1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Red Hat. All rights reserved. 4 */ 5 6 #include <linux/pagemap.h> 7 #include <linux/sched.h> 8 #include <linux/sched/signal.h> 9 #include <linux/slab.h> 10 #include <linux/math64.h> 11 #include <linux/ratelimit.h> 12 #include <linux/error-injection.h> 13 #include <linux/sched/mm.h> 14 #include "ctree.h" 15 #include "free-space-cache.h" 16 #include "transaction.h" 17 #include "disk-io.h" 18 #include "extent_io.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "space-info.h" 22 #include "delalloc-space.h" 23 #include "block-group.h" 24 #include "discard.h" 25 26 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 27 #define MAX_CACHE_BYTES_PER_GIG SZ_64K 28 #define FORCE_EXTENT_THRESHOLD SZ_1M 29 30 struct btrfs_trim_range { 31 u64 start; 32 u64 bytes; 33 struct list_head list; 34 }; 35 36 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl, 37 struct btrfs_free_space *bitmap_info); 38 static int link_free_space(struct btrfs_free_space_ctl *ctl, 39 struct btrfs_free_space *info); 40 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 41 struct btrfs_free_space *info); 42 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 43 struct btrfs_trans_handle *trans, 44 struct btrfs_io_ctl *io_ctl, 45 struct btrfs_path *path); 46 47 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 48 struct btrfs_path *path, 49 u64 offset) 50 { 51 struct btrfs_fs_info *fs_info = root->fs_info; 52 struct btrfs_key key; 53 struct btrfs_key location; 54 struct btrfs_disk_key disk_key; 55 struct btrfs_free_space_header *header; 56 struct extent_buffer *leaf; 57 struct inode *inode = NULL; 58 unsigned nofs_flag; 59 int ret; 60 61 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 62 key.offset = offset; 63 key.type = 0; 64 65 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 66 if (ret < 0) 67 return ERR_PTR(ret); 68 if (ret > 0) { 69 btrfs_release_path(path); 70 return ERR_PTR(-ENOENT); 71 } 72 73 leaf = path->nodes[0]; 74 header = btrfs_item_ptr(leaf, path->slots[0], 75 struct btrfs_free_space_header); 76 btrfs_free_space_key(leaf, header, &disk_key); 77 btrfs_disk_key_to_cpu(&location, &disk_key); 78 btrfs_release_path(path); 79 80 /* 81 * We are often under a trans handle at this point, so we need to make 82 * sure NOFS is set to keep us from deadlocking. 83 */ 84 nofs_flag = memalloc_nofs_save(); 85 inode = btrfs_iget_path(fs_info->sb, &location, root, path); 86 btrfs_release_path(path); 87 memalloc_nofs_restore(nofs_flag); 88 if (IS_ERR(inode)) 89 return inode; 90 91 mapping_set_gfp_mask(inode->i_mapping, 92 mapping_gfp_constraint(inode->i_mapping, 93 ~(__GFP_FS | __GFP_HIGHMEM))); 94 95 return inode; 96 } 97 98 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group, 99 struct btrfs_path *path) 100 { 101 struct btrfs_fs_info *fs_info = block_group->fs_info; 102 struct inode *inode = NULL; 103 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 104 105 spin_lock(&block_group->lock); 106 if (block_group->inode) 107 inode = igrab(block_group->inode); 108 spin_unlock(&block_group->lock); 109 if (inode) 110 return inode; 111 112 inode = __lookup_free_space_inode(fs_info->tree_root, path, 113 block_group->start); 114 if (IS_ERR(inode)) 115 return inode; 116 117 spin_lock(&block_group->lock); 118 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 119 btrfs_info(fs_info, "Old style space inode found, converting."); 120 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 121 BTRFS_INODE_NODATACOW; 122 block_group->disk_cache_state = BTRFS_DC_CLEAR; 123 } 124 125 if (!block_group->iref) { 126 block_group->inode = igrab(inode); 127 block_group->iref = 1; 128 } 129 spin_unlock(&block_group->lock); 130 131 return inode; 132 } 133 134 static int __create_free_space_inode(struct btrfs_root *root, 135 struct btrfs_trans_handle *trans, 136 struct btrfs_path *path, 137 u64 ino, u64 offset) 138 { 139 struct btrfs_key key; 140 struct btrfs_disk_key disk_key; 141 struct btrfs_free_space_header *header; 142 struct btrfs_inode_item *inode_item; 143 struct extent_buffer *leaf; 144 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 145 int ret; 146 147 ret = btrfs_insert_empty_inode(trans, root, path, ino); 148 if (ret) 149 return ret; 150 151 /* We inline crc's for the free disk space cache */ 152 if (ino != BTRFS_FREE_INO_OBJECTID) 153 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 154 155 leaf = path->nodes[0]; 156 inode_item = btrfs_item_ptr(leaf, path->slots[0], 157 struct btrfs_inode_item); 158 btrfs_item_key(leaf, &disk_key, path->slots[0]); 159 memzero_extent_buffer(leaf, (unsigned long)inode_item, 160 sizeof(*inode_item)); 161 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 162 btrfs_set_inode_size(leaf, inode_item, 0); 163 btrfs_set_inode_nbytes(leaf, inode_item, 0); 164 btrfs_set_inode_uid(leaf, inode_item, 0); 165 btrfs_set_inode_gid(leaf, inode_item, 0); 166 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 167 btrfs_set_inode_flags(leaf, inode_item, flags); 168 btrfs_set_inode_nlink(leaf, inode_item, 1); 169 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 170 btrfs_set_inode_block_group(leaf, inode_item, offset); 171 btrfs_mark_buffer_dirty(leaf); 172 btrfs_release_path(path); 173 174 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 175 key.offset = offset; 176 key.type = 0; 177 ret = btrfs_insert_empty_item(trans, root, path, &key, 178 sizeof(struct btrfs_free_space_header)); 179 if (ret < 0) { 180 btrfs_release_path(path); 181 return ret; 182 } 183 184 leaf = path->nodes[0]; 185 header = btrfs_item_ptr(leaf, path->slots[0], 186 struct btrfs_free_space_header); 187 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); 188 btrfs_set_free_space_key(leaf, header, &disk_key); 189 btrfs_mark_buffer_dirty(leaf); 190 btrfs_release_path(path); 191 192 return 0; 193 } 194 195 int create_free_space_inode(struct btrfs_trans_handle *trans, 196 struct btrfs_block_group *block_group, 197 struct btrfs_path *path) 198 { 199 int ret; 200 u64 ino; 201 202 ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino); 203 if (ret < 0) 204 return ret; 205 206 return __create_free_space_inode(trans->fs_info->tree_root, trans, path, 207 ino, block_group->start); 208 } 209 210 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, 211 struct btrfs_block_rsv *rsv) 212 { 213 u64 needed_bytes; 214 int ret; 215 216 /* 1 for slack space, 1 for updating the inode */ 217 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) + 218 btrfs_calc_metadata_size(fs_info, 1); 219 220 spin_lock(&rsv->lock); 221 if (rsv->reserved < needed_bytes) 222 ret = -ENOSPC; 223 else 224 ret = 0; 225 spin_unlock(&rsv->lock); 226 return ret; 227 } 228 229 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, 230 struct btrfs_block_group *block_group, 231 struct inode *inode) 232 { 233 struct btrfs_root *root = BTRFS_I(inode)->root; 234 int ret = 0; 235 bool locked = false; 236 237 if (block_group) { 238 struct btrfs_path *path = btrfs_alloc_path(); 239 240 if (!path) { 241 ret = -ENOMEM; 242 goto fail; 243 } 244 locked = true; 245 mutex_lock(&trans->transaction->cache_write_mutex); 246 if (!list_empty(&block_group->io_list)) { 247 list_del_init(&block_group->io_list); 248 249 btrfs_wait_cache_io(trans, block_group, path); 250 btrfs_put_block_group(block_group); 251 } 252 253 /* 254 * now that we've truncated the cache away, its no longer 255 * setup or written 256 */ 257 spin_lock(&block_group->lock); 258 block_group->disk_cache_state = BTRFS_DC_CLEAR; 259 spin_unlock(&block_group->lock); 260 btrfs_free_path(path); 261 } 262 263 btrfs_i_size_write(BTRFS_I(inode), 0); 264 truncate_pagecache(inode, 0); 265 266 /* 267 * We skip the throttling logic for free space cache inodes, so we don't 268 * need to check for -EAGAIN. 269 */ 270 ret = btrfs_truncate_inode_items(trans, root, inode, 271 0, BTRFS_EXTENT_DATA_KEY); 272 if (ret) 273 goto fail; 274 275 ret = btrfs_update_inode(trans, root, inode); 276 277 fail: 278 if (locked) 279 mutex_unlock(&trans->transaction->cache_write_mutex); 280 if (ret) 281 btrfs_abort_transaction(trans, ret); 282 283 return ret; 284 } 285 286 static void readahead_cache(struct inode *inode) 287 { 288 struct file_ra_state *ra; 289 unsigned long last_index; 290 291 ra = kzalloc(sizeof(*ra), GFP_NOFS); 292 if (!ra) 293 return; 294 295 file_ra_state_init(ra, inode->i_mapping); 296 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 297 298 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 299 300 kfree(ra); 301 } 302 303 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 304 int write) 305 { 306 int num_pages; 307 int check_crcs = 0; 308 309 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 310 311 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID) 312 check_crcs = 1; 313 314 /* Make sure we can fit our crcs and generation into the first page */ 315 if (write && check_crcs && 316 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) 317 return -ENOSPC; 318 319 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 320 321 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 322 if (!io_ctl->pages) 323 return -ENOMEM; 324 325 io_ctl->num_pages = num_pages; 326 io_ctl->fs_info = btrfs_sb(inode->i_sb); 327 io_ctl->check_crcs = check_crcs; 328 io_ctl->inode = inode; 329 330 return 0; 331 } 332 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); 333 334 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 335 { 336 kfree(io_ctl->pages); 337 io_ctl->pages = NULL; 338 } 339 340 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 341 { 342 if (io_ctl->cur) { 343 io_ctl->cur = NULL; 344 io_ctl->orig = NULL; 345 } 346 } 347 348 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 349 { 350 ASSERT(io_ctl->index < io_ctl->num_pages); 351 io_ctl->page = io_ctl->pages[io_ctl->index++]; 352 io_ctl->cur = page_address(io_ctl->page); 353 io_ctl->orig = io_ctl->cur; 354 io_ctl->size = PAGE_SIZE; 355 if (clear) 356 clear_page(io_ctl->cur); 357 } 358 359 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 360 { 361 int i; 362 363 io_ctl_unmap_page(io_ctl); 364 365 for (i = 0; i < io_ctl->num_pages; i++) { 366 if (io_ctl->pages[i]) { 367 ClearPageChecked(io_ctl->pages[i]); 368 unlock_page(io_ctl->pages[i]); 369 put_page(io_ctl->pages[i]); 370 } 371 } 372 } 373 374 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate) 375 { 376 struct page *page; 377 struct inode *inode = io_ctl->inode; 378 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 379 int i; 380 381 for (i = 0; i < io_ctl->num_pages; i++) { 382 page = find_or_create_page(inode->i_mapping, i, mask); 383 if (!page) { 384 io_ctl_drop_pages(io_ctl); 385 return -ENOMEM; 386 } 387 io_ctl->pages[i] = page; 388 if (uptodate && !PageUptodate(page)) { 389 btrfs_readpage(NULL, page); 390 lock_page(page); 391 if (page->mapping != inode->i_mapping) { 392 btrfs_err(BTRFS_I(inode)->root->fs_info, 393 "free space cache page truncated"); 394 io_ctl_drop_pages(io_ctl); 395 return -EIO; 396 } 397 if (!PageUptodate(page)) { 398 btrfs_err(BTRFS_I(inode)->root->fs_info, 399 "error reading free space cache"); 400 io_ctl_drop_pages(io_ctl); 401 return -EIO; 402 } 403 } 404 } 405 406 for (i = 0; i < io_ctl->num_pages; i++) { 407 clear_page_dirty_for_io(io_ctl->pages[i]); 408 set_page_extent_mapped(io_ctl->pages[i]); 409 } 410 411 return 0; 412 } 413 414 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 415 { 416 __le64 *val; 417 418 io_ctl_map_page(io_ctl, 1); 419 420 /* 421 * Skip the csum areas. If we don't check crcs then we just have a 422 * 64bit chunk at the front of the first page. 423 */ 424 if (io_ctl->check_crcs) { 425 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 426 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 427 } else { 428 io_ctl->cur += sizeof(u64); 429 io_ctl->size -= sizeof(u64) * 2; 430 } 431 432 val = io_ctl->cur; 433 *val = cpu_to_le64(generation); 434 io_ctl->cur += sizeof(u64); 435 } 436 437 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 438 { 439 __le64 *gen; 440 441 /* 442 * Skip the crc area. If we don't check crcs then we just have a 64bit 443 * chunk at the front of the first page. 444 */ 445 if (io_ctl->check_crcs) { 446 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 447 io_ctl->size -= sizeof(u64) + 448 (sizeof(u32) * io_ctl->num_pages); 449 } else { 450 io_ctl->cur += sizeof(u64); 451 io_ctl->size -= sizeof(u64) * 2; 452 } 453 454 gen = io_ctl->cur; 455 if (le64_to_cpu(*gen) != generation) { 456 btrfs_err_rl(io_ctl->fs_info, 457 "space cache generation (%llu) does not match inode (%llu)", 458 *gen, generation); 459 io_ctl_unmap_page(io_ctl); 460 return -EIO; 461 } 462 io_ctl->cur += sizeof(u64); 463 return 0; 464 } 465 466 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 467 { 468 u32 *tmp; 469 u32 crc = ~(u32)0; 470 unsigned offset = 0; 471 472 if (!io_ctl->check_crcs) { 473 io_ctl_unmap_page(io_ctl); 474 return; 475 } 476 477 if (index == 0) 478 offset = sizeof(u32) * io_ctl->num_pages; 479 480 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 481 btrfs_crc32c_final(crc, (u8 *)&crc); 482 io_ctl_unmap_page(io_ctl); 483 tmp = page_address(io_ctl->pages[0]); 484 tmp += index; 485 *tmp = crc; 486 } 487 488 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 489 { 490 u32 *tmp, val; 491 u32 crc = ~(u32)0; 492 unsigned offset = 0; 493 494 if (!io_ctl->check_crcs) { 495 io_ctl_map_page(io_ctl, 0); 496 return 0; 497 } 498 499 if (index == 0) 500 offset = sizeof(u32) * io_ctl->num_pages; 501 502 tmp = page_address(io_ctl->pages[0]); 503 tmp += index; 504 val = *tmp; 505 506 io_ctl_map_page(io_ctl, 0); 507 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); 508 btrfs_crc32c_final(crc, (u8 *)&crc); 509 if (val != crc) { 510 btrfs_err_rl(io_ctl->fs_info, 511 "csum mismatch on free space cache"); 512 io_ctl_unmap_page(io_ctl); 513 return -EIO; 514 } 515 516 return 0; 517 } 518 519 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 520 void *bitmap) 521 { 522 struct btrfs_free_space_entry *entry; 523 524 if (!io_ctl->cur) 525 return -ENOSPC; 526 527 entry = io_ctl->cur; 528 entry->offset = cpu_to_le64(offset); 529 entry->bytes = cpu_to_le64(bytes); 530 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 531 BTRFS_FREE_SPACE_EXTENT; 532 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 533 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 534 535 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 536 return 0; 537 538 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 539 540 /* No more pages to map */ 541 if (io_ctl->index >= io_ctl->num_pages) 542 return 0; 543 544 /* map the next page */ 545 io_ctl_map_page(io_ctl, 1); 546 return 0; 547 } 548 549 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 550 { 551 if (!io_ctl->cur) 552 return -ENOSPC; 553 554 /* 555 * If we aren't at the start of the current page, unmap this one and 556 * map the next one if there is any left. 557 */ 558 if (io_ctl->cur != io_ctl->orig) { 559 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 560 if (io_ctl->index >= io_ctl->num_pages) 561 return -ENOSPC; 562 io_ctl_map_page(io_ctl, 0); 563 } 564 565 copy_page(io_ctl->cur, bitmap); 566 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 567 if (io_ctl->index < io_ctl->num_pages) 568 io_ctl_map_page(io_ctl, 0); 569 return 0; 570 } 571 572 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 573 { 574 /* 575 * If we're not on the boundary we know we've modified the page and we 576 * need to crc the page. 577 */ 578 if (io_ctl->cur != io_ctl->orig) 579 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 580 else 581 io_ctl_unmap_page(io_ctl); 582 583 while (io_ctl->index < io_ctl->num_pages) { 584 io_ctl_map_page(io_ctl, 1); 585 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 586 } 587 } 588 589 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 590 struct btrfs_free_space *entry, u8 *type) 591 { 592 struct btrfs_free_space_entry *e; 593 int ret; 594 595 if (!io_ctl->cur) { 596 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 597 if (ret) 598 return ret; 599 } 600 601 e = io_ctl->cur; 602 entry->offset = le64_to_cpu(e->offset); 603 entry->bytes = le64_to_cpu(e->bytes); 604 *type = e->type; 605 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 606 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 607 608 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 609 return 0; 610 611 io_ctl_unmap_page(io_ctl); 612 613 return 0; 614 } 615 616 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 617 struct btrfs_free_space *entry) 618 { 619 int ret; 620 621 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 622 if (ret) 623 return ret; 624 625 copy_page(entry->bitmap, io_ctl->cur); 626 io_ctl_unmap_page(io_ctl); 627 628 return 0; 629 } 630 631 /* 632 * Since we attach pinned extents after the fact we can have contiguous sections 633 * of free space that are split up in entries. This poses a problem with the 634 * tree logging stuff since it could have allocated across what appears to be 2 635 * entries since we would have merged the entries when adding the pinned extents 636 * back to the free space cache. So run through the space cache that we just 637 * loaded and merge contiguous entries. This will make the log replay stuff not 638 * blow up and it will make for nicer allocator behavior. 