
1957 		if (ret < 0 || search_start != *offset)
1958 			return -EAGAIN;
1959 
1960 		goto again;
1961 	} else if (!bitmap_info->bytes)
1962 		free_bitmap(ctl, bitmap_info);
1963 
1964 	return 0;
1965 }
1966 
1967 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1968 			       struct btrfs_free_space *info, u64 offset,
1969 			       u64 bytes)
1970 {
1971 	u64 bytes_to_set = 0;
1972 	u64 end;
1973 
1974 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1975 
1976 	bytes_to_set = min(end - offset, bytes);
1977 
1978 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1979 
1980 	/*
1981 	 * We set some bytes, we have no idea what the max extent size is
1982 	 * anymore.
1983 	 */
1984 	info->max_extent_size = 0;
1985 
1986 	return bytes_to_set;
1987 
1988 }
1989 
1990 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1991 		      struct btrfs_free_space *info)
1992 {
1993 	struct btrfs_block_group_cache *block_group = ctl->private;
1994 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1995 	bool forced = false;
1996 
1997 #ifdef CONFIG_BTRFS_DEBUG
1998 	if (btrfs_should_fragment_free_space(block_group))
1999 		forced = true;
2000 #endif
2001 
2002 	/*
2003 	 * If we are below the extents threshold then we can add this as an
2004 	 * extent, and don't have to deal with the bitmap
2005 	 */
2006 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2007 		/*
2008 		 * If this block group has some small extents we don't want to
2009 		 * use up all of our free slots in the cache with them, we want
2010 		 * to reserve them to larger extents, however if we have plenty
2011 		 * of cache left then go ahead an dadd them, no sense in adding
2012 		 * the overhead of a bitmap if we don't have to.
2013 		 */
2014 		if (info->bytes <= fs_info->sectorsize * 4) {
2015 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2016 				return false;
2017 		} else {
2018 			return false;
2019 		}
2020 	}
2021 
2022 	/*
2023 	 * The original block groups from mkfs can be really small, like 8
2024 	 * megabytes, so don't bother with a bitmap for those entries.  However
2025 	 * some block groups can be smaller than what a bitmap would cover but
2026 	 * are still large enough that they could overflow the 32k memory limit,
2027 	 * so allow those block groups to still be allowed to have a bitmap
2028 	 * entry.
2029 	 */
2030 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2031 		return false;
2032 
2033 	return true;
2034 }
2035 
2036 static const struct btrfs_free_space_op free_space_op = {
2037 	.recalc_thresholds	= recalculate_thresholds,
2038 	.use_bitmap		= use_bitmap,
2039 };
2040 
2041 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2042 			      struct btrfs_free_space *info)
2043 {
2044 	struct btrfs_free_space *bitmap_info;
2045 	struct btrfs_block_group_cache *block_group = NULL;
2046 	int added = 0;
2047 	u64 bytes, offset, bytes_added;
2048 	int ret;
2049 
2050 	bytes = info->bytes;
2051 	offset = info->offset;
2052 
2053 	if (!ctl->op->use_bitmap(ctl, info))
2054 		return 0;
2055 
2056 	if (ctl->op == &free_space_op)
2057 		block_group = ctl->private;
2058 again:
2059 	/*
2060 	 * Since we link bitmaps right into the cluster we need to see if we
2061 	 * have a cluster here, and if so and it has our bitmap we need to add
2062 	 * the free space to that bitmap.
2063 	 */
2064 	if (block_group && !list_empty(&block_group->cluster_list)) {
2065 		struct btrfs_free_cluster *cluster;
2066 		struct rb_node *node;
2067 		struct btrfs_free_space *entry;
2068 
2069 		cluster = list_entry(block_group->cluster_list.next,
2070 				     struct btrfs_free_cluster,
2071 				     block_group_list);
2072 		spin_lock(&cluster->lock);
2073 		node = rb_first(&cluster->root);
2074 		if (!node) {
2075 			spin_unlock(&cluster->lock);
2076 			goto no_cluster_bitmap;
2077 		}
2078 
2079 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2080 		if (!entry->bitmap) {
2081 			spin_unlock(&cluster->lock);
2082 			goto no_cluster_bitmap;
2083 		}
2084 
2085 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2086 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2087 							  offset, bytes);
2088 			bytes -= bytes_added;
2089 			offset += bytes_added;
2090 		}
2091 		spin_unlock(&cluster->lock);
2092 		if (!bytes) {
2093 			ret = 1;
2094 			goto out;
2095 		}
2096 	}
2097 
2098 no_cluster_bitmap:
2099 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2100 					 1, 0);
2101 	if (!bitmap_info) {
2102 		ASSERT(added == 0);
2103 		goto new_bitmap;
2104 	}
2105 
2106 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2107 	bytes -= bytes_added;
2108 	offset += bytes_added;
2109 	added = 0;
2110 
2111 	if (!bytes) {
2112 		ret = 1;
2113 		goto out;
2114 	} else
2115 		goto again;
2116 
2117 new_bitmap:
2118 	if (info && info->bitmap) {
2119 		add_new_bitmap(ctl, info, offset);
2120 		added = 1;
2121 		info = NULL;
2122 		goto again;
2123 	} else {
2124 		spin_unlock(&ctl->tree_lock);
2125 
2126 		/* no pre-allocated info, allocate a new one */
2127 		if (!info) {
2128 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2129 						 GFP_NOFS);
2130 			if (!info) {
2131 				spin_lock(&ctl->tree_lock);
2132 				ret = -ENOMEM;
2133 				goto out;
2134 			}
2135 		}
2136 
2137 		/* allocate the bitmap */
2138 		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2139 		spin_lock(&ctl->tree_lock);
2140 		if (!info->bitmap) {
2141 			ret = -ENOMEM;
2142 			goto out;
2143 		}
2144 		goto again;
2145 	}
2146 
2147 out:
2148 	if (info) {
2149 		kfree(info->bitmap);
2150 		kmem_cache_free(btrfs_free_space_cachep, info);
2151 	}
2152 
2153 	return ret;
2154 }
2155 
2156 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2157 			  struct btrfs_free_space *info, bool update_stat)
2158 {
2159 	struct btrfs_free_space *left_info;
2160 	struct btrfs_free_space *right_info;
2161 	bool merged = false;
2162 	u64 offset = info->offset;
2163 	u64 bytes = info->bytes;
2164 
2165 	/*
2166 	 * first we want to see if there is free space adjacent to the range we
2167 	 * are adding, if there is remove that struct and add a new one to
2168 	 * cover the entire range
2169 	 */
2170 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2171 	if (right_info && rb_prev(&right_info->offset_index))
2172 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2173 				     struct btrfs_free_space, offset_index);
2174 	else
2175 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2176 
2177 	if (right_info && !right_info->bitmap) {
2178 		if (update_stat)
2179 			unlink_free_space(ctl, right_info);
2180 		else
2181 			__unlink_free_space(ctl, right_info);
2182 		info->bytes += right_info->bytes;
