xref: /linux/fs/btrfs/free-space-cache.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "fs.h"
16 #include "messages.h"
17 #include "misc.h"
18 #include "free-space-cache.h"
19 #include "transaction.h"
20 #include "disk-io.h"
21 #include "extent_io.h"
22 #include "space-info.h"
23 #include "block-group.h"
24 #include "discard.h"
25 #include "subpage.h"
26 #include "inode-item.h"
27 #include "accessors.h"
28 #include "file-item.h"
29 #include "file.h"
30 #include "super.h"
31 
32 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
33 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
34 #define FORCE_EXTENT_THRESHOLD	SZ_1M
35 
36 static struct kmem_cache *btrfs_free_space_cachep;
37 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
38 
39 struct btrfs_trim_range {
40 	u64 start;
41 	u64 bytes;
42 	struct list_head list;
43 };
44 
45 static int link_free_space(struct btrfs_free_space_ctl *ctl,
46 			   struct btrfs_free_space *info);
47 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
48 			      struct btrfs_free_space *info, bool update_stat);
49 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
50 			 struct btrfs_free_space *bitmap_info, u64 *offset,
51 			 u64 *bytes, bool for_alloc);
52 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
53 			struct btrfs_free_space *bitmap_info);
54 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
55 			      struct btrfs_free_space *info, u64 offset,
56 			      u64 bytes, bool update_stats);
57 
58 static void btrfs_crc32c_final(u32 crc, u8 *result)
59 {
60 	put_unaligned_le32(~crc, result);
61 }
62 
63 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
64 {
65 	struct btrfs_free_space *info;
66 	struct rb_node *node;
67 
68 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
69 		info = rb_entry(node, struct btrfs_free_space, offset_index);
70 		if (!info->bitmap) {
71 			unlink_free_space(ctl, info, true);
72 			kmem_cache_free(btrfs_free_space_cachep, info);
73 		} else {
74 			free_bitmap(ctl, info);
75 		}
76 
77 		cond_resched_lock(&ctl->tree_lock);
78 	}
79 }
80 
81 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
82 					       struct btrfs_path *path,
83 					       u64 offset)
84 {
85 	struct btrfs_fs_info *fs_info = root->fs_info;
86 	struct btrfs_key key;
87 	struct btrfs_key location;
88 	struct btrfs_disk_key disk_key;
89 	struct btrfs_free_space_header *header;
90 	struct extent_buffer *leaf;
91 	struct inode *inode = NULL;
92 	unsigned nofs_flag;
93 	int ret;
94 
95 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
96 	key.offset = offset;
97 	key.type = 0;
98 
99 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
100 	if (ret < 0)
101 		return ERR_PTR(ret);
102 	if (ret > 0) {
103 		btrfs_release_path(path);
104 		return ERR_PTR(-ENOENT);
105 	}
106 
107 	leaf = path->nodes[0];
108 	header = btrfs_item_ptr(leaf, path->slots[0],
109 				struct btrfs_free_space_header);
110 	btrfs_free_space_key(leaf, header, &disk_key);
111 	btrfs_disk_key_to_cpu(&location, &disk_key);
112 	btrfs_release_path(path);
113 
114 	/*
115 	 * We are often under a trans handle at this point, so we need to make
116 	 * sure NOFS is set to keep us from deadlocking.
117 	 */
118 	nofs_flag = memalloc_nofs_save();
119 	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
120 	btrfs_release_path(path);
121 	memalloc_nofs_restore(nofs_flag);
122 	if (IS_ERR(inode))
123 		return inode;
124 
125 	mapping_set_gfp_mask(inode->i_mapping,
126 			mapping_gfp_constraint(inode->i_mapping,
127 			~(__GFP_FS | __GFP_HIGHMEM)));
128 
129 	return inode;
130 }
131 
132 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
133 		struct btrfs_path *path)
134 {
135 	struct btrfs_fs_info *fs_info = block_group->fs_info;
136 	struct inode *inode = NULL;
137 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138 
139 	spin_lock(&block_group->lock);
140 	if (block_group->inode)
141 		inode = igrab(block_group->inode);
142 	spin_unlock(&block_group->lock);
143 	if (inode)
144 		return inode;
145 
146 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
147 					  block_group->start);
148 	if (IS_ERR(inode))
149 		return inode;
150 
151 	spin_lock(&block_group->lock);
152 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
153 		btrfs_info(fs_info, "Old style space inode found, converting.");
154 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
155 			BTRFS_INODE_NODATACOW;
156 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
157 	}
158 
159 	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
160 		block_group->inode = igrab(inode);
161 	spin_unlock(&block_group->lock);
162 
163 	return inode;
164 }
165 
166 static int __create_free_space_inode(struct btrfs_root *root,
167 				     struct btrfs_trans_handle *trans,
168 				     struct btrfs_path *path,
169 				     u64 ino, u64 offset)
170 {
171 	struct btrfs_key key;
172 	struct btrfs_disk_key disk_key;
173 	struct btrfs_free_space_header *header;
174 	struct btrfs_inode_item *inode_item;
175 	struct extent_buffer *leaf;
176 	/* We inline CRCs for the free disk space cache */
177 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
178 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
179 	int ret;
180 
181 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
182 	if (ret)
183 		return ret;
184 
185 	leaf = path->nodes[0];
186 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
187 				    struct btrfs_inode_item);
188 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
189 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
190 			     sizeof(*inode_item));
191 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
192 	btrfs_set_inode_size(leaf, inode_item, 0);
193 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
194 	btrfs_set_inode_uid(leaf, inode_item, 0);
195 	btrfs_set_inode_gid(leaf, inode_item, 0);
196 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
197 	btrfs_set_inode_flags(leaf, inode_item, flags);
198 	btrfs_set_inode_nlink(leaf, inode_item, 1);
199 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
200 	btrfs_set_inode_block_group(leaf, inode_item, offset);
201 	btrfs_mark_buffer_dirty(trans, leaf);
202 	btrfs_release_path(path);
203 
204 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
205 	key.offset = offset;
206 	key.type = 0;
207 	ret = btrfs_insert_empty_item(trans, root, path, &key,
208 				      sizeof(struct btrfs_free_space_header));
209 	if (ret < 0) {
210 		btrfs_release_path(path);
211 		return ret;
212 	}
213 
214 	leaf = path->nodes[0];
215 	header = btrfs_item_ptr(leaf, path->slots[0],
216 				struct btrfs_free_space_header);
217 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
218 	btrfs_set_free_space_key(leaf, header, &disk_key);
219 	btrfs_mark_buffer_dirty(trans, leaf);
220 	btrfs_release_path(path);
221 
222 	return 0;
223 }
224 
225 int create_free_space_inode(struct btrfs_trans_handle *trans,
226 			    struct btrfs_block_group *block_group,
227 			    struct btrfs_path *path)
228 {
229 	int ret;
230 	u64 ino;
231 
232 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
233 	if (ret < 0)
234 		return ret;
235 
236 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
237 					 ino, block_group->start);
238 }
239 
240 /*
241  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
242  * handles lookup, otherwise it takes ownership and iputs the inode.
243  * Don't reuse an inode pointer after passing it into this function.
244  */
245 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
246 				  struct inode *inode,
247 				  struct btrfs_block_group *block_group)
248 {
249 	struct btrfs_path *path;
250 	struct btrfs_key key;
251 	int ret = 0;
252 
253 	path = btrfs_alloc_path();
254 	if (!path)
255 		return -ENOMEM;
256 
257 	if (!inode)
258 		inode = lookup_free_space_inode(block_group, path);
259 	if (IS_ERR(inode)) {
260 		if (PTR_ERR(inode) != -ENOENT)
261 			ret = PTR_ERR(inode);
262 		goto out;
263 	}
264 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
265 	if (ret) {
266 		btrfs_add_delayed_iput(BTRFS_I(inode));
267 		goto out;
268 	}
269 	clear_nlink(inode);
270 	/* One for the block groups ref */
271 	spin_lock(&block_group->lock);
272 	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
273 		block_group->inode = NULL;
274 		spin_unlock(&block_group->lock);
275 		iput(inode);
276 	} else {
277 		spin_unlock(&block_group->lock);
278 	}
279 	/* One for the lookup ref */
280 	btrfs_add_delayed_iput(BTRFS_I(inode));
281 
282 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
283 	key.type = 0;
284 	key.offset = block_group->start;
285 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
286 				-1, 1);
287 	if (ret) {
288 		if (ret > 0)
289 			ret = 0;
290 		goto out;
291 	}
292 	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
293 out:
294 	btrfs_free_path(path);
295 	return ret;
296 }
297 
298 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
299 				    struct btrfs_block_group *block_group,
300 				    struct inode *vfs_inode)
301 {
302 	struct btrfs_truncate_control control = {
303 		.inode = BTRFS_I(vfs_inode),
304 		.new_size = 0,
305 		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
306 		.min_type = BTRFS_EXTENT_DATA_KEY,
307 		.clear_extent_range = true,
308 	};
309 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
310 	struct btrfs_root *root = inode->root;
311 	struct extent_state *cached_state = NULL;
312 	int ret = 0;
313 	bool locked = false;
314 
315 	if (block_group) {
316 		struct btrfs_path *path = btrfs_alloc_path();
317 
318 		if (!path) {
319 			ret = -ENOMEM;
320 			goto fail;
321 		}
322 		locked = true;
323 		mutex_lock(&trans->transaction->cache_write_mutex);
324 		if (!list_empty(&block_group->io_list)) {
325 			list_del_init(&block_group->io_list);
326 
327 			btrfs_wait_cache_io(trans, block_group, path);
328 			btrfs_put_block_group(block_group);
329 		}
330 
331 		/*
332 		 * now that we've truncated the cache away, its no longer
333 		 * setup or written
334 		 */
335 		spin_lock(&block_group->lock);
336 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
337 		spin_unlock(&block_group->lock);
338 		btrfs_free_path(path);
339 	}
340 
341 	btrfs_i_size_write(inode, 0);
342 	truncate_pagecache(vfs_inode, 0);
343 
344 	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
345 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
346 
347 	/*
348 	 * We skip the throttling logic for free space cache inodes, so we don't
349 	 * need to check for -EAGAIN.
350 	 */
351 	ret = btrfs_truncate_inode_items(trans, root, &control);
352 
353 	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
354 	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
355 
356 	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
357 	if (ret)
358 		goto fail;
359 
360 	ret = btrfs_update_inode(trans, inode);
361 
362 fail:
363 	if (locked)
364 		mutex_unlock(&trans->transaction->cache_write_mutex);
365 	if (ret)
366 		btrfs_abort_transaction(trans, ret);
367 
368 	return ret;
369 }
370 
371 static void readahead_cache(struct inode *inode)
372 {
373 	struct file_ra_state ra;
374 	unsigned long last_index;
375 
376 	file_ra_state_init(&ra, inode->i_mapping);
377 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
378 
379 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
380 }
381 
382 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
383 		       int write)
384 {
385 	int num_pages;
386 
387 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
388 
389 	/* Make sure we can fit our crcs and generation into the first page */
390 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
391 		return -ENOSPC;
392 
393 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
394 
395 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
396 	if (!io_ctl->pages)
397 		return -ENOMEM;
398 
399 	io_ctl->num_pages = num_pages;
400 	io_ctl->fs_info = inode_to_fs_info(inode);
401 	io_ctl->inode = inode;
402 
403 	return 0;
404 }
405 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
406 
407 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
408 {
409 	kfree(io_ctl->pages);
410 	io_ctl->pages = NULL;
411 }
412 
413 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
414 {
415 	if (io_ctl->cur) {
416 		io_ctl->cur = NULL;
417 		io_ctl->orig = NULL;
418 	}
419 }
420 
421 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
422 {
423 	ASSERT(io_ctl->index < io_ctl->num_pages);
424 	io_ctl->page = io_ctl->pages[io_ctl->index++];
425 	io_ctl->cur = page_address(io_ctl->page);
426 	io_ctl->orig = io_ctl->cur;
427 	io_ctl->size = PAGE_SIZE;
428 	if (clear)
429 		clear_page(io_ctl->cur);
430 }
431 
432 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
433 {
434 	int i;
435 
436 	io_ctl_unmap_page(io_ctl);
437 
438 	for (i = 0; i < io_ctl->num_pages; i++) {
439 		if (io_ctl->pages[i]) {
440 			btrfs_folio_clear_checked(io_ctl->fs_info,
441 					page_folio(io_ctl->pages[i]),
442 					page_offset(io_ctl->pages[i]),
443 					PAGE_SIZE);
444 			unlock_page(io_ctl->pages[i]);
445 			put_page(io_ctl->pages[i]);
446 		}
447 	}
448 }
449 
450 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
451 {
452 	struct page *page;
453 	struct inode *inode = io_ctl->inode;
454 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
455 	int i;
456 
457 	for (i = 0; i < io_ctl->num_pages; i++) {
458 		int ret;
459 
460 		page = find_or_create_page(inode->i_mapping, i, mask);
461 		if (!page) {
462 			io_ctl_drop_pages(io_ctl);
463 			return -ENOMEM;
464 		}
465 
466 		ret = set_page_extent_mapped(page);
467 		if (ret < 0) {
468 			unlock_page(page);
469 			put_page(page);
470 			io_ctl_drop_pages(io_ctl);
471 			return ret;
472 		}
473 
474 		io_ctl->pages[i] = page;
475 		if (uptodate && !PageUptodate(page)) {
476 			btrfs_read_folio(NULL, page_folio(page));
477 			lock_page(page);
478 			if (page->mapping != inode->i_mapping) {
479 				btrfs_err(BTRFS_I(inode)->root->fs_info,
480 					  "free space cache page truncated");
481 				io_ctl_drop_pages(io_ctl);
482 				return -EIO;
483 			}
484 			if (!PageUptodate(page)) {
485 				btrfs_err(BTRFS_I(inode)->root->fs_info,
486 					   "error reading free space cache");
487 				io_ctl_drop_pages(io_ctl);
488 				return -EIO;
489 			}
490 		}
491 	}
492 
493 	for (i = 0; i < io_ctl->num_pages; i++)
494 		clear_page_dirty_for_io(io_ctl->pages[i]);
495 
496 	return 0;
497 }
498 
499 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
500 {
501 	io_ctl_map_page(io_ctl, 1);
502 
503 	/*
504 	 * Skip the csum areas.  If we don't check crcs then we just have a
505 	 * 64bit chunk at the front of the first page.
506 	 */
507 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
508 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
509 
510 	put_unaligned_le64(generation, io_ctl->cur);
511 	io_ctl->cur += sizeof(u64);
512 }
513 
514 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
515 {
516 	u64 cache_gen;
517 
518 	/*
519 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
520 	 * chunk at the front of the first page.
521 	 */
522 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
523 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
524 
525 	cache_gen = get_unaligned_le64(io_ctl->cur);
526 	if (cache_gen != generation) {
527 		btrfs_err_rl(io_ctl->fs_info,
528 			"space cache generation (%llu) does not match inode (%llu)",
529 				cache_gen, generation);
530 		io_ctl_unmap_page(io_ctl);
531 		return -EIO;
532 	}
533 	io_ctl->cur += sizeof(u64);
534 	return 0;
535 }
536 
537 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
538 {
539 	u32 *tmp;
540 	u32 crc = ~(u32)0;
541 	unsigned offset = 0;
542 
543 	if (index == 0)
544 		offset = sizeof(u32) * io_ctl->num_pages;
545 
546 	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
547 	btrfs_crc32c_final(crc, (u8 *)&crc);
548 	io_ctl_unmap_page(io_ctl);
549 	tmp = page_address(io_ctl->pages[0]);
550 	tmp += index;
551 	*tmp = crc;
552 }
553 
554 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
555 {
556 	u32 *tmp, val;
557 	u32 crc = ~(u32)0;
558 	unsigned offset = 0;
559 
560 	if (index == 0)
561 		offset = sizeof(u32) * io_ctl->num_pages;
562 
563 	tmp = page_address(io_ctl->pages[0]);
564 	tmp += index;
565 	val = *tmp;
566 
567 	io_ctl_map_page(io_ctl, 0);
568 	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
569 	btrfs_crc32c_final(crc, (u8 *)&crc);
570 	if (val != crc) {
571 		btrfs_err_rl(io_ctl->fs_info,
572 			"csum mismatch on free space cache");
573 		io_ctl_unmap_page(io_ctl);
574 		return -EIO;
575 	}
576 
577 	return 0;
578 }
579 
580 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
581 			    void *bitmap)
582 {
583 	struct btrfs_free_space_entry *entry;
584 
585 	if (!io_ctl->cur)
586 		return -ENOSPC;
587 
588 	entry = io_ctl->cur;
589 	put_unaligned_le64(offset, &entry->offset);
590 	put_unaligned_le64(bytes, &entry->bytes);
591 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
592 		BTRFS_FREE_SPACE_EXTENT;
593 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
594 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
595 
596 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
597 		return 0;
598 
599 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
600 
601 	/* No more pages to map */
602 	if (io_ctl->index >= io_ctl->num_pages)
603 		return 0;
604 
605 	/* map the next page */
606 	io_ctl_map_page(io_ctl, 1);
607 	return 0;
608 }
609 
610 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
611 {
612 	if (!io_ctl->cur)
613 		return -ENOSPC;
614 
615 	/*
616 	 * If we aren't at the start of the current page, unmap this one and
617 	 * map the next one if there is any left.
