xref: /linux/fs/btrfs/free-space-cache.c (revision b1d29ba82cf2bc784f4c963ddd6a2cf29e229b33)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 
22 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
23 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
24 
25 struct btrfs_trim_range {
26 	u64 start;
27 	u64 bytes;
28 	struct list_head list;
29 };
30 
31 static int link_free_space(struct btrfs_free_space_ctl *ctl,
32 			   struct btrfs_free_space *info);
33 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
34 			      struct btrfs_free_space *info);
35 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
36 			     struct btrfs_trans_handle *trans,
37 			     struct btrfs_io_ctl *io_ctl,
38 			     struct btrfs_path *path);
39 
40 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
41 					       struct btrfs_path *path,
42 					       u64 offset)
43 {
44 	struct btrfs_fs_info *fs_info = root->fs_info;
45 	struct btrfs_key key;
46 	struct btrfs_key location;
47 	struct btrfs_disk_key disk_key;
48 	struct btrfs_free_space_header *header;
49 	struct extent_buffer *leaf;
50 	struct inode *inode = NULL;
51 	unsigned nofs_flag;
52 	int ret;
53 
54 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
55 	key.offset = offset;
56 	key.type = 0;
57 
58 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
59 	if (ret < 0)
60 		return ERR_PTR(ret);
61 	if (ret > 0) {
62 		btrfs_release_path(path);
63 		return ERR_PTR(-ENOENT);
64 	}
65 
66 	leaf = path->nodes[0];
67 	header = btrfs_item_ptr(leaf, path->slots[0],
68 				struct btrfs_free_space_header);
69 	btrfs_free_space_key(leaf, header, &disk_key);
70 	btrfs_disk_key_to_cpu(&location, &disk_key);
71 	btrfs_release_path(path);
72 
73 	/*
74 	 * We are often under a trans handle at this point, so we need to make
75 	 * sure NOFS is set to keep us from deadlocking.
76 	 */
77 	nofs_flag = memalloc_nofs_save();
78 	inode = btrfs_iget(fs_info->sb, &location, root, NULL);
79 	memalloc_nofs_restore(nofs_flag);
80 	if (IS_ERR(inode))
81 		return inode;
82 
83 	mapping_set_gfp_mask(inode->i_mapping,
84 			mapping_gfp_constraint(inode->i_mapping,
85 			~(__GFP_FS | __GFP_HIGHMEM)));
86 
87 	return inode;
88 }
89 
90 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
91 				      struct btrfs_block_group_cache
92 				      *block_group, struct btrfs_path *path)
93 {
94 	struct inode *inode = NULL;
95 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
96 
97 	spin_lock(&block_group->lock);
98 	if (block_group->inode)
99 		inode = igrab(block_group->inode);
100 	spin_unlock(&block_group->lock);
101 	if (inode)
102 		return inode;
103 
104 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
105 					  block_group->key.objectid);
106 	if (IS_ERR(inode))
107 		return inode;
108 
109 	spin_lock(&block_group->lock);
110 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
111 		btrfs_info(fs_info, "Old style space inode found, converting.");
112 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
113 			BTRFS_INODE_NODATACOW;
114 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
115 	}
116 
117 	if (!block_group->iref) {
118 		block_group->inode = igrab(inode);
119 		block_group->iref = 1;
120 	}
121 	spin_unlock(&block_group->lock);
122 
123 	return inode;
124 }
125 
126 static int __create_free_space_inode(struct btrfs_root *root,
127 				     struct btrfs_trans_handle *trans,
128 				     struct btrfs_path *path,
129 				     u64 ino, u64 offset)
130 {
131 	struct btrfs_key key;
132 	struct btrfs_disk_key disk_key;
133 	struct btrfs_free_space_header *header;
134 	struct btrfs_inode_item *inode_item;
135 	struct extent_buffer *leaf;
136 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
137 	int ret;
138 
139 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
140 	if (ret)
141 		return ret;
142 
143 	/* We inline crc's for the free disk space cache */
144 	if (ino != BTRFS_FREE_INO_OBJECTID)
145 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
146 
147 	leaf = path->nodes[0];
148 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
149 				    struct btrfs_inode_item);
150 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
151 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
152 			     sizeof(*inode_item));
153 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
154 	btrfs_set_inode_size(leaf, inode_item, 0);
155 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
156 	btrfs_set_inode_uid(leaf, inode_item, 0);
157 	btrfs_set_inode_gid(leaf, inode_item, 0);
158 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
159 	btrfs_set_inode_flags(leaf, inode_item, flags);
160 	btrfs_set_inode_nlink(leaf, inode_item, 1);
161 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
162 	btrfs_set_inode_block_group(leaf, inode_item, offset);
163 	btrfs_mark_buffer_dirty(leaf);
164 	btrfs_release_path(path);
165 
166 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
167 	key.offset = offset;
168 	key.type = 0;
169 	ret = btrfs_insert_empty_item(trans, root, path, &key,
170 				      sizeof(struct btrfs_free_space_header));
171 	if (ret < 0) {
172 		btrfs_release_path(path);
173 		return ret;
174 	}
175 
176 	leaf = path->nodes[0];
177 	header = btrfs_item_ptr(leaf, path->slots[0],
178 				struct btrfs_free_space_header);
179 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
180 	btrfs_set_free_space_key(leaf, header, &disk_key);
181 	btrfs_mark_buffer_dirty(leaf);
182 	btrfs_release_path(path);
183 
184 	return 0;
185 }
186 
187 int create_free_space_inode(struct btrfs_fs_info *fs_info,
188 			    struct btrfs_trans_handle *trans,
189 			    struct btrfs_block_group_cache *block_group,
190 			    struct btrfs_path *path)
191 {
192 	int ret;
193 	u64 ino;
194 
195 	ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
196 	if (ret < 0)
197 		return ret;
198 
199 	return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
200 					 block_group->key.objectid);
201 }
202 
203 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
204 				       struct btrfs_block_rsv *rsv)
205 {
206 	u64 needed_bytes;
207 	int ret;
208 
209 	/* 1 for slack space, 1 for updating the inode */
210 	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
211 		btrfs_calc_trans_metadata_size(fs_info, 1);
212 
213 	spin_lock(&rsv->lock);
214 	if (rsv->reserved < needed_bytes)
215 		ret = -ENOSPC;
216 	else
217 		ret = 0;
218 	spin_unlock(&rsv->lock);
219 	return ret;
220 }
221 
222 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
223 				    struct btrfs_block_group_cache *block_group,
224 				    struct inode *inode)
225 {
226 	struct btrfs_root *root = BTRFS_I(inode)->root;
227 	int ret = 0;
228 	bool locked = false;
229 
230 	if (block_group) {
231 		struct btrfs_path *path = btrfs_alloc_path();
232 
233 		if (!path) {
234 			ret = -ENOMEM;
235 			goto fail;
236 		}
237 		locked = true;
238 		mutex_lock(&trans->transaction->cache_write_mutex);
239 		if (!list_empty(&block_group->io_list)) {
240 			list_del_init(&block_group->io_list);
241 
242 			btrfs_wait_cache_io(trans, block_group, path);
243 			btrfs_put_block_group(block_group);
244 		}
245 
246 		/*
247 		 * now that we've truncated the cache away, its no longer
248 		 * setup or written
249 		 */
250 		spin_lock(&block_group->lock);
251 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
252 		spin_unlock(&block_group->lock);
253 		btrfs_free_path(path);
254 	}
255 
256 	btrfs_i_size_write(BTRFS_I(inode), 0);
257 	truncate_pagecache(inode, 0);
258 
259 	/*
260 	 * We skip the throttling logic for free space cache inodes, so we don't
261 	 * need to check for -EAGAIN.
262 	 */
263 	ret = btrfs_truncate_inode_items(trans, root, inode,
264 					 0, BTRFS_EXTENT_DATA_KEY);
265 	if (ret)
266 		goto fail;
267 
268 	ret = btrfs_update_inode(trans, root, inode);
269 
270 fail:
271 	if (locked)
272 		mutex_unlock(&trans->transaction->cache_write_mutex);
273 	if (ret)
274 		btrfs_abort_transaction(trans, ret);
275 
276 	return ret;
277 }
278 
279 static void readahead_cache(struct inode *inode)
280 {
281 	struct file_ra_state *ra;
282 	unsigned long last_index;
283 
284 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
285 	if (!ra)
286 		return;
287 
288 	file_ra_state_init(ra, inode->i_mapping);
289 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
290 
291 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
292 
293 	kfree(ra);
294 }
295 
296 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
297 		       int write)
298 {
299 	int num_pages;
300 	int check_crcs = 0;
301 
302 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
303 
304 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
305 		check_crcs = 1;
306 
307 	/* Make sure we can fit our crcs and generation into the first page */
308 	if (write && check_crcs &&
309 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
310 		return -ENOSPC;
311 
312 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
313 
314 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
315 	if (!io_ctl->pages)
316 		return -ENOMEM;
317 
318 	io_ctl->num_pages = num_pages;
319 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
320 	io_ctl->check_crcs = check_crcs;
321 	io_ctl->inode = inode;
322 
323 	return 0;
324 }
325 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
326 
327 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
328 {
329 	kfree(io_ctl->pages);
330 	io_ctl->pages = NULL;
331 }
332 
333 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
334 {
335 	if (io_ctl->cur) {
336 		io_ctl->cur = NULL;
337 		io_ctl->orig = NULL;
338 	}
339 }
340 
341 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
342 {
343 	ASSERT(io_ctl->index < io_ctl->num_pages);
344 	io_ctl->page = io_ctl->pages[io_ctl->index++];
345 	io_ctl->cur = page_address(io_ctl->page);
346 	io_ctl->orig = io_ctl->cur;
347 	io_ctl->size = PAGE_SIZE;
348 	if (clear)
349 		clear_page(io_ctl->cur);
350 }
351 
352 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
353 {
354 	int i;
355 
356 	io_ctl_unmap_page(io_ctl);
357 
358 	for (i = 0; i < io_ctl->num_pages; i++) {
359 		if (io_ctl->pages[i]) {
360 			ClearPageChecked(io_ctl->pages[i]);
361 			unlock_page(io_ctl->pages[i]);
362 			put_page(io_ctl->pages[i]);
363 		}
364 	}
365 }
366 
367 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
368 				int uptodate)
369 {
370 	struct page *page;
371 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
372 	int i;
373 
374 	for (i = 0; i < io_ctl->num_pages; i++) {
375 		page = find_or_create_page(inode->i_mapping, i, mask);
376 		if (!page) {
377 			io_ctl_drop_pages(io_ctl);
378 			return -ENOMEM;
379 		}
380 		io_ctl->pages[i] = page;
381 		if (uptodate && !PageUptodate(page)) {
382 			btrfs_readpage(NULL, page);
383 			lock_page(page);
384 			if (!PageUptodate(page)) {
385 				btrfs_err(BTRFS_I(inode)->root->fs_info,
386 					   "error reading free space cache");
387 				io_ctl_drop_pages(io_ctl);
388 				return -EIO;
389 			}
390 		}
391 	}
392 
393 	for (i = 0; i < io_ctl->num_pages; i++) {
394 		clear_page_dirty_for_io(io_ctl->pages[i]);
395 		set_page_extent_mapped(io_ctl->pages[i]);
396 	}
397 
398 	return 0;
399 }
400 
401 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
402 {
403 	__le64 *val;
404 
405 	io_ctl_map_page(io_ctl, 1);
406 
407 	/*
408 	 * Skip the csum areas.  If we don't check crcs then we just have a
409 	 * 64bit chunk at the front of the first page.
410 	 */
411 	if (io_ctl->check_crcs) {
412 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
413 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
414 	} else {
415 		io_ctl->cur += sizeof(u64);
416 		io_ctl->size -= sizeof(u64) * 2;
417 	}
418 
419 	val = io_ctl->cur;
420 	*val = cpu_to_le64(generation);
421 	io_ctl->cur += sizeof(u64);
422 }
423 
424 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
425 {
426 	__le64 *gen;
427 
428 	/*
429 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
430 	 * chunk at the front of the first page.
431 	 */
432 	if (io_ctl->check_crcs) {
433 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
434 		io_ctl->size -= sizeof(u64) +
435 			(sizeof(u32) * io_ctl->num_pages);
436 	} else {
437 		io_ctl->cur += sizeof(u64);
438 		io_ctl->size -= sizeof(u64) * 2;
439 	}
440 
441 	gen = io_ctl->cur;
442 	if (le64_to_cpu(*gen) != generation) {
443 		btrfs_err_rl(io_ctl->fs_info,
444 			"space cache generation (%llu) does not match inode (%llu)",
445 				*gen, generation);
446 		io_ctl_unmap_page(io_ctl);
447 		return -EIO;
448 	}
449 	io_ctl->cur += sizeof(u64);
450 	return 0;
451 }
452 
453 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
454 {
455 	u32 *tmp;
456 	u32 crc = ~(u32)0;
457 	unsigned offset = 0;
458 
459 	if (!io_ctl->check_crcs) {
460 		io_ctl_unmap_page(io_ctl);
461 		return;
462 	}
463 
464 	if (index == 0)
465 		offset = sizeof(u32) * io_ctl->num_pages;
466 
467 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
468 			      PAGE_SIZE - offset);
469 	btrfs_csum_final(crc, (u8 *)&crc);
470 	io_ctl_unmap_page(io_ctl);
471 	tmp = page_address(io_ctl->pages[0]);
472 	tmp += index;
473 	*tmp = crc;
474 }
475 
476 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
477 {
478 	u32 *tmp, val;
479 	u32 crc = ~(u32)0;
480 	unsigned offset = 0;
481 
482 	if (!io_ctl->check_crcs) {
483 		io_ctl_map_page(io_ctl, 0);
484 		return 0;
485 	}
486 
487 	if (index == 0)
488 		offset = sizeof(u32) * io_ctl->num_pages;
489 
490 	tmp = page_address(io_ctl->pages[0]);
491 	tmp += index;
492 	val = *tmp;
493 
494 	io_ctl_map_page(io_ctl, 0);
495 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
496 			      PAGE_SIZE - offset);
497 	btrfs_csum_final(crc, (u8 *)&crc);
498 	if (val != crc) {
499 		btrfs_err_rl(io_ctl->fs_info,
500 			"csum mismatch on free space cache");
501 		io_ctl_unmap_page(io_ctl);
502 		return -EIO;
503 	}
504 
505 	return 0;
506 }
507 
508 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
509 			    void *bitmap)
510 {
511 	struct btrfs_free_space_entry *entry;
512 
513 	if (!io_ctl->cur)
514 		return -ENOSPC;
515 
516 	entry = io_ctl->cur;
517 	entry->offset = cpu_to_le64(offset);
518 	entry->bytes = cpu_to_le64(bytes);
519 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
520 		BTRFS_FREE_SPACE_EXTENT;
521 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
522 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
523 
524 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
525 		return 0;
526 
527 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
528 
529 	/* No more pages to map */
530 	if (io_ctl->index >= io_ctl->num_pages)
531 		return 0;
532 
533 	/* map the next page */
534 	io_ctl_map_page(io_ctl, 1);
535 	return 0;
536 }
537 
538 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
539 {
540 	if (!io_ctl->cur)
541 		return -ENOSPC;
542 
543 	/*
544 	 * If we aren't at the start of the current page, unmap this one and
545 	 * map the next one if there is any left.