2183 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2184 		merged = true;
2185 	}
2186 
2187 	if (left_info && !left_info->bitmap &&
2188 	    left_info->offset + left_info->bytes == offset) {
2189 		if (update_stat)
2190 			unlink_free_space(ctl, left_info);
2191 		else
2192 			__unlink_free_space(ctl, left_info);
2193 		info->offset = left_info->offset;
2194 		info->bytes += left_info->bytes;
2195 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2196 		merged = true;
2197 	}
2198 
2199 	return merged;
2200 }
2201 
2202 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2203 				     struct btrfs_free_space *info,
2204 				     bool update_stat)
2205 {
2206 	struct btrfs_free_space *bitmap;
2207 	unsigned long i;
2208 	unsigned long j;
2209 	const u64 end = info->offset + info->bytes;
2210 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2211 	u64 bytes;
2212 
2213 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2214 	if (!bitmap)
2215 		return false;
2216 
2217 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2218 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2219 	if (j == i)
2220 		return false;
2221 	bytes = (j - i) * ctl->unit;
2222 	info->bytes += bytes;
2223 
2224 	if (update_stat)
2225 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2226 	else
2227 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2228 
2229 	if (!bitmap->bytes)
2230 		free_bitmap(ctl, bitmap);
2231 
2232 	return true;
2233 }
2234 
2235 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2236 				       struct btrfs_free_space *info,
2237 				       bool update_stat)
2238 {
2239 	struct btrfs_free_space *bitmap;
2240 	u64 bitmap_offset;
2241 	unsigned long i;
2242 	unsigned long j;
2243 	unsigned long prev_j;
2244 	u64 bytes;
2245 
2246 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2247 	/* If we're on a boundary, try the previous logical bitmap. */
2248 	if (bitmap_offset == info->offset) {
2249 		if (info->offset == 0)
2250 			return false;
2251 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2252 	}
2253 
2254 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2255 	if (!bitmap)
2256 		return false;
2257 
2258 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2259 	j = 0;
2260 	prev_j = (unsigned long)-1;
2261 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2262 		if (j > i)
2263 			break;
2264 		prev_j = j;
2265 	}
2266 	if (prev_j == i)
2267 		return false;
2268 
2269 	if (prev_j == (unsigned long)-1)
2270 		bytes = (i + 1) * ctl->unit;
2271 	else
2272 		bytes = (i - prev_j) * ctl->unit;
2273 
2274 	info->offset -= bytes;
2275 	info->bytes += bytes;
2276 
2277 	if (update_stat)
2278 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2279 	else
2280 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2281 
2282 	if (!bitmap->bytes)
2283 		free_bitmap(ctl, bitmap);
2284 
2285 	return true;
2286 }
2287 
2288 /*
2289  * We prefer always to allocate from extent entries, both for clustered and
2290  * non-clustered allocation requests. So when attempting to add a new extent
2291  * entry, try to see if there's adjacent free space in bitmap entries, and if
2292  * there is, migrate that space from the bitmaps to the extent.
2293  * Like this we get better chances of satisfying space allocation requests
2294  * because we attempt to satisfy them based on a single cache entry, and never
2295  * on 2 or more entries - even if the entries represent a contiguous free space
2296  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2297  * ends).
2298  */
2299 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2300 			      struct btrfs_free_space *info,
2301 			      bool update_stat)
2302 {
2303 	/*
2304 	 * Only work with disconnected entries, as we can change their offset,
2305 	 * and must be extent entries.
2306 	 */
2307 	ASSERT(!info->bitmap);
2308 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2309 
2310 	if (ctl->total_bitmaps > 0) {
2311 		bool stole_end;
2312 		bool stole_front = false;
2313 
2314 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2315 		if (ctl->total_bitmaps > 0)
2316 			stole_front = steal_from_bitmap_to_front(ctl, info,
2317 								 update_stat);
2318 
2319 		if (stole_end || stole_front)
2320 			try_merge_free_space(ctl, info, update_stat);
2321 	}
2322 }
2323 
2324 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2325 			   struct btrfs_free_space_ctl *ctl,
2326 			   u64 offset, u64 bytes)
2327 {
2328 	struct btrfs_free_space *info;
2329 	int ret = 0;
2330 
2331 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2332 	if (!info)
2333 		return -ENOMEM;
2334 
2335 	info->offset = offset;
2336 	info->bytes = bytes;
2337 	RB_CLEAR_NODE(&info->offset_index);
2338 
2339 	spin_lock(&ctl->tree_lock);
2340 
2341 	if (try_merge_free_space(ctl, info, true))
2342 		goto link;
2343 
2344 	/*
2345 	 * There was no extent directly to the left or right of this new
2346 	 * extent then we know we're going to have to allocate a new extent, so
2347 	 * before we do that see if we need to drop this into a bitmap
2348 	 */
2349 	ret = insert_into_bitmap(ctl, info);
2350 	if (ret < 0) {
2351 		goto out;
2352 	} else if (ret) {
2353 		ret = 0;
2354 		goto out;
2355 	}
2356 link:
2357 	/*
2358 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2359 	 * going to add the new free space to existing bitmap entries - because
2360 	 * that would mean unnecessary work that would be reverted. Therefore
2361 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2362 	 */
2363 	steal_from_bitmap(ctl, info, true);
2364 
2365 	ret = link_free_space(ctl, info);
2366 	if (ret)
2367 		kmem_cache_free(btrfs_free_space_cachep, info);
2368 out:
2369 	spin_unlock(&ctl->tree_lock);
2370 
2371 	if (ret) {
2372 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2373 		ASSERT(ret != -EEXIST);
2374 	}
2375 
2376 	return ret;
2377 }
2378 
2379 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2380 			    u64 offset, u64 bytes)
2381 {
2382 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2383 	struct btrfs_free_space *info;
2384 	int ret;
2385 	bool re_search = false;
2386 
2387 	spin_lock(&ctl->tree_lock);
2388 
2389 again:
2390 	ret = 0;
2391 	if (!bytes)
2392 		goto out_lock;
2393 
2394 	info = tree_search_offset(ctl, offset, 0, 0);
2395 	if (!info) {
2396 		/*
2397 		 * oops didn't find an extent that matched the space we wanted
2398 		 * to remove, look for a bitmap instead
2399 		 */
2400 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2401 					  1, 0);
2402 		if (!info) {
2403 			/*
2404 			 * If we found a partial bit of our free space in a
2405 			 * bitmap but then couldn't find the other part this may
2406 			 * be a problem, so WARN about it.
