xref: /linux/fs/btrfs/free-space-cache.c (revision 88a8e278ff0b6b461bf39d4ace17384e976a3f3f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
24 #include "discard.h"
25 
26 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
27 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
28 #define FORCE_EXTENT_THRESHOLD	SZ_1M
29 
30 struct btrfs_trim_range {
31 	u64 start;
32 	u64 bytes;
33 	struct list_head list;
34 };
35 
36 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
37 				struct btrfs_free_space *bitmap_info);
38 static int link_free_space(struct btrfs_free_space_ctl *ctl,
39 			   struct btrfs_free_space *info);
40 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
41 			      struct btrfs_free_space *info);
42 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
43 			     struct btrfs_trans_handle *trans,
44 			     struct btrfs_io_ctl *io_ctl,
45 			     struct btrfs_path *path);
46 
47 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
48 					       struct btrfs_path *path,
49 					       u64 offset)
50 {
51 	struct btrfs_fs_info *fs_info = root->fs_info;
52 	struct btrfs_key key;
53 	struct btrfs_key location;
54 	struct btrfs_disk_key disk_key;
55 	struct btrfs_free_space_header *header;
56 	struct extent_buffer *leaf;
57 	struct inode *inode = NULL;
58 	unsigned nofs_flag;
59 	int ret;
60 
61 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
62 	key.offset = offset;
63 	key.type = 0;
64 
65 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66 	if (ret < 0)
67 		return ERR_PTR(ret);
68 	if (ret > 0) {
69 		btrfs_release_path(path);
70 		return ERR_PTR(-ENOENT);
71 	}
72 
73 	leaf = path->nodes[0];
74 	header = btrfs_item_ptr(leaf, path->slots[0],
75 				struct btrfs_free_space_header);
76 	btrfs_free_space_key(leaf, header, &disk_key);
77 	btrfs_disk_key_to_cpu(&location, &disk_key);
78 	btrfs_release_path(path);
79 
80 	/*
81 	 * We are often under a trans handle at this point, so we need to make
82 	 * sure NOFS is set to keep us from deadlocking.
83 	 */
84 	nofs_flag = memalloc_nofs_save();
85 	inode = btrfs_iget_path(fs_info->sb, &location, root, path);
86 	btrfs_release_path(path);
87 	memalloc_nofs_restore(nofs_flag);
88 	if (IS_ERR(inode))
89 		return inode;
90 
91 	mapping_set_gfp_mask(inode->i_mapping,
92 			mapping_gfp_constraint(inode->i_mapping,
93 			~(__GFP_FS | __GFP_HIGHMEM)));
94 
95 	return inode;
96 }
97 
98 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
99 		struct btrfs_path *path)
100 {
101 	struct btrfs_fs_info *fs_info = block_group->fs_info;
102 	struct inode *inode = NULL;
103 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
104 
105 	spin_lock(&block_group->lock);
106 	if (block_group->inode)
107 		inode = igrab(block_group->inode);
108 	spin_unlock(&block_group->lock);
109 	if (inode)
110 		return inode;
111 
112 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
113 					  block_group->start);
114 	if (IS_ERR(inode))
115 		return inode;
116 
117 	spin_lock(&block_group->lock);
118 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
119 		btrfs_info(fs_info, "Old style space inode found, converting.");
120 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
121 			BTRFS_INODE_NODATACOW;
122 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
123 	}
124 
125 	if (!block_group->iref) {
126 		block_group->inode = igrab(inode);
127 		block_group->iref = 1;
128 	}
129 	spin_unlock(&block_group->lock);
130 
131 	return inode;
132 }
133 
134 static int __create_free_space_inode(struct btrfs_root *root,
135 				     struct btrfs_trans_handle *trans,
136 				     struct btrfs_path *path,
137 				     u64 ino, u64 offset)
138 {
139 	struct btrfs_key key;
140 	struct btrfs_disk_key disk_key;
141 	struct btrfs_free_space_header *header;
142 	struct btrfs_inode_item *inode_item;
143 	struct extent_buffer *leaf;
144 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
145 	int ret;
146 
147 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
148 	if (ret)
149 		return ret;
150 
151 	/* We inline crc's for the free disk space cache */
152 	if (ino != BTRFS_FREE_INO_OBJECTID)
153 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
154 
155 	leaf = path->nodes[0];
156 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
157 				    struct btrfs_inode_item);
158 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160 			     sizeof(*inode_item));
161 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
162 	btrfs_set_inode_size(leaf, inode_item, 0);
163 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
164 	btrfs_set_inode_uid(leaf, inode_item, 0);
165 	btrfs_set_inode_gid(leaf, inode_item, 0);
166 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167 	btrfs_set_inode_flags(leaf, inode_item, flags);
168 	btrfs_set_inode_nlink(leaf, inode_item, 1);
169 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170 	btrfs_set_inode_block_group(leaf, inode_item, offset);
171 	btrfs_mark_buffer_dirty(leaf);
172 	btrfs_release_path(path);
173 
174 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175 	key.offset = offset;
176 	key.type = 0;
177 	ret = btrfs_insert_empty_item(trans, root, path, &key,
178 				      sizeof(struct btrfs_free_space_header));
179 	if (ret < 0) {
180 		btrfs_release_path(path);
181 		return ret;
182 	}
183 
184 	leaf = path->nodes[0];
185 	header = btrfs_item_ptr(leaf, path->slots[0],
186 				struct btrfs_free_space_header);
187 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188 	btrfs_set_free_space_key(leaf, header, &disk_key);
189 	btrfs_mark_buffer_dirty(leaf);
190 	btrfs_release_path(path);
191 
192 	return 0;
193 }
194 
195 int create_free_space_inode(struct btrfs_trans_handle *trans,
196 			    struct btrfs_block_group *block_group,
197 			    struct btrfs_path *path)
198 {
199 	int ret;
200 	u64 ino;
201 
202 	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
203 	if (ret < 0)
204 		return ret;
205 
206 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
207 					 ino, block_group->start);
208 }
209 
210 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
211 				       struct btrfs_block_rsv *rsv)
212 {
213 	u64 needed_bytes;
214 	int ret;
215 
216 	/* 1 for slack space, 1 for updating the inode */
217 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
218 		btrfs_calc_metadata_size(fs_info, 1);
219 
220 	spin_lock(&rsv->lock);
221 	if (rsv->reserved < needed_bytes)
222 		ret = -ENOSPC;
223 	else
224 		ret = 0;
225 	spin_unlock(&rsv->lock);
226 	return ret;
227 }
228 
229 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
230 				    struct btrfs_block_group *block_group,
231 				    struct inode *inode)
232 {
233 	struct btrfs_root *root = BTRFS_I(inode)->root;
234 	int ret = 0;
235 	bool locked = false;
236 
237 	if (block_group) {
238 		struct btrfs_path *path = btrfs_alloc_path();
239 
240 		if (!path) {
241 			ret = -ENOMEM;
242 			goto fail;
243 		}
244 		locked = true;
245 		mutex_lock(&trans->transaction->cache_write_mutex);
246 		if (!list_empty(&block_group->io_list)) {
247 			list_del_init(&block_group->io_list);
248 
249 			btrfs_wait_cache_io(trans, block_group, path);
250 			btrfs_put_block_group(block_group);
251 		}
252 
253 		/*
254 		 * now that we've truncated the cache away, its no longer
255 		 * setup or written
256 		 */
257 		spin_lock(&block_group->lock);
258 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 		spin_unlock(&block_group->lock);
260 		btrfs_free_path(path);
261 	}
262 
263 	btrfs_i_size_write(BTRFS_I(inode), 0);
264 	truncate_pagecache(inode, 0);
265 
266 	/*
267 	 * We skip the throttling logic for free space cache inodes, so we don't
268 	 * need to check for -EAGAIN.
269 	 */
270 	ret = btrfs_truncate_inode_items(trans, root, inode,
271 					 0, BTRFS_EXTENT_DATA_KEY);
272 	if (ret)
273 		goto fail;
274 
275 	ret = btrfs_update_inode(trans, root, inode);
276 
277 fail:
278 	if (locked)
279 		mutex_unlock(&trans->transaction->cache_write_mutex);
280 	if (ret)
281 		btrfs_abort_transaction(trans, ret);
282 
283 	return ret;
284 }
285 
286 static void readahead_cache(struct inode *inode)
287 {
288 	struct file_ra_state *ra;
289 	unsigned long last_index;
290 
291 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
292 	if (!ra)
293 		return;
294 
295 	file_ra_state_init(ra, inode->i_mapping);
296 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
297 
298 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
299 
300 	kfree(ra);
301 }
302 
303 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
304 		       int write)
305 {
306 	int num_pages;
307 	int check_crcs = 0;
308 
309 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
310 
311 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
312 		check_crcs = 1;
313 
314 	/* Make sure we can fit our crcs and generation into the first page */
315 	if (write && check_crcs &&
316 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
317 		return -ENOSPC;
318 
319 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
320 
321 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
322 	if (!io_ctl->pages)
323 		return -ENOMEM;
324 
325 	io_ctl->num_pages = num_pages;
326 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
327 	io_ctl->check_crcs = check_crcs;
328 	io_ctl->inode = inode;
329 
330 	return 0;
331 }
332 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
333 
334 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
335 {
336 	kfree(io_ctl->pages);
337 	io_ctl->pages = NULL;
338 }
339 
340 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
341 {
342 	if (io_ctl->cur) {
343 		io_ctl->cur = NULL;
344 		io_ctl->orig = NULL;
345 	}
346 }
347 
348 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
349 {
350 	ASSERT(io_ctl->index < io_ctl->num_pages);
351 	io_ctl->page = io_ctl->pages[io_ctl->index++];
352 	io_ctl->cur = page_address(io_ctl->page);
353 	io_ctl->orig = io_ctl->cur;
354 	io_ctl->size = PAGE_SIZE;
355 	if (clear)
356 		clear_page(io_ctl->cur);
357 }
358 
359 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
360 {
361 	int i;
362 
363 	io_ctl_unmap_page(io_ctl);
364 
365 	for (i = 0; i < io_ctl->num_pages; i++) {
366 		if (io_ctl->pages[i]) {
367 			ClearPageChecked(io_ctl->pages[i]);
368 			unlock_page(io_ctl->pages[i]);
369 			put_page(io_ctl->pages[i]);
370 		}
371 	}
372 }
373 
374 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
375 {
376 	struct page *page;
377 	struct inode *inode = io_ctl->inode;
378 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
379 	int i;
380 
381 	for (i = 0; i < io_ctl->num_pages; i++) {
382 		page = find_or_create_page(inode->i_mapping, i, mask);
383 		if (!page) {
384 			io_ctl_drop_pages(io_ctl);
385 			return -ENOMEM;
386 		}
387 		io_ctl->pages[i] = page;
388 		if (uptodate && !PageUptodate(page)) {
389 			btrfs_readpage(NULL, page);
390 			lock_page(page);
391 			if (page->mapping != inode->i_mapping) {
392 				btrfs_err(BTRFS_I(inode)->root->fs_info,
393 					  "free space cache page truncated");
394 				io_ctl_drop_pages(io_ctl);
395 				return -EIO;
396 			}
397 			if (!PageUptodate(page)) {
398 				btrfs_err(BTRFS_I(inode)->root->fs_info,
399 					   "error reading free space cache");
400 				io_ctl_drop_pages(io_ctl);
401 				return -EIO;
402 			}
403 		}
404 	}
405 
406 	for (i = 0; i < io_ctl->num_pages; i++) {
407 		clear_page_dirty_for_io(io_ctl->pages[i]);
408 		set_page_extent_mapped(io_ctl->pages[i]);
409 	}
410 
411 	return 0;
412 }
413 
414 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
415 {
416 	__le64 *val;
417 
418 	io_ctl_map_page(io_ctl, 1);
419 
420 	/*
421 	 * Skip the csum areas.  If we don't check crcs then we just have a
422 	 * 64bit chunk at the front of the first page.
423 	 */
424 	if (io_ctl->check_crcs) {
425 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
426 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
427 	} else {
428 		io_ctl->cur += sizeof(u64);
429 		io_ctl->size -= sizeof(u64) * 2;
430 	}
431 
432 	val = io_ctl->cur;
433 	*val = cpu_to_le64(generation);
434 	io_ctl->cur += sizeof(u64);
435 }
436 
437 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
438 {
439 	__le64 *gen;
440 
441 	/*
442 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
443 	 * chunk at the front of the first page.
444 	 */
445 	if (io_ctl->check_crcs) {
446 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
447 		io_ctl->size -= sizeof(u64) +
448 			(sizeof(u32) * io_ctl->num_pages);
449 	} else {
450 		io_ctl->cur += sizeof(u64);
451 		io_ctl->size -= sizeof(u64) * 2;
452 	}
453 
454 	gen = io_ctl->cur;
455 	if (le64_to_cpu(*gen) != generation) {
456 		btrfs_err_rl(io_ctl->fs_info,
457 			"space cache generation (%llu) does not match inode (%llu)",
458 				*gen, generation);
459 		io_ctl_unmap_page(io_ctl);
460 		return -EIO;
461 	}
462 	io_ctl->cur += sizeof(u64);
463 	return 0;
464 }
465 
466 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
467 {
468 	u32 *tmp;
469 	u32 crc = ~(u32)0;
470 	unsigned offset = 0;
471 
472 	if (!io_ctl->check_crcs) {
473 		io_ctl_unmap_page(io_ctl);
474 		return;
475 	}
476 
477 	if (index == 0)
478 		offset = sizeof(u32) * io_ctl->num_pages;
479 
480 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
481 	btrfs_crc32c_final(crc, (u8 *)&crc);
482 	io_ctl_unmap_page(io_ctl);
483 	tmp = page_address(io_ctl->pages[0]);
484 	tmp += index;
485 	*tmp = crc;
486 }
487 
488 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
489 {
490 	u32 *tmp, val;
491 	u32 crc = ~(u32)0;
492 	unsigned offset = 0;
493 
494 	if (!io_ctl->check_crcs) {
495 		io_ctl_map_page(io_ctl, 0);
496 		return 0;
497 	}
498 
499 	if (index == 0)
500 		offset = sizeof(u32) * io_ctl->num_pages;
501 
502 	tmp = page_address(io_ctl->pages[0]);
503 	tmp += index;
504 	val = *tmp;
505 
506 	io_ctl_map_page(io_ctl, 0);
507 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
508 	btrfs_crc32c_final(crc, (u8 *)&crc);
509 	if (val != crc) {
510 		btrfs_err_rl(io_ctl->fs_info,
511 			"csum mismatch on free space cache");
512 		io_ctl_unmap_page(io_ctl);
513 		return -EIO;
514 	}
515 
516 	return 0;
517 }
518 
519 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
520 			    void *bitmap)
521 {
522 	struct btrfs_free_space_entry *entry;
523 
524 	if (!io_ctl->cur)
525 		return -ENOSPC;
526 
527 	entry = io_ctl->cur;
528 	entry->offset = cpu_to_le64(offset);
529 	entry->bytes = cpu_to_le64(bytes);
530 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
531 		BTRFS_FREE_SPACE_EXTENT;
532 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
533 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
534 
535 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
536 		return 0;
537 
538 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539 
540 	/* No more pages to map */
541 	if (io_ctl->index >= io_ctl->num_pages)
542 		return 0;
543 
544 	/* map the next page */
545 	io_ctl_map_page(io_ctl, 1);
546 	return 0;
547 }
548 
549 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
550 {
551 	if (!io_ctl->cur)
552 		return -ENOSPC;
553 
554 	/*
555 	 * If we aren't at the start of the current page, unmap this one and
556 	 * map the next one if there is any left.
557 	 */
558 	if (io_ctl->cur != io_ctl->orig) {
559 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
560 		if (io_ctl->index >= io_ctl->num_pages)
561 			return -ENOSPC;
562 		io_ctl_map_page(io_ctl, 0);
563 	}
564 
565 	copy_page(io_ctl->cur, bitmap);
566 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
567 	if (io_ctl->index < io_ctl->num_pages)
568 		io_ctl_map_page(io_ctl, 0);
569 	return 0;
570 }
571 
572 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
573 {
574 	/*
575 	 * If we're not on the boundary we know we've modified the page and we
576 	 * need to crc the page.
