1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include <linux/sched/mm.h> 14 #include "ctree.h" 15 #include "free-space-cache.h" 16 #include "transaction.h" 17 #include "disk-io.h" 18 #include "extent_io.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 22 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 23 #define MAX_CACHE_BYTES_PER_GIG SZ_32K 24 25 struct btrfs_trim_range { 26 u64 start; 27 u64 bytes; 28 struct list_head list; 29 }; 30 31 static int link_free_space(struct btrfs_free_space_ctl *ctl, 32 struct btrfs_free_space *info); 33 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 34 struct btrfs_free_space *info); 35 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 36 struct btrfs_trans_handle *trans, 37 struct btrfs_io_ctl *io_ctl, 38 struct btrfs_path *path); 39 40 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 41 struct btrfs_path *path, 42 u64 offset) 43 { 44 struct btrfs_fs_info *fs_info = root->fs_info; 45 struct btrfs_key key; 46 struct btrfs_key location; 47 struct btrfs_disk_key disk_key; 48 struct btrfs_free_space_header *header; 49 struct extent_buffer *leaf; 50 struct inode *inode = NULL; 51 unsigned nofs_flag; 52 int ret; 53 54 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 55 key.offset = offset; 56 key.type = 0; 57 58 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 59 if (ret < 0) 60 return ERR_PTR(ret); 61 if (ret > 0) { 62 btrfs_release_path(path); 63 return ERR_PTR(-ENOENT); 64 } 65 66 leaf = path->nodes[0]; 67 header = btrfs_item_ptr(leaf, path->slots[0], 68 struct btrfs_free_space_header); 69 btrfs_free_space_key(leaf, header, &disk_key); 70 btrfs_disk_key_to_cpu(&location, &disk_key); 71 btrfs_release_path(path); 72 73 /* 74 * We are often under a trans handle at this point, so we need to make 75 * sure NOFS is set to keep us from deadlocking. 76 */ 77 nofs_flag = memalloc_nofs_save(); 78 inode = btrfs_iget(fs_info->sb, &location, root, NULL); 79 memalloc_nofs_restore(nofs_flag); 80 if (IS_ERR(inode)) 81 return inode; 82 83 mapping_set_gfp_mask(inode->i_mapping, 84 mapping_gfp_constraint(inode->i_mapping, 85 ~(__GFP_FS | __GFP_HIGHMEM))); 86 87 return inode; 88 } 89 90 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info, 91 struct btrfs_block_group_cache 92 *block_group, struct btrfs_path *path) 93 { 94 struct inode *inode = NULL; 95 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 96 97 spin_lock(&block_group->lock); 98 if (block_group->inode) 99 inode = igrab(block_group->inode); 100 spin_unlock(&block_group->lock); 101 if (inode) 102 return inode; 103 104 inode = __lookup_free_space_inode(fs_info->tree_root, path, 105 block_group->key.objectid); 106 if (IS_ERR(inode)) 107 return inode; 108 109 spin_lock(&block_group->lock); 110 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 111 btrfs_info(fs_info, "Old style space inode found, converting."); 112 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 113 BTRFS_INODE_NODATACOW; 114 block_group->disk_cache_state = BTRFS_DC_CLEAR; 115 } 116 117 if (!block_group->iref) { 118 block_group->inode = igrab(inode); 119 block_group->iref = 1; 120 } 121 spin_unlock(&block_group->lock); 122 123 return inode; 124 } 125 126 static int __create_free_space_inode(struct btrfs_root *root, 127 struct btrfs_trans_handle *trans, 128 struct btrfs_path *path, 129 u64 ino, u64 offset) 130 { 131 struct btrfs_key key; 132 struct btrfs_disk_key disk_key; 133 struct btrfs_free_space_header *header; 134 struct btrfs_inode_item *inode_item; 135 struct extent_buffer *leaf; 136 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 137 int ret; 138 139 ret = btrfs_insert_empty_inode(trans, root, path, ino); 140 if (ret) 141 return ret; 142 143 /* We inline crc's for the free disk space cache */ 144 if (ino != BTRFS_FREE_INO_OBJECTID) 145 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 146 147 leaf = path->nodes[0]; 148 inode_item = btrfs_item_ptr(leaf, path->slots[0], 149 struct btrfs_inode_item); 150 btrfs_item_key(leaf, &disk_key, path->slots[0]); 151 memzero_extent_buffer(leaf, (unsigned long)inode_item, 152 sizeof(*inode_item)); 153 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 154 btrfs_set_inode_size(leaf, inode_item, 0); 155 btrfs_set_inode_nbytes(leaf, inode_item, 0); 156 btrfs_set_inode_uid(leaf, inode_item, 0); 157 btrfs_set_inode_gid(leaf, inode_item, 0); 158 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 159 btrfs_set_inode_flags(leaf, inode_item, flags); 160 btrfs_set_inode_nlink(leaf, inode_item, 1); 161 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 162 btrfs_set_inode_block_group(leaf, inode_item, offset); 163 btrfs_mark_buffer_dirty(leaf); 164 btrfs_release_path(path); 165 166 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 167 key.offset = offset; 168 key.type = 0; 169 ret = btrfs_insert_empty_item(trans, root, path, &key, 170 sizeof(struct btrfs_free_space_header)); 171 if (ret < 0) { 172 btrfs_release_path(path); 173 return ret; 174 } 175 176 leaf = path->nodes[0]; 177 header = btrfs_item_ptr(leaf, path->slots[0], 178 struct btrfs_free_space_header); 179 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 180 btrfs_set_free_space_key(leaf, header, &disk_key); 181 btrfs_mark_buffer_dirty(leaf); 182 btrfs_release_path(path); 183 184 return 0; 185 } 186 187 int create_free_space_inode(struct btrfs_fs_info *fs_info, 188 struct btrfs_trans_handle *trans, 189 struct btrfs_block_group_cache *block_group, 190 struct btrfs_path *path) 191 { 192 int ret; 193 u64 ino; 194 195 ret = btrfs_find_free_objectid(fs_info->tree_root, &ino); 196 if (ret < 0) 197 return ret; 198 199 return __create_free_space_inode(fs_info->tree_root, trans, path, ino, 200 block_group->key.objectid); 201 } 202 203 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 204 struct btrfs_block_rsv *rsv) 205 { 206 u64 needed_bytes; 207 int ret; 208 209 /* 1 for slack space, 1 for updating the inode */ 210 needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) + 211 btrfs_calc_trans_metadata_size(fs_info, 1); 212 213 spin_lock(&rsv->lock); 214 if (rsv->reserved < needed_bytes) 215 ret = -ENOSPC; 216 else 217 ret = 0; 218 spin_unlock(&rsv->lock); 219 return ret; 220 } 221 222 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 223 struct btrfs_block_group_cache *block_group, 224 struct inode *inode) 225 { 226 struct btrfs_root *root = BTRFS_I(inode)->root; 227 int ret = 0; 228 bool locked = false; 229 230 if (block_group) { 231 struct btrfs_path *path = btrfs_alloc_path(); 232 233 if (!path) { 234 ret = -ENOMEM; 235 goto fail; 236 } 237 locked = true; 238 mutex_lock(&trans->transaction->cache_write_mutex); 239 if (!list_empty(&block_group->io_list)) { 240 list_del_init(&block_group->io_list); 241 242 btrfs_wait_cache_io(trans, block_group, path); 243 btrfs_put_block_group(block_group); 244 } 245 246 /* 247 * now that we've truncated the cache away, its no longer 248 * setup or written 249 */ 250 spin_lock(&block_group->lock); 251 block_group->disk_cache_state = BTRFS_DC_CLEAR; 252 spin_unlock(&block_group->lock); 253 btrfs_free_path(path); 254 } 255 256 btrfs_i_size_write(BTRFS_I(inode), 0); 257 truncate_pagecache(inode, 0); 258 259 /* 260 * We skip the throttling logic for free space cache inodes, so we don't 261 * need to check for -EAGAIN. 262 */ 263 ret = btrfs_truncate_inode_items(trans, root, inode, 264 0, BTRFS_EXTENT_DATA_KEY); 265 if (ret) 266 goto fail; 267 268 ret = btrfs_update_inode(trans, root, inode); 269 270 fail: 271 if (locked) 272 mutex_unlock(&trans->transaction->cache_write_mutex); 273 if (ret) 274 btrfs_abort_transaction(trans, ret); 275 276 return ret; 277 } 278 279 static void readahead_cache(struct inode *inode) 280 { 281 struct file_ra_state *ra; 282 unsigned long last_index; 283 284 ra = kzalloc(sizeof(*ra), GFP_NOFS); 285 if (!ra) 286 return; 287 288 file_ra_state_init(ra, inode->i_mapping); 289 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 290 291 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 292 293 kfree(ra); 294 } 295 296 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 297 int write) 298 { 299 int num_pages; 300 int check_crcs = 0; 301 302 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 303 304 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID) 305 check_crcs = 1; 306 307 /* Make sure we can fit our crcs and generation into the first page */ 308 if (write && check_crcs && 309 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) 310 return -ENOSPC; 311 312 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 313 314 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 315 if (!io_ctl->pages) 316 return -ENOMEM; 317 318 io_ctl->num_pages = num_pages; 319 io_ctl->fs_info = btrfs_sb(inode->i_sb); 320 io_ctl->check_crcs = check_crcs; 321 io_ctl->inode = inode; 322 323 return 0; 324 } 325 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 326 327 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 328 { 329 kfree(io_ctl->pages); 330 io_ctl->pages = NULL; 331 } 332 333 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 334 { 335 if (io_ctl->cur) { 336 io_ctl->cur = NULL; 337 io_ctl->orig = NULL; 338 } 339 } 340 341 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 342 { 343 ASSERT(io_ctl->index < io_ctl->num_pages); 344 io_ctl->page = io_ctl->pages[io_ctl->index++]; 345 io_ctl->cur = page_address(io_ctl->page); 346 io_ctl->orig = io_ctl->cur; 347 io_ctl->size = PAGE_SIZE; 348 if (clear) 349 clear_page(io_ctl->cur); 350 } 351 352 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 353 { 354 int i; 355 356 io_ctl_unmap_page(io_ctl); 357 358 for (i = 0; i < io_ctl->num_pages; i++) { 359 if (io_ctl->pages[i]) { 360 ClearPageChecked(io_ctl->pages[i]); 361 unlock_page(io_ctl->pages[i]); 362 put_page(io_ctl->pages[i]); 363 } 364 } 365 } 366 367 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode, 368 int uptodate) 369 { 370 struct page *page; 371 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 372 int i; 373 374 for (i = 0; i < io_ctl->num_pages; i++) { 375 page = find_or_create_page(inode->i_mapping, i, mask); 376 if (!page) { 377 io_ctl_drop_pages(io_ctl); 378 return -ENOMEM; 379 } 380 io_ctl->pages[i] = page; 381 if (uptodate && !PageUptodate(page)) { 382 btrfs_readpage(NULL, page); 383 lock_page(page); 384 if (!PageUptodate(page)) { 385 btrfs_err(BTRFS_I(inode)->root->fs_info, 386 "error reading free space cache"); 387 io_ctl_drop_pages(io_ctl); 388 return -EIO; 389 } 390 } 391 } 392 393 for (i = 0; i < io_ctl->num_pages; i++) { 394 clear_page_dirty_for_io(io_ctl->pages[i]); 395 set_page_extent_mapped(io_ctl->pages[i]); 396 } 397 398 return 0; 399 } 400 401 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 402 { 403 __le64 *val; 404 405 io_ctl_map_page(io_ctl, 1); 406 407 /* 408 * Skip the csum areas. If we don't check crcs then we just have a 409 * 64bit chunk at the front of the first page. 410 */ 411 if (io_ctl->check_crcs) { 412 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 413 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 414 } else { 415 io_ctl->cur += sizeof(u64); 416 io_ctl->size -= sizeof(u64) * 2; 417 } 418 419 val = io_ctl->cur; 420 *val = cpu_to_le64(generation); 421 io_ctl->cur += sizeof(u64); 422 } 423 424 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 425 { 426 __le64 *gen; 427 428 /* 429 * Skip the crc area. If we don't check crcs then we just have a 64bit 430 * chunk at the front of the first page. 431 */ 432 if (io_ctl->check_crcs) { 433 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 434 io_ctl->size -= sizeof(u64) + 435 (sizeof(u32) * io_ctl->num_pages); 436 } else { 437 io_ctl->cur += sizeof(u64); 438 io_ctl->size -= sizeof(u64) * 2; 439 } 440 441 gen = io_ctl->cur; 442 if (le64_to_cpu(*gen) != generation) { 443 btrfs_err_rl(io_ctl->fs_info, 444 "space cache generation (%llu) does not match inode (%llu)", 445 *gen, generation); 446 io_ctl_unmap_page(io_ctl); 447 return -EIO; 448 } 449 io_ctl->cur += sizeof(u64); 450 return 0; 451 } 452 453 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 454 { 455 u32 *tmp; 456 u32 crc = ~(u32)0; 457 unsigned offset = 0; 458 459 if (!io_ctl->check_crcs) { 460 io_ctl_unmap_page(io_ctl); 461 return; 462 } 463 464 if (index == 0) 465 offset = sizeof(u32) * io_ctl->num_pages; 466 467 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 468 PAGE_SIZE - offset); 469 btrfs_csum_final(crc, (u8 *)&crc); 470 io_ctl_unmap_page(io_ctl); 471 tmp = page_address(io_ctl->pages[0]); 472 tmp += index; 473 *tmp = crc; 474 } 475 476 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 477 { 478 u32 *tmp, val; 479 u32 crc = ~(u32)0; 480 unsigned offset = 0; 481 482 if (!io_ctl->check_crcs) { 483 io_ctl_map_page(io_ctl, 0); 484 return 0; 485 } 486 487 if (index == 0) 488 offset = sizeof(u32) * io_ctl->num_pages; 489 490 