2407 			 */
2408 			WARN_ON(re_search);
2409 			goto out_lock;
2410 		}
2411 	}
2412 
2413 	re_search = false;
2414 	if (!info->bitmap) {
2415 		unlink_free_space(ctl, info);
2416 		if (offset == info->offset) {
2417 			u64 to_free = min(bytes, info->bytes);
2418 
2419 			info->bytes -= to_free;
2420 			info->offset += to_free;
2421 			if (info->bytes) {
2422 				ret = link_free_space(ctl, info);
2423 				WARN_ON(ret);
2424 			} else {
2425 				kmem_cache_free(btrfs_free_space_cachep, info);
2426 			}
2427 
2428 			offset += to_free;
2429 			bytes -= to_free;
2430 			goto again;
2431 		} else {
2432 			u64 old_end = info->bytes + info->offset;
2433 
2434 			info->bytes = offset - info->offset;
2435 			ret = link_free_space(ctl, info);
2436 			WARN_ON(ret);
2437 			if (ret)
2438 				goto out_lock;
2439 
2440 			/* Not enough bytes in this entry to satisfy us */
2441 			if (old_end < offset + bytes) {
2442 				bytes -= old_end - offset;
2443 				offset = old_end;
2444 				goto again;
2445 			} else if (old_end == offset + bytes) {
2446 				/* all done */
2447 				goto out_lock;
2448 			}
2449 			spin_unlock(&ctl->tree_lock);
2450 
2451 			ret = btrfs_add_free_space(block_group, offset + bytes,
2452 						   old_end - (offset + bytes));
2453 			WARN_ON(ret);
2454 			goto out;
2455 		}
2456 	}
2457 
2458 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2459 	if (ret == -EAGAIN) {
2460 		re_search = true;
2461 		goto again;
2462 	}
2463 out_lock:
2464 	spin_unlock(&ctl->tree_lock);
2465 out:
2466 	return ret;
2467 }
2468 
2469 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2470 			   u64 bytes)
2471 {
2472 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2473 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2474 	struct btrfs_free_space *info;
2475 	struct rb_node *n;
2476 	int count = 0;
2477 
2478 	spin_lock(&ctl->tree_lock);
2479 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2480 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2481 		if (info->bytes >= bytes && !block_group->ro)
2482 			count++;
2483 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2484 			   info->offset, info->bytes,
2485 		       (info->bitmap) ? "yes" : "no");
2486 	}
2487 	spin_unlock(&ctl->tree_lock);
2488 	btrfs_info(fs_info, "block group has cluster?: %s",
2489 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2490 	btrfs_info(fs_info,
2491 		   "%d blocks of free space at or bigger than bytes is", count);
2492 }
2493 
2494 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2495 {
2496 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2497 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2498 
2499 	spin_lock_init(&ctl->tree_lock);
2500 	ctl->unit = fs_info->sectorsize;
2501 	ctl->start = block_group->key.objectid;
2502 	ctl->private = block_group;
2503 	ctl->op = &free_space_op;
2504 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2505 	mutex_init(&ctl->cache_writeout_mutex);
2506 
2507 	/*
2508 	 * we only want to have 32k of ram per block group for keeping
2509 	 * track of free space, and if we pass 1/2 of that we want to
2510 	 * start converting things over to using bitmaps
2511 	 */
2512 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2513 }
2514 
2515 /*
2516  * for a given cluster, put all of its extents back into the free
2517  * space cache.  If the block group passed doesn't match the block group
2518  * pointed to by the cluster, someone else raced in and freed the
2519  * cluster already.  In that case, we just return without changing anything
2520  */
2521 static int
2522 __btrfs_return_cluster_to_free_space(
2523 			     struct btrfs_block_group_cache *block_group,
2524 			     struct btrfs_free_cluster *cluster)
2525 {
2526 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2527 	struct btrfs_free_space *entry;
2528 	struct rb_node *node;
2529 
2530 	spin_lock(&cluster->lock);
2531 	if (cluster->block_group != block_group)
2532 		goto out;
2533 
2534 	cluster->block_group = NULL;
2535 	cluster->window_start = 0;
2536 	list_del_init(&cluster->block_group_list);
2537 
2538 	node = rb_first(&cluster->root);
2539 	while (node) {
2540 		bool bitmap;
2541 
2542 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2543 		node = rb_next(&entry->offset_index);
2544 		rb_erase(&entry->offset_index, &cluster->root);
2545 		RB_CLEAR_NODE(&entry->offset_index);
2546 
2547 		bitmap = (entry->bitmap != NULL);
2548 		if (!bitmap) {
2549 			try_merge_free_space(ctl, entry, false);
2550 			steal_from_bitmap(ctl, entry, false);
2551 		}
2552 		tree_insert_offset(&ctl->free_space_offset,
2553 				   entry->offset, &entry->offset_index, bitmap);
2554 	}
2555 	cluster->root = RB_ROOT;
2556 
2557 out:
2558 	spin_unlock(&cluster->lock);
2559 	btrfs_put_block_group(block_group);
2560 	return 0;
2561 }
2562 
2563 static void __btrfs_remove_free_space_cache_locked(
2564 				struct btrfs_free_space_ctl *ctl)
2565 {
2566 	struct btrfs_free_space *info;
2567 	struct rb_node *node;
2568 
2569 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2570 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2571 		if (!info->bitmap) {
2572 			unlink_free_space(ctl, info);
2573 			kmem_cache_free(btrfs_free_space_cachep, info);
2574 		} else {
2575 			free_bitmap(ctl, info);
2576 		}
2577 
2578 		cond_resched_lock(&ctl->tree_lock);
2579 	}
2580 }
2581 
2582 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2583 {
2584 	spin_lock(&ctl->tree_lock);
2585 	__btrfs_remove_free_space_cache_locked(ctl);
2586 	spin_unlock(&ctl->tree_lock);
2587 }
2588 
2589 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2590 {
2591 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2592 	struct btrfs_free_cluster *cluster;
2593 	struct list_head *head;
2594 
2595 	spin_lock(&ctl->tree_lock);
2596 	while ((head = block_group->cluster_list.next) !=
2597 	       &block_group->cluster_list) {
2598 		cluster = list_entry(head, struct btrfs_free_cluster,
2599 				     block_group_list);
2600 
2601 		WARN_ON(cluster->block_group != block_group);
2602 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2603 
2604 		cond_resched_lock(&ctl->tree_lock);
2605 	}
2606 	__btrfs_remove_free_space_cache_locked(ctl);
2607 	spin_unlock(&ctl->tree_lock);
2608 
2609 }
2610 
2611 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2612 			       u64 offset, u64 bytes, u64 empty_size,
2613 			       u64 *max_extent_size)
2614 {
2615 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2616 	struct btrfs_free_space *entry = NULL;
2617 	u64 bytes_search = bytes + empty_size;
2618 	u64 ret = 0;
2619 	u64 align_gap = 0;
2620 	u64 align_gap_len = 0;
2621 
2622 	spin_lock(&ctl->tree_lock);
2623 	entry = find_free_space(ctl, &offset, &bytes_search,
2624 				block_group->full_stripe_len, max_extent_size);
2625 	if (!entry)
2626 		goto out;
2627 
2628 	ret = offset;
2629 	if (entry->bitmap) {
2630 		bitmap_clear_bits(ctl, entry, offset, bytes);
2631 		if (!entry->bytes)
2632 			free_bitmap(ctl, entry);
2633 	} else {
2634 		unlink_free_space(ctl, entry);
2635 		align_gap_len = offset - entry->offset;
2636 		align_gap = entry->offset;
2637 
2638 		entry->offset = offset + bytes;
2639 		WARN_ON(entry->bytes < bytes + align_gap_len);
2640 
2641 		entry->bytes -= bytes + align_gap_len;
2642 		if (!entry->bytes)
2643 			kmem_cache_free(btrfs_free_space_cachep, entry);
2644 		else
2645 			link_free_space(ctl, entry);
2646 	}
2647 out:
2648 	spin_unlock(&ctl->tree_lock);
2649 
2650 	if (align_gap_len)
2651 		__btrfs_add_free_space(block_group->fs_info, ctl,
2652 				       align_gap, align_gap_len);
2653 	return ret;
2654 }
2655 
2656 /*
2657  * given a cluster, put all of its extents back into the free space
2658  * cache.  If a block group is passed, this function will only free
2659  * a cluster that belongs to the passed block group.