618 	 */
619 	if (io_ctl->cur != io_ctl->orig) {
620 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
621 		if (io_ctl->index >= io_ctl->num_pages)
622 			return -ENOSPC;
623 		io_ctl_map_page(io_ctl, 0);
624 	}
625 
626 	copy_page(io_ctl->cur, bitmap);
627 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
628 	if (io_ctl->index < io_ctl->num_pages)
629 		io_ctl_map_page(io_ctl, 0);
630 	return 0;
631 }
632 
633 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
634 {
635 	/*
636 	 * If we're not on the boundary we know we've modified the page and we
637 	 * need to crc the page.
638 	 */
639 	if (io_ctl->cur != io_ctl->orig)
640 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
641 	else
642 		io_ctl_unmap_page(io_ctl);
643 
644 	while (io_ctl->index < io_ctl->num_pages) {
645 		io_ctl_map_page(io_ctl, 1);
646 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
647 	}
648 }
649 
650 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
651 			    struct btrfs_free_space *entry, u8 *type)
652 {
653 	struct btrfs_free_space_entry *e;
654 	int ret;
655 
656 	if (!io_ctl->cur) {
657 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
658 		if (ret)
659 			return ret;
660 	}
661 
662 	e = io_ctl->cur;
663 	entry->offset = get_unaligned_le64(&e->offset);
664 	entry->bytes = get_unaligned_le64(&e->bytes);
665 	*type = e->type;
666 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
667 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
668 
669 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
670 		return 0;
671 
672 	io_ctl_unmap_page(io_ctl);
673 
674 	return 0;
675 }
676 
677 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
678 			      struct btrfs_free_space *entry)
679 {
680 	int ret;
681 
682 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
683 	if (ret)
684 		return ret;
685 
686 	copy_page(entry->bitmap, io_ctl->cur);
687 	io_ctl_unmap_page(io_ctl);
688 
689 	return 0;
690 }
691 
692 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
693 {
694 	struct btrfs_block_group *block_group = ctl->block_group;
695 	u64 max_bytes;
696 	u64 bitmap_bytes;
697 	u64 extent_bytes;
698 	u64 size = block_group->length;
699 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
700 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
701 
702 	max_bitmaps = max_t(u64, max_bitmaps, 1);
703 
704 	if (ctl->total_bitmaps > max_bitmaps)
705 		btrfs_err(block_group->fs_info,
706 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
707 			  block_group->start, block_group->length,
708 			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
709 			  bytes_per_bg);
710 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
711 
712 	/*
713 	 * We are trying to keep the total amount of memory used per 1GiB of
714 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
715 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
716 	 * bitmaps, we may end up using more memory than this.
717 	 */
718 	if (size < SZ_1G)
719 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
720 	else
721 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
722 
723 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
724 
725 	/*
726 	 * we want the extent entry threshold to always be at most 1/2 the max
727 	 * bytes we can have, or whatever is less than that.
728 	 */
729 	extent_bytes = max_bytes - bitmap_bytes;
730 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
731 
732 	ctl->extents_thresh =
733 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
734 }
735 
736 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
737 				   struct btrfs_free_space_ctl *ctl,
738 				   struct btrfs_path *path, u64 offset)
739 {
740 	struct btrfs_fs_info *fs_info = root->fs_info;
741 	struct btrfs_free_space_header *header;
742 	struct extent_buffer *leaf;
743 	struct btrfs_io_ctl io_ctl;
744 	struct btrfs_key key;
745 	struct btrfs_free_space *e, *n;
746 	LIST_HEAD(bitmaps);
747 	u64 num_entries;
748 	u64 num_bitmaps;
749 	u64 generation;
750 	u8 type;
751 	int ret = 0;
752 
753 	/* Nothing in the space cache, goodbye */
754 	if (!i_size_read(inode))
755 		return 0;
756 
757 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
758 	key.offset = offset;
759 	key.type = 0;
760 
761 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
762 	if (ret < 0)
763 		return 0;
764 	else if (ret > 0) {
765 		btrfs_release_path(path);
766 		return 0;
767 	}
768 
769 	ret = -1;
770 
771 	leaf = path->nodes[0];
772 	header = btrfs_item_ptr(leaf, path->slots[0],
773 				struct btrfs_free_space_header);
774 	num_entries = btrfs_free_space_entries(leaf, header);
775 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
776 	generation = btrfs_free_space_generation(leaf, header);
777 	btrfs_release_path(path);
778 
779 	if (!BTRFS_I(inode)->generation) {
780 		btrfs_info(fs_info,
781 			   "the free space cache file (%llu) is invalid, skip it",
782 			   offset);
783 		return 0;
784 	}
785 
786 	if (BTRFS_I(inode)->generation != generation) {
787 		btrfs_err(fs_info,
788 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
789 			  BTRFS_I(inode)->generation, generation);
790 		return 0;
791 	}
792 
793 	if (!num_entries)
794 		return 0;
795 
796 	ret = io_ctl_init(&io_ctl, inode, 0);
797 	if (ret)
798 		return ret;
799 
800 	readahead_cache(inode);
801 
802 	ret = io_ctl_prepare_pages(&io_ctl, true);
803 	if (ret)
804 		goto out;
805 
806 	ret = io_ctl_check_crc(&io_ctl, 0);
807 	if (ret)
808 		goto free_cache;
809 
810 	ret = io_ctl_check_generation(&io_ctl, generation);
811 	if (ret)
812 		goto free_cache;
813 
814 	while (num_entries) {
815 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
816 				      GFP_NOFS);
817 		if (!e) {
818 			ret = -ENOMEM;
819 			goto free_cache;
820 		}
821 
822 		ret = io_ctl_read_entry(&io_ctl, e, &type);
823 		if (ret) {
824 			kmem_cache_free(btrfs_free_space_cachep, e);
825 			goto free_cache;
826 		}
827 
828 		if (!e->bytes) {
829 			ret = -1;
830 			kmem_cache_free(btrfs_free_space_cachep, e);
831 			goto free_cache;
832 		}
833 
834 		if (type == BTRFS_FREE_SPACE_EXTENT) {
835 			spin_lock(&ctl->tree_lock);
836 			ret = link_free_space(ctl, e);
837 			spin_unlock(&ctl->tree_lock);
838 			if (ret) {
839 				btrfs_err(fs_info,
840 					"Duplicate entries in free space cache, dumping");
841 				kmem_cache_free(btrfs_free_space_cachep, e);
842 				goto free_cache;
843 			}
844 		} else {
845 			ASSERT(num_bitmaps);
846 			num_bitmaps--;
847 			e->bitmap = kmem_cache_zalloc(
848 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
849 			if (!e->bitmap) {
850 				ret = -ENOMEM;
851 				kmem_cache_free(
852 					btrfs_free_space_cachep, e);
853 				goto free_cache;
854 			}
855 			spin_lock(&ctl->tree_lock);
856 			ret = link_free_space(ctl, e);
857 			if (ret) {
858 				spin_unlock(&ctl->tree_lock);
859 				btrfs_err(fs_info,
860 					"Duplicate entries in free space cache, dumping");
861 				kmem_cache_free(btrfs_free_space_cachep, e);
862 				goto free_cache;
863 			}
864 			ctl->total_bitmaps++;
865 			recalculate_thresholds(ctl);
866 			spin_unlock(&ctl->tree_lock);
867 			list_add_tail(&e->list, &bitmaps);
868 		}
869 
870 		num_entries--;
871 	}
872 
873 	io_ctl_unmap_page(&io_ctl);
874 
875 	/*
876 	 * We add the bitmaps at the end of the entries in order that
877 	 * the bitmap entries are added to the cache.
878 	 */
879 	list_for_each_entry_safe(e, n, &bitmaps, list) {
880 		list_del_init(&e->list);
881 		ret = io_ctl_read_bitmap(&io_ctl, e);
882 		if (ret)
883 			goto free_cache;
884 	}
885 
886 	io_ctl_drop_pages(&io_ctl);
887 	ret = 1;
888 out:
889 	io_ctl_free(&io_ctl);
890 	return ret;
891 free_cache:
892 	io_ctl_drop_pages(&io_ctl);
893 
894 	spin_lock(&ctl->tree_lock);
895 	__btrfs_remove_free_space_cache(ctl);
896 	spin_unlock(&ctl->tree_lock);
897 	goto out;
898 }
899 
900 static int copy_free_space_cache(struct btrfs_block_group *block_group,
901 				 struct btrfs_free_space_ctl *ctl)
902 {
903 	struct btrfs_free_space *info;
904 	struct rb_node *n;
905 	int ret = 0;
906 
907 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
908 		info = rb_entry(n, struct btrfs_free_space, offset_index);
909 		if (!info->bitmap) {
910 			const u64 offset = info->offset;
911 			const u64 bytes = info->bytes;
912 
913 			unlink_free_space(ctl, info, true);
914 			spin_unlock(&ctl->tree_lock);
915 			kmem_cache_free(btrfs_free_space_cachep, info);
916 			ret = btrfs_add_free_space(block_group, offset, bytes);
917 			spin_lock(&ctl->tree_lock);
918 		} else {
919 			u64 offset = info->offset;
920 			u64 bytes = ctl->unit;
921 
922 			ret = search_bitmap(ctl, info, &offset, &bytes, false);
923 			if (ret == 0) {
924 				bitmap_clear_bits(ctl, info, offset, bytes, true);
925 				spin_unlock(&ctl->tree_lock);
926 				ret = btrfs_add_free_space(block_group, offset,
927 							   bytes);
928 				spin_lock(&ctl->tree_lock);
929 			} else {
930 				free_bitmap(ctl, info);
931 				ret = 0;
932 			}
933 		}
934 		cond_resched_lock(&ctl->tree_lock);
935 	}
936 	return ret;
937 }
938 
939 static struct lock_class_key btrfs_free_space_inode_key;
940 
941 int load_free_space_cache(struct btrfs_block_group *block_group)
942 {
943 	struct btrfs_fs_info *fs_info = block_group->fs_info;
944 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
945 	struct btrfs_free_space_ctl tmp_ctl = {};
946 	struct inode *inode;
947 	struct btrfs_path *path;
948 	int ret = 0;
949 	bool matched;
950 	u64 used = block_group->used;
951 
952 	/*
953 	 * Because we could potentially discard our loaded free space, we want
954 	 * to load everything into a temporary structure first, and then if it's
955 	 * valid copy it all into the actual free space ctl.
956 	 */
957 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
958 
959 	/*
960 	 * If this block group has been marked to be cleared for one reason or
961 	 * another then we can't trust the on disk cache, so just return.
962 	 */
963 	spin_lock(&block_group->lock);
964 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
965 		spin_unlock(&block_group->lock);
966 		return 0;
967 	}
968 	spin_unlock(&block_group->lock);
969 
970 	path = btrfs_alloc_path();
971 	if (!path)
972 		return 0;
973 	path->search_commit_root = 1;
974 	path->skip_locking = 1;
975 
976 	/*
977 	 * We must pass a path with search_commit_root set to btrfs_iget in
978 	 * order to avoid a deadlock when allocating extents for the tree root.
979 	 *
980 	 * When we are COWing an extent buffer from the tree root, when looking
981 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
982 	 * block group without its free space cache loaded. When we find one
983 	 * we must load its space cache which requires reading its free space
984 	 * cache's inode item from the root tree. If this inode item is located
985 	 * in the same leaf that we started COWing before, then we end up in
986 	 * deadlock on the extent buffer (trying to read lock it when we
987 	 * previously write locked it).
988 	 *
989 	 * It's safe to read the inode item using the commit root because
990 	 * block groups, once loaded, stay in memory forever (until they are
991 	 * removed) as well as their space caches once loaded. New block groups
992 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
993 	 * we will never try to read their inode item while the fs is mounted.
994 	 */
995 	inode = lookup_free_space_inode(block_group, path);
996 	if (IS_ERR(inode)) {
997 		btrfs_free_path(path);
998 		return 0;
999 	}
1000 
1001 	/* We may have converted the inode and made the cache invalid. */
1002 	spin_lock(&block_group->lock);
1003 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1004 		spin_unlock(&block_group->lock);
1005 		btrfs_free_path(path);
1006 		goto out;
1007 	}
1008 	spin_unlock(&block_group->lock);
1009 
1010 	/*
1011 	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1012 	 * free space inodes to prevent false positives related to locks for normal
1013 	 * inodes.
1014 	 */
1015 	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1016 			  &btrfs_free_space_inode_key);
1017 
1018 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1019 				      path, block_group->start);
1020 	btrfs_free_path(path);
1021 	if (ret <= 0)
1022 		goto out;
1023 
1024 	matched = (tmp_ctl.free_space == (block_group->length - used -
1025 					  block_group->bytes_super));
1026 
1027 	if (matched) {
1028 		spin_lock(&tmp_ctl.tree_lock);
1029 		ret = copy_free_space_cache(block_group, &tmp_ctl);
1030 		spin_unlock(&tmp_ctl.tree_lock);
1031 		/*
1032 		 * ret == 1 means we successfully loaded the free space cache,
1033 		 * so we need to re-set it here.
1034 		 */
1035 		if (ret == 0)
1036 			ret = 1;
1037 	} else {
1038 		/*
1039 		 * We need to call the _locked variant so we don't try to update
1040 		 * the discard counters.
1041 		 */
1042 		spin_lock(&tmp_ctl.tree_lock);
1043 		__btrfs_remove_free_space_cache(&tmp_ctl);
1044 		spin_unlock(&tmp_ctl.tree_lock);
1045 		btrfs_warn(fs_info,
1046 			   "block group %llu has wrong amount of free space",
1047 			   block_group->start);
1048 		ret = -1;
1049 	}
1050 out:
1051 	if (ret < 0) {
1052 		/* This cache is bogus, make sure it gets cleared */
1053 		spin_lock(&block_group->lock);
1054 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1055 		spin_unlock(&block_group->lock);
1056 		ret = 0;
1057 
1058 		btrfs_warn(fs_info,
1059 			   "failed to load free space cache for block group %llu, rebuilding it now",
1060 			   block_group->start);
1061 	}
1062 
1063 	spin_lock(&ctl->tree_lock);
1064 	btrfs_discard_update_discardable(block_group);
1065 	spin_unlock(&ctl->tree_lock);
1066 	iput(inode);
1067 	return ret;
1068 }
1069 
1070 static noinline_for_stack
1071 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1072 			      struct btrfs_free_space_ctl *ctl,
1073 			      struct btrfs_block_group *block_group,
1074 			      int *entries, int *bitmaps,
1075 			      struct list_head *bitmap_list)
1076 {
1077 	int ret;
1078 	struct btrfs_free_cluster *cluster = NULL;
1079 	struct btrfs_free_cluster *cluster_locked = NULL;
1080 	struct rb_node *node = rb_first(&ctl->free_space_offset);
1081 	struct btrfs_trim_range *trim_entry;
1082 
1083 	/* Get the cluster for this block_group if it exists */
1084 	if (block_group && !list_empty(&block_group->cluster_list)) {
1085 		cluster = list_entry(block_group->cluster_list.next,
1086 				     struct btrfs_free_cluster,
1087 				     block_group_list);
1088 	}
1089 
1090 	if (!node && cluster) {
1091 		cluster_locked = cluster;
1092 		spin_lock(&cluster_locked->lock);
1093 		node = rb_first(&cluster->root);
1094 		cluster = NULL;
1095 	}
1096 
1097 	/* Write out the extent entries */
1098 	while (node) {
1099 		struct btrfs_free_space *e;
1100 
1101 		e = rb_entry(node, struct btrfs_free_space, offset_index);
1102 		*entries += 1;
1103 
1104 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1105 				       e->bitmap);
1106 		if (ret)
1107 			goto fail;
1108 
1109 		if (e->bitmap) {
1110 			list_add_tail(&e->list, bitmap_list);
1111 			*bitmaps += 1;
1112 		}
1113 		node = rb_next(node);
1114 		if (!node && cluster) {
1115 			node = rb_first(&cluster->root);
1116 			cluster_locked = cluster;
1117 			spin_lock(&cluster_locked->lock);
1118 			cluster = NULL;
1119 		}
1120 	}
1121 	if (cluster_locked) {
1122 		spin_unlock(&cluster_locked->lock);
1123 		cluster_locked = NULL;
1124 	}
1125 
1126 	/*
1127 	 * Make sure we don't miss any range that was removed from our rbtree
1128 	 * because trimming is running. Otherwise after a umount+mount (or crash
1129 	 * after committing the transaction) we would leak free space and get
1130 	 * an inconsistent free space cache report from fsck.