639 */ 640 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 641 { 642 struct btrfs_free_space *e, *prev = NULL; 643 struct rb_node *n; 644 645 again: 646 spin_lock(&ctl->tree_lock); 647 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 648 e = rb_entry(n, struct btrfs_free_space, offset_index); 649 if (!prev) 650 goto next; 651 if (e->bitmap || prev->bitmap) 652 goto next; 653 if (prev->offset + prev->bytes == e->offset) { 654 unlink_free_space(ctl, prev); 655 unlink_free_space(ctl, e); 656 prev->bytes += e->bytes; 657 kmem_cache_free(btrfs_free_space_cachep, e); 658 link_free_space(ctl, prev); 659 prev = NULL; 660 spin_unlock(&ctl->tree_lock); 661 goto again; 662 } 663 next: 664 prev = e; 665 } 666 spin_unlock(&ctl->tree_lock); 667 } 668 669 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 670 struct btrfs_free_space_ctl *ctl, 671 struct btrfs_path *path, u64 offset) 672 { 673 struct btrfs_fs_info *fs_info = root->fs_info; 674 struct btrfs_free_space_header *header; 675 struct extent_buffer *leaf; 676 struct btrfs_io_ctl io_ctl; 677 struct btrfs_key key; 678 struct btrfs_free_space *e, *n; 679 LIST_HEAD(bitmaps); 680 u64 num_entries; 681 u64 num_bitmaps; 682 u64 generation; 683 u8 type; 684 int ret = 0; 685 686 /* Nothing in the space cache, goodbye */ 687 if (!i_size_read(inode)) 688 return 0; 689 690 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 691 key.offset = offset; 692 key.type = 0; 693 694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 695 if (ret < 0) 696 return 0; 697 else if (ret > 0) { 698 btrfs_release_path(path); 699 return 0; 700 } 701 702 ret = -1; 703 704 leaf = path->nodes[0]; 705 header = btrfs_item_ptr(leaf, path->slots[0], 706 struct btrfs_free_space_header); 707 num_entries = btrfs_free_space_entries(leaf, header); 708 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 709 generation = btrfs_free_space_generation(leaf, header); 710 btrfs_release_path(path); 711 712 if (!BTRFS_I(inode)->generation) { 713 btrfs_info(fs_info, 714 "the free space cache file (%llu) is invalid, skip it", 715 offset); 716 return 0; 717 } 718 719 if (BTRFS_I(inode)->generation != generation) { 720 btrfs_err(fs_info, 721 "free space inode generation (%llu) did not match free space cache generation (%llu)", 722 BTRFS_I(inode)->generation, generation); 723 return 0; 724 } 725 726 if (!num_entries) 727 return 0; 728 729 ret = io_ctl_init(&io_ctl, inode, 0); 730 if (ret) 731 return ret; 732 733 readahead_cache(inode); 734 735 ret = io_ctl_prepare_pages(&io_ctl, true); 736 if (ret) 737 goto out; 738 739 ret = io_ctl_check_crc(&io_ctl, 0); 740 if (ret) 741 goto free_cache; 742 743 ret = io_ctl_check_generation(&io_ctl, generation); 744 if (ret) 745 goto free_cache; 746 747 while (num_entries) { 748 e = kmem_cache_zalloc(btrfs_free_space_cachep, 749 GFP_NOFS); 750 if (!e) 751 goto free_cache; 752 753 ret = io_ctl_read_entry(&io_ctl, e, &type); 754 if (ret) { 755 kmem_cache_free(btrfs_free_space_cachep, e); 756 goto free_cache; 757 } 758 759 /* 760 * Sync discard ensures that the free space cache is always 761 * trimmed. So when reading this in, the state should reflect 762 * that. We also do this for async as a stop gap for lack of 763 * persistence. 764 */ 765 if (btrfs_test_opt(fs_info, DISCARD_SYNC) || 766 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 767 e->trim_state = BTRFS_TRIM_STATE_TRIMMED; 768 769 if (!e->bytes) { 770 kmem_cache_free(btrfs_free_space_cachep, e); 771 goto free_cache; 772 } 773 774 if (type == BTRFS_FREE_SPACE_EXTENT) { 775 spin_lock(&ctl->tree_lock); 776 ret = link_free_space(ctl, e); 777 spin_unlock(&ctl->tree_lock); 778 if (ret) { 779 btrfs_err(fs_info, 780 "Duplicate entries in free space cache, dumping"); 781 kmem_cache_free(btrfs_free_space_cachep, e); 782 goto free_cache; 783 } 784 } else { 785 ASSERT(num_bitmaps); 786 num_bitmaps--; 787 e->bitmap = kmem_cache_zalloc( 788 btrfs_free_space_bitmap_cachep, GFP_NOFS); 789 if (!e->bitmap) { 790 kmem_cache_free( 791 btrfs_free_space_cachep, e); 792 goto free_cache; 793 } 794 spin_lock(&ctl->tree_lock); 795 ret = link_free_space(ctl, e); 796 ctl->total_bitmaps++; 797 ctl->op->recalc_thresholds(ctl); 798 spin_unlock(&ctl->tree_lock); 799 if (ret) { 800 btrfs_err(fs_info, 801 "Duplicate entries in free space cache, dumping"); 802 kmem_cache_free(btrfs_free_space_cachep, e); 803 goto free_cache; 804 } 805 list_add_tail(&e->list, &bitmaps); 806 } 807 808 num_entries--; 809 } 810 811 io_ctl_unmap_page(&io_ctl); 812 813 /* 814 * We add the bitmaps at the end of the entries in order that 815 * the bitmap entries are added to the cache. 816 */ 817 list_for_each_entry_safe(e, n, &bitmaps, list) { 818 list_del_init(&e->list); 819 ret = io_ctl_read_bitmap(&io_ctl, e); 820 if (ret) 821 goto free_cache; 822 e->bitmap_extents = count_bitmap_extents(ctl, e); 823 if (!btrfs_free_space_trimmed(e)) { 824 ctl->discardable_extents[BTRFS_STAT_CURR] += 825 e->bitmap_extents; 826 ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes; 827 } 828 } 829 830 io_ctl_drop_pages(&io_ctl); 831 merge_space_tree(ctl); 832 ret = 1; 833 out: 834 btrfs_discard_update_discardable(ctl->private, ctl); 835 io_ctl_free(&io_ctl); 836 return ret; 837 free_cache: 838 io_ctl_drop_pages(&io_ctl); 839 __btrfs_remove_free_space_cache(ctl); 840 goto out; 841 } 842 843 int load_free_space_cache(struct btrfs_block_group *block_group) 844 { 845 struct btrfs_fs_info *fs_info = block_group->fs_info; 846 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 847 struct inode *inode; 848 struct btrfs_path *path; 849 int ret = 0; 850 bool matched; 851 u64 used = block_group->used; 852 853 /* 854 * If this block group has been marked to be cleared for one reason or 855 * another then we can't trust the on disk cache, so just return. 856 */ 857 spin_lock(&block_group->lock); 858 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 859 spin_unlock(&block_group->lock); 860 return 0; 861 } 862 spin_unlock(&block_group->lock); 863 864 path = btrfs_alloc_path(); 865 if (!path) 866 return 0; 867 path->search_commit_root = 1; 868 path->skip_locking = 1; 869 870 /* 871 * We must pass a path with search_commit_root set to btrfs_iget in 872 * order to avoid a deadlock when allocating extents for the tree root. 873 * 874 * When we are COWing an extent buffer from the tree root, when looking 875 * for a free extent, at extent-tree.c:find_free_extent(), we can find 876 * block group without its free space cache loaded. When we find one 877 * we must load its space cache which requires reading its free space 878 * cache's inode item from the root tree. If this inode item is located 879 * in the same leaf that we started COWing before, then we end up in 880 * deadlock on the extent buffer (trying to read lock it when we 881 * previously write locked it). 882 * 883 * It's safe to read the inode item using the commit root because 884 * block groups, once loaded, stay in memory forever (until they are 885 * removed) as well as their space caches once loaded. New block groups 886 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so 887 * we will never try to read their inode item while the fs is mounted. 888 */ 889 inode = lookup_free_space_inode(block_group, path); 890 if (IS_ERR(inode)) { 891 btrfs_free_path(path); 892 return 0; 893 } 894 895 /* We may have converted the inode and made the cache invalid. */ 896 spin_lock(&block_group->lock); 897 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 898 spin_unlock(&block_group->lock); 899 btrfs_free_path(path); 900 goto out; 901 } 902 spin_unlock(&block_group->lock); 903 904 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 905 path, block_group->start); 906 btrfs_free_path(path); 907 if (ret <= 0) 908 goto out; 909 910 spin_lock(&ctl->tree_lock); 911 matched = (ctl->free_space == (block_group->length - used - 912 block_group->bytes_super)); 913 spin_unlock(&ctl->tree_lock); 914 915 if (!matched) { 916 __btrfs_remove_free_space_cache(ctl); 917 btrfs_warn(fs_info, 918 "block group %llu has wrong amount of free space", 919 block_group->start); 920 ret = -1; 921 } 922 out: 923 if (ret < 0) { 924 /* This cache is bogus, make sure it gets cleared */ 925 spin_lock(&block_group->lock); 926 block_group->disk_cache_state = BTRFS_DC_CLEAR; 927 spin_unlock(&block_group->lock); 928 ret = 0; 929 930 btrfs_warn(fs_info, 931 "failed to load free space cache for block group %llu, rebuilding it now", 932 block_group->start); 933 } 934 935 iput(inode); 936 return ret; 937 } 938 939 static noinline_for_stack 940 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 941 struct btrfs_free_space_ctl *ctl, 942 struct btrfs_block_group *block_group, 943 int *entries, int *bitmaps, 944 struct list_head *bitmap_list) 945 { 946 int ret; 947 struct btrfs_free_cluster *cluster = NULL; 948 struct btrfs_free_cluster *cluster_locked = NULL; 949 struct rb_node *node = rb_first(&ctl->free_space_offset); 950 struct btrfs_trim_range *trim_entry; 951 952 /* Get the cluster for this block_group if it exists */ 953 if (block_group && !list_empty(&block_group->cluster_list)) { 954 cluster = list_entry(block_group->cluster_list.next, 955 struct btrfs_free_cluster, 956 block_group_list); 957 } 958 959 if (!node && cluster) { 960 cluster_locked = cluster; 961 spin_lock(&cluster_locked->lock); 962 node = rb_first(&cluster->root); 963 cluster = NULL; 964 } 965 966 /* Write out the extent entries */ 967 while (node) { 968 struct btrfs_free_space *e; 969 970 e = rb_entry(node, struct btrfs_free_space, offset_index); 971 *entries += 1; 972 973 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 974 e->bitmap); 975 if (ret) 976 goto fail; 977 978 if (e->bitmap) { 979 list_add_tail(&e->list, bitmap_list); 980 *bitmaps += 1; 981 } 982 node = rb_next(node); 983 if (!node && cluster) { 984 node = rb_first(&cluster->root); 985 cluster_locked = cluster; 986 spin_lock(&cluster_locked->lock); 987 cluster = NULL; 988 } 989 } 990 if (cluster_locked) { 991 spin_unlock(&cluster_locked->lock); 992 cluster_locked = NULL; 993 } 994 995 /* 996 * Make sure we don't miss any range that was removed from our rbtree 997 * because trimming is running. Otherwise after a umount+mount (or crash 998 * after committing the transaction) we would leak free space and get 999 * an inconsistent free space cache report from fsck. 1000 */ 1001 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 1002 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 1003 trim_entry->bytes, NULL); 1004 if (ret) 1005 goto fail; 1006 *entries += 1; 1007 } 1008 1009 return 0; 1010 fail: 1011 if (cluster_locked) 1012 spin_unlock(&cluster_locked->lock); 1013 return -ENOSPC; 1014 } 1015 1016 static noinline_for_stack int 1017 update_cache_item(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, 1019 struct inode *inode, 1020 struct btrfs_path *path, u64 offset, 1021 int entries, int bitmaps) 1022 { 1023 struct btrfs_key key; 1024 struct btrfs_free_space_header *header; 1025 struct extent_buffer *leaf; 1026 int ret; 1027 1028 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1029 key.offset = offset; 1030 key.type = 0; 1031 1032 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1033 if (ret < 0) { 1034 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1035 EXTENT_DELALLOC, 0, 0, NULL); 1036 goto fail; 1037 } 1038 leaf = path->nodes[0]; 1039 if (ret > 0) { 1040 struct btrfs_key found_key; 1041 ASSERT(path->slots[0]); 1042 path->slots[0]--; 1043 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1044 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1045 found_key.offset != offset) { 1046 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1047 inode->i_size - 1, EXTENT_DELALLOC, 0, 1048 0, NULL); 1049 btrfs_release_path(path); 1050 goto fail; 1051 } 1052 } 1053 1054 BTRFS_I(inode)->generation = trans->transid; 1055 header = btrfs_item_ptr(leaf, path->slots[0], 1056 struct btrfs_free_space_header); 1057 btrfs_set_free_space_entries(leaf, header, entries); 1058 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1059 btrfs_set_free_space_generation(leaf, header, trans->transid); 1060 btrfs_mark_buffer_dirty(leaf); 1061 btrfs_release_path(path); 1062 1063 return 0; 1064 1065 fail: 1066 return -1; 1067 } 1068 1069 static noinline_for_stack int write_pinned_extent_entries( 1070 struct btrfs_trans_handle *trans, 1071 struct btrfs_block_group *block_group, 1072 struct btrfs_io_ctl *io_ctl, 1073 int *entries) 1074 { 1075 u64 start, extent_start, extent_end, len; 1076 struct extent_io_tree *unpin = NULL; 1077 int ret; 1078 1079 if (!block_group) 1080 return 0; 1081 1082 /* 1083 * We want to add any pinned extents to our free space cache 1084 * so we don't leak the space 1085 * 1086 * We shouldn't have switched the pinned extents yet so this is the 1087 * right one 1088 */ 1089 unpin = &trans->transaction->pinned_extents; 