546 	 */
547 	if (io_ctl->cur != io_ctl->orig) {
548 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
549 		if (io_ctl->index >= io_ctl->num_pages)
550 			return -ENOSPC;
551 		io_ctl_map_page(io_ctl, 0);
552 	}
553 
554 	copy_page(io_ctl->cur, bitmap);
555 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
556 	if (io_ctl->index < io_ctl->num_pages)
557 		io_ctl_map_page(io_ctl, 0);
558 	return 0;
559 }
560 
561 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
562 {
563 	/*
564 	 * If we're not on the boundary we know we've modified the page and we
565 	 * need to crc the page.
566 	 */
567 	if (io_ctl->cur != io_ctl->orig)
568 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
569 	else
570 		io_ctl_unmap_page(io_ctl);
571 
572 	while (io_ctl->index < io_ctl->num_pages) {
573 		io_ctl_map_page(io_ctl, 1);
574 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
575 	}
576 }
577 
578 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
579 			    struct btrfs_free_space *entry, u8 *type)
580 {
581 	struct btrfs_free_space_entry *e;
582 	int ret;
583 
584 	if (!io_ctl->cur) {
585 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
586 		if (ret)
587 			return ret;
588 	}
589 
590 	e = io_ctl->cur;
591 	entry->offset = le64_to_cpu(e->offset);
592 	entry->bytes = le64_to_cpu(e->bytes);
593 	*type = e->type;
594 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
595 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
596 
597 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
598 		return 0;
599 
600 	io_ctl_unmap_page(io_ctl);
601 
602 	return 0;
603 }
604 
605 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
606 			      struct btrfs_free_space *entry)
607 {
608 	int ret;
609 
610 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
611 	if (ret)
612 		return ret;
613 
614 	copy_page(entry->bitmap, io_ctl->cur);
615 	io_ctl_unmap_page(io_ctl);
616 
617 	return 0;
618 }
619 
620 /*
621  * Since we attach pinned extents after the fact we can have contiguous sections
622  * of free space that are split up in entries.  This poses a problem with the
623  * tree logging stuff since it could have allocated across what appears to be 2
624  * entries since we would have merged the entries when adding the pinned extents
625  * back to the free space cache.  So run through the space cache that we just
626  * loaded and merge contiguous entries.  This will make the log replay stuff not
627  * blow up and it will make for nicer allocator behavior.
628  */
629 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
630 {
631 	struct btrfs_free_space *e, *prev = NULL;
632 	struct rb_node *n;
633 
634 again:
635 	spin_lock(&ctl->tree_lock);
636 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
637 		e = rb_entry(n, struct btrfs_free_space, offset_index);
638 		if (!prev)
639 			goto next;
640 		if (e->bitmap || prev->bitmap)
641 			goto next;
642 		if (prev->offset + prev->bytes == e->offset) {
643 			unlink_free_space(ctl, prev);
644 			unlink_free_space(ctl, e);
645 			prev->bytes += e->bytes;
646 			kmem_cache_free(btrfs_free_space_cachep, e);
647 			link_free_space(ctl, prev);
648 			prev = NULL;
649 			spin_unlock(&ctl->tree_lock);
650 			goto again;
651 		}
652 next:
653 		prev = e;
654 	}
655 	spin_unlock(&ctl->tree_lock);
656 }
657 
658 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
659 				   struct btrfs_free_space_ctl *ctl,
660 				   struct btrfs_path *path, u64 offset)
661 {
662 	struct btrfs_fs_info *fs_info = root->fs_info;
663 	struct btrfs_free_space_header *header;
664 	struct extent_buffer *leaf;
665 	struct btrfs_io_ctl io_ctl;
666 	struct btrfs_key key;
667 	struct btrfs_free_space *e, *n;
668 	LIST_HEAD(bitmaps);
669 	u64 num_entries;
670 	u64 num_bitmaps;
671 	u64 generation;
672 	u8 type;
673 	int ret = 0;
674 
675 	/* Nothing in the space cache, goodbye */
676 	if (!i_size_read(inode))
677 		return 0;
678 
679 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
680 	key.offset = offset;
681 	key.type = 0;
682 
683 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
684 	if (ret < 0)
685 		return 0;
686 	else if (ret > 0) {
687 		btrfs_release_path(path);
688 		return 0;
689 	}
690 
691 	ret = -1;
692 
693 	leaf = path->nodes[0];
694 	header = btrfs_item_ptr(leaf, path->slots[0],
695 				struct btrfs_free_space_header);
696 	num_entries = btrfs_free_space_entries(leaf, header);
697 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
698 	generation = btrfs_free_space_generation(leaf, header);
699 	btrfs_release_path(path);
700 
701 	if (!BTRFS_I(inode)->generation) {
702 		btrfs_info(fs_info,
703 			   "the free space cache file (%llu) is invalid, skip it",
704 			   offset);
705 		return 0;
706 	}
707 
708 	if (BTRFS_I(inode)->generation != generation) {
709 		btrfs_err(fs_info,
710 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
711 			  BTRFS_I(inode)->generation, generation);
712 		return 0;
713 	}
714 
715 	if (!num_entries)
716 		return 0;
717 
718 	ret = io_ctl_init(&io_ctl, inode, 0);
719 	if (ret)
720 		return ret;
721 
722 	readahead_cache(inode);
723 
724 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
725 	if (ret)
726 		goto out;
727 
728 	ret = io_ctl_check_crc(&io_ctl, 0);
729 	if (ret)
730 		goto free_cache;
731 
732 	ret = io_ctl_check_generation(&io_ctl, generation);
733 	if (ret)
734 		goto free_cache;
735 
736 	while (num_entries) {
737 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
738 				      GFP_NOFS);
739 		if (!e)
740 			goto free_cache;
741 
742 		ret = io_ctl_read_entry(&io_ctl, e, &type);
743 		if (ret) {
744 			kmem_cache_free(btrfs_free_space_cachep, e);
745 			goto free_cache;
746 		}
747 
748 		if (!e->bytes) {
749 			kmem_cache_free(btrfs_free_space_cachep, e);
750 			goto free_cache;
751 		}
752 
753 		if (type == BTRFS_FREE_SPACE_EXTENT) {
754 			spin_lock(&ctl->tree_lock);
755 			ret = link_free_space(ctl, e);
756 			spin_unlock(&ctl->tree_lock);
757 			if (ret) {
758 				btrfs_err(fs_info,
759 					"Duplicate entries in free space cache, dumping");
760 				kmem_cache_free(btrfs_free_space_cachep, e);
761 				goto free_cache;
762 			}
763 		} else {
764 			ASSERT(num_bitmaps);
765 			num_bitmaps--;
766 			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
767 			if (!e->bitmap) {
768 				kmem_cache_free(
769 					btrfs_free_space_cachep, e);
770 				goto free_cache;
771 			}
772 			spin_lock(&ctl->tree_lock);
773 			ret = link_free_space(ctl, e);
774 			ctl->total_bitmaps++;
775 			ctl->op->recalc_thresholds(ctl);
776 			spin_unlock(&ctl->tree_lock);
777 			if (ret) {
778 				btrfs_err(fs_info,
779 					"Duplicate entries in free space cache, dumping");
780 				kmem_cache_free(btrfs_free_space_cachep, e);
781 				goto free_cache;
782 			}
783 			list_add_tail(&e->list, &bitmaps);
784 		}
785 
786 		num_entries--;
787 	}
788 
789 	io_ctl_unmap_page(&io_ctl);
790 
791 	/*
792 	 * We add the bitmaps at the end of the entries in order that
793 	 * the bitmap entries are added to the cache.
794 	 */
795 	list_for_each_entry_safe(e, n, &bitmaps, list) {
796 		list_del_init(&e->list);
797 		ret = io_ctl_read_bitmap(&io_ctl, e);
798 		if (ret)
799 			goto free_cache;
800 	}
801 
802 	io_ctl_drop_pages(&io_ctl);
803 	merge_space_tree(ctl);
804 	ret = 1;
805 out:
806 	io_ctl_free(&io_ctl);
807 	return ret;
808 free_cache:
809 	io_ctl_drop_pages(&io_ctl);
810 	__btrfs_remove_free_space_cache(ctl);
811 	goto out;
812 }
813 
814 int load_free_space_cache(struct btrfs_fs_info *fs_info,
815 			  struct btrfs_block_group_cache *block_group)
816 {
817 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
818 	struct inode *inode;
819 	struct btrfs_path *path;
820 	int ret = 0;
821 	bool matched;
822 	u64 used = btrfs_block_group_used(&block_group->item);
823 
824 	/*
825 	 * If this block group has been marked to be cleared for one reason or
826 	 * another then we can't trust the on disk cache, so just return.
827 	 */
828 	spin_lock(&block_group->lock);
829 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
830 		spin_unlock(&block_group->lock);
831 		return 0;
832 	}
833 	spin_unlock(&block_group->lock);
834 
835 	path = btrfs_alloc_path();
836 	if (!path)
837 		return 0;
838 	path->search_commit_root = 1;
839 	path->skip_locking = 1;
840 
841 	inode = lookup_free_space_inode(fs_info, block_group, path);
842 	if (IS_ERR(inode)) {
843 		btrfs_free_path(path);
844 		return 0;
845 	}
846 
847 	/* We may have converted the inode and made the cache invalid. */
848 	spin_lock(&block_group->lock);
849 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
850 		spin_unlock(&block_group->lock);
851 		btrfs_free_path(path);
852 		goto out;
853 	}
854 	spin_unlock(&block_group->lock);
855 
856 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
857 				      path, block_group->key.objectid);
858 	btrfs_free_path(path);
859 	if (ret <= 0)
860 		goto out;
861 
862 	spin_lock(&ctl->tree_lock);
863 	matched = (ctl->free_space == (block_group->key.offset - used -
864 				       block_group->bytes_super));
865 	spin_unlock(&ctl->tree_lock);
866 
867 	if (!matched) {
868 		__btrfs_remove_free_space_cache(ctl);
869 		btrfs_warn(fs_info,
870 			   "block group %llu has wrong amount of free space",
871 			   block_group->key.objectid);
872 		ret = -1;
873 	}
874 out:
875 	if (ret < 0) {
876 		/* This cache is bogus, make sure it gets cleared */
877 		spin_lock(&block_group->lock);
878 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
879 		spin_unlock(&block_group->lock);
880 		ret = 0;
881 
882 		btrfs_warn(fs_info,
883 			   "failed to load free space cache for block group %llu, rebuilding it now",
884 			   block_group->key.objectid);
885 	}
886 
887 	iput(inode);
888 	return ret;
889 }
890 
891 static noinline_for_stack
892 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
893 			      struct btrfs_free_space_ctl *ctl,
894 			      struct btrfs_block_group_cache *block_group,
895 			      int *entries, int *bitmaps,
896 			      struct list_head *bitmap_list)
897 {
898 	int ret;
899 	struct btrfs_free_cluster *cluster = NULL;
900 	struct btrfs_free_cluster *cluster_locked = NULL;
901 	struct rb_node *node = rb_first(&ctl->free_space_offset);
902 	struct btrfs_trim_range *trim_entry;
903 
904 	/* Get the cluster for this block_group if it exists */
905 	if (block_group && !list_empty(&block_group->cluster_list)) {
906 		cluster = list_entry(block_group->cluster_list.next,
907 				     struct btrfs_free_cluster,
908 				     block_group_list);
909 	}
910 
911 	if (!node && cluster) {
912 		cluster_locked = cluster;
913 		spin_lock(&cluster_locked->lock);
914 		node = rb_first(&cluster->root);
915 		cluster = NULL;
916 	}
917 
918 	/* Write out the extent entries */
919 	while (node) {
920 		struct btrfs_free_space *e;
921 
922 		e = rb_entry(node, struct btrfs_free_space, offset_index);
923 		*entries += 1;
924 
925 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
926 				       e->bitmap);
927 		if (ret)
928 			goto fail;
929 
930 		if (e->bitmap) {
931 			list_add_tail(&e->list, bitmap_list);
932 			*bitmaps += 1;
933 		}
934 		node = rb_next(node);
935 		if (!node && cluster) {
936 			node = rb_first(&cluster->root);
937 			cluster_locked = cluster;
938 			spin_lock(&cluster_locked->lock);
939 			cluster = NULL;
940 		}
941 	}
942 	if (cluster_locked) {
943 		spin_unlock(&cluster_locked->lock);
944 		cluster_locked = NULL;
945 	}
946 
947 	/*
948 	 * Make sure we don't miss any range that was removed from our rbtree
949 	 * because trimming is running. Otherwise after a umount+mount (or crash
950 	 * after committing the transaction) we would leak free space and get
951 	 * an inconsistent free space cache report from fsck.
