1 /* 2 * Copyright (C) 2008 Red Hat. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/pagemap.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/math64.h> 23 #include <linux/ratelimit.h> 24 #include "ctree.h" 25 #include "free-space-cache.h" 26 #include "transaction.h" 27 #include "disk-io.h" 28 #include "extent_io.h" 29 #include "inode-map.h" 30 31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8) 32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024) 33 34 static int link_free_space(struct btrfs_free_space_ctl *ctl, 35 struct btrfs_free_space *info); 36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 37 struct btrfs_free_space *info); 38 39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 40 struct btrfs_path *path, 41 u64 offset) 42 { 43 struct btrfs_key key; 44 struct btrfs_key location; 45 struct btrfs_disk_key disk_key; 46 struct btrfs_free_space_header *header; 47 struct extent_buffer *leaf; 48 struct inode *inode = NULL; 49 int ret; 50 51 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 52 key.offset = offset; 53 key.type = 0; 54 55 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 56 if (ret < 0) 57 return ERR_PTR(ret); 58 if (ret > 0) { 59 btrfs_release_path(path); 60 return ERR_PTR(-ENOENT); 61 } 62 63 leaf = path->nodes[0]; 64 header = btrfs_item_ptr(leaf, path->slots[0], 65 struct btrfs_free_space_header); 66 btrfs_free_space_key(leaf, header, &disk_key); 67 btrfs_disk_key_to_cpu(&location, &disk_key); 68 btrfs_release_path(path); 69 70 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL); 71 if (!inode) 72 return ERR_PTR(-ENOENT); 73 if (IS_ERR(inode)) 74 return inode; 75 if (is_bad_inode(inode)) { 76 iput(inode); 77 return ERR_PTR(-ENOENT); 78 } 79 80 mapping_set_gfp_mask(inode->i_mapping, 81 mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS); 82 83 return inode; 84 } 85 86 struct inode *lookup_free_space_inode(struct btrfs_root *root, 87 struct btrfs_block_group_cache 88 *block_group, struct btrfs_path *path) 89 { 90 struct inode *inode = NULL; 91 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 92 93 spin_lock(&block_group->lock); 94 if (block_group->inode) 95 inode = igrab(block_group->inode); 96 spin_unlock(&block_group->lock); 97 if (inode) 98 return inode; 99 100 inode = __lookup_free_space_inode(root, path, 101 block_group->key.objectid); 102 if (IS_ERR(inode)) 103 return inode; 104 105 spin_lock(&block_group->lock); 106 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 107 printk(KERN_INFO "Old style space inode found, converting.\n"); 108 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 109 BTRFS_INODE_NODATACOW; 110 block_group->disk_cache_state = BTRFS_DC_CLEAR; 111 } 112 113 if (!block_group->iref) { 114 block_group->inode = igrab(inode); 115 block_group->iref = 1; 116 } 117 spin_unlock(&block_group->lock); 118 119 return inode; 120 } 121 122 int __create_free_space_inode(struct btrfs_root *root, 123 struct btrfs_trans_handle *trans, 124 struct btrfs_path *path, u64 ino, u64 offset) 125 { 126 struct btrfs_key key; 127 struct btrfs_disk_key disk_key; 128 struct btrfs_free_space_header *header; 129 struct btrfs_inode_item *inode_item; 130 struct extent_buffer *leaf; 131 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 132 int ret; 133 134 ret = btrfs_insert_empty_inode(trans, root, path, ino); 135 if (ret) 136 return ret; 137 138 /* We inline crc's for the free disk space cache */ 139 if (ino != BTRFS_FREE_INO_OBJECTID) 140 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 141 142 leaf = path->nodes[0]; 143 inode_item = btrfs_item_ptr(leaf, path->slots[0], 144 struct btrfs_inode_item); 145 btrfs_item_key(leaf, &disk_key, path->slots[0]); 146 memset_extent_buffer(leaf, 0, (unsigned long)inode_item, 147 sizeof(*inode_item)); 148 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 149 btrfs_set_inode_size(leaf, inode_item, 0); 150 btrfs_set_inode_nbytes(leaf, inode_item, 0); 151 btrfs_set_inode_uid(leaf, inode_item, 0); 152 btrfs_set_inode_gid(leaf, inode_item, 0); 153 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 154 btrfs_set_inode_flags(leaf, inode_item, flags); 155 btrfs_set_inode_nlink(leaf, inode_item, 1); 156 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 157 btrfs_set_inode_block_group(leaf, inode_item, offset); 158 btrfs_mark_buffer_dirty(leaf); 159 btrfs_release_path(path); 160 161 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 162 key.offset = offset; 163 key.type = 0; 164 165 ret = btrfs_insert_empty_item(trans, root, path, &key, 166 sizeof(struct btrfs_free_space_header)); 167 if (ret < 0) { 168 btrfs_release_path(path); 169 return ret; 170 } 171 leaf = path->nodes[0]; 172 header = btrfs_item_ptr(leaf, path->slots[0], 173 struct btrfs_free_space_header); 174 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header)); 175 btrfs_set_free_space_key(leaf, header, &disk_key); 176 btrfs_mark_buffer_dirty(leaf); 177 btrfs_release_path(path); 178 179 return 0; 180 } 181 182 int create_free_space_inode(struct btrfs_root *root, 183 struct btrfs_trans_handle *trans, 184 struct btrfs_block_group_cache *block_group, 185 struct btrfs_path *path) 186 { 187 int ret; 188 u64 ino; 189 190 ret = btrfs_find_free_objectid(root, &ino); 191 if (ret < 0) 192 return ret; 193 194 return __create_free_space_inode(root, trans, path, ino, 195 block_group->key.objectid); 196 } 197 198 int btrfs_truncate_free_space_cache(struct btrfs_root *root, 199 struct btrfs_trans_handle *trans, 200 struct btrfs_path *path, 201 struct inode *inode) 202 { 203 struct btrfs_block_rsv *rsv; 204 u64 needed_bytes; 205 loff_t oldsize; 206 int ret = 0; 207 208 rsv = trans->block_rsv; 209 trans->block_rsv = &root->fs_info->global_block_rsv; 210 211 /* 1 for slack space, 1 for updating the inode */ 212 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) + 213 btrfs_calc_trans_metadata_size(root, 1); 214 215 spin_lock(&trans->block_rsv->lock); 216 if (trans->block_rsv->reserved < needed_bytes) { 217 spin_unlock(&trans->block_rsv->lock); 218 trans->block_rsv = rsv; 219 return -ENOSPC; 220 } 221 spin_unlock(&trans->block_rsv->lock); 222 223 oldsize = i_size_read(inode); 224 btrfs_i_size_write(inode, 0); 225 truncate_pagecache(inode, oldsize, 0); 226 227 /* 228 * We don't need an orphan item because truncating the free space cache 229 * will never be split across transactions. 230 */ 231 ret = btrfs_truncate_inode_items(trans, root, inode, 232 0, BTRFS_EXTENT_DATA_KEY); 233 234 if (ret) { 235 trans->block_rsv = rsv; 236 btrfs_abort_transaction(trans, root, ret); 237 return ret; 238 } 239 240 ret = btrfs_update_inode(trans, root, inode); 241 if (ret) 242 btrfs_abort_transaction(trans, root, ret); 243 trans->block_rsv = rsv; 244 245 return ret; 246 } 247 248 static int readahead_cache(struct inode *inode) 249 { 250 struct file_ra_state *ra; 251 unsigned long last_index; 252 253 ra = kzalloc(sizeof(*ra), GFP_NOFS); 254 if (!ra) 255 return -ENOMEM; 256 257 file_ra_state_init(ra, inode->i_mapping); 258 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 259 260 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 261 262 kfree(ra); 263 264 return 0; 265 } 266 267 struct io_ctl { 268 void *cur, *orig; 269 struct page *page; 270 struct page **pages; 271 struct btrfs_root *root; 272 unsigned long size; 273 int index; 274 int num_pages; 275 unsigned check_crcs:1; 276 }; 277 278 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode, 279 struct btrfs_root *root) 280 { 281 memset(io_ctl, 0, sizeof(struct io_ctl)); 282 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 283 PAGE_CACHE_SHIFT; 284 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages, 285 GFP_NOFS); 286 if (!io_ctl->pages) 287 return -ENOMEM; 288 io_ctl->root = root; 289 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID) 290 io_ctl->check_crcs = 1; 291 return 0; 292 } 293 294 static void io_ctl_free(struct io_ctl *io_ctl) 295 { 296 kfree(io_ctl->pages); 297 } 298 299 static void io_ctl_unmap_page(struct io_ctl *io_ctl) 300 { 301 if (io_ctl->cur) { 302 kunmap(io_ctl->page); 303 io_ctl->cur = NULL; 304 io_ctl->orig = NULL; 305 } 306 } 307 308 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear) 309 { 310 WARN_ON(io_ctl->cur); 311 BUG_ON(io_ctl->index >= io_ctl->num_pages); 312 io_ctl->page = io_ctl->pages[io_ctl->index++]; 313 io_ctl->cur = kmap(io_ctl->page); 314 io_ctl->orig = io_ctl->cur; 315 io_ctl->size = PAGE_CACHE_SIZE; 316 if (clear) 317 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE); 318 } 319 320 static void io_ctl_drop_pages(struct io_ctl *io_ctl) 321 { 322 int i; 323 324 io_ctl_unmap_page(io_ctl); 325 326 for (i = 0; i < io_ctl->num_pages; i++) { 327 if (io_ctl->pages[i]) { 328 ClearPageChecked(io_ctl->pages[i]); 329 unlock_page(io_ctl->pages[i]); 330 page_cache_release(io_ctl->pages[i]); 331 } 332 } 333 } 334 335 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode, 336 int uptodate) 337 { 338 struct page *page; 339 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 340 int i; 341 342 for (i = 0; i < io_ctl->num_pages; i++) { 343 page = find_or_create_page(inode->i_mapping, i, mask); 344 if (!page) { 345 io_ctl_drop_pages(io_ctl); 346 return -ENOMEM; 347 } 348 io_ctl->pages[i] = page; 349 if (uptodate && !PageUptodate(page)) { 350 btrfs_readpage(NULL, page); 351 lock_page(page); 352 if (!PageUptodate(page)) { 353 printk(KERN_ERR "btrfs: error reading free " 354 "space cache\n"); 355 io_ctl_drop_pages(io_ctl); 356 return -EIO; 357 } 358 } 359 } 360 361 for (i = 0; i < io_ctl->num_pages; i++) { 362 clear_page_dirty_for_io(io_ctl->pages[i]); 363 set_page_extent_mapped(io_ctl->pages[i]); 364 } 365 366 return 0; 367 } 368 369 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation) 