1090 1091 start = block_group->start; 1092 1093 while (start < block_group->start + block_group->length) { 1094 ret = find_first_extent_bit(unpin, start, 1095 &extent_start, &extent_end, 1096 EXTENT_DIRTY, NULL); 1097 if (ret) 1098 return 0; 1099 1100 /* This pinned extent is out of our range */ 1101 if (extent_start >= block_group->start + block_group->length) 1102 return 0; 1103 1104 extent_start = max(extent_start, start); 1105 extent_end = min(block_group->start + block_group->length, 1106 extent_end + 1); 1107 len = extent_end - extent_start; 1108 1109 *entries += 1; 1110 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1111 if (ret) 1112 return -ENOSPC; 1113 1114 start = extent_end; 1115 } 1116 1117 return 0; 1118 } 1119 1120 static noinline_for_stack int 1121 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1122 { 1123 struct btrfs_free_space *entry, *next; 1124 int ret; 1125 1126 /* Write out the bitmaps */ 1127 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1128 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1129 if (ret) 1130 return -ENOSPC; 1131 list_del_init(&entry->list); 1132 } 1133 1134 return 0; 1135 } 1136 1137 static int flush_dirty_cache(struct inode *inode) 1138 { 1139 int ret; 1140 1141 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1142 if (ret) 1143 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1144 EXTENT_DELALLOC, 0, 0, NULL); 1145 1146 return ret; 1147 } 1148 1149 static void noinline_for_stack 1150 cleanup_bitmap_list(struct list_head *bitmap_list) 1151 { 1152 struct btrfs_free_space *entry, *next; 1153 1154 list_for_each_entry_safe(entry, next, bitmap_list, list) 1155 list_del_init(&entry->list); 1156 } 1157 1158 static void noinline_for_stack 1159 cleanup_write_cache_enospc(struct inode *inode, 1160 struct btrfs_io_ctl *io_ctl, 1161 struct extent_state **cached_state) 1162 { 1163 io_ctl_drop_pages(io_ctl); 1164 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1165 i_size_read(inode) - 1, cached_state); 1166 } 1167 1168 static int __btrfs_wait_cache_io(struct btrfs_root *root, 1169 struct btrfs_trans_handle *trans, 1170 struct btrfs_block_group *block_group, 1171 struct btrfs_io_ctl *io_ctl, 1172 struct btrfs_path *path, u64 offset) 1173 { 1174 int ret; 1175 struct inode *inode = io_ctl->inode; 1176 1177 if (!inode) 1178 return 0; 1179 1180 /* Flush the dirty pages in the cache file. */ 1181 ret = flush_dirty_cache(inode); 1182 if (ret) 1183 goto out; 1184 1185 /* Update the cache item to tell everyone this cache file is valid. */ 1186 ret = update_cache_item(trans, root, inode, path, offset, 1187 io_ctl->entries, io_ctl->bitmaps); 1188 out: 1189 io_ctl_free(io_ctl); 1190 if (ret) { 1191 invalidate_inode_pages2(inode->i_mapping); 1192 BTRFS_I(inode)->generation = 0; 1193 if (block_group) { 1194 #ifdef CONFIG_BTRFS_DEBUG 1195 btrfs_err(root->fs_info, 1196 "failed to write free space cache for block group %llu", 1197 block_group->start); 1198 #endif 1199 } 1200 } 1201 btrfs_update_inode(trans, root, inode); 1202 1203 if (block_group) { 1204 /* the dirty list is protected by the dirty_bgs_lock */ 1205 spin_lock(&trans->transaction->dirty_bgs_lock); 1206 1207 /* the disk_cache_state is protected by the block group lock */ 1208 spin_lock(&block_group->lock); 1209 1210 /* 1211 * only mark this as written if we didn't get put back on 1212 * the dirty list while waiting for IO. Otherwise our 1213 * cache state won't be right, and we won't get written again 1214 */ 1215 if (!ret && list_empty(&block_group->dirty_list)) 1216 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1217 else if (ret) 1218 block_group->disk_cache_state = BTRFS_DC_ERROR; 1219 1220 spin_unlock(&block_group->lock); 1221 spin_unlock(&trans->transaction->dirty_bgs_lock); 1222 io_ctl->inode = NULL; 1223 iput(inode); 1224 } 1225 1226 return ret; 1227 1228 } 1229 1230 static int btrfs_wait_cache_io_root(struct btrfs_root *root, 1231 struct btrfs_trans_handle *trans, 1232 struct btrfs_io_ctl *io_ctl, 1233 struct btrfs_path *path) 1234 { 1235 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0); 1236 } 1237 1238 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, 1239 struct btrfs_block_group *block_group, 1240 struct btrfs_path *path) 1241 { 1242 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, 1243 block_group, &block_group->io_ctl, 1244 path, block_group->start); 1245 } 1246 1247 /** 1248 * __btrfs_write_out_cache - write out cached info to an inode 1249 * @root - the root the inode belongs to 1250 * @ctl - the free space cache we are going to write out 1251 * @block_group - the block_group for this cache if it belongs to a block_group 1252 * @trans - the trans handle 1253 * 1254 * This function writes out a free space cache struct to disk for quick recovery 1255 * on mount. This will return 0 if it was successful in writing the cache out, 1256 * or an errno if it was not. 1257 */ 1258 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1259 struct btrfs_free_space_ctl *ctl, 1260 struct btrfs_block_group *block_group, 1261 struct btrfs_io_ctl *io_ctl, 1262 struct btrfs_trans_handle *trans) 1263 { 1264 struct extent_state *cached_state = NULL; 1265 LIST_HEAD(bitmap_list); 1266 int entries = 0; 1267 int bitmaps = 0; 1268 int ret; 1269 int must_iput = 0; 1270 1271 if (!i_size_read(inode)) 1272 return -EIO; 1273 1274 WARN_ON(io_ctl->pages); 1275 ret = io_ctl_init(io_ctl, inode, 1); 1276 if (ret) 1277 return ret; 1278 1279 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1280 down_write(&block_group->data_rwsem); 1281 spin_lock(&block_group->lock); 1282 if (block_group->delalloc_bytes) { 1283 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1284 spin_unlock(&block_group->lock); 1285 up_write(&block_group->data_rwsem); 1286 BTRFS_I(inode)->generation = 0; 1287 ret = 0; 1288 must_iput = 1; 1289 goto out; 1290 } 1291 spin_unlock(&block_group->lock); 1292 } 1293 1294 /* Lock all pages first so we can lock the extent safely. */ 1295 ret = io_ctl_prepare_pages(io_ctl, false); 1296 if (ret) 1297 goto out_unlock; 1298 1299 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1300 &cached_state); 1301 1302 io_ctl_set_generation(io_ctl, trans->transid); 1303 1304 mutex_lock(&ctl->cache_writeout_mutex); 1305 /* Write out the extent entries in the free space cache */ 1306 spin_lock(&ctl->tree_lock); 1307 ret = write_cache_extent_entries(io_ctl, ctl, 1308 block_group, &entries, &bitmaps, 1309 &bitmap_list); 1310 if (ret) 1311 goto out_nospc_locked; 1312 1313 /* 1314 * Some spaces that are freed in the current transaction are pinned, 1315 * they will be added into free space cache after the transaction is 1316 * committed, we shouldn't lose them. 1317 * 1318 * If this changes while we are working we'll get added back to 1319 * the dirty list and redo it. No locking needed 1320 */ 1321 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries); 1322 if (ret) 1323 goto out_nospc_locked; 1324 1325 /* 1326 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1327 * locked while doing it because a concurrent trim can be manipulating 1328 * or freeing the bitmap. 1329 */ 1330 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1331 spin_unlock(&ctl->tree_lock); 1332 mutex_unlock(&ctl->cache_writeout_mutex); 1333 if (ret) 1334 goto out_nospc; 1335 1336 /* Zero out the rest of the pages just to make sure */ 1337 io_ctl_zero_remaining_pages(io_ctl); 1338 1339 /* Everything is written out, now we dirty the pages in the file. */ 1340 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0, 1341 i_size_read(inode), &cached_state); 1342 if (ret) 1343 goto out_nospc; 1344 1345 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1346 up_write(&block_group->data_rwsem); 1347 /* 1348 * Release the pages and unlock the extent, we will flush 1349 * them out later 1350 */ 1351 io_ctl_drop_pages(io_ctl); 1352 1353 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1354 i_size_read(inode) - 1, &cached_state); 1355 1356 /* 1357 * at this point the pages are under IO and we're happy, 1358 * The caller is responsible for waiting on them and updating the 1359 * the cache and the inode 1360 */ 1361 io_ctl->entries = entries; 1362 io_ctl->bitmaps = bitmaps; 1363 1364 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1365 if (ret) 1366 goto out; 1367 1368 return 0; 1369 1370 out_nospc_locked: 1371 cleanup_bitmap_list(&bitmap_list); 1372 spin_unlock(&ctl->tree_lock); 1373 mutex_unlock(&ctl->cache_writeout_mutex); 1374 1375 out_nospc: 1376 cleanup_write_cache_enospc(inode, io_ctl, &cached_state); 1377 1378 out_unlock: 1379 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1380 up_write(&block_group->data_rwsem); 1381 1382 out: 1383 io_ctl->inode = NULL; 1384 io_ctl_free(io_ctl); 1385 if (ret) { 1386 invalidate_inode_pages2(inode->i_mapping); 1387 BTRFS_I(inode)->generation = 0; 1388 } 1389 btrfs_update_inode(trans, root, inode); 1390 if (must_iput) 1391 iput(inode); 1392 return ret; 1393 } 1394 1395 int btrfs_write_out_cache(struct btrfs_trans_handle *trans, 1396 struct btrfs_block_group *block_group, 1397 struct btrfs_path *path) 1398 { 1399 struct btrfs_fs_info *fs_info = trans->fs_info; 1400 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1401 struct inode *inode; 1402 int ret = 0; 1403 1404 spin_lock(&block_group->lock); 1405 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1406 spin_unlock(&block_group->lock); 1407 return 0; 1408 } 1409 spin_unlock(&block_group->lock); 1410 1411 inode = lookup_free_space_inode(block_group, path); 1412 if (IS_ERR(inode)) 1413 return 0; 1414 1415 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, 1416 block_group, &block_group->io_ctl, trans); 1417 if (ret) { 1418 #ifdef CONFIG_BTRFS_DEBUG 1419 btrfs_err(fs_info, 1420 "failed to write free space cache for block group %llu", 1421 block_group->start); 1422 #endif 1423 spin_lock(&block_group->lock); 1424 block_group->disk_cache_state = BTRFS_DC_ERROR; 1425 spin_unlock(&block_group->lock); 1426 1427 block_group->io_ctl.inode = NULL; 1428 iput(inode); 1429 } 1430 1431 /* 1432 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1433 * to wait for IO and put the inode 1434 */ 1435 1436 return ret; 1437 } 1438 1439 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1440 u64 offset) 1441 { 1442 ASSERT(offset >= bitmap_start); 1443 offset -= bitmap_start; 1444 return (unsigned long)(div_u64(offset, unit)); 1445 } 1446 1447 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1448 { 1449 return (unsigned long)(div_u64(bytes, unit)); 1450 } 1451 1452 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1453 u64 offset) 1454 { 1455 u64 bitmap_start; 1456 u64 bytes_per_bitmap; 1457 1458 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1459 bitmap_start = offset - ctl->start; 1460 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1461 bitmap_start *= bytes_per_bitmap; 1462 bitmap_start += ctl->start; 1463 1464 return bitmap_start; 1465 } 1466 1467 static int tree_insert_offset(struct rb_root *root, u64 offset, 1468 struct rb_node *node, int bitmap) 1469 { 1470 struct rb_node **p = &root->rb_node; 1471 struct rb_node *parent = NULL; 1472 struct btrfs_free_space *info; 1473 1474 while (*p) { 1475 parent = *p; 1476 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1477 1478 if (offset < info->offset) { 1479 p = &(*p)->rb_left; 1480 } else if (offset > info->offset) { 1481 p = &(*p)->rb_right; 1482 } else { 1483 /* 1484 * we could have a bitmap entry and an extent entry 1485 * share the same offset. If this is the case, we want 1486 * the extent entry to always be found first if we do a 1487 * linear search through the tree, since we want to have 1488 * the quickest allocation time, and allocating from an 1489 * extent is faster than allocating from a bitmap. So 1490 * if we're inserting a bitmap and we find an entry at 1491 * this offset, we want to go right, or after this entry 1492 * logically. If we are inserting an extent and we've 1493 * found a bitmap, we want to go left, or before 1494 * logically. 1495 */ 1496 if (bitmap) { 1497 if (info->bitmap) { 1498 WARN_ON_ONCE(1); 1499 return -EEXIST; 1500 } 1501 p = &(*p)->rb_right; 1502 } else { 1503 if (!info->bitmap) { 1504 WARN_ON_ONCE(1); 1505 return -EEXIST; 1506 } 1507 p = &(*p)->rb_left; 1508 } 1509 } 1510 } 1511 1512 rb_link_node(node, parent, p); 1513 rb_insert_color(node, root); 1514 1515 return 0; 1516 } 1517 1518 /* 1519 * searches the tree for the given offset. 1520 * 1521 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1522 * want a section that has at least bytes size and comes at or after the given 1523 * offset. 1524 */ 1525 static struct btrfs_free_space * 1526 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1527 u64 offset, int bitmap_only, int fuzzy) 1528 { 1529 struct rb_node *n = ctl->free_space_offset.rb_node; 1530 struct btrfs_free_space *entry, *prev = NULL; 1531 1532 /* find entry that is closest to the 'offset' */ 1533 while (1) { 1534 if (!n) { 1535 entry = NULL; 1536 break; 1537 } 1538 1539 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1540 prev = entry; 1541 1542 if (offset < entry->offset) 1543 n = n->rb_left; 1544 else if (offset > entry->offset) 1545 n = n->rb_right; 1546 else 1547 break; 1548 } 1549 1550 if (bitmap_only) { 1551 if (!entry) 1552 return NULL; 1553 if (entry->bitmap) 1554 return entry; 1555 1556 /* 1557 * bitmap entry and extent entry may share same offset, 1558 * in that case, bitmap entry comes after extent entry. 