577 	 */
578 	if (io_ctl->cur != io_ctl->orig)
579 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
580 	else
581 		io_ctl_unmap_page(io_ctl);
582 
583 	while (io_ctl->index < io_ctl->num_pages) {
584 		io_ctl_map_page(io_ctl, 1);
585 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
586 	}
587 }
588 
589 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
590 			    struct btrfs_free_space *entry, u8 *type)
591 {
592 	struct btrfs_free_space_entry *e;
593 	int ret;
594 
595 	if (!io_ctl->cur) {
596 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
597 		if (ret)
598 			return ret;
599 	}
600 
601 	e = io_ctl->cur;
602 	entry->offset = le64_to_cpu(e->offset);
603 	entry->bytes = le64_to_cpu(e->bytes);
604 	*type = e->type;
605 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
606 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
607 
608 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
609 		return 0;
610 
611 	io_ctl_unmap_page(io_ctl);
612 
613 	return 0;
614 }
615 
616 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
617 			      struct btrfs_free_space *entry)
618 {
619 	int ret;
620 
621 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
622 	if (ret)
623 		return ret;
624 
625 	copy_page(entry->bitmap, io_ctl->cur);
626 	io_ctl_unmap_page(io_ctl);
627 
628 	return 0;
629 }
630 
631 /*
632  * Since we attach pinned extents after the fact we can have contiguous sections
633  * of free space that are split up in entries.  This poses a problem with the
634  * tree logging stuff since it could have allocated across what appears to be 2
635  * entries since we would have merged the entries when adding the pinned extents
636  * back to the free space cache.  So run through the space cache that we just
637  * loaded and merge contiguous entries.  This will make the log replay stuff not
638  * blow up and it will make for nicer allocator behavior.
639  */
640 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
641 {
642 	struct btrfs_free_space *e, *prev = NULL;
643 	struct rb_node *n;
644 
645 again:
646 	spin_lock(&ctl->tree_lock);
647 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
648 		e = rb_entry(n, struct btrfs_free_space, offset_index);
649 		if (!prev)
650 			goto next;
651 		if (e->bitmap || prev->bitmap)
652 			goto next;
653 		if (prev->offset + prev->bytes == e->offset) {
654 			unlink_free_space(ctl, prev);
655 			unlink_free_space(ctl, e);
656 			prev->bytes += e->bytes;
657 			kmem_cache_free(btrfs_free_space_cachep, e);
658 			link_free_space(ctl, prev);
659 			prev = NULL;
660 			spin_unlock(&ctl->tree_lock);
661 			goto again;
662 		}
663 next:
664 		prev = e;
665 	}
666 	spin_unlock(&ctl->tree_lock);
667 }
668 
669 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
670 				   struct btrfs_free_space_ctl *ctl,
671 				   struct btrfs_path *path, u64 offset)
672 {
673 	struct btrfs_fs_info *fs_info = root->fs_info;
674 	struct btrfs_free_space_header *header;
675 	struct extent_buffer *leaf;
676 	struct btrfs_io_ctl io_ctl;
677 	struct btrfs_key key;
678 	struct btrfs_free_space *e, *n;
679 	LIST_HEAD(bitmaps);
680 	u64 num_entries;
681 	u64 num_bitmaps;
682 	u64 generation;
683 	u8 type;
684 	int ret = 0;
685 
686 	/* Nothing in the space cache, goodbye */
687 	if (!i_size_read(inode))
688 		return 0;
689 
690 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
691 	key.offset = offset;
692 	key.type = 0;
693 
694 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
695 	if (ret < 0)
696 		return 0;
697 	else if (ret > 0) {
698 		btrfs_release_path(path);
699 		return 0;
700 	}
701 
702 	ret = -1;
703 
704 	leaf = path->nodes[0];
705 	header = btrfs_item_ptr(leaf, path->slots[0],
706 				struct btrfs_free_space_header);
707 	num_entries = btrfs_free_space_entries(leaf, header);
708 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
709 	generation = btrfs_free_space_generation(leaf, header);
710 	btrfs_release_path(path);
711 
712 	if (!BTRFS_I(inode)->generation) {
713 		btrfs_info(fs_info,
714 			   "the free space cache file (%llu) is invalid, skip it",
715 			   offset);
716 		return 0;
717 	}
718 
719 	if (BTRFS_I(inode)->generation != generation) {
720 		btrfs_err(fs_info,
721 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
722 			  BTRFS_I(inode)->generation, generation);
723 		return 0;
724 	}
725 
726 	if (!num_entries)
727 		return 0;
728 
729 	ret = io_ctl_init(&io_ctl, inode, 0);
730 	if (ret)
731 		return ret;
732 
733 	readahead_cache(inode);
734 
735 	ret = io_ctl_prepare_pages(&io_ctl, true);
736 	if (ret)
737 		goto out;
738 
739 	ret = io_ctl_check_crc(&io_ctl, 0);
740 	if (ret)
741 		goto free_cache;
742 
743 	ret = io_ctl_check_generation(&io_ctl, generation);
744 	if (ret)
745 		goto free_cache;
746 
747 	while (num_entries) {
748 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
749 				      GFP_NOFS);
750 		if (!e)
751 			goto free_cache;
752 
753 		ret = io_ctl_read_entry(&io_ctl, e, &type);
754 		if (ret) {
755 			kmem_cache_free(btrfs_free_space_cachep, e);
756 			goto free_cache;
757 		}
758 
759 		/*
760 		 * Sync discard ensures that the free space cache is always
761 		 * trimmed.  So when reading this in, the state should reflect
762 		 * that.  We also do this for async as a stop gap for lack of
763 		 * persistence.
764 		 */
765 		if (btrfs_test_opt(fs_info, DISCARD_SYNC) ||
766 		    btrfs_test_opt(fs_info, DISCARD_ASYNC))
767 			e->trim_state = BTRFS_TRIM_STATE_TRIMMED;
768 
769 		if (!e->bytes) {
770 			kmem_cache_free(btrfs_free_space_cachep, e);
771 			goto free_cache;
772 		}
773 
774 		if (type == BTRFS_FREE_SPACE_EXTENT) {
775 			spin_lock(&ctl->tree_lock);
776 			ret = link_free_space(ctl, e);
777 			spin_unlock(&ctl->tree_lock);
778 			if (ret) {
779 				btrfs_err(fs_info,
780 					"Duplicate entries in free space cache, dumping");
781 				kmem_cache_free(btrfs_free_space_cachep, e);
782 				goto free_cache;
783 			}
784 		} else {
785 			ASSERT(num_bitmaps);
786 			num_bitmaps--;
787 			e->bitmap = kmem_cache_zalloc(
788 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
789 			if (!e->bitmap) {
790 				kmem_cache_free(
791 					btrfs_free_space_cachep, e);
792 				goto free_cache;
793 			}
794 			spin_lock(&ctl->tree_lock);
795 			ret = link_free_space(ctl, e);
796 			ctl->total_bitmaps++;
797 			ctl->op->recalc_thresholds(ctl);
798 			spin_unlock(&ctl->tree_lock);
799 			if (ret) {
800 				btrfs_err(fs_info,
801 					"Duplicate entries in free space cache, dumping");
802 				kmem_cache_free(btrfs_free_space_cachep, e);
803 				goto free_cache;
804 			}
805 			list_add_tail(&e->list, &bitmaps);
806 		}
807 
808 		num_entries--;
809 	}
810 
811 	io_ctl_unmap_page(&io_ctl);
812 
813 	/*
814 	 * We add the bitmaps at the end of the entries in order that
815 	 * the bitmap entries are added to the cache.
816 	 */
817 	list_for_each_entry_safe(e, n, &bitmaps, list) {
818 		list_del_init(&e->list);
819 		ret = io_ctl_read_bitmap(&io_ctl, e);
820 		if (ret)
821 			goto free_cache;
822 		e->bitmap_extents = count_bitmap_extents(ctl, e);
823 		if (!btrfs_free_space_trimmed(e)) {
824 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
825 				e->bitmap_extents;
826 			ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes;
827 		}
828 	}
829 
830 	io_ctl_drop_pages(&io_ctl);
831 	merge_space_tree(ctl);
832 	ret = 1;
833 out:
834 	btrfs_discard_update_discardable(ctl->private, ctl);
835 	io_ctl_free(&io_ctl);
836 	return ret;
837 free_cache:
838 	io_ctl_drop_pages(&io_ctl);
839 	__btrfs_remove_free_space_cache(ctl);
840 	goto out;
841 }
842 
843 int load_free_space_cache(struct btrfs_block_group *block_group)
844 {
845 	struct btrfs_fs_info *fs_info = block_group->fs_info;
846 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
847 	struct inode *inode;
848 	struct btrfs_path *path;
849 	int ret = 0;
850 	bool matched;
851 	u64 used = block_group->used;
852 
853 	/*
854 	 * If this block group has been marked to be cleared for one reason or
855 	 * another then we can't trust the on disk cache, so just return.
856 	 */
857 	spin_lock(&block_group->lock);
858 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
859 		spin_unlock(&block_group->lock);
860 		return 0;
861 	}
862 	spin_unlock(&block_group->lock);
863 
864 	path = btrfs_alloc_path();
865 	if (!path)
866 		return 0;
867 	path->search_commit_root = 1;
868 	path->skip_locking = 1;
869 
870 	/*
871 	 * We must pass a path with search_commit_root set to btrfs_iget in
872 	 * order to avoid a deadlock when allocating extents for the tree root.
873 	 *
874 	 * When we are COWing an extent buffer from the tree root, when looking
875 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
876 	 * block group without its free space cache loaded. When we find one
877 	 * we must load its space cache which requires reading its free space
878 	 * cache's inode item from the root tree. If this inode item is located
879 	 * in the same leaf that we started COWing before, then we end up in
880 	 * deadlock on the extent buffer (trying to read lock it when we
881 	 * previously write locked it).
882 	 *
883 	 * It's safe to read the inode item using the commit root because
884 	 * block groups, once loaded, stay in memory forever (until they are
885 	 * removed) as well as their space caches once loaded. New block groups
886 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
887 	 * we will never try to read their inode item while the fs is mounted.
888 	 */
889 	inode = lookup_free_space_inode(block_group, path);
890 	if (IS_ERR(inode)) {
891 		btrfs_free_path(path);
892 		return 0;
893 	}
894 
895 	/* We may have converted the inode and made the cache invalid. */
896 	spin_lock(&block_group->lock);
897 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
898 		spin_unlock(&block_group->lock);
899 		btrfs_free_path(path);
900 		goto out;
901 	}
902 	spin_unlock(&block_group->lock);
903 
904 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
905 				      path, block_group->start);
906 	btrfs_free_path(path);
907 	if (ret <= 0)
908 		goto out;
909 
910 	spin_lock(&ctl->tree_lock);
911 	matched = (ctl->free_space == (block_group->length - used -
912 				       block_group->bytes_super));
913 	spin_unlock(&ctl->tree_lock);
914 
915 	if (!matched) {
916 		__btrfs_remove_free_space_cache(ctl);
917 		btrfs_warn(fs_info,
918 			   "block group %llu has wrong amount of free space",
919 			   block_group->start);
920 		ret = -1;
921 	}
922 out:
923 	if (ret < 0) {
924 		/* This cache is bogus, make sure it gets cleared */
925 		spin_lock(&block_group->lock);
926 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
927 		spin_unlock(&block_group->lock);
928 		ret = 0;
929 
930 		btrfs_warn(fs_info,
931 			   "failed to load free space cache for block group %llu, rebuilding it now",
932 			   block_group->start);
933 	}
934 
935 	iput(inode);
936 	return ret;
937 }
938 
939 static noinline_for_stack
940 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
941 			      struct btrfs_free_space_ctl *ctl,
942 			      struct btrfs_block_group *block_group,
943 			      int *entries, int *bitmaps,
944 			      struct list_head *bitmap_list)
945 {
946 	int ret;
947 	struct btrfs_free_cluster *cluster = NULL;
948 	struct btrfs_free_cluster *cluster_locked = NULL;
949 	struct rb_node *node = rb_first(&ctl->free_space_offset);
950 	struct btrfs_trim_range *trim_entry;
951 
952 	/* Get the cluster for this block_group if it exists */
953 	if (block_group && !list_empty(&block_group->cluster_list)) {
954 		cluster = list_entry(block_group->cluster_list.next,
955 				     struct btrfs_free_cluster,
956 				     block_group_list);
957 	}
958 
959 	if (!node && cluster) {
960 		cluster_locked = cluster;
961 		spin_lock(&cluster_locked->lock);
962 		node = rb_first(&cluster->root);
963 		cluster = NULL;
964 	}
965 
966 	/* Write out the extent entries */
967 	while (node) {
968 		struct btrfs_free_space *e;
969 
970 		e = rb_entry(node, struct btrfs_free_space, offset_index);
971 		*entries += 1;
972 
973 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
974 				       e->bitmap);
975 		if (ret)
976 			goto fail;
977 
978 		if (e->bitmap) {
979 			list_add_tail(&e->list, bitmap_list);
980 			*bitmaps += 1;
981 		}
982 		node = rb_next(node);
983 		if (!node && cluster) {
984 			node = rb_first(&cluster->root);
985 			cluster_locked = cluster;
986 			spin_lock(&cluster_locked->lock);
987 			cluster = NULL;
988 		}
989 	}
990 	if (cluster_locked) {
991 		spin_unlock(&cluster_locked->lock);
992 		cluster_locked = NULL;
993 	}
994 
995 	/*
996 	 * Make sure we don't miss any range that was removed from our rbtree
997 	 * because trimming is running. Otherwise after a umount+mount (or crash
998 	 * after committing the transaction) we would leak free space and get
999 	 * an inconsistent free space cache report from fsck.