370 { 371 __le64 *val; 372 373 io_ctl_map_page(io_ctl, 1); 374 375 /* 376 * Skip the csum areas. If we don't check crcs then we just have a 377 * 64bit chunk at the front of the first page. 378 */ 379 if (io_ctl->check_crcs) { 380 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 381 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 382 } else { 383 io_ctl->cur += sizeof(u64); 384 io_ctl->size -= sizeof(u64) * 2; 385 } 386 387 val = io_ctl->cur; 388 *val = cpu_to_le64(generation); 389 io_ctl->cur += sizeof(u64); 390 } 391 392 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation) 393 { 394 __le64 *gen; 395 396 /* 397 * Skip the crc area. If we don't check crcs then we just have a 64bit 398 * chunk at the front of the first page. 399 */ 400 if (io_ctl->check_crcs) { 401 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 402 io_ctl->size -= sizeof(u64) + 403 (sizeof(u32) * io_ctl->num_pages); 404 } else { 405 io_ctl->cur += sizeof(u64); 406 io_ctl->size -= sizeof(u64) * 2; 407 } 408 409 gen = io_ctl->cur; 410 if (le64_to_cpu(*gen) != generation) { 411 printk_ratelimited(KERN_ERR "btrfs: space cache generation " 412 "(%Lu) does not match inode (%Lu)\n", *gen, 413 generation); 414 io_ctl_unmap_page(io_ctl); 415 return -EIO; 416 } 417 io_ctl->cur += sizeof(u64); 418 return 0; 419 } 420 421 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index) 422 { 423 u32 *tmp; 424 u32 crc = ~(u32)0; 425 unsigned offset = 0; 426 427 if (!io_ctl->check_crcs) { 428 io_ctl_unmap_page(io_ctl); 429 return; 430 } 431 432 if (index == 0) 433 offset = sizeof(u32) * io_ctl->num_pages; 434 435 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc, 436 PAGE_CACHE_SIZE - offset); 437 btrfs_csum_final(crc, (char *)&crc); 438 io_ctl_unmap_page(io_ctl); 439 tmp = kmap(io_ctl->pages[0]); 440 tmp += index; 441 *tmp = crc; 442 kunmap(io_ctl->pages[0]); 443 } 444 445 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index) 446 { 447 u32 *tmp, val; 448 u32 crc = ~(u32)0; 449 unsigned offset = 0; 450 451 if (!io_ctl->check_crcs) { 452 io_ctl_map_page(io_ctl, 0); 453 return 0; 454 } 455 456 if (index == 0) 457 offset = sizeof(u32) * io_ctl->num_pages; 458 459 tmp = kmap(io_ctl->pages[0]); 460 tmp += index; 461 val = *tmp; 462 kunmap(io_ctl->pages[0]); 463 464 io_ctl_map_page(io_ctl, 0); 465 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc, 466 PAGE_CACHE_SIZE - offset); 467 btrfs_csum_final(crc, (char *)&crc); 468 if (val != crc) { 469 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free " 470 "space cache\n"); 471 io_ctl_unmap_page(io_ctl); 472 return -EIO; 473 } 474 475 return 0; 476 } 477 478 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes, 479 void *bitmap) 480 { 481 struct btrfs_free_space_entry *entry; 482 483 if (!io_ctl->cur) 484 return -ENOSPC; 485 486 entry = io_ctl->cur; 487 entry->offset = cpu_to_le64(offset); 488 entry->bytes = cpu_to_le64(bytes); 489 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 490 BTRFS_FREE_SPACE_EXTENT; 491 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 492 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 493 494 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 495 return 0; 496 497 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 498 499 /* No more pages to map */ 500 if (io_ctl->index >= io_ctl->num_pages) 501 return 0; 502 503 /* map the next page */ 504 io_ctl_map_page(io_ctl, 1); 505 return 0; 506 } 507 508 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap) 509 { 510 if (!io_ctl->cur) 511 return -ENOSPC; 512 513 /* 514 * If we aren't at the start of the current page, unmap this one and 515 * map the next one if there is any left. 516 */ 517 if (io_ctl->cur != io_ctl->orig) { 518 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 519 if (io_ctl->index >= io_ctl->num_pages) 520 return -ENOSPC; 521 io_ctl_map_page(io_ctl, 0); 522 } 523 524 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE); 525 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 526 if (io_ctl->index < io_ctl->num_pages) 527 io_ctl_map_page(io_ctl, 0); 528 return 0; 529 } 530 531 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl) 532 { 533 /* 534 * If we're not on the boundary we know we've modified the page and we 535 * need to crc the page. 536 */ 537 if (io_ctl->cur != io_ctl->orig) 538 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 539 else 540 io_ctl_unmap_page(io_ctl); 541 542 while (io_ctl->index < io_ctl->num_pages) { 543 io_ctl_map_page(io_ctl, 1); 544 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 545 } 546 } 547 548 static int io_ctl_read_entry(struct io_ctl *io_ctl, 549 struct btrfs_free_space *entry, u8 *type) 550 { 551 struct btrfs_free_space_entry *e; 552 int ret; 553 554 if (!io_ctl->cur) { 555 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 556 if (ret) 557 return ret; 558 } 559 560 e = io_ctl->cur; 561 entry->offset = le64_to_cpu(e->offset); 562 entry->bytes = le64_to_cpu(e->bytes); 563 *type = e->type; 564 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 565 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 566 567 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 568 return 0; 569 570 io_ctl_unmap_page(io_ctl); 571 572 return 0; 573 } 574 575 static int io_ctl_read_bitmap(struct io_ctl *io_ctl, 576 struct btrfs_free_space *entry) 577 { 578 int ret; 579 580 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 581 if (ret) 582 return ret; 583 584 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE); 585 io_ctl_unmap_page(io_ctl); 586 587 return 0; 588 } 589 590 /* 591 * Since we attach pinned extents after the fact we can have contiguous sections 592 * of free space that are split up in entries. This poses a problem with the 593 * tree logging stuff since it could have allocated across what appears to be 2 594 * entries since we would have merged the entries when adding the pinned extents 595 * back to the free space cache. So run through the space cache that we just 596 * loaded and merge contiguous entries. This will make the log replay stuff not 597 * blow up and it will make for nicer allocator behavior. 598 */ 599 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 600 { 601 struct btrfs_free_space *e, *prev = NULL; 602 struct rb_node *n; 603 604 again: 605 spin_lock(&ctl->tree_lock); 606 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 607 e = rb_entry(n, struct btrfs_free_space, offset_index); 608 if (!prev) 609 goto next; 610 if (e->bitmap || prev->bitmap) 611 goto next; 612 if (prev->offset + prev->bytes == e->offset) { 613 unlink_free_space(ctl, prev); 614 unlink_free_space(ctl, e); 615 prev->bytes += e->bytes; 616 kmem_cache_free(btrfs_free_space_cachep, e); 617 link_free_space(ctl, prev); 618 prev = NULL; 619 spin_unlock(&ctl->tree_lock); 620 goto again; 621 } 622 next: 623 prev = e; 624 } 625 spin_unlock(&ctl->tree_lock); 626 } 627 628 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 629 struct btrfs_free_space_ctl *ctl, 630 struct btrfs_path *path, u64 offset) 631 { 632 struct btrfs_free_space_header *header; 633 struct extent_buffer *leaf; 634 struct io_ctl io_ctl; 635 struct btrfs_key key; 636 struct btrfs_free_space *e, *n; 637 struct list_head bitmaps; 638 u64 num_entries; 639 u64 num_bitmaps; 640 u64 generation; 641 u8 type; 642 int ret = 0; 643 644 INIT_LIST_HEAD(&bitmaps); 645 646 /* Nothing in the space cache, goodbye */ 647 if (!i_size_read(inode)) 648 return 0; 649 650 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 651 key.offset = offset; 652 key.type = 0; 653 654 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 655 if (ret < 0) 656 return 0; 657 else if (ret > 0) { 658 btrfs_release_path(path); 659 return 0; 660 } 661 662 ret = -1; 663 664 leaf = path->nodes[0]; 665 header = btrfs_item_ptr(leaf, path->slots[0], 666 struct btrfs_free_space_header); 667 num_entries = btrfs_free_space_entries(leaf, header); 668 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 669 generation = btrfs_free_space_generation(leaf, header); 670 btrfs_release_path(path); 671 672 if (BTRFS_I(inode)->generation != generation) { 673 printk(KERN_ERR "btrfs: free space inode generation (%llu) did" 674 " not match free space cache generation (%llu)\n", 675 (unsigned long long)BTRFS_I(inode)->generation, 676 (unsigned long long)generation); 677 return 0; 678 } 679 680 if (!num_entries) 681 return 0; 682 683 ret = io_ctl_init(&io_ctl, inode, root); 684 if (ret) 685 return ret; 686 687 ret = readahead_cache(inode); 688 if (ret) 689 goto out; 690 691 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 692 if (ret) 693 goto out; 694 695 ret = io_ctl_check_crc(&io_ctl, 0); 696 if (ret) 697 goto free_cache; 698 699 ret = io_ctl_check_generation(&io_ctl, generation); 700 if (ret) 701 goto free_cache; 702 703 while (num_entries) { 704 e = kmem_cache_zalloc(btrfs_free_space_cachep, 705 GFP_NOFS); 706 if (!e) 707 goto free_cache; 708 709 ret = io_ctl_read_entry(&io_ctl, e, &type); 710 if (ret) { 711 kmem_cache_free(btrfs_free_space_cachep, e); 712 goto free_cache; 713 } 714 715 if (!e->bytes) { 716 kmem_cache_free(btrfs_free_space_cachep, e); 717 goto free_cache; 718 } 719 720 if (type == BTRFS_FREE_SPACE_EXTENT) { 721 spin_lock(&ctl->tree_lock); 722 ret = link_free_space(ctl, e); 723 spin_unlock(&ctl->tree_lock); 724 if (ret) { 725 printk(KERN_ERR "Duplicate entries in " 726 "free space cache, dumping\n"); 727 kmem_cache_free(btrfs_free_space_cachep, e); 728 goto free_cache; 729 } 730 } else { 731 BUG_ON(!num_bitmaps); 732 num_bitmaps--; 733 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 734 if (!e->bitmap) { 735 kmem_cache_free( 736 btrfs_free_space_cachep, e); 737 goto free_cache; 738 } 739 spin_lock(&ctl->tree_lock); 740 ret = link_free_space(ctl, e); 741 ctl->total_bitmaps++; 742 ctl->op->recalc_thresholds(ctl); 743 spin_unlock(&ctl->tree_lock); 744 if (ret) { 745 printk(KERN_ERR "Duplicate entries in " 746 "free space cache, dumping\n"); 747 kmem_cache_free(btrfs_free_space_cachep, e); 748 goto free_cache; 749 } 750 list_add_tail(&e->list, &bitmaps); 751 } 752 753 num_entries--; 754 } 755 756 io_ctl_unmap_page(&io_ctl); 757 758 /* 759 * We add the bitmaps at the end of the entries in order that 760 * the bitmap entries are added to the cache. 