1131 	 */
1132 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1133 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1134 				       trim_entry->bytes, NULL);
1135 		if (ret)
1136 			goto fail;
1137 		*entries += 1;
1138 	}
1139 
1140 	return 0;
1141 fail:
1142 	if (cluster_locked)
1143 		spin_unlock(&cluster_locked->lock);
1144 	return -ENOSPC;
1145 }
1146 
1147 static noinline_for_stack int
1148 update_cache_item(struct btrfs_trans_handle *trans,
1149 		  struct btrfs_root *root,
1150 		  struct inode *inode,
1151 		  struct btrfs_path *path, u64 offset,
1152 		  int entries, int bitmaps)
1153 {
1154 	struct btrfs_key key;
1155 	struct btrfs_free_space_header *header;
1156 	struct extent_buffer *leaf;
1157 	int ret;
1158 
1159 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1160 	key.offset = offset;
1161 	key.type = 0;
1162 
1163 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1164 	if (ret < 0) {
1165 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1166 				 EXTENT_DELALLOC, NULL);
1167 		goto fail;
1168 	}
1169 	leaf = path->nodes[0];
1170 	if (ret > 0) {
1171 		struct btrfs_key found_key;
1172 		ASSERT(path->slots[0]);
1173 		path->slots[0]--;
1174 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1175 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1176 		    found_key.offset != offset) {
1177 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1178 					 inode->i_size - 1, EXTENT_DELALLOC,
1179 					 NULL);
1180 			btrfs_release_path(path);
1181 			goto fail;
1182 		}
1183 	}
1184 
1185 	BTRFS_I(inode)->generation = trans->transid;
1186 	header = btrfs_item_ptr(leaf, path->slots[0],
1187 				struct btrfs_free_space_header);
1188 	btrfs_set_free_space_entries(leaf, header, entries);
1189 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1190 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1191 	btrfs_mark_buffer_dirty(trans, leaf);
1192 	btrfs_release_path(path);
1193 
1194 	return 0;
1195 
1196 fail:
1197 	return -1;
1198 }
1199 
1200 static noinline_for_stack int write_pinned_extent_entries(
1201 			    struct btrfs_trans_handle *trans,
1202 			    struct btrfs_block_group *block_group,
1203 			    struct btrfs_io_ctl *io_ctl,
1204 			    int *entries)
1205 {
1206 	u64 start, extent_start, extent_end, len;
1207 	struct extent_io_tree *unpin = NULL;
1208 	int ret;
1209 
1210 	if (!block_group)
1211 		return 0;
1212 
1213 	/*
1214 	 * We want to add any pinned extents to our free space cache
1215 	 * so we don't leak the space
1216 	 *
1217 	 * We shouldn't have switched the pinned extents yet so this is the
1218 	 * right one
1219 	 */
1220 	unpin = &trans->transaction->pinned_extents;
1221 
1222 	start = block_group->start;
1223 
1224 	while (start < block_group->start + block_group->length) {
1225 		if (!find_first_extent_bit(unpin, start,
1226 					   &extent_start, &extent_end,
1227 					   EXTENT_DIRTY, NULL))
1228 			return 0;
1229 
1230 		/* This pinned extent is out of our range */
1231 		if (extent_start >= block_group->start + block_group->length)
1232 			return 0;
1233 
1234 		extent_start = max(extent_start, start);
1235 		extent_end = min(block_group->start + block_group->length,
1236 				 extent_end + 1);
1237 		len = extent_end - extent_start;
1238 
1239 		*entries += 1;
1240 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1241 		if (ret)
1242 			return -ENOSPC;
1243 
1244 		start = extent_end;
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 static noinline_for_stack int
1251 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1252 {
1253 	struct btrfs_free_space *entry, *next;
1254 	int ret;
1255 
1256 	/* Write out the bitmaps */
1257 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1258 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1259 		if (ret)
1260 			return -ENOSPC;
1261 		list_del_init(&entry->list);
1262 	}
1263 
1264 	return 0;
1265 }
1266 
1267 static int flush_dirty_cache(struct inode *inode)
1268 {
1269 	int ret;
1270 
1271 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1272 	if (ret)
1273 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1274 				 EXTENT_DELALLOC, NULL);
1275 
1276 	return ret;
1277 }
1278 
1279 static void noinline_for_stack
1280 cleanup_bitmap_list(struct list_head *bitmap_list)
1281 {
1282 	struct btrfs_free_space *entry, *next;
1283 
1284 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1285 		list_del_init(&entry->list);
1286 }
1287 
1288 static void noinline_for_stack
1289 cleanup_write_cache_enospc(struct inode *inode,
1290 			   struct btrfs_io_ctl *io_ctl,
1291 			   struct extent_state **cached_state)
1292 {
1293 	io_ctl_drop_pages(io_ctl);
1294 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1295 		      cached_state);
1296 }
1297 
1298 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1299 				 struct btrfs_trans_handle *trans,
1300 				 struct btrfs_block_group *block_group,
1301 				 struct btrfs_io_ctl *io_ctl,
1302 				 struct btrfs_path *path, u64 offset)
1303 {
1304 	int ret;
1305 	struct inode *inode = io_ctl->inode;
1306 
1307 	if (!inode)
1308 		return 0;
1309 
1310 	/* Flush the dirty pages in the cache file. */
1311 	ret = flush_dirty_cache(inode);
1312 	if (ret)
1313 		goto out;
1314 
1315 	/* Update the cache item to tell everyone this cache file is valid. */
1316 	ret = update_cache_item(trans, root, inode, path, offset,
1317 				io_ctl->entries, io_ctl->bitmaps);
1318 out:
1319 	if (ret) {
1320 		invalidate_inode_pages2(inode->i_mapping);
1321 		BTRFS_I(inode)->generation = 0;
1322 		if (block_group)
1323 			btrfs_debug(root->fs_info,
1324 	  "failed to write free space cache for block group %llu error %d",
1325 				  block_group->start, ret);
1326 	}
1327 	btrfs_update_inode(trans, BTRFS_I(inode));
1328 
1329 	if (block_group) {
1330 		/* the dirty list is protected by the dirty_bgs_lock */
1331 		spin_lock(&trans->transaction->dirty_bgs_lock);
1332 
1333 		/* the disk_cache_state is protected by the block group lock */
1334 		spin_lock(&block_group->lock);
1335 
1336 		/*
1337 		 * only mark this as written if we didn't get put back on
1338 		 * the dirty list while waiting for IO.   Otherwise our
1339 		 * cache state won't be right, and we won't get written again
1340 		 */
1341 		if (!ret && list_empty(&block_group->dirty_list))
1342 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1343 		else if (ret)
1344 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1345 
1346 		spin_unlock(&block_group->lock);
1347 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1348 		io_ctl->inode = NULL;
1349 		iput(inode);
1350 	}
1351 
1352 	return ret;
1353 
1354 }
1355 
1356 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1357 			struct btrfs_block_group *block_group,
1358 			struct btrfs_path *path)
1359 {
1360 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1361 				     block_group, &block_group->io_ctl,
1362 				     path, block_group->start);
1363 }
1364 
1365 /*
1366  * Write out cached info to an inode.
1367  *
1368  * @inode:       freespace inode we are writing out
1369  * @ctl:         free space cache we are going to write out
1370  * @block_group: block_group for this cache if it belongs to a block_group
1371  * @io_ctl:      holds context for the io
1372  * @trans:       the trans handle
1373  *
1374  * This function writes out a free space cache struct to disk for quick recovery
1375  * on mount.  This will return 0 if it was successful in writing the cache out,
1376  * or an errno if it was not.
1377  */
1378 static int __btrfs_write_out_cache(struct inode *inode,
1379 				   struct btrfs_free_space_ctl *ctl,
1380 				   struct btrfs_block_group *block_group,
1381 				   struct btrfs_io_ctl *io_ctl,
1382 				   struct btrfs_trans_handle *trans)
1383 {
1384 	struct extent_state *cached_state = NULL;
1385 	LIST_HEAD(bitmap_list);
1386 	int entries = 0;
1387 	int bitmaps = 0;
1388 	int ret;
1389 	int must_iput = 0;
1390 
1391 	if (!i_size_read(inode))
1392 		return -EIO;
1393 
1394 	WARN_ON(io_ctl->pages);
1395 	ret = io_ctl_init(io_ctl, inode, 1);
1396 	if (ret)
1397 		return ret;
1398 
1399 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1400 		down_write(&block_group->data_rwsem);
1401 		spin_lock(&block_group->lock);
1402 		if (block_group->delalloc_bytes) {
1403 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1404 			spin_unlock(&block_group->lock);
1405 			up_write(&block_group->data_rwsem);
1406 			BTRFS_I(inode)->generation = 0;
1407 			ret = 0;
1408 			must_iput = 1;
1409 			goto out;
1410 		}
1411 		spin_unlock(&block_group->lock);
1412 	}
1413 
1414 	/* Lock all pages first so we can lock the extent safely. */
1415 	ret = io_ctl_prepare_pages(io_ctl, false);
1416 	if (ret)
1417 		goto out_unlock;
1418 
1419 	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1420 		    &cached_state);
1421 
1422 	io_ctl_set_generation(io_ctl, trans->transid);
1423 
1424 	mutex_lock(&ctl->cache_writeout_mutex);
1425 	/* Write out the extent entries in the free space cache */
1426 	spin_lock(&ctl->tree_lock);
1427 	ret = write_cache_extent_entries(io_ctl, ctl,
1428 					 block_group, &entries, &bitmaps,
1429 					 &bitmap_list);
1430 	if (ret)
1431 		goto out_nospc_locked;
1432 
1433 	/*
1434 	 * Some spaces that are freed in the current transaction are pinned,
1435 	 * they will be added into free space cache after the transaction is
1436 	 * committed, we shouldn't lose them.
1437 	 *
1438 	 * If this changes while we are working we'll get added back to
1439 	 * the dirty list and redo it.  No locking needed
1440 	 */
1441 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1442 	if (ret)
1443 		goto out_nospc_locked;
1444 
1445 	/*
1446 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1447 	 * locked while doing it because a concurrent trim can be manipulating
1448 	 * or freeing the bitmap.
1449 	 */
1450 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1451 	spin_unlock(&ctl->tree_lock);
1452 	mutex_unlock(&ctl->cache_writeout_mutex);
1453 	if (ret)
1454 		goto out_nospc;
1455 
1456 	/* Zero out the rest of the pages just to make sure */
1457 	io_ctl_zero_remaining_pages(io_ctl);
1458 
1459 	/* Everything is written out, now we dirty the pages in the file. */
1460 	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1461 				io_ctl->num_pages, 0, i_size_read(inode),
1462 				&cached_state, false);
1463 	if (ret)
1464 		goto out_nospc;
1465 
1466 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1467 		up_write(&block_group->data_rwsem);
1468 	/*
1469 	 * Release the pages and unlock the extent, we will flush
1470 	 * them out later
1471 	 */
1472 	io_ctl_drop_pages(io_ctl);
1473 	io_ctl_free(io_ctl);
1474 
1475 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1476 		      &cached_state);
1477 
1478 	/*
1479 	 * at this point the pages are under IO and we're happy,
1480 	 * The caller is responsible for waiting on them and updating
1481 	 * the cache and the inode
1482 	 */
1483 	io_ctl->entries = entries;
1484 	io_ctl->bitmaps = bitmaps;
1485 
1486 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1487 	if (ret)
1488 		goto out;
1489 
1490 	return 0;
1491 
1492 out_nospc_locked:
1493 	cleanup_bitmap_list(&bitmap_list);
1494 	spin_unlock(&ctl->tree_lock);
1495 	mutex_unlock(&ctl->cache_writeout_mutex);
1496 
1497 out_nospc:
1498 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1499 
1500 out_unlock:
1501 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1502 		up_write(&block_group->data_rwsem);
1503 
1504 out:
1505 	io_ctl->inode = NULL;
1506 	io_ctl_free(io_ctl);
1507 	if (ret) {
1508 		invalidate_inode_pages2(inode->i_mapping);
1509 		BTRFS_I(inode)->generation = 0;
1510 	}
1511 	btrfs_update_inode(trans, BTRFS_I(inode));
1512 	if (must_iput)
1513 		iput(inode);
1514 	return ret;
1515 }
1516 
1517 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1518 			  struct btrfs_block_group *block_group,
1519 			  struct btrfs_path *path)
1520 {
1521 	struct btrfs_fs_info *fs_info = trans->fs_info;
1522 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1523 	struct inode *inode;
1524 	int ret = 0;
1525 
1526 	spin_lock(&block_group->lock);
1527 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1528 		spin_unlock(&block_group->lock);
1529 		return 0;
1530 	}
1531 	spin_unlock(&block_group->lock);
1532 
1533 	inode = lookup_free_space_inode(block_group, path);
1534 	if (IS_ERR(inode))
1535 		return 0;
1536 
1537 	ret = __btrfs_write_out_cache(inode, ctl, block_group,
1538 				      &block_group->io_ctl, trans);
1539 	if (ret) {
1540 		btrfs_debug(fs_info,
1541 	  "failed to write free space cache for block group %llu error %d",
1542 			  block_group->start, ret);
1543 		spin_lock(&block_group->lock);
1544 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1545 		spin_unlock(&block_group->lock);
1546 
1547 		block_group->io_ctl.inode = NULL;
1548 		iput(inode);
1549 	}
1550 
1551 	/*
1552 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1553 	 * to wait for IO and put the inode
1554 	 */
1555 
1556 	return ret;
1557 }
1558 
1559 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1560 					  u64 offset)
1561 {
1562 	ASSERT(offset >= bitmap_start);
1563 	offset -= bitmap_start;
1564 	return (unsigned long)(div_u64(offset, unit));
1565 }
1566 
1567 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1568 {
1569 	return (unsigned long)(div_u64(bytes, unit));
1570 }
1571 
1572 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1573 				   u64 offset)
1574 {
1575 	u64 bitmap_start;
1576 	u64 bytes_per_bitmap;
1577 
1578 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1579 	bitmap_start = offset - ctl->start;
1580 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1581 	bitmap_start *= bytes_per_bitmap;
1582 	bitmap_start += ctl->start;
1583 
1584 	return bitmap_start;
1585 }
1586 
1587 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1588 			      struct btrfs_free_cluster *cluster,
1589 			      struct btrfs_free_space *new_entry)
1590 {
1591 	struct rb_root *root;
1592 	struct rb_node **p;
1593 	struct rb_node *parent = NULL;
1594 
1595 	lockdep_assert_held(&ctl->tree_lock);
1596 
1597 	if (cluster) {
1598 		lockdep_assert_held(&cluster->lock);
1599 		root = &cluster->root;
1600 	} else {
1601 		root = &ctl->free_space_offset;
1602 	}
1603 
1604 	p = &root->rb_node;
1605 
1606 	while (*p) {
1607 		struct btrfs_free_space *info;
1608 
1609 		parent = *p;
1610 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1611 
1612 		if (new_entry->offset < info->offset) {
1613 			p = &(*p)->rb_left;
1614 		} else if (new_entry->offset > info->offset) {
1615 			p = &(*p)->rb_right;
1616 		} else {
1617 			/*
1618 			 * we could have a bitmap entry and an extent entry
1619 			 * share the same offset.  If this is the case, we want
1620 			 * the extent entry to always be found first if we do a
1621 			 * linear search through the tree, since we want to have
1622 			 * the quickest allocation time, and allocating from an
1623 			 * extent is faster than allocating from a bitmap.  So
1624 			 * if we're inserting a bitmap and we find an entry at
1625 			 * this offset, we want to go right, or after this entry
1626 			 * logically.  If we are inserting an extent and we've
1627 			 * found a bitmap, we want to go left, or before
1628 			 * logically.