1559 */ 1560 n = rb_next(n); 1561 if (!n) 1562 return NULL; 1563 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1564 if (entry->offset != offset) 1565 return NULL; 1566 1567 WARN_ON(!entry->bitmap); 1568 return entry; 1569 } else if (entry) { 1570 if (entry->bitmap) { 1571 /* 1572 * if previous extent entry covers the offset, 1573 * we should return it instead of the bitmap entry 1574 */ 1575 n = rb_prev(&entry->offset_index); 1576 if (n) { 1577 prev = rb_entry(n, struct btrfs_free_space, 1578 offset_index); 1579 if (!prev->bitmap && 1580 prev->offset + prev->bytes > offset) 1581 entry = prev; 1582 } 1583 } 1584 return entry; 1585 } 1586 1587 if (!prev) 1588 return NULL; 1589 1590 /* find last entry before the 'offset' */ 1591 entry = prev; 1592 if (entry->offset > offset) { 1593 n = rb_prev(&entry->offset_index); 1594 if (n) { 1595 entry = rb_entry(n, struct btrfs_free_space, 1596 offset_index); 1597 ASSERT(entry->offset <= offset); 1598 } else { 1599 if (fuzzy) 1600 return entry; 1601 else 1602 return NULL; 1603 } 1604 } 1605 1606 if (entry->bitmap) { 1607 n = rb_prev(&entry->offset_index); 1608 if (n) { 1609 prev = rb_entry(n, struct btrfs_free_space, 1610 offset_index); 1611 if (!prev->bitmap && 1612 prev->offset + prev->bytes > offset) 1613 return prev; 1614 } 1615 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1616 return entry; 1617 } else if (entry->offset + entry->bytes > offset) 1618 return entry; 1619 1620 if (!fuzzy) 1621 return NULL; 1622 1623 while (1) { 1624 if (entry->bitmap) { 1625 if (entry->offset + BITS_PER_BITMAP * 1626 ctl->unit > offset) 1627 break; 1628 } else { 1629 if (entry->offset + entry->bytes > offset) 1630 break; 1631 } 1632 1633 n = rb_next(&entry->offset_index); 1634 if (!n) 1635 return NULL; 1636 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1637 } 1638 return entry; 1639 } 1640 1641 static inline void 1642 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1643 struct btrfs_free_space *info) 1644 { 1645 rb_erase(&info->offset_index, &ctl->free_space_offset); 1646 ctl->free_extents--; 1647 1648 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1649 ctl->discardable_extents[BTRFS_STAT_CURR]--; 1650 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes; 1651 } 1652 } 1653 1654 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1655 struct btrfs_free_space *info) 1656 { 1657 __unlink_free_space(ctl, info); 1658 ctl->free_space -= info->bytes; 1659 } 1660 1661 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1662 struct btrfs_free_space *info) 1663 { 1664 int ret = 0; 1665 1666 ASSERT(info->bytes || info->bitmap); 1667 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1668 &info->offset_index, (info->bitmap != NULL)); 1669 if (ret) 1670 return ret; 1671 1672 if (!info->bitmap && !btrfs_free_space_trimmed(info)) { 1673 ctl->discardable_extents[BTRFS_STAT_CURR]++; 1674 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 1675 } 1676 1677 ctl->free_space += info->bytes; 1678 ctl->free_extents++; 1679 return ret; 1680 } 1681 1682 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1683 { 1684 struct btrfs_block_group *block_group = ctl->private; 1685 u64 max_bytes; 1686 u64 bitmap_bytes; 1687 u64 extent_bytes; 1688 u64 size = block_group->length; 1689 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1690 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1691 1692 max_bitmaps = max_t(u64, max_bitmaps, 1); 1693 1694 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1695 1696 /* 1697 * We are trying to keep the total amount of memory used per 1GiB of 1698 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation 1699 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of 1700 * bitmaps, we may end up using more memory than this. 1701 */ 1702 if (size < SZ_1G) 1703 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1704 else 1705 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 1706 1707 bitmap_bytes = ctl->total_bitmaps * ctl->unit; 1708 1709 /* 1710 * we want the extent entry threshold to always be at most 1/2 the max 1711 * bytes we can have, or whatever is less than that. 1712 */ 1713 extent_bytes = max_bytes - bitmap_bytes; 1714 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 1715 1716 ctl->extents_thresh = 1717 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 1718 } 1719 1720 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1721 struct btrfs_free_space *info, 1722 u64 offset, u64 bytes) 1723 { 1724 unsigned long start, count, end; 1725 int extent_delta = -1; 1726 1727 start = offset_to_bit(info->offset, ctl->unit, offset); 1728 count = bytes_to_bits(bytes, ctl->unit); 1729 end = start + count; 1730 ASSERT(end <= BITS_PER_BITMAP); 1731 1732 bitmap_clear(info->bitmap, start, count); 1733 1734 info->bytes -= bytes; 1735 if (info->max_extent_size > ctl->unit) 1736 info->max_extent_size = 0; 1737 1738 if (start && test_bit(start - 1, info->bitmap)) 1739 extent_delta++; 1740 1741 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1742 extent_delta++; 1743 1744 info->bitmap_extents += extent_delta; 1745 if (!btrfs_free_space_trimmed(info)) { 1746 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1747 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 1748 } 1749 } 1750 1751 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1752 struct btrfs_free_space *info, u64 offset, 1753 u64 bytes) 1754 { 1755 __bitmap_clear_bits(ctl, info, offset, bytes); 1756 ctl->free_space -= bytes; 1757 } 1758 1759 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1760 struct btrfs_free_space *info, u64 offset, 1761 u64 bytes) 1762 { 1763 unsigned long start, count, end; 1764 int extent_delta = 1; 1765 1766 start = offset_to_bit(info->offset, ctl->unit, offset); 1767 count = bytes_to_bits(bytes, ctl->unit); 1768 end = start + count; 1769 ASSERT(end <= BITS_PER_BITMAP); 1770 1771 bitmap_set(info->bitmap, start, count); 1772 1773 info->bytes += bytes; 1774 ctl->free_space += bytes; 1775 1776 if (start && test_bit(start - 1, info->bitmap)) 1777 extent_delta--; 1778 1779 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) 1780 extent_delta--; 1781 1782 info->bitmap_extents += extent_delta; 1783 if (!btrfs_free_space_trimmed(info)) { 1784 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; 1785 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes; 1786 } 1787 } 1788 1789 /* 1790 * If we can not find suitable extent, we will use bytes to record 1791 * the size of the max extent. 1792 */ 1793 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1794 struct btrfs_free_space *bitmap_info, u64 *offset, 1795 u64 *bytes, bool for_alloc) 1796 { 1797 unsigned long found_bits = 0; 1798 unsigned long max_bits = 0; 1799 unsigned long bits, i; 1800 unsigned long next_zero; 1801 unsigned long extent_bits; 1802 1803 /* 1804 * Skip searching the bitmap if we don't have a contiguous section that 1805 * is large enough for this allocation. 1806 */ 1807 if (for_alloc && 1808 bitmap_info->max_extent_size && 1809 bitmap_info->max_extent_size < *bytes) { 1810 *bytes = bitmap_info->max_extent_size; 1811 return -1; 1812 } 1813 1814 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1815 max_t(u64, *offset, bitmap_info->offset)); 1816 bits = bytes_to_bits(*bytes, ctl->unit); 1817 1818 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1819 if (for_alloc && bits == 1) { 1820 found_bits = 1; 1821 break; 1822 } 1823 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1824 BITS_PER_BITMAP, i); 1825 extent_bits = next_zero - i; 1826 if (extent_bits >= bits) { 1827 found_bits = extent_bits; 1828 break; 1829 } else if (extent_bits > max_bits) { 1830 max_bits = extent_bits; 1831 } 1832 i = next_zero; 1833 } 1834 1835 if (found_bits) { 1836 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1837 *bytes = (u64)(found_bits) * ctl->unit; 1838 return 0; 1839 } 1840 1841 *bytes = (u64)(max_bits) * ctl->unit; 1842 bitmap_info->max_extent_size = *bytes; 1843 return -1; 1844 } 1845 1846 static inline u64 get_max_extent_size(struct btrfs_free_space *entry) 1847 { 1848 if (entry->bitmap) 1849 return entry->max_extent_size; 1850 return entry->bytes; 1851 } 1852 1853 /* Cache the size of the max extent in bytes */ 1854 static struct btrfs_free_space * 1855 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1856 unsigned long align, u64 *max_extent_size) 1857 { 1858 struct btrfs_free_space *entry; 1859 struct rb_node *node; 1860 u64 tmp; 1861 u64 align_off; 1862 int ret; 1863 1864 if (!ctl->free_space_offset.rb_node) 1865 goto out; 1866 1867 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1868 if (!entry) 1869 goto out; 1870 1871 for (node = &entry->offset_index; node; node = rb_next(node)) { 1872 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1873 if (entry->bytes < *bytes) { 1874 *max_extent_size = max(get_max_extent_size(entry), 1875 *max_extent_size); 1876 continue; 1877 } 1878 1879 /* make sure the space returned is big enough 1880 * to match our requested alignment 1881 */ 1882 if (*bytes >= align) { 1883 tmp = entry->offset - ctl->start + align - 1; 1884 tmp = div64_u64(tmp, align); 1885 tmp = tmp * align + ctl->start; 1886 align_off = tmp - entry->offset; 1887 } else { 1888 align_off = 0; 1889 tmp = entry->offset; 1890 } 1891 1892 if (entry->bytes < *bytes + align_off) { 1893 *max_extent_size = max(get_max_extent_size(entry), 1894 *max_extent_size); 1895 continue; 1896 } 1897 1898 if (entry->bitmap) { 1899 u64 size = *bytes; 1900 1901 ret = search_bitmap(ctl, entry, &tmp, &size, true); 1902 if (!ret) { 1903 *offset = tmp; 1904 *bytes = size; 1905 return entry; 1906 } else { 1907 *max_extent_size = 1908 max(get_max_extent_size(entry), 1909 *max_extent_size); 1910 } 1911 continue; 1912 } 1913 1914 *offset = tmp; 1915 *bytes = entry->bytes - align_off; 1916 return entry; 1917 } 1918 out: 1919 return NULL; 1920 } 1921 1922 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl, 1923 struct btrfs_free_space *bitmap_info) 1924 { 1925 struct btrfs_block_group *block_group = ctl->private; 1926 u64 bytes = bitmap_info->bytes; 1927 unsigned int rs, re; 1928 int count = 0; 1929 1930 if (!block_group || !bytes) 1931 return count; 1932 1933 bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0, 1934 BITS_PER_BITMAP) { 1935 bytes -= (rs - re) * ctl->unit; 1936 count++; 1937 1938 if (!bytes) 1939 break; 1940 } 1941 1942 return count; 1943 } 1944 1945 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1946 struct btrfs_free_space *info, u64 offset) 1947 { 1948 info->offset = offset_to_bitmap(ctl, offset); 1949 info->bytes = 0; 1950 info->bitmap_extents = 0; 1951 INIT_LIST_HEAD(&info->list); 1952 link_free_space(ctl, info); 1953 ctl->total_bitmaps++; 1954 1955 ctl->op->recalc_thresholds(ctl); 1956 } 1957 1958 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1959 struct btrfs_free_space *bitmap_info) 1960 { 1961 /* 1962 * Normally when this is called, the bitmap is completely empty. However, 1963 * if we are blowing up the free space cache for one reason or another 1964 * via __btrfs_remove_free_space_cache(), then it may not be freed and 1965 * we may leave stats on the table. 1966 */ 1967 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) { 1968 ctl->discardable_extents[BTRFS_STAT_CURR] -= 1969 bitmap_info->bitmap_extents; 1970 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes; 1971 1972 } 1973 unlink_free_space(ctl, bitmap_info); 1974 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); 1975 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1976 ctl->total_bitmaps--; 1977 ctl->op->recalc_thresholds(ctl); 1978 } 1979 1980 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1981 struct btrfs_free_space *bitmap_info, 1982 u64 *offset, u64 *bytes) 1983 { 1984 u64 end; 1985 u64 search_start, search_bytes; 1986 int ret; 1987 1988 again: 1989 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1990 1991 /* 1992 * We need to search for bits in this bitmap. We could only cover some 1993 * of the extent in this bitmap thanks to how we add space, so we need 1994 * to search for as much as it as we can and clear that amount, and then 1995 * go searching for the next bit. 1996 */ 1997 search_start = *offset; 1998 search_bytes = ctl->unit; 1999 search_bytes = min(search_bytes, end - search_start + 1); 2000 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 2001 false); 2002 if (ret < 0 || search_start != *offset) 2003 return -EINVAL; 2004 2005 /* We may have found more bits than what we need */ 2006 search_bytes = min(search_bytes, *bytes); 2007 2008 /* Cannot clear past the end of the bitmap */ 2009 search_bytes = min(search_bytes, end - search_start + 1); 2010 2011 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 2012 *offset += search_bytes; 2013 *bytes -= search_bytes; 2014 2015 if (*bytes) { 2016 struct rb_node *next = rb_next(&bitmap_info->offset_index); 2017 if (!bitmap_info->bytes) 2018 free_bitmap(ctl, bitmap_info); 2019 2020 /* 2021 * no entry after this bitmap, but we still have bytes to 2022 * remove, so something has gone wrong. 2023 */ 2024 if (!next) 2025 return -EINVAL; 2026 2027 bitmap_info = rb_entry(next, struct btrfs_free_space, 2028 offset_index); 2029 2030 /* 2031 * if the next entry isn't a bitmap we need to return to let the 2032 * extent stuff do its work. 2033 */ 2034 if (!bitmap_info->bitmap) 2035 return -EAGAIN; 2036 2037 /* 2038 * Ok the next item is a bitmap, but it may not actually hold 2039 * the information for the rest of this free space stuff, so 2040 * look for it, and if we don't find it return so we can try 2041 * everything over again. 2042 */ 2043 search_start = *offset; 2044 search_bytes = ctl->unit; 2045 ret = search_bitmap(ctl, bitmap_info, &search_start, 2046 &search_bytes, false); 2047 if (ret < 0 || search_start != *offset) 2048 return -EAGAIN; 2049 2050 goto again; 2051 } else if (!bitmap_info->bytes) 2052 free_bitmap(ctl, bitmap_info); 2053 2054 return 0; 2055 } 2056 2057 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 2058 struct btrfs_free_space *info, u64 offset, 2059 u64 bytes, enum btrfs_trim_state trim_state) 2060 { 2061 u64 bytes_to_set = 0; 2062 u64 end; 2063 2064 /* 2065 * This is a tradeoff to make bitmap trim state minimal. We mark the 2066 * whole bitmap untrimmed if at any point we add untrimmed regions. 2067 */ 2068 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) { 2069 if (btrfs_free_space_trimmed(info)) { 2070 ctl->discardable_extents[BTRFS_STAT_CURR] += 2071 info->bitmap_extents; 2072 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; 2073 } 2074 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2075 } 2076 2077 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 2078 2079 bytes_to_set = min(end - offset, bytes); 2080 2081 bitmap_set_bits(ctl, info, offset, bytes_to_set); 2082 2083 /* 2084 * We set some bytes, we have no idea what the max extent size is 2085 * anymore. 2086 */ 2087 info->max_extent_size = 0; 2088 2089 return bytes_to_set; 2090 2091 } 2092 2093 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 2094 struct btrfs_free_space *info) 2095 { 2096 struct btrfs_block_group *block_group = ctl->private; 2097 struct btrfs_fs_info *fs_info = block_group->fs_info; 2098 bool forced = false; 2099 2100 #ifdef CONFIG_BTRFS_DEBUG 2101 if (btrfs_should_fragment_free_space(block_group)) 2102 forced = true; 2103 #endif 2104 2105 /* This is a way to reclaim large regions from the bitmaps. */ 2106 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD) 2107 return false; 2108 2109 /* 2110 * If we are below the extents threshold then we can add this as an 2111 * extent, and don't have to deal with the bitmap 2112 */ 2113 if (!forced && ctl->free_extents < ctl->extents_thresh) { 2114 /* 2115 * If this block group has some small extents we don't want to 2116 * use up all of our free slots in the cache with them, we want 2117 * to reserve them to larger extents, however if we have plenty 2118 * of cache left then go ahead an dadd them, no sense in adding 2119 * the overhead of a bitmap if we don't have to. 2120 */ 2121 if (info->bytes <= fs_info->sectorsize * 8) { 2122 if (ctl->free_extents * 3 <= ctl->extents_thresh) 2123 return false; 2124 } else { 2125 return false; 2126 } 2127 } 2128 2129 /* 2130 * The original block groups from mkfs can be really small, like 8 2131 * megabytes, so don't bother with a bitmap for those entries. However 2132 * some block groups can be smaller than what a bitmap would cover but 2133 * are still large enough that they could overflow the 32k memory limit, 2134 * so allow those block groups to still be allowed to have a bitmap 2135 * entry. 