tmp = page_address(io_ctl->pages[0]); 491 tmp += index; 492 val = *tmp; 493 494 io_ctl_map_page(io_ctl, 0); 495 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 496 PAGE_SIZE - offset); 497 btrfs_csum_final(crc, (u8 *)&crc); 498 if (val != crc) { 499 btrfs_err_rl(io_ctl->fs_info, 500 "csum mismatch on free space cache"); 501 io_ctl_unmap_page(io_ctl); 502 return -EIO; 503 } 504 505 return 0; 506 } 507 508 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 509 void *bitmap) 510 { 511 struct btrfs_free_space_entry *entry; 512 513 if (!io_ctl->cur) 514 return -ENOSPC; 515 516 entry = io_ctl->cur; 517 entry->offset = cpu_to_le64(offset); 518 entry->bytes = cpu_to_le64(bytes); 519 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 520 BTRFS_FREE_SPACE_EXTENT; 521 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 522 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 523 524 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 525 return 0; 526 527 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 528 529 /* No more pages to map */ 530 if (io_ctl->index >= io_ctl->num_pages) 531 return 0; 532 533 /* map the next page */ 534 io_ctl_map_page(io_ctl, 1); 535 return 0; 536 } 537 538 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 539 { 540 if (!io_ctl->cur) 541 return -ENOSPC; 542 543 /* 544 * If we aren't at the start of the current page, unmap this one and 545 * map the next one if there is any left. 546 */ 547 if (io_ctl->cur != io_ctl->orig) { 548 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 549 if (io_ctl->index >= io_ctl->num_pages) 550 return -ENOSPC; 551 io_ctl_map_page(io_ctl, 0); 552 } 553 554 copy_page(io_ctl->cur, bitmap); 555 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 556 if (io_ctl->index < io_ctl->num_pages) 557 io_ctl_map_page(io_ctl, 0); 558 return 0; 559 } 560 561 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 562 { 563 /* 564 * If we're not on the boundary we know we've modified the page and we 565 * need to crc the page. 566 */ 567 if (io_ctl->cur != io_ctl->orig) 568 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 569 else 570 io_ctl_unmap_page(io_ctl); 571 572 while (io_ctl->index < io_ctl->num_pages) { 573 io_ctl_map_page(io_ctl, 1); 574 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 575 } 576 } 577 578 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 579 struct btrfs_free_space *entry, u8 *type) 580 { 581 struct btrfs_free_space_entry *e; 582 int ret; 583 584 if (!io_ctl->cur) { 585 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 586 if (ret) 587 return ret; 588 } 589 590 e = io_ctl->cur; 591 entry->offset = le64_to_cpu(e->offset); 592 entry->bytes = le64_to_cpu(e->bytes); 593 *type = e->type; 594 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 595 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 596 597 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 598 return 0; 599 600 io_ctl_unmap_page(io_ctl); 601 602 return 0; 603 } 604 605 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 606 struct btrfs_free_space *entry) 607 { 608 int ret; 609 610 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 611 if (ret) 612 return ret; 613 614 copy_page(entry->bitmap, io_ctl->cur); 615 io_ctl_unmap_page(io_ctl); 616 617 return 0; 618 } 619 620 /* 621 * Since we attach pinned extents after the fact we can have contiguous sections 622 * of free space that are split up in entries. This poses a problem with the 623 * tree logging stuff since it could have allocated across what appears to be 2 624 * entries since we would have merged the entries when adding the pinned extents 625 * back to the free space cache. So run through the space cache that we just 626 * loaded and merge contiguous entries. This will make the log replay stuff not 627 * blow up and it will make for nicer allocator behavior. 628 */ 629 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 630 { 631 struct btrfs_free_space *e, *prev = NULL; 632 struct rb_node *n; 633 634 again: 635 spin_lock(&ctl->tree_lock); 636 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 637 e = rb_entry(n, struct btrfs_free_space, offset_index); 638 if (!prev) 639 goto next; 640 if (e->bitmap || prev->bitmap) 641 goto next; 642 if (prev->offset + prev->bytes == e->offset) { 643 unlink_free_space(ctl, prev); 644 unlink_free_space(ctl, e); 645 prev->bytes += e->bytes; 646 kmem_cache_free(btrfs_free_space_cachep, e); 647 link_free_space(ctl, prev); 648 prev = NULL; 649 spin_unlock(&ctl->tree_lock); 650 goto again; 651 } 652 next: 653 prev = e; 654 } 655 spin_unlock(&ctl->tree_lock); 656 } 657 658 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 659 struct btrfs_free_space_ctl *ctl, 660 struct btrfs_path *path, u64 offset) 661 { 662 struct btrfs_fs_info *fs_info = root->fs_info; 663 struct btrfs_free_space_header *header; 664 struct extent_buffer *leaf; 665 struct btrfs_io_ctl io_ctl; 666 struct btrfs_key key; 667 struct btrfs_free_space *e, *n; 668 LIST_HEAD(bitmaps); 669 u64 num_entries; 670 u64 num_bitmaps; 671 u64 generation; 672 u8 type; 673 int ret = 0; 674 675 /* Nothing in the space cache, goodbye */ 676 if (!i_size_read(inode)) 677 return 0; 678 679 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 680 key.offset = offset; 681 key.type = 0; 682 683 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 684 if (ret < 0) 685 return 0; 686 else if (ret > 0) { 687 btrfs_release_path(path); 688 return 0; 689 } 690 691 ret = -1; 692 693 leaf = path->nodes[0]; 694 header = btrfs_item_ptr(leaf, path->slots[0], 695 struct btrfs_free_space_header); 696 num_entries = btrfs_free_space_entries(leaf, header); 697 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 698 generation = btrfs_free_space_generation(leaf, header); 699 btrfs_release_path(path); 700 701 if (!BTRFS_I(inode)->generation) { 702 btrfs_info(fs_info, 703 "the free space cache file (%llu) is invalid, skip it", 704 offset); 705 return 0; 706 } 707 708 if (BTRFS_I(inode)->generation != generation) { 709 btrfs_err(fs_info, 710 "free space inode generation (%llu) did not match free space cache generation (%llu)", 711 BTRFS_I(inode)->generation, generation); 712 return 0; 713 } 714 715 if (!num_entries) 716 return 0; 717 718 ret = io_ctl_init(&io_ctl, inode, 0); 719 if (ret) 720 return ret; 721 722 readahead_cache(inode); 723 724 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 725 if (ret) 726 goto out; 727 728 ret = io_ctl_check_crc(&io_ctl, 0); 729 if (ret) 730 goto free_cache; 731 732 ret = io_ctl_check_generation(&io_ctl, generation); 733 if (ret) 734 goto free_cache; 735 736 while (num_entries) { 737 e = kmem_cache_zalloc(btrfs_free_space_cachep, 738 GFP_NOFS); 739 if (!e) 740 goto free_cache; 741 742 ret = io_ctl_read_entry(&io_ctl, e, &type); 743 if (ret) { 744 kmem_cache_free(btrfs_free_space_cachep, e); 745 goto free_cache; 746 } 747 748 if (!e->bytes) { 749 kmem_cache_free(btrfs_free_space_cachep, e); 750 goto free_cache; 751 } 752 753 if (type == BTRFS_FREE_SPACE_EXTENT) { 754 spin_lock(&ctl->tree_lock); 755 ret = link_free_space(ctl, e); 756 spin_unlock(&ctl->tree_lock); 757 if (ret) { 758 btrfs_err(fs_info, 759 "Duplicate entries in free space cache, dumping"); 760 kmem_cache_free(btrfs_free_space_cachep, e); 761 goto free_cache; 762 } 763 } else { 764 ASSERT(num_bitmaps); 765 num_bitmaps--; 766 e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS); 767 if (!e->bitmap) { 768 kmem_cache_free( 769 btrfs_free_space_cachep, e); 770 goto free_cache; 771 } 772 spin_lock(&ctl->tree_lock); 773 ret = link_free_space(ctl, e); 774 ctl->total_bitmaps++; 775 ctl->op->recalc_thresholds(ctl); 776 spin_unlock(&ctl->tree_lock); 777 if (ret) { 778 btrfs_err(fs_info, 779 "Duplicate entries in free space cache, dumping"); 780 kmem_cache_free(btrfs_free_space_cachep, e); 781 goto free_cache; 782 } 783 list_add_tail(&e->list, &bitmaps); 784 } 785 786 num_entries--; 787 } 788 789 io_ctl_unmap_page(&io_ctl); 790 791 /* 792 * We add the bitmaps at the end of the entries in order that 793 * the bitmap entries are added to the cache. 794 */ 795 list_for_each_entry_safe(e, n, &bitmaps, list) { 796 list_del_init(&e->list); 797 ret = io_ctl_read_bitmap(&io_ctl, e); 798 if (ret) 799 goto free_cache; 800 } 801 802 io_ctl_drop_pages(&io_ctl); 803 merge_space_tree(ctl); 804 ret = 1; 805 out: 806 io_ctl_free(&io_ctl); 807 return ret; 808 free_cache: 809 io_ctl_drop_pages(&io_ctl); 810 __btrfs_remove_free_space_cache(ctl); 811 goto out; 812 } 813 814 int load_free_space_cache(struct btrfs_fs_info *fs_info, 815 struct btrfs_block_group_cache *block_group) 816 { 817 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 818 struct inode *inode; 819 struct btrfs_path *path; 820 int ret = 0; 821 bool matched; 822 u64 used = btrfs_block_group_used(&block_group->item); 823 824 /* 825 * If this block group has been marked to be cleared for one reason or 826 * another then we can't trust the on disk cache, so just return. 827 */ 828 spin_lock(&block_group->lock); 829 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 830 spin_unlock(&block_group->lock); 831 return 0; 832 } 833 spin_unlock(&block_group->lock); 834 835 path = btrfs_alloc_path(); 836 if (!path) 837 return 0; 838 path->search_commit_root = 1; 839 path->skip_locking = 1; 840 841 inode = lookup_free_space_inode(fs_info, block_group, path); 842 if (IS_ERR(inode)) { 843 btrfs_free_path(path); 844 return 0; 845 } 846 847 /* We may have converted the inode and made the cache invalid. */ 848 spin_lock(&block_group->lock); 849 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 850 spin_unlock(&block_group->lock); 851 btrfs_free_path(path); 852 goto out; 853 } 854 spin_unlock(&block_group->lock); 855 856 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 857 path, block_group->key.objectid); 858 btrfs_free_path(path); 859 if (ret <= 0) 860 goto out; 861 862 spin_lock(&ctl->tree_lock); 863 matched = (ctl->free_space == (block_group->key.offset - used - 864 block_group->bytes_super)); 865 spin_unlock(&ctl->tree_lock); 866 867 if (!matched) { 868 __btrfs_remove_free_space_cache(ctl); 869 btrfs_warn(fs_info, 870 "block group %llu has wrong amount of free space", 871 block_group->key.objectid); 872 ret = -1; 873 } 874 out: 875 if (ret < 0) { 876 /* This cache is bogus, make sure it gets cleared */ 877 spin_lock(&block_group->lock); 878 block_group->disk_cache_state = BTRFS_DC_CLEAR; 879 spin_unlock(&block_group->lock); 880 ret = 0; 881 882 btrfs_warn(fs_info, 883 "failed to load free space cache for block group %llu, rebuilding it now", 884 block_group->key.objectid); 885 } 886 887 iput(inode); 888 return ret; 889 } 890 891 static noinline_for_stack 892 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 893 struct btrfs_free_space_ctl *ctl, 894 struct btrfs_block_group_cache *block_group, 895 int *entries, int *bitmaps, 896 struct list_head *bitmap_list) 897 { 898 int ret; 899 struct btrfs_free_cluster *cluster = NULL; 900 struct btrfs_free_cluster *cluster_locked = NULL; 901 struct rb_node *node = rb_first(&ctl->free_space_offset); 902 struct btrfs_trim_range *trim_entry; 903 904 /* Get the cluster for this block_group if it exists */ 905 if (block_group && !list_empty(&block_group->cluster_list)) { 906 cluster = list_entry(block_group->cluster_list.next, 907 struct btrfs_free_cluster, 908 block_group_list); 909 } 910 911 if (!node && cluster) { 912 cluster_locked = cluster; 913 spin_lock(&cluster_locked->lock); 914 node = rb_first(&cluster->root); 915 cluster = NULL; 916 } 917 918 /* Write out the extent entries */ 919 while (node) { 920 struct btrfs_free_space *e; 921 922 e = rb_entry(node, struct btrfs_free_space, offset_index); 923 *entries += 1; 924 925 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 926 e->bitmap); 927 if (ret) 928 goto fail; 929 930 if (e->bitmap) { 931 list_add_tail(&e->list, bitmap_list); 932 *bitmaps += 1; 933 } 934 node = rb_next(node); 935 if (!node && cluster) { 936 node = rb_first(&cluster->root); 937 cluster_locked = cluster; 938 spin_lock(&cluster_locked->lock); 939 cluster = NULL; 940 } 941 } 942 if (cluster_locked) { 943 spin_unlock(&cluster_locked->lock); 944 cluster_locked = NULL; 945 } 946 947 /* 948 * Make sure we don't miss any range that was removed from our rbtree 949 * because trimming is running. Otherwise after a umount+mount (or crash 950 * after committing the transaction) we would leak free space and get 951 * an inconsistent free space cache report from fsck. 952 */ 953 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 954 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 955 trim_entry->bytes, NULL); 956 if (ret) 957 goto fail; 958 *entries += 1; 959 } 960 961 return 0; 962 fail: 963 if (cluster_locked) 964 spin_unlock(&cluster_locked->lock); 965 return -ENOSPC; 966 } 967 968 static