952 	 */
953 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
954 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
955 				       trim_entry->bytes, NULL);
956 		if (ret)
957 			goto fail;
958 		*entries += 1;
959 	}
960 
961 	return 0;
962 fail:
963 	if (cluster_locked)
964 		spin_unlock(&cluster_locked->lock);
965 	return -ENOSPC;
966 }
967 
968 static noinline_for_stack int
969 update_cache_item(struct btrfs_trans_handle *trans,
970 		  struct btrfs_root *root,
971 		  struct inode *inode,
972 		  struct btrfs_path *path, u64 offset,
973 		  int entries, int bitmaps)
974 {
975 	struct btrfs_key key;
976 	struct btrfs_free_space_header *header;
977 	struct extent_buffer *leaf;
978 	int ret;
979 
980 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
981 	key.offset = offset;
982 	key.type = 0;
983 
984 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
985 	if (ret < 0) {
986 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
987 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
988 		goto fail;
989 	}
990 	leaf = path->nodes[0];
991 	if (ret > 0) {
992 		struct btrfs_key found_key;
993 		ASSERT(path->slots[0]);
994 		path->slots[0]--;
995 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
996 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
997 		    found_key.offset != offset) {
998 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
999 					 inode->i_size - 1,
1000 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1001 					 NULL);
1002 			btrfs_release_path(path);
1003 			goto fail;
1004 		}
1005 	}
1006 
1007 	BTRFS_I(inode)->generation = trans->transid;
1008 	header = btrfs_item_ptr(leaf, path->slots[0],
1009 				struct btrfs_free_space_header);
1010 	btrfs_set_free_space_entries(leaf, header, entries);
1011 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1012 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1013 	btrfs_mark_buffer_dirty(leaf);
1014 	btrfs_release_path(path);
1015 
1016 	return 0;
1017 
1018 fail:
1019 	return -1;
1020 }
1021 
1022 static noinline_for_stack int
1023 write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1024 			    struct btrfs_block_group_cache *block_group,
1025 			    struct btrfs_io_ctl *io_ctl,
1026 			    int *entries)
1027 {
1028 	u64 start, extent_start, extent_end, len;
1029 	struct extent_io_tree *unpin = NULL;
1030 	int ret;
1031 
1032 	if (!block_group)
1033 		return 0;
1034 
1035 	/*
1036 	 * We want to add any pinned extents to our free space cache
1037 	 * so we don't leak the space
1038 	 *
1039 	 * We shouldn't have switched the pinned extents yet so this is the
1040 	 * right one
1041 	 */
1042 	unpin = fs_info->pinned_extents;
1043 
1044 	start = block_group->key.objectid;
1045 
1046 	while (start < block_group->key.objectid + block_group->key.offset) {
1047 		ret = find_first_extent_bit(unpin, start,
1048 					    &extent_start, &extent_end,
1049 					    EXTENT_DIRTY, NULL);
1050 		if (ret)
1051 			return 0;
1052 
1053 		/* This pinned extent is out of our range */
1054 		if (extent_start >= block_group->key.objectid +
1055 		    block_group->key.offset)
1056 			return 0;
1057 
1058 		extent_start = max(extent_start, start);
1059 		extent_end = min(block_group->key.objectid +
1060 				 block_group->key.offset, extent_end + 1);
1061 		len = extent_end - extent_start;
1062 
1063 		*entries += 1;
1064 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1065 		if (ret)
1066 			return -ENOSPC;
1067 
1068 		start = extent_end;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 static noinline_for_stack int
1075 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1076 {
1077 	struct btrfs_free_space *entry, *next;
1078 	int ret;
1079 
1080 	/* Write out the bitmaps */
1081 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1082 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1083 		if (ret)
1084 			return -ENOSPC;
1085 		list_del_init(&entry->list);
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 static int flush_dirty_cache(struct inode *inode)
1092 {
1093 	int ret;
1094 
1095 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1096 	if (ret)
1097 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1098 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1099 
1100 	return ret;
1101 }
1102 
1103 static void noinline_for_stack
1104 cleanup_bitmap_list(struct list_head *bitmap_list)
1105 {
1106 	struct btrfs_free_space *entry, *next;
1107 
1108 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1109 		list_del_init(&entry->list);
1110 }
1111 
1112 static void noinline_for_stack
1113 cleanup_write_cache_enospc(struct inode *inode,
1114 			   struct btrfs_io_ctl *io_ctl,
1115 			   struct extent_state **cached_state)
1116 {
1117 	io_ctl_drop_pages(io_ctl);
1118 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1119 			     i_size_read(inode) - 1, cached_state);
1120 }
1121 
1122 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1123 				 struct btrfs_trans_handle *trans,
1124 				 struct btrfs_block_group_cache *block_group,
1125 				 struct btrfs_io_ctl *io_ctl,
1126 				 struct btrfs_path *path, u64 offset)
1127 {
1128 	int ret;
1129 	struct inode *inode = io_ctl->inode;
1130 
1131 	if (!inode)
1132 		return 0;
1133 
1134 	/* Flush the dirty pages in the cache file. */
1135 	ret = flush_dirty_cache(inode);
1136 	if (ret)
1137 		goto out;
1138 
1139 	/* Update the cache item to tell everyone this cache file is valid. */
1140 	ret = update_cache_item(trans, root, inode, path, offset,
1141 				io_ctl->entries, io_ctl->bitmaps);
1142 out:
1143 	io_ctl_free(io_ctl);
1144 	if (ret) {
1145 		invalidate_inode_pages2(inode->i_mapping);
1146 		BTRFS_I(inode)->generation = 0;
1147 		if (block_group) {
1148 #ifdef DEBUG
1149 			btrfs_err(root->fs_info,
1150 				  "failed to write free space cache for block group %llu",
1151 				  block_group->key.objectid);
1152 #endif
1153 		}
1154 	}
1155 	btrfs_update_inode(trans, root, inode);
1156 
1157 	if (block_group) {
1158 		/* the dirty list is protected by the dirty_bgs_lock */
1159 		spin_lock(&trans->transaction->dirty_bgs_lock);
1160 
1161 		/* the disk_cache_state is protected by the block group lock */
1162 		spin_lock(&block_group->lock);
1163 
1164 		/*
1165 		 * only mark this as written if we didn't get put back on
1166 		 * the dirty list while waiting for IO.   Otherwise our
1167 		 * cache state won't be right, and we won't get written again
1168 		 */
1169 		if (!ret && list_empty(&block_group->dirty_list))
1170 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1171 		else if (ret)
1172 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1173 
1174 		spin_unlock(&block_group->lock);
1175 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1176 		io_ctl->inode = NULL;
1177 		iput(inode);
1178 	}
1179 
1180 	return ret;
1181 
1182 }
1183 
1184 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1185 				    struct btrfs_trans_handle *trans,
1186 				    struct btrfs_io_ctl *io_ctl,
1187 				    struct btrfs_path *path)
1188 {
1189 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1190 }
1191 
1192 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1193 			struct btrfs_block_group_cache *block_group,
1194 			struct btrfs_path *path)
1195 {
1196 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1197 				     block_group, &block_group->io_ctl,
1198 				     path, block_group->key.objectid);
1199 }
1200 
1201 /**
1202  * __btrfs_write_out_cache - write out cached info to an inode
1203  * @root - the root the inode belongs to
1204  * @ctl - the free space cache we are going to write out
1205  * @block_group - the block_group for this cache if it belongs to a block_group
1206  * @trans - the trans handle
1207  *
1208  * This function writes out a free space cache struct to disk for quick recovery
1209  * on mount.  This will return 0 if it was successful in writing the cache out,
1210  * or an errno if it was not.
1211  */
1212 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1213 				   struct btrfs_free_space_ctl *ctl,
1214 				   struct btrfs_block_group_cache *block_group,
1215 				   struct btrfs_io_ctl *io_ctl,
1216 				   struct btrfs_trans_handle *trans)
1217 {
1218 	struct btrfs_fs_info *fs_info = root->fs_info;
1219 	struct extent_state *cached_state = NULL;
1220 	LIST_HEAD(bitmap_list);
1221 	int entries = 0;
1222 	int bitmaps = 0;
1223 	int ret;
1224 	int must_iput = 0;
1225 
1226 	if (!i_size_read(inode))
1227 		return -EIO;
1228 
1229 	WARN_ON(io_ctl->pages);
1230 	ret = io_ctl_init(io_ctl, inode, 1);
1231 	if (ret)
1232 		return ret;
1233 
1234 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1235 		down_write(&block_group->data_rwsem);
1236 		spin_lock(&block_group->lock);
1237 		if (block_group->delalloc_bytes) {
1238 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1239 			spin_unlock(&block_group->lock);
1240 			up_write(&block_group->data_rwsem);
1241 			BTRFS_I(inode)->generation = 0;
1242 			ret = 0;
1243 			must_iput = 1;
1244 			goto out;
1245 		}
1246 		spin_unlock(&block_group->lock);
1247 	}
1248 
1249 	/* Lock all pages first so we can lock the extent safely. */
1250 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1251 	if (ret)
1252 		goto out_unlock;
1253 
1254 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1255 			 &cached_state);
1256 
1257 	io_ctl_set_generation(io_ctl, trans->transid);
1258 
1259 	mutex_lock(&ctl->cache_writeout_mutex);
1260 	/* Write out the extent entries in the free space cache */
1261 	spin_lock(&ctl->tree_lock);
1262 	ret = write_cache_extent_entries(io_ctl, ctl,
1263 					 block_group, &entries, &bitmaps,
1264 					 &bitmap_list);
1265 	if (ret)
1266 		goto out_nospc_locked;
1267 
1268 	/*
1269 	 * Some spaces that are freed in the current transaction are pinned,
1270 	 * they will be added into free space cache after the transaction is
1271 	 * committed, we shouldn't lose them.
1272 	 *
1273 	 * If this changes while we are working we'll get added back to
1274 	 * the dirty list and redo it.  No locking needed
1275 	 */
1276 	ret = write_pinned_extent_entries(fs_info, block_group,
1277 					  io_ctl, &entries);
1278 	if (ret)
1279 		goto out_nospc_locked;
1280 
1281 	/*
1282 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1283 	 * locked while doing it because a concurrent trim can be manipulating
1284 	 * or freeing the bitmap.
1285 	 */
1286 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1287 	spin_unlock(&ctl->tree_lock);
1288 	mutex_unlock(&ctl->cache_writeout_mutex);
1289 	if (ret)
1290 		goto out_nospc;
1291 
1292 	/* Zero out the rest of the pages just to make sure */
1293 	io_ctl_zero_remaining_pages(io_ctl);
1294 
1295 	/* Everything is written out, now we dirty the pages in the file. */
1296 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1297 				i_size_read(inode), &cached_state);
1298 	if (ret)
1299 		goto out_nospc;
1300 
1301 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1302 		up_write(&block_group->data_rwsem);
1303 	/*
1304 	 * Release the pages and unlock the extent, we will flush
1305 	 * them out later
1306 	 */
1307 	io_ctl_drop_pages(io_ctl);
1308 
1309 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1310 			     i_size_read(inode) - 1, &cached_state);
1311 
1312 	/*
1313 	 * at this point the pages are under IO and we're happy,
1314 	 * The caller is responsible for waiting on them and updating the
1315 	 * the cache and the inode
1316 	 */
1317 	io_ctl->entries = entries;
1318 	io_ctl->bitmaps = bitmaps;
1319 
1320 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1321 	if (ret)
1322 		goto out;
1323 
1324 	return 0;
1325 
1326 out:
1327 	io_ctl->inode = NULL;
1328 	io_ctl_free(io_ctl);
1329 	if (ret) {
1330 		invalidate_inode_pages2(inode->i_mapping);
1331 		BTRFS_I(inode)->generation = 0;
1332 	}
1333 	btrfs_update_inode(trans, root, inode);
1334 	if (must_iput)
1335 		iput(inode);
1336 	return ret;
1337 
1338 out_nospc_locked:
1339 	cleanup_bitmap_list(&bitmap_list);
1340 	spin_unlock(&ctl->tree_lock);
1341 	mutex_unlock(&ctl->cache_writeout_mutex);
1342 
1343 out_nospc:
1344 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1345 
1346 out_unlock:
1347 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1348 		up_write(&block_group->data_rwsem);
1349 
1350 	goto out;
1351 }
1352 
1353 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1354 			  struct btrfs_trans_handle *trans,
1355 			  struct btrfs_block_group_cache *block_group,
1356 			  struct btrfs_path *path)
1357 {
1358 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1359 	struct inode *inode;
1360 	int ret = 0;
1361 
1362 	spin_lock(&block_group->lock);
1363 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1364 		spin_unlock(&block_group->lock);
1365 		return 0;
1366 	}
1367 	spin_unlock(&block_group->lock);
1368 
1369 	inode = lookup_free_space_inode(fs_info, block_group, path);
1370 	if (IS_ERR(inode))
1371 		return 0;
1372 
1373 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1374 				block_group, &block_group->io_ctl, trans);
1375 	if (ret) {
1376 #ifdef DEBUG
1377 		btrfs_err(fs_info,
1378 			  "failed to write free space cache for block group %llu",
1379 			  block_group->key.objectid);
1380 #endif
1381 		spin_lock(&block_group->lock);
1382 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1383 		spin_unlock(&block_group->lock);
1384 
1385 		block_group->io_ctl.inode = NULL;
1386 		iput(inode);
1387 	}
1388 
1389 	/*
1390 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1391 	 * to wait for IO and put the inode
1392 	 */
1393 
1394 	return ret;
1395 }
1396 
1397 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1398 					  u64 offset)
1399 {
1400 	ASSERT(offset >= bitmap_start);
1401 	offset -= bitmap_start;
1402 	return (unsigned long)(div_u64(offset, unit));
1403 }
1404 
1405 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1406 {
1407 	return (unsigned long)(div_u64(bytes, unit));
1408 }
1409 
1410 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1411 				   u64 offset)
1412 {
1413 	u64 bitmap_start;
1414 	u64 bytes_per_bitmap;
1415 
1416 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1417 	bitmap_start = offset - ctl->start;
1418 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1419 	bitmap_start *= bytes_per_bitmap;
1420 	bitmap_start += ctl->start;
1421 
1422 	return bitmap_start;
1423 }
1424 
1425 static int tree_insert_offset(struct rb_root *root, u64 offset,
1426 			      struct rb_node *node, int bitmap)
1427 {
1428 	struct rb_node **p = &root->rb_node;
1429 	struct rb_node *parent = NULL;
1430 	struct btrfs_free_space *info;
1431 
1432 	while (*p) {
1433 		parent = *p;
1434 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1435 
1436 		if (offset < info->offset) {
1437 			p = &(*p)->rb_left;
1438 		} else if (offset > info->offset) {
1439 			p = &(*p)->rb_right;
1440 		} else {
1441 			/*
1442 			 * we could have a bitmap entry and an extent entry
1443 			 * share the same offset.  If this is the case, we want
1444 			 * the extent entry to always be found first if we do a
1445 			 * linear search through the tree, since we want to have
1446 			 * the quickest allocation time, and allocating from an
1447 			 * extent is faster than allocating from a bitmap.  So
1448 			 * if we're inserting a bitmap and we find an entry at
1449 			 * this offset, we want to go right, or after this entry
1450 			 * logically.  If we are inserting an extent and we've
1451 			 * found a bitmap, we want to go left, or before
1452 			 * logically.