761 */ 762 list_for_each_entry_safe(e, n, &bitmaps, list) { 763 list_del_init(&e->list); 764 ret = io_ctl_read_bitmap(&io_ctl, e); 765 if (ret) 766 goto free_cache; 767 } 768 769 io_ctl_drop_pages(&io_ctl); 770 merge_space_tree(ctl); 771 ret = 1; 772 out: 773 io_ctl_free(&io_ctl); 774 return ret; 775 free_cache: 776 io_ctl_drop_pages(&io_ctl); 777 __btrfs_remove_free_space_cache(ctl); 778 goto out; 779 } 780 781 int load_free_space_cache(struct btrfs_fs_info *fs_info, 782 struct btrfs_block_group_cache *block_group) 783 { 784 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 785 struct btrfs_root *root = fs_info->tree_root; 786 struct inode *inode; 787 struct btrfs_path *path; 788 int ret = 0; 789 bool matched; 790 u64 used = btrfs_block_group_used(&block_group->item); 791 792 /* 793 * If this block group has been marked to be cleared for one reason or 794 * another then we can't trust the on disk cache, so just return. 795 */ 796 spin_lock(&block_group->lock); 797 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 798 spin_unlock(&block_group->lock); 799 return 0; 800 } 801 spin_unlock(&block_group->lock); 802 803 path = btrfs_alloc_path(); 804 if (!path) 805 return 0; 806 path->search_commit_root = 1; 807 path->skip_locking = 1; 808 809 inode = lookup_free_space_inode(root, block_group, path); 810 if (IS_ERR(inode)) { 811 btrfs_free_path(path); 812 return 0; 813 } 814 815 /* We may have converted the inode and made the cache invalid. */ 816 spin_lock(&block_group->lock); 817 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 818 spin_unlock(&block_group->lock); 819 btrfs_free_path(path); 820 goto out; 821 } 822 spin_unlock(&block_group->lock); 823 824 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 825 path, block_group->key.objectid); 826 btrfs_free_path(path); 827 if (ret <= 0) 828 goto out; 829 830 spin_lock(&ctl->tree_lock); 831 matched = (ctl->free_space == (block_group->key.offset - used - 832 block_group->bytes_super)); 833 spin_unlock(&ctl->tree_lock); 834 835 if (!matched) { 836 __btrfs_remove_free_space_cache(ctl); 837 printk(KERN_ERR "block group %llu has an wrong amount of free " 838 "space\n", block_group->key.objectid); 839 ret = -1; 840 } 841 out: 842 if (ret < 0) { 843 /* This cache is bogus, make sure it gets cleared */ 844 spin_lock(&block_group->lock); 845 block_group->disk_cache_state = BTRFS_DC_CLEAR; 846 spin_unlock(&block_group->lock); 847 ret = 0; 848 849 printk(KERN_ERR "btrfs: failed to load free space cache " 850 "for block group %llu\n", block_group->key.objectid); 851 } 852 853 iput(inode); 854 return ret; 855 } 856 857 /** 858 * __btrfs_write_out_cache - write out cached info to an inode 859 * @root - the root the inode belongs to 860 * @ctl - the free space cache we are going to write out 861 * @block_group - the block_group for this cache if it belongs to a block_group 862 * @trans - the trans handle 863 * @path - the path to use 864 * @offset - the offset for the key we'll insert 865 * 866 * This function writes out a free space cache struct to disk for quick recovery 867 * on mount. This will return 0 if it was successfull in writing the cache out, 868 * and -1 if it was not. 869 */ 870 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 871 struct btrfs_free_space_ctl *ctl, 872 struct btrfs_block_group_cache *block_group, 873 struct btrfs_trans_handle *trans, 874 struct btrfs_path *path, u64 offset) 875 { 876 struct btrfs_free_space_header *header; 877 struct extent_buffer *leaf; 878 struct rb_node *node; 879 struct list_head *pos, *n; 880 struct extent_state *cached_state = NULL; 881 struct btrfs_free_cluster *cluster = NULL; 882 struct extent_io_tree *unpin = NULL; 883 struct io_ctl io_ctl; 884 struct list_head bitmap_list; 885 struct btrfs_key key; 886 u64 start, extent_start, extent_end, len; 887 int entries = 0; 888 int bitmaps = 0; 889 int ret; 890 int err = -1; 891 892 INIT_LIST_HEAD(&bitmap_list); 893 894 if (!i_size_read(inode)) 895 return -1; 896 897 ret = io_ctl_init(&io_ctl, inode, root); 898 if (ret) 899 return -1; 900 901 /* Get the cluster for this block_group if it exists */ 902 if (block_group && !list_empty(&block_group->cluster_list)) 903 cluster = list_entry(block_group->cluster_list.next, 904 struct btrfs_free_cluster, 905 block_group_list); 906 907 /* Lock all pages first so we can lock the extent safely. */ 908 io_ctl_prepare_pages(&io_ctl, inode, 0); 909 910 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 911 0, &cached_state); 912 913 node = rb_first(&ctl->free_space_offset); 914 if (!node && cluster) { 915 node = rb_first(&cluster->root); 916 cluster = NULL; 917 } 918 919 /* Make sure we can fit our crcs into the first page */ 920 if (io_ctl.check_crcs && 921 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) { 922 WARN_ON(1); 923 goto out_nospc; 924 } 925 926 io_ctl_set_generation(&io_ctl, trans->transid); 927 928 /* Write out the extent entries */ 929 while (node) { 930 struct btrfs_free_space *e; 931 932 e = rb_entry(node, struct btrfs_free_space, offset_index); 933 entries++; 934 935 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes, 936 e->bitmap); 937 if (ret) 938 goto out_nospc; 939 940 if (e->bitmap) { 941 list_add_tail(&e->list, &bitmap_list); 942 bitmaps++; 943 } 944 node = rb_next(node); 945 if (!node && cluster) { 946 node = rb_first(&cluster->root); 947 cluster = NULL; 948 } 949 } 950 951 /* 952 * We want to add any pinned extents to our free space cache 953 * so we don't leak the space 954 */ 955 956 /* 957 * We shouldn't have switched the pinned extents yet so this is the 958 * right one 959 */ 960 unpin = root->fs_info->pinned_extents; 961 962 if (block_group) 963 start = block_group->key.objectid; 964 965 while (block_group && (start < block_group->key.objectid + 966 block_group->key.offset)) { 967 ret = find_first_extent_bit(unpin, start, 968 &extent_start, &extent_end, 969 EXTENT_DIRTY, NULL); 970 if (ret) { 971 ret = 0; 972 break; 973 } 974 975 /* This pinned extent is out of our range */ 976 if (extent_start >= block_group->key.objectid + 977 block_group->key.offset) 978 break; 979 980 extent_start = max(extent_start, start); 981 extent_end = min(block_group->key.objectid + 982 block_group->key.offset, extent_end + 1); 983 len = extent_end - extent_start; 984 985 entries++; 986 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL); 987 if (ret) 988 goto out_nospc; 989 990 start = extent_end; 991 } 992 993 /* Write out the bitmaps */ 994 list_for_each_safe(pos, n, &bitmap_list) { 995 struct btrfs_free_space *entry = 996 list_entry(pos, struct btrfs_free_space, list); 997 998 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap); 999 if (ret) 1000 goto out_nospc; 1001 list_del_init(&entry->list); 1002 } 1003 1004 /* Zero out the rest of the pages just to make sure */ 1005 io_ctl_zero_remaining_pages(&io_ctl); 1006 1007 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages, 1008 0, i_size_read(inode), &cached_state); 1009 io_ctl_drop_pages(&io_ctl); 1010 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1011 i_size_read(inode) - 1, &cached_state, GFP_NOFS); 1012 1013 if (ret) 1014 goto out; 1015 1016 1017 btrfs_wait_ordered_range(inode, 0, (u64)-1); 1018 1019 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1020 key.offset = offset; 1021 key.type = 0; 1022 1023 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1024 if (ret < 0) { 1025 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1026 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, 1027 GFP_NOFS); 1028 goto out; 1029 } 1030 leaf = path->nodes[0]; 1031 if (ret > 0) { 1032 struct btrfs_key found_key; 1033 BUG_ON(!path->slots[0]); 1034 path->slots[0]--; 1035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1036 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1037 found_key.offset != offset) { 1038 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1039 inode->i_size - 1, 1040 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, 1041 NULL, GFP_NOFS); 1042 btrfs_release_path(path); 1043 goto out; 1044 } 1045 } 1046 1047 BTRFS_I(inode)->generation = trans->transid; 1048 header = btrfs_item_ptr(leaf, path->slots[0], 1049 struct btrfs_free_space_header); 1050 btrfs_set_free_space_entries(leaf, header, entries); 1051 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1052 btrfs_set_free_space_generation(leaf, header, trans->transid); 1053 btrfs_mark_buffer_dirty(leaf); 1054 btrfs_release_path(path); 1055 1056 err = 0; 1057 out: 1058 io_ctl_free(&io_ctl); 1059 if (err) { 1060 invalidate_inode_pages2(inode->i_mapping); 1061 BTRFS_I(inode)->generation = 0; 1062 } 1063 btrfs_update_inode(trans, root, inode); 1064 return err; 1065 1066 out_nospc: 1067 list_for_each_safe(pos, n, &bitmap_list) { 1068 struct btrfs_free_space *entry = 1069 list_entry(pos, struct btrfs_free_space, list); 1070 list_del_init(&entry->list); 1071 } 1072 io_ctl_drop_pages(&io_ctl); 1073 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1074 i_size_read(inode) - 1, &cached_state, GFP_NOFS); 1075 goto out; 1076 } 1077 1078 int btrfs_write_out_cache(struct btrfs_root *root, 1079 struct