noinline_for_stack int 969 update_cache_item(struct btrfs_trans_handle *trans, 970 struct btrfs_root *root, 971 struct inode *inode, 972 struct btrfs_path *path, u64 offset, 973 int entries, int bitmaps) 974 { 975 struct btrfs_key key; 976 struct btrfs_free_space_header *header; 977 struct extent_buffer *leaf; 978 int ret; 979 980 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 981 key.offset = offset; 982 key.type = 0; 983 984 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 985 if (ret < 0) { 986 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 987 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL); 988 goto fail; 989 } 990 leaf = path->nodes[0]; 991 if (ret > 0) { 992 struct btrfs_key found_key; 993 ASSERT(path->slots[0]); 994 path->slots[0]--; 995 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 996 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 997 found_key.offset != offset) { 998 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 999 inode->i_size - 1, 1000 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, 1001 NULL); 1002 btrfs_release_path(path); 1003 goto fail; 1004 } 1005 } 1006 1007 BTRFS_I(inode)->generation = trans->transid; 1008 header = btrfs_item_ptr(leaf, path->slots[0], 1009 struct btrfs_free_space_header); 1010 btrfs_set_free_space_entries(leaf, header, entries); 1011 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1012 btrfs_set_free_space_generation(leaf, header, trans->transid); 1013 btrfs_mark_buffer_dirty(leaf); 1014 btrfs_release_path(path); 1015 1016 return 0; 1017 1018 fail: 1019 return -1; 1020 } 1021 1022 static noinline_for_stack int 1023 write_pinned_extent_entries(struct btrfs_fs_info *fs_info, 1024 struct btrfs_block_group_cache *block_group, 1025 struct btrfs_io_ctl *io_ctl, 1026 int *entries) 1027 { 1028 u64 start, extent_start, extent_end, len; 1029 struct extent_io_tree *unpin = NULL; 1030 int ret; 1031 1032 if (!block_group) 1033 return 0; 1034 1035 /* 1036 * We want to add any pinned extents to our free space cache 1037 * so we don't leak the space 1038 * 1039 * We shouldn't have switched the pinned extents yet so this is the 1040 * right one 1041 */ 1042 unpin = fs_info->pinned_extents; 1043 1044 start = block_group->key.objectid; 1045 1046 while (start < block_group->key.objectid + block_group->key.offset) { 1047 ret = find_first_extent_bit(unpin, start, 1048 &extent_start, &extent_end, 1049 EXTENT_DIRTY, NULL); 1050 if (ret) 1051 return 0; 1052 1053 /* This pinned extent is out of our range */ 1054 if (extent_start >= block_group->key.objectid + 1055 block_group->key.offset) 1056 return 0; 1057 1058 extent_start = max(extent_start, start); 1059 extent_end = min(block_group->key.objectid + 1060 block_group->key.offset, extent_end + 1); 1061 len = extent_end - extent_start; 1062 1063 *entries += 1; 1064 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1065 if (ret) 1066 return -ENOSPC; 1067 1068 start = extent_end; 1069 } 1070 1071 return 0; 1072 } 1073 1074 static noinline_for_stack int 1075 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1076 { 1077 struct btrfs_free_space *entry, *next; 1078 int ret; 1079 1080 /* Write out the bitmaps */ 1081 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1082 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1083 if (ret) 1084 return -ENOSPC; 1085 list_del_init(&entry->list); 1086 } 1087 1088 return 0; 1089 } 1090 1091 static int flush_dirty_cache(struct inode *inode) 1092 { 1093 int ret; 1094 1095 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1096 if (ret) 1097 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1098 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL); 1099 1100 return ret; 1101 } 1102 1103 static void noinline_for_stack 1104 cleanup_bitmap_list(struct list_head *bitmap_list) 1105 { 1106 struct btrfs_free_space *entry, *next; 1107 1108 list_for_each_entry_safe(entry, next, bitmap_list, list) 1109 list_del_init(&entry->list); 1110 } 1111 1112 static void noinline_for_stack 1113 cleanup_write_cache_enospc(struct inode *inode, 1114 struct btrfs_io_ctl *io_ctl, 1115 struct extent_state **cached_state) 1116 { 1117 io_ctl_drop_pages(io_ctl); 1118 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1119 i_size_read(inode) - 1, cached_state); 1120 } 1121 1122 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1123 struct btrfs_trans_handle *trans, 1124 struct btrfs_block_group_cache *block_group, 1125 struct btrfs_io_ctl *io_ctl, 1126 struct btrfs_path *path, u64 offset) 1127 { 1128 int ret; 1129 struct inode *inode = io_ctl->inode; 1130 1131 if (!inode) 1132 return 0; 1133 1134 /* Flush the dirty pages in the cache file. */ 1135 ret = flush_dirty_cache(inode); 1136 if (ret) 1137 goto out; 1138 1139 /* Update the cache item to tell everyone this cache file is valid. */ 1140 ret = update_cache_item(trans, root, inode, path, offset, 1141 io_ctl->entries, io_ctl->bitmaps); 1142 out: 1143 io_ctl_free(io_ctl); 1144 if (ret) { 1145 invalidate_inode_pages2(inode->i_mapping); 1146 BTRFS_I(inode)->generation = 0; 1147 if (block_group) { 1148 #ifdef DEBUG 1149 btrfs_err(root->fs_info, 1150 "failed to write free space cache for block group %llu", 1151 block_group->key.objectid); 1152 #endif 1153 } 1154 } 1155 btrfs_update_inode(trans, root, inode); 1156 1157 if (block_group) { 1158 /* the dirty list is protected by the dirty_bgs_lock */ 1159 spin_lock(&trans->transaction->dirty_bgs_lock); 1160 1161 /* the disk_cache_state is protected by the block group lock */ 1162 spin_lock(&block_group->lock); 1163 1164 /* 1165 * only mark this as written if we didn't get put back on 1166 * the dirty list while waiting for IO. Otherwise our 1167 * cache state won't be right, and we won't get written again 1168 */ 1169 if (!ret && list_empty(&block_group->dirty_list)) 1170 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1171 else if (ret) 1172 block_group->disk_cache_state = BTRFS_DC_ERROR; 1173 1174 spin_unlock(&block_group->lock); 1175 spin_unlock(&trans->transaction->dirty_bgs_lock); 1176 io_ctl->inode = NULL; 1177 iput(inode); 1178 } 1179 1180 return ret; 1181 1182 } 1183 1184 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 1185 struct btrfs_trans_handle *trans, 1186 struct btrfs_io_ctl *io_ctl, 1187 struct btrfs_path *path) 1188 { 1189 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0); 1190 } 1191 1192 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1193 struct btrfs_block_group_cache *block_group, 1194 struct btrfs_path *path) 1195 { 1196 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1197 block_group, &block_group->io_ctl, 1198 path, block_group->key.objectid); 1199 } 1200 1201 /** 1202 * __btrfs_write_out_cache - write out cached info to an inode 1203 * @root - the root the inode belongs to 1204 * @ctl - the free space cache we are going to write out 1205 * @block_group - the block_group for this cache if it belongs to a block_group 1206 * @trans - the trans handle 1207 * 1208 * This function writes out a free space cache struct to disk for quick recovery 1209 * on mount. This will return 0 if it was successful in writing the cache out, 1210 * or an errno if it was not. 1211 */ 1212 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1213 struct btrfs_free_space_ctl *ctl, 1214 struct btrfs_block_group_cache *block_group, 1215 struct btrfs_io_ctl *io_ctl, 1216 struct btrfs_trans_handle *trans) 1217 { 1218 struct btrfs_fs_info *fs_info = root->fs_info; 1219 struct extent_state *cached_state = NULL; 1220 LIST_HEAD(bitmap_list); 1221 int entries = 0; 1222 int bitmaps = 0; 1223 int ret; 1224 int must_iput = 0; 1225 1226 if (!i_size_read(inode)) 1227 return -EIO; 1228 1229 WARN_ON(io_ctl->pages); 1230 ret = io_ctl_init(io_ctl, inode, 1); 1231 if (ret) 1232 return ret; 1233 1234 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1235 down_write(&block_group->data_rwsem); 1236 spin_lock(&block_group->lock); 1237 if (block_group->delalloc_bytes) { 1238 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1239 spin_unlock(&block_group->lock); 1240 up_write(&block_group->data_rwsem); 1241 BTRFS_I(inode)->generation = 0; 1242 ret = 0; 1243 must_iput = 1; 1244 goto out; 1245 } 1246 spin_unlock(&block_group->lock); 1247 } 1248 1249 /* Lock all pages first so we can lock the extent safely. */ 1250 ret = io_ctl_prepare_pages(io_ctl, inode, 0); 1251 if (ret) 1252 goto out_unlock; 1253 1254 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1255 &cached_state); 1256 1257 io_ctl_set_generation(io_ctl, trans->transid); 1258 1259 mutex_lock(&ctl->cache_writeout_mutex); 1260 /* Write out the extent entries in the free space cache */ 1261 spin_lock(&ctl->tree_lock); 1262 ret = write_cache_extent_entries(io_ctl, ctl, 1263 block_group, &entries, &bitmaps, 1264 &bitmap_list); 1265 if (ret) 1266 goto out_nospc_locked; 1267 1268 /* 1269 * Some spaces that are freed in the current transaction are pinned, 1270 * they will be added into free space cache after the transaction is 1271 * committed, we shouldn't lose them. 1272 * 1273 * If this changes while we are working we'll get added back to 1274 * the dirty list and redo it. No locking needed 1275 */ 1276 ret = write_pinned_extent_entries(fs_info, block_group, 1277 io_ctl, &entries); 1278 if (ret) 1279 goto out_nospc_locked; 1280 1281 /* 1282 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1283 * locked while doing it because a concurrent trim can be manipulating 1284 * or freeing the bitmap. 1285 */ 1286 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1287 spin_unlock(&ctl->tree_lock); 1288 mutex_unlock(&ctl->cache_writeout_mutex); 1289 if (ret) 1290 goto out_nospc; 1291 1292 /* Zero out the rest of the pages just to make sure */ 1293 io_ctl_zero_remaining_pages(io_ctl); 1294 1295 /* Everything is written out, now we dirty the pages in the file. */ 1296 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0, 1297 i_size_read(inode), &cached_state); 1298 if (ret) 1299 goto out_nospc; 1300 1301 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1302 up_write(&block_group->data_rwsem); 1303 /* 1304 * Release the pages and unlock the extent, we will flush 1305 * them out later 1306 */ 1307 io_ctl_drop_pages(io_ctl); 1308 1309 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1310 i_size_read(inode) - 1, &cached_state); 1311 1312 /* 1313 * at this point the pages are under IO and we're happy, 1314 * The caller is responsible for waiting on them and updating the 1315 * the cache and the inode 1316 */ 1317 io_ctl->entries = entries; 1318 io_ctl->bitmaps = bitmaps; 1319 1320 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1321 if (ret) 1322 goto out; 1323 1324 return 0; 1325 1326 out: 1327 io_ctl->inode = NULL; 1328 io_ctl_free(io_ctl); 1329 if (ret) { 1330 invalidate_inode_pages2(inode->i_mapping); 1331 BTRFS_I(inode)->generation = 0; 1332 } 1333 btrfs_update_inode(trans, root, inode); 1334 if (must_iput) 1335 iput(inode); 1336 return ret; 1337 1338 out_nospc_locked: 1339 cleanup_bitmap_list(&bitmap_list); 1340 spin_unlock(&ctl->tree_lock); 1341 mutex_unlock(&ctl->cache_writeout_mutex); 1342 1343 out_nospc: 1344 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1345 1346 out_unlock: 1347 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1348 up_write(&block_group->data_rwsem); 1349 1350 goto out; 1351 } 1352 1353 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info, 1354 struct btrfs_trans_handle *trans, 1355 struct btrfs_block_group_cache *block_group, 1356 struct btrfs_path *path) 1357 { 1358 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1359 struct inode *inode; 1360 int ret = 0; 1361 1362 spin_lock(&block_group->lock); 1363 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1364 spin_unlock(&block_group->lock); 1365 return 0; 1366 } 1367 spin_unlock(&block_group->lock); 1368 1369 inode = lookup_free_space_inode(fs_info, block_group, path); 1370 if (IS_ERR(inode)) 1371 return 0; 1372 1373 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, 1374 block_group, &block_group->io_ctl, trans); 1375 if (ret) { 1376 #ifdef DEBUG 1377 btrfs_err(fs_info, 1378 "failed to write free space cache for block group %llu", 1379 block_group->key.objectid); 1380 #endif 1381 spin_lock(&block_group->lock); 1382 block_group->disk_cache_state = BTRFS_DC_ERROR; 1383 spin_unlock(&block_group->lock); 1384 1385 block_group->io_ctl.inode = NULL; 1386 iput(inode); 1387 } 1388 1389 /* 1390 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1391 * to wait for IO and put the inode 1392 */ 1393 1394 return ret; 1395 } 1396 1397 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1398 u64 offset) 1399 { 1400 ASSERT(offset >= bitmap_start); 1401 offset -= bitmap_start; 1402 return (unsigned long)(div_u64(offset, unit)); 1403 } 1404 1405 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1406 { 1407 return (unsigned long)(div_u64(bytes, unit)); 1408 } 1409 1410 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1411 u64 offset) 1412 { 1413 u64 bitmap_start; 1414 u64 bytes_per_bitmap; 1415 1416 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1417 bitmap_start = offset - ctl->start; 1418 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1419 bitmap_start *= bytes_per_bitmap; 1420 bitmap_start += ctl->start; 1421 1422 return bitmap_start; 1423 } 1424 1425 static int tree_insert_offset(struct rb_root *root, u64 offset, 1426 struct rb_node *node, int bitmap) 1427 { 1428 struct rb_node **p = &root->rb_node; 1429 struct rb_node *parent = NULL; 1430 struct btrfs_free_space *info; 1431 1432 while (*p) { 1433 parent = *p; 1434 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1435 1436 if (offset < info->offset) { 1437 p = &(*p)->rb_left; 1438 } else if (offset > info->offset) { 1439 p = &(*p)->rb_right; 1440 } else { 1441 /* 1442 * we could have a bitmap entry and an extent entry 1443 * share the same offset. If this is the case, we want 1444 * the extent entry to always be found first if we do a 1445 * linear search through the tree, since we want to have 1446 * the quickest allocation time, and allocating from an 1447 * extent is faster than allocating from a bitmap. So 1448 * if we're inserting a bitmap and we find an entry at 1449 * this offset, we want to go right, or after this entry 1450 * logically. If we are inserting an extent and we've 1451 * found a bitmap, we want to go left, or before 1452 * logically. 