2660  *
2661  * Otherwise, it'll get a reference on the block group pointed to by the
2662  * cluster and remove the cluster from it.
2663  */
2664 int btrfs_return_cluster_to_free_space(
2665 			       struct btrfs_block_group_cache *block_group,
2666 			       struct btrfs_free_cluster *cluster)
2667 {
2668 	struct btrfs_free_space_ctl *ctl;
2669 	int ret;
2670 
2671 	/* first, get a safe pointer to the block group */
2672 	spin_lock(&cluster->lock);
2673 	if (!block_group) {
2674 		block_group = cluster->block_group;
2675 		if (!block_group) {
2676 			spin_unlock(&cluster->lock);
2677 			return 0;
2678 		}
2679 	} else if (cluster->block_group != block_group) {
2680 		/* someone else has already freed it don't redo their work */
2681 		spin_unlock(&cluster->lock);
2682 		return 0;
2683 	}
2684 	atomic_inc(&block_group->count);
2685 	spin_unlock(&cluster->lock);
2686 
2687 	ctl = block_group->free_space_ctl;
2688 
2689 	/* now return any extents the cluster had on it */
2690 	spin_lock(&ctl->tree_lock);
2691 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2692 	spin_unlock(&ctl->tree_lock);
2693 
2694 	/* finally drop our ref */
2695 	btrfs_put_block_group(block_group);
2696 	return ret;
2697 }
2698 
2699 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2700 				   struct btrfs_free_cluster *cluster,
2701 				   struct btrfs_free_space *entry,
2702 				   u64 bytes, u64 min_start,
2703 				   u64 *max_extent_size)
2704 {
2705 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2706 	int err;
2707 	u64 search_start = cluster->window_start;
2708 	u64 search_bytes = bytes;
2709 	u64 ret = 0;
2710 
2711 	search_start = min_start;
2712 	search_bytes = bytes;
2713 
2714 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2715 	if (err) {
2716 		*max_extent_size = max(get_max_extent_size(entry),
2717 				       *max_extent_size);
2718 		return 0;
2719 	}
2720 
2721 	ret = search_start;
2722 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2723 
2724 	return ret;
2725 }
2726 
2727 /*
2728  * given a cluster, try to allocate 'bytes' from it, returns 0
2729  * if it couldn't find anything suitably large, or a logical disk offset
2730  * if things worked out
2731  */
2732 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2733 			     struct btrfs_free_cluster *cluster, u64 bytes,
2734 			     u64 min_start, u64 *max_extent_size)
2735 {
2736 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2737 	struct btrfs_free_space *entry = NULL;
2738 	struct rb_node *node;
2739 	u64 ret = 0;
2740 
2741 	spin_lock(&cluster->lock);
2742 	if (bytes > cluster->max_size)
2743 		goto out;
2744 
2745 	if (cluster->block_group != block_group)
2746 		goto out;
2747 
2748 	node = rb_first(&cluster->root);
2749 	if (!node)
2750 		goto out;
2751 
2752 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2753 	while (1) {
2754 		if (entry->bytes < bytes)
2755 			*max_extent_size = max(get_max_extent_size(entry),
2756 					       *max_extent_size);
2757 
2758 		if (entry->bytes < bytes ||
2759 		    (!entry->bitmap && entry->offset < min_start)) {
2760 			node = rb_next(&entry->offset_index);
2761 			if (!node)
2762 				break;
2763 			entry = rb_entry(node, struct btrfs_free_space,
2764 					 offset_index);
2765 			continue;
2766 		}
2767 
2768 		if (entry->bitmap) {
2769 			ret = btrfs_alloc_from_bitmap(block_group,
2770 						      cluster, entry, bytes,
2771 						      cluster->window_start,
2772 						      max_extent_size);
2773 			if (ret == 0) {
2774 				node = rb_next(&entry->offset_index);
2775 				if (!node)
2776 					break;
2777 				entry = rb_entry(node, struct btrfs_free_space,
2778 						 offset_index);
2779 				continue;
2780 			}
2781 			cluster->window_start += bytes;
2782 		} else {
2783 			ret = entry->offset;
2784 
2785 			entry->offset += bytes;
2786 			entry->bytes -= bytes;
2787 		}
2788 
2789 		if (entry->bytes == 0)
2790 			rb_erase(&entry->offset_index, &cluster->root);
2791 		break;
2792 	}
2793 out:
2794 	spin_unlock(&cluster->lock);
2795 
2796 	if (!ret)
2797 		return 0;
2798 
2799 	spin_lock(&ctl->tree_lock);
2800 
2801 	ctl->free_space -= bytes;
2802 	if (entry->bytes == 0) {
2803 		ctl->free_extents--;
2804 		if (entry->bitmap) {
2805 			kfree(entry->bitmap);
2806 			ctl->total_bitmaps--;
2807 			ctl->op->recalc_thresholds(ctl);
2808 		}
2809 		kmem_cache_free(btrfs_free_space_cachep, entry);
2810 	}
2811 
2812 	spin_unlock(&ctl->tree_lock);
2813 
2814 	return ret;
2815 }
2816 
2817 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2818 				struct btrfs_free_space *entry,
2819 				struct btrfs_free_cluster *cluster,
2820 				u64 offset, u64 bytes,
2821 				u64 cont1_bytes, u64 min_bytes)
2822 {
2823 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2824 	unsigned long next_zero;
2825 	unsigned long i;
2826 	unsigned long want_bits;
2827 	unsigned long min_bits;
2828 	unsigned long found_bits;
2829 	unsigned long max_bits = 0;
2830 	unsigned long start = 0;
2831 	unsigned long total_found = 0;
2832 	int ret;
2833 
2834 	i = offset_to_bit(entry->offset, ctl->unit,
2835 			  max_t(u64, offset, entry->offset));
2836 	want_bits = bytes_to_bits(bytes, ctl->unit);
2837 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2838 
2839 	/*
2840 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2841 	 * fragmented.