btrfs_trans_handle *trans, 1080 struct btrfs_block_group_cache *block_group, 1081 struct btrfs_path *path) 1082 { 1083 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1084 struct inode *inode; 1085 int ret = 0; 1086 1087 root = root->fs_info->tree_root; 1088 1089 spin_lock(&block_group->lock); 1090 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1091 spin_unlock(&block_group->lock); 1092 return 0; 1093 } 1094 spin_unlock(&block_group->lock); 1095 1096 inode = lookup_free_space_inode(root, block_group, path); 1097 if (IS_ERR(inode)) 1098 return 0; 1099 1100 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans, 1101 path, block_group->key.objectid); 1102 if (ret) { 1103 spin_lock(&block_group->lock); 1104 block_group->disk_cache_state = BTRFS_DC_ERROR; 1105 spin_unlock(&block_group->lock); 1106 ret = 0; 1107 #ifdef DEBUG 1108 printk(KERN_ERR "btrfs: failed to write free space cache " 1109 "for block group %llu\n", block_group->key.objectid); 1110 #endif 1111 } 1112 1113 iput(inode); 1114 return ret; 1115 } 1116 1117 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1118 u64 offset) 1119 { 1120 BUG_ON(offset < bitmap_start); 1121 offset -= bitmap_start; 1122 return (unsigned long)(div_u64(offset, unit)); 1123 } 1124 1125 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1126 { 1127 return (unsigned long)(div_u64(bytes, unit)); 1128 } 1129 1130 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1131 u64 offset) 1132 { 1133 u64 bitmap_start; 1134 u64 bytes_per_bitmap; 1135 1136 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1137 bitmap_start = offset - ctl->start; 1138 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1139 bitmap_start *= bytes_per_bitmap; 1140 bitmap_start += ctl->start; 1141 1142 return bitmap_start; 1143 } 1144 1145 static int tree_insert_offset(struct rb_root *root, u64 offset, 1146 struct rb_node *node, int bitmap) 1147 { 1148 struct rb_node **p = &root->rb_node; 1149 struct rb_node *parent = NULL; 1150 struct btrfs_free_space *info; 1151 1152 while (*p) { 1153 parent = *p; 1154 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1155 1156 if (offset < info->offset) { 1157 p = &(*p)->rb_left; 1158 } else if (offset > info->offset) { 1159 p = &(*p)->rb_right; 1160 } else { 1161 /* 1162 * we could have a bitmap entry and an extent entry 1163 * share the same offset. If this is the case, we want 1164 * the extent entry to always be found first if we do a 1165 * linear search through the tree, since we want to have 1166 * the quickest allocation time, and allocating from an 1167 * extent is faster than allocating from a bitmap. So 1168 * if we're inserting a bitmap and we find an entry at 1169 * this offset, we want to go right, or after this entry 1170 * logically. If we are inserting an extent and we've 1171 * found a bitmap, we want to go left, or before 1172 * logically. 1173 */ 1174 if (bitmap) { 1175 if (info->bitmap) { 1176 WARN_ON_ONCE(1); 1177 return -EEXIST; 1178 } 1179 p = &(*p)->rb_right; 1180 } else { 1181 if (!info->bitmap) { 1182 WARN_ON_ONCE(1); 1183 return -EEXIST; 1184 } 1185 p = &(*p)->rb_left; 1186 } 1187 } 1188 } 1189 1190 rb_link_node(node, parent, p); 1191 rb_insert_color(node, root); 1192 1193 return 0; 1194 } 1195 1196 /* 1197 * searches the tree for the given offset. 1198 * 1199 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1200 * want a section that has at least bytes size and comes at or after the given 1201 * offset. 1202 */ 1203 static struct btrfs_free_space * 1204 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1205 u64 offset, int bitmap_only, int fuzzy) 1206 { 1207 struct rb_node *n = ctl->free_space_offset.rb_node; 1208 struct btrfs_free_space *entry, *prev = NULL; 1209 1210 /* find entry that is closest to the 'offset' */ 1211 while (1) { 1212 if (!n) { 1213 entry = NULL; 1214 break; 1215 } 1216 1217 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1218 prev = entry; 1219 1220 if (offset < entry->offset) 1221 n = n->rb_left; 1222 else if (offset > entry->offset) 1223 n = n->rb_right; 1224 else 1225 break; 1226 } 1227 1228 if (bitmap_only) { 1229 if (!entry) 1230 return NULL; 1231 if (entry->bitmap) 1232 return entry; 1233 1234 /* 1235 * bitmap entry and extent entry may share same offset, 1236 * in that case, bitmap entry comes after extent entry. 1237 */ 1238 n = rb_next(n); 1239 if (!n) 1240 return NULL; 1241 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1242 if (entry->offset != offset) 1243 return NULL; 1244 1245 WARN_ON(!entry->bitmap); 1246 return entry; 1247 } else if (entry) { 1248 if (entry->bitmap) { 1249 /* 1250 * if previous extent entry covers the offset, 1251 * we should return it instead of the bitmap entry 1252 */ 1253 n = &entry->offset_index; 1254 while (1) { 1255 n = rb_prev(n); 1256 if (!n) 1257 break; 1258 prev = rb_entry(n, struct btrfs_free_space, 1259 offset_index); 1260 if (!prev->bitmap) { 1261 if (prev->offset + prev->bytes > offset) 1262 entry = prev; 1263 break; 1264 } 1265 } 1266 } 1267 return entry; 1268 } 1269 1270 if (!prev) 1271 return NULL; 1272 1273 /* find last entry before the 'offset' */ 1274 entry = prev; 1275 if (entry->offset > offset) { 1276 n = rb_prev(&entry->offset_index); 1277 if (n) { 1278 entry = rb_entry(n, struct btrfs_free_space, 1279 offset_index); 1280 BUG_ON(entry->offset > offset); 1281 } else { 1282 if (fuzzy) 1283 return entry; 1284 else 1285 return NULL; 1286 } 1287 } 1288 1289 if (entry->bitmap) { 1290 n = &entry->offset_index; 1291 while (1) { 1292 n = rb_prev(n); 1293 if (!n) 1294 break; 1295 prev = rb_entry(n, struct btrfs_free_space, 1296 offset_index); 1297 if (!prev->bitmap) { 1298 if (prev->offset + prev->bytes > offset) 1299 return prev; 1300 break; 1301 } 1302 } 1303 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1304 return entry; 1305 } else if (entry->offset + entry->bytes > offset) 1306 return entry; 1307 1308 if (!fuzzy) 1309 return NULL; 1310 1311 while (1) { 1312 if (entry->bitmap) { 1313 if (entry->offset + BITS_PER_BITMAP * 1314 ctl->unit > offset) 1315 break; 1316 } else { 1317 if (entry->offset + entry->bytes > offset) 1318 break; 1319 } 1320 1321 n = rb_next(&entry->offset_index); 1322 if (!n) 1323 return NULL; 1324 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1325 } 1326 return entry; 1327 } 1328 1329 static inline void 1330 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1331 struct btrfs_free_space *info) 1332 { 1333 rb_erase(&info->offset_index, &ctl->free_space_offset); 1334 ctl->free_extents--; 1335 } 1336 1337 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1338 struct btrfs_free_space *info) 1339 { 1340 __unlink_free_space(ctl, info); 1341 ctl->free_space -= info->bytes; 1342 } 1343 1344 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1345 struct btrfs_free_space *info) 1346 { 1347 int ret = 0; 1348 1349 BUG_ON(!info->bitmap && !info->bytes); 1350 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1351 &info->offset_index, (info->bitmap != NULL)); 1352 if (ret) 1353 return ret; 1354 1355 ctl->free_space += info->bytes; 1356 ctl->free_extents++; 1357 return ret; 1358 } 1359 1360 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1361 { 1362 struct btrfs_block_group_cache *block_group = ctl->private; 1363 u64 max_bytes; 1364 u64 bitmap_bytes; 1365 u64 extent_bytes; 1366 u64 size = block_group->key.offset; 1367 u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize; 1368 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1369 1370 BUG_ON(ctl->total_bitmaps > max_bitmaps); 1371 1372 /* 1373 * The goal is to keep the total amount of memory used per 1gb of space 1374 * at or below 32k, so we need to adjust how much memory we allow to be 1375 * used by extent based free space tracking 1376 */ 1377 if (size < 1024 * 1024 * 1024) 1378 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1379 else 1380 max_bytes = MAX_CACHE_BYTES_PER_GIG * 1381 div64_u64(size, 1024 * 1024 * 1024); 1382 1383 /* 1384 * we want to account for 1 more bitmap than what we have so we can make 1385 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as 1386 * we add more bitmaps. 1387 */ 1388 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE; 1389 1390 if (bitmap_bytes >= max_bytes) { 1391 ctl->extents_thresh = 0; 1392 return; 1393 } 1394 1395 /* 1396 * we want the extent entry threshold to always be at most 1/2 the maxw 1397 * bytes we can have, or whatever is less than that. 1398 */ 1399 extent_bytes = max_bytes - bitmap_bytes; 1400 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2)); 1401 1402 ctl->extents_thresh = 1403 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space))); 1404 } 1405 1406 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1407 struct btrfs_free_space *info, 1408 u64 offset, u64 bytes) 1409 { 1410 unsigned long start, count; 1411 1412 start = offset_to_bit(info->offset, ctl->unit, offset); 1413 count = bytes_to_bits(bytes, ctl->unit); 1414 BUG_ON(start + count > BITS_PER_BITMAP); 1415 1416 bitmap_clear(info->bitmap, start, count); 1417 1418 info->bytes -= bytes; 1419 } 1420 1421 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1422 struct btrfs_free_space *info, u64 offset, 1423 u64 bytes) 1424 { 1425 __bitmap_clear_bits(ctl, info, offset, bytes); 1426 ctl->free_space -= bytes; 1427 } 1428 1429 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1430 struct btrfs_free_space *info, u64 offset, 1431 u64 bytes) 1432 { 1433 unsigned long start, count; 1434 1435 start = offset_to_bit(info->offset, ctl->unit, offset); 1436 count = bytes_to_bits(bytes, ctl->unit); 1437 BUG_ON(start + count > BITS_PER_BITMAP); 1438 1439 bitmap_set(info->bitmap, start, count); 1440 1441 info->bytes += bytes; 1442 