1629 			 */
1630 			if (new_entry->bitmap) {
1631 				if (info->bitmap) {
1632 					WARN_ON_ONCE(1);
1633 					return -EEXIST;
1634 				}
1635 				p = &(*p)->rb_right;
1636 			} else {
1637 				if (!info->bitmap) {
1638 					WARN_ON_ONCE(1);
1639 					return -EEXIST;
1640 				}
1641 				p = &(*p)->rb_left;
1642 			}
1643 		}
1644 	}
1645 
1646 	rb_link_node(&new_entry->offset_index, parent, p);
1647 	rb_insert_color(&new_entry->offset_index, root);
1648 
1649 	return 0;
1650 }
1651 
1652 /*
1653  * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1654  * searched through the bitmap and figured out the largest ->max_extent_size,
1655  * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1656  * allocator the wrong thing, we want to use the actual real max_extent_size
1657  * we've found already if it's larger, or we want to use ->bytes.
1658  *
1659  * This matters because find_free_space() will skip entries who's ->bytes is
1660  * less than the required bytes.  So if we didn't search down this bitmap, we
1661  * may pick some previous entry that has a smaller ->max_extent_size than we
1662  * have.  For example, assume we have two entries, one that has
1663  * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1664  * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1665  *  call into find_free_space(), and return with max_extent_size == 4K, because
1666  *  that first bitmap entry had ->max_extent_size set, but the second one did
1667  *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1668  *  8K contiguous range.
1669  *
1670  *  Consider the other case, we have 2 8K chunks in that second entry and still
1671  *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1672  *  allocator comes in it'll fully search our second bitmap, and this time it'll
1673  *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1674  *  right allocation the next loop through.
1675  */
1676 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1677 {
1678 	if (entry->bitmap && entry->max_extent_size)
1679 		return entry->max_extent_size;
1680 	return entry->bytes;
1681 }
1682 
1683 /*
1684  * We want the largest entry to be leftmost, so this is inverted from what you'd
1685  * normally expect.
1686  */
1687 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1688 {
1689 	const struct btrfs_free_space *entry, *exist;
1690 
1691 	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1692 	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1693 	return get_max_extent_size(exist) < get_max_extent_size(entry);
1694 }
1695 
1696 /*
1697  * searches the tree for the given offset.
1698  *
1699  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1700  * want a section that has at least bytes size and comes at or after the given
1701  * offset.
1702  */
1703 static struct btrfs_free_space *
1704 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1705 		   u64 offset, int bitmap_only, int fuzzy)
1706 {
1707 	struct rb_node *n = ctl->free_space_offset.rb_node;
1708 	struct btrfs_free_space *entry = NULL, *prev = NULL;
1709 
1710 	lockdep_assert_held(&ctl->tree_lock);
1711 
1712 	/* find entry that is closest to the 'offset' */
1713 	while (n) {
1714 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1715 		prev = entry;
1716 
1717 		if (offset < entry->offset)
1718 			n = n->rb_left;
1719 		else if (offset > entry->offset)
1720 			n = n->rb_right;
1721 		else
1722 			break;
1723 
1724 		entry = NULL;
1725 	}
1726 
1727 	if (bitmap_only) {
1728 		if (!entry)
1729 			return NULL;
1730 		if (entry->bitmap)
1731 			return entry;
1732 
1733 		/*
1734 		 * bitmap entry and extent entry may share same offset,
1735 		 * in that case, bitmap entry comes after extent entry.
1736 		 */
1737 		n = rb_next(n);
1738 		if (!n)
1739 			return NULL;
1740 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1741 		if (entry->offset != offset)
1742 			return NULL;
1743 
1744 		WARN_ON(!entry->bitmap);
1745 		return entry;
1746 	} else if (entry) {
1747 		if (entry->bitmap) {
1748 			/*
1749 			 * if previous extent entry covers the offset,
1750 			 * we should return it instead of the bitmap entry
1751 			 */
1752 			n = rb_prev(&entry->offset_index);
1753 			if (n) {
1754 				prev = rb_entry(n, struct btrfs_free_space,
1755 						offset_index);
1756 				if (!prev->bitmap &&
1757 				    prev->offset + prev->bytes > offset)
1758 					entry = prev;
1759 			}
1760 		}
1761 		return entry;
1762 	}
1763 
1764 	if (!prev)
1765 		return NULL;
1766 
1767 	/* find last entry before the 'offset' */
1768 	entry = prev;
1769 	if (entry->offset > offset) {
1770 		n = rb_prev(&entry->offset_index);
1771 		if (n) {
1772 			entry = rb_entry(n, struct btrfs_free_space,
1773 					offset_index);
1774 			ASSERT(entry->offset <= offset);
1775 		} else {
1776 			if (fuzzy)
1777 				return entry;
1778 			else
1779 				return NULL;
1780 		}
1781 	}
1782 
1783 	if (entry->bitmap) {
1784 		n = rb_prev(&entry->offset_index);
1785 		if (n) {
1786 			prev = rb_entry(n, struct btrfs_free_space,
1787 					offset_index);
1788 			if (!prev->bitmap &&
1789 			    prev->offset + prev->bytes > offset)
1790 				return prev;
1791 		}
1792 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1793 			return entry;
1794 	} else if (entry->offset + entry->bytes > offset)
1795 		return entry;
1796 
1797 	if (!fuzzy)
1798 		return NULL;
1799 
1800 	while (1) {
1801 		n = rb_next(&entry->offset_index);
1802 		if (!n)
1803 			return NULL;
1804 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1805 		if (entry->bitmap) {
1806 			if (entry->offset + BITS_PER_BITMAP *
1807 			    ctl->unit > offset)
1808 				break;
1809 		} else {
1810 			if (entry->offset + entry->bytes > offset)
1811 				break;
1812 		}
1813 	}
1814 	return entry;
1815 }
1816 
1817 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1818 				     struct btrfs_free_space *info,
1819 				     bool update_stat)
1820 {
1821 	lockdep_assert_held(&ctl->tree_lock);
1822 
1823 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1824 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1825 	ctl->free_extents--;
1826 
1827 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1828 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1829 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1830 	}
1831 
1832 	if (update_stat)
1833 		ctl->free_space -= info->bytes;
1834 }
1835 
1836 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1837 			   struct btrfs_free_space *info)
1838 {
1839 	int ret = 0;
1840 
1841 	lockdep_assert_held(&ctl->tree_lock);
1842 
1843 	ASSERT(info->bytes || info->bitmap);
1844 	ret = tree_insert_offset(ctl, NULL, info);
1845 	if (ret)
1846 		return ret;
1847 
1848 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1849 
1850 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1851 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1852 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1853 	}
1854 
1855 	ctl->free_space += info->bytes;
1856 	ctl->free_extents++;
1857 	return ret;
1858 }
1859 
1860 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1861 				struct btrfs_free_space *info)
1862 {
1863 	ASSERT(info->bitmap);
1864 
1865 	/*
1866 	 * If our entry is empty it's because we're on a cluster and we don't
1867 	 * want to re-link it into our ctl bytes index.
1868 	 */
1869 	if (RB_EMPTY_NODE(&info->bytes_index))
1870 		return;
1871 
1872 	lockdep_assert_held(&ctl->tree_lock);
1873 
1874 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1875 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1876 }
1877 
1878 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1879 				     struct btrfs_free_space *info,
1880 				     u64 offset, u64 bytes, bool update_stat)
1881 {
1882 	unsigned long start, count, end;
1883 	int extent_delta = -1;
1884 
1885 	start = offset_to_bit(info->offset, ctl->unit, offset);
1886 	count = bytes_to_bits(bytes, ctl->unit);
1887 	end = start + count;
1888 	ASSERT(end <= BITS_PER_BITMAP);
1889 
1890 	bitmap_clear(info->bitmap, start, count);
1891 
1892 	info->bytes -= bytes;
1893 	if (info->max_extent_size > ctl->unit)
1894 		info->max_extent_size = 0;
1895 
1896 	relink_bitmap_entry(ctl, info);
1897 
1898 	if (start && test_bit(start - 1, info->bitmap))
1899 		extent_delta++;
1900 
1901 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1902 		extent_delta++;
1903 
1904 	info->bitmap_extents += extent_delta;
1905 	if (!btrfs_free_space_trimmed(info)) {
1906 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1907 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1908 	}
1909 
1910 	if (update_stat)
1911 		ctl->free_space -= bytes;
1912 }
1913 
1914 static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1915 				  struct btrfs_free_space *info, u64 offset,
1916 				  u64 bytes)
1917 {
1918 	unsigned long start, count, end;
1919 	int extent_delta = 1;
1920 
1921 	start = offset_to_bit(info->offset, ctl->unit, offset);
1922 	count = bytes_to_bits(bytes, ctl->unit);
1923 	end = start + count;
1924 	ASSERT(end <= BITS_PER_BITMAP);
1925 
1926 	bitmap_set(info->bitmap, start, count);
1927 
1928 	/*
1929 	 * We set some bytes, we have no idea what the max extent size is
1930 	 * anymore.
1931 	 */
1932 	info->max_extent_size = 0;
1933 	info->bytes += bytes;
1934 	ctl->free_space += bytes;
1935 
1936 	relink_bitmap_entry(ctl, info);
1937 
1938 	if (start && test_bit(start - 1, info->bitmap))
1939 		extent_delta--;
1940 
1941 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1942 		extent_delta--;
1943 
1944 	info->bitmap_extents += extent_delta;
1945 	if (!btrfs_free_space_trimmed(info)) {
1946 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1947 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1948 	}
1949 }
1950 
1951 /*
1952  * If we can not find suitable extent, we will use bytes to record
1953  * the size of the max extent.
1954  */
1955 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1956 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1957 			 u64 *bytes, bool for_alloc)
1958 {
1959 	unsigned long found_bits = 0;
1960 	unsigned long max_bits = 0;
1961 	unsigned long bits, i;
1962 	unsigned long next_zero;
1963 	unsigned long extent_bits;
1964 
1965 	/*
1966 	 * Skip searching the bitmap if we don't have a contiguous section that
1967 	 * is large enough for this allocation.
1968 	 */
1969 	if (for_alloc &&
1970 	    bitmap_info->max_extent_size &&
1971 	    bitmap_info->max_extent_size < *bytes) {
1972 		*bytes = bitmap_info->max_extent_size;
1973 		return -1;
1974 	}
1975 
1976 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1977 			  max_t(u64, *offset, bitmap_info->offset));
1978 	bits = bytes_to_bits(*bytes, ctl->unit);
1979 
1980 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1981 		if (for_alloc && bits == 1) {
1982 			found_bits = 1;
1983 			break;
1984 		}
1985 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1986 					       BITS_PER_BITMAP, i);
1987 		extent_bits = next_zero - i;
1988 		if (extent_bits >= bits) {
1989 			found_bits = extent_bits;
1990 			break;
1991 		} else if (extent_bits > max_bits) {
1992 			max_bits = extent_bits;
1993 		}
1994 		i = next_zero;
1995 	}
1996 
1997 	if (found_bits) {
1998 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1999 		*bytes = (u64)(found_bits) * ctl->unit;
2000 		return 0;
2001 	}
2002 
2003 	*bytes = (u64)(max_bits) * ctl->unit;
2004 	bitmap_info->max_extent_size = *bytes;
2005 	relink_bitmap_entry(ctl, bitmap_info);
2006 	return -1;
2007 }
2008 
2009 /* Cache the size of the max extent in bytes */
2010 static struct btrfs_free_space *
2011 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2012 		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2013 {
2014 	struct btrfs_free_space *entry;
2015 	struct rb_node *node;
2016 	u64 tmp;
2017 	u64 align_off;
2018 	int ret;
2019 
2020 	if (!ctl->free_space_offset.rb_node)
2021 		goto out;
2022 again:
2023 	if (use_bytes_index) {
2024 		node = rb_first_cached(&ctl->free_space_bytes);
2025 	} else {
2026 		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2027 					   0, 1);
2028 		if (!entry)
2029 			goto out;
2030 		node = &entry->offset_index;
2031 	}
2032 
2033 	for (; node; node = rb_next(node)) {
2034 		if (use_bytes_index)
2035 			entry = rb_entry(node, struct btrfs_free_space,
2036 					 bytes_index);
2037 		else
2038 			entry = rb_entry(node, struct btrfs_free_space,
2039 					 offset_index);
2040 
2041 		/*
2042 		 * If we are using the bytes index then all subsequent entries
2043 		 * in this tree are going to be < bytes, so simply set the max
2044 		 * extent size and exit the loop.
2045 		 *
2046 		 * If we're using the offset index then we need to keep going
2047 		 * through the rest of the tree.
2048 		 */
2049 		if (entry->bytes < *bytes) {
2050 			*max_extent_size = max(get_max_extent_size(entry),
2051 					       *max_extent_size);
2052 			if (use_bytes_index)
2053 				break;
2054 			continue;
2055 		}
2056 
2057 		/* make sure the space returned is big enough
2058 		 * to match our requested alignment
2059 		 */
2060 		if (*bytes >= align) {
2061 			tmp = entry->offset - ctl->start + align - 1;
2062 			tmp = div64_u64(tmp, align);
2063 			tmp = tmp * align + ctl->start;
2064 			align_off = tmp - entry->offset;
2065 		} else {
2066 			align_off = 0;
2067 			tmp = entry->offset;
2068 		}
2069 
2070 		/*
2071 		 * We don't break here if we're using the bytes index because we
2072 		 * may have another entry that has the correct alignment that is
2073 		 * the right size, so we don't want to miss that possibility.
2074 		 * At worst this adds another loop through the logic, but if we
2075 		 * broke here we could prematurely ENOSPC.
2076 		 */
2077 		if (entry->bytes < *bytes + align_off) {
2078 			*max_extent_size = max(get_max_extent_size(entry),
2079 					       *max_extent_size);
2080 			continue;
2081 		}
2082 
2083 		if (entry->bitmap) {
2084 			struct rb_node *old_next = rb_next(node);
2085 			u64 size = *bytes;
2086 
2087 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2088 			if (!ret) {
2089 				*offset = tmp;
2090 				*bytes = size;
2091 				return entry;
2092 			} else {
2093 				*max_extent_size =
2094 					max(get_max_extent_size(entry),
2095 					    *max_extent_size);
2096 			}
2097 
2098 			/*
2099 			 * The bitmap may have gotten re-arranged in the space
2100 			 * index here because the max_extent_size may have been
2101 			 * updated.  Start from the beginning again if this
2102 			 * happened.
2103 			 */
2104 			if (use_bytes_index && old_next != rb_next(node))
2105 				goto again;
2106 			continue;
2107 		}
2108 
2109 		*offset = tmp;
2110 		*bytes = entry->bytes - align_off;
2111 		return entry;
2112 	}
2113 out:
2114 	return NULL;
2115 }
2116 
2117 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2118 			   struct btrfs_free_space *info, u64 offset)
2119 {
2120 	info->offset = offset_to_bitmap(ctl, offset);
2121 	info->bytes = 0;
2122 	info->bitmap_extents = 0;
2123 	INIT_LIST_HEAD(&info->list);
2124 	link_free_space(ctl, info);
2125 	ctl->total_bitmaps++;
2126 	recalculate_thresholds(ctl);
2127 }
2128 
2129 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2130 			struct btrfs_free_space *bitmap_info)
2131 {
2132 	/*
2133 	 * Normally when this is called, the bitmap is completely empty. However,
2134 	 * if we are blowing up the free space cache for one reason or another
2135 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2136 	 * we may leave stats on the table.
2137 	 */
2138 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2139 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2140 			bitmap_info->bitmap_extents;
2141 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2142 
2143 	}
2144 	unlink_free_space(ctl, bitmap_info, true);
2145 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2146 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2147 	ctl->total_bitmaps--;
2148 	recalculate_thresholds(ctl);
2149 }
2150 
2151 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2152 			      struct btrfs_free_space *bitmap_info,
2153 			      u64 *offset, u64 *bytes)
2154 {
2155 	u64 end;
2156 	u64 search_start, search_bytes;
2157 	int ret;
2158 
2159 again:
2160 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2161 
2162 	/*
2163 	 * We need to search for bits in this bitmap.  We could only cover some
2164 	 * of the extent in this bitmap thanks to how we add space, so we need
2165 	 * to search for as much as it as we can and clear that amount, and then
2166 	 * go searching for the next bit.
2167 	 */
2168 	search_start = *offset;
2169 	search_bytes = ctl->unit;
2170 	search_bytes = min(search_bytes, end - search_start + 1);
2171 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2172 			    false);
2173 	if (ret < 0 || search_start != *offset)
2174 		return -EINVAL;
2175 
2176 	/* We may have found more bits than what we need */
2177 	search_bytes = min(search_bytes, *bytes);
2178 
2179 	/* Cannot clear past the end of the bitmap */
2180 	search_bytes = min(search_bytes, end - search_start + 1);
2181 
2182 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2183 	*offset += search_bytes;
2184 	*bytes -= search_bytes;
2185 
2186 	if (*bytes) {
2187 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2188 		if (!bitmap_info->bytes)
2189 			free_bitmap(ctl, bitmap_info);
2190 
2191 		/*
2192 		 * no entry after this bitmap, but we still have bytes to
2193 		 * remove, so something has gone wrong.