2842 	 */
2843 	if (entry->max_extent_size &&
2844 	    entry->max_extent_size < cont1_bytes)
2845 		return -ENOSPC;
2846 again:
2847 	found_bits = 0;
2848 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2849 		next_zero = find_next_zero_bit(entry->bitmap,
2850 					       BITS_PER_BITMAP, i);
2851 		if (next_zero - i >= min_bits) {
2852 			found_bits = next_zero - i;
2853 			if (found_bits > max_bits)
2854 				max_bits = found_bits;
2855 			break;
2856 		}
2857 		if (next_zero - i > max_bits)
2858 			max_bits = next_zero - i;
2859 		i = next_zero;
2860 	}
2861 
2862 	if (!found_bits) {
2863 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2864 		return -ENOSPC;
2865 	}
2866 
2867 	if (!total_found) {
2868 		start = i;
2869 		cluster->max_size = 0;
2870 	}
2871 
2872 	total_found += found_bits;
2873 
2874 	if (cluster->max_size < found_bits * ctl->unit)
2875 		cluster->max_size = found_bits * ctl->unit;
2876 
2877 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2878 		i = next_zero + 1;
2879 		goto again;
2880 	}
2881 
2882 	cluster->window_start = start * ctl->unit + entry->offset;
2883 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2884 	ret = tree_insert_offset(&cluster->root, entry->offset,
2885 				 &entry->offset_index, 1);
2886 	ASSERT(!ret); /* -EEXIST; Logic error */
2887 
2888 	trace_btrfs_setup_cluster(block_group, cluster,
2889 				  total_found * ctl->unit, 1);
2890 	return 0;
2891 }
2892 
2893 /*
2894  * This searches the block group for just extents to fill the cluster with.
2895  * Try to find a cluster with at least bytes total bytes, at least one
2896  * extent of cont1_bytes, and other clusters of at least min_bytes.
2897  */
2898 static noinline int
2899 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2900 			struct btrfs_free_cluster *cluster,
2901 			struct list_head *bitmaps, u64 offset, u64 bytes,
2902 			u64 cont1_bytes, u64 min_bytes)
2903 {
2904 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2905 	struct btrfs_free_space *first = NULL;
2906 	struct btrfs_free_space *entry = NULL;
2907 	struct btrfs_free_space *last;
2908 	struct rb_node *node;
2909 	u64 window_free;
2910 	u64 max_extent;
2911 	u64 total_size = 0;
2912 
2913 	entry = tree_search_offset(ctl, offset, 0, 1);
2914 	if (!entry)
2915 		return -ENOSPC;
2916 
2917 	/*
2918 	 * We don't want bitmaps, so just move along until we find a normal
2919 	 * extent entry.
2920 	 */
2921 	while (entry->bitmap || entry->bytes < min_bytes) {
2922 		if (entry->bitmap && list_empty(&entry->list))
2923 			list_add_tail(&entry->list, bitmaps);
2924 		node = rb_next(&entry->offset_index);
2925 		if (!node)
2926 			return -ENOSPC;
2927 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2928 	}
2929 
2930 	window_free = entry->bytes;
2931 	max_extent = entry->bytes;
2932 	first = entry;
2933 	last = entry;
2934 
2935 	for (node = rb_next(&entry->offset_index); node;
2936 	     node = rb_next(&entry->offset_index)) {
2937 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2938 
2939 		if (entry->bitmap) {
2940 			if (list_empty(&entry->list))
2941 				list_add_tail(&entry->list, bitmaps);
2942 			continue;
2943 		}
2944 
2945 		if (entry->bytes < min_bytes)
2946 			continue;
2947 
2948 		last = entry;
2949 		window_free += entry->bytes;
2950 		if (entry->bytes > max_extent)
2951 			max_extent = entry->bytes;
2952 	}
2953 
2954 	if (window_free < bytes || max_extent < cont1_bytes)
2955 		return -ENOSPC;
2956 
2957 	cluster->window_start = first->offset;
2958 
2959 	node = &first->offset_index;
2960 
2961 	/*
2962 	 * now we've found our entries, pull them out of the free space
2963 	 * cache and put them into the cluster rbtree
2964 	 */
2965 	do {
2966 		int ret;
2967 
2968 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2969 		node = rb_next(&entry->offset_index);
2970 		if (entry->bitmap || entry->bytes < min_bytes)
2971 			continue;
2972 
2973 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2974 		ret = tree_insert_offset(&cluster->root, entry->offset,
2975 					 &entry->offset_index, 0);
2976 		total_size += entry->bytes;
2977 		ASSERT(!ret); /* -EEXIST; Logic error */
2978 	} while (node && entry != last);
2979 
2980 	cluster->max_size = max_extent;
2981 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2982 	return 0;
2983 }
2984 
2985 /*
2986  * This specifically looks for bitmaps that may work in the cluster, we assume
2987  * that we have already failed to find extents that will work.
2988  */
2989 static noinline int
2990 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2991 		     struct btrfs_free_cluster *cluster,
2992 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2993 		     u64 cont1_bytes, u64 min_bytes)
2994 {
2995 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2996 	struct btrfs_free_space *entry = NULL;
2997 	int ret = -ENOSPC;
2998 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2999 
3000 	if (ctl->total_bitmaps == 0)
3001 		return -ENOSPC;
3002 
3003 	/*
3004 	 * The bitmap that covers offset won't be in the list unless offset
3005 	 * is just its start offset.
3006 	 */
3007 	if (!list_empty(bitmaps))
3008 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3009 
3010 	if (!entry || entry->offset != bitmap_offset) {
3011 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3012 		if (entry && list_empty(&entry->list))
3013 			list_add(&entry->list, bitmaps);
3014 	}
3015 
3016 	list_for_each_entry(entry, bitmaps, list) {
3017 		if (entry->bytes < bytes)
3018 			continue;
3019 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3020 					   bytes, cont1_bytes, min_bytes);
3021 		if (!ret)
3022 			return 0;
3023 	}
3024 
3025 	/*
3026 	 * The bitmaps list has all the bitmaps that record free space
3027 	 * starting after offset, so no more search is required.
3028 	 */
3029 	return -ENOSPC;
3030 }
3031 
3032 /*
3033  * here we try to find a cluster of blocks in a block group.  The goal
3034  * is to find at least bytes+empty_size.
3035  * We might not find them all in one contiguous area.
3036  *
3037  * returns zero and sets up cluster if things worked out, otherwise
3038  * it returns -enospc
3039  */
3040 int btrfs_find_space_cluster(struct btrfs_block_group_cache *block_group,
3041 			     struct btrfs_free_cluster *cluster,
3042 			     u64 offset, u64 bytes, u64 empty_size)
3043 {
3044 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3045 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3046 	struct btrfs_free_space *entry, *tmp;
3047 	LIST_HEAD(bitmaps);
3048 	u64 min_bytes;
3049 	u64 cont1_bytes;
3050 	int ret;
3051 
3052 	/*
3053 	 * Choose the minimum extent size we'll require for this
3054 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3055 	 * For metadata, allow allocates with smaller extents.  For
3056 	 * data, keep it dense.