1453 			 */
1454 			if (bitmap) {
1455 				if (info->bitmap) {
1456 					WARN_ON_ONCE(1);
1457 					return -EEXIST;
1458 				}
1459 				p = &(*p)->rb_right;
1460 			} else {
1461 				if (!info->bitmap) {
1462 					WARN_ON_ONCE(1);
1463 					return -EEXIST;
1464 				}
1465 				p = &(*p)->rb_left;
1466 			}
1467 		}
1468 	}
1469 
1470 	rb_link_node(node, parent, p);
1471 	rb_insert_color(node, root);
1472 
1473 	return 0;
1474 }
1475 
1476 /*
1477  * searches the tree for the given offset.
1478  *
1479  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1480  * want a section that has at least bytes size and comes at or after the given
1481  * offset.
1482  */
1483 static struct btrfs_free_space *
1484 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1485 		   u64 offset, int bitmap_only, int fuzzy)
1486 {
1487 	struct rb_node *n = ctl->free_space_offset.rb_node;
1488 	struct btrfs_free_space *entry, *prev = NULL;
1489 
1490 	/* find entry that is closest to the 'offset' */
1491 	while (1) {
1492 		if (!n) {
1493 			entry = NULL;
1494 			break;
1495 		}
1496 
1497 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1498 		prev = entry;
1499 
1500 		if (offset < entry->offset)
1501 			n = n->rb_left;
1502 		else if (offset > entry->offset)
1503 			n = n->rb_right;
1504 		else
1505 			break;
1506 	}
1507 
1508 	if (bitmap_only) {
1509 		if (!entry)
1510 			return NULL;
1511 		if (entry->bitmap)
1512 			return entry;
1513 
1514 		/*
1515 		 * bitmap entry and extent entry may share same offset,
1516 		 * in that case, bitmap entry comes after extent entry.
1517 		 */
1518 		n = rb_next(n);
1519 		if (!n)
1520 			return NULL;
1521 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1522 		if (entry->offset != offset)
1523 			return NULL;
1524 
1525 		WARN_ON(!entry->bitmap);
1526 		return entry;
1527 	} else if (entry) {
1528 		if (entry->bitmap) {
1529 			/*
1530 			 * if previous extent entry covers the offset,
1531 			 * we should return it instead of the bitmap entry
1532 			 */
1533 			n = rb_prev(&entry->offset_index);
1534 			if (n) {
1535 				prev = rb_entry(n, struct btrfs_free_space,
1536 						offset_index);
1537 				if (!prev->bitmap &&
1538 				    prev->offset + prev->bytes > offset)
1539 					entry = prev;
1540 			}
1541 		}
1542 		return entry;
1543 	}
1544 
1545 	if (!prev)
1546 		return NULL;
1547 
1548 	/* find last entry before the 'offset' */
1549 	entry = prev;
1550 	if (entry->offset > offset) {
1551 		n = rb_prev(&entry->offset_index);
1552 		if (n) {
1553 			entry = rb_entry(n, struct btrfs_free_space,
1554 					offset_index);
1555 			ASSERT(entry->offset <= offset);
1556 		} else {
1557 			if (fuzzy)
1558 				return entry;
1559 			else
1560 				return NULL;
1561 		}
1562 	}
1563 
1564 	if (entry->bitmap) {
1565 		n = rb_prev(&entry->offset_index);
1566 		if (n) {
1567 			prev = rb_entry(n, struct btrfs_free_space,
1568 					offset_index);
1569 			if (!prev->bitmap &&
1570 			    prev->offset + prev->bytes > offset)
1571 				return prev;
1572 		}
1573 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1574 			return entry;
1575 	} else if (entry->offset + entry->bytes > offset)
1576 		return entry;
1577 
1578 	if (!fuzzy)
1579 		return NULL;
1580 
1581 	while (1) {
1582 		if (entry->bitmap) {
1583 			if (entry->offset + BITS_PER_BITMAP *
1584 			    ctl->unit > offset)
1585 				break;
1586 		} else {
1587 			if (entry->offset + entry->bytes > offset)
1588 				break;
1589 		}
1590 
1591 		n = rb_next(&entry->offset_index);
1592 		if (!n)
1593 			return NULL;
1594 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1595 	}
1596 	return entry;
1597 }
1598 
1599 static inline void
1600 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1601 		    struct btrfs_free_space *info)
1602 {
1603 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1604 	ctl->free_extents--;
1605 }
1606 
1607 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1608 			      struct btrfs_free_space *info)
1609 {
1610 	__unlink_free_space(ctl, info);
1611 	ctl->free_space -= info->bytes;
1612 }
1613 
1614 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1615 			   struct btrfs_free_space *info)
1616 {
1617 	int ret = 0;
1618 
1619 	ASSERT(info->bytes || info->bitmap);
1620 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1621 				 &info->offset_index, (info->bitmap != NULL));
1622 	if (ret)
1623 		return ret;
1624 
1625 	ctl->free_space += info->bytes;
1626 	ctl->free_extents++;
1627 	return ret;
1628 }
1629 
1630 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1631 {
1632 	struct btrfs_block_group_cache *block_group = ctl->private;
1633 	u64 max_bytes;
1634 	u64 bitmap_bytes;
1635 	u64 extent_bytes;
1636 	u64 size = block_group->key.offset;
1637 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1638 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1639 
1640 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1641 
1642 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1643 
1644 	/*
1645 	 * The goal is to keep the total amount of memory used per 1gb of space
1646 	 * at or below 32k, so we need to adjust how much memory we allow to be
1647 	 * used by extent based free space tracking
1648 	 */
1649 	if (size < SZ_1G)
1650 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1651 	else
1652 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1653 
1654 	/*
1655 	 * we want to account for 1 more bitmap than what we have so we can make
1656 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1657 	 * we add more bitmaps.
1658 	 */
1659 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1660 
1661 	if (bitmap_bytes >= max_bytes) {
1662 		ctl->extents_thresh = 0;
1663 		return;
1664 	}
1665 
1666 	/*
1667 	 * we want the extent entry threshold to always be at most 1/2 the max
1668 	 * bytes we can have, or whatever is less than that.
1669 	 */
1670 	extent_bytes = max_bytes - bitmap_bytes;
1671 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1672 
1673 	ctl->extents_thresh =
1674 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1675 }
1676 
1677 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1678 				       struct btrfs_free_space *info,
1679 				       u64 offset, u64 bytes)
1680 {
1681 	unsigned long start, count;
1682 
1683 	start = offset_to_bit(info->offset, ctl->unit, offset);
1684 	count = bytes_to_bits(bytes, ctl->unit);
1685 	ASSERT(start + count <= BITS_PER_BITMAP);
1686 
1687 	bitmap_clear(info->bitmap, start, count);
1688 
1689 	info->bytes -= bytes;
1690 	if (info->max_extent_size > ctl->unit)
1691 		info->max_extent_size = 0;
1692 }
1693 
1694 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1695 			      struct btrfs_free_space *info, u64 offset,
1696 			      u64 bytes)
1697 {
1698 	__bitmap_clear_bits(ctl, info, offset, bytes);
1699 	ctl->free_space -= bytes;
1700 }
1701 
1702 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1703 			    struct btrfs_free_space *info, u64 offset,
1704 			    u64 bytes)
1705 {
1706 	unsigned long start, count;
1707 
1708 	start = offset_to_bit(info->offset, ctl->unit, offset);
1709 	count = bytes_to_bits(bytes, ctl->unit);
1710 	ASSERT(start + count <= BITS_PER_BITMAP);
1711 
1712 	bitmap_set(info->bitmap, start, count);
1713 
1714 	info->bytes += bytes;
1715 	ctl->free_space += bytes;
1716 }
1717 
1718 /*
1719  * If we can not find suitable extent, we will use bytes to record
1720  * the size of the max extent.
1721  */
1722 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1723 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1724 			 u64 *bytes, bool for_alloc)
1725 {
1726 	unsigned long found_bits = 0;
1727 	unsigned long max_bits = 0;
1728 	unsigned long bits, i;
1729 	unsigned long next_zero;
1730 	unsigned long extent_bits;
1731 
1732 	/*
1733 	 * Skip searching the bitmap if we don't have a contiguous section that
1734 	 * is large enough for this allocation.
1735 	 */
1736 	if (for_alloc &&
1737 	    bitmap_info->max_extent_size &&
1738 	    bitmap_info->max_extent_size < *bytes) {
1739 		*bytes = bitmap_info->max_extent_size;
1740 		return -1;
1741 	}
1742 
1743 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1744 			  max_t(u64, *offset, bitmap_info->offset));
1745 	bits = bytes_to_bits(*bytes, ctl->unit);
1746 
1747 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1748 		if (for_alloc && bits == 1) {
1749 			found_bits = 1;
1750 			break;
1751 		}
1752 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1753 					       BITS_PER_BITMAP, i);
1754 		extent_bits = next_zero - i;
1755 		if (extent_bits >= bits) {
1756 			found_bits = extent_bits;
1757 			break;
1758 		} else if (extent_bits > max_bits) {
1759 			max_bits = extent_bits;
1760 		}
1761 		i = next_zero;
1762 	}
1763 
1764 	if (found_bits) {
1765 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1766 		*bytes = (u64)(found_bits) * ctl->unit;
1767 		return 0;
1768 	}
1769 
1770 	*bytes = (u64)(max_bits) * ctl->unit;
1771 	bitmap_info->max_extent_size = *bytes;
1772 	return -1;
1773 }
1774 
1775 /* Cache the size of the max extent in bytes */
1776 static struct btrfs_free_space *
1777 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1778 		unsigned long align, u64 *max_extent_size)
1779 {
1780 	struct btrfs_free_space *entry;
1781 	struct rb_node *node;
1782 	u64 tmp;
1783 	u64 align_off;
1784 	int ret;
1785 
1786 	if (!ctl->free_space_offset.rb_node)
1787 		goto out;
1788 
1789 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1790 	if (!entry)
1791 		goto out;
1792 
1793 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1794 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1795 		if (entry->bytes < *bytes) {
1796 			if (entry->bytes > *max_extent_size)
1797 				*max_extent_size = entry->bytes;
1798 			continue;
1799 		}
1800 
1801 		/* make sure the space returned is big enough
1802 		 * to match our requested alignment
1803 		 */
1804 		if (*bytes >= align) {
1805 			tmp = entry->offset - ctl->start + align - 1;
1806 			tmp = div64_u64(tmp, align);
1807 			tmp = tmp * align + ctl->start;
1808 			align_off = tmp - entry->offset;
1809 		} else {
1810 			align_off = 0;
1811 			tmp = entry->offset;
1812 		}
1813 
1814 		if (entry->bytes < *bytes + align_off) {
1815 			if (entry->bytes > *max_extent_size)
1816 				*max_extent_size = entry->bytes;
1817 			continue;
1818 		}
1819 
1820 		if (entry->bitmap) {
1821 			u64 size = *bytes;
1822 
1823 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1824 			if (!ret) {
1825 				*offset = tmp;
1826 				*bytes = size;
1827 				return entry;
1828 			} else if (size > *max_extent_size) {
1829 				*max_extent_size = size;
1830 			}
1831 			continue;
1832 		}
1833 
1834 		*offset = tmp;
1835 		*bytes = entry->bytes - align_off;
1836 		return entry;
1837 	}
1838 out:
1839 	return NULL;
1840 }
1841 
1842 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1843 			   struct btrfs_free_space *info, u64 offset)
1844 {
1845 	info->offset = offset_to_bitmap(ctl, offset);
1846 	info->bytes = 0;
1847 	INIT_LIST_HEAD(&info->list);
1848 	link_free_space(ctl, info);
1849 	ctl->total_bitmaps++;
1850 
1851 	ctl->op->recalc_thresholds(ctl);
1852 }
1853 
1854 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1855 			struct btrfs_free_space *bitmap_info)
1856 {
1857 	unlink_free_space(ctl, bitmap_info);
1858 	kfree(bitmap_info->bitmap);
1859 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1860 	ctl->total_bitmaps--;
1861 	ctl->op->recalc_thresholds(ctl);
1862 }
1863 
1864 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1865 			      struct btrfs_free_space *bitmap_info,
1866 			      u64 *offset, u64 *bytes)
1867 {
1868 	u64 end;
1869 	u64 search_start, search_bytes;
1870 	int ret;
1871 
1872 again:
1873 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1874 
1875 	/*
1876 	 * We need to search for bits in this bitmap.  We could only cover some
1877 	 * of the extent in this bitmap thanks to how we add space, so we need
1878 	 * to search for as much as it as we can and clear that amount, and then
1879 	 * go searching for the next bit.