ctl->free_space += bytes; 1443 } 1444 1445 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1446 struct btrfs_free_space *bitmap_info, u64 *offset, 1447 u64 *bytes) 1448 { 1449 unsigned long found_bits = 0; 1450 unsigned long bits, i; 1451 unsigned long next_zero; 1452 1453 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1454 max_t(u64, *offset, bitmap_info->offset)); 1455 bits = bytes_to_bits(*bytes, ctl->unit); 1456 1457 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1458 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1459 BITS_PER_BITMAP, i); 1460 if ((next_zero - i) >= bits) { 1461 found_bits = next_zero - i; 1462 break; 1463 } 1464 i = next_zero; 1465 } 1466 1467 if (found_bits) { 1468 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1469 *bytes = (u64)(found_bits) * ctl->unit; 1470 return 0; 1471 } 1472 1473 return -1; 1474 } 1475 1476 static struct btrfs_free_space * 1477 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes) 1478 { 1479 struct btrfs_free_space *entry; 1480 struct rb_node *node; 1481 int ret; 1482 1483 if (!ctl->free_space_offset.rb_node) 1484 return NULL; 1485 1486 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1487 if (!entry) 1488 return NULL; 1489 1490 for (node = &entry->offset_index; node; node = rb_next(node)) { 1491 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1492 if (entry->bytes < *bytes) 1493 continue; 1494 1495 if (entry->bitmap) { 1496 ret = search_bitmap(ctl, entry, offset, bytes); 1497 if (!ret) 1498 return entry; 1499 continue; 1500 } 1501 1502 *offset = entry->offset; 1503 *bytes = entry->bytes; 1504 return entry; 1505 } 1506 1507 return NULL; 1508 } 1509 1510 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1511 struct btrfs_free_space *info, u64 offset) 1512 { 1513 info->offset = offset_to_bitmap(ctl, offset); 1514 info->bytes = 0; 1515 INIT_LIST_HEAD(&info->list); 1516 link_free_space(ctl, info); 1517 ctl->total_bitmaps++; 1518 1519 ctl->op->recalc_thresholds(ctl); 1520 } 1521 1522 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1523 struct btrfs_free_space *bitmap_info) 1524 { 1525 unlink_free_space(ctl, bitmap_info); 1526 kfree(bitmap_info->bitmap); 1527 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1528 ctl->total_bitmaps--; 1529 ctl->op->recalc_thresholds(ctl); 1530 } 1531 1532 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1533 struct btrfs_free_space *bitmap_info, 1534 u64 *offset, u64 *bytes) 1535 { 1536 u64 end; 1537 u64 search_start, search_bytes; 1538 int ret; 1539 1540 again: 1541 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1542 1543 /* 1544 * We need to search for bits in this bitmap. We could only cover some 1545 * of the extent in this bitmap thanks to how we add space, so we need 1546 * to search for as much as it as we can and clear that amount, and then 1547 * go searching for the next bit. 1548 */ 1549 search_start = *offset; 1550 search_bytes = ctl->unit; 1551 search_bytes = min(search_bytes, end - search_start + 1); 1552 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes); 1553 BUG_ON(ret < 0 || search_start != *offset); 1554 1555 /* We may have found more bits than what we need */ 1556 search_bytes = min(search_bytes, *bytes); 1557 1558 /* Cannot clear past the end of the bitmap */ 1559 search_bytes = min(search_bytes, end - search_start + 1); 1560 1561 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 1562 *offset += search_bytes; 1563 *bytes -= search_bytes; 1564 1565 if (*bytes) { 1566 struct rb_node *next = rb_next(&bitmap_info->offset_index); 1567 if (!bitmap_info->bytes) 1568 free_bitmap(ctl, bitmap_info); 1569 1570 /* 1571 * no entry after this bitmap, but we still have bytes to 1572 * remove, so something has gone wrong. 1573 */ 1574 if (!next) 1575 return -EINVAL; 1576 1577 bitmap_info = rb_entry(next, struct btrfs_free_space, 1578 offset_index); 1579 1580 /* 1581 * if the next entry isn't a bitmap we need to return to let the 1582 * extent stuff do its work. 1583 */ 1584 if (!bitmap_info->bitmap) 1585 return -EAGAIN; 1586 1587 /* 1588 * Ok the next item is a bitmap, but it may not actually hold 1589 * the information for the rest of this free space stuff, so 1590 * look for it, and if we don't find it return so we can try 1591 * everything over again. 1592 */ 1593 search_start = *offset; 1594 search_bytes = ctl->unit; 1595 ret = search_bitmap(ctl, bitmap_info, &search_start, 1596 &search_bytes); 1597 if (ret < 0 || search_start != *offset) 1598 return -EAGAIN; 1599 1600 goto again; 1601 } else if (!bitmap_info->bytes) 1602 free_bitmap(ctl, bitmap_info); 1603 1604 return 0; 1605 } 1606 1607 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 1608 struct btrfs_free_space *info, u64 offset, 1609 u64 bytes) 1610 { 1611 u64 bytes_to_set = 0; 1612 u64 end; 1613 1614 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 1615 1616 bytes_to_set = min(end - offset, bytes); 1617 1618 bitmap_set_bits(ctl, info, offset, bytes_to_set); 1619 1620 return bytes_to_set; 1621 1622 } 1623 1624 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 1625 struct btrfs_free_space *info) 1626 { 1627 struct btrfs_block_group_cache *block_group = ctl->private; 1628 1629 /* 1630 * If we are below the extents threshold then we can add this as an 1631 * extent, and don't have to deal with the bitmap 1632 */ 1633 if (ctl->free_extents < ctl->extents_thresh) { 1634 /* 1635 * If this block group has some small extents we don't want to 1636 * use up all of our free slots in the cache with them, we want 1637 * to reserve them to larger extents, however if we have plent 1638 * of cache left then go ahead an dadd them, no sense in adding 1639 * the overhead of a bitmap if we don't have to. 1640 */ 1641 if (info->bytes <= block_group->sectorsize * 4) { 1642 if (ctl->free_extents * 2 <= ctl->extents_thresh) 1643 return false; 1644 } else { 1645 return false; 1646 } 1647 } 1648 1649 /* 1650 * some block groups are so tiny they can't be enveloped by a bitmap, so 1651 * don't even bother to create a bitmap for this 1652 */ 1653 if (BITS_PER_BITMAP * block_group->sectorsize > 1654 block_group->key.offset) 1655 return false; 1656 1657 return true; 1658 } 1659 1660 static struct btrfs_free_space_op free_space_op = { 1661 .recalc_thresholds = recalculate_thresholds, 1662 .use_bitmap = use_bitmap, 1663 }; 1664 1665 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 1666 struct btrfs_free_space *info) 1667 { 1668 struct btrfs_free_space *bitmap_info; 1669 struct btrfs_block_group_cache *block_group = NULL; 1670 int added = 0; 1671 u64 bytes, offset, bytes_added; 1672 int ret; 1673 1674 bytes = info->bytes; 1675 offset = info->offset; 1676 1677 if (!ctl->op->use_bitmap(ctl, info)) 1678 return 0; 1679 1680 if (ctl->op == &free_space_op) 1681 block_group = ctl->private; 1682 again: 1683 /* 1684 * Since we link bitmaps right into the cluster we need to see if we 1685 * have a cluster here, and if so and it has our bitmap we need to add 1686 * the free space to that bitmap. 1687 */ 1688 if (block_group && !list_empty(&block_group->cluster_list)) { 1689 struct btrfs_free_cluster *cluster; 1690 struct rb_node *node; 1691 struct btrfs_free_space *entry; 1692 1693 cluster = list_entry(block_group->cluster_list.next, 1694 struct btrfs_free_cluster, 1695 block_group_list); 1696 spin_lock(&cluster->lock); 1697 node = rb_first(&cluster->root); 1698 if (!node) { 1699 spin_unlock(&cluster->lock); 1700 goto no_cluster_bitmap; 1701 } 1702 1703 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1704 if (!entry->bitmap) { 1705 spin_unlock(&cluster->lock); 1706 goto no_cluster_bitmap; 1707 } 1708 1709 if (entry->offset == offset_to_bitmap(ctl, offset)) { 1710 bytes_added = add_bytes_to_bitmap(ctl, entry, 1711 offset, bytes); 1712 bytes -= bytes_added; 1713 offset += bytes_added; 1714 } 1715 spin_unlock(&cluster->lock); 1716 if (!bytes) { 1717 ret = 1; 1718 goto out; 1719 } 1720 } 1721 1722 no_cluster_bitmap: 1723 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 1724 1, 0); 1725 if (!bitmap_info) { 1726 BUG_ON(added); 1727 goto new_bitmap; 1728 } 1729 1730 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 1731 bytes -= bytes_added; 1732 offset += bytes_added; 1733 added = 0; 1734 1735 if (!bytes) { 1736 ret = 1; 1737 goto out; 1738 } else 1739 goto again; 1740 1741 new_bitmap: 1742 if (info && info->bitmap) { 1743 add_new_bitmap(ctl, info, offset); 1744 added = 1; 1745 info = NULL; 1746 goto again; 1747 } else { 1748 spin_unlock(&ctl->tree_lock); 1749 1750 /* no pre-allocated info, allocate a new one */ 1751 if (!info) { 1752 info = kmem_cache_zalloc(btrfs_free_space_cachep, 1753 GFP_NOFS); 1754 if (!info) { 1755 spin_lock(&ctl->tree_lock); 1756 ret = -ENOMEM; 1757 goto out; 1758 } 1759 } 1760 1761 /* allocate the bitmap */ 1762 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 1763 spin_lock(&ctl->tree_lock); 1764 if (!info->bitmap) { 1765 ret = -ENOMEM; 1766 goto out; 1767 } 1768 goto again; 1769 } 1770 1771 out: 1772 if (info) { 1773 if (info->bitmap) 1774 kfree(info->bitmap); 1775 kmem_cache_free(btrfs_free_space_cachep, info); 1776 } 1777 1778 return ret; 1779 } 1780 1781 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 1782 struct btrfs_free_space *info, bool update_stat) 1783 { 1784 struct btrfs_free_space *left_info; 1785 struct btrfs_free_space *right_info; 1786 bool merged = false; 1787 u64 offset = info->offset; 1788 u64 bytes = info->bytes; 1789 1790 /* 1791 * first we want to see if there is free space adjacent to the range we 1792 * are adding, if there is remove that struct and add a new one to 1793 * cover the entire range 1794 */ 1795 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 1796 if (right_info && rb_prev(&right_info->offset_index)) 1797 left_info = rb_entry(rb_prev(&right_info->offset_index), 1798 struct btrfs_free_space, offset_index); 1799 else 1800 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 1801 1802 if (right_info && !right_info->bitmap) { 1803 if (update_stat) 1804 unlink_free_space(ctl, right_info); 1805 else 1806 __unlink_free_space(ctl, right_info); 1807 info->bytes += right_info->bytes; 1808 kmem_cache_free(btrfs_free_space_cachep, right_info); 1809 merged = true; 1810 } 1811 1812 if (left_info && !left_info->bitmap && 1813 left_info->offset + left_info->bytes == offset) { 1814 if (update_stat) 1815 unlink_free_space(ctl, left_info); 1816 else 1817 __unlink_free_space(ctl, left_info); 1818 info->offset = left_info->offset; 1819 info->bytes += left_info->bytes; 1820 kmem_cache_free(btrfs_free_space_cachep, left_info); 1821 merged = true; 1822 } 1823 1824 return merged; 1825 } 1826 1827 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, 1828 u64 offset, u64 bytes) 1829 { 1830 struct btrfs_free_space *info; 1831 int ret = 0; 1832 1833 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 1834 if (!info) 1835 return -ENOMEM; 1836 1837 info->offset = offset; 1838 info->bytes = bytes; 1839 1840 spin_lock(&ctl->tree_lock); 1841 1842 if (try_merge_free_space(ctl, info, true)) 1843 goto link; 1844 1845 /* 1846 * There was no extent directly to the left or right of this new 1847 * extent then we know we're going to have to allocate a new extent, so 1848 * before we do that see if we need to drop this into a bitmap 1849 */ 1850 ret = insert_into_bitmap(ctl, info); 1851 if (ret < 0) { 1852 goto out; 1853 } else if (ret) { 1854 ret = 0; 1855 goto out; 1856 } 1857 link: 1858 ret = link_free_space(ctl, info); 1859 if (ret) 1860 kmem_cache_free(btrfs_free_space_cachep, info); 1861 out: 1862 spin_unlock(&ctl->tree_lock); 1863 1864 if (ret) { 1865 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret); 1866 BUG_ON(ret == -EEXIST); 1867 } 1868 1869 return ret; 1870 } 1871 1872 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, 1873 u64 offset, u64 bytes) 1874 { 1875 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1876 struct btrfs_free_space *info; 1877 int ret = 0; 1878 1879 spin_lock(&ctl->tree_lock); 1880 1881 again: 1882 if (!bytes) 1883 goto out_lock; 1884 1885 info = tree_search_offset(ctl, offset, 0, 0); 1886 if (!info) { 1887 /* 1888 * oops didn't find an extent that matched the space we wanted 1889 * to remove, look for a bitmap instead 1890 */ 1891 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 1892 1, 0); 1893 if (!info) { 1894 /* the tree logging code might be calling us before we 1895 * have fully loaded the free space rbtree for this 1896 * block group. So it is possible the entry won't 1897 * be in the rbtree yet at all. The caching code 1898 * will make sure not to put it in the rbtree if 1899 * the logging code has pinned it. 1900 */ 1901 goto out_lock; 1902 } 1903 } 1904 1905 if (!info->bitmap) { 1906 unlink_free_space(ctl, info); 1907 if (offset == info->offset) { 1908 u64 to_free = min(bytes, info->bytes); 1909 1910 info->bytes -= to_free; 1911 info->offset += to_free; 1912 if (info->bytes) { 1913 ret = link_free_space(ctl, info); 1914 WARN_ON(ret); 1915 } else { 1916 kmem_cache_free(btrfs_free_space_cachep, info); 1917 } 1918 1919 offset += to_free; 1920 bytes -= to_free; 1921 goto again; 1922 } else { 1923 u64 old_end = info->bytes + info->offset; 1924 1925 info->bytes = offset - info->offset; 1926 ret = link_free_space(ctl, info); 1927 WARN_ON(ret); 1928 if (ret) 1929 goto out_lock; 1930 1931 /* Not enough bytes in this entry to satisfy us */ 1932 if (old_end < offset + bytes) { 1933 bytes -= old_end - offset; 1934 offset = old_end; 1935 goto again; 1936 } else if (old_end == offset + bytes) { 1937 /* all done */ 1938 goto out_lock; 1939 } 1940 spin_unlock(&ctl->tree_lock); 1941 1942 ret = btrfs_add_free_space(block_group, offset + bytes, 1943 old_end - (offset + bytes)); 1944 WARN_ON(ret); 1945 goto out; 1946 } 1947 } 1948 1949 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 1950 if (ret == -EAGAIN) 1951 goto again; 1952 BUG_ON(ret); /* logic error */ 1953 out_lock: 1954 spin_unlock(&ctl->tree_lock); 1955 out: 1956 return ret; 1957 } 1958 1959 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, 1960 u64 bytes) 1961 { 1962 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1963 struct btrfs_free_space *info; 1964 struct rb_node *n; 1965 int count = 0; 1966 1967 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 1968 info = rb_entry(n, struct btrfs_free_space, offset_index); 1969 if (info->bytes >= bytes && !block_group->ro) 1970 count++; 1971 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n", 1972 (unsigned long long)info->offset, 1973 (unsigned long long)info->bytes, 1974 (info->bitmap) ? "yes" : "no"); 1975 } 1976 printk(KERN_INFO "block group has cluster?: %s\n", 1977 list_empty(&block_group->cluster_list) ? "no" : "yes"); 1978 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" 1979 "\n", count); 1980 } 1981 1982 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) 1983 { 1984 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1985 1986 spin_lock_init(&ctl->tree_lock); 1987 ctl->unit = block_group->sectorsize; 1988 ctl->start = block_group->key.objectid; 1989 ctl->private = block_group; 1990 ctl->op = &free_space_op; 1991 1992 /* 1993 * we only want to have 32k of ram per block group for keeping 1994 * track of free space, and if we pass 1/2 of that we want to 1995 * start converting things over to using bitmaps 1996 */ 1997 ctl->extents_thresh = ((1024 * 32) / 2) / 1998 sizeof(struct btrfs_free_space); 1999 } 2000 2001 /* 2002 * for a given cluster, put all of its extents back into the free 2003 * space cache. If the block group passed doesn't match the block group 2004 * pointed to by the cluster, someone else raced in and freed the 2005 * cluster already. In that case, we just return without changing anything 2006 */ 2007 static int 2008 __btrfs_return_cluster_to_free_space( 2009 struct btrfs_block_group_cache *block_group, 2010 struct btrfs_free_cluster *cluster) 2011 { 2012 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2013 struct btrfs_free_space *entry; 2014 struct rb_node *node; 2015 2016 spin_lock(&cluster->lock); 2017 if (cluster->block_group != block_group) 2018 goto out; 2019 2020 cluster->block_group = NULL; 2021 cluster->window_start = 0; 2022 list_del_init(&cluster->block_group_list); 2023 2024 node = rb_first(&cluster->root); 2025 while (node) { 2026 bool bitmap; 2027 2028 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2029 node = rb_next(&entry->offset_index); 2030 rb_erase(&entry->offset_index, &cluster->root); 2031 2032 bitmap = (entry->bitmap != NULL); 2033 if (!bitmap) 2034 try_merge_free_space(ctl, entry, false); 2035 tree_insert_offset(&ctl->free_space_offset, 2036 entry->offset, &entry->offset_index, bitmap); 2037 } 2038 cluster->root = RB_ROOT; 2039 2040 out: 2041 spin_unlock(&cluster->lock); 2042 btrfs_put_block_group(block_group); 2043 return 0; 2044 } 2045 2046 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl) 2047 { 2048 struct btrfs_free_space *info; 2049 struct rb_node *node; 2050 2051 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2052 info = rb_entry(node, struct btrfs_free_space, offset_index); 2053 if (!info->bitmap) { 2054 unlink_free_space(ctl, info); 2055 kmem_cache_free(btrfs_free_space_cachep, info); 2056 } else { 2057 free_bitmap(ctl, info); 2058 } 2059 if (need_resched()) { 2060 spin_unlock(&ctl->tree_lock); 2061 cond_resched(); 2062 spin_lock(&ctl->tree_lock); 2063 } 2064 } 2065 } 2066 2067 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2068 { 2069 spin_lock(&ctl->tree_lock); 2070 __btrfs_remove_free_space_cache_locked(ctl); 2071 spin_unlock(&ctl->tree_lock); 2072 } 2073 2074 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) 2075 { 2076 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2077 struct btrfs_free_cluster *cluster; 2078 struct list_head *head; 2079 2080 spin_lock(&ctl->tree_lock); 2081 while ((head = block_group->cluster_list.next) != 2082 &block_group->cluster_list) { 2083 cluster = list_entry(head, struct btrfs_free_cluster, 2084 block_group_list); 2085 2086 WARN_ON(cluster->block_group != block_group); 2087 __btrfs_return_cluster_to_free_space(block_group, cluster); 2088 if (need_resched()) { 2089 spin_unlock(&ctl->tree_lock); 2090 cond_resched(); 2091 spin_lock(&ctl->tree_lock); 2092 } 2093 } 2094 __btrfs_remove_free_space_cache_locked(ctl); 2095 spin_unlock(&ctl->tree_lock); 2096 2097 } 2098 2099 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, 2100 u64 offset, u64 bytes, u64 empty_size) 2101 { 2102 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2103 struct btrfs_free_space *entry = NULL; 2104 u64 bytes_search = bytes + empty_size; 2105 u64 ret = 0; 2106 2107 spin_lock(&ctl->tree_lock); 2108 entry = find_free_space(ctl, &offset, &bytes_search); 2109 if (!entry) 2110 goto out; 2111 2112 ret = offset; 2113 if (entry->bitmap) { 2114 bitmap_clear_bits(ctl, entry, offset, bytes); 2115 if (!entry->bytes) 2116 free_bitmap(ctl, entry); 2117 } else { 2118 unlink_free_space(ctl, entry); 2119 entry->offset += bytes; 2120 entry->bytes -= bytes; 2121 if (!entry->bytes) 2122 kmem_cache_free(btrfs_free_space_cachep, entry); 2123 else 2124 link_free_space(ctl, entry); 2125 } 2126 2127 out: 2128 spin_unlock(&ctl->tree_lock); 2129 2130 return ret; 2131 } 2132 2133 /* 2134 * given a cluster, put all of its extents back into the free space 2135 * cache. If a block group is passed, this function will only free 2136 * a cluster that belongs to the passed block group. 