3057 	 */
3058 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3059 		cont1_bytes = min_bytes = bytes + empty_size;
3060 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3061 		cont1_bytes = bytes;
3062 		min_bytes = fs_info->sectorsize;
3063 	} else {
3064 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3065 		min_bytes = fs_info->sectorsize;
3066 	}
3067 
3068 	spin_lock(&ctl->tree_lock);
3069 
3070 	/*
3071 	 * If we know we don't have enough space to make a cluster don't even
3072 	 * bother doing all the work to try and find one.
3073 	 */
3074 	if (ctl->free_space < bytes) {
3075 		spin_unlock(&ctl->tree_lock);
3076 		return -ENOSPC;
3077 	}
3078 
3079 	spin_lock(&cluster->lock);
3080 
3081 	/* someone already found a cluster, hooray */
3082 	if (cluster->block_group) {
3083 		ret = 0;
3084 		goto out;
3085 	}
3086 
3087 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3088 				 min_bytes);
3089 
3090 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3091 				      bytes + empty_size,
3092 				      cont1_bytes, min_bytes);
3093 	if (ret)
3094 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3095 					   offset, bytes + empty_size,
3096 					   cont1_bytes, min_bytes);
3097 
3098 	/* Clear our temporary list */
3099 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3100 		list_del_init(&entry->list);
3101 
3102 	if (!ret) {
3103 		atomic_inc(&block_group->count);
3104 		list_add_tail(&cluster->block_group_list,
3105 			      &block_group->cluster_list);
3106 		cluster->block_group = block_group;
3107 	} else {
3108 		trace_btrfs_failed_cluster_setup(block_group);
3109 	}
3110 out:
3111 	spin_unlock(&cluster->lock);
3112 	spin_unlock(&ctl->tree_lock);
3113 
3114 	return ret;
3115 }
3116 
3117 /*
3118  * simple code to zero out a cluster
3119  */
3120 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3121 {
3122 	spin_lock_init(&cluster->lock);
3123 	spin_lock_init(&cluster->refill_lock);
3124 	cluster->root = RB_ROOT;
3125 	cluster->max_size = 0;
3126 	cluster->fragmented = false;
3127 	INIT_LIST_HEAD(&cluster->block_group_list);
3128 	cluster->block_group = NULL;
3129 }
3130 
3131 static int do_trimming(struct btrfs_block_group_cache *block_group,
3132 		       u64 *total_trimmed, u64 start, u64 bytes,
3133 		       u64 reserved_start, u64 reserved_bytes,
3134 		       struct btrfs_trim_range *trim_entry)
3135 {
3136 	struct btrfs_space_info *space_info = block_group->space_info;
3137 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3138 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3139 	int ret;
3140 	int update = 0;
3141 	u64 trimmed = 0;
3142 
3143 	spin_lock(&space_info->lock);
3144 	spin_lock(&block_group->lock);
3145 	if (!block_group->ro) {
3146 		block_group->reserved += reserved_bytes;
3147 		space_info->bytes_reserved += reserved_bytes;
3148 		update = 1;
3149 	}
3150 	spin_unlock(&block_group->lock);
3151 	spin_unlock(&space_info->lock);
3152 
3153 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3154 	if (!ret)
3155 		*total_trimmed += trimmed;
3156 
3157 	mutex_lock(&ctl->cache_writeout_mutex);
3158 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3159 	list_del(&trim_entry->list);
3160 	mutex_unlock(&ctl->cache_writeout_mutex);
3161 
3162 	if (update) {
3163 		spin_lock(&space_info->lock);
3164 		spin_lock(&block_group->lock);
3165 		if (block_group->ro)
3166 			space_info->bytes_readonly += reserved_bytes;
3167 		block_group->reserved -= reserved_bytes;
3168 		space_info->bytes_reserved -= reserved_bytes;
3169 		spin_unlock(&space_info->lock);
3170 		spin_unlock(&block_group->lock);
3171 	}
3172 
3173 	return ret;
3174 }
3175 
3176 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3177 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3178 {
3179 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3180 	struct btrfs_free_space *entry;
3181 	struct rb_node *node;
3182 	int ret = 0;
3183 	u64 extent_start;
3184 	u64 extent_bytes;
3185 	u64 bytes;
3186 
3187 	while (start < end) {
3188 		struct btrfs_trim_range trim_entry;
3189 
3190 		mutex_lock(&ctl->cache_writeout_mutex);
3191 		spin_lock(&ctl->tree_lock);
3192 
3193 		if (ctl->free_space < minlen) {
3194 			spin_unlock(&ctl->tree_lock);
3195 			mutex_unlock(&ctl->cache_writeout_mutex);
3196 			break;
3197 		}
3198 
3199 		entry = tree_search_offset(ctl, start, 0, 1);
3200 		if (!entry) {
3201 			spin_unlock(&ctl->tree_lock);
3202 			mutex_unlock(&ctl->cache_writeout_mutex);
3203 			break;
3204 		}
3205 
3206 		/* skip bitmaps */
3207 		while (entry->bitmap) {
3208 			node = rb_next(&entry->offset_index);
3209 			if (!node) {
3210 				spin_unlock(&ctl->tree_lock);
3211 				mutex_unlock(&ctl->cache_writeout_mutex);
3212 				goto out;
3213 			}
3214 			entry = rb_entry(node, struct btrfs_free_space,
3215 					 offset_index);
3216 		}
3217 
3218 		if (entry->offset >= end) {
3219 			spin_unlock(&ctl->tree_lock);
3220 			mutex_unlock(&ctl->cache_writeout_mutex);
3221 			break;
3222 		}
3223 
3224 		extent_start = entry->offset;
3225 		extent_bytes = entry->bytes;
3226 		start = max(start, extent_start);
3227 		bytes = min(extent_start + extent_bytes, end) - start;
3228 		if (bytes < minlen) {
3229 			spin_unlock(&ctl->tree_lock);
3230 			mutex_unlock(&ctl->cache_writeout_mutex);
3231 			goto next;
3232 		}
3233 
3234 		unlink_free_space(ctl, entry);
3235 		kmem_cache_free(btrfs_free_space_cachep, entry);
3236 
3237 		spin_unlock(&ctl->tree_lock);
3238 		trim_entry.start = extent_start;
3239 		trim_entry.bytes = extent_bytes;
3240 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3241 		mutex_unlock(&ctl->cache_writeout_mutex);
3242 
3243 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3244 				  extent_start, extent_bytes, &trim_entry);
3245 		if (ret)
3246 			break;
3247 next:
3248 		start += bytes;
3249 
3250 		if (fatal_signal_pending(current)) {
3251 			ret = -ERESTARTSYS;
3252 			break;
3253 		}
3254 
3255 		cond_resched();
3256 	}
3257 out:
3258 	return ret;
3259 }
3260 
3261 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3262 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3263 {
3264 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3265 	struct btrfs_free_space *entry;
3266 	int ret = 0;
3267 	int ret2;
3268 	u64 bytes;
3269 	u64 offset = offset_to_bitmap(ctl, start);
3270 
3271 	while (offset < end) {
3272 		bool next_bitmap = false;
3273 		struct btrfs_trim_range trim_entry;
3274 
3275 		mutex_lock(&ctl->cache_writeout_mutex);