1880 	 */
1881 	search_start = *offset;
1882 	search_bytes = ctl->unit;
1883 	search_bytes = min(search_bytes, end - search_start + 1);
1884 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1885 			    false);
1886 	if (ret < 0 || search_start != *offset)
1887 		return -EINVAL;
1888 
1889 	/* We may have found more bits than what we need */
1890 	search_bytes = min(search_bytes, *bytes);
1891 
1892 	/* Cannot clear past the end of the bitmap */
1893 	search_bytes = min(search_bytes, end - search_start + 1);
1894 
1895 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1896 	*offset += search_bytes;
1897 	*bytes -= search_bytes;
1898 
1899 	if (*bytes) {
1900 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1901 		if (!bitmap_info->bytes)
1902 			free_bitmap(ctl, bitmap_info);
1903 
1904 		/*
1905 		 * no entry after this bitmap, but we still have bytes to
1906 		 * remove, so something has gone wrong.
1907 		 */
1908 		if (!next)
1909 			return -EINVAL;
1910 
1911 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1912 				       offset_index);
1913 
1914 		/*
1915 		 * if the next entry isn't a bitmap we need to return to let the
1916 		 * extent stuff do its work.
1917 		 */
1918 		if (!bitmap_info->bitmap)
1919 			return -EAGAIN;
1920 
1921 		/*
1922 		 * Ok the next item is a bitmap, but it may not actually hold
1923 		 * the information for the rest of this free space stuff, so
1924 		 * look for it, and if we don't find it return so we can try
1925 		 * everything over again.
1926 		 */
1927 		search_start = *offset;
1928 		search_bytes = ctl->unit;
1929 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1930 				    &search_bytes, false);
1931 		if (ret < 0 || search_start != *offset)
1932 			return -EAGAIN;
1933 
1934 		goto again;
1935 	} else if (!bitmap_info->bytes)
1936 		free_bitmap(ctl, bitmap_info);
1937 
1938 	return 0;
1939 }
1940 
1941 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1942 			       struct btrfs_free_space *info, u64 offset,
1943 			       u64 bytes)
1944 {
1945 	u64 bytes_to_set = 0;
1946 	u64 end;
1947 
1948 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1949 
1950 	bytes_to_set = min(end - offset, bytes);
1951 
1952 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1953 
1954 	/*
1955 	 * We set some bytes, we have no idea what the max extent size is
1956 	 * anymore.
1957 	 */
1958 	info->max_extent_size = 0;
1959 
1960 	return bytes_to_set;
1961 
1962 }
1963 
1964 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1965 		      struct btrfs_free_space *info)
1966 {
1967 	struct btrfs_block_group_cache *block_group = ctl->private;
1968 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1969 	bool forced = false;
1970 
1971 #ifdef CONFIG_BTRFS_DEBUG
1972 	if (btrfs_should_fragment_free_space(block_group))
1973 		forced = true;
1974 #endif
1975 
1976 	/*
1977 	 * If we are below the extents threshold then we can add this as an
1978 	 * extent, and don't have to deal with the bitmap
1979 	 */
1980 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1981 		/*
1982 		 * If this block group has some small extents we don't want to
1983 		 * use up all of our free slots in the cache with them, we want
1984 		 * to reserve them to larger extents, however if we have plenty
1985 		 * of cache left then go ahead an dadd them, no sense in adding
1986 		 * the overhead of a bitmap if we don't have to.
1987 		 */
1988 		if (info->bytes <= fs_info->sectorsize * 4) {
1989 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1990 				return false;
1991 		} else {
1992 			return false;
1993 		}
1994 	}
1995 
1996 	/*
1997 	 * The original block groups from mkfs can be really small, like 8
1998 	 * megabytes, so don't bother with a bitmap for those entries.  However
1999 	 * some block groups can be smaller than what a bitmap would cover but
2000 	 * are still large enough that they could overflow the 32k memory limit,
2001 	 * so allow those block groups to still be allowed to have a bitmap
2002 	 * entry.
2003 	 */
2004 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2005 		return false;
2006 
2007 	return true;
2008 }
2009 
2010 static const struct btrfs_free_space_op free_space_op = {
2011 	.recalc_thresholds	= recalculate_thresholds,
2012 	.use_bitmap		= use_bitmap,
2013 };
2014 
2015 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2016 			      struct btrfs_free_space *info)
2017 {
2018 	struct btrfs_free_space *bitmap_info;
2019 	struct btrfs_block_group_cache *block_group = NULL;
2020 	int added = 0;
2021 	u64 bytes, offset, bytes_added;
2022 	int ret;
2023 
2024 	bytes = info->bytes;
2025 	offset = info->offset;
2026 
2027 	if (!ctl->op->use_bitmap(ctl, info))
2028 		return 0;
2029 
2030 	if (ctl->op == &free_space_op)
2031 		block_group = ctl->private;
2032 again:
2033 	/*
2034 	 * Since we link bitmaps right into the cluster we need to see if we
2035 	 * have a cluster here, and if so and it has our bitmap we need to add
2036 	 * the free space to that bitmap.
2037 	 */
2038 	if (block_group && !list_empty(&block_group->cluster_list)) {
2039 		struct btrfs_free_cluster *cluster;
2040 		struct rb_node *node;
2041 		struct btrfs_free_space *entry;
2042 
2043 		cluster = list_entry(block_group->cluster_list.next,
2044 				     struct btrfs_free_cluster,
2045 				     block_group_list);
2046 		spin_lock(&cluster->lock);
2047 		node = rb_first(&cluster->root);
2048 		if (!node) {
2049 			spin_unlock(&cluster->lock);
2050 			goto no_cluster_bitmap;
2051 		}
2052 
2053 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2054 		if (!entry->bitmap) {
2055 			spin_unlock(&cluster->lock);
2056 			goto no_cluster_bitmap;
2057 		}
2058 
2059 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2060 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2061 							  offset, bytes);
2062 			bytes -= bytes_added;
2063 			offset += bytes_added;
2064 		}
2065 		spin_unlock(&cluster->lock);
2066 		if (!bytes) {
2067 			ret = 1;
2068 			goto out;
2069 		}
2070 	}
2071 
2072 no_cluster_bitmap:
2073 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2074 					 1, 0);
2075 	if (!bitmap_info) {
2076 		ASSERT(added == 0);
2077 		goto new_bitmap;
2078 	}
2079 
2080 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2081 	bytes -= bytes_added;
2082 	offset += bytes_added;
2083 	added = 0;
2084 
2085 	if (!bytes) {
2086 		ret = 1;
2087 		goto out;
2088 	} else
2089 		goto again;
2090 
2091 new_bitmap:
2092 	if (info && info->bitmap) {
2093 		add_new_bitmap(ctl, info, offset);
2094 		added = 1;
2095 		info = NULL;
2096 		goto again;
2097 	} else {
2098 		spin_unlock(&ctl->tree_lock);
2099 
2100 		/* no pre-allocated info, allocate a new one */
2101 		if (!info) {
2102 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2103 						 GFP_NOFS);
2104 			if (!info) {
2105 				spin_lock(&ctl->tree_lock);
2106 				ret = -ENOMEM;
2107 				goto out;
2108 			}
2109 		}
2110 
2111 		/* allocate the bitmap */
2112 		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2113 		spin_lock(&ctl->tree_lock);
2114 		if (!info->bitmap) {
2115 			ret = -ENOMEM;
2116 			goto out;
2117 		}
2118 		goto again;
2119 	}
2120 
2121 out:
2122 	if (info) {
2123 		kfree(info->bitmap);
2124 		kmem_cache_free(btrfs_free_space_cachep, info);
2125 	}
2126 
2127 	return ret;
2128 }
2129 
2130 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2131 			  struct btrfs_free_space *info, bool update_stat)
2132 {
2133 	struct btrfs_free_space *left_info;
2134 	struct btrfs_free_space *right_info;
2135 	bool merged = false;
2136 	u64 offset = info->offset;
2137 	u64 bytes = info->bytes;
2138 
2139 	/*
2140 	 * first we want to see if there is free space adjacent to the range we
2141 	 * are adding, if there is remove that struct and add a new one to
2142 	 * cover the entire range
2143 	 */
2144 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2145 	if (right_info && rb_prev(&right_info->offset_index))
2146 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2147 				     struct btrfs_free_space, offset_index);
2148 	else
2149 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2150 
2151 	if (right_info && !right_info->bitmap) {
2152 		if (update_stat)
2153 			unlink_free_space(ctl, right_info);
2154 		else
2155 			__unlink_free_space(ctl, right_info);
2156 		info->bytes += right_info->bytes;
2157 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2158 		merged = true;
2159 	}
2160 
2161 	if (left_info && !left_info->bitmap &&
2162 	    left_info->offset + left_info->bytes == offset) {
2163 		if (update_stat)
2164 			unlink_free_space(ctl, left_info);
2165 		else
2166 			__unlink_free_space(ctl, left_info);
2167 		info->offset = left_info->offset;
2168 		info->bytes += left_info->bytes;
2169 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2170 		merged = true;
2171 	}
2172 
2173 	return merged;
2174 }
2175 
2176 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2177 				     struct btrfs_free_space *info,
2178 				     bool update_stat)
2179 {
2180 	struct btrfs_free_space *bitmap;
2181 	unsigned long i;
2182 	unsigned long j;
2183 	const u64 end = info->offset + info->bytes;
2184 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2185 	u64 bytes;
2186 
2187 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2188 	if (!bitmap)
2189 		return false;
2190 
2191 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2192 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2193 	if (j == i)
2194 		return false;
2195 	bytes = (j - i) * ctl->unit;
2196 	info->bytes += bytes;
2197 
2198 	if (update_stat)
2199 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2200 	else
2201 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2202 
2203 	if (!bitmap->bytes)
2204 		free_bitmap(ctl, bitmap);
2205 
2206 	return true;
2207 }
2208 
2209 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2210 				       struct btrfs_free_space *info,
2211 				       bool update_stat)
2212 {
2213 	struct btrfs_free_space *bitmap;
2214 	u64 bitmap_offset;
2215 	unsigned long i;
2216 	unsigned long j;
2217 	unsigned long prev_j;
2218 	u64 bytes;
2219 
2220 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2221 	/* If we're on a boundary, try the previous logical bitmap. */
2222 	if (bitmap_offset == info->offset) {
2223 		if (info->offset == 0)
2224 			return false;
2225 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2226 	}
2227 
2228 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2229 	if (!bitmap)
2230 		return false;
2231 
2232 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2233 	j = 0;
2234 	prev_j = (unsigned long)-1;
2235 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2236 		if (j > i)
2237 			break;
2238 		prev_j = j;
2239 	}
2240 	if (prev_j == i)
2241 		return false;
2242 
2243 	if (prev_j == (unsigned long)-1)
2244 		bytes = (i + 1) * ctl->unit;
2245 	else
2246 		bytes = (i - prev_j) * ctl->unit;
2247 
2248 	info->offset -= bytes;
2249 	info->bytes += bytes;
2250 
2251 	if (update_stat)
2252 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2253 	else
2254 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2255 
2256 	if (!bitmap->bytes)
2257 		free_bitmap(ctl, bitmap);
2258 
2259 	return true;
2260 }
2261 
2262 /*
2263  * We prefer always to allocate from extent entries, both for clustered and
2264  * non-clustered allocation requests. So when attempting to add a new extent
2265  * entry, try to see if there's adjacent free space in bitmap entries, and if
2266  * there is, migrate that space from the bitmaps to the extent.
2267  * Like this we get better chances of satisfying space allocation requests
2268  * because we attempt to satisfy them based on a single cache entry, and never
2269  * on 2 or more entries - even if the entries represent a contiguous free space
2270  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2271  * ends).
2272  */
2273 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2274 			      struct btrfs_free_space *info,
2275 			      bool update_stat)
2276 {
2277 	/*
2278 	 * Only work with disconnected entries, as we can change their offset,
2279 	 * and must be extent entries.
2280 	 */
2281 	ASSERT(!info->bitmap);
2282 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2283 
2284 	if (ctl->total_bitmaps > 0) {
2285 		bool stole_end;
2286 		bool stole_front = false;
2287 
2288 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2289 		if (ctl->total_bitmaps > 0)
2290 			stole_front = steal_from_bitmap_to_front(ctl, info,
2291 								 update_stat);
2292 
2293 		if (stole_end || stole_front)
2294 			try_merge_free_space(ctl, info, update_stat);
2295 	}
2296 }
2297 
2298 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2299 			   struct btrfs_free_space_ctl *ctl,
2300 			   u64 offset, u64 bytes)
2301 {
2302 	struct btrfs_free_space *info;
2303 	int ret = 0;
2304 
2305 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2306 	if (!info)
2307 		return -ENOMEM;
2308 
2309 	info->offset = offset;
2310 	info->bytes = bytes;
2311 	RB_CLEAR_NODE(&info->offset_index);
2312 
2313 	spin_lock(&ctl->tree_lock);
2314 
2315 	if (try_merge_free_space(ctl, info, true))
2316 		goto link;
2317 
2318 	/*
2319 	 * There was no extent directly to the left or right of this new
2320 	 * extent then we know we're going to have to allocate a new extent, so
2321 	 * before we do that see if we need to drop this into a bitmap
2322 	 */
2323 	ret = insert_into_bitmap(ctl, info);
2324 	if (ret < 0) {
2325 		goto out;
2326 	} else if (ret) {
2327 		ret = 0;
2328 		goto out;
2329 	}
2330 link:
2331 	/*
2332 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2333 	 * going to add the new free space to existing bitmap entries - because
2334 	 * that would mean unnecessary work that would be reverted. Therefore
2335 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2336 	 */
2337 	steal_from_bitmap(ctl, info, true);
2338 
2339 	ret = link_free_space(ctl, info);
2340 	if (ret)
2341 		kmem_cache_free(btrfs_free_space_cachep, info);
2342 out:
2343 	spin_unlock(&ctl->tree_lock);
2344 
2345 	if (ret) {
2346 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2347 		ASSERT(ret != -EEXIST);
2348 	}
2349 
2350 	return ret;
2351 }
2352 
2353 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2354 			    u64 offset, u64 bytes)
2355 {
2356 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2357 	struct btrfs_free_space *info;
2358 	int ret;
2359 	bool re_search = false;
2360 
2361 	spin_lock(&ctl->tree_lock);
2362 
2363 again:
2364 	ret = 0;
2365 	if (!bytes)
2366 		goto out_lock;
2367 
2368 	info = tree_search_offset(ctl, offset, 0, 0);
2369 	if (!info) {
2370 		/*
2371 		 * oops didn't find an extent that matched the space we wanted
2372 		 * to remove, look for a bitmap instead
2373 		 */
2374 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2375 					  1, 0);
2376 		if (!info) {
2377 			/*
2378 			 * If we found a partial bit of our free space in a
2379 			 * bitmap but then couldn't find the other part this may
2380 			 * be a problem, so WARN about it.