2136 */ 2137 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length) 2138 return false; 2139 2140 return true; 2141 } 2142 2143 static const struct btrfs_free_space_op free_space_op = { 2144 .recalc_thresholds = recalculate_thresholds, 2145 .use_bitmap = use_bitmap, 2146 }; 2147 2148 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2149 struct btrfs_free_space *info) 2150 { 2151 struct btrfs_free_space *bitmap_info; 2152 struct btrfs_block_group *block_group = NULL; 2153 int added = 0; 2154 u64 bytes, offset, bytes_added; 2155 enum btrfs_trim_state trim_state; 2156 int ret; 2157 2158 bytes = info->bytes; 2159 offset = info->offset; 2160 trim_state = info->trim_state; 2161 2162 if (!ctl->op->use_bitmap(ctl, info)) 2163 return 0; 2164 2165 if (ctl->op == &free_space_op) 2166 block_group = ctl->private; 2167 again: 2168 /* 2169 * Since we link bitmaps right into the cluster we need to see if we 2170 * have a cluster here, and if so and it has our bitmap we need to add 2171 * the free space to that bitmap. 2172 */ 2173 if (block_group && !list_empty(&block_group->cluster_list)) { 2174 struct btrfs_free_cluster *cluster; 2175 struct rb_node *node; 2176 struct btrfs_free_space *entry; 2177 2178 cluster = list_entry(block_group->cluster_list.next, 2179 struct btrfs_free_cluster, 2180 block_group_list); 2181 spin_lock(&cluster->lock); 2182 node = rb_first(&cluster->root); 2183 if (!node) { 2184 spin_unlock(&cluster->lock); 2185 goto no_cluster_bitmap; 2186 } 2187 2188 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2189 if (!entry->bitmap) { 2190 spin_unlock(&cluster->lock); 2191 goto no_cluster_bitmap; 2192 } 2193 2194 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2195 bytes_added = add_bytes_to_bitmap(ctl, entry, offset, 2196 bytes, trim_state); 2197 bytes -= bytes_added; 2198 offset += bytes_added; 2199 } 2200 spin_unlock(&cluster->lock); 2201 if (!bytes) { 2202 ret = 1; 2203 goto out; 2204 } 2205 } 2206 2207 no_cluster_bitmap: 2208 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2209 1, 0); 2210 if (!bitmap_info) { 2211 ASSERT(added == 0); 2212 goto new_bitmap; 2213 } 2214 2215 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 2216 trim_state); 2217 bytes -= bytes_added; 2218 offset += bytes_added; 2219 added = 0; 2220 2221 if (!bytes) { 2222 ret = 1; 2223 goto out; 2224 } else 2225 goto again; 2226 2227 new_bitmap: 2228 if (info && info->bitmap) { 2229 add_new_bitmap(ctl, info, offset); 2230 added = 1; 2231 info = NULL; 2232 goto again; 2233 } else { 2234 spin_unlock(&ctl->tree_lock); 2235 2236 /* no pre-allocated info, allocate a new one */ 2237 if (!info) { 2238 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2239 GFP_NOFS); 2240 if (!info) { 2241 spin_lock(&ctl->tree_lock); 2242 ret = -ENOMEM; 2243 goto out; 2244 } 2245 } 2246 2247 /* allocate the bitmap */ 2248 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, 2249 GFP_NOFS); 2250 info->trim_state = BTRFS_TRIM_STATE_TRIMMED; 2251 spin_lock(&ctl->tree_lock); 2252 if (!info->bitmap) { 2253 ret = -ENOMEM; 2254 goto out; 2255 } 2256 goto again; 2257 } 2258 2259 out: 2260 if (info) { 2261 if (info->bitmap) 2262 kmem_cache_free(btrfs_free_space_bitmap_cachep, 2263 info->bitmap); 2264 kmem_cache_free(btrfs_free_space_cachep, info); 2265 } 2266 2267 return ret; 2268 } 2269 2270 /* 2271 * Free space merging rules: 2272 * 1) Merge trimmed areas together 2273 * 2) Let untrimmed areas coalesce with trimmed areas 2274 * 3) Always pull neighboring regions from bitmaps 2275 * 2276 * The above rules are for when we merge free space based on btrfs_trim_state. 2277 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the 2278 * same reason: to promote larger extent regions which makes life easier for 2279 * find_free_extent(). Rule 2 enables coalescing based on the common path 2280 * being returning free space from btrfs_finish_extent_commit(). So when free 2281 * space is trimmed, it will prevent aggregating trimmed new region and 2282 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents 2283 * and provide find_free_extent() with the largest extents possible hoping for 2284 * the reuse path. 2285 */ 2286 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2287 struct btrfs_free_space *info, bool update_stat) 2288 { 2289 struct btrfs_free_space *left_info; 2290 struct btrfs_free_space *right_info; 2291 bool merged = false; 2292 u64 offset = info->offset; 2293 u64 bytes = info->bytes; 2294 const bool is_trimmed = btrfs_free_space_trimmed(info); 2295 2296 /* 2297 * first we want to see if there is free space adjacent to the range we 2298 * are adding, if there is remove that struct and add a new one to 2299 * cover the entire range 2300 */ 2301 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2302 if (right_info && rb_prev(&right_info->offset_index)) 2303 left_info = rb_entry(rb_prev(&right_info->offset_index), 2304 struct btrfs_free_space, offset_index); 2305 else 2306 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2307 2308 /* See try_merge_free_space() comment. */ 2309 if (right_info && !right_info->bitmap && 2310 (!is_trimmed || btrfs_free_space_trimmed(right_info))) { 2311 if (update_stat) 2312 unlink_free_space(ctl, right_info); 2313 else 2314 __unlink_free_space(ctl, right_info); 2315 info->bytes += right_info->bytes; 2316 kmem_cache_free(btrfs_free_space_cachep, right_info); 2317 merged = true; 2318 } 2319 2320 /* See try_merge_free_space() comment. */ 2321 if (left_info && !left_info->bitmap && 2322 left_info->offset + left_info->bytes == offset && 2323 (!is_trimmed || btrfs_free_space_trimmed(left_info))) { 2324 if (update_stat) 2325 unlink_free_space(ctl, left_info); 2326 else 2327 __unlink_free_space(ctl, left_info); 2328 info->offset = left_info->offset; 2329 info->bytes += left_info->bytes; 2330 kmem_cache_free(btrfs_free_space_cachep, left_info); 2331 merged = true; 2332 } 2333 2334 return merged; 2335 } 2336 2337 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2338 struct btrfs_free_space *info, 2339 bool update_stat) 2340 { 2341 struct btrfs_free_space *bitmap; 2342 unsigned long i; 2343 unsigned long j; 2344 const u64 end = info->offset + info->bytes; 2345 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2346 u64 bytes; 2347 2348 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2349 if (!bitmap) 2350 return false; 2351 2352 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2353 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2354 if (j == i) 2355 return false; 2356 bytes = (j - i) * ctl->unit; 2357 info->bytes += bytes; 2358 2359 /* See try_merge_free_space() comment. */ 2360 if (!btrfs_free_space_trimmed(bitmap)) 2361 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2362 2363 if (update_stat) 2364 bitmap_clear_bits(ctl, bitmap, end, bytes); 2365 else 2366 __bitmap_clear_bits(ctl, bitmap, end, bytes); 2367 2368 if (!bitmap->bytes) 2369 free_bitmap(ctl, bitmap); 2370 2371 return true; 2372 } 2373 2374 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2375 struct btrfs_free_space *info, 2376 bool update_stat) 2377 { 2378 struct btrfs_free_space *bitmap; 2379 u64 bitmap_offset; 2380 unsigned long i; 2381 unsigned long j; 2382 unsigned long prev_j; 2383 u64 bytes; 2384 2385 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2386 /* If we're on a boundary, try the previous logical bitmap. */ 2387 if (bitmap_offset == info->offset) { 2388 if (info->offset == 0) 2389 return false; 2390 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2391 } 2392 2393 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2394 if (!bitmap) 2395 return false; 2396 2397 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2398 j = 0; 2399 prev_j = (unsigned long)-1; 2400 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2401 if (j > i) 2402 break; 2403 prev_j = j; 2404 } 2405 if (prev_j == i) 2406 return false; 2407 2408 if (prev_j == (unsigned long)-1) 2409 bytes = (i + 1) * ctl->unit; 2410 else 2411 bytes = (i - prev_j) * ctl->unit; 2412 2413 info->offset -= bytes; 2414 info->bytes += bytes; 2415 2416 /* See try_merge_free_space() comment. */ 2417 if (!btrfs_free_space_trimmed(bitmap)) 2418 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2419 2420 if (update_stat) 2421 bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2422 else 2423 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2424 2425 if (!bitmap->bytes) 2426 free_bitmap(ctl, bitmap); 2427 2428 return true; 2429 } 2430 2431 /* 2432 * We prefer always to allocate from extent entries, both for clustered and 2433 * non-clustered allocation requests. So when attempting to add a new extent 2434 * entry, try to see if there's adjacent free space in bitmap entries, and if 2435 * there is, migrate that space from the bitmaps to the extent. 2436 * Like this we get better chances of satisfying space allocation requests 2437 * because we attempt to satisfy them based on a single cache entry, and never 2438 * on 2 or more entries - even if the entries represent a contiguous free space 2439 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2440 * ends). 2441 */ 2442 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2443 struct btrfs_free_space *info, 2444 bool update_stat) 2445 { 2446 /* 2447 * Only work with disconnected entries, as we can change their offset, 2448 * and must be extent entries. 2449 */ 2450 ASSERT(!info->bitmap); 2451 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2452 2453 if (ctl->total_bitmaps > 0) { 2454 bool stole_end; 2455 bool stole_front = false; 2456 2457 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2458 if (ctl->total_bitmaps > 0) 2459 stole_front = steal_from_bitmap_to_front(ctl, info, 2460 update_stat); 2461 2462 if (stole_end || stole_front) 2463 try_merge_free_space(ctl, info, update_stat); 2464 } 2465 } 2466 2467 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info, 2468 struct btrfs_free_space_ctl *ctl, 2469 u64 offset, u64 bytes, 2470 enum btrfs_trim_state trim_state) 2471 { 2472 struct btrfs_block_group *block_group = ctl->private; 2473 struct btrfs_free_space *info; 2474 int ret = 0; 2475 u64 filter_bytes = bytes; 2476 2477 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2478 if (!info) 2479 return -ENOMEM; 2480 2481 info->offset = offset; 2482 info->bytes = bytes; 2483 info->trim_state = trim_state; 2484 RB_CLEAR_NODE(&info->offset_index); 2485 2486 spin_lock(&ctl->tree_lock); 2487 2488 if (try_merge_free_space(ctl, info, true)) 2489 goto link; 2490 2491 /* 2492 * There was no extent directly to the left or right of this new 2493 * extent then we know we're going to have to allocate a new extent, so 2494 * before we do that see if we need to drop this into a bitmap 2495 */ 2496 ret = insert_into_bitmap(ctl, info); 2497 if (ret < 0) { 2498 goto out; 2499 } else if (ret) { 2500 ret = 0; 2501 goto out; 2502 } 2503 link: 2504 /* 2505 * Only steal free space from adjacent bitmaps if we're sure we're not 2506 * going to add the new free space to existing bitmap entries - because 2507 * that would mean unnecessary work that would be reverted. Therefore 2508 * attempt to steal space from bitmaps if we're adding an extent entry. 2509 */ 2510 steal_from_bitmap(ctl, info, true); 2511 2512 filter_bytes = max(filter_bytes, info->bytes); 2513 2514 ret = link_free_space(ctl, info); 2515 if (ret) 2516 kmem_cache_free(btrfs_free_space_cachep, info); 2517 out: 2518 btrfs_discard_update_discardable(block_group, ctl); 2519 spin_unlock(&ctl->tree_lock); 2520 2521 if (ret) { 2522 btrfs_crit(fs_info, "unable to add free space :%d", ret); 2523 ASSERT(ret != -EEXIST); 2524 } 2525 2526 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) { 2527 btrfs_discard_check_filter(block_group, filter_bytes); 2528 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 2529 } 2530 2531 return ret; 2532 } 2533 2534 int btrfs_add_free_space(struct btrfs_block_group *block_group, 2535 u64 bytenr, u64 size) 2536 { 2537 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2538 2539 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC)) 2540 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2541 2542 return __btrfs_add_free_space(block_group->fs_info, 2543 block_group->free_space_ctl, 2544 bytenr, size, trim_state); 2545 } 2546 2547 /* 2548 * This is a subtle distinction because when adding free space back in general, 2549 * we want it to be added as untrimmed for async. But in the case where we add 2550 * it on loading of a block group, we want to consider it trimmed. 2551 */ 2552 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group, 2553 u64 bytenr, u64 size) 2554 { 2555 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2556 2557 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) || 2558 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 2559 trim_state = BTRFS_TRIM_STATE_TRIMMED; 2560 2561 return __btrfs_add_free_space(block_group->fs_info, 2562 block_group->free_space_ctl, 2563 bytenr, size, trim_state); 2564 } 2565 2566 int btrfs_remove_free_space(struct btrfs_block_group *block_group, 2567 u64 offset, u64 bytes) 2568 { 2569 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2570 struct btrfs_free_space *info; 2571 int ret; 2572 bool re_search = false; 2573 2574 spin_lock(&ctl->tree_lock); 2575 2576 again: 2577 ret = 0; 2578 if (!bytes) 2579 goto out_lock; 2580 2581 info = tree_search_offset(ctl, offset, 0, 0); 2582 if (!info) { 2583 /* 2584 * oops didn't find an extent that matched the space we wanted 2585 * to remove, look for a bitmap instead 2586 */ 2587 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2588 1, 0); 2589 if (!info) { 2590 /* 2591 * If we found a partial bit of our free space in a 2592 * bitmap but then couldn't find the other part this may 2593 * be a problem, so WARN about it. 2594 */ 2595 WARN_ON(re_search); 2596 goto out_lock; 2597 } 2598 } 2599 2600 re_search = false; 2601 if (!info->bitmap) { 2602 unlink_free_space(ctl, info); 2603 if (offset == info->offset) { 2604 u64 to_free = min(bytes, info->bytes); 2605 2606 info->bytes -= to_free; 2607 info->offset += to_free; 2608 if (info->bytes) { 2609 ret = link_free_space(ctl, info); 2610 WARN_ON(ret); 2611 } else { 2612 kmem_cache_free(btrfs_free_space_cachep, info); 2613 } 2614 2615 offset += to_free; 2616 bytes -= to_free; 2617 goto again; 2618 } else { 2619 u64 old_end = info->bytes + info->offset; 2620 2621 info->bytes = offset - info->offset; 2622 ret = link_free_space(ctl, info); 2623 WARN_ON(ret); 2624 if (ret) 2625 goto out_lock; 2626 2627 /* Not enough bytes in this entry to satisfy us */ 2628 if (old_end < offset + bytes) { 2629 bytes -= old_end - offset; 2630 offset = old_end; 2631 goto again; 2632 } else if (old_end == offset + bytes) { 2633 /* all done */ 2634 goto out_lock; 2635 } 2636 spin_unlock(&ctl->tree_lock); 2637 2638 ret = __btrfs_add_free_space(block_group->fs_info, ctl, 2639 offset + bytes, 2640 old_end - (offset + bytes), 2641 info->trim_state); 2642 WARN_ON(ret); 2643 goto out; 2644 } 2645 } 2646 2647 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2648 if (ret == -EAGAIN) { 2649 re_search = true; 2650 goto again; 2651 } 2652 out_lock: 2653 btrfs_discard_update_discardable(block_group, ctl); 