2194 		 */
2195 		if (!next)
2196 			return -EINVAL;
2197 
2198 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2199 				       offset_index);
2200 
2201 		/*
2202 		 * if the next entry isn't a bitmap we need to return to let the
2203 		 * extent stuff do its work.
2204 		 */
2205 		if (!bitmap_info->bitmap)
2206 			return -EAGAIN;
2207 
2208 		/*
2209 		 * Ok the next item is a bitmap, but it may not actually hold
2210 		 * the information for the rest of this free space stuff, so
2211 		 * look for it, and if we don't find it return so we can try
2212 		 * everything over again.
2213 		 */
2214 		search_start = *offset;
2215 		search_bytes = ctl->unit;
2216 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2217 				    &search_bytes, false);
2218 		if (ret < 0 || search_start != *offset)
2219 			return -EAGAIN;
2220 
2221 		goto again;
2222 	} else if (!bitmap_info->bytes)
2223 		free_bitmap(ctl, bitmap_info);
2224 
2225 	return 0;
2226 }
2227 
2228 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2229 			       struct btrfs_free_space *info, u64 offset,
2230 			       u64 bytes, enum btrfs_trim_state trim_state)
2231 {
2232 	u64 bytes_to_set = 0;
2233 	u64 end;
2234 
2235 	/*
2236 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2237 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2238 	 */
2239 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2240 		if (btrfs_free_space_trimmed(info)) {
2241 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2242 				info->bitmap_extents;
2243 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2244 		}
2245 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2246 	}
2247 
2248 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2249 
2250 	bytes_to_set = min(end - offset, bytes);
2251 
2252 	btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
2253 
2254 	return bytes_to_set;
2255 
2256 }
2257 
2258 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2259 		      struct btrfs_free_space *info)
2260 {
2261 	struct btrfs_block_group *block_group = ctl->block_group;
2262 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2263 	bool forced = false;
2264 
2265 #ifdef CONFIG_BTRFS_DEBUG
2266 	if (btrfs_should_fragment_free_space(block_group))
2267 		forced = true;
2268 #endif
2269 
2270 	/* This is a way to reclaim large regions from the bitmaps. */
2271 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2272 		return false;
2273 
2274 	/*
2275 	 * If we are below the extents threshold then we can add this as an
2276 	 * extent, and don't have to deal with the bitmap
2277 	 */
2278 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2279 		/*
2280 		 * If this block group has some small extents we don't want to
2281 		 * use up all of our free slots in the cache with them, we want
2282 		 * to reserve them to larger extents, however if we have plenty
2283 		 * of cache left then go ahead an dadd them, no sense in adding
2284 		 * the overhead of a bitmap if we don't have to.
2285 		 */
2286 		if (info->bytes <= fs_info->sectorsize * 8) {
2287 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2288 				return false;
2289 		} else {
2290 			return false;
2291 		}
2292 	}
2293 
2294 	/*
2295 	 * The original block groups from mkfs can be really small, like 8
2296 	 * megabytes, so don't bother with a bitmap for those entries.  However
2297 	 * some block groups can be smaller than what a bitmap would cover but
2298 	 * are still large enough that they could overflow the 32k memory limit,
2299 	 * so allow those block groups to still be allowed to have a bitmap
2300 	 * entry.
2301 	 */
2302 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2303 		return false;
2304 
2305 	return true;
2306 }
2307 
2308 static const struct btrfs_free_space_op free_space_op = {
2309 	.use_bitmap		= use_bitmap,
2310 };
2311 
2312 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2313 			      struct btrfs_free_space *info)
2314 {
2315 	struct btrfs_free_space *bitmap_info;
2316 	struct btrfs_block_group *block_group = NULL;
2317 	int added = 0;
2318 	u64 bytes, offset, bytes_added;
2319 	enum btrfs_trim_state trim_state;
2320 	int ret;
2321 
2322 	bytes = info->bytes;
2323 	offset = info->offset;
2324 	trim_state = info->trim_state;
2325 
2326 	if (!ctl->op->use_bitmap(ctl, info))
2327 		return 0;
2328 
2329 	if (ctl->op == &free_space_op)
2330 		block_group = ctl->block_group;
2331 again:
2332 	/*
2333 	 * Since we link bitmaps right into the cluster we need to see if we
2334 	 * have a cluster here, and if so and it has our bitmap we need to add
2335 	 * the free space to that bitmap.
2336 	 */
2337 	if (block_group && !list_empty(&block_group->cluster_list)) {
2338 		struct btrfs_free_cluster *cluster;
2339 		struct rb_node *node;
2340 		struct btrfs_free_space *entry;
2341 
2342 		cluster = list_entry(block_group->cluster_list.next,
2343 				     struct btrfs_free_cluster,
2344 				     block_group_list);
2345 		spin_lock(&cluster->lock);
2346 		node = rb_first(&cluster->root);
2347 		if (!node) {
2348 			spin_unlock(&cluster->lock);
2349 			goto no_cluster_bitmap;
2350 		}
2351 
2352 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2353 		if (!entry->bitmap) {
2354 			spin_unlock(&cluster->lock);
2355 			goto no_cluster_bitmap;
2356 		}
2357 
2358 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2359 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2360 							  bytes, trim_state);
2361 			bytes -= bytes_added;
2362 			offset += bytes_added;
2363 		}
2364 		spin_unlock(&cluster->lock);
2365 		if (!bytes) {
2366 			ret = 1;
2367 			goto out;
2368 		}
2369 	}
2370 
2371 no_cluster_bitmap:
2372 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2373 					 1, 0);
2374 	if (!bitmap_info) {
2375 		ASSERT(added == 0);
2376 		goto new_bitmap;
2377 	}
2378 
2379 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2380 					  trim_state);
2381 	bytes -= bytes_added;
2382 	offset += bytes_added;
2383 	added = 0;
2384 
2385 	if (!bytes) {
2386 		ret = 1;
2387 		goto out;
2388 	} else
2389 		goto again;
2390 
2391 new_bitmap:
2392 	if (info && info->bitmap) {
2393 		add_new_bitmap(ctl, info, offset);
2394 		added = 1;
2395 		info = NULL;
2396 		goto again;
2397 	} else {
2398 		spin_unlock(&ctl->tree_lock);
2399 
2400 		/* no pre-allocated info, allocate a new one */
2401 		if (!info) {
2402 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2403 						 GFP_NOFS);
2404 			if (!info) {
2405 				spin_lock(&ctl->tree_lock);
2406 				ret = -ENOMEM;
2407 				goto out;
2408 			}
2409 		}
2410 
2411 		/* allocate the bitmap */
2412 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2413 						 GFP_NOFS);
2414 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2415 		spin_lock(&ctl->tree_lock);
2416 		if (!info->bitmap) {
2417 			ret = -ENOMEM;
2418 			goto out;
2419 		}
2420 		goto again;
2421 	}
2422 
2423 out:
2424 	if (info) {
2425 		if (info->bitmap)
2426 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2427 					info->bitmap);
2428 		kmem_cache_free(btrfs_free_space_cachep, info);
2429 	}
2430 
2431 	return ret;
2432 }
2433 
2434 /*
2435  * Free space merging rules:
2436  *  1) Merge trimmed areas together
2437  *  2) Let untrimmed areas coalesce with trimmed areas
2438  *  3) Always pull neighboring regions from bitmaps
2439  *
2440  * The above rules are for when we merge free space based on btrfs_trim_state.
2441  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2442  * same reason: to promote larger extent regions which makes life easier for
2443  * find_free_extent().  Rule 2 enables coalescing based on the common path
2444  * being returning free space from btrfs_finish_extent_commit().  So when free
2445  * space is trimmed, it will prevent aggregating trimmed new region and
2446  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2447  * and provide find_free_extent() with the largest extents possible hoping for
2448  * the reuse path.
2449  */
2450 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2451 			  struct btrfs_free_space *info, bool update_stat)
2452 {
2453 	struct btrfs_free_space *left_info = NULL;
2454 	struct btrfs_free_space *right_info;
2455 	bool merged = false;
2456 	u64 offset = info->offset;
2457 	u64 bytes = info->bytes;
2458 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2459 	struct rb_node *right_prev = NULL;
2460 
2461 	/*
2462 	 * first we want to see if there is free space adjacent to the range we
2463 	 * are adding, if there is remove that struct and add a new one to
2464 	 * cover the entire range
2465 	 */
2466 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2467 	if (right_info)
2468 		right_prev = rb_prev(&right_info->offset_index);
2469 
2470 	if (right_prev)
2471 		left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2472 	else if (!right_info)
2473 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2474 
2475 	/* See try_merge_free_space() comment. */
2476 	if (right_info && !right_info->bitmap &&
2477 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2478 		unlink_free_space(ctl, right_info, update_stat);
2479 		info->bytes += right_info->bytes;
2480 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2481 		merged = true;
2482 	}
2483 
2484 	/* See try_merge_free_space() comment. */
2485 	if (left_info && !left_info->bitmap &&
2486 	    left_info->offset + left_info->bytes == offset &&
2487 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2488 		unlink_free_space(ctl, left_info, update_stat);
2489 		info->offset = left_info->offset;
2490 		info->bytes += left_info->bytes;
2491 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2492 		merged = true;
2493 	}
2494 
2495 	return merged;
2496 }
2497 
2498 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2499 				     struct btrfs_free_space *info,
2500 				     bool update_stat)
2501 {
2502 	struct btrfs_free_space *bitmap;
2503 	unsigned long i;
2504 	unsigned long j;
2505 	const u64 end = info->offset + info->bytes;
2506 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2507 	u64 bytes;
2508 
2509 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2510 	if (!bitmap)
2511 		return false;
2512 
2513 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2514 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2515 	if (j == i)
2516 		return false;
2517 	bytes = (j - i) * ctl->unit;
2518 	info->bytes += bytes;
2519 
2520 	/* See try_merge_free_space() comment. */
2521 	if (!btrfs_free_space_trimmed(bitmap))
2522 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2523 
2524 	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2525 
2526 	if (!bitmap->bytes)
2527 		free_bitmap(ctl, bitmap);
2528 
2529 	return true;
2530 }
2531 
2532 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2533 				       struct btrfs_free_space *info,
2534 				       bool update_stat)
2535 {
2536 	struct btrfs_free_space *bitmap;
2537 	u64 bitmap_offset;
2538 	unsigned long i;
2539 	unsigned long j;
2540 	unsigned long prev_j;
2541 	u64 bytes;
2542 
2543 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2544 	/* If we're on a boundary, try the previous logical bitmap. */
2545 	if (bitmap_offset == info->offset) {
2546 		if (info->offset == 0)
2547 			return false;
2548 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2549 	}
2550 
2551 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2552 	if (!bitmap)
2553 		return false;
2554 
2555 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2556 	j = 0;
2557 	prev_j = (unsigned long)-1;
2558 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2559 		if (j > i)
2560 			break;
2561 		prev_j = j;
2562 	}
2563 	if (prev_j == i)
2564 		return false;
2565 
2566 	if (prev_j == (unsigned long)-1)
2567 		bytes = (i + 1) * ctl->unit;
2568 	else
2569 		bytes = (i - prev_j) * ctl->unit;
2570 
2571 	info->offset -= bytes;
2572 	info->bytes += bytes;
2573 
2574 	/* See try_merge_free_space() comment. */
2575 	if (!btrfs_free_space_trimmed(bitmap))
2576 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2577 
2578 	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2579 
2580 	if (!bitmap->bytes)
2581 		free_bitmap(ctl, bitmap);
2582 
2583 	return true;
2584 }
2585 
2586 /*
2587  * We prefer always to allocate from extent entries, both for clustered and
2588  * non-clustered allocation requests. So when attempting to add a new extent
2589  * entry, try to see if there's adjacent free space in bitmap entries, and if
2590  * there is, migrate that space from the bitmaps to the extent.
2591  * Like this we get better chances of satisfying space allocation requests
2592  * because we attempt to satisfy them based on a single cache entry, and never
2593  * on 2 or more entries - even if the entries represent a contiguous free space
2594  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2595  * ends).
2596  */
2597 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2598 			      struct btrfs_free_space *info,
2599 			      bool update_stat)
2600 {
2601 	/*
2602 	 * Only work with disconnected entries, as we can change their offset,
2603 	 * and must be extent entries.
2604 	 */
2605 	ASSERT(!info->bitmap);
2606 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2607 
2608 	if (ctl->total_bitmaps > 0) {
2609 		bool stole_end;
2610 		bool stole_front = false;
2611 
2612 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2613 		if (ctl->total_bitmaps > 0)
2614 			stole_front = steal_from_bitmap_to_front(ctl, info,
2615 								 update_stat);
2616 
2617 		if (stole_end || stole_front)
2618 			try_merge_free_space(ctl, info, update_stat);
2619 	}
2620 }
2621 
2622 static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2623 			   u64 offset, u64 bytes,
2624 			   enum btrfs_trim_state trim_state)
2625 {
2626 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2627 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2628 	struct btrfs_free_space *info;
2629 	int ret = 0;
2630 	u64 filter_bytes = bytes;
2631 
2632 	ASSERT(!btrfs_is_zoned(fs_info));
2633 
2634 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2635 	if (!info)
2636 		return -ENOMEM;
2637 
2638 	info->offset = offset;
2639 	info->bytes = bytes;
2640 	info->trim_state = trim_state;
2641 	RB_CLEAR_NODE(&info->offset_index);
2642 	RB_CLEAR_NODE(&info->bytes_index);
2643 
2644 	spin_lock(&ctl->tree_lock);
2645 
2646 	if (try_merge_free_space(ctl, info, true))
2647 		goto link;
2648 
2649 	/*
2650 	 * There was no extent directly to the left or right of this new
2651 	 * extent then we know we're going to have to allocate a new extent, so
2652 	 * before we do that see if we need to drop this into a bitmap
2653 	 */
2654 	ret = insert_into_bitmap(ctl, info);
2655 	if (ret < 0) {
2656 		goto out;
2657 	} else if (ret) {
2658 		ret = 0;
2659 		goto out;
2660 	}
2661 link:
2662 	/*
2663 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2664 	 * going to add the new free space to existing bitmap entries - because
2665 	 * that would mean unnecessary work that would be reverted. Therefore
2666 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2667 	 */
2668 	steal_from_bitmap(ctl, info, true);
2669 
2670 	filter_bytes = max(filter_bytes, info->bytes);
2671 
2672 	ret = link_free_space(ctl, info);
2673 	if (ret)
2674 		kmem_cache_free(btrfs_free_space_cachep, info);
2675 out:
2676 	btrfs_discard_update_discardable(block_group);
2677 	spin_unlock(&ctl->tree_lock);
2678 
2679 	if (ret) {
2680 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2681 		ASSERT(ret != -EEXIST);
2682 	}
2683 
2684 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2685 		btrfs_discard_check_filter(block_group, filter_bytes);
2686 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2687 	}
2688 
2689 	return ret;
2690 }
2691 
2692 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2693 					u64 bytenr, u64 size, bool used)
2694 {
2695 	struct btrfs_space_info *sinfo = block_group->space_info;
2696 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2697 	u64 offset = bytenr - block_group->start;
2698 	u64 to_free, to_unusable;
2699 	int bg_reclaim_threshold = 0;
2700 	bool initial = (size == block_group->length);
2701 	u64 reclaimable_unusable;
2702 
2703 	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2704 
2705 	if (!initial)
2706 		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2707 
2708 	spin_lock(&ctl->tree_lock);
2709 	if (!used)
2710 		to_free = size;
2711 	else if (initial)
2712 		to_free = block_group->zone_capacity;
2713 	else if (offset >= block_group->alloc_offset)
2714 		to_free = size;
2715 	else if (offset + size <= block_group->alloc_offset)
2716 		to_free = 0;
2717 	else
2718 		to_free = offset + size - block_group->alloc_offset;
2719 	to_unusable = size - to_free;
2720 
2721 	ctl->free_space += to_free;
2722 	/*
2723 	 * If the block group is read-only, we should account freed space into
2724 	 * bytes_readonly.