1000 	 */
1001 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1002 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1003 				       trim_entry->bytes, NULL);
1004 		if (ret)
1005 			goto fail;
1006 		*entries += 1;
1007 	}
1008 
1009 	return 0;
1010 fail:
1011 	if (cluster_locked)
1012 		spin_unlock(&cluster_locked->lock);
1013 	return -ENOSPC;
1014 }
1015 
1016 static noinline_for_stack int
1017 update_cache_item(struct btrfs_trans_handle *trans,
1018 		  struct btrfs_root *root,
1019 		  struct inode *inode,
1020 		  struct btrfs_path *path, u64 offset,
1021 		  int entries, int bitmaps)
1022 {
1023 	struct btrfs_key key;
1024 	struct btrfs_free_space_header *header;
1025 	struct extent_buffer *leaf;
1026 	int ret;
1027 
1028 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1029 	key.offset = offset;
1030 	key.type = 0;
1031 
1032 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1033 	if (ret < 0) {
1034 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1035 				 EXTENT_DELALLOC, 0, 0, NULL);
1036 		goto fail;
1037 	}
1038 	leaf = path->nodes[0];
1039 	if (ret > 0) {
1040 		struct btrfs_key found_key;
1041 		ASSERT(path->slots[0]);
1042 		path->slots[0]--;
1043 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1044 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1045 		    found_key.offset != offset) {
1046 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1047 					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1048 					 0, NULL);
1049 			btrfs_release_path(path);
1050 			goto fail;
1051 		}
1052 	}
1053 
1054 	BTRFS_I(inode)->generation = trans->transid;
1055 	header = btrfs_item_ptr(leaf, path->slots[0],
1056 				struct btrfs_free_space_header);
1057 	btrfs_set_free_space_entries(leaf, header, entries);
1058 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1059 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1060 	btrfs_mark_buffer_dirty(leaf);
1061 	btrfs_release_path(path);
1062 
1063 	return 0;
1064 
1065 fail:
1066 	return -1;
1067 }
1068 
1069 static noinline_for_stack int write_pinned_extent_entries(
1070 			    struct btrfs_trans_handle *trans,
1071 			    struct btrfs_block_group *block_group,
1072 			    struct btrfs_io_ctl *io_ctl,
1073 			    int *entries)
1074 {
1075 	u64 start, extent_start, extent_end, len;
1076 	struct extent_io_tree *unpin = NULL;
1077 	int ret;
1078 
1079 	if (!block_group)
1080 		return 0;
1081 
1082 	/*
1083 	 * We want to add any pinned extents to our free space cache
1084 	 * so we don't leak the space
1085 	 *
1086 	 * We shouldn't have switched the pinned extents yet so this is the
1087 	 * right one
1088 	 */
1089 	unpin = &trans->transaction->pinned_extents;
1090 
1091 	start = block_group->start;
1092 
1093 	while (start < block_group->start + block_group->length) {
1094 		ret = find_first_extent_bit(unpin, start,
1095 					    &extent_start, &extent_end,
1096 					    EXTENT_DIRTY, NULL);
1097 		if (ret)
1098 			return 0;
1099 
1100 		/* This pinned extent is out of our range */
1101 		if (extent_start >= block_group->start + block_group->length)
1102 			return 0;
1103 
1104 		extent_start = max(extent_start, start);
1105 		extent_end = min(block_group->start + block_group->length,
1106 				 extent_end + 1);
1107 		len = extent_end - extent_start;
1108 
1109 		*entries += 1;
1110 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1111 		if (ret)
1112 			return -ENOSPC;
1113 
1114 		start = extent_end;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 static noinline_for_stack int
1121 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1122 {
1123 	struct btrfs_free_space *entry, *next;
1124 	int ret;
1125 
1126 	/* Write out the bitmaps */
1127 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1128 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1129 		if (ret)
1130 			return -ENOSPC;
1131 		list_del_init(&entry->list);
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int flush_dirty_cache(struct inode *inode)
1138 {
1139 	int ret;
1140 
1141 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1142 	if (ret)
1143 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1144 				 EXTENT_DELALLOC, 0, 0, NULL);
1145 
1146 	return ret;
1147 }
1148 
1149 static void noinline_for_stack
1150 cleanup_bitmap_list(struct list_head *bitmap_list)
1151 {
1152 	struct btrfs_free_space *entry, *next;
1153 
1154 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1155 		list_del_init(&entry->list);
1156 }
1157 
1158 static void noinline_for_stack
1159 cleanup_write_cache_enospc(struct inode *inode,
1160 			   struct btrfs_io_ctl *io_ctl,
1161 			   struct extent_state **cached_state)
1162 {
1163 	io_ctl_drop_pages(io_ctl);
1164 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1165 			     i_size_read(inode) - 1, cached_state);
1166 }
1167 
1168 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1169 				 struct btrfs_trans_handle *trans,
1170 				 struct btrfs_block_group *block_group,
1171 				 struct btrfs_io_ctl *io_ctl,
1172 				 struct btrfs_path *path, u64 offset)
1173 {
1174 	int ret;
1175 	struct inode *inode = io_ctl->inode;
1176 
1177 	if (!inode)
1178 		return 0;
1179 
1180 	/* Flush the dirty pages in the cache file. */
1181 	ret = flush_dirty_cache(inode);
1182 	if (ret)
1183 		goto out;
1184 
1185 	/* Update the cache item to tell everyone this cache file is valid. */
1186 	ret = update_cache_item(trans, root, inode, path, offset,
1187 				io_ctl->entries, io_ctl->bitmaps);
1188 out:
1189 	io_ctl_free(io_ctl);
1190 	if (ret) {
1191 		invalidate_inode_pages2(inode->i_mapping);
1192 		BTRFS_I(inode)->generation = 0;
1193 		if (block_group) {
1194 #ifdef CONFIG_BTRFS_DEBUG
1195 			btrfs_err(root->fs_info,
1196 				  "failed to write free space cache for block group %llu",
1197 				  block_group->start);
1198 #endif
1199 		}
1200 	}
1201 	btrfs_update_inode(trans, root, inode);
1202 
1203 	if (block_group) {
1204 		/* the dirty list is protected by the dirty_bgs_lock */
1205 		spin_lock(&trans->transaction->dirty_bgs_lock);
1206 
1207 		/* the disk_cache_state is protected by the block group lock */
1208 		spin_lock(&block_group->lock);
1209 
1210 		/*
1211 		 * only mark this as written if we didn't get put back on
1212 		 * the dirty list while waiting for IO.   Otherwise our
1213 		 * cache state won't be right, and we won't get written again
1214 		 */
1215 		if (!ret && list_empty(&block_group->dirty_list))
1216 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1217 		else if (ret)
1218 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1219 
1220 		spin_unlock(&block_group->lock);
1221 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1222 		io_ctl->inode = NULL;
1223 		iput(inode);
1224 	}
1225 
1226 	return ret;
1227 
1228 }
1229 
1230 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1231 				    struct btrfs_trans_handle *trans,
1232 				    struct btrfs_io_ctl *io_ctl,
1233 				    struct btrfs_path *path)
1234 {
1235 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1236 }
1237 
1238 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1239 			struct btrfs_block_group *block_group,
1240 			struct btrfs_path *path)
1241 {
1242 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1243 				     block_group, &block_group->io_ctl,
1244 				     path, block_group->start);
1245 }
1246 
1247 /**
1248  * __btrfs_write_out_cache - write out cached info to an inode
1249  * @root - the root the inode belongs to
1250  * @ctl - the free space cache we are going to write out
1251  * @block_group - the block_group for this cache if it belongs to a block_group
1252  * @trans - the trans handle
1253  *
1254  * This function writes out a free space cache struct to disk for quick recovery
1255  * on mount.  This will return 0 if it was successful in writing the cache out,
1256  * or an errno if it was not.
1257  */
1258 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1259 				   struct btrfs_free_space_ctl *ctl,
1260 				   struct btrfs_block_group *block_group,
1261 				   struct btrfs_io_ctl *io_ctl,
1262 				   struct btrfs_trans_handle *trans)
1263 {
1264 	struct extent_state *cached_state = NULL;
1265 	LIST_HEAD(bitmap_list);
1266 	int entries = 0;
1267 	int bitmaps = 0;
1268 	int ret;
1269 	int must_iput = 0;
1270 
1271 	if (!i_size_read(inode))
1272 		return -EIO;
1273 
1274 	WARN_ON(io_ctl->pages);
1275 	ret = io_ctl_init(io_ctl, inode, 1);
1276 	if (ret)
1277 		return ret;
1278 
1279 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1280 		down_write(&block_group->data_rwsem);
1281 		spin_lock(&block_group->lock);
1282 		if (block_group->delalloc_bytes) {
1283 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1284 			spin_unlock(&block_group->lock);
1285 			up_write(&block_group->data_rwsem);
1286 			BTRFS_I(inode)->generation = 0;
1287 			ret = 0;
1288 			must_iput = 1;
1289 			goto out;
1290 		}
1291 		spin_unlock(&block_group->lock);
1292 	}
1293 
1294 	/* Lock all pages first so we can lock the extent safely. */
1295 	ret = io_ctl_prepare_pages(io_ctl, false);
1296 	if (ret)
1297 		goto out_unlock;
1298 
1299 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1300 			 &cached_state);
1301 
1302 	io_ctl_set_generation(io_ctl, trans->transid);
1303 
1304 	mutex_lock(&ctl->cache_writeout_mutex);
1305 	/* Write out the extent entries in the free space cache */
1306 	spin_lock(&ctl->tree_lock);
1307 	ret = write_cache_extent_entries(io_ctl, ctl,
1308 					 block_group, &entries, &bitmaps,
1309 					 &bitmap_list);
1310 	if (ret)
1311 		goto out_nospc_locked;
1312 
1313 	/*
1314 	 * Some spaces that are freed in the current transaction are pinned,
1315 	 * they will be added into free space cache after the transaction is
1316 	 * committed, we shouldn't lose them.
1317 	 *
1318 	 * If this changes while we are working we'll get added back to
1319 	 * the dirty list and redo it.  No locking needed
1320 	 */
1321 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1322 	if (ret)
1323 		goto out_nospc_locked;
1324 
1325 	/*
1326 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1327 	 * locked while doing it because a concurrent trim can be manipulating
1328 	 * or freeing the bitmap.
1329 	 */
1330 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1331 	spin_unlock(&ctl->tree_lock);
1332 	mutex_unlock(&ctl->cache_writeout_mutex);
1333 	if (ret)
1334 		goto out_nospc;
1335 
1336 	/* Zero out the rest of the pages just to make sure */
1337 	io_ctl_zero_remaining_pages(io_ctl);
1338 
1339 	/* Everything is written out, now we dirty the pages in the file. */
1340 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1341 				i_size_read(inode), &cached_state);
1342 	if (ret)
1343 		goto out_nospc;
1344 
1345 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1346 		up_write(&block_group->data_rwsem);
1347 	/*
1348 	 * Release the pages and unlock the extent, we will flush
1349 	 * them out later
1350 	 */
1351 	io_ctl_drop_pages(io_ctl);
1352 
1353 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1354 			     i_size_read(inode) - 1, &cached_state);
1355 
1356 	/*
1357 	 * at this point the pages are under IO and we're happy,
1358 	 * The caller is responsible for waiting on them and updating the
1359 	 * the cache and the inode
1360 	 */
1361 	io_ctl->entries = entries;
1362 	io_ctl->bitmaps = bitmaps;
1363 
1364 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1365 	if (ret)
1366 		goto out;
1367 
1368 	return 0;
1369 
1370 out_nospc_locked:
1371 	cleanup_bitmap_list(&bitmap_list);
1372 	spin_unlock(&ctl->tree_lock);
1373 	mutex_unlock(&ctl->cache_writeout_mutex);
1374 
1375 out_nospc:
1376 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1377 
1378 out_unlock:
1379 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1380 		up_write(&block_group->data_rwsem);
1381 
1382 out:
1383 	io_ctl->inode = NULL;
1384 	io_ctl_free(io_ctl);
1385 	if (ret) {
1386 		invalidate_inode_pages2(inode->i_mapping);
1387 		BTRFS_I(inode)->generation = 0;
1388 	}
1389 	btrfs_update_inode(trans, root, inode);
1390 	if (must_iput)
1391 		iput(inode);
1392 	return ret;
1393 }
1394 
1395 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1396 			  struct btrfs_block_group *block_group,
1397 			  struct btrfs_path *path)
1398 {
1399 	struct btrfs_fs_info *fs_info = trans->fs_info;
1400 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1401 	struct inode *inode;
1402 	int ret = 0;
1403 
1404 	spin_lock(&block_group->lock);
1405 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1406 		spin_unlock(&block_group->lock);
1407 		return 0;
1408 	}
1409 	spin_unlock(&block_group->lock);
1410 
1411 	inode = lookup_free_space_inode(block_group, path);
1412 	if (IS_ERR(inode))
1413 		return 0;
1414 
1415 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1416 				block_group, &block_group->io_ctl, trans);
1417 	if (ret) {
1418 #ifdef CONFIG_BTRFS_DEBUG
1419 		btrfs_err(fs_info,
1420 			  "failed to write free space cache for block group %llu",
1421 			  block_group->start);
1422 #endif
1423 		spin_lock(&block_group->lock);
1424 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1425 		spin_unlock(&block_group->lock);
1426 
1427 		block_group->io_ctl.inode = NULL;
1428 		iput(inode);
1429 	}
1430 
1431 	/*
1432 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1433 	 * to wait for IO and put the inode
1434 	 */
1435 
1436 	return ret;
1437 }
1438 
1439 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1440 					  u64 offset)
1441 {
1442 	ASSERT(offset >= bitmap_start);
1443 	offset -= bitmap_start;
1444 	return (unsigned long)(div_u64(offset, unit));
1445 }
1446 
1447 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1448 {
1449 	return (unsigned long)(div_u64(bytes, unit));
1450 }
1451 
1452 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1453 				   u64 offset)
1454 {
1455 	u64 bitmap_start;
1456 	u64 bytes_per_bitmap;
1457 
1458 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1459 	bitmap_start = offset - ctl->start;
1460 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1461 	bitmap_start *= bytes_per_bitmap;
1462 	bitmap_start += ctl->start;
1463 
1464 	return bitmap_start;
1465 }
1466 
1467 static int tree_insert_offset(struct rb_root *root, u64 offset,
1468 			      struct rb_node *node, int bitmap)
1469 {
1470 	struct rb_node **p = &root->rb_node;
1471 	struct rb_node *parent = NULL;
1472 	struct btrfs_free_space *info;
1473 
1474 	while (*p) {
1475 		parent = *p;
1476 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1477 
1478 		if (offset < info->offset) {
1479 			p = &(*p)->rb_left;
1480 		} else if (offset > info->offset) {
1481 			p = &(*p)->rb_right;
1482 		} else {
1483 			/*
1484 			 * we could have a bitmap entry and an extent entry
1485 			 * share the same offset.  If this is the case, we want
1486 			 * the extent entry to always be found first if we do a
1487 			 * linear search through the tree, since we want to have
1488 			 * the quickest allocation time, and allocating from an
1489 			 * extent is faster than allocating from a bitmap.  So
1490 			 * if we're inserting a bitmap and we find an entry at
1491 			 * this offset, we want to go right, or after this entry
1492 			 * logically.  If we are inserting an extent and we've
1493 			 * found a bitmap, we want to go left, or before
1494 			 * logically.
1495 			 */
1496 			if (bitmap) {
1497 				if (info->bitmap) {
1498 					WARN_ON_ONCE(1);
1499 					return -EEXIST;
1500 				}
1501 				p = &(*p)->rb_right;
1502 			} else {
1503 				if (!info->bitmap) {
1504 					WARN_ON_ONCE(1);
1505 					return -EEXIST;
1506 				}
1507 				p = &(*p)->rb_left;
1508 			}
1509 		}
1510 	}
1511 
1512 	rb_link_node(node, parent, p);
1513 	rb_insert_color(node, root);
1514 
1515 	return 0;
1516 }
1517 
1518 /*
1519  * searches the tree for the given offset.
1520  *
1521  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1522  * want a section that has at least bytes size and comes at or after the given
1523  * offset.
1524  */
1525 static struct btrfs_free_space *
1526 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1527 		   u64 offset, int bitmap_only, int fuzzy)
1528 {
1529 	struct rb_node *n = ctl->free_space_offset.rb_node;
1530 	struct btrfs_free_space *entry, *prev = NULL;
1531 
1532 	/* find entry that is closest to the 'offset' */
1533 	while (1) {
1534 		if (!n) {
1535 			entry = NULL;
1536 			break;
1537 		}
1538 
1539 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1540 		prev = entry;
1541 
1542 		if (offset < entry->offset)
1543 			n = n->rb_left;
1544 		else if (offset > entry->offset)
1545 			n = n->rb_right;
1546 		else
1547 			break;
1548 	}
1549 
1550 	if (bitmap_only) {
1551 		if (!entry)
1552 			return NULL;
1553 		if (entry->bitmap)
1554 			return entry;
1555 
1556 		/*
1557 		 * bitmap entry and extent entry may share same offset,
1558 		 * in that case, bitmap entry comes after extent entry.