3276 		spin_lock(&ctl->tree_lock);
3277 
3278 		if (ctl->free_space < minlen) {
3279 			spin_unlock(&ctl->tree_lock);
3280 			mutex_unlock(&ctl->cache_writeout_mutex);
3281 			break;
3282 		}
3283 
3284 		entry = tree_search_offset(ctl, offset, 1, 0);
3285 		if (!entry) {
3286 			spin_unlock(&ctl->tree_lock);
3287 			mutex_unlock(&ctl->cache_writeout_mutex);
3288 			next_bitmap = true;
3289 			goto next;
3290 		}
3291 
3292 		bytes = minlen;
3293 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3294 		if (ret2 || start >= end) {
3295 			spin_unlock(&ctl->tree_lock);
3296 			mutex_unlock(&ctl->cache_writeout_mutex);
3297 			next_bitmap = true;
3298 			goto next;
3299 		}
3300 
3301 		bytes = min(bytes, end - start);
3302 		if (bytes < minlen) {
3303 			spin_unlock(&ctl->tree_lock);
3304 			mutex_unlock(&ctl->cache_writeout_mutex);
3305 			goto next;
3306 		}
3307 
3308 		bitmap_clear_bits(ctl, entry, start, bytes);
3309 		if (entry->bytes == 0)
3310 			free_bitmap(ctl, entry);
3311 
3312 		spin_unlock(&ctl->tree_lock);
3313 		trim_entry.start = start;
3314 		trim_entry.bytes = bytes;
3315 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3316 		mutex_unlock(&ctl->cache_writeout_mutex);
3317 
3318 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3319 				  start, bytes, &trim_entry);
3320 		if (ret)
3321 			break;
3322 next:
3323 		if (next_bitmap) {
3324 			offset += BITS_PER_BITMAP * ctl->unit;
3325 		} else {
3326 			start += bytes;
3327 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3328 				offset += BITS_PER_BITMAP * ctl->unit;
3329 		}
3330 
3331 		if (fatal_signal_pending(current)) {
3332 			ret = -ERESTARTSYS;
3333 			break;
3334 		}
3335 
3336 		cond_resched();
3337 	}
3338 
3339 	return ret;
3340 }
3341 
3342 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3343 {
3344 	atomic_inc(&cache->trimming);
3345 }
3346 
3347 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3348 {
3349 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3350 	struct extent_map_tree *em_tree;
3351 	struct extent_map *em;
3352 	bool cleanup;
3353 
3354 	spin_lock(&block_group->lock);
3355 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3356 		   block_group->removed);
3357 	spin_unlock(&block_group->lock);
3358 
3359 	if (cleanup) {
3360 		mutex_lock(&fs_info->chunk_mutex);
3361 		em_tree = &fs_info->mapping_tree.map_tree;
3362 		write_lock(&em_tree->lock);
3363 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3364 					   1);
3365 		BUG_ON(!em); /* logic error, can't happen */
3366 		remove_extent_mapping(em_tree, em);
3367 		write_unlock(&em_tree->lock);
3368 		mutex_unlock(&fs_info->chunk_mutex);
3369 
3370 		/* once for us and once for the tree */
3371 		free_extent_map(em);
3372 		free_extent_map(em);
3373 
3374 		/*
3375 		 * We've left one free space entry and other tasks trimming
3376 		 * this block group have left 1 entry each one. Free them.
3377 		 */
3378 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3379 	}
3380 }
3381 
3382 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3383 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3384 {
3385 	int ret;
3386 
3387 	*trimmed = 0;
3388 
3389 	spin_lock(&block_group->lock);
3390 	if (block_group->removed) {
3391 		spin_unlock(&block_group->lock);
3392 		return 0;
3393 	}
3394 	btrfs_get_block_group_trimming(block_group);
3395 	spin_unlock(&block_group->lock);
3396 
3397 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3398 	if (ret)
3399 		goto out;
3400 
3401 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3402 out:
3403 	btrfs_put_block_group_trimming(block_group);
3404 	return ret;
3405 }
3406 
3407 /*
3408  * Find the left-most item in the cache tree, and then return the
3409  * smallest inode number in the item.
3410  *
3411  * Note: the returned inode number may not be the smallest one in
3412  * the tree, if the left-most item is a bitmap.
3413  */
3414 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3415 {
3416 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3417 	struct btrfs_free_space *entry = NULL;
3418 	u64 ino = 0;
3419 
3420 	spin_lock(&ctl->tree_lock);
3421 
3422 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3423 		goto out;
3424 
3425 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3426 			 struct btrfs_free_space, offset_index);
3427 
3428 	if (!entry->bitmap) {
3429 		ino = entry->offset;
3430 
3431 		unlink_free_space(ctl, entry);
3432 		entry->offset++;
3433 		entry->bytes--;
3434 		if (!entry->bytes)
3435 			kmem_cache_free(btrfs_free_space_cachep, entry);
3436 		else
3437 			link_free_space(ctl, entry);
3438 	} else {
3439 		u64 offset = 0;
3440 		u64 count = 1;
3441 		int ret;
3442 
3443 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3444 		/* Logic error; Should be empty if it can't find anything */
3445 		ASSERT(!ret);
3446 
3447 		ino = offset;
3448 		bitmap_clear_bits(ctl, entry, offset, 1);
3449 		if (entry->bytes == 0)
3450 			free_bitmap(ctl, entry);
3451 	}
3452 out:
3453 	spin_unlock(&ctl->tree_lock);
3454 
3455 	return ino;
3456 }
3457 
3458 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3459 				    struct btrfs_path *path)
3460 {
3461 	struct inode *inode = NULL;
3462 
3463 	spin_lock(&root->ino_cache_lock);
3464 	if (root->ino_cache_inode)
3465 		inode = igrab(root->ino_cache_inode);
3466 	spin_unlock(&root->ino_cache_lock);
3467 	if (inode)
3468 		return inode;
3469 
3470 	inode = __lookup_free_space_inode(root, path, 0);
3471 	if (IS_ERR(inode))
3472 		return inode;
3473 
3474 	spin_lock(&root->ino_cache_lock);
3475 	if (!btrfs_fs_closing(root->fs_info))
3476 		root->ino_cache_inode = igrab(inode);
3477 	spin_unlock(&root->ino_cache_lock);
3478 
3479 	return inode;
3480 }
3481 
3482 int create_free_ino_inode(struct btrfs_root *root,
3483 			  struct btrfs_trans_handle *trans,
3484 			  struct btrfs_path *path)
3485 {
3486 	return __create_free_space_inode(root, trans, path,
3487 					 BTRFS_FREE_INO_OBJECTID, 0);
3488 }
3489 
3490 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3491 {
3492 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3493 	struct btrfs_path *path;
3494 	struct inode *inode;
3495 	int ret = 0;
3496 	u64 root_gen = btrfs_root_generation(&root->root_item);
3497 
3498 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3499 		return 0;
3500 
3501 	/*
3502 	 * If we're unmounting then just return, since this does a search on the
3503 	 * normal root and not the commit root and we could deadlock.