2725 	 */
2726 	if (!block_group->ro)
2727 		block_group->zone_unusable += to_unusable;
2728 	spin_unlock(&ctl->tree_lock);
2729 	if (!used) {
2730 		spin_lock(&block_group->lock);
2731 		block_group->alloc_offset -= size;
2732 		spin_unlock(&block_group->lock);
2733 	}
2734 
2735 	reclaimable_unusable = block_group->zone_unusable -
2736 			       (block_group->length - block_group->zone_capacity);
2737 	/* All the region is now unusable. Mark it as unused and reclaim */
2738 	if (block_group->zone_unusable == block_group->length) {
2739 		btrfs_mark_bg_unused(block_group);
2740 	} else if (bg_reclaim_threshold &&
2741 		   reclaimable_unusable >=
2742 		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2743 		btrfs_mark_bg_to_reclaim(block_group);
2744 	}
2745 
2746 	return 0;
2747 }
2748 
2749 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2750 			 u64 bytenr, u64 size)
2751 {
2752 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2753 
2754 	if (btrfs_is_zoned(block_group->fs_info))
2755 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2756 						    true);
2757 
2758 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2759 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2760 
2761 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2762 }
2763 
2764 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2765 				u64 bytenr, u64 size)
2766 {
2767 	if (btrfs_is_zoned(block_group->fs_info))
2768 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2769 						    false);
2770 
2771 	return btrfs_add_free_space(block_group, bytenr, size);
2772 }
2773 
2774 /*
2775  * This is a subtle distinction because when adding free space back in general,
2776  * we want it to be added as untrimmed for async. But in the case where we add
2777  * it on loading of a block group, we want to consider it trimmed.
2778  */
2779 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2780 				       u64 bytenr, u64 size)
2781 {
2782 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2783 
2784 	if (btrfs_is_zoned(block_group->fs_info))
2785 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2786 						    true);
2787 
2788 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2789 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2790 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2791 
2792 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2793 }
2794 
2795 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2796 			    u64 offset, u64 bytes)
2797 {
2798 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2799 	struct btrfs_free_space *info;
2800 	int ret;
2801 	bool re_search = false;
2802 
2803 	if (btrfs_is_zoned(block_group->fs_info)) {
2804 		/*
2805 		 * This can happen with conventional zones when replaying log.
2806 		 * Since the allocation info of tree-log nodes are not recorded
2807 		 * to the extent-tree, calculate_alloc_pointer() failed to
2808 		 * advance the allocation pointer after last allocated tree log
2809 		 * node blocks.
2810 		 *
2811 		 * This function is called from
2812 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2813 		 * Advance the pointer not to overwrite the tree-log nodes.
2814 		 */
2815 		if (block_group->start + block_group->alloc_offset <
2816 		    offset + bytes) {
2817 			block_group->alloc_offset =
2818 				offset + bytes - block_group->start;
2819 		}
2820 		return 0;
2821 	}
2822 
2823 	spin_lock(&ctl->tree_lock);
2824 
2825 again:
2826 	ret = 0;
2827 	if (!bytes)
2828 		goto out_lock;
2829 
2830 	info = tree_search_offset(ctl, offset, 0, 0);
2831 	if (!info) {
2832 		/*
2833 		 * oops didn't find an extent that matched the space we wanted
2834 		 * to remove, look for a bitmap instead
2835 		 */
2836 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2837 					  1, 0);
2838 		if (!info) {
2839 			/*
2840 			 * If we found a partial bit of our free space in a
2841 			 * bitmap but then couldn't find the other part this may
2842 			 * be a problem, so WARN about it.
2843 			 */
2844 			WARN_ON(re_search);
2845 			goto out_lock;
2846 		}
2847 	}
2848 
2849 	re_search = false;
2850 	if (!info->bitmap) {
2851 		unlink_free_space(ctl, info, true);
2852 		if (offset == info->offset) {
2853 			u64 to_free = min(bytes, info->bytes);
2854 
2855 			info->bytes -= to_free;
2856 			info->offset += to_free;
2857 			if (info->bytes) {
2858 				ret = link_free_space(ctl, info);
2859 				WARN_ON(ret);
2860 			} else {
2861 				kmem_cache_free(btrfs_free_space_cachep, info);
2862 			}
2863 
2864 			offset += to_free;
2865 			bytes -= to_free;
2866 			goto again;
2867 		} else {
2868 			u64 old_end = info->bytes + info->offset;
2869 
2870 			info->bytes = offset - info->offset;
2871 			ret = link_free_space(ctl, info);
2872 			WARN_ON(ret);
2873 			if (ret)
2874 				goto out_lock;
2875 
2876 			/* Not enough bytes in this entry to satisfy us */
2877 			if (old_end < offset + bytes) {
2878 				bytes -= old_end - offset;
2879 				offset = old_end;
2880 				goto again;
2881 			} else if (old_end == offset + bytes) {
2882 				/* all done */
2883 				goto out_lock;
2884 			}
2885 			spin_unlock(&ctl->tree_lock);
2886 
2887 			ret = __btrfs_add_free_space(block_group,
2888 						     offset + bytes,
2889 						     old_end - (offset + bytes),
2890 						     info->trim_state);
2891 			WARN_ON(ret);
2892 			goto out;
2893 		}
2894 	}
2895 
2896 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2897 	if (ret == -EAGAIN) {
2898 		re_search = true;
2899 		goto again;
2900 	}
2901 out_lock:
2902 	btrfs_discard_update_discardable(block_group);
2903 	spin_unlock(&ctl->tree_lock);
2904 out:
2905 	return ret;
2906 }
2907 
2908 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2909 			   u64 bytes)
2910 {
2911 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2912 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2913 	struct btrfs_free_space *info;
2914 	struct rb_node *n;
2915 	int count = 0;
2916 
2917 	/*
2918 	 * Zoned btrfs does not use free space tree and cluster. Just print
2919 	 * out the free space after the allocation offset.
2920 	 */
2921 	if (btrfs_is_zoned(fs_info)) {
2922 		btrfs_info(fs_info, "free space %llu active %d",
2923 			   block_group->zone_capacity - block_group->alloc_offset,
2924 			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2925 				    &block_group->runtime_flags));
2926 		return;
2927 	}
2928 
2929 	spin_lock(&ctl->tree_lock);
2930 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2931 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2932 		if (info->bytes >= bytes && !block_group->ro)
2933 			count++;
2934 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2935 			   info->offset, info->bytes,
2936 		       (info->bitmap) ? "yes" : "no");
2937 	}
2938 	spin_unlock(&ctl->tree_lock);
2939 	btrfs_info(fs_info, "block group has cluster?: %s",
2940 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2941 	btrfs_info(fs_info,
2942 		   "%d free space entries at or bigger than %llu bytes",
2943 		   count, bytes);
2944 }
2945 
2946 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2947 			       struct btrfs_free_space_ctl *ctl)
2948 {
2949 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2950 
2951 	spin_lock_init(&ctl->tree_lock);
2952 	ctl->unit = fs_info->sectorsize;
2953 	ctl->start = block_group->start;
2954 	ctl->block_group = block_group;
2955 	ctl->op = &free_space_op;
2956 	ctl->free_space_bytes = RB_ROOT_CACHED;
2957 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2958 	mutex_init(&ctl->cache_writeout_mutex);
2959 
2960 	/*
2961 	 * we only want to have 32k of ram per block group for keeping
2962 	 * track of free space, and if we pass 1/2 of that we want to
2963 	 * start converting things over to using bitmaps
2964 	 */
2965 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2966 }
2967 
2968 /*
2969  * for a given cluster, put all of its extents back into the free
2970  * space cache.  If the block group passed doesn't match the block group
2971  * pointed to by the cluster, someone else raced in and freed the
2972  * cluster already.  In that case, we just return without changing anything
2973  */
2974 static void __btrfs_return_cluster_to_free_space(
2975 			     struct btrfs_block_group *block_group,
2976 			     struct btrfs_free_cluster *cluster)
2977 {
2978 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2979 	struct rb_node *node;
2980 
2981 	lockdep_assert_held(&ctl->tree_lock);
2982 
2983 	spin_lock(&cluster->lock);
2984 	if (cluster->block_group != block_group) {
2985 		spin_unlock(&cluster->lock);
2986 		return;
2987 	}
2988 
2989 	cluster->block_group = NULL;
2990 	cluster->window_start = 0;
2991 	list_del_init(&cluster->block_group_list);
2992 
2993 	node = rb_first(&cluster->root);
2994 	while (node) {
2995 		struct btrfs_free_space *entry;
2996 
2997 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2998 		node = rb_next(&entry->offset_index);
2999 		rb_erase(&entry->offset_index, &cluster->root);
3000 		RB_CLEAR_NODE(&entry->offset_index);
3001 
3002 		if (!entry->bitmap) {
3003 			/* Merging treats extents as if they were new */
3004 			if (!btrfs_free_space_trimmed(entry)) {
3005 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
3006 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3007 					entry->bytes;
3008 			}
3009 
3010 			try_merge_free_space(ctl, entry, false);
3011 			steal_from_bitmap(ctl, entry, false);
3012 
3013 			/* As we insert directly, update these statistics */
3014 			if (!btrfs_free_space_trimmed(entry)) {
3015 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3016 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3017 					entry->bytes;
3018 			}
3019 		}
3020 		tree_insert_offset(ctl, NULL, entry);
3021 		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3022 			      entry_less);
3023 	}
3024 	cluster->root = RB_ROOT;
3025 	spin_unlock(&cluster->lock);
3026 	btrfs_put_block_group(block_group);
3027 }
3028 
3029 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3030 {
3031 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3032 	struct btrfs_free_cluster *cluster;
3033 	struct list_head *head;
3034 
3035 	spin_lock(&ctl->tree_lock);
3036 	while ((head = block_group->cluster_list.next) !=
3037 	       &block_group->cluster_list) {
3038 		cluster = list_entry(head, struct btrfs_free_cluster,
3039 				     block_group_list);
3040 
3041 		WARN_ON(cluster->block_group != block_group);
3042 		__btrfs_return_cluster_to_free_space(block_group, cluster);
3043 
3044 		cond_resched_lock(&ctl->tree_lock);
3045 	}
3046 	__btrfs_remove_free_space_cache(ctl);
3047 	btrfs_discard_update_discardable(block_group);
3048 	spin_unlock(&ctl->tree_lock);
3049 
3050 }
3051 
3052 /*
3053  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3054  */
3055 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3056 {
3057 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3058 	struct btrfs_free_space *info;
3059 	struct rb_node *node;
3060 	bool ret = true;
3061 
3062 	spin_lock(&ctl->tree_lock);
3063 	node = rb_first(&ctl->free_space_offset);
3064 
3065 	while (node) {
3066 		info = rb_entry(node, struct btrfs_free_space, offset_index);
3067 
3068 		if (!btrfs_free_space_trimmed(info)) {
3069 			ret = false;
3070 			break;
3071 		}
3072 
3073 		node = rb_next(node);
3074 	}
3075 
3076 	spin_unlock(&ctl->tree_lock);
3077 	return ret;
3078 }
3079 
3080 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3081 			       u64 offset, u64 bytes, u64 empty_size,
3082 			       u64 *max_extent_size)
3083 {
3084 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3085 	struct btrfs_discard_ctl *discard_ctl =
3086 					&block_group->fs_info->discard_ctl;
3087 	struct btrfs_free_space *entry = NULL;
3088 	u64 bytes_search = bytes + empty_size;
3089 	u64 ret = 0;
3090 	u64 align_gap = 0;
3091 	u64 align_gap_len = 0;
3092 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3093 	bool use_bytes_index = (offset == block_group->start);
3094 
3095 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3096 
3097 	spin_lock(&ctl->tree_lock);
3098 	entry = find_free_space(ctl, &offset, &bytes_search,
3099 				block_group->full_stripe_len, max_extent_size,
3100 				use_bytes_index);
3101 	if (!entry)
3102 		goto out;
3103 
3104 	ret = offset;
3105 	if (entry->bitmap) {
3106 		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3107 
3108 		if (!btrfs_free_space_trimmed(entry))
3109 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3110 
3111 		if (!entry->bytes)
3112 			free_bitmap(ctl, entry);
3113 	} else {
3114 		unlink_free_space(ctl, entry, true);
3115 		align_gap_len = offset - entry->offset;
3116 		align_gap = entry->offset;
3117 		align_gap_trim_state = entry->trim_state;
3118 
3119 		if (!btrfs_free_space_trimmed(entry))
3120 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3121 
3122 		entry->offset = offset + bytes;
3123 		WARN_ON(entry->bytes < bytes + align_gap_len);
3124 
3125 		entry->bytes -= bytes + align_gap_len;
3126 		if (!entry->bytes)
3127 			kmem_cache_free(btrfs_free_space_cachep, entry);
3128 		else
3129 			link_free_space(ctl, entry);
3130 	}
3131 out:
3132 	btrfs_discard_update_discardable(block_group);
3133 	spin_unlock(&ctl->tree_lock);
3134 
3135 	if (align_gap_len)
3136 		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3137 				       align_gap_trim_state);
3138 	return ret;
3139 }
3140 
3141 /*
3142  * given a cluster, put all of its extents back into the free space
3143  * cache.  If a block group is passed, this function will only free
3144  * a cluster that belongs to the passed block group.
3145  *
3146  * Otherwise, it'll get a reference on the block group pointed to by the
3147  * cluster and remove the cluster from it.
3148  */
3149 void btrfs_return_cluster_to_free_space(
3150 			       struct btrfs_block_group *block_group,
3151 			       struct btrfs_free_cluster *cluster)
3152 {
3153 	struct btrfs_free_space_ctl *ctl;
3154 
3155 	/* first, get a safe pointer to the block group */
3156 	spin_lock(&cluster->lock);
3157 	if (!block_group) {
3158 		block_group = cluster->block_group;
3159 		if (!block_group) {
3160 			spin_unlock(&cluster->lock);
3161 			return;
3162 		}
3163 	} else if (cluster->block_group != block_group) {
3164 		/* someone else has already freed it don't redo their work */
3165 		spin_unlock(&cluster->lock);
3166 		return;
3167 	}
3168 	btrfs_get_block_group(block_group);
3169 	spin_unlock(&cluster->lock);
3170 
3171 	ctl = block_group->free_space_ctl;
3172 
3173 	/* now return any extents the cluster had on it */
3174 	spin_lock(&ctl->tree_lock);
3175 	__btrfs_return_cluster_to_free_space(block_group, cluster);
3176 	spin_unlock(&ctl->tree_lock);
3177 
3178 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3179 
3180 	/* finally drop our ref */
3181 	btrfs_put_block_group(block_group);
3182 }
3183 
3184 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3185 				   struct btrfs_free_cluster *cluster,
3186 				   struct btrfs_free_space *entry,
3187 				   u64 bytes, u64 min_start,
3188 				   u64 *max_extent_size)
3189 {
3190 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3191 	int err;
3192 	u64 search_start = cluster->window_start;
3193 	u64 search_bytes = bytes;
3194 	u64 ret = 0;
3195 
3196 	search_start = min_start;
3197 	search_bytes = bytes;
3198 
3199 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3200 	if (err) {
3201 		*max_extent_size = max(get_max_extent_size(entry),
3202 				       *max_extent_size);
3203 		return 0;
3204 	}
3205 
3206 	ret = search_start;
3207 	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3208 
3209 	return ret;
3210 }
3211 
3212 /*
3213  * given a cluster, try to allocate 'bytes' from it, returns 0
3214  * if it couldn't find anything suitably large, or a logical disk offset
3215  * if things worked out
3216  */
3217 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3218 			     struct btrfs_free_cluster *cluster, u64 bytes,
3219 			     u64 min_start, u64 *max_extent_size)
3220 {
3221 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3222 	struct btrfs_discard_ctl *discard_ctl =
3223 					&block_group->fs_info->discard_ctl;
3224 	struct btrfs_free_space *entry = NULL;
3225 	struct rb_node *node;
3226 	u64 ret = 0;
3227 
3228 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3229 
3230 	spin_lock(&cluster->lock);
3231 	if (bytes > cluster->max_size)
3232 		goto out;
3233 
3234 	if (cluster->block_group != block_group)
3235 		goto out;
3236 
3237 	node = rb_first(&cluster->root);
3238 	if (!node)
3239 		goto out;
3240 
3241 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3242 	while (1) {
3243 		if (entry->bytes < bytes)
3244 			*max_extent_size = max(get_max_extent_size(entry),
3245 					       *max_extent_size);
3246 
3247 		if (entry->bytes < bytes ||
3248 		    (!entry->bitmap && entry->offset < min_start)) {
3249 			node = rb_next(&entry->offset_index);
3250 			if (!node)
3251 				break;
3252 			entry = rb_entry(node, struct btrfs_free_space,
3253 					 offset_index);
3254 			continue;
3255 		}
3256 
3257 		if (entry->bitmap) {
3258 			ret = btrfs_alloc_from_bitmap(block_group,
3259 						      cluster, entry, bytes,
3260 						      cluster->window_start,
3261 						      max_extent_size);
3262 			if (ret == 0) {
3263 				node = rb_next(&entry->offset_index);
3264 				if (!node)
3265 					break;
3266 				entry = rb_entry(node, struct btrfs_free_space,
3267 						 offset_index);
3268 				continue;
3269 			}
3270 			cluster->window_start += bytes;
3271 		} else {
3272 			ret = entry->offset;
3273 
3274 			entry->offset += bytes;
3275 			entry->bytes -= bytes;
3276 		}
3277 
3278 		break;
3279 	}
3280 out:
3281 	spin_unlock(&cluster->lock);
3282 
3283 	if (!ret)
3284 		return 0;
3285 
3286 	spin_lock(&ctl->tree_lock);
3287 
3288 	if (!btrfs_free_space_trimmed(entry))
3289 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3290 
3291 	ctl->free_space -= bytes;
3292 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3293 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3294 
3295 	spin_lock(&cluster->lock);
3296 	if (entry->bytes == 0) {
3297 		rb_erase(&entry->offset_index, &cluster->root);
3298 		ctl->free_extents--;
3299 		if (entry->bitmap) {
3300 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3301 					entry->bitmap);
3302 			ctl->total_bitmaps--;
3303 			recalculate_thresholds(ctl);
3304 		} else if (!btrfs_free_space_trimmed(entry)) {
3305 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3306 		}
3307 		kmem_cache_free(btrfs_free_space_cachep, entry);
3308 	}
3309 
3310 	spin_unlock(&cluster->lock);
3311 	spin_unlock(&ctl->tree_lock);
3312 
3313 	return ret;
3314 }
3315 
3316 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3317 				struct btrfs_free_space *entry,
3318 				struct btrfs_free_cluster *cluster,
3319 				u64 offset, u64 bytes,
3320 				u64 cont1_bytes, u64 min_bytes)
3321 {
3322 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3323 	unsigned long next_zero;
3324 	unsigned long i;
3325 	unsigned long want_bits;
3326 	unsigned long min_bits;
3327 	unsigned long found_bits;
3328 	unsigned long max_bits = 0;
3329 	unsigned long start = 0;
3330 	unsigned long total_found = 0;
3331 	int ret;
3332 
3333 	lockdep_assert_held(&ctl->tree_lock);
3334 
3335 	i = offset_to_bit(entry->offset, ctl->unit,
3336 			  max_t(u64, offset, entry->offset));
3337 	want_bits = bytes_to_bits(bytes, ctl->unit);
3338 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3339 
3340 	/*
3341 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3342 	 * fragmented.