1559 		 */
1560 		n = rb_next(n);
1561 		if (!n)
1562 			return NULL;
1563 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1564 		if (entry->offset != offset)
1565 			return NULL;
1566 
1567 		WARN_ON(!entry->bitmap);
1568 		return entry;
1569 	} else if (entry) {
1570 		if (entry->bitmap) {
1571 			/*
1572 			 * if previous extent entry covers the offset,
1573 			 * we should return it instead of the bitmap entry
1574 			 */
1575 			n = rb_prev(&entry->offset_index);
1576 			if (n) {
1577 				prev = rb_entry(n, struct btrfs_free_space,
1578 						offset_index);
1579 				if (!prev->bitmap &&
1580 				    prev->offset + prev->bytes > offset)
1581 					entry = prev;
1582 			}
1583 		}
1584 		return entry;
1585 	}
1586 
1587 	if (!prev)
1588 		return NULL;
1589 
1590 	/* find last entry before the 'offset' */
1591 	entry = prev;
1592 	if (entry->offset > offset) {
1593 		n = rb_prev(&entry->offset_index);
1594 		if (n) {
1595 			entry = rb_entry(n, struct btrfs_free_space,
1596 					offset_index);
1597 			ASSERT(entry->offset <= offset);
1598 		} else {
1599 			if (fuzzy)
1600 				return entry;
1601 			else
1602 				return NULL;
1603 		}
1604 	}
1605 
1606 	if (entry->bitmap) {
1607 		n = rb_prev(&entry->offset_index);
1608 		if (n) {
1609 			prev = rb_entry(n, struct btrfs_free_space,
1610 					offset_index);
1611 			if (!prev->bitmap &&
1612 			    prev->offset + prev->bytes > offset)
1613 				return prev;
1614 		}
1615 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1616 			return entry;
1617 	} else if (entry->offset + entry->bytes > offset)
1618 		return entry;
1619 
1620 	if (!fuzzy)
1621 		return NULL;
1622 
1623 	while (1) {
1624 		if (entry->bitmap) {
1625 			if (entry->offset + BITS_PER_BITMAP *
1626 			    ctl->unit > offset)
1627 				break;
1628 		} else {
1629 			if (entry->offset + entry->bytes > offset)
1630 				break;
1631 		}
1632 
1633 		n = rb_next(&entry->offset_index);
1634 		if (!n)
1635 			return NULL;
1636 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1637 	}
1638 	return entry;
1639 }
1640 
1641 static inline void
1642 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1643 		    struct btrfs_free_space *info)
1644 {
1645 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1646 	ctl->free_extents--;
1647 
1648 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1649 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1650 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1651 	}
1652 }
1653 
1654 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1655 			      struct btrfs_free_space *info)
1656 {
1657 	__unlink_free_space(ctl, info);
1658 	ctl->free_space -= info->bytes;
1659 }
1660 
1661 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1662 			   struct btrfs_free_space *info)
1663 {
1664 	int ret = 0;
1665 
1666 	ASSERT(info->bytes || info->bitmap);
1667 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1668 				 &info->offset_index, (info->bitmap != NULL));
1669 	if (ret)
1670 		return ret;
1671 
1672 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1673 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1674 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1675 	}
1676 
1677 	ctl->free_space += info->bytes;
1678 	ctl->free_extents++;
1679 	return ret;
1680 }
1681 
1682 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1683 {
1684 	struct btrfs_block_group *block_group = ctl->private;
1685 	u64 max_bytes;
1686 	u64 bitmap_bytes;
1687 	u64 extent_bytes;
1688 	u64 size = block_group->length;
1689 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1690 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1691 
1692 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1693 
1694 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1695 
1696 	/*
1697 	 * We are trying to keep the total amount of memory used per 1GiB of
1698 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
1699 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
1700 	 * bitmaps, we may end up using more memory than this.
1701 	 */
1702 	if (size < SZ_1G)
1703 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1704 	else
1705 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1706 
1707 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
1708 
1709 	/*
1710 	 * we want the extent entry threshold to always be at most 1/2 the max
1711 	 * bytes we can have, or whatever is less than that.
1712 	 */
1713 	extent_bytes = max_bytes - bitmap_bytes;
1714 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1715 
1716 	ctl->extents_thresh =
1717 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1718 }
1719 
1720 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1721 				       struct btrfs_free_space *info,
1722 				       u64 offset, u64 bytes)
1723 {
1724 	unsigned long start, count, end;
1725 	int extent_delta = -1;
1726 
1727 	start = offset_to_bit(info->offset, ctl->unit, offset);
1728 	count = bytes_to_bits(bytes, ctl->unit);
1729 	end = start + count;
1730 	ASSERT(end <= BITS_PER_BITMAP);
1731 
1732 	bitmap_clear(info->bitmap, start, count);
1733 
1734 	info->bytes -= bytes;
1735 	if (info->max_extent_size > ctl->unit)
1736 		info->max_extent_size = 0;
1737 
1738 	if (start && test_bit(start - 1, info->bitmap))
1739 		extent_delta++;
1740 
1741 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1742 		extent_delta++;
1743 
1744 	info->bitmap_extents += extent_delta;
1745 	if (!btrfs_free_space_trimmed(info)) {
1746 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1747 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1748 	}
1749 }
1750 
1751 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1752 			      struct btrfs_free_space *info, u64 offset,
1753 			      u64 bytes)
1754 {
1755 	__bitmap_clear_bits(ctl, info, offset, bytes);
1756 	ctl->free_space -= bytes;
1757 }
1758 
1759 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1760 			    struct btrfs_free_space *info, u64 offset,
1761 			    u64 bytes)
1762 {
1763 	unsigned long start, count, end;
1764 	int extent_delta = 1;
1765 
1766 	start = offset_to_bit(info->offset, ctl->unit, offset);
1767 	count = bytes_to_bits(bytes, ctl->unit);
1768 	end = start + count;
1769 	ASSERT(end <= BITS_PER_BITMAP);
1770 
1771 	bitmap_set(info->bitmap, start, count);
1772 
1773 	info->bytes += bytes;
1774 	ctl->free_space += bytes;
1775 
1776 	if (start && test_bit(start - 1, info->bitmap))
1777 		extent_delta--;
1778 
1779 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1780 		extent_delta--;
1781 
1782 	info->bitmap_extents += extent_delta;
1783 	if (!btrfs_free_space_trimmed(info)) {
1784 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1785 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1786 	}
1787 }
1788 
1789 /*
1790  * If we can not find suitable extent, we will use bytes to record
1791  * the size of the max extent.
1792  */
1793 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1794 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1795 			 u64 *bytes, bool for_alloc)
1796 {
1797 	unsigned long found_bits = 0;
1798 	unsigned long max_bits = 0;
1799 	unsigned long bits, i;
1800 	unsigned long next_zero;
1801 	unsigned long extent_bits;
1802 
1803 	/*
1804 	 * Skip searching the bitmap if we don't have a contiguous section that
1805 	 * is large enough for this allocation.
1806 	 */
1807 	if (for_alloc &&
1808 	    bitmap_info->max_extent_size &&
1809 	    bitmap_info->max_extent_size < *bytes) {
1810 		*bytes = bitmap_info->max_extent_size;
1811 		return -1;
1812 	}
1813 
1814 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1815 			  max_t(u64, *offset, bitmap_info->offset));
1816 	bits = bytes_to_bits(*bytes, ctl->unit);
1817 
1818 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1819 		if (for_alloc && bits == 1) {
1820 			found_bits = 1;
1821 			break;
1822 		}
1823 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1824 					       BITS_PER_BITMAP, i);
1825 		extent_bits = next_zero - i;
1826 		if (extent_bits >= bits) {
1827 			found_bits = extent_bits;
1828 			break;
1829 		} else if (extent_bits > max_bits) {
1830 			max_bits = extent_bits;
1831 		}
1832 		i = next_zero;
1833 	}
1834 
1835 	if (found_bits) {
1836 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1837 		*bytes = (u64)(found_bits) * ctl->unit;
1838 		return 0;
1839 	}
1840 
1841 	*bytes = (u64)(max_bits) * ctl->unit;
1842 	bitmap_info->max_extent_size = *bytes;
1843 	return -1;
1844 }
1845 
1846 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1847 {
1848 	if (entry->bitmap)
1849 		return entry->max_extent_size;
1850 	return entry->bytes;
1851 }
1852 
1853 /* Cache the size of the max extent in bytes */
1854 static struct btrfs_free_space *
1855 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1856 		unsigned long align, u64 *max_extent_size)
1857 {
1858 	struct btrfs_free_space *entry;
1859 	struct rb_node *node;
1860 	u64 tmp;
1861 	u64 align_off;
1862 	int ret;
1863 
1864 	if (!ctl->free_space_offset.rb_node)
1865 		goto out;
1866 
1867 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1868 	if (!entry)
1869 		goto out;
1870 
1871 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1872 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1873 		if (entry->bytes < *bytes) {
1874 			*max_extent_size = max(get_max_extent_size(entry),
1875 					       *max_extent_size);
1876 			continue;
1877 		}
1878 
1879 		/* make sure the space returned is big enough
1880 		 * to match our requested alignment
1881 		 */
1882 		if (*bytes >= align) {
1883 			tmp = entry->offset - ctl->start + align - 1;
1884 			tmp = div64_u64(tmp, align);
1885 			tmp = tmp * align + ctl->start;
1886 			align_off = tmp - entry->offset;
1887 		} else {
1888 			align_off = 0;
1889 			tmp = entry->offset;
1890 		}
1891 
1892 		if (entry->bytes < *bytes + align_off) {
1893 			*max_extent_size = max(get_max_extent_size(entry),
1894 					       *max_extent_size);
1895 			continue;
1896 		}
1897 
1898 		if (entry->bitmap) {
1899 			u64 size = *bytes;
1900 
1901 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1902 			if (!ret) {
1903 				*offset = tmp;
1904 				*bytes = size;
1905 				return entry;
1906 			} else {
1907 				*max_extent_size =
1908 					max(get_max_extent_size(entry),
1909 					    *max_extent_size);
1910 			}
1911 			continue;
1912 		}
1913 
1914 		*offset = tmp;
1915 		*bytes = entry->bytes - align_off;
1916 		return entry;
1917 	}
1918 out:
1919 	return NULL;
1920 }
1921 
1922 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
1923 				struct btrfs_free_space *bitmap_info)
1924 {
1925 	struct btrfs_block_group *block_group = ctl->private;
1926 	u64 bytes = bitmap_info->bytes;
1927 	unsigned int rs, re;
1928 	int count = 0;
1929 
1930 	if (!block_group || !bytes)
1931 		return count;
1932 
1933 	bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0,
1934 				   BITS_PER_BITMAP) {
1935 		bytes -= (rs - re) * ctl->unit;
1936 		count++;
1937 
1938 		if (!bytes)
1939 			break;
1940 	}
1941 
1942 	return count;
1943 }
1944 
1945 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1946 			   struct btrfs_free_space *info, u64 offset)
1947 {
1948 	info->offset = offset_to_bitmap(ctl, offset);
1949 	info->bytes = 0;
1950 	info->bitmap_extents = 0;
1951 	INIT_LIST_HEAD(&info->list);
1952 	link_free_space(ctl, info);
1953 	ctl->total_bitmaps++;
1954 
1955 	ctl->op->recalc_thresholds(ctl);
1956 }
1957 
1958 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1959 			struct btrfs_free_space *bitmap_info)
1960 {
1961 	/*
1962 	 * Normally when this is called, the bitmap is completely empty. However,
1963 	 * if we are blowing up the free space cache for one reason or another
1964 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1965 	 * we may leave stats on the table.
1966 	 */
1967 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1968 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1969 			bitmap_info->bitmap_extents;
1970 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1971 
1972 	}
1973 	unlink_free_space(ctl, bitmap_info);
1974 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1975 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1976 	ctl->total_bitmaps--;
1977 	ctl->op->recalc_thresholds(ctl);
1978 }
1979 
1980 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1981 			      struct btrfs_free_space *bitmap_info,
1982 			      u64 *offset, u64 *bytes)
1983 {
1984 	u64 end;
1985 	u64 search_start, search_bytes;
1986 	int ret;
1987 
1988 again:
1989 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1990 
1991 	/*
1992 	 * We need to search for bits in this bitmap.  We could only cover some
1993 	 * of the extent in this bitmap thanks to how we add space, so we need
1994 	 * to search for as much as it as we can and clear that amount, and then
1995 	 * go searching for the next bit.
1996 	 */
1997 	search_start = *offset;
1998 	search_bytes = ctl->unit;
1999 	search_bytes = min(search_bytes, end - search_start + 1);
2000 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2001 			    false);
2002 	if (ret < 0 || search_start != *offset)
2003 		return -EINVAL;
2004 
2005 	/* We may have found more bits than what we need */
2006 	search_bytes = min(search_bytes, *bytes);
2007 
2008 	/* Cannot clear past the end of the bitmap */
2009 	search_bytes = min(search_bytes, end - search_start + 1);
2010 
2011 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2012 	*offset += search_bytes;
2013 	*bytes -= search_bytes;
2014 
2015 	if (*bytes) {
2016 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2017 		if (!bitmap_info->bytes)
2018 			free_bitmap(ctl, bitmap_info);
2019 
2020 		/*
2021 		 * no entry after this bitmap, but we still have bytes to
2022 		 * remove, so something has gone wrong.
2023 		 */
2024 		if (!next)
2025 			return -EINVAL;
2026 
2027 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2028 				       offset_index);
2029 
2030 		/*
2031 		 * if the next entry isn't a bitmap we need to return to let the
2032 		 * extent stuff do its work.
2033 		 */
2034 		if (!bitmap_info->bitmap)
2035 			return -EAGAIN;
2036 
2037 		/*
2038 		 * Ok the next item is a bitmap, but it may not actually hold
2039 		 * the information for the rest of this free space stuff, so
2040 		 * look for it, and if we don't find it return so we can try
2041 		 * everything over again.
2042 		 */
2043 		search_start = *offset;
2044 		search_bytes = ctl->unit;
2045 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2046 				    &search_bytes, false);
2047 		if (ret < 0 || search_start != *offset)
2048 			return -EAGAIN;
2049 
2050 		goto again;
2051 	} else if (!bitmap_info->bytes)
2052 		free_bitmap(ctl, bitmap_info);
2053 
2054 	return 0;
2055 }
2056 
2057 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2058 			       struct btrfs_free_space *info, u64 offset,
2059 			       u64 bytes, enum btrfs_trim_state trim_state)
2060 {
2061 	u64 bytes_to_set = 0;
2062 	u64 end;
2063 
2064 	/*
2065 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2066 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2067 	 */
2068 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2069 		if (btrfs_free_space_trimmed(info)) {
2070 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2071 				info->bitmap_extents;
2072 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2073 		}
2074 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2075 	}
2076 
2077 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2078 
2079 	bytes_to_set = min(end - offset, bytes);
2080 
2081 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2082 
2083 	/*
2084 	 * We set some bytes, we have no idea what the max extent size is
2085 	 * anymore.
2086 	 */
2087 	info->max_extent_size = 0;
2088 
2089 	return bytes_to_set;
2090 
2091 }
2092 
2093 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2094 		      struct btrfs_free_space *info)
2095 {
2096 	struct btrfs_block_group *block_group = ctl->private;
2097 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2098 	bool forced = false;
2099 
2100 #ifdef CONFIG_BTRFS_DEBUG
2101 	if (btrfs_should_fragment_free_space(block_group))
2102 		forced = true;
2103 #endif
2104 
2105 	/* This is a way to reclaim large regions from the bitmaps. */
2106 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2107 		return false;
2108 
2109 	/*
2110 	 * If we are below the extents threshold then we can add this as an
2111 	 * extent, and don't have to deal with the bitmap
2112 	 */
2113 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2114 		/*
2115 		 * If this block group has some small extents we don't want to
2116 		 * use up all of our free slots in the cache with them, we want
2117 		 * to reserve them to larger extents, however if we have plenty
2118 		 * of cache left then go ahead an dadd them, no sense in adding
2119 		 * the overhead of a bitmap if we don't have to.
2120 		 */
2121 		if (info->bytes <= fs_info->sectorsize * 8) {
2122 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2123 				return false;
2124 		} else {
2125 			return false;
2126 		}
2127 	}
2128 
2129 	/*
2130 	 * The original block groups from mkfs can be really small, like 8
2131 	 * megabytes, so don't bother with a bitmap for those entries.  However
2132 	 * some block groups can be smaller than what a bitmap would cover but
2133 	 * are still large enough that they could overflow the 32k memory limit,
2134 	 * so allow those block groups to still be allowed to have a bitmap
2135 	 * entry.