1453 */ 1454 if (bitmap) { 1455 if (info->bitmap) { 1456 WARN_ON_ONCE(1); 1457 return -EEXIST; 1458 } 1459 p = &(*p)->rb_right; 1460 } else { 1461 if (!info->bitmap) { 1462 WARN_ON_ONCE(1); 1463 return -EEXIST; 1464 } 1465 p = &(*p)->rb_left; 1466 } 1467 } 1468 } 1469 1470 rb_link_node(node, parent, p); 1471 rb_insert_color(node, root); 1472 1473 return 0; 1474 } 1475 1476 /* 1477 * searches the tree for the given offset. 1478 * 1479 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1480 * want a section that has at least bytes size and comes at or after the given 1481 * offset. 1482 */ 1483 static struct btrfs_free_space * 1484 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1485 u64 offset, int bitmap_only, int fuzzy) 1486 { 1487 struct rb_node *n = ctl->free_space_offset.rb_node; 1488 struct btrfs_free_space *entry, *prev = NULL; 1489 1490 /* find entry that is closest to the 'offset' */ 1491 while (1) { 1492 if (!n) { 1493 entry = NULL; 1494 break; 1495 } 1496 1497 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1498 prev = entry; 1499 1500 if (offset < entry->offset) 1501 n = n->rb_left; 1502 else if (offset > entry->offset) 1503 n = n->rb_right; 1504 else 1505 break; 1506 } 1507 1508 if (bitmap_only) { 1509 if (!entry) 1510 return NULL; 1511 if (entry->bitmap) 1512 return entry; 1513 1514 /* 1515 * bitmap entry and extent entry may share same offset, 1516 * in that case, bitmap entry comes after extent entry. 1517 */ 1518 n = rb_next(n); 1519 if (!n) 1520 return NULL; 1521 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1522 if (entry->offset != offset) 1523 return NULL; 1524 1525 WARN_ON(!entry->bitmap); 1526 return entry; 1527 } else if (entry) { 1528 if (entry->bitmap) { 1529 /* 1530 * if previous extent entry covers the offset, 1531 * we should return it instead of the bitmap entry 1532 */ 1533 n = rb_prev(&entry->offset_index); 1534 if (n) { 1535 prev = rb_entry(n, struct btrfs_free_space, 1536 offset_index); 1537 if (!prev->bitmap && 1538 prev->offset + prev->bytes > offset) 1539 entry = prev; 1540 } 1541 } 1542 return entry; 1543 } 1544 1545 if (!prev) 1546 return NULL; 1547 1548 /* find last entry before the 'offset' */ 1549 entry = prev; 1550 if (entry->offset > offset) { 1551 n = rb_prev(&entry->offset_index); 1552 if (n) { 1553 entry = rb_entry(n, struct btrfs_free_space, 1554 offset_index); 1555 ASSERT(entry->offset <= offset); 1556 } else { 1557 if (fuzzy) 1558 return entry; 1559 else 1560 return NULL; 1561 } 1562 } 1563 1564 if (entry->bitmap) { 1565 n = rb_prev(&entry->offset_index); 1566 if (n) { 1567 prev = rb_entry(n, struct btrfs_free_space, 1568 offset_index); 1569 if (!prev->bitmap && 1570 prev->offset + prev->bytes > offset) 1571 return prev; 1572 } 1573 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1574 return entry; 1575 } else if (entry->offset + entry->bytes > offset) 1576 return entry; 1577 1578 if (!fuzzy) 1579 return NULL; 1580 1581 while (1) { 1582 if (entry->bitmap) { 1583 if (entry->offset + BITS_PER_BITMAP * 1584 ctl->unit > offset) 1585 break; 1586 } else { 1587 if (entry->offset + entry->bytes > offset) 1588 break; 1589 } 1590 1591 n = rb_next(&entry->offset_index); 1592 if (!n) 1593 return NULL; 1594 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1595 } 1596 return entry; 1597 } 1598 1599 static inline void 1600 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1601 struct btrfs_free_space *info) 1602 { 1603 rb_erase(&info->offset_index, &ctl->free_space_offset); 1604 ctl->free_extents--; 1605 } 1606 1607 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1608 struct btrfs_free_space *info) 1609 { 1610 __unlink_free_space(ctl, info); 1611 ctl->free_space -= info->bytes; 1612 } 1613 1614 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1615 struct btrfs_free_space *info) 1616 { 1617 int ret = 0; 1618 1619 ASSERT(info->bytes || info->bitmap); 1620 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1621 &info->offset_index, (info->bitmap != NULL)); 1622 if (ret) 1623 return ret; 1624 1625 ctl->free_space += info->bytes; 1626 ctl->free_extents++; 1627 return ret; 1628 } 1629 1630 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1631 { 1632 struct btrfs_block_group_cache *block_group = ctl->private; 1633 u64 max_bytes; 1634 u64 bitmap_bytes; 1635 u64 extent_bytes; 1636 u64 size = block_group->key.offset; 1637 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1638 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1639 1640 max_bitmaps = max_t(u64, max_bitmaps, 1); 1641 1642 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1643 1644 /* 1645 * The goal is to keep the total amount of memory used per 1gb of space 1646 * at or below 32k, so we need to adjust how much memory we allow to be 1647 * used by extent based free space tracking 1648 */ 1649 if (size < SZ_1G) 1650 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1651 else 1652 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 1653 1654 /* 1655 * we want to account for 1 more bitmap than what we have so we can make 1656 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as 1657 * we add more bitmaps. 1658 */ 1659 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit; 1660 1661 if (bitmap_bytes >= max_bytes) { 1662 ctl->extents_thresh = 0; 1663 return; 1664 } 1665 1666 /* 1667 * we want the extent entry threshold to always be at most 1/2 the max 1668 * bytes we can have, or whatever is less than that. 1669 */ 1670 extent_bytes = max_bytes - bitmap_bytes; 1671 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 1672 1673 ctl->extents_thresh = 1674 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 1675 } 1676 1677 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1678 struct btrfs_free_space *info, 1679 u64 offset, u64 bytes) 1680 { 1681 unsigned long start, count; 1682 1683 start = offset_to_bit(info->offset, ctl->unit, offset); 1684 count = bytes_to_bits(bytes, ctl->unit); 1685 ASSERT(start + count <= BITS_PER_BITMAP); 1686 1687 bitmap_clear(info->bitmap, start, count); 1688 1689 info->bytes -= bytes; 1690 if (info->max_extent_size > ctl->unit) 1691 info->max_extent_size = 0; 1692 } 1693 1694 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1695 struct btrfs_free_space *info, u64 offset, 1696 u64 bytes) 1697 { 1698 __bitmap_clear_bits(ctl, info, offset, bytes); 1699 ctl->free_space -= bytes; 1700 } 1701 1702 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1703 struct btrfs_free_space *info, u64 offset, 1704 u64 bytes) 1705 { 1706 unsigned long start, count; 1707 1708 start = offset_to_bit(info->offset, ctl->unit, offset); 1709 count = bytes_to_bits(bytes, ctl->unit); 1710 ASSERT(start + count <= BITS_PER_BITMAP); 1711 1712 bitmap_set(info->bitmap, start, count); 1713 1714 info->bytes += bytes; 1715 ctl->free_space += bytes; 1716 } 1717 1718 /* 1719 * If we can not find suitable extent, we will use bytes to record 1720 * the size of the max extent. 1721 */ 1722 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1723 struct btrfs_free_space *bitmap_info, u64 *offset, 1724 u64 *bytes, bool for_alloc) 1725 { 1726 unsigned long found_bits = 0; 1727 unsigned long max_bits = 0; 1728 unsigned long bits, i; 1729 unsigned long next_zero; 1730 unsigned long extent_bits; 1731 1732 /* 1733 * Skip searching the bitmap if we don't have a contiguous section that 1734 * is large enough for this allocation. 1735 */ 1736 if (for_alloc && 1737 bitmap_info->max_extent_size && 1738 bitmap_info->max_extent_size < *bytes) { 1739 *bytes = bitmap_info->max_extent_size; 1740 return -1; 1741 } 1742 1743 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1744 max_t(u64, *offset, bitmap_info->offset)); 1745 bits = bytes_to_bits(*bytes, ctl->unit); 1746 1747 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1748 if (for_alloc && bits == 1) { 1749 found_bits = 1; 1750 break; 1751 } 1752 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1753 BITS_PER_BITMAP, i); 1754 extent_bits = next_zero - i; 1755 if (extent_bits >= bits) { 1756 found_bits = extent_bits; 1757 break; 1758 } else if (extent_bits > max_bits) { 1759 max_bits = extent_bits; 1760 } 1761 i = next_zero; 1762 } 1763 1764 if (found_bits) { 1765 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1766 *bytes = (u64)(found_bits) * ctl->unit; 1767 return 0; 1768 } 1769 1770 *bytes = (u64)(max_bits) * ctl->unit; 1771 bitmap_info->max_extent_size = *bytes; 1772 return -1; 1773 } 1774 1775 /* Cache the size of the max extent in bytes */ 1776 static struct btrfs_free_space * 1777 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1778 unsigned long align, u64 *max_extent_size) 1779 { 1780 struct btrfs_free_space *entry; 1781 struct rb_node *node; 1782 u64 tmp; 1783 u64 align_off; 1784 int ret; 1785 1786 if (!ctl->free_space_offset.rb_node) 1787 goto out; 1788 1789 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1790 if (!entry) 1791 goto out; 1792 1793 for (node = &entry->offset_index; node; node = rb_next(node)) { 1794 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1795 if (entry->bytes < *bytes) { 1796 if (entry->bytes > *max_extent_size) 1797 *max_extent_size = entry->bytes; 1798 continue; 1799 } 1800 1801 /* make sure the space returned is big enough 1802 * to match our requested alignment 1803 */ 1804 if (*bytes >= align) { 1805 tmp = entry->offset - ctl->start + align - 1; 1806 tmp = div64_u64(tmp, align); 1807 tmp = tmp * align + ctl->start; 1808 align_off = tmp - entry->offset; 1809 } else { 1810 align_off = 0; 1811 tmp = entry->offset; 1812 } 1813 1814 if (entry->bytes < *bytes + align_off) { 1815 if (entry->bytes > *max_extent_size) 1816 *max_extent_size = entry->bytes; 1817 continue; 1818 } 1819 1820 if (entry->bitmap) { 1821 u64 size = *bytes; 1822 1823 ret = search_bitmap(ctl, entry, &tmp, &size, true); 1824 if (!ret) { 1825 *offset = tmp; 1826 *bytes = size; 1827 return entry; 1828 } else if (size > *max_extent_size) { 1829 *max_extent_size = size; 1830 } 1831 continue; 1832 } 1833 1834 *offset = tmp; 1835 *bytes = entry->bytes - align_off; 1836 return entry; 1837 } 1838 out: 1839 return NULL; 1840 } 1841 1842 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1843 struct btrfs_free_space *info, u64 offset) 1844 { 1845 info->offset = offset_to_bitmap(ctl, offset); 1846 info->bytes = 0; 1847 INIT_LIST_HEAD(&info->list); 1848 link_free_space(ctl, info); 1849 ctl->total_bitmaps++; 1850 1851 ctl->op->recalc_thresholds(ctl); 1852 } 1853 1854 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1855 struct btrfs_free_space *bitmap_info) 1856 { 1857 unlink_free_space(ctl, bitmap_info); 1858 kfree(bitmap_info->bitmap); 1859 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1860 ctl->total_bitmaps--; 1861 ctl->op->recalc_thresholds(ctl); 1862 } 1863 1864 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1865 struct btrfs_free_space *bitmap_info, 1866 u64 *offset, u64 *bytes) 1867 { 1868 u64 end; 1869 u64 search_start, search_bytes; 1870 int ret; 1871 1872 again: 1873 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1874 1875 /* 1876 * We need to search for bits in this bitmap. We could only cover some 1877 * of the extent in this bitmap thanks to how we add space, so we need 1878 * to search for as much as it as we can and clear that amount, and then 1879 * go searching for the next bit. 1880 */ 1881 search_start = *offset; 1882 search_bytes = ctl->unit; 1883 search_bytes = min(search_bytes, end - search_start + 1); 1884 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 1885 false); 1886 if (ret < 0 || search_start != *offset) 1887 return -EINVAL; 1888 1889 /* We may have found more bits than what we need */ 1890 search_bytes = min(search_bytes, *bytes); 1891 1892 /* Cannot clear past the end of the bitmap */ 1893 search_bytes = min(search_bytes, end - search_start + 1); 1894 1895 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 1896 *offset += search_bytes; 1897 *bytes -= search_bytes; 1898 1899 if (*bytes) { 1900 struct rb_node *next = rb_next(&bitmap_info->offset_index); 1901 if (!bitmap_info->bytes) 1902 free_bitmap(ctl, bitmap_info); 1903 1904 /* 1905 * no entry after this bitmap, but we still have bytes to 1906 * remove, so something has gone wrong. 