2137 * 2138 * Otherwise, it'll get a reference on the block group pointed to by the 2139 * cluster and remove the cluster from it. 2140 */ 2141 int btrfs_return_cluster_to_free_space( 2142 struct btrfs_block_group_cache *block_group, 2143 struct btrfs_free_cluster *cluster) 2144 { 2145 struct btrfs_free_space_ctl *ctl; 2146 int ret; 2147 2148 /* first, get a safe pointer to the block group */ 2149 spin_lock(&cluster->lock); 2150 if (!block_group) { 2151 block_group = cluster->block_group; 2152 if (!block_group) { 2153 spin_unlock(&cluster->lock); 2154 return 0; 2155 } 2156 } else if (cluster->block_group != block_group) { 2157 /* someone else has already freed it don't redo their work */ 2158 spin_unlock(&cluster->lock); 2159 return 0; 2160 } 2161 atomic_inc(&block_group->count); 2162 spin_unlock(&cluster->lock); 2163 2164 ctl = block_group->free_space_ctl; 2165 2166 /* now return any extents the cluster had on it */ 2167 spin_lock(&ctl->tree_lock); 2168 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2169 spin_unlock(&ctl->tree_lock); 2170 2171 /* finally drop our ref */ 2172 btrfs_put_block_group(block_group); 2173 return ret; 2174 } 2175 2176 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, 2177 struct btrfs_free_cluster *cluster, 2178 struct btrfs_free_space *entry, 2179 u64 bytes, u64 min_start) 2180 { 2181 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2182 int err; 2183 u64 search_start = cluster->window_start; 2184 u64 search_bytes = bytes; 2185 u64 ret = 0; 2186 2187 search_start = min_start; 2188 search_bytes = bytes; 2189 2190 err = search_bitmap(ctl, entry, &search_start, &search_bytes); 2191 if (err) 2192 return 0; 2193 2194 ret = search_start; 2195 __bitmap_clear_bits(ctl, entry, ret, bytes); 2196 2197 return ret; 2198 } 2199 2200 /* 2201 * given a cluster, try to allocate 'bytes' from it, returns 0 2202 * if it couldn't find anything suitably large, or a logical disk offset 2203 * if things worked out 2204 */ 2205 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, 2206 struct btrfs_free_cluster *cluster, u64 bytes, 2207 u64 min_start) 2208 { 2209 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2210 struct btrfs_free_space *entry = NULL; 2211 struct rb_node *node; 2212 u64 ret = 0; 2213 2214 spin_lock(&cluster->lock); 2215 if (bytes > cluster->max_size) 2216 goto out; 2217 2218 if (cluster->block_group != block_group) 2219 goto out; 2220 2221 node = rb_first(&cluster->root); 2222 if (!node) 2223 goto out; 2224 2225 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2226 while(1) { 2227 if (entry->bytes < bytes || 2228 (!entry->bitmap && entry->offset < min_start)) { 2229 node = rb_next(&entry->offset_index); 2230 if (!node) 2231 break; 2232 entry = rb_entry(node, struct btrfs_free_space, 2233 offset_index); 2234 continue; 2235 } 2236 2237 if (entry->bitmap) { 2238 ret = btrfs_alloc_from_bitmap(block_group, 2239 cluster, entry, bytes, 2240 cluster->window_start); 2241 if (ret == 0) { 2242 node = rb_next(&entry->offset_index); 2243 if (!node) 2244 break; 2245 entry = rb_entry(node, struct btrfs_free_space, 2246 offset_index); 2247 continue; 2248 } 2249 cluster->window_start += bytes; 2250 } else { 2251 ret = entry->offset; 2252 2253 entry->offset += bytes; 2254 entry->bytes -= bytes; 2255 } 2256 2257 if (entry->bytes == 0) 2258 rb_erase(&entry->offset_index, &cluster->root); 2259 break; 2260 } 2261 out: 2262 spin_unlock(&cluster->lock); 2263 2264 if (!ret) 2265 return 0; 2266 2267 spin_lock(&ctl->tree_lock); 2268 2269 ctl->free_space -= bytes; 2270 if (entry->bytes == 0) { 2271 ctl->free_extents--; 2272 if (entry->bitmap) { 2273 kfree(entry->bitmap); 2274 ctl->total_bitmaps--; 2275 ctl->op->recalc_thresholds(ctl); 2276 } 2277 kmem_cache_free(btrfs_free_space_cachep, entry); 2278 } 2279 2280 spin_unlock(&ctl->tree_lock); 2281 2282 return ret; 2283 } 2284 2285 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, 2286 struct btrfs_free_space *entry, 2287 struct btrfs_free_cluster *cluster, 2288 u64 offset, u64 bytes, 2289 u64 cont1_bytes, u64 min_bytes) 2290 { 2291 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2292 unsigned long next_zero; 2293 unsigned long i; 2294 unsigned long want_bits; 2295 unsigned long min_bits; 2296 unsigned long found_bits; 2297 unsigned long start = 0; 2298 unsigned long total_found = 0; 2299 int ret; 2300 2301 i = offset_to_bit(entry->offset, block_group->sectorsize, 2302 max_t(u64, offset, entry->offset)); 2303 want_bits = bytes_to_bits(bytes, block_group->sectorsize); 2304 min_bits = bytes_to_bits(min_bytes, block_group->sectorsize); 2305 2306 again: 2307 found_bits = 0; 2308 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 2309 next_zero = find_next_zero_bit(entry->bitmap, 2310 BITS_PER_BITMAP, i); 2311 if (next_zero - i >= min_bits) { 2312 found_bits = next_zero - i; 2313 break; 2314 } 2315 i = next_zero; 2316 } 2317 2318 if (!found_bits) 2319 return -ENOSPC; 2320 2321 if (!total_found) { 2322 start = i; 2323 cluster->max_size = 0; 2324 } 2325 2326 total_found += found_bits; 2327 2328 if (cluster->max_size < found_bits * block_group->sectorsize) 2329 cluster->max_size = found_bits * block_group->sectorsize; 2330 2331 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 2332 i = next_zero + 1; 2333 goto again; 2334 } 2335 2336 cluster->window_start = start * block_group->sectorsize + 2337 entry->offset; 2338 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2339 ret = tree_insert_offset(&cluster->root, entry->offset, 2340 &entry->offset_index, 1); 2341 BUG_ON(ret); /* -EEXIST; Logic error */ 2342 2343 trace_btrfs_setup_cluster(block_group, cluster, 2344 total_found * block_group->sectorsize, 1); 2345 return 0; 2346 } 2347 2348 /* 2349 * This searches the block group for just extents to fill the cluster with. 2350 * Try to find a cluster with at least bytes total bytes, at least one 2351 * extent of cont1_bytes, and other clusters of at least min_bytes. 2352 */ 2353 static noinline int 2354 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, 2355 struct btrfs_free_cluster *cluster, 2356 struct list_head *bitmaps, u64 offset, u64 bytes, 2357 u64 cont1_bytes, u64 min_bytes) 2358 { 2359 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2360 struct btrfs_free_space *first = NULL; 2361 struct btrfs_free_space *entry = NULL; 2362 struct btrfs_free_space *last; 2363 struct rb_node *node; 2364 u64 window_start; 2365 u64 window_free; 2366 u64 max_extent; 2367 u64 total_size = 0; 2368 2369 entry = tree_search_offset(ctl, offset, 0, 1); 2370 if (!entry) 2371 return -ENOSPC; 2372 2373 /* 2374 * We don't want bitmaps, so just move along until we find a normal 2375 * extent entry. 2376 */ 2377 while (entry->bitmap || entry->bytes < min_bytes) { 2378 if (entry->bitmap && list_empty(&entry->list)) 2379 list_add_tail(&entry->list, bitmaps); 2380 node = rb_next(&entry->offset_index); 2381 if (!node) 2382 return -ENOSPC; 2383 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2384 } 2385 2386 window_start = entry->offset; 2387 window_free = entry->bytes; 2388 max_extent = entry->bytes; 2389 first = entry; 2390 last = entry; 2391 2392 for (node = rb_next(&entry->offset_index); node; 2393 node = rb_next(&entry->offset_index)) { 2394 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2395 2396 if (entry->bitmap) { 2397 if (list_empty(&entry->list)) 2398 list_add_tail(&entry->list, bitmaps); 2399 continue; 2400 } 2401 2402 if (entry->bytes < min_bytes) 2403 continue; 2404 2405 last = entry; 2406 window_free += entry->bytes; 2407 if (entry->bytes > max_extent) 2408 max_extent = entry->bytes; 2409 } 2410 2411 if (window_free < bytes || max_extent < cont1_bytes) 2412 return -ENOSPC; 2413 2414 cluster->window_start = first->offset; 2415 2416 node = &first->offset_index; 2417 2418 /* 2419 * now we've found our entries, pull them out of the free space 2420 * cache and put them into the cluster rbtree 2421 */ 2422 do { 2423 int ret; 2424 2425 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2426 node = rb_next(&entry->offset_index); 2427 if (entry->bitmap || entry->bytes < min_bytes) 2428 continue; 2429 2430 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2431 ret = tree_insert_offset(&cluster->root, entry->offset, 2432 &entry->offset_index, 0); 2433 total_size += entry->bytes; 2434 BUG_ON(ret); /* -EEXIST; Logic error */ 2435 } while (node && entry != last); 2436 2437 cluster->max_size = max_extent; 2438 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 2439 return 0; 2440 } 2441 2442 /* 2443 * This specifically looks for bitmaps that may work in the cluster, we assume 2444 * that we have already failed to find extents that will work. 2445 */ 2446 static noinline int 2447 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, 2448 struct btrfs_free_cluster *cluster, 2449 struct list_head *bitmaps, u64 offset, u64 bytes, 2450 u64 cont1_bytes, u64 min_bytes) 2451 { 2452 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2453 struct btrfs_free_space *entry; 2454 int ret = -ENOSPC; 2455 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 2456 2457 if (ctl->total_bitmaps == 0) 2458 return -ENOSPC; 2459 2460 /* 2461 * The bitmap that covers offset won't be in the list unless offset 2462 * is just its start offset. 2463 */ 2464 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 2465 if (entry->offset != bitmap_offset) { 2466 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 2467 if (entry && list_empty(&entry->list)) 2468 list_add(&entry->list, bitmaps); 2469 } 2470 2471 list_for_each_entry(entry, bitmaps, list) { 2472 if (entry->bytes < bytes) 2473 continue; 2474 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 2475 bytes, cont1_bytes, min_bytes); 2476 if (!ret) 2477 return 0; 2478 } 2479 2480 /* 2481 * The bitmaps list has all the bitmaps that record free space 2482 * starting after offset, so no more search is required. 