2136 	 */
2137 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2138 		return false;
2139 
2140 	return true;
2141 }
2142 
2143 static const struct btrfs_free_space_op free_space_op = {
2144 	.recalc_thresholds	= recalculate_thresholds,
2145 	.use_bitmap		= use_bitmap,
2146 };
2147 
2148 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2149 			      struct btrfs_free_space *info)
2150 {
2151 	struct btrfs_free_space *bitmap_info;
2152 	struct btrfs_block_group *block_group = NULL;
2153 	int added = 0;
2154 	u64 bytes, offset, bytes_added;
2155 	enum btrfs_trim_state trim_state;
2156 	int ret;
2157 
2158 	bytes = info->bytes;
2159 	offset = info->offset;
2160 	trim_state = info->trim_state;
2161 
2162 	if (!ctl->op->use_bitmap(ctl, info))
2163 		return 0;
2164 
2165 	if (ctl->op == &free_space_op)
2166 		block_group = ctl->private;
2167 again:
2168 	/*
2169 	 * Since we link bitmaps right into the cluster we need to see if we
2170 	 * have a cluster here, and if so and it has our bitmap we need to add
2171 	 * the free space to that bitmap.
2172 	 */
2173 	if (block_group && !list_empty(&block_group->cluster_list)) {
2174 		struct btrfs_free_cluster *cluster;
2175 		struct rb_node *node;
2176 		struct btrfs_free_space *entry;
2177 
2178 		cluster = list_entry(block_group->cluster_list.next,
2179 				     struct btrfs_free_cluster,
2180 				     block_group_list);
2181 		spin_lock(&cluster->lock);
2182 		node = rb_first(&cluster->root);
2183 		if (!node) {
2184 			spin_unlock(&cluster->lock);
2185 			goto no_cluster_bitmap;
2186 		}
2187 
2188 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2189 		if (!entry->bitmap) {
2190 			spin_unlock(&cluster->lock);
2191 			goto no_cluster_bitmap;
2192 		}
2193 
2194 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2195 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2196 							  bytes, trim_state);
2197 			bytes -= bytes_added;
2198 			offset += bytes_added;
2199 		}
2200 		spin_unlock(&cluster->lock);
2201 		if (!bytes) {
2202 			ret = 1;
2203 			goto out;
2204 		}
2205 	}
2206 
2207 no_cluster_bitmap:
2208 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2209 					 1, 0);
2210 	if (!bitmap_info) {
2211 		ASSERT(added == 0);
2212 		goto new_bitmap;
2213 	}
2214 
2215 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2216 					  trim_state);
2217 	bytes -= bytes_added;
2218 	offset += bytes_added;
2219 	added = 0;
2220 
2221 	if (!bytes) {
2222 		ret = 1;
2223 		goto out;
2224 	} else
2225 		goto again;
2226 
2227 new_bitmap:
2228 	if (info && info->bitmap) {
2229 		add_new_bitmap(ctl, info, offset);
2230 		added = 1;
2231 		info = NULL;
2232 		goto again;
2233 	} else {
2234 		spin_unlock(&ctl->tree_lock);
2235 
2236 		/* no pre-allocated info, allocate a new one */
2237 		if (!info) {
2238 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2239 						 GFP_NOFS);
2240 			if (!info) {
2241 				spin_lock(&ctl->tree_lock);
2242 				ret = -ENOMEM;
2243 				goto out;
2244 			}
2245 		}
2246 
2247 		/* allocate the bitmap */
2248 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2249 						 GFP_NOFS);
2250 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2251 		spin_lock(&ctl->tree_lock);
2252 		if (!info->bitmap) {
2253 			ret = -ENOMEM;
2254 			goto out;
2255 		}
2256 		goto again;
2257 	}
2258 
2259 out:
2260 	if (info) {
2261 		if (info->bitmap)
2262 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2263 					info->bitmap);
2264 		kmem_cache_free(btrfs_free_space_cachep, info);
2265 	}
2266 
2267 	return ret;
2268 }
2269 
2270 /*
2271  * Free space merging rules:
2272  *  1) Merge trimmed areas together
2273  *  2) Let untrimmed areas coalesce with trimmed areas
2274  *  3) Always pull neighboring regions from bitmaps
2275  *
2276  * The above rules are for when we merge free space based on btrfs_trim_state.
2277  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2278  * same reason: to promote larger extent regions which makes life easier for
2279  * find_free_extent().  Rule 2 enables coalescing based on the common path
2280  * being returning free space from btrfs_finish_extent_commit().  So when free
2281  * space is trimmed, it will prevent aggregating trimmed new region and
2282  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2283  * and provide find_free_extent() with the largest extents possible hoping for
2284  * the reuse path.
2285  */
2286 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2287 			  struct btrfs_free_space *info, bool update_stat)
2288 {
2289 	struct btrfs_free_space *left_info;
2290 	struct btrfs_free_space *right_info;
2291 	bool merged = false;
2292 	u64 offset = info->offset;
2293 	u64 bytes = info->bytes;
2294 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2295 
2296 	/*
2297 	 * first we want to see if there is free space adjacent to the range we
2298 	 * are adding, if there is remove that struct and add a new one to
2299 	 * cover the entire range
2300 	 */
2301 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2302 	if (right_info && rb_prev(&right_info->offset_index))
2303 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2304 				     struct btrfs_free_space, offset_index);
2305 	else
2306 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2307 
2308 	/* See try_merge_free_space() comment. */
2309 	if (right_info && !right_info->bitmap &&
2310 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2311 		if (update_stat)
2312 			unlink_free_space(ctl, right_info);
2313 		else
2314 			__unlink_free_space(ctl, right_info);
2315 		info->bytes += right_info->bytes;
2316 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2317 		merged = true;
2318 	}
2319 
2320 	/* See try_merge_free_space() comment. */
2321 	if (left_info && !left_info->bitmap &&
2322 	    left_info->offset + left_info->bytes == offset &&
2323 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2324 		if (update_stat)
2325 			unlink_free_space(ctl, left_info);
2326 		else
2327 			__unlink_free_space(ctl, left_info);
2328 		info->offset = left_info->offset;
2329 		info->bytes += left_info->bytes;
2330 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2331 		merged = true;
2332 	}
2333 
2334 	return merged;
2335 }
2336 
2337 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2338 				     struct btrfs_free_space *info,
2339 				     bool update_stat)
2340 {
2341 	struct btrfs_free_space *bitmap;
2342 	unsigned long i;
2343 	unsigned long j;
2344 	const u64 end = info->offset + info->bytes;
2345 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2346 	u64 bytes;
2347 
2348 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2349 	if (!bitmap)
2350 		return false;
2351 
2352 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2353 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2354 	if (j == i)
2355 		return false;
2356 	bytes = (j - i) * ctl->unit;
2357 	info->bytes += bytes;
2358 
2359 	/* See try_merge_free_space() comment. */
2360 	if (!btrfs_free_space_trimmed(bitmap))
2361 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2362 
2363 	if (update_stat)
2364 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2365 	else
2366 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2367 
2368 	if (!bitmap->bytes)
2369 		free_bitmap(ctl, bitmap);
2370 
2371 	return true;
2372 }
2373 
2374 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2375 				       struct btrfs_free_space *info,
2376 				       bool update_stat)
2377 {
2378 	struct btrfs_free_space *bitmap;
2379 	u64 bitmap_offset;
2380 	unsigned long i;
2381 	unsigned long j;
2382 	unsigned long prev_j;
2383 	u64 bytes;
2384 
2385 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2386 	/* If we're on a boundary, try the previous logical bitmap. */
2387 	if (bitmap_offset == info->offset) {
2388 		if (info->offset == 0)
2389 			return false;
2390 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2391 	}
2392 
2393 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2394 	if (!bitmap)
2395 		return false;
2396 
2397 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2398 	j = 0;
2399 	prev_j = (unsigned long)-1;
2400 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2401 		if (j > i)
2402 			break;
2403 		prev_j = j;
2404 	}
2405 	if (prev_j == i)
2406 		return false;
2407 
2408 	if (prev_j == (unsigned long)-1)
2409 		bytes = (i + 1) * ctl->unit;
2410 	else
2411 		bytes = (i - prev_j) * ctl->unit;
2412 
2413 	info->offset -= bytes;
2414 	info->bytes += bytes;
2415 
2416 	/* See try_merge_free_space() comment. */
2417 	if (!btrfs_free_space_trimmed(bitmap))
2418 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2419 
2420 	if (update_stat)
2421 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2422 	else
2423 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2424 
2425 	if (!bitmap->bytes)
2426 		free_bitmap(ctl, bitmap);
2427 
2428 	return true;
2429 }
2430 
2431 /*
2432  * We prefer always to allocate from extent entries, both for clustered and
2433  * non-clustered allocation requests. So when attempting to add a new extent
2434  * entry, try to see if there's adjacent free space in bitmap entries, and if
2435  * there is, migrate that space from the bitmaps to the extent.
2436  * Like this we get better chances of satisfying space allocation requests
2437  * because we attempt to satisfy them based on a single cache entry, and never
2438  * on 2 or more entries - even if the entries represent a contiguous free space
2439  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2440  * ends).
2441  */
2442 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2443 			      struct btrfs_free_space *info,
2444 			      bool update_stat)
2445 {
2446 	/*
2447 	 * Only work with disconnected entries, as we can change their offset,
2448 	 * and must be extent entries.
2449 	 */
2450 	ASSERT(!info->bitmap);
2451 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2452 
2453 	if (ctl->total_bitmaps > 0) {
2454 		bool stole_end;
2455 		bool stole_front = false;
2456 
2457 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2458 		if (ctl->total_bitmaps > 0)
2459 			stole_front = steal_from_bitmap_to_front(ctl, info,
2460 								 update_stat);
2461 
2462 		if (stole_end || stole_front)
2463 			try_merge_free_space(ctl, info, update_stat);
2464 	}
2465 }
2466 
2467 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2468 			   struct btrfs_free_space_ctl *ctl,
2469 			   u64 offset, u64 bytes,
2470 			   enum btrfs_trim_state trim_state)
2471 {
2472 	struct btrfs_block_group *block_group = ctl->private;
2473 	struct btrfs_free_space *info;
2474 	int ret = 0;
2475 	u64 filter_bytes = bytes;
2476 
2477 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2478 	if (!info)
2479 		return -ENOMEM;
2480 
2481 	info->offset = offset;
2482 	info->bytes = bytes;
2483 	info->trim_state = trim_state;
2484 	RB_CLEAR_NODE(&info->offset_index);
2485 
2486 	spin_lock(&ctl->tree_lock);
2487 
2488 	if (try_merge_free_space(ctl, info, true))
2489 		goto link;
2490 
2491 	/*
2492 	 * There was no extent directly to the left or right of this new
2493 	 * extent then we know we're going to have to allocate a new extent, so
2494 	 * before we do that see if we need to drop this into a bitmap
2495 	 */
2496 	ret = insert_into_bitmap(ctl, info);
2497 	if (ret < 0) {
2498 		goto out;
2499 	} else if (ret) {
2500 		ret = 0;
2501 		goto out;
2502 	}
2503 link:
2504 	/*
2505 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2506 	 * going to add the new free space to existing bitmap entries - because
2507 	 * that would mean unnecessary work that would be reverted. Therefore
2508 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2509 	 */
2510 	steal_from_bitmap(ctl, info, true);
2511 
2512 	filter_bytes = max(filter_bytes, info->bytes);
2513 
2514 	ret = link_free_space(ctl, info);
2515 	if (ret)
2516 		kmem_cache_free(btrfs_free_space_cachep, info);
2517 out:
2518 	btrfs_discard_update_discardable(block_group, ctl);
2519 	spin_unlock(&ctl->tree_lock);
2520 
2521 	if (ret) {
2522 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2523 		ASSERT(ret != -EEXIST);
2524 	}
2525 
2526 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2527 		btrfs_discard_check_filter(block_group, filter_bytes);
2528 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2529 	}
2530 
2531 	return ret;
2532 }
2533 
2534 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2535 			 u64 bytenr, u64 size)
2536 {
2537 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2538 
2539 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2540 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2541 
2542 	return __btrfs_add_free_space(block_group->fs_info,
2543 				      block_group->free_space_ctl,
2544 				      bytenr, size, trim_state);
2545 }
2546 
2547 /*
2548  * This is a subtle distinction because when adding free space back in general,
2549  * we want it to be added as untrimmed for async. But in the case where we add
2550  * it on loading of a block group, we want to consider it trimmed.
2551  */
2552 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2553 				       u64 bytenr, u64 size)
2554 {
2555 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2556 
2557 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2558 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2559 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2560 
2561 	return __btrfs_add_free_space(block_group->fs_info,
2562 				      block_group->free_space_ctl,
2563 				      bytenr, size, trim_state);
2564 }
2565 
2566 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2567 			    u64 offset, u64 bytes)
2568 {
2569 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2570 	struct btrfs_free_space *info;
2571 	int ret;
2572 	bool re_search = false;
2573 
2574 	spin_lock(&ctl->tree_lock);
2575 
2576 again:
2577 	ret = 0;
2578 	if (!bytes)
2579 		goto out_lock;
2580 
2581 	info = tree_search_offset(ctl, offset, 0, 0);
2582 	if (!info) {
2583 		/*
2584 		 * oops didn't find an extent that matched the space we wanted
2585 		 * to remove, look for a bitmap instead
2586 		 */
2587 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2588 					  1, 0);
2589 		if (!info) {
2590 			/*
2591 			 * If we found a partial bit of our free space in a
2592 			 * bitmap but then couldn't find the other part this may
2593 			 * be a problem, so WARN about it.