3343 	 */
3344 	if (entry->max_extent_size &&
3345 	    entry->max_extent_size < cont1_bytes)
3346 		return -ENOSPC;
3347 again:
3348 	found_bits = 0;
3349 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3350 		next_zero = find_next_zero_bit(entry->bitmap,
3351 					       BITS_PER_BITMAP, i);
3352 		if (next_zero - i >= min_bits) {
3353 			found_bits = next_zero - i;
3354 			if (found_bits > max_bits)
3355 				max_bits = found_bits;
3356 			break;
3357 		}
3358 		if (next_zero - i > max_bits)
3359 			max_bits = next_zero - i;
3360 		i = next_zero;
3361 	}
3362 
3363 	if (!found_bits) {
3364 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3365 		return -ENOSPC;
3366 	}
3367 
3368 	if (!total_found) {
3369 		start = i;
3370 		cluster->max_size = 0;
3371 	}
3372 
3373 	total_found += found_bits;
3374 
3375 	if (cluster->max_size < found_bits * ctl->unit)
3376 		cluster->max_size = found_bits * ctl->unit;
3377 
3378 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3379 		i = next_zero + 1;
3380 		goto again;
3381 	}
3382 
3383 	cluster->window_start = start * ctl->unit + entry->offset;
3384 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3385 	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3386 
3387 	/*
3388 	 * We need to know if we're currently on the normal space index when we
3389 	 * manipulate the bitmap so that we know we need to remove and re-insert
3390 	 * it into the space_index tree.  Clear the bytes_index node here so the
3391 	 * bitmap manipulation helpers know not to mess with the space_index
3392 	 * until this bitmap entry is added back into the normal cache.
3393 	 */
3394 	RB_CLEAR_NODE(&entry->bytes_index);
3395 
3396 	ret = tree_insert_offset(ctl, cluster, entry);
3397 	ASSERT(!ret); /* -EEXIST; Logic error */
3398 
3399 	trace_btrfs_setup_cluster(block_group, cluster,
3400 				  total_found * ctl->unit, 1);
3401 	return 0;
3402 }
3403 
3404 /*
3405  * This searches the block group for just extents to fill the cluster with.
3406  * Try to find a cluster with at least bytes total bytes, at least one
3407  * extent of cont1_bytes, and other clusters of at least min_bytes.
3408  */
3409 static noinline int
3410 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3411 			struct btrfs_free_cluster *cluster,
3412 			struct list_head *bitmaps, u64 offset, u64 bytes,
3413 			u64 cont1_bytes, u64 min_bytes)
3414 {
3415 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3416 	struct btrfs_free_space *first = NULL;
3417 	struct btrfs_free_space *entry = NULL;
3418 	struct btrfs_free_space *last;
3419 	struct rb_node *node;
3420 	u64 window_free;
3421 	u64 max_extent;
3422 	u64 total_size = 0;
3423 
3424 	lockdep_assert_held(&ctl->tree_lock);
3425 
3426 	entry = tree_search_offset(ctl, offset, 0, 1);
3427 	if (!entry)
3428 		return -ENOSPC;
3429 
3430 	/*
3431 	 * We don't want bitmaps, so just move along until we find a normal
3432 	 * extent entry.
3433 	 */
3434 	while (entry->bitmap || entry->bytes < min_bytes) {
3435 		if (entry->bitmap && list_empty(&entry->list))
3436 			list_add_tail(&entry->list, bitmaps);
3437 		node = rb_next(&entry->offset_index);
3438 		if (!node)
3439 			return -ENOSPC;
3440 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3441 	}
3442 
3443 	window_free = entry->bytes;
3444 	max_extent = entry->bytes;
3445 	first = entry;
3446 	last = entry;
3447 
3448 	for (node = rb_next(&entry->offset_index); node;
3449 	     node = rb_next(&entry->offset_index)) {
3450 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3451 
3452 		if (entry->bitmap) {
3453 			if (list_empty(&entry->list))
3454 				list_add_tail(&entry->list, bitmaps);
3455 			continue;
3456 		}
3457 
3458 		if (entry->bytes < min_bytes)
3459 			continue;
3460 
3461 		last = entry;
3462 		window_free += entry->bytes;
3463 		if (entry->bytes > max_extent)
3464 			max_extent = entry->bytes;
3465 	}
3466 
3467 	if (window_free < bytes || max_extent < cont1_bytes)
3468 		return -ENOSPC;
3469 
3470 	cluster->window_start = first->offset;
3471 
3472 	node = &first->offset_index;
3473 
3474 	/*
3475 	 * now we've found our entries, pull them out of the free space
3476 	 * cache and put them into the cluster rbtree
3477 	 */
3478 	do {
3479 		int ret;
3480 
3481 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3482 		node = rb_next(&entry->offset_index);
3483 		if (entry->bitmap || entry->bytes < min_bytes)
3484 			continue;
3485 
3486 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3487 		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3488 		ret = tree_insert_offset(ctl, cluster, entry);
3489 		total_size += entry->bytes;
3490 		ASSERT(!ret); /* -EEXIST; Logic error */
3491 	} while (node && entry != last);
3492 
3493 	cluster->max_size = max_extent;
3494 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3495 	return 0;
3496 }
3497 
3498 /*
3499  * This specifically looks for bitmaps that may work in the cluster, we assume
3500  * that we have already failed to find extents that will work.
3501  */
3502 static noinline int
3503 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3504 		     struct btrfs_free_cluster *cluster,
3505 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3506 		     u64 cont1_bytes, u64 min_bytes)
3507 {
3508 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3509 	struct btrfs_free_space *entry = NULL;
3510 	int ret = -ENOSPC;
3511 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3512 
3513 	if (ctl->total_bitmaps == 0)
3514 		return -ENOSPC;
3515 
3516 	/*
3517 	 * The bitmap that covers offset won't be in the list unless offset
3518 	 * is just its start offset.
3519 	 */
3520 	if (!list_empty(bitmaps))
3521 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3522 
3523 	if (!entry || entry->offset != bitmap_offset) {
3524 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3525 		if (entry && list_empty(&entry->list))
3526 			list_add(&entry->list, bitmaps);
3527 	}
3528 
3529 	list_for_each_entry(entry, bitmaps, list) {
3530 		if (entry->bytes < bytes)
3531 			continue;
3532 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3533 					   bytes, cont1_bytes, min_bytes);
3534 		if (!ret)
3535 			return 0;
3536 	}
3537 
3538 	/*
3539 	 * The bitmaps list has all the bitmaps that record free space
3540 	 * starting after offset, so no more search is required.
3541 	 */
3542 	return -ENOSPC;
3543 }
3544 
3545 /*
3546  * here we try to find a cluster of blocks in a block group.  The goal
3547  * is to find at least bytes+empty_size.
3548  * We might not find them all in one contiguous area.
3549  *
3550  * returns zero and sets up cluster if things worked out, otherwise
3551  * it returns -enospc
3552  */
3553 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3554 			     struct btrfs_free_cluster *cluster,
3555 			     u64 offset, u64 bytes, u64 empty_size)
3556 {
3557 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3558 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3559 	struct btrfs_free_space *entry, *tmp;
3560 	LIST_HEAD(bitmaps);
3561 	u64 min_bytes;
3562 	u64 cont1_bytes;
3563 	int ret;
3564 
3565 	/*
3566 	 * Choose the minimum extent size we'll require for this
3567 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3568 	 * For metadata, allow allocates with smaller extents.  For
3569 	 * data, keep it dense.
3570 	 */
3571 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3572 		cont1_bytes = bytes + empty_size;
3573 		min_bytes = cont1_bytes;
3574 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3575 		cont1_bytes = bytes;
3576 		min_bytes = fs_info->sectorsize;
3577 	} else {
3578 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3579 		min_bytes = fs_info->sectorsize;
3580 	}
3581 
3582 	spin_lock(&ctl->tree_lock);
3583 
3584 	/*
3585 	 * If we know we don't have enough space to make a cluster don't even
3586 	 * bother doing all the work to try and find one.
3587 	 */
3588 	if (ctl->free_space < bytes) {
3589 		spin_unlock(&ctl->tree_lock);
3590 		return -ENOSPC;
3591 	}
3592 
3593 	spin_lock(&cluster->lock);
3594 
3595 	/* someone already found a cluster, hooray */
3596 	if (cluster->block_group) {
3597 		ret = 0;
3598 		goto out;
3599 	}
3600 
3601 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3602 				 min_bytes);
3603 
3604 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3605 				      bytes + empty_size,
3606 				      cont1_bytes, min_bytes);
3607 	if (ret)
3608 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3609 					   offset, bytes + empty_size,
3610 					   cont1_bytes, min_bytes);
3611 
3612 	/* Clear our temporary list */
3613 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3614 		list_del_init(&entry->list);
3615 
3616 	if (!ret) {
3617 		btrfs_get_block_group(block_group);
3618 		list_add_tail(&cluster->block_group_list,
3619 			      &block_group->cluster_list);
3620 		cluster->block_group = block_group;
3621 	} else {
3622 		trace_btrfs_failed_cluster_setup(block_group);
3623 	}
3624 out:
3625 	spin_unlock(&cluster->lock);
3626 	spin_unlock(&ctl->tree_lock);
3627 
3628 	return ret;
3629 }
3630 
3631 /*
3632  * simple code to zero out a cluster
3633  */
3634 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3635 {
3636 	spin_lock_init(&cluster->lock);
3637 	spin_lock_init(&cluster->refill_lock);
3638 	cluster->root = RB_ROOT;
3639 	cluster->max_size = 0;
3640 	cluster->fragmented = false;
3641 	INIT_LIST_HEAD(&cluster->block_group_list);
3642 	cluster->block_group = NULL;
3643 }
3644 
3645 static int do_trimming(struct btrfs_block_group *block_group,
3646 		       u64 *total_trimmed, u64 start, u64 bytes,
3647 		       u64 reserved_start, u64 reserved_bytes,
3648 		       enum btrfs_trim_state reserved_trim_state,
3649 		       struct btrfs_trim_range *trim_entry)
3650 {
3651 	struct btrfs_space_info *space_info = block_group->space_info;
3652 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3653 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3654 	int ret;
3655 	int update = 0;
3656 	const u64 end = start + bytes;
3657 	const u64 reserved_end = reserved_start + reserved_bytes;
3658 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3659 	u64 trimmed = 0;
3660 
3661 	spin_lock(&space_info->lock);
3662 	spin_lock(&block_group->lock);
3663 	if (!block_group->ro) {
3664 		block_group->reserved += reserved_bytes;
3665 		space_info->bytes_reserved += reserved_bytes;
3666 		update = 1;
3667 	}
3668 	spin_unlock(&block_group->lock);
3669 	spin_unlock(&space_info->lock);
3670 
3671 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3672 	if (!ret) {
3673 		*total_trimmed += trimmed;
3674 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3675 	}
3676 
3677 	mutex_lock(&ctl->cache_writeout_mutex);
3678 	if (reserved_start < start)
3679 		__btrfs_add_free_space(block_group, reserved_start,
3680 				       start - reserved_start,
3681 				       reserved_trim_state);
3682 	if (end < reserved_end)
3683 		__btrfs_add_free_space(block_group, end, reserved_end - end,
3684 				       reserved_trim_state);
3685 	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3686 	list_del(&trim_entry->list);
3687 	mutex_unlock(&ctl->cache_writeout_mutex);
3688 
3689 	if (update) {
3690 		spin_lock(&space_info->lock);
3691 		spin_lock(&block_group->lock);
3692 		if (block_group->ro)
3693 			space_info->bytes_readonly += reserved_bytes;
3694 		block_group->reserved -= reserved_bytes;
3695 		space_info->bytes_reserved -= reserved_bytes;
3696 		spin_unlock(&block_group->lock);
3697 		spin_unlock(&space_info->lock);
3698 	}
3699 
3700 	return ret;
3701 }
3702 
3703 /*
3704  * If @async is set, then we will trim 1 region and return.
3705  */
3706 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3707 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3708 			  bool async)
3709 {
3710 	struct btrfs_discard_ctl *discard_ctl =
3711 					&block_group->fs_info->discard_ctl;
3712 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3713 	struct btrfs_free_space *entry;
3714 	struct rb_node *node;
3715 	int ret = 0;
3716 	u64 extent_start;
3717 	u64 extent_bytes;
3718 	enum btrfs_trim_state extent_trim_state;
3719 	u64 bytes;
3720 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3721 
3722 	while (start < end) {
3723 		struct btrfs_trim_range trim_entry;
3724 
3725 		mutex_lock(&ctl->cache_writeout_mutex);
3726 		spin_lock(&ctl->tree_lock);
3727 
3728 		if (ctl->free_space < minlen)
3729 			goto out_unlock;
3730 
3731 		entry = tree_search_offset(ctl, start, 0, 1);
3732 		if (!entry)
3733 			goto out_unlock;
3734 
3735 		/* Skip bitmaps and if async, already trimmed entries */
3736 		while (entry->bitmap ||
3737 		       (async && btrfs_free_space_trimmed(entry))) {
3738 			node = rb_next(&entry->offset_index);
3739 			if (!node)
3740 				goto out_unlock;
3741 			entry = rb_entry(node, struct btrfs_free_space,
3742 					 offset_index);
3743 		}
3744 
3745 		if (entry->offset >= end)
3746 			goto out_unlock;
3747 
3748 		extent_start = entry->offset;
3749 		extent_bytes = entry->bytes;
3750 		extent_trim_state = entry->trim_state;
3751 		if (async) {
3752 			start = entry->offset;
3753 			bytes = entry->bytes;
3754 			if (bytes < minlen) {
3755 				spin_unlock(&ctl->tree_lock);
3756 				mutex_unlock(&ctl->cache_writeout_mutex);
3757 				goto next;
3758 			}
3759 			unlink_free_space(ctl, entry, true);
3760 			/*
3761 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3762 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3763 			 * X when we come back around.  So trim it now.