1907 */ 1908 if (!next) 1909 return -EINVAL; 1910 1911 bitmap_info = rb_entry(next, struct btrfs_free_space, 1912 offset_index); 1913 1914 /* 1915 * if the next entry isn't a bitmap we need to return to let the 1916 * extent stuff do its work. 1917 */ 1918 if (!bitmap_info->bitmap) 1919 return -EAGAIN; 1920 1921 /* 1922 * Ok the next item is a bitmap, but it may not actually hold 1923 * the information for the rest of this free space stuff, so 1924 * look for it, and if we don't find it return so we can try 1925 * everything over again. 1926 */ 1927 search_start = *offset; 1928 search_bytes = ctl->unit; 1929 ret = search_bitmap(ctl, bitmap_info, &search_start, 1930 &search_bytes, false); 1931 if (ret < 0 || search_start != *offset) 1932 return -EAGAIN; 1933 1934 goto again; 1935 } else if (!bitmap_info->bytes) 1936 free_bitmap(ctl, bitmap_info); 1937 1938 return 0; 1939 } 1940 1941 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 1942 struct btrfs_free_space *info, u64 offset, 1943 u64 bytes) 1944 { 1945 u64 bytes_to_set = 0; 1946 u64 end; 1947 1948 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 1949 1950 bytes_to_set = min(end - offset, bytes); 1951 1952 bitmap_set_bits(ctl, info, offset, bytes_to_set); 1953 1954 /* 1955 * We set some bytes, we have no idea what the max extent size is 1956 * anymore. 1957 */ 1958 info->max_extent_size = 0; 1959 1960 return bytes_to_set; 1961 1962 } 1963 1964 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 1965 struct btrfs_free_space *info) 1966 { 1967 struct btrfs_block_group_cache *block_group = ctl->private; 1968 struct btrfs_fs_info *fs_info = block_group->fs_info; 1969 bool forced = false; 1970 1971 #ifdef CONFIG_BTRFS_DEBUG 1972 if (btrfs_should_fragment_free_space(block_group)) 1973 forced = true; 1974 #endif 1975 1976 /* 1977 * If we are below the extents threshold then we can add this as an 1978 * extent, and don't have to deal with the bitmap 1979 */ 1980 if (!forced && ctl->free_extents < ctl->extents_thresh) { 1981 /* 1982 * If this block group has some small extents we don't want to 1983 * use up all of our free slots in the cache with them, we want 1984 * to reserve them to larger extents, however if we have plenty 1985 * of cache left then go ahead an dadd them, no sense in adding 1986 * the overhead of a bitmap if we don't have to. 1987 */ 1988 if (info->bytes <= fs_info->sectorsize * 4) { 1989 if (ctl->free_extents * 2 <= ctl->extents_thresh) 1990 return false; 1991 } else { 1992 return false; 1993 } 1994 } 1995 1996 /* 1997 * The original block groups from mkfs can be really small, like 8 1998 * megabytes, so don't bother with a bitmap for those entries. However 1999 * some block groups can be smaller than what a bitmap would cover but 2000 * are still large enough that they could overflow the 32k memory limit, 2001 * so allow those block groups to still be allowed to have a bitmap 2002 * entry. 2003 */ 2004 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset) 2005 return false; 2006 2007 return true; 2008 } 2009 2010 static const struct btrfs_free_space_op free_space_op = { 2011 .recalc_thresholds = recalculate_thresholds, 2012 .use_bitmap = use_bitmap, 2013 }; 2014 2015 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2016 struct btrfs_free_space *info) 2017 { 2018 struct btrfs_free_space *bitmap_info; 2019 struct btrfs_block_group_cache *block_group = NULL; 2020 int added = 0; 2021 u64 bytes, offset, bytes_added; 2022 int ret; 2023 2024 bytes = info->bytes; 2025 offset = info->offset; 2026 2027 if (!ctl->op->use_bitmap(ctl, info)) 2028 return 0; 2029 2030 if (ctl->op == &free_space_op) 2031 block_group = ctl->private; 2032 again: 2033 /* 2034 * Since we link bitmaps right into the cluster we need to see if we 2035 * have a cluster here, and if so and it has our bitmap we need to add 2036 * the free space to that bitmap. 2037 */ 2038 if (block_group && !list_empty(&block_group->cluster_list)) { 2039 struct btrfs_free_cluster *cluster; 2040 struct rb_node *node; 2041 struct btrfs_free_space *entry; 2042 2043 cluster = list_entry(block_group->cluster_list.next, 2044 struct btrfs_free_cluster, 2045 block_group_list); 2046 spin_lock(&cluster->lock); 2047 node = rb_first(&cluster->root); 2048 if (!node) { 2049 spin_unlock(&cluster->lock); 2050 goto no_cluster_bitmap; 2051 } 2052 2053 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2054 if (!entry->bitmap) { 2055 spin_unlock(&cluster->lock); 2056 goto no_cluster_bitmap; 2057 } 2058 2059 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2060 bytes_added = add_bytes_to_bitmap(ctl, entry, 2061 offset, bytes); 2062 bytes -= bytes_added; 2063 offset += bytes_added; 2064 } 2065 spin_unlock(&cluster->lock); 2066 if (!bytes) { 2067 ret = 1; 2068 goto out; 2069 } 2070 } 2071 2072 no_cluster_bitmap: 2073 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2074 1, 0); 2075 if (!bitmap_info) { 2076 ASSERT(added == 0); 2077 goto new_bitmap; 2078 } 2079 2080 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 2081 bytes -= bytes_added; 2082 offset += bytes_added; 2083 added = 0; 2084 2085 if (!bytes) { 2086 ret = 1; 2087 goto out; 2088 } else 2089 goto again; 2090 2091 new_bitmap: 2092 if (info && info->bitmap) { 2093 add_new_bitmap(ctl, info, offset); 2094 added = 1; 2095 info = NULL; 2096 goto again; 2097 } else { 2098 spin_unlock(&ctl->tree_lock); 2099 2100 /* no pre-allocated info, allocate a new one */ 2101 if (!info) { 2102 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2103 GFP_NOFS); 2104 if (!info) { 2105 spin_lock(&ctl->tree_lock); 2106 ret = -ENOMEM; 2107 goto out; 2108 } 2109 } 2110 2111 /* allocate the bitmap */ 2112 info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS); 2113 spin_lock(&ctl->tree_lock); 2114 if (!info->bitmap) { 2115 ret = -ENOMEM; 2116 goto out; 2117 } 2118 goto again; 2119 } 2120 2121 out: 2122 if (info) { 2123 kfree(info->bitmap); 2124 kmem_cache_free(btrfs_free_space_cachep, info); 2125 } 2126 2127 return ret; 2128 } 2129 2130 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2131 struct btrfs_free_space *info, bool update_stat) 2132 { 2133 struct btrfs_free_space *left_info; 2134 struct btrfs_free_space *right_info; 2135 bool merged = false; 2136 u64 offset = info->offset; 2137 u64 bytes = info->bytes; 2138 2139 /* 2140 * first we want to see if there is free space adjacent to the range we 2141 * are adding, if there is remove that struct and add a new one to 2142 * cover the entire range 2143 */ 2144 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2145 if (right_info && rb_prev(&right_info->offset_index)) 2146 left_info = rb_entry(rb_prev(&right_info->offset_index), 2147 struct btrfs_free_space, offset_index); 2148 else 2149 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2150 2151 if (right_info && !right_info->bitmap) { 2152 if (update_stat) 2153 unlink_free_space(ctl, right_info); 2154 else 2155 __unlink_free_space(ctl, right_info); 2156 info->bytes += right_info->bytes; 2157 kmem_cache_free(btrfs_free_space_cachep, right_info); 2158 merged = true; 2159 } 2160 2161 if (left_info && !left_info->bitmap && 2162 left_info->offset + left_info->bytes == offset) { 2163 if (update_stat) 2164 unlink_free_space(ctl, left_info); 2165 else 2166 __unlink_free_space(ctl, left_info); 2167 info->offset = left_info->offset; 2168 info->bytes += left_info->bytes; 2169 kmem_cache_free(btrfs_free_space_cachep, left_info); 2170 merged = true; 2171 } 2172 2173 return merged; 2174 } 2175 2176 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2177 struct btrfs_free_space *info, 2178 bool update_stat) 2179 { 2180 struct btrfs_free_space *bitmap; 2181 unsigned long i; 2182 unsigned long j; 2183 const u64 end = info->offset + info->bytes; 2184 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2185 u64 bytes; 2186 2187 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2188 if (!bitmap) 2189 return false; 2190 2191 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2192 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2193 if (j == i) 2194 return false; 2195 bytes = (j - i) * ctl->unit; 2196 info->bytes += bytes; 2197 2198 if (update_stat) 2199 bitmap_clear_bits(ctl, bitmap, end, bytes); 2200 else 2201 __bitmap_clear_bits(ctl, bitmap, end, bytes); 2202 2203 if (!bitmap->bytes) 2204 free_bitmap(ctl, bitmap); 2205 2206 return true; 2207 } 2208 2209 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2210 struct btrfs_free_space *info, 2211 bool update_stat) 2212 { 2213 struct btrfs_free_space *bitmap; 2214 u64 bitmap_offset; 2215 unsigned long i; 2216 unsigned long j; 2217 unsigned long prev_j; 2218 u64 bytes; 2219 2220 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2221 /* If we're on a boundary, try the previous logical bitmap. */ 2222 if (bitmap_offset == info->offset) { 2223 if (info->offset == 0) 2224 return false; 2225 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2226 } 2227 2228 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2229 if (!bitmap) 2230 return false; 2231 2232 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2233 j = 0; 2234 prev_j = (unsigned long)-1; 2235 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2236 if (j > i) 2237 break; 2238 prev_j = j; 2239 } 2240 if (prev_j == i) 2241 return false; 2242 2243 if (prev_j == (unsigned long)-1) 2244 bytes = (i + 1) * ctl->unit; 2245 else 2246 bytes = (i - prev_j) * ctl->unit; 2247 2248 info->offset -= bytes; 2249 info->bytes += bytes; 2250 2251 if (update_stat) 2252 bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2253 else 2254 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2255 2256 if (!bitmap->bytes) 2257 free_bitmap(ctl, bitmap); 2258 2259 return true; 2260 } 2261 2262 /* 2263 * We prefer always to allocate from extent entries, both for clustered and 2264 * non-clustered allocation requests. So when attempting to add a new extent 2265 * entry, try to see if there's adjacent free space in bitmap entries, and if 2266 * there is, migrate that space from the bitmaps to the extent. 2267 * Like this we get better chances of satisfying space allocation requests 2268 * because we attempt to satisfy them based on a single cache entry, and never 2269 * on 2 or more entries - even if the entries represent a contiguous free space 2270 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2271 * ends). 2272 */ 2273 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2274 struct btrfs_free_space *info, 2275 bool update_stat) 2276 { 2277 /* 2278 * Only work with disconnected entries, as we can change their offset, 2279 * and must be extent entries. 2280 */ 2281 ASSERT(!info->bitmap); 2282 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2283 2284 if (ctl->total_bitmaps > 0) { 2285 bool stole_end; 2286 bool stole_front = false; 2287 2288 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2289 if (ctl->total_bitmaps > 0) 2290 stole_front = steal_from_bitmap_to_front(ctl, info, 2291 update_stat); 2292 2293 if (stole_end || stole_front) 2294 try_merge_free_space(ctl, info, update_stat); 2295 } 2296 } 2297 2298 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info, 2299 struct btrfs_free_space_ctl *ctl, 2300 u64 offset, u64 bytes) 2301 { 2302 struct btrfs_free_space *info; 2303 int ret = 0; 2304 2305 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2306 if (!info) 2307 return -ENOMEM; 2308 2309 info->offset = offset; 2310 info->bytes = bytes; 2311 RB_CLEAR_NODE(&info->offset_index); 2312 2313 spin_lock(&ctl->tree_lock); 2314 2315 if (try_merge_free_space(ctl, info, true)) 2316 goto link; 2317 2318 /* 2319 * There was no extent directly to the left or right of this new 2320 * extent then we know we're going to have to allocate a new extent, so 2321 * before we do that see if we need to drop this into a bitmap 2322 */ 2323 ret = insert_into_bitmap(ctl, info); 2324 if (ret < 0) { 2325 goto out; 2326 } else if (ret) { 2327 ret = 0; 2328 goto out; 2329 } 2330 link: 2331 /* 2332 * Only steal free space from adjacent bitmaps if we're sure we're not 2333 * going to add the new free space to existing bitmap entries - because 2334 * that would mean unnecessary work that would be reverted. Therefore 2335 * attempt to steal space from bitmaps if we're adding an extent entry. 