2381 			 */
2382 			WARN_ON(re_search);
2383 			goto out_lock;
2384 		}
2385 	}
2386 
2387 	re_search = false;
2388 	if (!info->bitmap) {
2389 		unlink_free_space(ctl, info);
2390 		if (offset == info->offset) {
2391 			u64 to_free = min(bytes, info->bytes);
2392 
2393 			info->bytes -= to_free;
2394 			info->offset += to_free;
2395 			if (info->bytes) {
2396 				ret = link_free_space(ctl, info);
2397 				WARN_ON(ret);
2398 			} else {
2399 				kmem_cache_free(btrfs_free_space_cachep, info);
2400 			}
2401 
2402 			offset += to_free;
2403 			bytes -= to_free;
2404 			goto again;
2405 		} else {
2406 			u64 old_end = info->bytes + info->offset;
2407 
2408 			info->bytes = offset - info->offset;
2409 			ret = link_free_space(ctl, info);
2410 			WARN_ON(ret);
2411 			if (ret)
2412 				goto out_lock;
2413 
2414 			/* Not enough bytes in this entry to satisfy us */
2415 			if (old_end < offset + bytes) {
2416 				bytes -= old_end - offset;
2417 				offset = old_end;
2418 				goto again;
2419 			} else if (old_end == offset + bytes) {
2420 				/* all done */
2421 				goto out_lock;
2422 			}
2423 			spin_unlock(&ctl->tree_lock);
2424 
2425 			ret = btrfs_add_free_space(block_group, offset + bytes,
2426 						   old_end - (offset + bytes));
2427 			WARN_ON(ret);
2428 			goto out;
2429 		}
2430 	}
2431 
2432 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2433 	if (ret == -EAGAIN) {
2434 		re_search = true;
2435 		goto again;
2436 	}
2437 out_lock:
2438 	spin_unlock(&ctl->tree_lock);
2439 out:
2440 	return ret;
2441 }
2442 
2443 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2444 			   u64 bytes)
2445 {
2446 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2447 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2448 	struct btrfs_free_space *info;
2449 	struct rb_node *n;
2450 	int count = 0;
2451 
2452 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2453 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2454 		if (info->bytes >= bytes && !block_group->ro)
2455 			count++;
2456 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2457 			   info->offset, info->bytes,
2458 		       (info->bitmap) ? "yes" : "no");
2459 	}
2460 	btrfs_info(fs_info, "block group has cluster?: %s",
2461 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2462 	btrfs_info(fs_info,
2463 		   "%d blocks of free space at or bigger than bytes is", count);
2464 }
2465 
2466 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2467 {
2468 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2469 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2470 
2471 	spin_lock_init(&ctl->tree_lock);
2472 	ctl->unit = fs_info->sectorsize;
2473 	ctl->start = block_group->key.objectid;
2474 	ctl->private = block_group;
2475 	ctl->op = &free_space_op;
2476 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2477 	mutex_init(&ctl->cache_writeout_mutex);
2478 
2479 	/*
2480 	 * we only want to have 32k of ram per block group for keeping
2481 	 * track of free space, and if we pass 1/2 of that we want to
2482 	 * start converting things over to using bitmaps
2483 	 */
2484 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2485 }
2486 
2487 /*
2488  * for a given cluster, put all of its extents back into the free
2489  * space cache.  If the block group passed doesn't match the block group
2490  * pointed to by the cluster, someone else raced in and freed the
2491  * cluster already.  In that case, we just return without changing anything
2492  */
2493 static int
2494 __btrfs_return_cluster_to_free_space(
2495 			     struct btrfs_block_group_cache *block_group,
2496 			     struct btrfs_free_cluster *cluster)
2497 {
2498 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2499 	struct btrfs_free_space *entry;
2500 	struct rb_node *node;
2501 
2502 	spin_lock(&cluster->lock);
2503 	if (cluster->block_group != block_group)
2504 		goto out;
2505 
2506 	cluster->block_group = NULL;
2507 	cluster->window_start = 0;
2508 	list_del_init(&cluster->block_group_list);
2509 
2510 	node = rb_first(&cluster->root);
2511 	while (node) {
2512 		bool bitmap;
2513 
2514 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2515 		node = rb_next(&entry->offset_index);
2516 		rb_erase(&entry->offset_index, &cluster->root);
2517 		RB_CLEAR_NODE(&entry->offset_index);
2518 
2519 		bitmap = (entry->bitmap != NULL);
2520 		if (!bitmap) {
2521 			try_merge_free_space(ctl, entry, false);
2522 			steal_from_bitmap(ctl, entry, false);
2523 		}
2524 		tree_insert_offset(&ctl->free_space_offset,
2525 				   entry->offset, &entry->offset_index, bitmap);
2526 	}
2527 	cluster->root = RB_ROOT;
2528 
2529 out:
2530 	spin_unlock(&cluster->lock);
2531 	btrfs_put_block_group(block_group);
2532 	return 0;
2533 }
2534 
2535 static void __btrfs_remove_free_space_cache_locked(
2536 				struct btrfs_free_space_ctl *ctl)
2537 {
2538 	struct btrfs_free_space *info;
2539 	struct rb_node *node;
2540 
2541 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2542 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2543 		if (!info->bitmap) {
2544 			unlink_free_space(ctl, info);
2545 			kmem_cache_free(btrfs_free_space_cachep, info);
2546 		} else {
2547 			free_bitmap(ctl, info);
2548 		}
2549 
2550 		cond_resched_lock(&ctl->tree_lock);
2551 	}
2552 }
2553 
2554 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2555 {
2556 	spin_lock(&ctl->tree_lock);
2557 	__btrfs_remove_free_space_cache_locked(ctl);
2558 	spin_unlock(&ctl->tree_lock);
2559 }
2560 
2561 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2562 {
2563 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2564 	struct btrfs_free_cluster *cluster;
2565 	struct list_head *head;
2566 
2567 	spin_lock(&ctl->tree_lock);
2568 	while ((head = block_group->cluster_list.next) !=
2569 	       &block_group->cluster_list) {
2570 		cluster = list_entry(head, struct btrfs_free_cluster,
2571 				     block_group_list);
2572 
2573 		WARN_ON(cluster->block_group != block_group);
2574 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2575 
2576 		cond_resched_lock(&ctl->tree_lock);
2577 	}
2578 	__btrfs_remove_free_space_cache_locked(ctl);
2579 	spin_unlock(&ctl->tree_lock);
2580 
2581 }
2582 
2583 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2584 			       u64 offset, u64 bytes, u64 empty_size,
2585 			       u64 *max_extent_size)
2586 {
2587 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2588 	struct btrfs_free_space *entry = NULL;
2589 	u64 bytes_search = bytes + empty_size;
2590 	u64 ret = 0;
2591 	u64 align_gap = 0;
2592 	u64 align_gap_len = 0;
2593 
2594 	spin_lock(&ctl->tree_lock);
2595 	entry = find_free_space(ctl, &offset, &bytes_search,
2596 				block_group->full_stripe_len, max_extent_size);
2597 	if (!entry)
2598 		goto out;
2599 
2600 	ret = offset;
2601 	if (entry->bitmap) {
2602 		bitmap_clear_bits(ctl, entry, offset, bytes);
2603 		if (!entry->bytes)
2604 			free_bitmap(ctl, entry);
2605 	} else {
2606 		unlink_free_space(ctl, entry);
2607 		align_gap_len = offset - entry->offset;
2608 		align_gap = entry->offset;
2609 
2610 		entry->offset = offset + bytes;
2611 		WARN_ON(entry->bytes < bytes + align_gap_len);
2612 
2613 		entry->bytes -= bytes + align_gap_len;
2614 		if (!entry->bytes)
2615 			kmem_cache_free(btrfs_free_space_cachep, entry);
2616 		else
2617 			link_free_space(ctl, entry);
2618 	}
2619 out:
2620 	spin_unlock(&ctl->tree_lock);
2621 
2622 	if (align_gap_len)
2623 		__btrfs_add_free_space(block_group->fs_info, ctl,
2624 				       align_gap, align_gap_len);
2625 	return ret;
2626 }
2627 
2628 /*
2629  * given a cluster, put all of its extents back into the free space
2630  * cache.  If a block group is passed, this function will only free
2631  * a cluster that belongs to the passed block group.
2632  *
2633  * Otherwise, it'll get a reference on the block group pointed to by the
2634  * cluster and remove the cluster from it.
2635  */
2636 int btrfs_return_cluster_to_free_space(
2637 			       struct btrfs_block_group_cache *block_group,
2638 			       struct btrfs_free_cluster *cluster)
2639 {
2640 	struct btrfs_free_space_ctl *ctl;
2641 	int ret;
2642 
2643 	/* first, get a safe pointer to the block group */
2644 	spin_lock(&cluster->lock);
2645 	if (!block_group) {
2646 		block_group = cluster->block_group;
2647 		if (!block_group) {
2648 			spin_unlock(&cluster->lock);
2649 			return 0;
2650 		}
2651 	} else if (cluster->block_group != block_group) {
2652 		/* someone else has already freed it don't redo their work */
2653 		spin_unlock(&cluster->lock);
2654 		return 0;
2655 	}
2656 	atomic_inc(&block_group->count);
2657 	spin_unlock(&cluster->lock);
2658 
2659 	ctl = block_group->free_space_ctl;
2660 
2661 	/* now return any extents the cluster had on it */
2662 	spin_lock(&ctl->tree_lock);
2663 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2664 	spin_unlock(&ctl->tree_lock);
2665 
2666 	/* finally drop our ref */
2667 	btrfs_put_block_group(block_group);
2668 	return ret;
2669 }
2670 
2671 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2672 				   struct btrfs_free_cluster *cluster,
2673 				   struct btrfs_free_space *entry,
2674 				   u64 bytes, u64 min_start,
2675 				   u64 *max_extent_size)
2676 {
2677 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2678 	int err;
2679 	u64 search_start = cluster->window_start;
2680 	u64 search_bytes = bytes;
2681 	u64 ret = 0;
2682 
2683 	search_start = min_start;
2684 	search_bytes = bytes;
2685 
2686 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2687 	if (err) {
2688 		if (search_bytes > *max_extent_size)
2689 			*max_extent_size = search_bytes;
2690 		return 0;
2691 	}
2692 
2693 	ret = search_start;
2694 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2695 
2696 	return ret;
2697 }
2698 
2699 /*
2700  * given a cluster, try to allocate 'bytes' from it, returns 0
2701  * if it couldn't find anything suitably large, or a logical disk offset
2702  * if things worked out
2703  */
2704 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2705 			     struct btrfs_free_cluster *cluster, u64 bytes,
2706 			     u64 min_start, u64 *max_extent_size)
2707 {
2708 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2709 	struct btrfs_free_space *entry = NULL;
2710 	struct rb_node *node;
2711 	u64 ret = 0;
2712 
2713 	spin_lock(&cluster->lock);
2714 	if (bytes > cluster->max_size)
2715 		goto out;
2716 
2717 	if (cluster->block_group != block_group)
2718 		goto out;
2719 
2720 	node = rb_first(&cluster->root);
2721 	if (!node)
2722 		goto out;
2723 
2724 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2725 	while (1) {
2726 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2727 			*max_extent_size = entry->bytes;
2728 
2729 		if (entry->bytes < bytes ||
2730 		    (!entry->bitmap && entry->offset < min_start)) {
2731 			node = rb_next(&entry->offset_index);
2732 			if (!node)
2733 				break;
2734 			entry = rb_entry(node, struct btrfs_free_space,
2735 					 offset_index);
2736 			continue;
2737 		}
2738 
2739 		if (entry->bitmap) {
2740 			ret = btrfs_alloc_from_bitmap(block_group,
2741 						      cluster, entry, bytes,
2742 						      cluster->window_start,
2743 						      max_extent_size);
2744 			if (ret == 0) {
2745 				node = rb_next(&entry->offset_index);
2746 				if (!node)
2747 					break;
2748 				entry = rb_entry(node, struct btrfs_free_space,
2749 						 offset_index);
2750 				continue;
2751 			}
2752 			cluster->window_start += bytes;
2753 		} else {
2754 			ret = entry->offset;
2755 
2756 			entry->offset += bytes;
2757 			entry->bytes -= bytes;
2758 		}
2759 
2760 		if (entry->bytes == 0)
2761 			rb_erase(&entry->offset_index, &cluster->root);
2762 		break;
2763 	}
2764 out:
2765 	spin_unlock(&cluster->lock);
2766 
2767 	if (!ret)
2768 		return 0;
2769 
2770 	spin_lock(&ctl->tree_lock);
2771 
2772 	ctl->free_space -= bytes;
2773 	if (entry->bytes == 0) {
2774 		ctl->free_extents--;
2775 		if (entry->bitmap) {
2776 			kfree(entry->bitmap);
2777 			ctl->total_bitmaps--;
2778 			ctl->op->recalc_thresholds(ctl);
2779 		}
2780 		kmem_cache_free(btrfs_free_space_cachep, entry);
2781 	}
2782 
2783 	spin_unlock(&ctl->tree_lock);
2784 
2785 	return ret;
2786 }
2787 
2788 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2789 				struct btrfs_free_space *entry,
2790 				struct btrfs_free_cluster *cluster,
2791 				u64 offset, u64 bytes,
2792 				u64 cont1_bytes, u64 min_bytes)
2793 {
2794 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2795 	unsigned long next_zero;
2796 	unsigned long i;
2797 	unsigned long want_bits;
2798 	unsigned long min_bits;
2799 	unsigned long found_bits;
2800 	unsigned long max_bits = 0;
2801 	unsigned long start = 0;
2802 	unsigned long total_found = 0;
2803 	int ret;
2804 
2805 	i = offset_to_bit(entry->offset, ctl->unit,
2806 			  max_t(u64, offset, entry->offset));
2807 	want_bits = bytes_to_bits(bytes, ctl->unit);
2808 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2809 
2810 	/*
2811 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2812 	 * fragmented.