2654 spin_unlock(&ctl->tree_lock); 2655 out: 2656 return ret; 2657 } 2658 2659 void btrfs_dump_free_space(struct btrfs_block_group *block_group, 2660 u64 bytes) 2661 { 2662 struct btrfs_fs_info *fs_info = block_group->fs_info; 2663 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2664 struct btrfs_free_space *info; 2665 struct rb_node *n; 2666 int count = 0; 2667 2668 spin_lock(&ctl->tree_lock); 2669 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2670 info = rb_entry(n, struct btrfs_free_space, offset_index); 2671 if (info->bytes >= bytes && !block_group->ro) 2672 count++; 2673 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", 2674 info->offset, info->bytes, 2675 (info->bitmap) ? "yes" : "no"); 2676 } 2677 spin_unlock(&ctl->tree_lock); 2678 btrfs_info(fs_info, "block group has cluster?: %s", 2679 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2680 btrfs_info(fs_info, 2681 "%d blocks of free space at or bigger than bytes is", count); 2682 } 2683 2684 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group) 2685 { 2686 struct btrfs_fs_info *fs_info = block_group->fs_info; 2687 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2688 2689 spin_lock_init(&ctl->tree_lock); 2690 ctl->unit = fs_info->sectorsize; 2691 ctl->start = block_group->start; 2692 ctl->private = block_group; 2693 ctl->op = &free_space_op; 2694 INIT_LIST_HEAD(&ctl->trimming_ranges); 2695 mutex_init(&ctl->cache_writeout_mutex); 2696 2697 /* 2698 * we only want to have 32k of ram per block group for keeping 2699 * track of free space, and if we pass 1/2 of that we want to 2700 * start converting things over to using bitmaps 2701 */ 2702 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2703 } 2704 2705 /* 2706 * for a given cluster, put all of its extents back into the free 2707 * space cache. If the block group passed doesn't match the block group 2708 * pointed to by the cluster, someone else raced in and freed the 2709 * cluster already. In that case, we just return without changing anything 2710 */ 2711 static int 2712 __btrfs_return_cluster_to_free_space( 2713 struct btrfs_block_group *block_group, 2714 struct btrfs_free_cluster *cluster) 2715 { 2716 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2717 struct btrfs_free_space *entry; 2718 struct rb_node *node; 2719 2720 spin_lock(&cluster->lock); 2721 if (cluster->block_group != block_group) 2722 goto out; 2723 2724 cluster->block_group = NULL; 2725 cluster->window_start = 0; 2726 list_del_init(&cluster->block_group_list); 2727 2728 node = rb_first(&cluster->root); 2729 while (node) { 2730 bool bitmap; 2731 2732 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2733 node = rb_next(&entry->offset_index); 2734 rb_erase(&entry->offset_index, &cluster->root); 2735 RB_CLEAR_NODE(&entry->offset_index); 2736 2737 bitmap = (entry->bitmap != NULL); 2738 if (!bitmap) { 2739 /* Merging treats extents as if they were new */ 2740 if (!btrfs_free_space_trimmed(entry)) { 2741 ctl->discardable_extents[BTRFS_STAT_CURR]--; 2742 ctl->discardable_bytes[BTRFS_STAT_CURR] -= 2743 entry->bytes; 2744 } 2745 2746 try_merge_free_space(ctl, entry, false); 2747 steal_from_bitmap(ctl, entry, false); 2748 2749 /* As we insert directly, update these statistics */ 2750 if (!btrfs_free_space_trimmed(entry)) { 2751 ctl->discardable_extents[BTRFS_STAT_CURR]++; 2752 ctl->discardable_bytes[BTRFS_STAT_CURR] += 2753 entry->bytes; 2754 } 2755 } 2756 tree_insert_offset(&ctl->free_space_offset, 2757 entry->offset, &entry->offset_index, bitmap); 2758 } 2759 cluster->root = RB_ROOT; 2760 2761 out: 2762 spin_unlock(&cluster->lock); 2763 btrfs_put_block_group(block_group); 2764 return 0; 2765 } 2766 2767 static void __btrfs_remove_free_space_cache_locked( 2768 struct btrfs_free_space_ctl *ctl) 2769 { 2770 struct btrfs_free_space *info; 2771 struct rb_node *node; 2772 2773 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2774 info = rb_entry(node, struct btrfs_free_space, offset_index); 2775 if (!info->bitmap) { 2776 unlink_free_space(ctl, info); 2777 kmem_cache_free(btrfs_free_space_cachep, info); 2778 } else { 2779 free_bitmap(ctl, info); 2780 } 2781 2782 cond_resched_lock(&ctl->tree_lock); 2783 } 2784 } 2785 2786 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2787 { 2788 spin_lock(&ctl->tree_lock); 2789 __btrfs_remove_free_space_cache_locked(ctl); 2790 if (ctl->private) 2791 btrfs_discard_update_discardable(ctl->private, ctl); 2792 spin_unlock(&ctl->tree_lock); 2793 } 2794 2795 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group) 2796 { 2797 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2798 struct btrfs_free_cluster *cluster; 2799 struct list_head *head; 2800 2801 spin_lock(&ctl->tree_lock); 2802 while ((head = block_group->cluster_list.next) != 2803 &block_group->cluster_list) { 2804 cluster = list_entry(head, struct btrfs_free_cluster, 2805 block_group_list); 2806 2807 WARN_ON(cluster->block_group != block_group); 2808 __btrfs_return_cluster_to_free_space(block_group, cluster); 2809 2810 cond_resched_lock(&ctl->tree_lock); 2811 } 2812 __btrfs_remove_free_space_cache_locked(ctl); 2813 btrfs_discard_update_discardable(block_group, ctl); 2814 spin_unlock(&ctl->tree_lock); 2815 2816 } 2817 2818 /** 2819 * btrfs_is_free_space_trimmed - see if everything is trimmed 2820 * @block_group: block_group of interest 2821 * 2822 * Walk @block_group's free space rb_tree to determine if everything is trimmed. 2823 */ 2824 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group) 2825 { 2826 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2827 struct btrfs_free_space *info; 2828 struct rb_node *node; 2829 bool ret = true; 2830 2831 spin_lock(&ctl->tree_lock); 2832 node = rb_first(&ctl->free_space_offset); 2833 2834 while (node) { 2835 info = rb_entry(node, struct btrfs_free_space, offset_index); 2836 2837 if (!btrfs_free_space_trimmed(info)) { 2838 ret = false; 2839 break; 2840 } 2841 2842 node = rb_next(node); 2843 } 2844 2845 spin_unlock(&ctl->tree_lock); 2846 return ret; 2847 } 2848 2849 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group, 2850 u64 offset, u64 bytes, u64 empty_size, 2851 u64 *max_extent_size) 2852 { 2853 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2854 struct btrfs_discard_ctl *discard_ctl = 2855 &block_group->fs_info->discard_ctl; 2856 struct btrfs_free_space *entry = NULL; 2857 u64 bytes_search = bytes + empty_size; 2858 u64 ret = 0; 2859 u64 align_gap = 0; 2860 u64 align_gap_len = 0; 2861 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 2862 2863 spin_lock(&ctl->tree_lock); 2864 entry = find_free_space(ctl, &offset, &bytes_search, 2865 block_group->full_stripe_len, max_extent_size); 2866 if (!entry) 2867 goto out; 2868 2869 ret = offset; 2870 if (entry->bitmap) { 2871 bitmap_clear_bits(ctl, entry, offset, bytes); 2872 2873 if (!btrfs_free_space_trimmed(entry)) 2874 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 2875 2876 if (!entry->bytes) 2877 free_bitmap(ctl, entry); 2878 } else { 2879 unlink_free_space(ctl, entry); 2880 align_gap_len = offset - entry->offset; 2881 align_gap = entry->offset; 2882 align_gap_trim_state = entry->trim_state; 2883 2884 if (!btrfs_free_space_trimmed(entry)) 2885 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 2886 2887 entry->offset = offset + bytes; 2888 WARN_ON(entry->bytes < bytes + align_gap_len); 2889 2890 entry->bytes -= bytes + align_gap_len; 2891 if (!entry->bytes) 2892 kmem_cache_free(btrfs_free_space_cachep, entry); 2893 else 2894 link_free_space(ctl, entry); 2895 } 2896 out: 2897 btrfs_discard_update_discardable(block_group, ctl); 2898 spin_unlock(&ctl->tree_lock); 2899 2900 if (align_gap_len) 2901 __btrfs_add_free_space(block_group->fs_info, ctl, 2902 align_gap, align_gap_len, 2903 align_gap_trim_state); 2904 return ret; 2905 } 2906 2907 /* 2908 * given a cluster, put all of its extents back into the free space 2909 * cache. If a block group is passed, this function will only free 2910 * a cluster that belongs to the passed block group. 2911 * 2912 * Otherwise, it'll get a reference on the block group pointed to by the 2913 * cluster and remove the cluster from it. 2914 */ 2915 int btrfs_return_cluster_to_free_space( 2916 struct btrfs_block_group *block_group, 2917 struct btrfs_free_cluster *cluster) 2918 { 2919 struct btrfs_free_space_ctl *ctl; 2920 int ret; 2921 2922 /* first, get a safe pointer to the block group */ 2923 spin_lock(&cluster->lock); 2924 if (!block_group) { 2925 block_group = cluster->block_group; 2926 if (!block_group) { 2927 spin_unlock(&cluster->lock); 2928 return 0; 2929 } 2930 } else if (cluster->block_group != block_group) { 2931 /* someone else has already freed it don't redo their work */ 2932 spin_unlock(&cluster->lock); 2933 return 0; 2934 } 2935 atomic_inc(&block_group->count); 2936 spin_unlock(&cluster->lock); 2937 2938 ctl = block_group->free_space_ctl; 2939 2940 /* now return any extents the cluster had on it */ 2941 spin_lock(&ctl->tree_lock); 2942 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2943 spin_unlock(&ctl->tree_lock); 2944 2945 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group); 2946 2947 /* finally drop our ref */ 2948 btrfs_put_block_group(block_group); 2949 return ret; 2950 } 2951 2952 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group, 2953 struct btrfs_free_cluster *cluster, 2954 struct btrfs_free_space *entry, 2955 u64 bytes, u64 min_start, 2956 u64 *max_extent_size) 2957 { 2958 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2959 int err; 2960 u64 search_start = cluster->window_start; 2961 u64 search_bytes = bytes; 2962 u64 ret = 0; 2963 2964 search_start = min_start; 2965 search_bytes = bytes; 2966 2967 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 2968 if (err) { 2969 *max_extent_size = max(get_max_extent_size(entry), 2970 *max_extent_size); 2971 return 0; 2972 } 2973 2974 ret = search_start; 2975 __bitmap_clear_bits(ctl, entry, ret, bytes); 2976 2977 return ret; 2978 } 2979 2980 /* 2981 * given a cluster, try to allocate 'bytes' from it, returns 0 2982 * if it couldn't find anything suitably large, or a logical disk offset 2983 * if things worked out 2984 */ 2985 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group, 2986 struct btrfs_free_cluster *cluster, u64 bytes, 2987 u64 min_start, u64 *max_extent_size) 2988 { 2989 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2990 struct btrfs_discard_ctl *discard_ctl = 2991 &block_group->fs_info->discard_ctl; 2992 struct btrfs_free_space *entry = NULL; 2993 struct rb_node *node; 2994 u64 ret = 0; 2995 2996 spin_lock(&cluster->lock); 2997 if (bytes > cluster->max_size) 2998 goto out; 2999 3000 if (cluster->block_group != block_group) 3001 goto out; 3002 3003 node = rb_first(&cluster->root); 3004 if (!node) 3005 goto out; 3006 3007 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3008 while (1) { 3009 if (entry->bytes < bytes) 3010 *max_extent_size = max(get_max_extent_size(entry), 3011 *max_extent_size); 3012 3013 if (entry->bytes < bytes || 3014 (!entry->bitmap && entry->offset < min_start)) { 3015 node = rb_next(&entry->offset_index); 3016 if (!node) 3017 break; 3018 entry = rb_entry(node, struct btrfs_free_space, 3019 offset_index); 3020 continue; 3021 } 3022 3023 if (entry->bitmap) { 3024 ret = btrfs_alloc_from_bitmap(block_group, 3025 cluster, entry, bytes, 3026 cluster->window_start, 3027 max_extent_size); 3028 if (ret == 0) { 3029 node = rb_next(&entry->offset_index); 3030 if (!node) 3031 break; 3032 entry = rb_entry(node, struct btrfs_free_space, 3033 offset_index); 3034 continue; 3035 } 3036 cluster->window_start += bytes; 3037 } else { 3038 ret = entry->offset; 3039 3040 entry->offset += bytes; 3041 entry->bytes -= bytes; 3042 } 3043 3044 if (entry->bytes == 0) 3045 rb_erase(&entry->offset_index, &cluster->root); 3046 break; 3047 } 3048 out: 3049 spin_unlock(&cluster->lock); 3050 3051 if (!ret) 3052 return 0; 3053 3054 spin_lock(&ctl->tree_lock); 3055 3056 if (!btrfs_free_space_trimmed(entry)) 3057 atomic64_add(bytes, &discard_ctl->discard_bytes_saved); 3058 3059 ctl->free_space -= bytes; 3060 if (!entry->bitmap && !btrfs_free_space_trimmed(entry)) 3061 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; 3062 if (entry->bytes == 0) { 3063 ctl->free_extents--; 3064 if (entry->bitmap) { 3065 kmem_cache_free(btrfs_free_space_bitmap_cachep, 3066 entry->bitmap); 3067 ctl->total_bitmaps--; 3068 ctl->op->recalc_thresholds(ctl); 3069 } else if (!btrfs_free_space_trimmed(entry)) { 3070 ctl->discardable_extents[BTRFS_STAT_CURR]--; 3071 } 3072 kmem_cache_free(btrfs_free_space_cachep, entry); 3073 } 3074 3075 spin_unlock(&ctl->tree_lock); 3076 3077 return ret; 3078 } 3079 3080 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group, 3081 struct btrfs_free_space *entry, 3082 struct btrfs_free_cluster *cluster, 3083 u64 offset, u64 bytes, 3084 u64 cont1_bytes, u64 min_bytes) 3085 { 3086 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3087 unsigned long next_zero; 3088 unsigned long i; 3089 unsigned long want_bits; 3090 unsigned long min_bits; 3091 unsigned long found_bits; 3092 unsigned long max_bits = 0; 3093 unsigned long start = 0; 3094 unsigned long total_found = 0; 3095 int ret; 3096 3097 i = offset_to_bit(entry->offset, ctl->unit, 3098 max_t(u64, offset, entry->offset)); 3099 want_bits = bytes_to_bits(bytes, ctl->unit); 3100 min_bits = bytes_to_bits(min_bytes, ctl->unit); 3101 3102 /* 3103 * Don't bother looking for a cluster in this bitmap if it's heavily 3104 * fragmented. 3105 */ 3106 if (entry->max_extent_size && 3107 entry->max_extent_size < cont1_bytes) 3108 return -ENOSPC; 3109 again: 3110 found_bits = 0; 3111 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 3112 next_zero = find_next_zero_bit(entry->bitmap, 3113 BITS_PER_BITMAP, i); 3114 if (next_zero - i >= min_bits) { 3115 found_bits = next_zero - i; 3116 if (found_bits > max_bits) 3117 max_bits = found_bits; 3118 break; 3119 } 3120 if (next_zero - i > max_bits) 3121 max_bits = next_zero - i; 3122 i = next_zero; 3123 } 3124 3125 if (!found_bits) { 3126 entry->max_extent_size = (u64)max_bits * ctl->unit; 3127 return -ENOSPC; 3128 } 3129 3130 if (!total_found) { 3131 start = i; 3132 cluster->max_size = 0; 3133 } 3134 3135 total_found += found_bits; 3136 3137 if (cluster->max_size < found_bits * ctl->unit) 3138 cluster->max_size = found_bits * ctl->unit; 3139 3140 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 3141 i = next_zero + 1; 3142 goto again; 3143 } 3144 3145 cluster->window_start = start * ctl->unit + entry->offset; 3146 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3147 ret = tree_insert_offset(&cluster->root, entry->offset, 3148 &entry->offset_index, 1); 3149 ASSERT(!ret); /* -EEXIST; Logic error */ 3150 3151 trace_btrfs_setup_cluster(block_group, cluster, 3152 total_found * ctl->unit, 1); 3153 return 0; 3154 } 3155 3156 /* 3157 * This searches the block group for just extents to fill the cluster with. 3158 * Try to find a cluster with at least bytes total bytes, at least one 3159 * extent of cont1_bytes, and other clusters of at least min_bytes. 