2594 			 */
2595 			WARN_ON(re_search);
2596 			goto out_lock;
2597 		}
2598 	}
2599 
2600 	re_search = false;
2601 	if (!info->bitmap) {
2602 		unlink_free_space(ctl, info);
2603 		if (offset == info->offset) {
2604 			u64 to_free = min(bytes, info->bytes);
2605 
2606 			info->bytes -= to_free;
2607 			info->offset += to_free;
2608 			if (info->bytes) {
2609 				ret = link_free_space(ctl, info);
2610 				WARN_ON(ret);
2611 			} else {
2612 				kmem_cache_free(btrfs_free_space_cachep, info);
2613 			}
2614 
2615 			offset += to_free;
2616 			bytes -= to_free;
2617 			goto again;
2618 		} else {
2619 			u64 old_end = info->bytes + info->offset;
2620 
2621 			info->bytes = offset - info->offset;
2622 			ret = link_free_space(ctl, info);
2623 			WARN_ON(ret);
2624 			if (ret)
2625 				goto out_lock;
2626 
2627 			/* Not enough bytes in this entry to satisfy us */
2628 			if (old_end < offset + bytes) {
2629 				bytes -= old_end - offset;
2630 				offset = old_end;
2631 				goto again;
2632 			} else if (old_end == offset + bytes) {
2633 				/* all done */
2634 				goto out_lock;
2635 			}
2636 			spin_unlock(&ctl->tree_lock);
2637 
2638 			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2639 						     offset + bytes,
2640 						     old_end - (offset + bytes),
2641 						     info->trim_state);
2642 			WARN_ON(ret);
2643 			goto out;
2644 		}
2645 	}
2646 
2647 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2648 	if (ret == -EAGAIN) {
2649 		re_search = true;
2650 		goto again;
2651 	}
2652 out_lock:
2653 	btrfs_discard_update_discardable(block_group, ctl);
2654 	spin_unlock(&ctl->tree_lock);
2655 out:
2656 	return ret;
2657 }
2658 
2659 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2660 			   u64 bytes)
2661 {
2662 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2663 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2664 	struct btrfs_free_space *info;
2665 	struct rb_node *n;
2666 	int count = 0;
2667 
2668 	spin_lock(&ctl->tree_lock);
2669 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2670 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2671 		if (info->bytes >= bytes && !block_group->ro)
2672 			count++;
2673 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2674 			   info->offset, info->bytes,
2675 		       (info->bitmap) ? "yes" : "no");
2676 	}
2677 	spin_unlock(&ctl->tree_lock);
2678 	btrfs_info(fs_info, "block group has cluster?: %s",
2679 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2680 	btrfs_info(fs_info,
2681 		   "%d blocks of free space at or bigger than bytes is", count);
2682 }
2683 
2684 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
2685 {
2686 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2687 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2688 
2689 	spin_lock_init(&ctl->tree_lock);
2690 	ctl->unit = fs_info->sectorsize;
2691 	ctl->start = block_group->start;
2692 	ctl->private = block_group;
2693 	ctl->op = &free_space_op;
2694 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2695 	mutex_init(&ctl->cache_writeout_mutex);
2696 
2697 	/*
2698 	 * we only want to have 32k of ram per block group for keeping
2699 	 * track of free space, and if we pass 1/2 of that we want to
2700 	 * start converting things over to using bitmaps
2701 	 */
2702 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2703 }
2704 
2705 /*
2706  * for a given cluster, put all of its extents back into the free
2707  * space cache.  If the block group passed doesn't match the block group
2708  * pointed to by the cluster, someone else raced in and freed the
2709  * cluster already.  In that case, we just return without changing anything
2710  */
2711 static int
2712 __btrfs_return_cluster_to_free_space(
2713 			     struct btrfs_block_group *block_group,
2714 			     struct btrfs_free_cluster *cluster)
2715 {
2716 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2717 	struct btrfs_free_space *entry;
2718 	struct rb_node *node;
2719 
2720 	spin_lock(&cluster->lock);
2721 	if (cluster->block_group != block_group)
2722 		goto out;
2723 
2724 	cluster->block_group = NULL;
2725 	cluster->window_start = 0;
2726 	list_del_init(&cluster->block_group_list);
2727 
2728 	node = rb_first(&cluster->root);
2729 	while (node) {
2730 		bool bitmap;
2731 
2732 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2733 		node = rb_next(&entry->offset_index);
2734 		rb_erase(&entry->offset_index, &cluster->root);
2735 		RB_CLEAR_NODE(&entry->offset_index);
2736 
2737 		bitmap = (entry->bitmap != NULL);
2738 		if (!bitmap) {
2739 			/* Merging treats extents as if they were new */
2740 			if (!btrfs_free_space_trimmed(entry)) {
2741 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2742 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2743 					entry->bytes;
2744 			}
2745 
2746 			try_merge_free_space(ctl, entry, false);
2747 			steal_from_bitmap(ctl, entry, false);
2748 
2749 			/* As we insert directly, update these statistics */
2750 			if (!btrfs_free_space_trimmed(entry)) {
2751 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2752 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2753 					entry->bytes;
2754 			}
2755 		}
2756 		tree_insert_offset(&ctl->free_space_offset,
2757 				   entry->offset, &entry->offset_index, bitmap);
2758 	}
2759 	cluster->root = RB_ROOT;
2760 
2761 out:
2762 	spin_unlock(&cluster->lock);
2763 	btrfs_put_block_group(block_group);
2764 	return 0;
2765 }
2766 
2767 static void __btrfs_remove_free_space_cache_locked(
2768 				struct btrfs_free_space_ctl *ctl)
2769 {
2770 	struct btrfs_free_space *info;
2771 	struct rb_node *node;
2772 
2773 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2774 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2775 		if (!info->bitmap) {
2776 			unlink_free_space(ctl, info);
2777 			kmem_cache_free(btrfs_free_space_cachep, info);
2778 		} else {
2779 			free_bitmap(ctl, info);
2780 		}
2781 
2782 		cond_resched_lock(&ctl->tree_lock);
2783 	}
2784 }
2785 
2786 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2787 {
2788 	spin_lock(&ctl->tree_lock);
2789 	__btrfs_remove_free_space_cache_locked(ctl);
2790 	if (ctl->private)
2791 		btrfs_discard_update_discardable(ctl->private, ctl);
2792 	spin_unlock(&ctl->tree_lock);
2793 }
2794 
2795 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2796 {
2797 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2798 	struct btrfs_free_cluster *cluster;
2799 	struct list_head *head;
2800 
2801 	spin_lock(&ctl->tree_lock);
2802 	while ((head = block_group->cluster_list.next) !=
2803 	       &block_group->cluster_list) {
2804 		cluster = list_entry(head, struct btrfs_free_cluster,
2805 				     block_group_list);
2806 
2807 		WARN_ON(cluster->block_group != block_group);
2808 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2809 
2810 		cond_resched_lock(&ctl->tree_lock);
2811 	}
2812 	__btrfs_remove_free_space_cache_locked(ctl);
2813 	btrfs_discard_update_discardable(block_group, ctl);
2814 	spin_unlock(&ctl->tree_lock);
2815 
2816 }
2817 
2818 /**
2819  * btrfs_is_free_space_trimmed - see if everything is trimmed
2820  * @block_group: block_group of interest
2821  *
2822  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2823  */
2824 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2825 {
2826 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2827 	struct btrfs_free_space *info;
2828 	struct rb_node *node;
2829 	bool ret = true;
2830 
2831 	spin_lock(&ctl->tree_lock);
2832 	node = rb_first(&ctl->free_space_offset);
2833 
2834 	while (node) {
2835 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2836 
2837 		if (!btrfs_free_space_trimmed(info)) {
2838 			ret = false;
2839 			break;
2840 		}
2841 
2842 		node = rb_next(node);
2843 	}
2844 
2845 	spin_unlock(&ctl->tree_lock);
2846 	return ret;
2847 }
2848 
2849 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2850 			       u64 offset, u64 bytes, u64 empty_size,
2851 			       u64 *max_extent_size)
2852 {
2853 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2854 	struct btrfs_discard_ctl *discard_ctl =
2855 					&block_group->fs_info->discard_ctl;
2856 	struct btrfs_free_space *entry = NULL;
2857 	u64 bytes_search = bytes + empty_size;
2858 	u64 ret = 0;
2859 	u64 align_gap = 0;
2860 	u64 align_gap_len = 0;
2861 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2862 
2863 	spin_lock(&ctl->tree_lock);
2864 	entry = find_free_space(ctl, &offset, &bytes_search,
2865 				block_group->full_stripe_len, max_extent_size);
2866 	if (!entry)
2867 		goto out;
2868 
2869 	ret = offset;
2870 	if (entry->bitmap) {
2871 		bitmap_clear_bits(ctl, entry, offset, bytes);
2872 
2873 		if (!btrfs_free_space_trimmed(entry))
2874 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2875 
2876 		if (!entry->bytes)
2877 			free_bitmap(ctl, entry);
2878 	} else {
2879 		unlink_free_space(ctl, entry);
2880 		align_gap_len = offset - entry->offset;
2881 		align_gap = entry->offset;
2882 		align_gap_trim_state = entry->trim_state;
2883 
2884 		if (!btrfs_free_space_trimmed(entry))
2885 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2886 
2887 		entry->offset = offset + bytes;
2888 		WARN_ON(entry->bytes < bytes + align_gap_len);
2889 
2890 		entry->bytes -= bytes + align_gap_len;
2891 		if (!entry->bytes)
2892 			kmem_cache_free(btrfs_free_space_cachep, entry);
2893 		else
2894 			link_free_space(ctl, entry);
2895 	}
2896 out:
2897 	btrfs_discard_update_discardable(block_group, ctl);
2898 	spin_unlock(&ctl->tree_lock);
2899 
2900 	if (align_gap_len)
2901 		__btrfs_add_free_space(block_group->fs_info, ctl,
2902 				       align_gap, align_gap_len,
2903 				       align_gap_trim_state);
2904 	return ret;
2905 }
2906 
2907 /*
2908  * given a cluster, put all of its extents back into the free space
2909  * cache.  If a block group is passed, this function will only free
2910  * a cluster that belongs to the passed block group.
2911  *
2912  * Otherwise, it'll get a reference on the block group pointed to by the
2913  * cluster and remove the cluster from it.
2914  */
2915 int btrfs_return_cluster_to_free_space(
2916 			       struct btrfs_block_group *block_group,
2917 			       struct btrfs_free_cluster *cluster)
2918 {
2919 	struct btrfs_free_space_ctl *ctl;
2920 	int ret;
2921 
2922 	/* first, get a safe pointer to the block group */
2923 	spin_lock(&cluster->lock);
2924 	if (!block_group) {
2925 		block_group = cluster->block_group;
2926 		if (!block_group) {
2927 			spin_unlock(&cluster->lock);
2928 			return 0;
2929 		}
2930 	} else if (cluster->block_group != block_group) {
2931 		/* someone else has already freed it don't redo their work */
2932 		spin_unlock(&cluster->lock);
2933 		return 0;
2934 	}
2935 	atomic_inc(&block_group->count);
2936 	spin_unlock(&cluster->lock);
2937 
2938 	ctl = block_group->free_space_ctl;
2939 
2940 	/* now return any extents the cluster had on it */
2941 	spin_lock(&ctl->tree_lock);
2942 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2943 	spin_unlock(&ctl->tree_lock);
2944 
2945 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
2946 
2947 	/* finally drop our ref */
2948 	btrfs_put_block_group(block_group);
2949 	return ret;
2950 }
2951 
2952 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2953 				   struct btrfs_free_cluster *cluster,
2954 				   struct btrfs_free_space *entry,
2955 				   u64 bytes, u64 min_start,
2956 				   u64 *max_extent_size)
2957 {
2958 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2959 	int err;
2960 	u64 search_start = cluster->window_start;
2961 	u64 search_bytes = bytes;
2962 	u64 ret = 0;
2963 
2964 	search_start = min_start;
2965 	search_bytes = bytes;
2966 
2967 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2968 	if (err) {
2969 		*max_extent_size = max(get_max_extent_size(entry),
2970 				       *max_extent_size);
2971 		return 0;
2972 	}
2973 
2974 	ret = search_start;
2975 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2976 
2977 	return ret;
2978 }
2979 
2980 /*
2981  * given a cluster, try to allocate 'bytes' from it, returns 0
2982  * if it couldn't find anything suitably large, or a logical disk offset
2983  * if things worked out
2984  */
2985 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2986 			     struct btrfs_free_cluster *cluster, u64 bytes,
2987 			     u64 min_start, u64 *max_extent_size)
2988 {
2989 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2990 	struct btrfs_discard_ctl *discard_ctl =
2991 					&block_group->fs_info->discard_ctl;
2992 	struct btrfs_free_space *entry = NULL;
2993 	struct rb_node *node;
2994 	u64 ret = 0;
2995 
2996 	spin_lock(&cluster->lock);
2997 	if (bytes > cluster->max_size)
2998 		goto out;
2999 
3000 	if (cluster->block_group != block_group)
3001 		goto out;
3002 
3003 	node = rb_first(&cluster->root);
3004 	if (!node)
3005 		goto out;
3006 
3007 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3008 	while (1) {
3009 		if (entry->bytes < bytes)
3010 			*max_extent_size = max(get_max_extent_size(entry),
3011 					       *max_extent_size);
3012 
3013 		if (entry->bytes < bytes ||
3014 		    (!entry->bitmap && entry->offset < min_start)) {
3015 			node = rb_next(&entry->offset_index);
3016 			if (!node)
3017 				break;
3018 			entry = rb_entry(node, struct btrfs_free_space,
3019 					 offset_index);
3020 			continue;
3021 		}
3022 
3023 		if (entry->bitmap) {
3024 			ret = btrfs_alloc_from_bitmap(block_group,
3025 						      cluster, entry, bytes,
3026 						      cluster->window_start,
3027 						      max_extent_size);
3028 			if (ret == 0) {
3029 				node = rb_next(&entry->offset_index);
3030 				if (!node)
3031 					break;
3032 				entry = rb_entry(node, struct btrfs_free_space,
3033 						 offset_index);
3034 				continue;
3035 			}
3036 			cluster->window_start += bytes;
3037 		} else {
3038 			ret = entry->offset;
3039 
3040 			entry->offset += bytes;
3041 			entry->bytes -= bytes;
3042 		}
3043 
3044 		if (entry->bytes == 0)
3045 			rb_erase(&entry->offset_index, &cluster->root);
3046 		break;
3047 	}
3048 out:
3049 	spin_unlock(&cluster->lock);
3050 
3051 	if (!ret)
3052 		return 0;
3053 
3054 	spin_lock(&ctl->tree_lock);
3055 
3056 	if (!btrfs_free_space_trimmed(entry))
3057 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3058 
3059 	ctl->free_space -= bytes;
3060 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3061 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3062 	if (entry->bytes == 0) {
3063 		ctl->free_extents--;
3064 		if (entry->bitmap) {
3065 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3066 					entry->bitmap);
3067 			ctl->total_bitmaps--;
3068 			ctl->op->recalc_thresholds(ctl);
3069 		} else if (!btrfs_free_space_trimmed(entry)) {
3070 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3071 		}
3072 		kmem_cache_free(btrfs_free_space_cachep, entry);
3073 	}
3074 
3075 	spin_unlock(&ctl->tree_lock);
3076 
3077 	return ret;
3078 }
3079 
3080 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3081 				struct btrfs_free_space *entry,
3082 				struct btrfs_free_cluster *cluster,
3083 				u64 offset, u64 bytes,
3084 				u64 cont1_bytes, u64 min_bytes)
3085 {
3086 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3087 	unsigned long next_zero;
3088 	unsigned long i;
3089 	unsigned long want_bits;
3090 	unsigned long min_bits;
3091 	unsigned long found_bits;
3092 	unsigned long max_bits = 0;
3093 	unsigned long start = 0;
3094 	unsigned long total_found = 0;
3095 	int ret;
3096 
3097 	i = offset_to_bit(entry->offset, ctl->unit,
3098 			  max_t(u64, offset, entry->offset));
3099 	want_bits = bytes_to_bits(bytes, ctl->unit);
3100 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3101 
3102 	/*
3103 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3104 	 * fragmented.
3105 	 */
3106 	if (entry->max_extent_size &&
3107 	    entry->max_extent_size < cont1_bytes)
3108 		return -ENOSPC;
3109 again:
3110 	found_bits = 0;
3111 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3112 		next_zero = find_next_zero_bit(entry->bitmap,
3113 					       BITS_PER_BITMAP, i);
3114 		if (next_zero - i >= min_bits) {
3115 			found_bits = next_zero - i;
3116 			if (found_bits > max_bits)
3117 				max_bits = found_bits;
3118 			break;
3119 		}
3120 		if (next_zero - i > max_bits)
3121 			max_bits = next_zero - i;
3122 		i = next_zero;
3123 	}
3124 
3125 	if (!found_bits) {
3126 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3127 		return -ENOSPC;
3128 	}
3129 
3130 	if (!total_found) {
3131 		start = i;
3132 		cluster->max_size = 0;
3133 	}
3134 
3135 	total_found += found_bits;
3136 
3137 	if (cluster->max_size < found_bits * ctl->unit)
3138 		cluster->max_size = found_bits * ctl->unit;
3139 
3140 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3141 		i = next_zero + 1;
3142 		goto again;
3143 	}
3144 
3145 	cluster->window_start = start * ctl->unit + entry->offset;
3146 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3147 	ret = tree_insert_offset(&cluster->root, entry->offset,
3148 				 &entry->offset_index, 1);
3149 	ASSERT(!ret); /* -EEXIST; Logic error */
3150 
3151 	trace_btrfs_setup_cluster(block_group, cluster,
3152 				  total_found * ctl->unit, 1);
3153 	return 0;
3154 }
3155 
3156 /*
3157  * This searches the block group for just extents to fill the cluster with.
3158  * Try to find a cluster with at least bytes total bytes, at least one
3159  * extent of cont1_bytes, and other clusters of at least min_bytes.
3160  */
3161 static noinline int
3162 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3163 			struct btrfs_free_cluster *cluster,
3164 			struct list_head *bitmaps, u64 offset, u64 bytes,
3165 			u64 cont1_bytes, u64 min_bytes)
3166 {
3167 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3168 	struct btrfs_free_space *first = NULL;
3169 	struct btrfs_free_space *entry = NULL;
3170 	struct btrfs_free_space *last;
3171 	struct rb_node *node;
3172 	u64 window_free;
3173 	u64 max_extent;
3174 	u64 total_size = 0;
3175 
3176 	entry = tree_search_offset(ctl, offset, 0, 1);
3177 	if (!entry)
3178 		return -ENOSPC;
3179 
3180 	/*
3181 	 * We don't want bitmaps, so just move along until we find a normal
3182 	 * extent entry.