2336 */ 2337 steal_from_bitmap(ctl, info, true); 2338 2339 ret = link_free_space(ctl, info); 2340 if (ret) 2341 kmem_cache_free(btrfs_free_space_cachep, info); 2342 out: 2343 spin_unlock(&ctl->tree_lock); 2344 2345 if (ret) { 2346 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2347 ASSERT(ret != -EEXIST); 2348 } 2349 2350 return ret; 2351 } 2352 2353 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, 2354 u64 offset, u64 bytes) 2355 { 2356 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2357 struct btrfs_free_space *info; 2358 int ret; 2359 bool re_search = false; 2360 2361 spin_lock(&ctl->tree_lock); 2362 2363 again: 2364 ret = 0; 2365 if (!bytes) 2366 goto out_lock; 2367 2368 info = tree_search_offset(ctl, offset, 0, 0); 2369 if (!info) { 2370 /* 2371 * oops didn't find an extent that matched the space we wanted 2372 * to remove, look for a bitmap instead 2373 */ 2374 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2375 1, 0); 2376 if (!info) { 2377 /* 2378 * If we found a partial bit of our free space in a 2379 * bitmap but then couldn't find the other part this may 2380 * be a problem, so WARN about it. 2381 */ 2382 WARN_ON(re_search); 2383 goto out_lock; 2384 } 2385 } 2386 2387 re_search = false; 2388 if (!info->bitmap) { 2389 unlink_free_space(ctl, info); 2390 if (offset == info->offset) { 2391 u64 to_free = min(bytes, info->bytes); 2392 2393 info->bytes -= to_free; 2394 info->offset += to_free; 2395 if (info->bytes) { 2396 ret = link_free_space(ctl, info); 2397 WARN_ON(ret); 2398 } else { 2399 kmem_cache_free(btrfs_free_space_cachep, info); 2400 } 2401 2402 offset += to_free; 2403 bytes -= to_free; 2404 goto again; 2405 } else { 2406 u64 old_end = info->bytes + info->offset; 2407 2408 info->bytes = offset - info->offset; 2409 ret = link_free_space(ctl, info); 2410 WARN_ON(ret); 2411 if (ret) 2412 goto out_lock; 2413 2414 /* Not enough bytes in this entry to satisfy us */ 2415 if (old_end < offset + bytes) { 2416 bytes -= old_end - offset; 2417 offset = old_end; 2418 goto again; 2419 } else if (old_end == offset + bytes) { 2420 /* all done */ 2421 goto out_lock; 2422 } 2423 spin_unlock(&ctl->tree_lock); 2424 2425 ret = btrfs_add_free_space(block_group, offset + bytes, 2426 old_end - (offset + bytes)); 2427 WARN_ON(ret); 2428 goto out; 2429 } 2430 } 2431 2432 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2433 if (ret == -EAGAIN) { 2434 re_search = true; 2435 goto again; 2436 } 2437 out_lock: 2438 spin_unlock(&ctl->tree_lock); 2439 out: 2440 return ret; 2441 } 2442 2443 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, 2444 u64 bytes) 2445 { 2446 struct btrfs_fs_info *fs_info = block_group->fs_info; 2447 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2448 struct btrfs_free_space *info; 2449 struct rb_node *n; 2450 int count = 0; 2451 2452 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2453 info = rb_entry(n, struct btrfs_free_space, offset_index); 2454 if (info->bytes >= bytes && !block_group->ro) 2455 count++; 2456 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2457 info->offset, info->bytes, 2458 (info->bitmap) ? "yes" : "no"); 2459 } 2460 btrfs_info(fs_info, "block group has cluster?: %s", 2461 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2462 btrfs_info(fs_info, 2463 "%d blocks of free space at or bigger than bytes is", count); 2464 } 2465 2466 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) 2467 { 2468 struct btrfs_fs_info *fs_info = block_group->fs_info; 2469 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2470 2471 spin_lock_init(&ctl->tree_lock); 2472 ctl->unit = fs_info->sectorsize; 2473 ctl->start = block_group->key.objectid; 2474 ctl->private = block_group; 2475 ctl->op = &free_space_op; 2476 INIT_LIST_HEAD(&ctl->trimming_ranges); 2477 mutex_init(&ctl->cache_writeout_mutex); 2478 2479 /* 2480 * we only want to have 32k of ram per block group for keeping 2481 * track of free space, and if we pass 1/2 of that we want to 2482 * start converting things over to using bitmaps 2483 */ 2484 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2485 } 2486 2487 /* 2488 * for a given cluster, put all of its extents back into the free 2489 * space cache. If the block group passed doesn't match the block group 2490 * pointed to by the cluster, someone else raced in and freed the 2491 * cluster already. In that case, we just return without changing anything 2492 */ 2493 static int 2494 __btrfs_return_cluster_to_free_space( 2495 struct btrfs_block_group_cache *block_group, 2496 struct btrfs_free_cluster *cluster) 2497 { 2498 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2499 struct btrfs_free_space *entry; 2500 struct rb_node *node; 2501 2502 spin_lock(&cluster->lock); 2503 if (cluster->block_group != block_group) 2504 goto out; 2505 2506 cluster->block_group = NULL; 2507 cluster->window_start = 0; 2508 list_del_init(&cluster->block_group_list); 2509 2510 node = rb_first(&cluster->root); 2511 while (node) { 2512 bool bitmap; 2513 2514 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2515 node = rb_next(&entry->offset_index); 2516 rb_erase(&entry->offset_index, &cluster->root); 2517 RB_CLEAR_NODE(&entry->offset_index); 2518 2519 bitmap = (entry->bitmap != NULL); 2520 if (!bitmap) { 2521 try_merge_free_space(ctl, entry, false); 2522 steal_from_bitmap(ctl, entry, false); 2523 } 2524 tree_insert_offset(&ctl->free_space_offset, 2525 entry->offset, &entry->offset_index, bitmap); 2526 } 2527 cluster->root = RB_ROOT; 2528 2529 out: 2530 spin_unlock(&cluster->lock); 2531 btrfs_put_block_group(block_group); 2532 return 0; 2533 } 2534 2535 static void __btrfs_remove_free_space_cache_locked( 2536 struct btrfs_free_space_ctl *ctl) 2537 { 2538 struct btrfs_free_space *info; 2539 struct rb_node *node; 2540 2541 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2542 info = rb_entry(node, struct btrfs_free_space, offset_index); 2543 if (!info->bitmap) { 2544 unlink_free_space(ctl, info); 2545 kmem_cache_free(btrfs_free_space_cachep, info); 2546 } else { 2547 free_bitmap(ctl, info); 2548 } 2549 2550 cond_resched_lock(&ctl->tree_lock); 2551 } 2552 } 2553 2554 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2555 { 2556 spin_lock(&ctl->tree_lock); 2557 __btrfs_remove_free_space_cache_locked(ctl); 2558 spin_unlock(&ctl->tree_lock); 2559 } 2560 2561 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) 2562 { 2563 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2564 struct btrfs_free_cluster *cluster; 2565 struct list_head *head; 2566 2567 spin_lock(&ctl->tree_lock); 2568 while ((head = block_group->cluster_list.next) != 2569 &block_group->cluster_list) { 2570 cluster = list_entry(head, struct btrfs_free_cluster, 2571 block_group_list); 2572 2573 WARN_ON(cluster->block_group != block_group); 2574 __btrfs_return_cluster_to_free_space(block_group, cluster); 2575 2576 cond_resched_lock(&ctl->tree_lock); 2577 } 2578 __btrfs_remove_free_space_cache_locked(ctl); 2579 spin_unlock(&ctl->tree_lock); 2580 2581 } 2582 2583 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, 2584 u64 offset, u64 bytes, u64 empty_size, 2585 u64 *max_extent_size) 2586 { 2587 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2588 struct btrfs_free_space *entry = NULL; 2589 u64 bytes_search = bytes + empty_size; 2590 u64 ret = 0; 2591 u64 align_gap = 0; 2592 u64 align_gap_len = 0; 2593 2594 spin_lock(&ctl->tree_lock); 2595 entry = find_free_space(ctl, &offset, &bytes_search, 2596 block_group->full_stripe_len, max_extent_size); 2597 if (!entry) 2598 goto out; 2599 2600 ret = offset; 2601 if (entry->bitmap) { 2602 bitmap_clear_bits(ctl, entry, offset, bytes); 2603 if (!entry->bytes) 2604 free_bitmap(ctl, entry); 2605 } else { 2606 unlink_free_space(ctl, entry); 2607 align_gap_len = offset - entry->offset; 2608 align_gap = entry->offset; 2609 2610 entry->offset = offset + bytes; 2611 WARN_ON(entry->bytes < bytes + align_gap_len); 2612 2613 entry->bytes -= bytes + align_gap_len; 2614 if (!entry->bytes) 2615 kmem_cache_free(btrfs_free_space_cachep, entry); 2616 else 2617 link_free_space(ctl, entry); 2618 } 2619 out: 2620 spin_unlock(&ctl->tree_lock); 2621 2622 if (align_gap_len) 2623 __btrfs_add_free_space(block_group->fs_info, ctl, 2624 align_gap, align_gap_len); 2625 return ret; 2626 } 2627 2628 /* 2629 * given a cluster, put all of its extents back into the free space 2630 * cache. If a block group is passed, this function will only free 2631 * a cluster that belongs to the passed block group. 2632 * 2633 * Otherwise, it'll get a reference on the block group pointed to by the 2634 * cluster and remove the cluster from it. 2635 */ 2636 int btrfs_return_cluster_to_free_space( 2637 struct btrfs_block_group_cache *block_group, 2638 struct btrfs_free_cluster *cluster) 2639 { 2640 struct btrfs_free_space_ctl *ctl; 2641 int ret; 2642 2643 /* first, get a safe pointer to the block group */ 2644 spin_lock(&cluster->lock); 2645 if (!block_group) { 2646 block_group = cluster->block_group; 2647 if (!block_group) { 2648 spin_unlock(&cluster->lock); 2649 return 0; 2650 } 2651 } else if (cluster->block_group != block_group) { 2652 /* someone else has already freed it don't redo their work */ 2653 spin_unlock(&cluster->lock); 2654 return 0; 2655 } 2656 atomic_inc(&block_group->count); 2657 spin_unlock(&cluster->lock); 2658 2659 ctl = block_group->free_space_ctl; 2660 2661 /* now return any extents the cluster had on it */ 2662 spin_lock(&ctl->tree_lock); 2663 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2664 spin_unlock(&ctl->tree_lock); 2665 2666 /* finally drop our ref */ 2667 btrfs_put_block_group(block_group); 2668 return ret; 2669 } 2670 2671 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, 2672 struct btrfs_free_cluster *cluster, 2673 struct btrfs_free_space *entry, 2674 u64 bytes, u64 min_start, 2675 u64 *max_extent_size) 2676 { 2677 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2678 int err; 2679 u64 search_start = cluster->window_start; 2680 u64 search_bytes = bytes; 2681 u64 ret = 0; 2682 2683 search_start = min_start; 2684 search_bytes = bytes; 2685 2686 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 2687 if (err) { 2688 if (search_bytes > *max_extent_size) 2689 *max_extent_size = search_bytes; 2690 return 0; 2691 } 2692 2693 ret = search_start; 2694 __bitmap_clear_bits(ctl, entry, ret, bytes); 2695 2696 return ret; 2697 } 2698 2699 /* 2700 * given a cluster, try to allocate 'bytes' from it, returns 0 2701 * if it couldn't find anything suitably large, or a logical disk offset 2702 * if things worked out 2703 */ 2704 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, 2705 struct btrfs_free_cluster *cluster, u64 bytes, 2706 u64 min_start, u64 *max_extent_size) 2707 { 2708 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2709 struct btrfs_free_space *entry = NULL; 2710 struct rb_node *node; 2711 u64 ret = 0; 2712 2713 spin_lock(&cluster->lock); 2714 if (bytes > cluster->max_size) 2715 goto out; 2716 2717 if (cluster->block_group != block_group) 2718 goto out; 2719 2720 node = rb_first(&cluster->root); 2721 if (!node) 2722 goto out; 2723 2724 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2725 while (1) { 2726 if (entry->bytes < bytes && entry->bytes > *max_extent_size) 2727 *max_extent_size = entry->bytes; 2728 2729 if (entry->bytes < bytes || 2730 (!entry->bitmap && entry->offset < min_start)) { 2731 node = rb_next(&entry->offset_index); 2732 if (!node) 2733 break; 2734 entry = rb_entry(node, struct btrfs_free_space, 2735 offset_index); 2736 continue; 2737 } 2738 2739 if (entry->bitmap) { 2740 ret = btrfs_alloc_from_bitmap(block_group, 2741 cluster, entry, bytes, 2742 cluster->window_start, 2743 max_extent_size); 2744 if (ret == 0) { 2745 node = rb_next(&entry->offset_index); 2746 if (!node) 2747 break; 2748 entry = rb_entry(node, struct btrfs_free_space, 2749 offset_index); 2750 continue; 2751 } 2752 cluster->window_start += bytes; 2753 } else { 2754 ret = entry->offset; 2755 2756 entry->offset += bytes; 2757 entry->bytes -= bytes; 2758 } 2759 2760 if (entry->bytes == 0) 2761 rb_erase(&entry->offset_index, &cluster->root); 2762 break; 2763 } 2764 out: 2765 spin_unlock(&cluster->lock); 2766 2767 if (!ret) 2768 return 0; 2769 2770 spin_lock(&ctl->tree_lock); 2771 2772 ctl->free_space -= bytes; 2773 if (entry->bytes == 0) { 2774 ctl->free_extents--; 2775 if (entry->bitmap) { 2776 kfree(entry->bitmap); 2777 ctl->total_bitmaps--; 2778 ctl->op->recalc_thresholds(ctl); 2779 } 2780 kmem_cache_free(btrfs_free_space_cachep, entry); 2781 } 2782 2783 spin_unlock(&ctl->tree_lock); 2784 2785 return ret; 2786 } 2787 2788 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, 2789 struct btrfs_free_space *entry, 2790 struct btrfs_free_cluster *cluster, 2791 u64 offset, u64 bytes, 2792 u64 cont1_bytes, u64 min_bytes) 2793 { 2794 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2795 unsigned long next_zero; 2796 unsigned long i; 2797 unsigned long want_bits; 2798 unsigned long min_bits; 2799 unsigned long found_bits; 2800 unsigned long max_bits = 0; 2801 unsigned long start = 0; 2802 unsigned long total_found = 0; 2803 int ret; 2804 2805 i = offset_to_bit(entry->offset, ctl->unit, 2806 max_t(u64, offset, entry->offset)); 2807 want_bits = bytes_to_bits(bytes, ctl->unit); 2808 min_bits = bytes_to_bits(min_bytes, ctl->unit); 2809 2810 /* 2811 * Don't bother looking for a cluster in this bitmap if it's heavily 2812 * fragmented. 