3160 */ 3161 static noinline int 3162 setup_cluster_no_bitmap(struct btrfs_block_group *block_group, 3163 struct btrfs_free_cluster *cluster, 3164 struct list_head *bitmaps, u64 offset, u64 bytes, 3165 u64 cont1_bytes, u64 min_bytes) 3166 { 3167 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3168 struct btrfs_free_space *first = NULL; 3169 struct btrfs_free_space *entry = NULL; 3170 struct btrfs_free_space *last; 3171 struct rb_node *node; 3172 u64 window_free; 3173 u64 max_extent; 3174 u64 total_size = 0; 3175 3176 entry = tree_search_offset(ctl, offset, 0, 1); 3177 if (!entry) 3178 return -ENOSPC; 3179 3180 /* 3181 * We don't want bitmaps, so just move along until we find a normal 3182 * extent entry. 3183 */ 3184 while (entry->bitmap || entry->bytes < min_bytes) { 3185 if (entry->bitmap && list_empty(&entry->list)) 3186 list_add_tail(&entry->list, bitmaps); 3187 node = rb_next(&entry->offset_index); 3188 if (!node) 3189 return -ENOSPC; 3190 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3191 } 3192 3193 window_free = entry->bytes; 3194 max_extent = entry->bytes; 3195 first = entry; 3196 last = entry; 3197 3198 for (node = rb_next(&entry->offset_index); node; 3199 node = rb_next(&entry->offset_index)) { 3200 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3201 3202 if (entry->bitmap) { 3203 if (list_empty(&entry->list)) 3204 list_add_tail(&entry->list, bitmaps); 3205 continue; 3206 } 3207 3208 if (entry->bytes < min_bytes) 3209 continue; 3210 3211 last = entry; 3212 window_free += entry->bytes; 3213 if (entry->bytes > max_extent) 3214 max_extent = entry->bytes; 3215 } 3216 3217 if (window_free < bytes || max_extent < cont1_bytes) 3218 return -ENOSPC; 3219 3220 cluster->window_start = first->offset; 3221 3222 node = &first->offset_index; 3223 3224 /* 3225 * now we've found our entries, pull them out of the free space 3226 * cache and put them into the cluster rbtree 3227 */ 3228 do { 3229 int ret; 3230 3231 entry = rb_entry(node, struct btrfs_free_space, offset_index); 3232 node = rb_next(&entry->offset_index); 3233 if (entry->bitmap || entry->bytes < min_bytes) 3234 continue; 3235 3236 rb_erase(&entry->offset_index, &ctl->free_space_offset); 3237 ret = tree_insert_offset(&cluster->root, entry->offset, 3238 &entry->offset_index, 0); 3239 total_size += entry->bytes; 3240 ASSERT(!ret); /* -EEXIST; Logic error */ 3241 } while (node && entry != last); 3242 3243 cluster->max_size = max_extent; 3244 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 3245 return 0; 3246 } 3247 3248 /* 3249 * This specifically looks for bitmaps that may work in the cluster, we assume 3250 * that we have already failed to find extents that will work. 3251 */ 3252 static noinline int 3253 setup_cluster_bitmap(struct btrfs_block_group *block_group, 3254 struct btrfs_free_cluster *cluster, 3255 struct list_head *bitmaps, u64 offset, u64 bytes, 3256 u64 cont1_bytes, u64 min_bytes) 3257 { 3258 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3259 struct btrfs_free_space *entry = NULL; 3260 int ret = -ENOSPC; 3261 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 3262 3263 if (ctl->total_bitmaps == 0) 3264 return -ENOSPC; 3265 3266 /* 3267 * The bitmap that covers offset won't be in the list unless offset 3268 * is just its start offset. 3269 */ 3270 if (!list_empty(bitmaps)) 3271 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 3272 3273 if (!entry || entry->offset != bitmap_offset) { 3274 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 3275 if (entry && list_empty(&entry->list)) 3276 list_add(&entry->list, bitmaps); 3277 } 3278 3279 list_for_each_entry(entry, bitmaps, list) { 3280 if (entry->bytes < bytes) 3281 continue; 3282 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 3283 bytes, cont1_bytes, min_bytes); 3284 if (!ret) 3285 return 0; 3286 } 3287 3288 /* 3289 * The bitmaps list has all the bitmaps that record free space 3290 * starting after offset, so no more search is required. 3291 */ 3292 return -ENOSPC; 3293 } 3294 3295 /* 3296 * here we try to find a cluster of blocks in a block group. The goal 3297 * is to find at least bytes+empty_size. 3298 * We might not find them all in one contiguous area. 3299 * 3300 * returns zero and sets up cluster if things worked out, otherwise 3301 * it returns -enospc 3302 */ 3303 int btrfs_find_space_cluster(struct btrfs_block_group *block_group, 3304 struct btrfs_free_cluster *cluster, 3305 u64 offset, u64 bytes, u64 empty_size) 3306 { 3307 struct btrfs_fs_info *fs_info = block_group->fs_info; 3308 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3309 struct btrfs_free_space *entry, *tmp; 3310 LIST_HEAD(bitmaps); 3311 u64 min_bytes; 3312 u64 cont1_bytes; 3313 int ret; 3314 3315 /* 3316 * Choose the minimum extent size we'll require for this 3317 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3318 * For metadata, allow allocates with smaller extents. For 3319 * data, keep it dense. 3320 */ 3321 if (btrfs_test_opt(fs_info, SSD_SPREAD)) { 3322 cont1_bytes = min_bytes = bytes + empty_size; 3323 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3324 cont1_bytes = bytes; 3325 min_bytes = fs_info->sectorsize; 3326 } else { 3327 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3328 min_bytes = fs_info->sectorsize; 3329 } 3330 3331 spin_lock(&ctl->tree_lock); 3332 3333 /* 3334 * If we know we don't have enough space to make a cluster don't even 3335 * bother doing all the work to try and find one. 3336 */ 3337 if (ctl->free_space < bytes) { 3338 spin_unlock(&ctl->tree_lock); 3339 return -ENOSPC; 3340 } 3341 3342 spin_lock(&cluster->lock); 3343 3344 /* someone already found a cluster, hooray */ 3345 if (cluster->block_group) { 3346 ret = 0; 3347 goto out; 3348 } 3349 3350 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3351 min_bytes); 3352 3353 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3354 bytes + empty_size, 3355 cont1_bytes, min_bytes); 3356 if (ret) 3357 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3358 offset, bytes + empty_size, 3359 cont1_bytes, min_bytes); 3360 3361 /* Clear our temporary list */ 3362 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3363 list_del_init(&entry->list); 3364 3365 if (!ret) { 3366 atomic_inc(&block_group->count); 3367 list_add_tail(&cluster->block_group_list, 3368 &block_group->cluster_list); 3369 cluster->block_group = block_group; 3370 } else { 3371 trace_btrfs_failed_cluster_setup(block_group); 3372 } 3373 out: 3374 spin_unlock(&cluster->lock); 3375 spin_unlock(&ctl->tree_lock); 3376 3377 return ret; 3378 } 3379 3380 /* 3381 * simple code to zero out a cluster 3382 */ 3383 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3384 { 3385 spin_lock_init(&cluster->lock); 3386 spin_lock_init(&cluster->refill_lock); 3387 cluster->root = RB_ROOT; 3388 cluster->max_size = 0; 3389 cluster->fragmented = false; 3390 INIT_LIST_HEAD(&cluster->block_group_list); 3391 cluster->block_group = NULL; 3392 } 3393 3394 static int do_trimming(struct btrfs_block_group *block_group, 3395 u64 *total_trimmed, u64 start, u64 bytes, 3396 u64 reserved_start, u64 reserved_bytes, 3397 enum btrfs_trim_state reserved_trim_state, 3398 struct btrfs_trim_range *trim_entry) 3399 { 3400 struct btrfs_space_info *space_info = block_group->space_info; 3401 struct btrfs_fs_info *fs_info = block_group->fs_info; 3402 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3403 int ret; 3404 int update = 0; 3405 const u64 end = start + bytes; 3406 const u64 reserved_end = reserved_start + reserved_bytes; 3407 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3408 u64 trimmed = 0; 3409 3410 spin_lock(&space_info->lock); 3411 spin_lock(&block_group->lock); 3412 if (!block_group->ro) { 3413 block_group->reserved += reserved_bytes; 3414 space_info->bytes_reserved += reserved_bytes; 3415 update = 1; 3416 } 3417 spin_unlock(&block_group->lock); 3418 spin_unlock(&space_info->lock); 3419 3420 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); 3421 if (!ret) { 3422 *total_trimmed += trimmed; 3423 trim_state = BTRFS_TRIM_STATE_TRIMMED; 3424 } 3425 3426 mutex_lock(&ctl->cache_writeout_mutex); 3427 if (reserved_start < start) 3428 __btrfs_add_free_space(fs_info, ctl, reserved_start, 3429 start - reserved_start, 3430 reserved_trim_state); 3431 if (start + bytes < reserved_start + reserved_bytes) 3432 __btrfs_add_free_space(fs_info, ctl, end, reserved_end - end, 3433 reserved_trim_state); 3434 __btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state); 3435 list_del(&trim_entry->list); 3436 mutex_unlock(&ctl->cache_writeout_mutex); 3437 3438 if (update) { 3439 spin_lock(&space_info->lock); 3440 spin_lock(&block_group->lock); 3441 if (block_group->ro) 3442 space_info->bytes_readonly += reserved_bytes; 3443 block_group->reserved -= reserved_bytes; 3444 space_info->bytes_reserved -= reserved_bytes; 3445 spin_unlock(&block_group->lock); 3446 spin_unlock(&space_info->lock); 3447 } 3448 3449 return ret; 3450 } 3451 3452 /* 3453 * If @async is set, then we will trim 1 region and return. 3454 */ 3455 static int trim_no_bitmap(struct btrfs_block_group *block_group, 3456 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3457 bool async) 3458 { 3459 struct btrfs_discard_ctl *discard_ctl = 3460 &block_group->fs_info->discard_ctl; 3461 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3462 struct btrfs_free_space *entry; 3463 struct rb_node *node; 3464 int ret = 0; 3465 u64 extent_start; 3466 u64 extent_bytes; 3467 enum btrfs_trim_state extent_trim_state; 3468 u64 bytes; 3469 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3470 3471 while (start < end) { 3472 struct btrfs_trim_range trim_entry; 3473 3474 mutex_lock(&ctl->cache_writeout_mutex); 3475 spin_lock(&ctl->tree_lock); 3476 3477 if (ctl->free_space < minlen) 3478 goto out_unlock; 3479 3480 entry = tree_search_offset(ctl, start, 0, 1); 3481 if (!entry) 3482 goto out_unlock; 3483 3484 /* Skip bitmaps and if async, already trimmed entries */ 3485 while (entry->bitmap || 3486 (async && btrfs_free_space_trimmed(entry))) { 3487 node = rb_next(&entry->offset_index); 3488 if (!node) 3489 goto out_unlock; 3490 entry = rb_entry(node, struct btrfs_free_space, 3491 offset_index); 3492 } 3493 3494 if (entry->offset >= end) 3495 goto out_unlock; 3496 3497 extent_start = entry->offset; 3498 extent_bytes = entry->bytes; 3499 extent_trim_state = entry->trim_state; 3500 if (async) { 3501 start = entry->offset; 3502 bytes = entry->bytes; 3503 if (bytes < minlen) { 3504 spin_unlock(&ctl->tree_lock); 3505 mutex_unlock(&ctl->cache_writeout_mutex); 3506 goto next; 3507 } 3508 unlink_free_space(ctl, entry); 3509 /* 3510 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3511 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim 3512 * X when we come back around. So trim it now. 3513 */ 3514 if (max_discard_size && 3515 bytes >= (max_discard_size + 3516 BTRFS_ASYNC_DISCARD_MIN_FILTER)) { 3517 bytes = max_discard_size; 3518 extent_bytes = max_discard_size; 3519 entry->offset += max_discard_size; 3520 entry->bytes -= max_discard_size; 3521 link_free_space(ctl, entry); 3522 } else { 3523 kmem_cache_free(btrfs_free_space_cachep, entry); 3524 } 3525 } else { 3526 start = max(start, extent_start); 3527 bytes = min(extent_start + extent_bytes, end) - start; 3528 if (bytes < minlen) { 3529 spin_unlock(&ctl->tree_lock); 3530 mutex_unlock(&ctl->cache_writeout_mutex); 3531 goto next; 3532 } 3533 3534 unlink_free_space(ctl, entry); 3535 kmem_cache_free(btrfs_free_space_cachep, entry); 3536 } 3537 3538 spin_unlock(&ctl->tree_lock); 3539 trim_entry.start = extent_start; 3540 trim_entry.bytes = extent_bytes; 3541 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3542 mutex_unlock(&ctl->cache_writeout_mutex); 3543 3544 ret = do_trimming(block_group, total_trimmed, start, bytes, 3545 extent_start, extent_bytes, extent_trim_state, 3546 &trim_entry); 3547 if (ret) { 3548 block_group->discard_cursor = start + bytes; 3549 break; 3550 } 3551 next: 3552 start += bytes; 3553 block_group->discard_cursor = start; 3554 if (async && *total_trimmed) 3555 break; 3556 3557 if (fatal_signal_pending(current)) { 3558 ret = -ERESTARTSYS; 3559 break; 3560 } 3561 3562 cond_resched(); 3563 } 3564 3565 return ret; 3566 3567 out_unlock: 3568 block_group->discard_cursor = btrfs_block_group_end(block_group); 3569 spin_unlock(&ctl->tree_lock); 3570 mutex_unlock(&ctl->cache_writeout_mutex); 3571 3572 return ret; 3573 } 3574 3575 /* 3576 * If we break out of trimming a bitmap prematurely, we should reset the 3577 * trimming bit. In a rather contrieved case, it's possible to race here so 3578 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED. 3579 * 3580 * start = start of bitmap 3581 * end = near end of bitmap 3582 * 3583 * Thread 1: Thread 2: 3584 * trim_bitmaps(start) 3585 * trim_bitmaps(end) 3586 * end_trimming_bitmap() 3587 * reset_trimming_bitmap() 3588 */ 3589 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset) 3590 { 3591 struct btrfs_free_space *entry; 3592 3593 spin_lock(&ctl->tree_lock); 3594 entry = tree_search_offset(ctl, offset, 1, 0); 3595 if (entry) { 3596 if (btrfs_free_space_trimmed(entry)) { 3597 ctl->discardable_extents[BTRFS_STAT_CURR] += 3598 entry->bitmap_extents; 3599 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes; 3600 } 3601 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3602 } 3603 3604 spin_unlock(&ctl->tree_lock); 3605 } 3606 3607 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl, 3608 struct btrfs_free_space *entry) 3609 { 3610 if (btrfs_free_space_trimming_bitmap(entry)) { 3611 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED; 3612 ctl->discardable_extents[BTRFS_STAT_CURR] -= 3613 entry->bitmap_extents; 3614 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes; 3615 } 3616 } 3617 3618 /* 3619 * If @async is set, then we will trim 1 region and return. 3620 */ 3621 static int trim_bitmaps(struct btrfs_block_group *block_group, 3622 u64 *total_trimmed, u64 start, u64 end, u64 minlen, 3623 u64 maxlen, bool async) 3624 { 3625 struct btrfs_discard_ctl *discard_ctl = 3626 &block_group->fs_info->discard_ctl; 3627 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3628 struct btrfs_free_space *entry; 3629 int ret = 0; 3630 int ret2; 3631 u64 bytes; 3632 u64 offset = offset_to_bitmap(ctl, start); 3633 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); 3634 3635 while (offset < end) { 3636 bool next_bitmap = false; 3637 struct btrfs_trim_range trim_entry; 3638 3639 mutex_lock(&ctl->cache_writeout_mutex); 3640 spin_lock(&ctl->tree_lock); 3641 3642 if (ctl->free_space < minlen) { 3643 block_group->discard_cursor = 3644 btrfs_block_group_end(block_group); 3645 spin_unlock(&ctl->tree_lock); 3646 mutex_unlock(&ctl->cache_writeout_mutex); 3647 break; 3648 } 3649 3650 entry = tree_search_offset(ctl, offset, 1, 0); 3651 /* 3652 * Bitmaps are marked trimmed lossily now to prevent constant 3653 * discarding of the same bitmap (the reason why we are bound 3654 * by the filters). So, retrim the block group bitmaps when we 3655 * are preparing to punt to the unused_bgs list. This uses 3656 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED 3657 * which is the only discard index which sets minlen to 0. 