2813 	 */
2814 	if (entry->max_extent_size &&
2815 	    entry->max_extent_size < cont1_bytes)
2816 		return -ENOSPC;
2817 again:
2818 	found_bits = 0;
2819 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2820 		next_zero = find_next_zero_bit(entry->bitmap,
2821 					       BITS_PER_BITMAP, i);
2822 		if (next_zero - i >= min_bits) {
2823 			found_bits = next_zero - i;
2824 			if (found_bits > max_bits)
2825 				max_bits = found_bits;
2826 			break;
2827 		}
2828 		if (next_zero - i > max_bits)
2829 			max_bits = next_zero - i;
2830 		i = next_zero;
2831 	}
2832 
2833 	if (!found_bits) {
2834 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2835 		return -ENOSPC;
2836 	}
2837 
2838 	if (!total_found) {
2839 		start = i;
2840 		cluster->max_size = 0;
2841 	}
2842 
2843 	total_found += found_bits;
2844 
2845 	if (cluster->max_size < found_bits * ctl->unit)
2846 		cluster->max_size = found_bits * ctl->unit;
2847 
2848 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2849 		i = next_zero + 1;
2850 		goto again;
2851 	}
2852 
2853 	cluster->window_start = start * ctl->unit + entry->offset;
2854 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2855 	ret = tree_insert_offset(&cluster->root, entry->offset,
2856 				 &entry->offset_index, 1);
2857 	ASSERT(!ret); /* -EEXIST; Logic error */
2858 
2859 	trace_btrfs_setup_cluster(block_group, cluster,
2860 				  total_found * ctl->unit, 1);
2861 	return 0;
2862 }
2863 
2864 /*
2865  * This searches the block group for just extents to fill the cluster with.
2866  * Try to find a cluster with at least bytes total bytes, at least one
2867  * extent of cont1_bytes, and other clusters of at least min_bytes.
2868  */
2869 static noinline int
2870 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2871 			struct btrfs_free_cluster *cluster,
2872 			struct list_head *bitmaps, u64 offset, u64 bytes,
2873 			u64 cont1_bytes, u64 min_bytes)
2874 {
2875 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2876 	struct btrfs_free_space *first = NULL;
2877 	struct btrfs_free_space *entry = NULL;
2878 	struct btrfs_free_space *last;
2879 	struct rb_node *node;
2880 	u64 window_free;
2881 	u64 max_extent;
2882 	u64 total_size = 0;
2883 
2884 	entry = tree_search_offset(ctl, offset, 0, 1);
2885 	if (!entry)
2886 		return -ENOSPC;
2887 
2888 	/*
2889 	 * We don't want bitmaps, so just move along until we find a normal
2890 	 * extent entry.
2891 	 */
2892 	while (entry->bitmap || entry->bytes < min_bytes) {
2893 		if (entry->bitmap && list_empty(&entry->list))
2894 			list_add_tail(&entry->list, bitmaps);
2895 		node = rb_next(&entry->offset_index);
2896 		if (!node)
2897 			return -ENOSPC;
2898 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2899 	}
2900 
2901 	window_free = entry->bytes;
2902 	max_extent = entry->bytes;
2903 	first = entry;
2904 	last = entry;
2905 
2906 	for (node = rb_next(&entry->offset_index); node;
2907 	     node = rb_next(&entry->offset_index)) {
2908 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2909 
2910 		if (entry->bitmap) {
2911 			if (list_empty(&entry->list))
2912 				list_add_tail(&entry->list, bitmaps);
2913 			continue;
2914 		}
2915 
2916 		if (entry->bytes < min_bytes)
2917 			continue;
2918 
2919 		last = entry;
2920 		window_free += entry->bytes;
2921 		if (entry->bytes > max_extent)
2922 			max_extent = entry->bytes;
2923 	}
2924 
2925 	if (window_free < bytes || max_extent < cont1_bytes)
2926 		return -ENOSPC;
2927 
2928 	cluster->window_start = first->offset;
2929 
2930 	node = &first->offset_index;
2931 
2932 	/*
2933 	 * now we've found our entries, pull them out of the free space
2934 	 * cache and put them into the cluster rbtree
2935 	 */
2936 	do {
2937 		int ret;
2938 
2939 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2940 		node = rb_next(&entry->offset_index);
2941 		if (entry->bitmap || entry->bytes < min_bytes)
2942 			continue;
2943 
2944 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2945 		ret = tree_insert_offset(&cluster->root, entry->offset,
2946 					 &entry->offset_index, 0);
2947 		total_size += entry->bytes;
2948 		ASSERT(!ret); /* -EEXIST; Logic error */
2949 	} while (node && entry != last);
2950 
2951 	cluster->max_size = max_extent;
2952 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2953 	return 0;
2954 }
2955 
2956 /*
2957  * This specifically looks for bitmaps that may work in the cluster, we assume
2958  * that we have already failed to find extents that will work.
2959  */
2960 static noinline int
2961 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2962 		     struct btrfs_free_cluster *cluster,
2963 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2964 		     u64 cont1_bytes, u64 min_bytes)
2965 {
2966 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2967 	struct btrfs_free_space *entry = NULL;
2968 	int ret = -ENOSPC;
2969 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2970 
2971 	if (ctl->total_bitmaps == 0)
2972 		return -ENOSPC;
2973 
2974 	/*
2975 	 * The bitmap that covers offset won't be in the list unless offset
2976 	 * is just its start offset.
2977 	 */
2978 	if (!list_empty(bitmaps))
2979 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2980 
2981 	if (!entry || entry->offset != bitmap_offset) {
2982 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2983 		if (entry && list_empty(&entry->list))
2984 			list_add(&entry->list, bitmaps);
2985 	}
2986 
2987 	list_for_each_entry(entry, bitmaps, list) {
2988 		if (entry->bytes < bytes)
2989 			continue;
2990 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2991 					   bytes, cont1_bytes, min_bytes);
2992 		if (!ret)
2993 			return 0;
2994 	}
2995 
2996 	/*
2997 	 * The bitmaps list has all the bitmaps that record free space
2998 	 * starting after offset, so no more search is required.
2999 	 */
3000 	return -ENOSPC;
3001 }
3002 
3003 /*
3004  * here we try to find a cluster of blocks in a block group.  The goal
3005  * is to find at least bytes+empty_size.
3006  * We might not find them all in one contiguous area.
3007  *
3008  * returns zero and sets up cluster if things worked out, otherwise
3009  * it returns -enospc
3010  */
3011 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3012 			     struct btrfs_block_group_cache *block_group,
3013 			     struct btrfs_free_cluster *cluster,
3014 			     u64 offset, u64 bytes, u64 empty_size)
3015 {
3016 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3017 	struct btrfs_free_space *entry, *tmp;
3018 	LIST_HEAD(bitmaps);
3019 	u64 min_bytes;
3020 	u64 cont1_bytes;
3021 	int ret;
3022 
3023 	/*
3024 	 * Choose the minimum extent size we'll require for this
3025 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3026 	 * For metadata, allow allocates with smaller extents.  For
3027 	 * data, keep it dense.
3028 	 */
3029 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3030 		cont1_bytes = min_bytes = bytes + empty_size;
3031 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3032 		cont1_bytes = bytes;
3033 		min_bytes = fs_info->sectorsize;
3034 	} else {
3035 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3036 		min_bytes = fs_info->sectorsize;
3037 	}
3038 
3039 	spin_lock(&ctl->tree_lock);
3040 
3041 	/*
3042 	 * If we know we don't have enough space to make a cluster don't even
3043 	 * bother doing all the work to try and find one.
3044 	 */
3045 	if (ctl->free_space < bytes) {
3046 		spin_unlock(&ctl->tree_lock);
3047 		return -ENOSPC;
3048 	}
3049 
3050 	spin_lock(&cluster->lock);
3051 
3052 	/* someone already found a cluster, hooray */
3053 	if (cluster->block_group) {
3054 		ret = 0;
3055 		goto out;
3056 	}
3057 
3058 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3059 				 min_bytes);
3060 
3061 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3062 				      bytes + empty_size,
3063 				      cont1_bytes, min_bytes);
3064 	if (ret)
3065 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3066 					   offset, bytes + empty_size,
3067 					   cont1_bytes, min_bytes);
3068 
3069 	/* Clear our temporary list */
3070 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3071 		list_del_init(&entry->list);
3072 
3073 	if (!ret) {
3074 		atomic_inc(&block_group->count);
3075 		list_add_tail(&cluster->block_group_list,
3076 			      &block_group->cluster_list);
3077 		cluster->block_group = block_group;
3078 	} else {
3079 		trace_btrfs_failed_cluster_setup(block_group);
3080 	}
3081 out:
3082 	spin_unlock(&cluster->lock);
3083 	spin_unlock(&ctl->tree_lock);
3084 
3085 	return ret;
3086 }
3087 
3088 /*
3089  * simple code to zero out a cluster
3090  */
3091 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3092 {
3093 	spin_lock_init(&cluster->lock);
3094 	spin_lock_init(&cluster->refill_lock);
3095 	cluster->root = RB_ROOT;
3096 	cluster->max_size = 0;
3097 	cluster->fragmented = false;
3098 	INIT_LIST_HEAD(&cluster->block_group_list);
3099 	cluster->block_group = NULL;
3100 }
3101 
3102 static int do_trimming(struct btrfs_block_group_cache *block_group,
3103 		       u64 *total_trimmed, u64 start, u64 bytes,
3104 		       u64 reserved_start, u64 reserved_bytes,
3105 		       struct btrfs_trim_range *trim_entry)
3106 {
3107 	struct btrfs_space_info *space_info = block_group->space_info;
3108 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3109 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3110 	int ret;
3111 	int update = 0;
3112 	u64 trimmed = 0;
3113 
3114 	spin_lock(&space_info->lock);
3115 	spin_lock(&block_group->lock);
3116 	if (!block_group->ro) {
3117 		block_group->reserved += reserved_bytes;
3118 		space_info->bytes_reserved += reserved_bytes;
3119 		update = 1;
3120 	}
3121 	spin_unlock(&block_group->lock);
3122 	spin_unlock(&space_info->lock);
3123 
3124 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3125 	if (!ret)
3126 		*total_trimmed += trimmed;
3127 
3128 	mutex_lock(&ctl->cache_writeout_mutex);
3129 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3130 	list_del(&trim_entry->list);
3131 	mutex_unlock(&ctl->cache_writeout_mutex);
3132 
3133 	if (update) {
3134 		spin_lock(&space_info->lock);
3135 		spin_lock(&block_group->lock);
3136 		if (block_group->ro)
3137 			space_info->bytes_readonly += reserved_bytes;
3138 		block_group->reserved -= reserved_bytes;
3139 		space_info->bytes_reserved -= reserved_bytes;
3140 		spin_unlock(&space_info->lock);
3141 		spin_unlock(&block_group->lock);
3142 	}
3143 
3144 	return ret;
3145 }
3146 
3147 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3148 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3149 {
3150 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3151 	struct btrfs_free_space *entry;
3152 	struct rb_node *node;
3153 	int ret = 0;
3154 	u64 extent_start;
3155 	u64 extent_bytes;
3156 	u64 bytes;
3157 
3158 	while (start < end) {
3159 		struct btrfs_trim_range trim_entry;
3160 
3161 		mutex_lock(&ctl->cache_writeout_mutex);
3162 		spin_lock(&ctl->tree_lock);
3163 
3164 		if (ctl->free_space < minlen) {
3165 			spin_unlock(&ctl->tree_lock);
3166 			mutex_unlock(&ctl->cache_writeout_mutex);
3167 			break;
3168 		}
3169 
3170 		entry = tree_search_offset(ctl, start, 0, 1);
3171 		if (!entry) {
3172 			spin_unlock(&ctl->tree_lock);
3173 			mutex_unlock(&ctl->cache_writeout_mutex);
3174 			break;
3175 		}
3176 
3177 		/* skip bitmaps */
3178 		while (entry->bitmap) {
3179 			node = rb_next(&entry->offset_index);
3180 			if (!node) {
3181 				spin_unlock(&ctl->tree_lock);
3182 				mutex_unlock(&ctl->cache_writeout_mutex);
3183 				goto out;
3184 			}
3185 			entry = rb_entry(node, struct btrfs_free_space,
3186 					 offset_index);
3187 		}
3188 
3189 		if (entry->offset >= end) {
3190 			spin_unlock(&ctl->tree_lock);
3191 			mutex_unlock(&ctl->cache_writeout_mutex);
3192 			break;
3193 		}
3194 
3195 		extent_start = entry->offset;
3196 		extent_bytes = entry->bytes;
3197 		start = max(start, extent_start);
3198 		bytes = min(extent_start + extent_bytes, end) - start;
3199 		if (bytes < minlen) {
3200 			spin_unlock(&ctl->tree_lock);
3201 			mutex_unlock(&ctl->cache_writeout_mutex);
3202 			goto next;
3203 		}
3204 
3205 		unlink_free_space(ctl, entry);
3206 		kmem_cache_free(btrfs_free_space_cachep, entry);
3207 
3208 		spin_unlock(&ctl->tree_lock);
3209 		trim_entry.start = extent_start;
3210 		trim_entry.bytes = extent_bytes;
3211 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3212 		mutex_unlock(&ctl->cache_writeout_mutex);
3213 
3214 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3215 				  extent_start, extent_bytes, &trim_entry);
3216 		if (ret)
3217 			break;
3218 next:
3219 		start += bytes;
3220 
3221 		if (fatal_signal_pending(current)) {
3222 			ret = -ERESTARTSYS;
3223 			break;
3224 		}
3225 
3226 		cond_resched();
3227 	}
3228 out:
3229 	return ret;
3230 }
3231 
3232 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3233 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3234 {
3235 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3236 	struct btrfs_free_space *entry;
3237 	int ret = 0;
3238 	int ret2;
3239 	u64 bytes;
3240 	u64 offset = offset_to_bitmap(ctl, start);
3241 
3242 	while (offset < end) {
3243 		bool next_bitmap = false;
3244 		struct btrfs_trim_range trim_entry;
3245 
3246 		mutex_lock(&ctl->cache_writeout_mutex);
3247 		spin_lock(&ctl->tree_lock);
3248 
3249 		if (ctl->free_space < minlen) {
3250 			spin_unlock(&ctl->tree_lock);
3251 			mutex_unlock(&ctl->cache_writeout_mutex);
3252 			break;
3253 		}
3254 
3255 		entry = tree_search_offset(ctl, offset, 1, 0);
3256 		if (!entry) {
3257 			spin_unlock(&ctl->tree_lock);
3258 			mutex_unlock(&ctl->cache_writeout_mutex);
3259 			next_bitmap = true;
3260 			goto next;
3261 		}
3262 
3263 		bytes = minlen;
3264 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3265 		if (ret2 || start >= end) {
3266 			spin_unlock(&ctl->tree_lock);
3267 			mutex_unlock(&ctl->cache_writeout_mutex);
3268 			next_bitmap = true;
3269 			goto next;
3270 		}
3271 
3272 		bytes = min(bytes, end - start);
3273 		if (bytes < minlen) {
3274 			spin_unlock(&ctl->tree_lock);
3275 			mutex_unlock(&ctl->cache_writeout_mutex);
3276 			goto next;
3277 		}
3278 
3279 		bitmap_clear_bits(ctl, entry, start, bytes);
3280 		if (entry->bytes == 0)
3281 			free_bitmap(ctl, entry);
3282 
3283 		spin_unlock(&ctl->tree_lock);
3284 		trim_entry.start = start;
3285 		trim_entry.bytes = bytes;
3286 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3287 		mutex_unlock(&ctl->cache_writeout_mutex);
3288 
3289 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3290 				  start, bytes, &trim_entry);
3291 		if (ret)
3292 			break;
3293 next:
3294 		if (next_bitmap) {
3295 			offset += BITS_PER_BITMAP * ctl->unit;
3296 		} else {
3297 			start += bytes;
3298 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3299 				offset += BITS_PER_BITMAP * ctl->unit;
3300 		}
3301 
3302 		if (fatal_signal_pending(current)) {
3303 			ret = -ERESTARTSYS;
3304 			break;
3305 		}
3306 
3307 		cond_resched();
3308 	}
3309 
3310 	return ret;
3311 }
3312 
3313 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3314 {
3315 	atomic_inc(&cache->trimming);
3316 }
3317 
3318 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3319 {
3320 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3321 	struct extent_map_tree *em_tree;
3322 	struct extent_map *em;
3323 	bool cleanup;
3324 
3325 	spin_lock(&block_group->lock);
3326 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3327 		   block_group->removed);
3328 	spin_unlock(&block_group->lock);
3329 
3330 	if (cleanup) {
3331 		mutex_lock(&fs_info->chunk_mutex);
3332 		em_tree = &fs_info->mapping_tree.map_tree;
3333 		write_lock(&em_tree->lock);
3334 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3335 					   1);
3336 		BUG_ON(!em); /* logic error, can't happen */
3337 		/*
3338 		 * remove_extent_mapping() will delete us from the pinned_chunks
3339 		 * list, which is protected by the chunk mutex.