2813 */ 2814 if (entry->max_extent_size && 2815 entry->max_extent_size < cont1_bytes) 2816 return -ENOSPC; 2817 again: 2818 found_bits = 0; 2819 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 2820 next_zero = find_next_zero_bit(entry->bitmap, 2821 BITS_PER_BITMAP, i); 2822 if (next_zero - i >= min_bits) { 2823 found_bits = next_zero - i; 2824 if (found_bits > max_bits) 2825 max_bits = found_bits; 2826 break; 2827 } 2828 if (next_zero - i > max_bits) 2829 max_bits = next_zero - i; 2830 i = next_zero; 2831 } 2832 2833 if (!found_bits) { 2834 entry->max_extent_size = (u64)max_bits * ctl->unit; 2835 return -ENOSPC; 2836 } 2837 2838 if (!total_found) { 2839 start = i; 2840 cluster->max_size = 0; 2841 } 2842 2843 total_found += found_bits; 2844 2845 if (cluster->max_size < found_bits * ctl->unit) 2846 cluster->max_size = found_bits * ctl->unit; 2847 2848 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 2849 i = next_zero + 1; 2850 goto again; 2851 } 2852 2853 cluster->window_start = start * ctl->unit + entry->offset; 2854 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2855 ret = tree_insert_offset(&cluster->root, entry->offset, 2856 &entry->offset_index, 1); 2857 ASSERT(!ret); /* -EEXIST; Logic error */ 2858 2859 trace_btrfs_setup_cluster(block_group, cluster, 2860 total_found * ctl->unit, 1); 2861 return 0; 2862 } 2863 2864 /* 2865 * This searches the block group for just extents to fill the cluster with. 2866 * Try to find a cluster with at least bytes total bytes, at least one 2867 * extent of cont1_bytes, and other clusters of at least min_bytes. 2868 */ 2869 static noinline int 2870 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, 2871 struct btrfs_free_cluster *cluster, 2872 struct list_head *bitmaps, u64 offset, u64 bytes, 2873 u64 cont1_bytes, u64 min_bytes) 2874 { 2875 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2876 struct btrfs_free_space *first = NULL; 2877 struct btrfs_free_space *entry = NULL; 2878 struct btrfs_free_space *last; 2879 struct rb_node *node; 2880 u64 window_free; 2881 u64 max_extent; 2882 u64 total_size = 0; 2883 2884 entry = tree_search_offset(ctl, offset, 0, 1); 2885 if (!entry) 2886 return -ENOSPC; 2887 2888 /* 2889 * We don't want bitmaps, so just move along until we find a normal 2890 * extent entry. 2891 */ 2892 while (entry->bitmap || entry->bytes < min_bytes) { 2893 if (entry->bitmap && list_empty(&entry->list)) 2894 list_add_tail(&entry->list, bitmaps); 2895 node = rb_next(&entry->offset_index); 2896 if (!node) 2897 return -ENOSPC; 2898 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2899 } 2900 2901 window_free = entry->bytes; 2902 max_extent = entry->bytes; 2903 first = entry; 2904 last = entry; 2905 2906 for (node = rb_next(&entry->offset_index); node; 2907 node = rb_next(&entry->offset_index)) { 2908 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2909 2910 if (entry->bitmap) { 2911 if (list_empty(&entry->list)) 2912 list_add_tail(&entry->list, bitmaps); 2913 continue; 2914 } 2915 2916 if (entry->bytes < min_bytes) 2917 continue; 2918 2919 last = entry; 2920 window_free += entry->bytes; 2921 if (entry->bytes > max_extent) 2922 max_extent = entry->bytes; 2923 } 2924 2925 if (window_free < bytes || max_extent < cont1_bytes) 2926 return -ENOSPC; 2927 2928 cluster->window_start = first->offset; 2929 2930 node = &first->offset_index; 2931 2932 /* 2933 * now we've found our entries, pull them out of the free space 2934 * cache and put them into the cluster rbtree 2935 */ 2936 do { 2937 int ret; 2938 2939 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2940 node = rb_next(&entry->offset_index); 2941 if (entry->bitmap || entry->bytes < min_bytes) 2942 continue; 2943 2944 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2945 ret = tree_insert_offset(&cluster->root, entry->offset, 2946 &entry->offset_index, 0); 2947 total_size += entry->bytes; 2948 ASSERT(!ret); /* -EEXIST; Logic error */ 2949 } while (node && entry != last); 2950 2951 cluster->max_size = max_extent; 2952 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 2953 return 0; 2954 } 2955 2956 /* 2957 * This specifically looks for bitmaps that may work in the cluster, we assume 2958 * that we have already failed to find extents that will work. 2959 */ 2960 static noinline int 2961 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, 2962 struct btrfs_free_cluster *cluster, 2963 struct list_head *bitmaps, u64 offset, u64 bytes, 2964 u64 cont1_bytes, u64 min_bytes) 2965 { 2966 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2967 struct btrfs_free_space *entry = NULL; 2968 int ret = -ENOSPC; 2969 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 2970 2971 if (ctl->total_bitmaps == 0) 2972 return -ENOSPC; 2973 2974 /* 2975 * The bitmap that covers offset won't be in the list unless offset 2976 * is just its start offset. 2977 */ 2978 if (!list_empty(bitmaps)) 2979 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 2980 2981 if (!entry || entry->offset != bitmap_offset) { 2982 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 2983 if (entry && list_empty(&entry->list)) 2984 list_add(&entry->list, bitmaps); 2985 } 2986 2987 list_for_each_entry(entry, bitmaps, list) { 2988 if (entry->bytes < bytes) 2989 continue; 2990 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 2991 bytes, cont1_bytes, min_bytes); 2992 if (!ret) 2993 return 0; 2994 } 2995 2996 /* 2997 * The bitmaps list has all the bitmaps that record free space 2998 * starting after offset, so no more search is required. 2999 */ 3000 return -ENOSPC; 3001 } 3002 3003 /* 3004 * here we try to find a cluster of blocks in a block group. The goal 3005 * is to find at least bytes+empty_size. 3006 * We might not find them all in one contiguous area. 3007 * 3008 * returns zero and sets up cluster if things worked out, otherwise 3009 * it returns -enospc 3010 */ 3011 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info, 3012 struct btrfs_block_group_cache *block_group, 3013 struct btrfs_free_cluster *cluster, 3014 u64 offset, u64 bytes, u64 empty_size) 3015 { 3016 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3017 struct btrfs_free_space *entry, *tmp; 3018 LIST_HEAD(bitmaps); 3019 u64 min_bytes; 3020 u64 cont1_bytes; 3021 int ret; 3022 3023 /* 3024 * Choose the minimum extent size we'll require for this 3025 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3026 * For metadata, allow allocates with smaller extents. For 3027 * data, keep it dense. 3028 */ 3029 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3030 cont1_bytes = min_bytes = bytes + empty_size; 3031 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3032 cont1_bytes = bytes; 3033 min_bytes = fs_info->sectorsize; 3034 } else { 3035 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3036 min_bytes = fs_info->sectorsize; 3037 } 3038 3039 spin_lock(&ctl->tree_lock); 3040 3041 /* 3042 * If we know we don't have enough space to make a cluster don't even 3043 * bother doing all the work to try and find one. 3044 */ 3045 if (ctl->free_space < bytes) { 3046 spin_unlock(&ctl->tree_lock); 3047 return -ENOSPC; 3048 } 3049 3050 spin_lock(&cluster->lock); 3051 3052 /* someone already found a cluster, hooray */ 3053 if (cluster->block_group) { 3054 ret = 0; 3055 goto out; 3056 } 3057 3058 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3059 min_bytes); 3060 3061 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3062 bytes + empty_size, 3063 cont1_bytes, min_bytes); 3064 if (ret) 3065 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3066 offset, bytes + empty_size, 3067 cont1_bytes, min_bytes); 3068 3069 /* Clear our temporary list */ 3070 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3071 list_del_init(&entry->list); 3072 3073 if (!ret) { 3074 atomic_inc(&block_group->count); 3075 list_add_tail(&cluster->block_group_list, 3076 &block_group->cluster_list); 3077 cluster->block_group = block_group; 3078 } else { 3079 trace_btrfs_failed_cluster_setup(block_group); 3080 } 3081 out: 3082 spin_unlock(&cluster->lock); 3083 spin_unlock(&ctl->tree_lock); 3084 3085 return ret; 3086 } 3087 3088 /* 3089 * simple code to zero out a cluster 3090 */ 3091 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3092 { 3093 spin_lock_init(&cluster->lock); 3094 spin_lock_init(&cluster->refill_lock); 3095 cluster->root = RB_ROOT; 3096 cluster->max_size = 0; 3097 cluster->fragmented = false; 3098 INIT_LIST_HEAD(&cluster->block_group_list); 3099 cluster->block_group = NULL; 3100 } 3101 3102 static int do_trimming(struct btrfs_block_group_cache *block_group, 3103 u64 *total_trimmed, u64 start, u64 bytes, 3104 u64 reserved_start, u64 reserved_bytes, 3105 struct btrfs_trim_range *trim_entry) 3106 { 3107 struct btrfs_space_info *space_info = block_group->space_info; 3108 struct btrfs_fs_info *fs_info = block_group->fs_info; 3109 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3110 int ret; 3111 int update = 0; 3112 u64 trimmed = 0; 3113 3114 spin_lock(&space_info->lock); 3115 spin_lock(&block_group->lock); 3116 if (!block_group->ro) { 3117 block_group->reserved += reserved_bytes; 3118 space_info->bytes_reserved += reserved_bytes; 3119 update = 1; 3120 } 3121 spin_unlock(&block_group->lock); 3122 spin_unlock(&space_info->lock); 3123 3124 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3125 if (!ret) 3126 *total_trimmed += trimmed; 3127 3128 mutex_lock(&ctl->cache_writeout_mutex); 3129 btrfs_add_free_space(block_group, reserved_start, reserved_bytes); 3130 list_del(&trim_entry->list); 3131 mutex_unlock(&ctl->cache_writeout_mutex); 3132 3133 if (update) { 3134 spin_lock(&space_info->lock); 3135 spin_lock(&block_group->lock); 3136 if (block_group->ro) 3137 space_info->bytes_readonly += reserved_bytes; 3138 block_group->reserved -= reserved_bytes; 3139 space_info->bytes_reserved -= reserved_bytes; 3140 spin_unlock(&space_info->lock); 3141 spin_unlock(&block_group->lock); 3142 } 3143 3144 return ret; 3145 } 3146 3147 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, 3148 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3149 { 3150 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3151 struct btrfs_free_space *entry; 3152 struct rb_node *node; 3153 int ret = 0; 3154 u64 extent_start; 3155 u64 extent_bytes; 3156 u64 bytes; 3157 3158 while (start < end) { 3159 struct btrfs_trim_range trim_entry; 3160 3161 mutex_lock(&ctl->cache_writeout_mutex); 3162 spin_lock(&ctl->tree_lock); 3163 3164 if (ctl->free_space < minlen) { 3165 spin_unlock(&ctl->tree_lock); 3166 mutex_unlock(&ctl->cache_writeout_mutex); 3167 break; 3168 } 3169 3170 entry = tree_search_offset(ctl, start, 0, 1); 3171 if (!entry) { 3172 spin_unlock(&ctl->tree_lock); 3173 mutex_unlock(&ctl->cache_writeout_mutex); 3174 break; 3175 } 3176 3177 /* skip bitmaps */ 3178 while (entry->bitmap) { 3179 node = rb_next(&entry->offset_index); 3180 if (!node) { 3181 spin_unlock(&ctl->tree_lock); 3182 mutex_unlock(&ctl->cache_writeout_mutex); 3183 goto out; 3184 } 3185 entry = rb_entry(node, struct btrfs_free_space, 3186 offset_index); 3187 } 3188 3189 if (entry->offset >= end) { 3190 spin_unlock(&ctl->tree_lock); 3191 mutex_unlock(&ctl->cache_writeout_mutex); 3192 break; 3193 } 3194 3195 extent_start = entry->offset; 3196 extent_bytes = entry->bytes; 3197 start = max(start, extent_start); 3198 bytes = min(extent_start + extent_bytes, end) - start; 3199 if (bytes < minlen) { 3200 spin_unlock(&ctl->tree_lock); 3201 mutex_unlock(&ctl->cache_writeout_mutex); 3202 goto next; 3203 } 3204 3205 unlink_free_space(ctl, entry); 3206 kmem_cache_free(btrfs_free_space_cachep, entry); 3207 3208 spin_unlock(&ctl->tree_lock); 3209 trim_entry.start = extent_start; 3210 trim_entry.bytes = extent_bytes; 3211 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3212 mutex_unlock(&ctl->cache_writeout_mutex); 3213 3214 ret = do_trimming(block_group, total_trimmed, start, bytes, 