3658 */ 3659 if (!entry || (async && minlen && start == offset && 3660 btrfs_free_space_trimmed(entry))) { 3661 spin_unlock(&ctl->tree_lock); 3662 mutex_unlock(&ctl->cache_writeout_mutex); 3663 next_bitmap = true; 3664 goto next; 3665 } 3666 3667 /* 3668 * Async discard bitmap trimming begins at by setting the start 3669 * to be key.objectid and the offset_to_bitmap() aligns to the 3670 * start of the bitmap. This lets us know we are fully 3671 * scanning the bitmap rather than only some portion of it. 3672 */ 3673 if (start == offset) 3674 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING; 3675 3676 bytes = minlen; 3677 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3678 if (ret2 || start >= end) { 3679 /* 3680 * We lossily consider a bitmap trimmed if we only skip 3681 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER. 3682 */ 3683 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER) 3684 end_trimming_bitmap(ctl, entry); 3685 else 3686 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; 3687 spin_unlock(&ctl->tree_lock); 3688 mutex_unlock(&ctl->cache_writeout_mutex); 3689 next_bitmap = true; 3690 goto next; 3691 } 3692 3693 /* 3694 * We already trimmed a region, but are using the locking above 3695 * to reset the trim_state. 3696 */ 3697 if (async && *total_trimmed) { 3698 spin_unlock(&ctl->tree_lock); 3699 mutex_unlock(&ctl->cache_writeout_mutex); 3700 goto out; 3701 } 3702 3703 bytes = min(bytes, end - start); 3704 if (bytes < minlen || (async && maxlen && bytes > maxlen)) { 3705 spin_unlock(&ctl->tree_lock); 3706 mutex_unlock(&ctl->cache_writeout_mutex); 3707 goto next; 3708 } 3709 3710 /* 3711 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. 3712 * If X < @minlen, we won't trim X when we come back around. 3713 * So trim it now. We differ here from trimming extents as we 3714 * don't keep individual state per bit. 3715 */ 3716 if (async && 3717 max_discard_size && 3718 bytes > (max_discard_size + minlen)) 3719 bytes = max_discard_size; 3720 3721 bitmap_clear_bits(ctl, entry, start, bytes); 3722 if (entry->bytes == 0) 3723 free_bitmap(ctl, entry); 3724 3725 spin_unlock(&ctl->tree_lock); 3726 trim_entry.start = start; 3727 trim_entry.bytes = bytes; 3728 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3729 mutex_unlock(&ctl->cache_writeout_mutex); 3730 3731 ret = do_trimming(block_group, total_trimmed, start, bytes, 3732 start, bytes, 0, &trim_entry); 3733 if (ret) { 3734 reset_trimming_bitmap(ctl, offset); 3735 block_group->discard_cursor = 3736 btrfs_block_group_end(block_group); 3737 break; 3738 } 3739 next: 3740 if (next_bitmap) { 3741 offset += BITS_PER_BITMAP * ctl->unit; 3742 start = offset; 3743 } else { 3744 start += bytes; 3745 } 3746 block_group->discard_cursor = start; 3747 3748 if (fatal_signal_pending(current)) { 3749 if (start != offset) 3750 reset_trimming_bitmap(ctl, offset); 3751 ret = -ERESTARTSYS; 3752 break; 3753 } 3754 3755 cond_resched(); 3756 } 3757 3758 if (offset >= end) 3759 block_group->discard_cursor = end; 3760 3761 out: 3762 return ret; 3763 } 3764 3765 void btrfs_get_block_group_trimming(struct btrfs_block_group *cache) 3766 { 3767 atomic_inc(&cache->trimming); 3768 } 3769 3770 void btrfs_put_block_group_trimming(struct btrfs_block_group *block_group) 3771 { 3772 struct btrfs_fs_info *fs_info = block_group->fs_info; 3773 struct extent_map_tree *em_tree; 3774 struct extent_map *em; 3775 bool cleanup; 3776 3777 spin_lock(&block_group->lock); 3778 cleanup = (atomic_dec_and_test(&block_group->trimming) && 3779 block_group->removed); 3780 spin_unlock(&block_group->lock); 3781 3782 if (cleanup) { 3783 mutex_lock(&fs_info->chunk_mutex); 3784 em_tree = &fs_info->mapping_tree; 3785 write_lock(&em_tree->lock); 3786 em = lookup_extent_mapping(em_tree, block_group->start, 3787 1); 3788 BUG_ON(!em); /* logic error, can't happen */ 3789 remove_extent_mapping(em_tree, em); 3790 write_unlock(&em_tree->lock); 3791 mutex_unlock(&fs_info->chunk_mutex); 3792 3793 /* once for us and once for the tree */ 3794 free_extent_map(em); 3795 free_extent_map(em); 3796 3797 /* 3798 * We've left one free space entry and other tasks trimming 3799 * this block group have left 1 entry each one. Free them. 3800 */ 3801 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3802 } 3803 } 3804 3805 int btrfs_trim_block_group(struct btrfs_block_group *block_group, 3806 u64 *trimmed, u64 start, u64 end, u64 minlen) 3807 { 3808 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3809 int ret; 3810 u64 rem = 0; 3811 3812 *trimmed = 0; 3813 3814 spin_lock(&block_group->lock); 3815 if (block_group->removed) { 3816 spin_unlock(&block_group->lock); 3817 return 0; 3818 } 3819 btrfs_get_block_group_trimming(block_group); 3820 spin_unlock(&block_group->lock); 3821 3822 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false); 3823 if (ret) 3824 goto out; 3825 3826 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false); 3827 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem); 3828 /* If we ended in the middle of a bitmap, reset the trimming flag */ 3829 if (rem) 3830 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end)); 3831 out: 3832 btrfs_put_block_group_trimming(block_group); 3833 return ret; 3834 } 3835 3836 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group, 3837 u64 *trimmed, u64 start, u64 end, u64 minlen, 3838 bool async) 3839 { 3840 int ret; 3841 3842 *trimmed = 0; 3843 3844 spin_lock(&block_group->lock); 3845 if (block_group->removed) { 3846 spin_unlock(&block_group->lock); 3847 return 0; 3848 } 3849 btrfs_get_block_group_trimming(block_group); 3850 spin_unlock(&block_group->lock); 3851 3852 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async); 3853 btrfs_put_block_group_trimming(block_group); 3854 3855 return ret; 3856 } 3857 3858 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group, 3859 u64 *trimmed, u64 start, u64 end, u64 minlen, 3860 u64 maxlen, bool async) 3861 { 3862 int ret; 3863 3864 *trimmed = 0; 3865 3866 spin_lock(&block_group->lock); 3867 if (block_group->removed) { 3868 spin_unlock(&block_group->lock); 3869 return 0; 3870 } 3871 btrfs_get_block_group_trimming(block_group); 3872 spin_unlock(&block_group->lock); 3873 3874 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen, 3875 async); 3876 3877 btrfs_put_block_group_trimming(block_group); 3878 3879 return ret; 3880 } 3881 3882 /* 3883 * Find the left-most item in the cache tree, and then return the 3884 * smallest inode number in the item. 3885 * 3886 * Note: the returned inode number may not be the smallest one in 3887 * the tree, if the left-most item is a bitmap. 3888 */ 3889 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 3890 { 3891 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 3892 struct btrfs_free_space *entry = NULL; 3893 u64 ino = 0; 3894 3895 spin_lock(&ctl->tree_lock); 3896 3897 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 3898 goto out; 3899 3900 entry = rb_entry(rb_first(&ctl->free_space_offset), 3901 struct btrfs_free_space, offset_index); 3902 3903 if (!entry->bitmap) { 3904 ino = entry->offset; 3905 3906 unlink_free_space(ctl, entry); 3907 entry->offset++; 3908 entry->bytes--; 3909 if (!entry->bytes) 3910 kmem_cache_free(btrfs_free_space_cachep, entry); 3911 else 3912 link_free_space(ctl, entry); 3913 } else { 3914 u64 offset = 0; 3915 u64 count = 1; 3916 int ret; 3917 3918 ret = search_bitmap(ctl, entry, &offset, &count, true); 3919 /* Logic error; Should be empty if it can't find anything */ 3920 ASSERT(!ret); 3921 3922 ino = offset; 3923 bitmap_clear_bits(ctl, entry, offset, 1); 3924 if (entry->bytes == 0) 3925 free_bitmap(ctl, entry); 3926 } 3927 out: 3928 spin_unlock(&ctl->tree_lock); 3929 3930 return ino; 3931 } 3932 3933 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 3934 struct btrfs_path *path) 3935 { 3936 struct inode *inode = NULL; 3937 3938 spin_lock(&root->ino_cache_lock); 3939 if (root->ino_cache_inode) 3940 inode = igrab(root->ino_cache_inode); 3941 spin_unlock(&root->ino_cache_lock); 3942 if (inode) 3943 return inode; 3944 3945 inode = __lookup_free_space_inode(root, path, 0); 3946 if (IS_ERR(inode)) 3947 return inode; 3948 3949 spin_lock(&root->ino_cache_lock); 3950 if (!btrfs_fs_closing(root->fs_info)) 3951 root->ino_cache_inode = igrab(inode); 3952 spin_unlock(&root->ino_cache_lock); 3953 3954 return inode; 3955 } 3956 3957 int create_free_ino_inode(struct btrfs_root *root, 3958 struct btrfs_trans_handle *trans, 3959 struct btrfs_path *path) 3960 { 3961 return __create_free_space_inode(root, trans, path, 3962 BTRFS_FREE_INO_OBJECTID, 0); 3963 } 3964 3965 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3966 { 3967 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3968 struct btrfs_path *path; 3969 struct inode *inode; 3970 int ret = 0; 3971 u64 root_gen = btrfs_root_generation(&root->root_item); 3972 3973 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 3974 return 0; 3975 3976 /* 3977 * If we're unmounting then just return, since this does a search on the 3978 * normal root and not the commit root and we could deadlock. 3979 */ 3980 if (btrfs_fs_closing(fs_info)) 3981 return 0; 3982 3983 path = btrfs_alloc_path(); 3984 if (!path) 3985 return 0; 3986 3987 inode = lookup_free_ino_inode(root, path); 3988 if (IS_ERR(inode)) 3989 goto out; 3990 3991 if (root_gen != BTRFS_I(inode)->generation) 3992 goto out_put; 3993 3994 ret = __load_free_space_cache(root, inode, ctl, path, 0); 3995 3996 if (ret < 0) 3997 btrfs_err(fs_info, 3998 "failed to load free ino cache for root %llu", 3999 root->root_key.objectid); 4000 out_put: 4001 iput(inode); 4002 out: 4003 btrfs_free_path(path); 4004 return ret; 4005 } 4006 4007 int btrfs_write_out_ino_cache(struct btrfs_root *root, 4008 struct btrfs_trans_handle *trans, 4009 struct btrfs_path *path, 4010 struct inode *inode) 4011 { 4012 struct btrfs_fs_info *fs_info = root->fs_info; 4013 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 4014 int ret; 4015 struct btrfs_io_ctl io_ctl; 4016 bool release_metadata = true; 4017 4018 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) 4019 return 0; 4020 4021 memset(&io_ctl, 0, sizeof(io_ctl)); 4022 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans); 4023 if (!ret) { 4024 /* 4025 * At this point writepages() didn't error out, so our metadata 4026 * reservation is released when the writeback finishes, at 4027 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing 4028 * with or without an error. 4029 */ 4030 release_metadata = false; 4031 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path); 4032 } 4033 4034 if (ret) { 4035 if (release_metadata) 4036 btrfs_delalloc_release_metadata(BTRFS_I(inode), 4037 inode->i_size, true); 4038 #ifdef CONFIG_BTRFS_DEBUG 4039 btrfs_err(fs_info, 4040 "failed to write free ino cache for root %llu", 4041 root->root_key.objectid); 4042 #endif 4043 } 4044 4045 return ret; 4046 } 4047 4048 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4049 /* 4050 * Use this if you need to make a bitmap or extent entry specifically, it 4051 * doesn't do any of the merging that add_free_space does, this acts a lot like 4052 * how the free space cache loading stuff works, so you can get really weird 4053 * configurations. 4054 */ 4055 int test_add_free_space_entry(struct btrfs_block_group *cache, 4056 u64 offset, u64 bytes, bool bitmap) 4057 { 4058 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4059 struct btrfs_free_space *info = NULL, *bitmap_info; 4060 void *map = NULL; 4061 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED; 4062 u64 bytes_added; 4063 int ret; 4064 4065 again: 4066 if (!info) { 4067 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 4068 if (!info) 4069 return -ENOMEM; 4070 } 4071 4072 if (!bitmap) { 4073 spin_lock(&ctl->tree_lock); 4074 info->offset = offset; 4075 info->bytes = bytes; 4076 info->max_extent_size = 0; 4077 ret = link_free_space(ctl, info); 4078 spin_unlock(&ctl->tree_lock); 4079 if (ret) 4080 kmem_cache_free(btrfs_free_space_cachep, info); 4081 return ret; 4082 } 4083 4084 if (!map) { 4085 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); 4086 if (!map) { 4087 kmem_cache_free(btrfs_free_space_cachep, info); 4088 return -ENOMEM; 4089 } 4090 } 4091 4092 spin_lock(&ctl->tree_lock); 4093 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4094 1, 0); 4095 if (!bitmap_info) { 4096 info->bitmap = map; 4097 map = NULL; 4098 add_new_bitmap(ctl, info, offset); 4099 bitmap_info = info; 4100 info = NULL; 4101 } 4102 4103 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, 4104 trim_state); 4105 4106 bytes -= bytes_added; 4107 offset += bytes_added; 4108 spin_unlock(&ctl->tree_lock); 4109 4110 if (bytes) 4111 goto again; 4112 4113 if (info) 4114 kmem_cache_free(btrfs_free_space_cachep, info); 4115 if (map) 4116 kmem_cache_free(btrfs_free_space_bitmap_cachep, map); 4117 return 0; 4118 } 4119 4120 /* 4121 * Checks to see if the given range is in the free space cache. This is really 4122 * just used to check the absence of space, so if there is free space in the 4123 * range at all we will return 1. 4124 */ 4125 int test_check_exists(struct btrfs_block_group *cache, 4126 u64 offset, u64 bytes) 4127 { 4128 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 4129 struct btrfs_free_space *info; 4130 int ret = 0; 4131 4132 spin_lock(&ctl->tree_lock); 4133 info = tree_search_offset(ctl, offset, 0, 0); 4134 if (!info) { 4135 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 4136 1, 0); 4137 if (!info) 4138 goto out; 4139 } 4140 4141 have_info: 4142 if (info->bitmap) { 4143 u64 bit_off, bit_bytes; 4144 struct rb_node *n; 4145 struct btrfs_free_space *tmp; 4146 4147 bit_off = offset; 4148 bit_bytes = ctl->unit; 4149 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 4150 if (!ret) { 4151 if (bit_off == offset) { 4152 ret = 1; 4153 goto out; 4154 } else if (bit_off > offset && 4155 offset + bytes > bit_off) { 4156 ret = 1; 4157 goto out; 4158 } 4159 } 4160 4161 n = rb_prev(&info->offset_index); 4162 while (n) { 4163 tmp = rb_entry(n, struct btrfs_free_space, 4164 offset_index); 4165 if (tmp->offset + tmp->bytes < offset) 4166 break; 4167 if (offset + bytes < tmp->offset) { 4168 n = rb_prev(&tmp->offset_index); 4169 continue; 4170 } 4171 info = tmp; 4172 goto have_info; 4173 } 4174 4175 n = rb_next(&info->offset_index); 4176 while (n) { 4177 tmp = rb_entry(n, struct btrfs_free_space, 4178 offset_index); 4179 if (offset + bytes < tmp->offset) 4180 break; 4181 if (tmp->offset + tmp->bytes < offset) { 4182 n = rb_next(&tmp->offset_index); 4183 continue; 4184 } 4185 info = tmp; 4186 goto have_info; 4187 } 4188 4189 ret = 0; 4190 goto out; 4191 } 4192 4193 if (info->offset == offset) { 4194 ret = 1; 4195 goto out; 4196 } 4197 4198 if (offset > info->offset && offset < info->offset + info->bytes) 4199 ret = 1; 4200 out: 4201 spin_unlock(&ctl->tree_lock); 4202 return ret; 4203 } 4204 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 4205