3183 	 */
3184 	while (entry->bitmap || entry->bytes < min_bytes) {
3185 		if (entry->bitmap && list_empty(&entry->list))
3186 			list_add_tail(&entry->list, bitmaps);
3187 		node = rb_next(&entry->offset_index);
3188 		if (!node)
3189 			return -ENOSPC;
3190 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3191 	}
3192 
3193 	window_free = entry->bytes;
3194 	max_extent = entry->bytes;
3195 	first = entry;
3196 	last = entry;
3197 
3198 	for (node = rb_next(&entry->offset_index); node;
3199 	     node = rb_next(&entry->offset_index)) {
3200 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3201 
3202 		if (entry->bitmap) {
3203 			if (list_empty(&entry->list))
3204 				list_add_tail(&entry->list, bitmaps);
3205 			continue;
3206 		}
3207 
3208 		if (entry->bytes < min_bytes)
3209 			continue;
3210 
3211 		last = entry;
3212 		window_free += entry->bytes;
3213 		if (entry->bytes > max_extent)
3214 			max_extent = entry->bytes;
3215 	}
3216 
3217 	if (window_free < bytes || max_extent < cont1_bytes)
3218 		return -ENOSPC;
3219 
3220 	cluster->window_start = first->offset;
3221 
3222 	node = &first->offset_index;
3223 
3224 	/*
3225 	 * now we've found our entries, pull them out of the free space
3226 	 * cache and put them into the cluster rbtree
3227 	 */
3228 	do {
3229 		int ret;
3230 
3231 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3232 		node = rb_next(&entry->offset_index);
3233 		if (entry->bitmap || entry->bytes < min_bytes)
3234 			continue;
3235 
3236 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3237 		ret = tree_insert_offset(&cluster->root, entry->offset,
3238 					 &entry->offset_index, 0);
3239 		total_size += entry->bytes;
3240 		ASSERT(!ret); /* -EEXIST; Logic error */
3241 	} while (node && entry != last);
3242 
3243 	cluster->max_size = max_extent;
3244 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3245 	return 0;
3246 }
3247 
3248 /*
3249  * This specifically looks for bitmaps that may work in the cluster, we assume
3250  * that we have already failed to find extents that will work.
3251  */
3252 static noinline int
3253 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3254 		     struct btrfs_free_cluster *cluster,
3255 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3256 		     u64 cont1_bytes, u64 min_bytes)
3257 {
3258 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3259 	struct btrfs_free_space *entry = NULL;
3260 	int ret = -ENOSPC;
3261 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3262 
3263 	if (ctl->total_bitmaps == 0)
3264 		return -ENOSPC;
3265 
3266 	/*
3267 	 * The bitmap that covers offset won't be in the list unless offset
3268 	 * is just its start offset.
3269 	 */
3270 	if (!list_empty(bitmaps))
3271 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3272 
3273 	if (!entry || entry->offset != bitmap_offset) {
3274 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3275 		if (entry && list_empty(&entry->list))
3276 			list_add(&entry->list, bitmaps);
3277 	}
3278 
3279 	list_for_each_entry(entry, bitmaps, list) {
3280 		if (entry->bytes < bytes)
3281 			continue;
3282 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3283 					   bytes, cont1_bytes, min_bytes);
3284 		if (!ret)
3285 			return 0;
3286 	}
3287 
3288 	/*
3289 	 * The bitmaps list has all the bitmaps that record free space
3290 	 * starting after offset, so no more search is required.
3291 	 */
3292 	return -ENOSPC;
3293 }
3294 
3295 /*
3296  * here we try to find a cluster of blocks in a block group.  The goal
3297  * is to find at least bytes+empty_size.
3298  * We might not find them all in one contiguous area.
3299  *
3300  * returns zero and sets up cluster if things worked out, otherwise
3301  * it returns -enospc
3302  */
3303 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3304 			     struct btrfs_free_cluster *cluster,
3305 			     u64 offset, u64 bytes, u64 empty_size)
3306 {
3307 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3308 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3309 	struct btrfs_free_space *entry, *tmp;
3310 	LIST_HEAD(bitmaps);
3311 	u64 min_bytes;
3312 	u64 cont1_bytes;
3313 	int ret;
3314 
3315 	/*
3316 	 * Choose the minimum extent size we'll require for this
3317 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3318 	 * For metadata, allow allocates with smaller extents.  For
3319 	 * data, keep it dense.
3320 	 */
3321 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3322 		cont1_bytes = min_bytes = bytes + empty_size;
3323 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3324 		cont1_bytes = bytes;
3325 		min_bytes = fs_info->sectorsize;
3326 	} else {
3327 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3328 		min_bytes = fs_info->sectorsize;
3329 	}
3330 
3331 	spin_lock(&ctl->tree_lock);
3332 
3333 	/*
3334 	 * If we know we don't have enough space to make a cluster don't even
3335 	 * bother doing all the work to try and find one.
3336 	 */
3337 	if (ctl->free_space < bytes) {
3338 		spin_unlock(&ctl->tree_lock);
3339 		return -ENOSPC;
3340 	}
3341 
3342 	spin_lock(&cluster->lock);
3343 
3344 	/* someone already found a cluster, hooray */
3345 	if (cluster->block_group) {
3346 		ret = 0;
3347 		goto out;
3348 	}
3349 
3350 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3351 				 min_bytes);
3352 
3353 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3354 				      bytes + empty_size,
3355 				      cont1_bytes, min_bytes);
3356 	if (ret)
3357 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3358 					   offset, bytes + empty_size,
3359 					   cont1_bytes, min_bytes);
3360 
3361 	/* Clear our temporary list */
3362 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3363 		list_del_init(&entry->list);
3364 
3365 	if (!ret) {
3366 		atomic_inc(&block_group->count);
3367 		list_add_tail(&cluster->block_group_list,
3368 			      &block_group->cluster_list);
3369 		cluster->block_group = block_group;
3370 	} else {
3371 		trace_btrfs_failed_cluster_setup(block_group);
3372 	}
3373 out:
3374 	spin_unlock(&cluster->lock);
3375 	spin_unlock(&ctl->tree_lock);
3376 
3377 	return ret;
3378 }
3379 
3380 /*
3381  * simple code to zero out a cluster
3382  */
3383 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3384 {
3385 	spin_lock_init(&cluster->lock);
3386 	spin_lock_init(&cluster->refill_lock);
3387 	cluster->root = RB_ROOT;
3388 	cluster->max_size = 0;
3389 	cluster->fragmented = false;
3390 	INIT_LIST_HEAD(&cluster->block_group_list);
3391 	cluster->block_group = NULL;
3392 }
3393 
3394 static int do_trimming(struct btrfs_block_group *block_group,
3395 		       u64 *total_trimmed, u64 start, u64 bytes,
3396 		       u64 reserved_start, u64 reserved_bytes,
3397 		       enum btrfs_trim_state reserved_trim_state,
3398 		       struct btrfs_trim_range *trim_entry)
3399 {
3400 	struct btrfs_space_info *space_info = block_group->space_info;
3401 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3402 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3403 	int ret;
3404 	int update = 0;
3405 	const u64 end = start + bytes;
3406 	const u64 reserved_end = reserved_start + reserved_bytes;
3407 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3408 	u64 trimmed = 0;
3409 
3410 	spin_lock(&space_info->lock);
3411 	spin_lock(&block_group->lock);
3412 	if (!block_group->ro) {
3413 		block_group->reserved += reserved_bytes;
3414 		space_info->bytes_reserved += reserved_bytes;
3415 		update = 1;
3416 	}
3417 	spin_unlock(&block_group->lock);
3418 	spin_unlock(&space_info->lock);
3419 
3420 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3421 	if (!ret) {
3422 		*total_trimmed += trimmed;
3423 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3424 	}
3425 
3426 	mutex_lock(&ctl->cache_writeout_mutex);
3427 	if (reserved_start < start)
3428 		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3429 				       start - reserved_start,
3430 				       reserved_trim_state);
3431 	if (start + bytes < reserved_start + reserved_bytes)
3432 		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3433 				       reserved_trim_state);
3434 	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3435 	list_del(&trim_entry->list);
3436 	mutex_unlock(&ctl->cache_writeout_mutex);
3437 
3438 	if (update) {
3439 		spin_lock(&space_info->lock);
3440 		spin_lock(&block_group->lock);
3441 		if (block_group->ro)
3442 			space_info->bytes_readonly += reserved_bytes;
3443 		block_group->reserved -= reserved_bytes;
3444 		space_info->bytes_reserved -= reserved_bytes;
3445 		spin_unlock(&block_group->lock);
3446 		spin_unlock(&space_info->lock);
3447 	}
3448 
3449 	return ret;
3450 }
3451 
3452 /*
3453  * If @async is set, then we will trim 1 region and return.
3454  */
3455 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3456 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3457 			  bool async)
3458 {
3459 	struct btrfs_discard_ctl *discard_ctl =
3460 					&block_group->fs_info->discard_ctl;
3461 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3462 	struct btrfs_free_space *entry;
3463 	struct rb_node *node;
3464 	int ret = 0;
3465 	u64 extent_start;
3466 	u64 extent_bytes;
3467 	enum btrfs_trim_state extent_trim_state;
3468 	u64 bytes;
3469 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3470 
3471 	while (start < end) {
3472 		struct btrfs_trim_range trim_entry;
3473 
3474 		mutex_lock(&ctl->cache_writeout_mutex);
3475 		spin_lock(&ctl->tree_lock);
3476 
3477 		if (ctl->free_space < minlen)
3478 			goto out_unlock;
3479 
3480 		entry = tree_search_offset(ctl, start, 0, 1);
3481 		if (!entry)
3482 			goto out_unlock;
3483 
3484 		/* Skip bitmaps and if async, already trimmed entries */
3485 		while (entry->bitmap ||
3486 		       (async && btrfs_free_space_trimmed(entry))) {
3487 			node = rb_next(&entry->offset_index);
3488 			if (!node)
3489 				goto out_unlock;
3490 			entry = rb_entry(node, struct btrfs_free_space,
3491 					 offset_index);
3492 		}
3493 
3494 		if (entry->offset >= end)
3495 			goto out_unlock;
3496 
3497 		extent_start = entry->offset;
3498 		extent_bytes = entry->bytes;
3499 		extent_trim_state = entry->trim_state;
3500 		if (async) {
3501 			start = entry->offset;
3502 			bytes = entry->bytes;
3503 			if (bytes < minlen) {
3504 				spin_unlock(&ctl->tree_lock);
3505 				mutex_unlock(&ctl->cache_writeout_mutex);
3506 				goto next;
3507 			}
3508 			unlink_free_space(ctl, entry);
3509 			/*
3510 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3511 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3512 			 * X when we come back around.  So trim it now.
3513 			 */
3514 			if (max_discard_size &&
3515 			    bytes >= (max_discard_size +
3516 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3517 				bytes = max_discard_size;
3518 				extent_bytes = max_discard_size;
3519 				entry->offset += max_discard_size;
3520 				entry->bytes -= max_discard_size;
3521 				link_free_space(ctl, entry);
3522 			} else {
3523 				kmem_cache_free(btrfs_free_space_cachep, entry);
3524 			}
3525 		} else {
3526 			start = max(start, extent_start);
3527 			bytes = min(extent_start + extent_bytes, end) - start;
3528 			if (bytes < minlen) {
3529 				spin_unlock(&ctl->tree_lock);
3530 				mutex_unlock(&ctl->cache_writeout_mutex);
3531 				goto next;
3532 			}
3533 
3534 			unlink_free_space(ctl, entry);
3535 			kmem_cache_free(btrfs_free_space_cachep, entry);
3536 		}
3537 
3538 		spin_unlock(&ctl->tree_lock);
3539 		trim_entry.start = extent_start;
3540 		trim_entry.bytes = extent_bytes;
3541 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3542 		mutex_unlock(&ctl->cache_writeout_mutex);
3543 
3544 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3545 				  extent_start, extent_bytes, extent_trim_state,
3546 				  &trim_entry);
3547 		if (ret) {
3548 			block_group->discard_cursor = start + bytes;
3549 			break;
3550 		}
3551 next:
3552 		start += bytes;
3553 		block_group->discard_cursor = start;
3554 		if (async && *total_trimmed)
3555 			break;
3556 
3557 		if (fatal_signal_pending(current)) {
3558 			ret = -ERESTARTSYS;
3559 			break;
3560 		}
3561 
3562 		cond_resched();
3563 	}
3564 
3565 	return ret;
3566 
3567 out_unlock:
3568 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3569 	spin_unlock(&ctl->tree_lock);
3570 	mutex_unlock(&ctl->cache_writeout_mutex);
3571 
3572 	return ret;
3573 }
3574 
3575 /*
3576  * If we break out of trimming a bitmap prematurely, we should reset the
3577  * trimming bit.  In a rather contrieved case, it's possible to race here so
3578  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3579  *
3580  * start = start of bitmap
3581  * end = near end of bitmap
3582  *
3583  * Thread 1:			Thread 2:
3584  * trim_bitmaps(start)
3585  *				trim_bitmaps(end)
3586  *				end_trimming_bitmap()
3587  * reset_trimming_bitmap()
3588  */
3589 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3590 {
3591 	struct btrfs_free_space *entry;
3592 
3593 	spin_lock(&ctl->tree_lock);
3594 	entry = tree_search_offset(ctl, offset, 1, 0);
3595 	if (entry) {
3596 		if (btrfs_free_space_trimmed(entry)) {
3597 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3598 				entry->bitmap_extents;
3599 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3600 		}
3601 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3602 	}
3603 
3604 	spin_unlock(&ctl->tree_lock);
3605 }
3606 
3607 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3608 				struct btrfs_free_space *entry)
3609 {
3610 	if (btrfs_free_space_trimming_bitmap(entry)) {
3611 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3612 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3613 			entry->bitmap_extents;
3614 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3615 	}
3616 }
3617 
3618 /*
3619  * If @async is set, then we will trim 1 region and return.
3620  */
3621 static int trim_bitmaps(struct btrfs_block_group *block_group,
3622 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3623 			u64 maxlen, bool async)
3624 {
3625 	struct btrfs_discard_ctl *discard_ctl =
3626 					&block_group->fs_info->discard_ctl;
3627 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3628 	struct btrfs_free_space *entry;
3629 	int ret = 0;
3630 	int ret2;
3631 	u64 bytes;
3632 	u64 offset = offset_to_bitmap(ctl, start);
3633 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3634 
3635 	while (offset < end) {
3636 		bool next_bitmap = false;
3637 		struct btrfs_trim_range trim_entry;
3638 
3639 		mutex_lock(&ctl->cache_writeout_mutex);
3640 		spin_lock(&ctl->tree_lock);
3641 
3642 		if (ctl->free_space < minlen) {
3643 			block_group->discard_cursor =
3644 				btrfs_block_group_end(block_group);
3645 			spin_unlock(&ctl->tree_lock);
3646 			mutex_unlock(&ctl->cache_writeout_mutex);
3647 			break;
3648 		}
3649 
3650 		entry = tree_search_offset(ctl, offset, 1, 0);
3651 		/*
3652 		 * Bitmaps are marked trimmed lossily now to prevent constant
3653 		 * discarding of the same bitmap (the reason why we are bound
3654 		 * by the filters).  So, retrim the block group bitmaps when we
3655 		 * are preparing to punt to the unused_bgs list.  This uses
3656 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3657 		 * which is the only discard index which sets minlen to 0.
3658 		 */
3659 		if (!entry || (async && minlen && start == offset &&
3660 			       btrfs_free_space_trimmed(entry))) {
3661 			spin_unlock(&ctl->tree_lock);
3662 			mutex_unlock(&ctl->cache_writeout_mutex);
3663 			next_bitmap = true;
3664 			goto next;
3665 		}
3666 
3667 		/*
3668 		 * Async discard bitmap trimming begins at by setting the start
3669 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3670 		 * start of the bitmap.  This lets us know we are fully
3671 		 * scanning the bitmap rather than only some portion of it.