3215 extent_start, extent_bytes, &trim_entry); 3216 if (ret) 3217 break; 3218 next: 3219 start += bytes; 3220 3221 if (fatal_signal_pending(current)) { 3222 ret = -ERESTARTSYS; 3223 break; 3224 } 3225 3226 cond_resched(); 3227 } 3228 out: 3229 return ret; 3230 } 3231 3232 static int trim_bitmaps(struct btrfs_block_group_cache *block_group, 3233 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3234 { 3235 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3236 struct btrfs_free_space *entry; 3237 int ret = 0; 3238 int ret2; 3239 u64 bytes; 3240 u64 offset = offset_to_bitmap(ctl, start); 3241 3242 while (offset < end) { 3243 bool next_bitmap = false; 3244 struct btrfs_trim_range trim_entry; 3245 3246 mutex_lock(&ctl->cache_writeout_mutex); 3247 spin_lock(&ctl->tree_lock); 3248 3249 if (ctl->free_space < minlen) { 3250 spin_unlock(&ctl->tree_lock); 3251 mutex_unlock(&ctl->cache_writeout_mutex); 3252 break; 3253 } 3254 3255 entry = tree_search_offset(ctl, offset, 1, 0); 3256 if (!entry) { 3257 spin_unlock(&ctl->tree_lock); 3258 mutex_unlock(&ctl->cache_writeout_mutex); 3259 next_bitmap = true; 3260 goto next; 3261 } 3262 3263 bytes = minlen; 3264 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3265 if (ret2 || start >= end) { 3266 spin_unlock(&ctl->tree_lock); 3267 mutex_unlock(&ctl->cache_writeout_mutex); 3268 next_bitmap = true; 3269 goto next; 3270 } 3271 3272 bytes = min(bytes, end - start); 3273 if (bytes < minlen) { 3274 spin_unlock(&ctl->tree_lock); 3275 mutex_unlock(&ctl->cache_writeout_mutex); 3276 goto next; 3277 } 3278 3279 bitmap_clear_bits(ctl, entry, start, bytes); 3280 if (entry->bytes == 0) 3281 free_bitmap(ctl, entry); 3282 3283 spin_unlock(&ctl->tree_lock); 3284 trim_entry.start = start; 3285 trim_entry.bytes = bytes; 3286 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3287 mutex_unlock(&ctl->cache_writeout_mutex); 3288 3289 ret = do_trimming(block_group, total_trimmed, start, bytes, 3290 start, bytes, &trim_entry); 3291 if (ret) 3292 break; 3293 next: 3294 if (next_bitmap) { 3295 offset += BITS_PER_BITMAP * ctl->unit; 3296 } else { 3297 start += bytes; 3298 if (start >= offset + BITS_PER_BITMAP * ctl->unit) 3299 offset += BITS_PER_BITMAP * ctl->unit; 3300 } 3301 3302 if (fatal_signal_pending(current)) { 3303 ret = -ERESTARTSYS; 3304 break; 3305 } 3306 3307 cond_resched(); 3308 } 3309 3310 return ret; 3311 } 3312 3313 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache) 3314 { 3315 atomic_inc(&cache->trimming); 3316 } 3317 3318 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group) 3319 { 3320 struct btrfs_fs_info *fs_info = block_group->fs_info; 3321 struct extent_map_tree *em_tree; 3322 struct extent_map *em; 3323 bool cleanup; 3324 3325 spin_lock(&block_group->lock); 3326 cleanup = (atomic_dec_and_test(&block_group->trimming) && 3327 block_group->removed); 3328 spin_unlock(&block_group->lock); 3329 3330 if (cleanup) { 3331 mutex_lock(&fs_info->chunk_mutex); 3332 em_tree = &fs_info->mapping_tree.map_tree; 3333 write_lock(&em_tree->lock); 3334 em = lookup_extent_mapping(em_tree, block_group->key.objectid, 3335 1); 3336 BUG_ON(!em); /* logic error, can't happen */ 3337 /* 3338 * remove_extent_mapping() will delete us from the pinned_chunks 3339 * list, which is protected by the chunk mutex. 3340 */ 3341 remove_extent_mapping(em_tree, em); 3342 write_unlock(&em_tree->lock); 3343 mutex_unlock(&fs_info->chunk_mutex); 3344 3345 /* once for us and once for the tree */ 3346 free_extent_map(em); 3347 free_extent_map(em); 3348 3349 /* 3350 * We've left one free space entry and other tasks trimming 3351 * this block group have left 1 entry each one. Free them. 3352 */ 3353 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3354 } 3355 } 3356 3357 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, 3358 u64 *trimmed, u64 start, u64 end, u64 minlen) 3359 { 3360 int ret; 3361 3362 *trimmed = 0; 3363 3364 spin_lock(&block_group->lock); 3365 if (block_group->removed) { 3366 spin_unlock(&block_group->lock); 3367 return 0; 3368 } 3369 btrfs_get_block_group_trimming(block_group); 3370 spin_unlock(&block_group->lock); 3371 3372 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); 3373 if (ret) 3374 goto out; 3375 3376 ret = trim_bitmaps(block_group, trimmed, start, end, minlen); 3377 out: 3378 btrfs_put_block_group_trimming(block_group); 3379 return ret; 3380 } 3381 3382 /* 3383 * Find the left-most item in the cache tree, and then return the 3384 * smallest inode number in the item. 3385 * 3386 * Note: the returned inode number may not be the smallest one in 3387 * the tree, if the left-most item is a bitmap. 3388 */ 3389 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 3390 { 3391 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 3392 struct btrfs_free_space *entry = NULL; 3393 u64 ino = 0; 3394 3395 spin_lock(&ctl->tree_lock); 3396 3397 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 3398 goto out; 3399 3400 entry = rb_entry(rb_first(&ctl->free_space_offset), 3401 struct btrfs_free_space, offset_index); 3402 3403 if (!entry->bitmap) { 3404 ino = entry->offset; 3405 3406 unlink_free_space(ctl, entry); 3407 entry->offset++; 3408 entry->bytes--; 3409 if (!entry->bytes) 3410 kmem_cache_free(btrfs_free_space_cachep, entry); 3411 else 3412 link_free_space(ctl, entry); 3413 } else { 3414 u64 offset = 0; 3415 u64 count = 1; 3416 int ret; 3417 3418 ret = search_bitmap(ctl, entry, &offset, &count, true); 3419 /* Logic error; Should be empty if it can't find anything */ 3420 ASSERT(!ret); 3421 3422 ino = offset; 3423 bitmap_clear_bits(ctl, entry, offset, 1); 3424 if (entry->bytes == 0) 3425 free_bitmap(ctl, entry); 3426 } 3427 out: 3428 spin_unlock(&ctl->tree_lock); 3429 3430 return ino; 3431 } 3432 3433 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 3434 struct btrfs_path *path) 3435 { 3436 struct inode *inode = NULL; 3437 3438 spin_lock(&root->ino_cache_lock); 3439 if (root->ino_cache_inode) 3440 inode = igrab(root->ino_cache_inode); 3441 spin_unlock(&root->ino_cache_lock); 3442 if (inode) 3443 return inode; 3444 3445 inode = __lookup_free_space_inode(root, path, 0); 3446 if (IS_ERR(inode)) 3447 return inode; 3448 3449 spin_lock(&root->ino_cache_lock); 3450 if (!btrfs_fs_closing(root->fs_info)) 3451 root->ino_cache_inode = igrab(inode); 3452 spin_unlock(&root->ino_cache_lock); 3453 3454 return inode; 3455 } 3456 3457 int create_free_ino_inode(struct btrfs_root *root, 3458 struct btrfs_trans_handle *trans, 3459 struct btrfs_path *path) 3460 { 3461 return __create_free_space_inode(root, trans, path, 3462 BTRFS_FREE_INO_OBJECTID, 0); 3463 } 3464 3465 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3466 { 3467 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3468 struct btrfs_path *path; 3469 struct inode *inode; 3470 int ret = 0; 3471 u64 root_gen = btrfs_root_generation(&root->root_item); 3472 3473 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3474 return 0; 3475 3476 /* 3477 * If we're unmounting then just return, since this does a search on the 3478 * normal root and not the commit root and we could deadlock. 3479 */ 3480 if (btrfs_fs_closing(fs_info)) 3481 return 0; 3482 3483 path = btrfs_alloc_path(); 3484 if (!path) 3485 return 0; 3486 3487 inode = lookup_free_ino_inode(root, path); 3488 if (IS_ERR(inode)) 3489 goto out; 3490 3491 if (root_gen != BTRFS_I(inode)->generation) 3492 goto out_put; 3493 3494 ret = __load_free_space_cache(root, inode, ctl, path, 0); 3495 3496 if (ret < 0) 3497 btrfs_err(fs_info, 3498 "failed to load free ino cache for root %llu", 3499 root->root_key.objectid); 3500 out_put: 3501 iput(inode); 3502 out: 3503 btrfs_free_path(path); 3504 return ret; 3505 } 3506 3507 int btrfs_write_out_ino_cache(struct btrfs_root *root, 3508 struct btrfs_trans_handle *trans, 3509 struct btrfs_path *path, 3510 struct inode *inode) 3511 { 3512 struct btrfs_fs_info *fs_info = root->fs_info; 3513 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3514 int ret; 3515 struct btrfs_io_ctl io_ctl; 3516 bool release_metadata = true; 3517 3518 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3519 return 0; 3520 3521 memset(&io_ctl, 0, sizeof(io_ctl)); 3522 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans); 3523 if (!ret) { 3524 /* 3525 * At this point writepages() didn't error out, so our metadata 3526 * reservation is released when the writeback finishes, at 3527 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing 3528 * with or without an error. 3529 */ 3530 release_metadata = false; 3531 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path); 3532 } 3533 3534 if (ret) { 3535 if (release_metadata) 3536 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3537 inode->i_size, true); 3538 #ifdef DEBUG 3539 btrfs_err(fs_info, 3540 "failed to write free ino cache for root %llu", 3541 root->root_key.objectid); 3542 #endif 3543 } 3544 3545 return ret; 3546 } 3547 3548 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3549 /* 3550 * Use this if you need to make a bitmap or extent entry specifically, it 3551 * doesn't do any of the merging that add_free_space does, this acts a lot like 3552 * how the free space cache loading stuff works, so you can get really weird 3553 * configurations. 3554 */ 3555 int test_add_free_space_entry(struct btrfs_block_group_cache *cache, 3556 u64 offset, u64 bytes, bool bitmap) 3557 { 3558 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3559 struct btrfs_free_space *info = NULL, *bitmap_info; 3560 void *map = NULL; 3561 u64 bytes_added; 3562 int ret; 3563 3564 again: 3565 if (!info) { 3566 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 3567 if (!info) 3568 return -ENOMEM; 3569 } 3570 3571 if (!bitmap) { 3572 spin_lock(&ctl->tree_lock); 3573 info->offset = offset; 3574 info->bytes = bytes; 3575 info->max_extent_size = 0; 3576 ret = link_free_space(ctl, info); 3577 spin_unlock(&ctl->tree_lock); 3578 if (ret) 3579 kmem_cache_free(btrfs_free_space_cachep, info); 3580 return ret; 3581 } 3582 3583 if (!map) { 3584 map = kzalloc(PAGE_SIZE, GFP_NOFS); 3585 if (!map) { 3586 kmem_cache_free(btrfs_free_space_cachep, info); 3587 return -ENOMEM; 3588 } 3589 } 3590 3591 spin_lock(&ctl->tree_lock); 3592 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3593 1, 0); 3594 if (!bitmap_info) { 3595 info->bitmap = map; 3596 map = NULL; 3597 add_new_bitmap(ctl, info, offset); 3598 bitmap_info = info; 3599 info = NULL; 3600 } 3601 3602 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 3603 3604 bytes -= bytes_added; 3605 offset += bytes_added; 3606 spin_unlock(&ctl->tree_lock); 3607 3608 if (bytes) 3609 goto again; 3610 3611 if (info) 3612 kmem_cache_free(btrfs_free_space_cachep, info); 3613 kfree(map); 3614 return 0; 3615 } 3616 3617 /* 3618 * Checks to see if the given range is in the free space cache. This is really 3619 * just used to check the absence of space, so if there is free space in the 3620 * range at all we will return 1. 3621 */ 3622 int test_check_exists(struct btrfs_block_group_cache *cache, 3623 u64 offset, u64 bytes) 3624 { 3625 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3626 struct btrfs_free_space *info; 3627 int ret = 0; 3628 3629 spin_lock(&ctl->tree_lock); 3630 info = tree_search_offset(ctl, offset, 0, 0); 3631 if (!info) { 3632 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3633 1, 0); 3634 if (!info) 3635 goto out; 3636 } 3637 3638 have_info: 3639 if (info->bitmap) { 3640 u64 bit_off, bit_bytes; 3641 struct rb_node *n; 3642 struct btrfs_free_space *tmp; 3643 3644 bit_off = offset; 3645 bit_bytes = ctl->unit; 3646 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 3647 if (!ret) { 3648 if (bit_off == offset) { 3649 ret = 1; 3650 goto out; 3651 } else if (bit_off > offset && 3652 offset + bytes > bit_off) { 3653 ret = 1; 3654 goto out; 3655 } 3656 } 3657 3658 n = rb_prev(&info->offset_index); 3659 while (n) { 3660 tmp = rb_entry(n, struct btrfs_free_space, 3661 offset_index); 3662 if (tmp->offset + tmp->bytes < offset) 3663 break; 3664 if (offset + bytes < tmp->offset) { 3665 n = rb_prev(&tmp->offset_index); 3666 continue; 3667 } 3668 info = tmp; 3669 goto have_info; 3670 } 3671 3672 n = rb_next(&info->offset_index); 3673 while (n) { 3674 tmp = rb_entry(n, struct btrfs_free_space, 3675 offset_index); 3676 if (offset + bytes < tmp->offset) 3677 break; 3678 if (tmp->offset + tmp->bytes < offset) { 3679 n = rb_next(&tmp->offset_index); 3680 continue; 3681 } 3682 info = tmp; 3683 goto have_info; 3684 } 3685 3686 ret = 0; 3687 goto out; 3688 } 3689 3690 if (info->offset == offset) { 3691 ret = 1; 3692 goto out; 3693 } 3694 3695 if (offset > info->offset && offset < info->offset + info->bytes) 3696 ret = 1; 3697 out: 3698 spin_unlock(&ctl->tree_lock); 3699 return ret; 3700 } 3701 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 3702