3504 	 */
3505 	if (btrfs_fs_closing(fs_info))
3506 		return 0;
3507 
3508 	path = btrfs_alloc_path();
3509 	if (!path)
3510 		return 0;
3511 
3512 	inode = lookup_free_ino_inode(root, path);
3513 	if (IS_ERR(inode))
3514 		goto out;
3515 
3516 	if (root_gen != BTRFS_I(inode)->generation)
3517 		goto out_put;
3518 
3519 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3520 
3521 	if (ret < 0)
3522 		btrfs_err(fs_info,
3523 			"failed to load free ino cache for root %llu",
3524 			root->root_key.objectid);
3525 out_put:
3526 	iput(inode);
3527 out:
3528 	btrfs_free_path(path);
3529 	return ret;
3530 }
3531 
3532 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3533 			      struct btrfs_trans_handle *trans,
3534 			      struct btrfs_path *path,
3535 			      struct inode *inode)
3536 {
3537 	struct btrfs_fs_info *fs_info = root->fs_info;
3538 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3539 	int ret;
3540 	struct btrfs_io_ctl io_ctl;
3541 	bool release_metadata = true;
3542 
3543 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3544 		return 0;
3545 
3546 	memset(&io_ctl, 0, sizeof(io_ctl));
3547 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3548 	if (!ret) {
3549 		/*
3550 		 * At this point writepages() didn't error out, so our metadata
3551 		 * reservation is released when the writeback finishes, at
3552 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3553 		 * with or without an error.
3554 		 */
3555 		release_metadata = false;
3556 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3557 	}
3558 
3559 	if (ret) {
3560 		if (release_metadata)
3561 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3562 					inode->i_size, true);
3563 #ifdef DEBUG
3564 		btrfs_err(fs_info,
3565 			  "failed to write free ino cache for root %llu",
3566 			  root->root_key.objectid);
3567 #endif
3568 	}
3569 
3570 	return ret;
3571 }
3572 
3573 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3574 /*
3575  * Use this if you need to make a bitmap or extent entry specifically, it
3576  * doesn't do any of the merging that add_free_space does, this acts a lot like
3577  * how the free space cache loading stuff works, so you can get really weird
3578  * configurations.
3579  */
3580 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3581 			      u64 offset, u64 bytes, bool bitmap)
3582 {
3583 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3584 	struct btrfs_free_space *info = NULL, *bitmap_info;
3585 	void *map = NULL;
3586 	u64 bytes_added;
3587 	int ret;
3588 
3589 again:
3590 	if (!info) {
3591 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3592 		if (!info)
3593 			return -ENOMEM;
3594 	}
3595 
3596 	if (!bitmap) {
3597 		spin_lock(&ctl->tree_lock);
3598 		info->offset = offset;
3599 		info->bytes = bytes;
3600 		info->max_extent_size = 0;
3601 		ret = link_free_space(ctl, info);
3602 		spin_unlock(&ctl->tree_lock);
3603 		if (ret)
3604 			kmem_cache_free(btrfs_free_space_cachep, info);
3605 		return ret;
3606 	}
3607 
3608 	if (!map) {
3609 		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3610 		if (!map) {
3611 			kmem_cache_free(btrfs_free_space_cachep, info);
3612 			return -ENOMEM;
3613 		}
3614 	}
3615 
3616 	spin_lock(&ctl->tree_lock);
3617 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3618 					 1, 0);
3619 	if (!bitmap_info) {
3620 		info->bitmap = map;
3621 		map = NULL;
3622 		add_new_bitmap(ctl, info, offset);
3623 		bitmap_info = info;
3624 		info = NULL;
3625 	}
3626 
3627 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3628 
3629 	bytes -= bytes_added;
3630 	offset += bytes_added;
3631 	spin_unlock(&ctl->tree_lock);
3632 
3633 	if (bytes)
3634 		goto again;
3635 
3636 	if (info)
3637 		kmem_cache_free(btrfs_free_space_cachep, info);
3638 	kfree(map);
3639 	return 0;
3640 }
3641 
3642 /*
3643  * Checks to see if the given range is in the free space cache.  This is really
3644  * just used to check the absence of space, so if there is free space in the
3645  * range at all we will return 1.
3646  */
3647 int test_check_exists(struct btrfs_block_group_cache *cache,
3648 		      u64 offset, u64 bytes)
3649 {
3650 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3651 	struct btrfs_free_space *info;
3652 	int ret = 0;
3653 
3654 	spin_lock(&ctl->tree_lock);
3655 	info = tree_search_offset(ctl, offset, 0, 0);
3656 	if (!info) {
3657 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3658 					  1, 0);
3659 		if (!info)
3660 			goto out;
3661 	}
3662 
3663 have_info:
3664 	if (info->bitmap) {
3665 		u64 bit_off, bit_bytes;
3666 		struct rb_node *n;
3667 		struct btrfs_free_space *tmp;
3668 
3669 		bit_off = offset;
3670 		bit_bytes = ctl->unit;
3671 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3672 		if (!ret) {
3673 			if (bit_off == offset) {
3674 				ret = 1;
3675 				goto out;
3676 			} else if (bit_off > offset &&
3677 				   offset + bytes > bit_off) {
3678 				ret = 1;
3679 				goto out;
3680 			}
3681 		}
3682 
3683 		n = rb_prev(&info->offset_index);
3684 		while (n) {
3685 			tmp = rb_entry(n, struct btrfs_free_space,
3686 				       offset_index);
3687 			if (tmp->offset + tmp->bytes < offset)
3688 				break;
3689 			if (offset + bytes < tmp->offset) {
3690 				n = rb_prev(&tmp->offset_index);
3691 				continue;
3692 			}
3693 			info = tmp;
3694 			goto have_info;
3695 		}
3696 
3697 		n = rb_next(&info->offset_index);
3698 		while (n) {
3699 			tmp = rb_entry(n, struct btrfs_free_space,
3700 				       offset_index);
3701 			if (offset + bytes < tmp->offset)
3702 				break;
3703 			if (tmp->offset + tmp->bytes < offset) {
3704 				n = rb_next(&tmp->offset_index);
3705 				continue;
3706 			}
3707 			info = tmp;
3708 			goto have_info;
3709 		}
3710 
3711 		ret = 0;
3712 		goto out;
3713 	}
3714 
3715 	if (info->offset == offset) {
3716 		ret = 1;
3717 		goto out;
3718 	}
3719 
3720 	if (offset > info->offset && offset < info->offset + info->bytes)
3721 		ret = 1;
3722 out:
3723 	spin_unlock(&ctl->tree_lock);
3724 	return ret;
3725 }
3726 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3727