3672 		 */
3673 		if (start == offset)
3674 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3675 
3676 		bytes = minlen;
3677 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3678 		if (ret2 || start >= end) {
3679 			/*
3680 			 * We lossily consider a bitmap trimmed if we only skip
3681 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3682 			 */
3683 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3684 				end_trimming_bitmap(ctl, entry);
3685 			else
3686 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3687 			spin_unlock(&ctl->tree_lock);
3688 			mutex_unlock(&ctl->cache_writeout_mutex);
3689 			next_bitmap = true;
3690 			goto next;
3691 		}
3692 
3693 		/*
3694 		 * We already trimmed a region, but are using the locking above
3695 		 * to reset the trim_state.
3696 		 */
3697 		if (async && *total_trimmed) {
3698 			spin_unlock(&ctl->tree_lock);
3699 			mutex_unlock(&ctl->cache_writeout_mutex);
3700 			goto out;
3701 		}
3702 
3703 		bytes = min(bytes, end - start);
3704 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3705 			spin_unlock(&ctl->tree_lock);
3706 			mutex_unlock(&ctl->cache_writeout_mutex);
3707 			goto next;
3708 		}
3709 
3710 		/*
3711 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3712 		 * If X < @minlen, we won't trim X when we come back around.
3713 		 * So trim it now.  We differ here from trimming extents as we
3714 		 * don't keep individual state per bit.
3715 		 */
3716 		if (async &&
3717 		    max_discard_size &&
3718 		    bytes > (max_discard_size + minlen))
3719 			bytes = max_discard_size;
3720 
3721 		bitmap_clear_bits(ctl, entry, start, bytes);
3722 		if (entry->bytes == 0)
3723 			free_bitmap(ctl, entry);
3724 
3725 		spin_unlock(&ctl->tree_lock);
3726 		trim_entry.start = start;
3727 		trim_entry.bytes = bytes;
3728 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3729 		mutex_unlock(&ctl->cache_writeout_mutex);
3730 
3731 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3732 				  start, bytes, 0, &trim_entry);
3733 		if (ret) {
3734 			reset_trimming_bitmap(ctl, offset);
3735 			block_group->discard_cursor =
3736 				btrfs_block_group_end(block_group);
3737 			break;
3738 		}
3739 next:
3740 		if (next_bitmap) {
3741 			offset += BITS_PER_BITMAP * ctl->unit;
3742 			start = offset;
3743 		} else {
3744 			start += bytes;
3745 		}
3746 		block_group->discard_cursor = start;
3747 
3748 		if (fatal_signal_pending(current)) {
3749 			if (start != offset)
3750 				reset_trimming_bitmap(ctl, offset);
3751 			ret = -ERESTARTSYS;
3752 			break;
3753 		}
3754 
3755 		cond_resched();
3756 	}
3757 
3758 	if (offset >= end)
3759 		block_group->discard_cursor = end;
3760 
3761 out:
3762 	return ret;
3763 }
3764 
3765 void btrfs_get_block_group_trimming(struct btrfs_block_group *cache)
3766 {
3767 	atomic_inc(&cache->trimming);
3768 }
3769 
3770 void btrfs_put_block_group_trimming(struct btrfs_block_group *block_group)
3771 {
3772 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3773 	struct extent_map_tree *em_tree;
3774 	struct extent_map *em;
3775 	bool cleanup;
3776 
3777 	spin_lock(&block_group->lock);
3778 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3779 		   block_group->removed);
3780 	spin_unlock(&block_group->lock);
3781 
3782 	if (cleanup) {
3783 		mutex_lock(&fs_info->chunk_mutex);
3784 		em_tree = &fs_info->mapping_tree;
3785 		write_lock(&em_tree->lock);
3786 		em = lookup_extent_mapping(em_tree, block_group->start,
3787 					   1);
3788 		BUG_ON(!em); /* logic error, can't happen */
3789 		remove_extent_mapping(em_tree, em);
3790 		write_unlock(&em_tree->lock);
3791 		mutex_unlock(&fs_info->chunk_mutex);
3792 
3793 		/* once for us and once for the tree */
3794 		free_extent_map(em);
3795 		free_extent_map(em);
3796 
3797 		/*
3798 		 * We've left one free space entry and other tasks trimming
3799 		 * this block group have left 1 entry each one. Free them.
3800 		 */
3801 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3802 	}
3803 }
3804 
3805 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3806 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3807 {
3808 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3809 	int ret;
3810 	u64 rem = 0;
3811 
3812 	*trimmed = 0;
3813 
3814 	spin_lock(&block_group->lock);
3815 	if (block_group->removed) {
3816 		spin_unlock(&block_group->lock);
3817 		return 0;
3818 	}
3819 	btrfs_get_block_group_trimming(block_group);
3820 	spin_unlock(&block_group->lock);
3821 
3822 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3823 	if (ret)
3824 		goto out;
3825 
3826 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3827 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3828 	/* If we ended in the middle of a bitmap, reset the trimming flag */
3829 	if (rem)
3830 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3831 out:
3832 	btrfs_put_block_group_trimming(block_group);
3833 	return ret;
3834 }
3835 
3836 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3837 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3838 				   bool async)
3839 {
3840 	int ret;
3841 
3842 	*trimmed = 0;
3843 
3844 	spin_lock(&block_group->lock);
3845 	if (block_group->removed) {
3846 		spin_unlock(&block_group->lock);
3847 		return 0;
3848 	}
3849 	btrfs_get_block_group_trimming(block_group);
3850 	spin_unlock(&block_group->lock);
3851 
3852 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3853 	btrfs_put_block_group_trimming(block_group);
3854 
3855 	return ret;
3856 }
3857 
3858 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3859 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3860 				   u64 maxlen, bool async)
3861 {
3862 	int ret;
3863 
3864 	*trimmed = 0;
3865 
3866 	spin_lock(&block_group->lock);
3867 	if (block_group->removed) {
3868 		spin_unlock(&block_group->lock);
3869 		return 0;
3870 	}
3871 	btrfs_get_block_group_trimming(block_group);
3872 	spin_unlock(&block_group->lock);
3873 
3874 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3875 			   async);
3876 
3877 	btrfs_put_block_group_trimming(block_group);
3878 
3879 	return ret;
3880 }
3881 
3882 /*
3883  * Find the left-most item in the cache tree, and then return the
3884  * smallest inode number in the item.
3885  *
3886  * Note: the returned inode number may not be the smallest one in
3887  * the tree, if the left-most item is a bitmap.
3888  */
3889 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3890 {
3891 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3892 	struct btrfs_free_space *entry = NULL;
3893 	u64 ino = 0;
3894 
3895 	spin_lock(&ctl->tree_lock);
3896 
3897 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3898 		goto out;
3899 
3900 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3901 			 struct btrfs_free_space, offset_index);
3902 
3903 	if (!entry->bitmap) {
3904 		ino = entry->offset;
3905 
3906 		unlink_free_space(ctl, entry);
3907 		entry->offset++;
3908 		entry->bytes--;
3909 		if (!entry->bytes)
3910 			kmem_cache_free(btrfs_free_space_cachep, entry);
3911 		else
3912 			link_free_space(ctl, entry);
3913 	} else {
3914 		u64 offset = 0;
3915 		u64 count = 1;
3916 		int ret;
3917 
3918 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3919 		/* Logic error; Should be empty if it can't find anything */
3920 		ASSERT(!ret);
3921 
3922 		ino = offset;
3923 		bitmap_clear_bits(ctl, entry, offset, 1);
3924 		if (entry->bytes == 0)
3925 			free_bitmap(ctl, entry);
3926 	}
3927 out:
3928 	spin_unlock(&ctl->tree_lock);
3929 
3930 	return ino;
3931 }
3932 
3933 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3934 				    struct btrfs_path *path)
3935 {
3936 	struct inode *inode = NULL;
3937 
3938 	spin_lock(&root->ino_cache_lock);
3939 	if (root->ino_cache_inode)
3940 		inode = igrab(root->ino_cache_inode);
3941 	spin_unlock(&root->ino_cache_lock);
3942 	if (inode)
3943 		return inode;
3944 
3945 	inode = __lookup_free_space_inode(root, path, 0);
3946 	if (IS_ERR(inode))
3947 		return inode;
3948 
3949 	spin_lock(&root->ino_cache_lock);
3950 	if (!btrfs_fs_closing(root->fs_info))
3951 		root->ino_cache_inode = igrab(inode);
3952 	spin_unlock(&root->ino_cache_lock);
3953 
3954 	return inode;
3955 }
3956 
3957 int create_free_ino_inode(struct btrfs_root *root,
3958 			  struct btrfs_trans_handle *trans,
3959 			  struct btrfs_path *path)
3960 {
3961 	return __create_free_space_inode(root, trans, path,
3962 					 BTRFS_FREE_INO_OBJECTID, 0);
3963 }
3964 
3965 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3966 {
3967 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3968 	struct btrfs_path *path;
3969 	struct inode *inode;
3970 	int ret = 0;
3971 	u64 root_gen = btrfs_root_generation(&root->root_item);
3972 
3973 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3974 		return 0;
3975 
3976 	/*
3977 	 * If we're unmounting then just return, since this does a search on the
3978 	 * normal root and not the commit root and we could deadlock.
3979 	 */
3980 	if (btrfs_fs_closing(fs_info))
3981 		return 0;
3982 
3983 	path = btrfs_alloc_path();
3984 	if (!path)
3985 		return 0;
3986 
3987 	inode = lookup_free_ino_inode(root, path);
3988 	if (IS_ERR(inode))
3989 		goto out;
3990 
3991 	if (root_gen != BTRFS_I(inode)->generation)
3992 		goto out_put;
3993 
3994 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3995 
3996 	if (ret < 0)
3997 		btrfs_err(fs_info,
3998 			"failed to load free ino cache for root %llu",
3999 			root->root_key.objectid);
4000 out_put:
4001 	iput(inode);
4002 out:
4003 	btrfs_free_path(path);
4004 	return ret;
4005 }
4006 
4007 int btrfs_write_out_ino_cache(struct btrfs_root *root,
4008 			      struct btrfs_trans_handle *trans,
4009 			      struct btrfs_path *path,
4010 			      struct inode *inode)
4011 {
4012 	struct btrfs_fs_info *fs_info = root->fs_info;
4013 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
4014 	int ret;
4015 	struct btrfs_io_ctl io_ctl;
4016 	bool release_metadata = true;
4017 
4018 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4019 		return 0;
4020 
4021 	memset(&io_ctl, 0, sizeof(io_ctl));
4022 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
4023 	if (!ret) {
4024 		/*
4025 		 * At this point writepages() didn't error out, so our metadata
4026 		 * reservation is released when the writeback finishes, at
4027 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
4028 		 * with or without an error.
4029 		 */
4030 		release_metadata = false;
4031 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
4032 	}
4033 
4034 	if (ret) {
4035 		if (release_metadata)
4036 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
4037 					inode->i_size, true);
4038 #ifdef CONFIG_BTRFS_DEBUG
4039 		btrfs_err(fs_info,
4040 			  "failed to write free ino cache for root %llu",
4041 			  root->root_key.objectid);
4042 #endif
4043 	}
4044 
4045 	return ret;
4046 }
4047 
4048 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4049 /*
4050  * Use this if you need to make a bitmap or extent entry specifically, it
4051  * doesn't do any of the merging that add_free_space does, this acts a lot like
4052  * how the free space cache loading stuff works, so you can get really weird
4053  * configurations.
4054  */
4055 int test_add_free_space_entry(struct btrfs_block_group *cache,
4056 			      u64 offset, u64 bytes, bool bitmap)
4057 {
4058 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4059 	struct btrfs_free_space *info = NULL, *bitmap_info;
4060 	void *map = NULL;
4061 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4062 	u64 bytes_added;
4063 	int ret;
4064 
4065 again:
4066 	if (!info) {
4067 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4068 		if (!info)
4069 			return -ENOMEM;
4070 	}
4071 
4072 	if (!bitmap) {
4073 		spin_lock(&ctl->tree_lock);
4074 		info->offset = offset;
4075 		info->bytes = bytes;
4076 		info->max_extent_size = 0;
4077 		ret = link_free_space(ctl, info);
4078 		spin_unlock(&ctl->tree_lock);
4079 		if (ret)
4080 			kmem_cache_free(btrfs_free_space_cachep, info);
4081 		return ret;
4082 	}
4083 
4084 	if (!map) {
4085 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4086 		if (!map) {
4087 			kmem_cache_free(btrfs_free_space_cachep, info);
4088 			return -ENOMEM;
4089 		}
4090 	}
4091 
4092 	spin_lock(&ctl->tree_lock);
4093 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4094 					 1, 0);
4095 	if (!bitmap_info) {
4096 		info->bitmap = map;
4097 		map = NULL;
4098 		add_new_bitmap(ctl, info, offset);
4099 		bitmap_info = info;
4100 		info = NULL;
4101 	}
4102 
4103 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4104 					  trim_state);
4105 
4106 	bytes -= bytes_added;
4107 	offset += bytes_added;
4108 	spin_unlock(&ctl->tree_lock);
4109 
4110 	if (bytes)
4111 		goto again;
4112 
4113 	if (info)
4114 		kmem_cache_free(btrfs_free_space_cachep, info);
4115 	if (map)
4116 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4117 	return 0;
4118 }
4119 
4120 /*
4121  * Checks to see if the given range is in the free space cache.  This is really
4122  * just used to check the absence of space, so if there is free space in the
4123  * range at all we will return 1.
4124  */
4125 int test_check_exists(struct btrfs_block_group *cache,
4126 		      u64 offset, u64 bytes)
4127 {
4128 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4129 	struct btrfs_free_space *info;
4130 	int ret = 0;
4131 
4132 	spin_lock(&ctl->tree_lock);
4133 	info = tree_search_offset(ctl, offset, 0, 0);
4134 	if (!info) {
4135 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4136 					  1, 0);
4137 		if (!info)
4138 			goto out;
4139 	}
4140 
4141 have_info:
4142 	if (info->bitmap) {
4143 		u64 bit_off, bit_bytes;
4144 		struct rb_node *n;
4145 		struct btrfs_free_space *tmp;
4146 
4147 		bit_off = offset;
4148 		bit_bytes = ctl->unit;
4149 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4150 		if (!ret) {
4151 			if (bit_off == offset) {
4152 				ret = 1;
4153 				goto out;
4154 			} else if (bit_off > offset &&
4155 				   offset + bytes > bit_off) {
4156 				ret = 1;
4157 				goto out;
4158 			}
4159 		}
4160 
4161 		n = rb_prev(&info->offset_index);
4162 		while (n) {
4163 			tmp = rb_entry(n, struct btrfs_free_space,
4164 				       offset_index);
4165 			if (tmp->offset + tmp->bytes < offset)
4166 				break;
4167 			if (offset + bytes < tmp->offset) {
4168 				n = rb_prev(&tmp->offset_index);
4169 				continue;
4170 			}
4171 			info = tmp;
4172 			goto have_info;
4173 		}
4174 
4175 		n = rb_next(&info->offset_index);
4176 		while (n) {
4177 			tmp = rb_entry(n, struct btrfs_free_space,
4178 				       offset_index);
4179 			if (offset + bytes < tmp->offset)
4180 				break;
4181 			if (tmp->offset + tmp->bytes < offset) {
4182 				n = rb_next(&tmp->offset_index);
4183 				continue;
4184 			}
4185 			info = tmp;
4186 			goto have_info;
4187 		}
4188 
4189 		ret = 0;
4190 		goto out;
4191 	}
4192 
4193 	if (info->offset == offset) {
4194 		ret = 1;
4195 		goto out;
4196 	}
4197 
4198 	if (offset > info->offset && offset < info->offset + info->bytes)
4199 		ret = 1;
4200 out:
4201 	spin_unlock(&ctl->tree_lock);
4202 	return ret;
4203 }
4204 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4205