3340 		 */
3341 		remove_extent_mapping(em_tree, em);
3342 		write_unlock(&em_tree->lock);
3343 		mutex_unlock(&fs_info->chunk_mutex);
3344 
3345 		/* once for us and once for the tree */
3346 		free_extent_map(em);
3347 		free_extent_map(em);
3348 
3349 		/*
3350 		 * We've left one free space entry and other tasks trimming
3351 		 * this block group have left 1 entry each one. Free them.
3352 		 */
3353 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3354 	}
3355 }
3356 
3357 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3358 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3359 {
3360 	int ret;
3361 
3362 	*trimmed = 0;
3363 
3364 	spin_lock(&block_group->lock);
3365 	if (block_group->removed) {
3366 		spin_unlock(&block_group->lock);
3367 		return 0;
3368 	}
3369 	btrfs_get_block_group_trimming(block_group);
3370 	spin_unlock(&block_group->lock);
3371 
3372 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3373 	if (ret)
3374 		goto out;
3375 
3376 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3377 out:
3378 	btrfs_put_block_group_trimming(block_group);
3379 	return ret;
3380 }
3381 
3382 /*
3383  * Find the left-most item in the cache tree, and then return the
3384  * smallest inode number in the item.
3385  *
3386  * Note: the returned inode number may not be the smallest one in
3387  * the tree, if the left-most item is a bitmap.
3388  */
3389 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3390 {
3391 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3392 	struct btrfs_free_space *entry = NULL;
3393 	u64 ino = 0;
3394 
3395 	spin_lock(&ctl->tree_lock);
3396 
3397 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3398 		goto out;
3399 
3400 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3401 			 struct btrfs_free_space, offset_index);
3402 
3403 	if (!entry->bitmap) {
3404 		ino = entry->offset;
3405 
3406 		unlink_free_space(ctl, entry);
3407 		entry->offset++;
3408 		entry->bytes--;
3409 		if (!entry->bytes)
3410 			kmem_cache_free(btrfs_free_space_cachep, entry);
3411 		else
3412 			link_free_space(ctl, entry);
3413 	} else {
3414 		u64 offset = 0;
3415 		u64 count = 1;
3416 		int ret;
3417 
3418 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3419 		/* Logic error; Should be empty if it can't find anything */
3420 		ASSERT(!ret);
3421 
3422 		ino = offset;
3423 		bitmap_clear_bits(ctl, entry, offset, 1);
3424 		if (entry->bytes == 0)
3425 			free_bitmap(ctl, entry);
3426 	}
3427 out:
3428 	spin_unlock(&ctl->tree_lock);
3429 
3430 	return ino;
3431 }
3432 
3433 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3434 				    struct btrfs_path *path)
3435 {
3436 	struct inode *inode = NULL;
3437 
3438 	spin_lock(&root->ino_cache_lock);
3439 	if (root->ino_cache_inode)
3440 		inode = igrab(root->ino_cache_inode);
3441 	spin_unlock(&root->ino_cache_lock);
3442 	if (inode)
3443 		return inode;
3444 
3445 	inode = __lookup_free_space_inode(root, path, 0);
3446 	if (IS_ERR(inode))
3447 		return inode;
3448 
3449 	spin_lock(&root->ino_cache_lock);
3450 	if (!btrfs_fs_closing(root->fs_info))
3451 		root->ino_cache_inode = igrab(inode);
3452 	spin_unlock(&root->ino_cache_lock);
3453 
3454 	return inode;
3455 }
3456 
3457 int create_free_ino_inode(struct btrfs_root *root,
3458 			  struct btrfs_trans_handle *trans,
3459 			  struct btrfs_path *path)
3460 {
3461 	return __create_free_space_inode(root, trans, path,
3462 					 BTRFS_FREE_INO_OBJECTID, 0);
3463 }
3464 
3465 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3466 {
3467 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3468 	struct btrfs_path *path;
3469 	struct inode *inode;
3470 	int ret = 0;
3471 	u64 root_gen = btrfs_root_generation(&root->root_item);
3472 
3473 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3474 		return 0;
3475 
3476 	/*
3477 	 * If we're unmounting then just return, since this does a search on the
3478 	 * normal root and not the commit root and we could deadlock.
3479 	 */
3480 	if (btrfs_fs_closing(fs_info))
3481 		return 0;
3482 
3483 	path = btrfs_alloc_path();
3484 	if (!path)
3485 		return 0;
3486 
3487 	inode = lookup_free_ino_inode(root, path);
3488 	if (IS_ERR(inode))
3489 		goto out;
3490 
3491 	if (root_gen != BTRFS_I(inode)->generation)
3492 		goto out_put;
3493 
3494 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3495 
3496 	if (ret < 0)
3497 		btrfs_err(fs_info,
3498 			"failed to load free ino cache for root %llu",
3499 			root->root_key.objectid);
3500 out_put:
3501 	iput(inode);
3502 out:
3503 	btrfs_free_path(path);
3504 	return ret;
3505 }
3506 
3507 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3508 			      struct btrfs_trans_handle *trans,
3509 			      struct btrfs_path *path,
3510 			      struct inode *inode)
3511 {
3512 	struct btrfs_fs_info *fs_info = root->fs_info;
3513 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3514 	int ret;
3515 	struct btrfs_io_ctl io_ctl;
3516 	bool release_metadata = true;
3517 
3518 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3519 		return 0;
3520 
3521 	memset(&io_ctl, 0, sizeof(io_ctl));
3522 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3523 	if (!ret) {
3524 		/*
3525 		 * At this point writepages() didn't error out, so our metadata
3526 		 * reservation is released when the writeback finishes, at
3527 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3528 		 * with or without an error.
3529 		 */
3530 		release_metadata = false;
3531 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3532 	}
3533 
3534 	if (ret) {
3535 		if (release_metadata)
3536 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3537 					inode->i_size, true);
3538 #ifdef DEBUG
3539 		btrfs_err(fs_info,
3540 			  "failed to write free ino cache for root %llu",
3541 			  root->root_key.objectid);
3542 #endif
3543 	}
3544 
3545 	return ret;
3546 }
3547 
3548 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3549 /*
3550  * Use this if you need to make a bitmap or extent entry specifically, it
3551  * doesn't do any of the merging that add_free_space does, this acts a lot like
3552  * how the free space cache loading stuff works, so you can get really weird
3553  * configurations.
3554  */
3555 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3556 			      u64 offset, u64 bytes, bool bitmap)
3557 {
3558 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3559 	struct btrfs_free_space *info = NULL, *bitmap_info;
3560 	void *map = NULL;
3561 	u64 bytes_added;
3562 	int ret;
3563 
3564 again:
3565 	if (!info) {
3566 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3567 		if (!info)
3568 			return -ENOMEM;
3569 	}
3570 
3571 	if (!bitmap) {
3572 		spin_lock(&ctl->tree_lock);
3573 		info->offset = offset;
3574 		info->bytes = bytes;
3575 		info->max_extent_size = 0;
3576 		ret = link_free_space(ctl, info);
3577 		spin_unlock(&ctl->tree_lock);
3578 		if (ret)
3579 			kmem_cache_free(btrfs_free_space_cachep, info);
3580 		return ret;
3581 	}
3582 
3583 	if (!map) {
3584 		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3585 		if (!map) {
3586 			kmem_cache_free(btrfs_free_space_cachep, info);
3587 			return -ENOMEM;
3588 		}
3589 	}
3590 
3591 	spin_lock(&ctl->tree_lock);
3592 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3593 					 1, 0);
3594 	if (!bitmap_info) {
3595 		info->bitmap = map;
3596 		map = NULL;
3597 		add_new_bitmap(ctl, info, offset);
3598 		bitmap_info = info;
3599 		info = NULL;
3600 	}
3601 
3602 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3603 
3604 	bytes -= bytes_added;
3605 	offset += bytes_added;
3606 	spin_unlock(&ctl->tree_lock);
3607 
3608 	if (bytes)
3609 		goto again;
3610 
3611 	if (info)
3612 		kmem_cache_free(btrfs_free_space_cachep, info);
3613 	kfree(map);
3614 	return 0;
3615 }
3616 
3617 /*
3618  * Checks to see if the given range is in the free space cache.  This is really
3619  * just used to check the absence of space, so if there is free space in the
3620  * range at all we will return 1.
3621  */
3622 int test_check_exists(struct btrfs_block_group_cache *cache,
3623 		      u64 offset, u64 bytes)
3624 {
3625 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3626 	struct btrfs_free_space *info;
3627 	int ret = 0;
3628 
3629 	spin_lock(&ctl->tree_lock);
3630 	info = tree_search_offset(ctl, offset, 0, 0);
3631 	if (!info) {
3632 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3633 					  1, 0);
3634 		if (!info)
3635 			goto out;
3636 	}
3637 
3638 have_info:
3639 	if (info->bitmap) {
3640 		u64 bit_off, bit_bytes;
3641 		struct rb_node *n;
3642 		struct btrfs_free_space *tmp;
3643 
3644 		bit_off = offset;
3645 		bit_bytes = ctl->unit;
3646 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3647 		if (!ret) {
3648 			if (bit_off == offset) {
3649 				ret = 1;
3650 				goto out;
3651 			} else if (bit_off > offset &&
3652 				   offset + bytes > bit_off) {
3653 				ret = 1;
3654 				goto out;
3655 			}
3656 		}
3657 
3658 		n = rb_prev(&info->offset_index);
3659 		while (n) {
3660 			tmp = rb_entry(n, struct btrfs_free_space,
3661 				       offset_index);
3662 			if (tmp->offset + tmp->bytes < offset)
3663 				break;
3664 			if (offset + bytes < tmp->offset) {
3665 				n = rb_prev(&tmp->offset_index);
3666 				continue;
3667 			}
3668 			info = tmp;
3669 			goto have_info;
3670 		}
3671 
3672 		n = rb_next(&info->offset_index);
3673 		while (n) {
3674 			tmp = rb_entry(n, struct btrfs_free_space,
3675 				       offset_index);
3676 			if (offset + bytes < tmp->offset)
3677 				break;
3678 			if (tmp->offset + tmp->bytes < offset) {
3679 				n = rb_next(&tmp->offset_index);
3680 				continue;
3681 			}
3682 			info = tmp;
3683 			goto have_info;
3684 		}
3685 
3686 		ret = 0;
3687 		goto out;
3688 	}
3689 
3690 	if (info->offset == offset) {
3691 		ret = 1;
3692 		goto out;
3693 	}
3694 
3695 	if (offset > info->offset && offset < info->offset + info->bytes)
3696 		ret = 1;
3697 out:
3698 	spin_unlock(&ctl->tree_lock);
3699 	return ret;
3700 }
3701 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3702