3764 			 */
3765 			if (max_discard_size &&
3766 			    bytes >= (max_discard_size +
3767 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3768 				bytes = max_discard_size;
3769 				extent_bytes = max_discard_size;
3770 				entry->offset += max_discard_size;
3771 				entry->bytes -= max_discard_size;
3772 				link_free_space(ctl, entry);
3773 			} else {
3774 				kmem_cache_free(btrfs_free_space_cachep, entry);
3775 			}
3776 		} else {
3777 			start = max(start, extent_start);
3778 			bytes = min(extent_start + extent_bytes, end) - start;
3779 			if (bytes < minlen) {
3780 				spin_unlock(&ctl->tree_lock);
3781 				mutex_unlock(&ctl->cache_writeout_mutex);
3782 				goto next;
3783 			}
3784 
3785 			unlink_free_space(ctl, entry, true);
3786 			kmem_cache_free(btrfs_free_space_cachep, entry);
3787 		}
3788 
3789 		spin_unlock(&ctl->tree_lock);
3790 		trim_entry.start = extent_start;
3791 		trim_entry.bytes = extent_bytes;
3792 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3793 		mutex_unlock(&ctl->cache_writeout_mutex);
3794 
3795 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3796 				  extent_start, extent_bytes, extent_trim_state,
3797 				  &trim_entry);
3798 		if (ret) {
3799 			block_group->discard_cursor = start + bytes;
3800 			break;
3801 		}
3802 next:
3803 		start += bytes;
3804 		block_group->discard_cursor = start;
3805 		if (async && *total_trimmed)
3806 			break;
3807 
3808 		if (fatal_signal_pending(current)) {
3809 			ret = -ERESTARTSYS;
3810 			break;
3811 		}
3812 
3813 		cond_resched();
3814 	}
3815 
3816 	return ret;
3817 
3818 out_unlock:
3819 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3820 	spin_unlock(&ctl->tree_lock);
3821 	mutex_unlock(&ctl->cache_writeout_mutex);
3822 
3823 	return ret;
3824 }
3825 
3826 /*
3827  * If we break out of trimming a bitmap prematurely, we should reset the
3828  * trimming bit.  In a rather contrieved case, it's possible to race here so
3829  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3830  *
3831  * start = start of bitmap
3832  * end = near end of bitmap
3833  *
3834  * Thread 1:			Thread 2:
3835  * trim_bitmaps(start)
3836  *				trim_bitmaps(end)
3837  *				end_trimming_bitmap()
3838  * reset_trimming_bitmap()
3839  */
3840 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3841 {
3842 	struct btrfs_free_space *entry;
3843 
3844 	spin_lock(&ctl->tree_lock);
3845 	entry = tree_search_offset(ctl, offset, 1, 0);
3846 	if (entry) {
3847 		if (btrfs_free_space_trimmed(entry)) {
3848 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3849 				entry->bitmap_extents;
3850 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3851 		}
3852 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3853 	}
3854 
3855 	spin_unlock(&ctl->tree_lock);
3856 }
3857 
3858 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3859 				struct btrfs_free_space *entry)
3860 {
3861 	if (btrfs_free_space_trimming_bitmap(entry)) {
3862 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3863 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3864 			entry->bitmap_extents;
3865 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3866 	}
3867 }
3868 
3869 /*
3870  * If @async is set, then we will trim 1 region and return.
3871  */
3872 static int trim_bitmaps(struct btrfs_block_group *block_group,
3873 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3874 			u64 maxlen, bool async)
3875 {
3876 	struct btrfs_discard_ctl *discard_ctl =
3877 					&block_group->fs_info->discard_ctl;
3878 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3879 	struct btrfs_free_space *entry;
3880 	int ret = 0;
3881 	int ret2;
3882 	u64 bytes;
3883 	u64 offset = offset_to_bitmap(ctl, start);
3884 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3885 
3886 	while (offset < end) {
3887 		bool next_bitmap = false;
3888 		struct btrfs_trim_range trim_entry;
3889 
3890 		mutex_lock(&ctl->cache_writeout_mutex);
3891 		spin_lock(&ctl->tree_lock);
3892 
3893 		if (ctl->free_space < minlen) {
3894 			block_group->discard_cursor =
3895 				btrfs_block_group_end(block_group);
3896 			spin_unlock(&ctl->tree_lock);
3897 			mutex_unlock(&ctl->cache_writeout_mutex);
3898 			break;
3899 		}
3900 
3901 		entry = tree_search_offset(ctl, offset, 1, 0);
3902 		/*
3903 		 * Bitmaps are marked trimmed lossily now to prevent constant
3904 		 * discarding of the same bitmap (the reason why we are bound
3905 		 * by the filters).  So, retrim the block group bitmaps when we
3906 		 * are preparing to punt to the unused_bgs list.  This uses
3907 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3908 		 * which is the only discard index which sets minlen to 0.
3909 		 */
3910 		if (!entry || (async && minlen && start == offset &&
3911 			       btrfs_free_space_trimmed(entry))) {
3912 			spin_unlock(&ctl->tree_lock);
3913 			mutex_unlock(&ctl->cache_writeout_mutex);
3914 			next_bitmap = true;
3915 			goto next;
3916 		}
3917 
3918 		/*
3919 		 * Async discard bitmap trimming begins at by setting the start
3920 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3921 		 * start of the bitmap.  This lets us know we are fully
3922 		 * scanning the bitmap rather than only some portion of it.
3923 		 */
3924 		if (start == offset)
3925 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3926 
3927 		bytes = minlen;
3928 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3929 		if (ret2 || start >= end) {
3930 			/*
3931 			 * We lossily consider a bitmap trimmed if we only skip
3932 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3933 			 */
3934 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3935 				end_trimming_bitmap(ctl, entry);
3936 			else
3937 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3938 			spin_unlock(&ctl->tree_lock);
3939 			mutex_unlock(&ctl->cache_writeout_mutex);
3940 			next_bitmap = true;
3941 			goto next;
3942 		}
3943 
3944 		/*
3945 		 * We already trimmed a region, but are using the locking above
3946 		 * to reset the trim_state.
3947 		 */
3948 		if (async && *total_trimmed) {
3949 			spin_unlock(&ctl->tree_lock);
3950 			mutex_unlock(&ctl->cache_writeout_mutex);
3951 			goto out;
3952 		}
3953 
3954 		bytes = min(bytes, end - start);
3955 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3956 			spin_unlock(&ctl->tree_lock);
3957 			mutex_unlock(&ctl->cache_writeout_mutex);
3958 			goto next;
3959 		}
3960 
3961 		/*
3962 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3963 		 * If X < @minlen, we won't trim X when we come back around.
3964 		 * So trim it now.  We differ here from trimming extents as we
3965 		 * don't keep individual state per bit.
3966 		 */
3967 		if (async &&
3968 		    max_discard_size &&
3969 		    bytes > (max_discard_size + minlen))
3970 			bytes = max_discard_size;
3971 
3972 		bitmap_clear_bits(ctl, entry, start, bytes, true);
3973 		if (entry->bytes == 0)
3974 			free_bitmap(ctl, entry);
3975 
3976 		spin_unlock(&ctl->tree_lock);
3977 		trim_entry.start = start;
3978 		trim_entry.bytes = bytes;
3979 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3980 		mutex_unlock(&ctl->cache_writeout_mutex);
3981 
3982 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3983 				  start, bytes, 0, &trim_entry);
3984 		if (ret) {
3985 			reset_trimming_bitmap(ctl, offset);
3986 			block_group->discard_cursor =
3987 				btrfs_block_group_end(block_group);
3988 			break;
3989 		}
3990 next:
3991 		if (next_bitmap) {
3992 			offset += BITS_PER_BITMAP * ctl->unit;
3993 			start = offset;
3994 		} else {
3995 			start += bytes;
3996 		}
3997 		block_group->discard_cursor = start;
3998 
3999 		if (fatal_signal_pending(current)) {
4000 			if (start != offset)
4001 				reset_trimming_bitmap(ctl, offset);
4002 			ret = -ERESTARTSYS;
4003 			break;
4004 		}
4005 
4006 		cond_resched();
4007 	}
4008 
4009 	if (offset >= end)
4010 		block_group->discard_cursor = end;
4011 
4012 out:
4013 	return ret;
4014 }
4015 
4016 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4017 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4018 {
4019 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4020 	int ret;
4021 	u64 rem = 0;
4022 
4023 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4024 
4025 	*trimmed = 0;
4026 
4027 	spin_lock(&block_group->lock);
4028 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4029 		spin_unlock(&block_group->lock);
4030 		return 0;
4031 	}
4032 	btrfs_freeze_block_group(block_group);
4033 	spin_unlock(&block_group->lock);
4034 
4035 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4036 	if (ret)
4037 		goto out;
4038 
4039 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4040 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4041 	/* If we ended in the middle of a bitmap, reset the trimming flag */
4042 	if (rem)
4043 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4044 out:
4045 	btrfs_unfreeze_block_group(block_group);
4046 	return ret;
4047 }
4048 
4049 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4050 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4051 				   bool async)
4052 {
4053 	int ret;
4054 
4055 	*trimmed = 0;
4056 
4057 	spin_lock(&block_group->lock);
4058 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4059 		spin_unlock(&block_group->lock);
4060 		return 0;
4061 	}
4062 	btrfs_freeze_block_group(block_group);
4063 	spin_unlock(&block_group->lock);
4064 
4065 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4066 	btrfs_unfreeze_block_group(block_group);
4067 
4068 	return ret;
4069 }
4070 
4071 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4072 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4073 				   u64 maxlen, bool async)
4074 {
4075 	int ret;
4076 
4077 	*trimmed = 0;
4078 
4079 	spin_lock(&block_group->lock);
4080 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4081 		spin_unlock(&block_group->lock);
4082 		return 0;
4083 	}
4084 	btrfs_freeze_block_group(block_group);
4085 	spin_unlock(&block_group->lock);
4086 
4087 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4088 			   async);
4089 
4090 	btrfs_unfreeze_block_group(block_group);
4091 
4092 	return ret;
4093 }
4094 
4095 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4096 {
4097 	return btrfs_super_cache_generation(fs_info->super_copy);
4098 }
4099 
4100 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4101 				       struct btrfs_trans_handle *trans)
4102 {
4103 	struct btrfs_block_group *block_group;
4104 	struct rb_node *node;
4105 	int ret = 0;
4106 
4107 	btrfs_info(fs_info, "cleaning free space cache v1");
4108 
4109 	node = rb_first_cached(&fs_info->block_group_cache_tree);
4110 	while (node) {
4111 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4112 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4113 		if (ret)
4114 			goto out;
4115 		node = rb_next(node);
4116 	}
4117 out:
4118 	return ret;
4119 }
4120 
4121 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4122 {
4123 	struct btrfs_trans_handle *trans;
4124 	int ret;
4125 
4126 	/*
4127 	 * update_super_roots will appropriately set or unset
4128 	 * super_copy->cache_generation based on SPACE_CACHE and
4129 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4130 	 * transaction commit whether we are enabling space cache v1 and don't
4131 	 * have any other work to do, or are disabling it and removing free
4132 	 * space inodes.
4133 	 */
4134 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4135 	if (IS_ERR(trans))
4136 		return PTR_ERR(trans);
4137 
4138 	if (!active) {
4139 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4140 		ret = cleanup_free_space_cache_v1(fs_info, trans);
4141 		if (ret) {
4142 			btrfs_abort_transaction(trans, ret);
4143 			btrfs_end_transaction(trans);
4144 			goto out;
4145 		}
4146 	}
4147 
4148 	ret = btrfs_commit_transaction(trans);
4149 out:
4150 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4151 
4152 	return ret;
4153 }
4154 
4155 int __init btrfs_free_space_init(void)
4156 {
4157 	btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4158 	if (!btrfs_free_space_cachep)
4159 		return -ENOMEM;
4160 
4161 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4162 							PAGE_SIZE, PAGE_SIZE,
4163 							0, NULL);
4164 	if (!btrfs_free_space_bitmap_cachep) {
4165 		kmem_cache_destroy(btrfs_free_space_cachep);
4166 		return -ENOMEM;
4167 	}
4168 
4169 	return 0;
4170 }
4171 
4172 void __cold btrfs_free_space_exit(void)
4173 {
4174 	kmem_cache_destroy(btrfs_free_space_cachep);
4175 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4176 }
4177 
4178 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4179 /*
4180  * Use this if you need to make a bitmap or extent entry specifically, it
4181  * doesn't do any of the merging that add_free_space does, this acts a lot like
4182  * how the free space cache loading stuff works, so you can get really weird
4183  * configurations.
4184  */
4185 int test_add_free_space_entry(struct btrfs_block_group *cache,
4186 			      u64 offset, u64 bytes, bool bitmap)
4187 {
4188 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4189 	struct btrfs_free_space *info = NULL, *bitmap_info;
4190 	void *map = NULL;
4191 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4192 	u64 bytes_added;
4193 	int ret;
4194 
4195 again:
4196 	if (!info) {
4197 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4198 		if (!info)
4199 			return -ENOMEM;
4200 	}
4201 
4202 	if (!bitmap) {
4203 		spin_lock(&ctl->tree_lock);
4204 		info->offset = offset;
4205 		info->bytes = bytes;
4206 		info->max_extent_size = 0;
4207 		ret = link_free_space(ctl, info);
4208 		spin_unlock(&ctl->tree_lock);
4209 		if (ret)
4210 			kmem_cache_free(btrfs_free_space_cachep, info);
4211 		return ret;
4212 	}
4213 
4214 	if (!map) {
4215 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4216 		if (!map) {
4217 			kmem_cache_free(btrfs_free_space_cachep, info);
4218 			return -ENOMEM;
4219 		}
4220 	}
4221 
4222 	spin_lock(&ctl->tree_lock);
4223 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4224 					 1, 0);
4225 	if (!bitmap_info) {
4226 		info->bitmap = map;
4227 		map = NULL;
4228 		add_new_bitmap(ctl, info, offset);
4229 		bitmap_info = info;
4230 		info = NULL;
4231 	}
4232 
4233 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4234 					  trim_state);
4235 
4236 	bytes -= bytes_added;
4237 	offset += bytes_added;
4238 	spin_unlock(&ctl->tree_lock);
4239 
4240 	if (bytes)
4241 		goto again;
4242 
4243 	if (info)
4244 		kmem_cache_free(btrfs_free_space_cachep, info);
4245 	if (map)
4246 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4247 	return 0;
4248 }
4249 
4250 /*
4251  * Checks to see if the given range is in the free space cache.  This is really
4252  * just used to check the absence of space, so if there is free space in the
4253  * range at all we will return 1.
4254  */
4255 int test_check_exists(struct btrfs_block_group *cache,
4256 		      u64 offset, u64 bytes)
4257 {
4258 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4259 	struct btrfs_free_space *info;
4260 	int ret = 0;
4261 
4262 	spin_lock(&ctl->tree_lock);
4263 	info = tree_search_offset(ctl, offset, 0, 0);
4264 	if (!info) {
4265 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4266 					  1, 0);
4267 		if (!info)
4268 			goto out;
4269 	}
4270 
4271 have_info:
4272 	if (info->bitmap) {
4273 		u64 bit_off, bit_bytes;
4274 		struct rb_node *n;
4275 		struct btrfs_free_space *tmp;
4276 
4277 		bit_off = offset;
4278 		bit_bytes = ctl->unit;
4279 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4280 		if (!ret) {
4281 			if (bit_off == offset) {
4282 				ret = 1;
4283 				goto out;
4284 			} else if (bit_off > offset &&
4285 				   offset + bytes > bit_off) {
4286 				ret = 1;
4287 				goto out;
4288 			}
4289 		}
4290 
4291 		n = rb_prev(&info->offset_index);
4292 		while (n) {
4293 			tmp = rb_entry(n, struct btrfs_free_space,
4294 				       offset_index);
4295 			if (tmp->offset + tmp->bytes < offset)
4296 				break;
4297 			if (offset + bytes < tmp->offset) {
4298 				n = rb_prev(&tmp->offset_index);
4299 				continue;
4300 			}
4301 			info = tmp;
4302 			goto have_info;
4303 		}
4304 
4305 		n = rb_next(&info->offset_index);
4306 		while (n) {
4307 			tmp = rb_entry(n, struct btrfs_free_space,
4308 				       offset_index);
4309 			if (offset + bytes < tmp->offset)
4310 				break;
4311 			if (tmp->offset + tmp->bytes < offset) {
4312 				n = rb_next(&tmp->offset_index);
4313 				continue;
4314 			}
4315 			info = tmp;
4316 			goto have_info;
4317 		}
4318 
4319 		ret = 0;
4320 		goto out;
4321 	}
4322 
4323 	if (info->offset == offset) {
4324 		ret = 1;
4325 		goto out;
4326 	}
4327 
4328 	if (offset > info->offset && offset < info->offset + info->bytes)
4329 		ret = 1;
4330 out:
4331 	spin_unlock(&ctl->tree_lock);
4332 	return ret;
4333 }
4334 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4335