2483 */ 2484 return -ENOSPC; 2485 } 2486 2487 /* 2488 * here we try to find a cluster of blocks in a block group. The goal 2489 * is to find at least bytes+empty_size. 2490 * We might not find them all in one contiguous area. 2491 * 2492 * returns zero and sets up cluster if things worked out, otherwise 2493 * it returns -enospc 2494 */ 2495 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans, 2496 struct btrfs_root *root, 2497 struct btrfs_block_group_cache *block_group, 2498 struct btrfs_free_cluster *cluster, 2499 u64 offset, u64 bytes, u64 empty_size) 2500 { 2501 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2502 struct btrfs_free_space *entry, *tmp; 2503 LIST_HEAD(bitmaps); 2504 u64 min_bytes; 2505 u64 cont1_bytes; 2506 int ret; 2507 2508 /* 2509 * Choose the minimum extent size we'll require for this 2510 * cluster. For SSD_SPREAD, don't allow any fragmentation. 2511 * For metadata, allow allocates with smaller extents. For 2512 * data, keep it dense. 2513 */ 2514 if (btrfs_test_opt(root, SSD_SPREAD)) { 2515 cont1_bytes = min_bytes = bytes + empty_size; 2516 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 2517 cont1_bytes = bytes; 2518 min_bytes = block_group->sectorsize; 2519 } else { 2520 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 2521 min_bytes = block_group->sectorsize; 2522 } 2523 2524 spin_lock(&ctl->tree_lock); 2525 2526 /* 2527 * If we know we don't have enough space to make a cluster don't even 2528 * bother doing all the work to try and find one. 2529 */ 2530 if (ctl->free_space < bytes) { 2531 spin_unlock(&ctl->tree_lock); 2532 return -ENOSPC; 2533 } 2534 2535 spin_lock(&cluster->lock); 2536 2537 /* someone already found a cluster, hooray */ 2538 if (cluster->block_group) { 2539 ret = 0; 2540 goto out; 2541 } 2542 2543 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 2544 min_bytes); 2545 2546 INIT_LIST_HEAD(&bitmaps); 2547 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 2548 bytes + empty_size, 2549 cont1_bytes, min_bytes); 2550 if (ret) 2551 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 2552 offset, bytes + empty_size, 2553 cont1_bytes, min_bytes); 2554 2555 /* Clear our temporary list */ 2556 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 2557 list_del_init(&entry->list); 2558 2559 if (!ret) { 2560 atomic_inc(&block_group->count); 2561 list_add_tail(&cluster->block_group_list, 2562 &block_group->cluster_list); 2563 cluster->block_group = block_group; 2564 } else { 2565 trace_btrfs_failed_cluster_setup(block_group); 2566 } 2567 out: 2568 spin_unlock(&cluster->lock); 2569 spin_unlock(&ctl->tree_lock); 2570 2571 return ret; 2572 } 2573 2574 /* 2575 * simple code to zero out a cluster 2576 */ 2577 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 2578 { 2579 spin_lock_init(&cluster->lock); 2580 spin_lock_init(&cluster->refill_lock); 2581 cluster->root = RB_ROOT; 2582 cluster->max_size = 0; 2583 INIT_LIST_HEAD(&cluster->block_group_list); 2584 cluster->block_group = NULL; 2585 } 2586 2587 static int do_trimming(struct btrfs_block_group_cache *block_group, 2588 u64 *total_trimmed, u64 start, u64 bytes, 2589 u64 reserved_start, u64 reserved_bytes) 2590 { 2591 struct btrfs_space_info *space_info = block_group->space_info; 2592 struct btrfs_fs_info *fs_info = block_group->fs_info; 2593 int ret; 2594 int update = 0; 2595 u64 trimmed = 0; 2596 2597 spin_lock(&space_info->lock); 2598 spin_lock(&block_group->lock); 2599 if (!block_group->ro) { 2600 block_group->reserved += reserved_bytes; 2601 space_info->bytes_reserved += reserved_bytes; 2602 update = 1; 2603 } 2604 spin_unlock(&block_group->lock); 2605 spin_unlock(&space_info->lock); 2606 2607 ret = btrfs_error_discard_extent(fs_info->extent_root, 2608 start, bytes, &trimmed); 2609 if (!ret) 2610 *total_trimmed += trimmed; 2611 2612 btrfs_add_free_space(block_group, reserved_start, reserved_bytes); 2613 2614 if (update) { 2615 spin_lock(&space_info->lock); 2616 spin_lock(&block_group->lock); 2617 if (block_group->ro) 2618 space_info->bytes_readonly += reserved_bytes; 2619 block_group->reserved -= reserved_bytes; 2620 space_info->bytes_reserved -= reserved_bytes; 2621 spin_unlock(&space_info->lock); 2622 spin_unlock(&block_group->lock); 2623 } 2624 2625 return ret; 2626 } 2627 2628 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, 2629 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 2630 { 2631 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2632 struct btrfs_free_space *entry; 2633 struct rb_node *node; 2634 int ret = 0; 2635 u64 extent_start; 2636 u64 extent_bytes; 2637 u64 bytes; 2638 2639 while (start < end) { 2640 spin_lock(&ctl->tree_lock); 2641 2642 if (ctl->free_space < minlen) { 2643 spin_unlock(&ctl->tree_lock); 2644 break; 2645 } 2646 2647 entry = tree_search_offset(ctl, start, 0, 1); 2648 if (!entry) { 2649 spin_unlock(&ctl->tree_lock); 2650 break; 2651 } 2652 2653 /* skip bitmaps */ 2654 while (entry->bitmap) { 2655 node = rb_next(&entry->offset_index); 2656 if (!node) { 2657 spin_unlock(&ctl->tree_lock); 2658 goto out; 2659 } 2660 entry = rb_entry(node, struct btrfs_free_space, 2661 offset_index); 2662 } 2663 2664 if (entry->offset >= end) { 2665 spin_unlock(&ctl->tree_lock); 2666 break; 2667 } 2668 2669 extent_start = entry->offset; 2670 extent_bytes = entry->bytes; 2671 start = max(start, extent_start); 2672 bytes = min(extent_start + extent_bytes, end) - start; 2673 if (bytes < minlen) { 2674 spin_unlock(&ctl->tree_lock); 2675 goto next; 2676 } 2677 2678 unlink_free_space(ctl, entry); 2679 kmem_cache_free(btrfs_free_space_cachep, entry); 2680 2681 spin_unlock(&ctl->tree_lock); 2682 2683 ret = do_trimming(block_group, total_trimmed, start, bytes, 2684 extent_start, extent_bytes); 2685 if (ret) 2686 break; 2687 next: 2688 start += bytes; 2689 2690 if (fatal_signal_pending(current)) { 2691 ret = -ERESTARTSYS; 2692 break; 2693 } 2694 2695 cond_resched(); 2696 } 2697 out: 2698 return ret; 2699 } 2700 2701 static int trim_bitmaps(struct btrfs_block_group_cache *block_group, 2702 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 2703 { 2704 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2705 struct btrfs_free_space *entry; 2706 int ret = 0; 2707 int ret2; 2708 u64 bytes; 2709 u64 offset = offset_to_bitmap(ctl, start); 2710 2711 while (offset < end) { 2712 bool next_bitmap = false; 2713 2714 spin_lock(&ctl->tree_lock); 2715 2716 if (ctl->free_space < minlen) { 2717 spin_unlock(&ctl->tree_lock); 2718 break; 2719 } 2720 2721 entry = tree_search_offset(ctl, offset, 1, 0); 2722 if (!entry) { 2723 spin_unlock(&ctl->tree_lock); 2724 next_bitmap = true; 2725 goto next; 2726 } 2727 2728 bytes = minlen; 2729 ret2 = search_bitmap(ctl, entry, &start, &bytes); 2730 if (ret2 || start >= end) { 2731 spin_unlock(&ctl->tree_lock); 2732 next_bitmap = true; 2733 goto next; 2734 } 2735 2736 bytes = min(bytes, end - start); 2737 if (bytes < minlen) { 2738 spin_unlock(&ctl->tree_lock); 2739 goto next; 2740 } 2741 2742 bitmap_clear_bits(ctl, entry, start, bytes); 2743 if (entry->bytes == 0) 2744 free_bitmap(ctl, entry); 2745 2746 spin_unlock(&ctl->tree_lock); 2747 2748 ret = do_trimming(block_group, total_trimmed, start, bytes, 2749 start, bytes); 2750 if (ret) 2751 break; 2752 next: 2753 if (next_bitmap) { 2754 offset += BITS_PER_BITMAP * ctl->unit; 2755 } else { 2756 start += bytes; 2757 if (start >= offset + BITS_PER_BITMAP * ctl->unit) 2758 offset += BITS_PER_BITMAP * ctl->unit; 2759 } 2760 2761 if (fatal_signal_pending(current)) { 2762 ret = -ERESTARTSYS; 2763 break; 2764 } 2765 2766 cond_resched(); 2767 } 2768 2769 return ret; 2770 } 2771 2772 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, 2773 u64 *trimmed, u64 start, u64 end, u64 minlen) 2774 { 2775 int ret; 2776 2777 *trimmed = 0; 2778 2779 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); 2780 if (ret) 2781 return ret; 2782 2783 ret = trim_bitmaps(block_group, trimmed, start, end, minlen); 2784 2785 return ret; 2786 } 2787 2788 /* 2789 * Find the left-most item in the cache tree, and then return the 2790 * smallest inode number in the item. 2791 * 2792 * Note: the returned inode number may not be the smallest one in 2793 * the tree, if the left-most item is a bitmap. 2794 */ 2795 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 2796 { 2797 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 2798 struct btrfs_free_space *entry = NULL; 2799 u64 ino = 0; 2800 2801 spin_lock(&ctl->tree_lock); 2802 2803 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 2804 goto out; 2805 2806 entry = rb_entry(rb_first(&ctl->free_space_offset), 2807 struct btrfs_free_space, offset_index); 2808 2809 if (!entry->bitmap) { 2810 ino = entry->offset; 2811 2812 unlink_free_space(ctl, entry); 2813 entry->offset++; 2814 entry->bytes--; 2815 if (!entry->bytes) 2816 kmem_cache_free(btrfs_free_space_cachep, entry); 2817 else 2818 link_free_space(ctl, entry); 2819 } else { 2820 u64 offset = 0; 2821 u64 count = 1; 2822 int ret; 2823 2824 ret = search_bitmap(ctl, entry, &offset, &count); 2825 /* Logic error; Should be empty if it can't find anything */ 2826 BUG_ON(ret); 2827 2828 ino = offset; 2829 bitmap_clear_bits(ctl, entry, offset, 1); 2830 if (entry->bytes == 0) 2831 free_bitmap(ctl, entry); 2832 } 2833 out: 2834 spin_unlock(&ctl->tree_lock); 2835 2836 return ino; 2837 } 2838 2839 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 2840 struct btrfs_path *path) 2841 { 2842 struct inode *inode = NULL; 2843 2844 spin_lock(&root->cache_lock); 2845 if (root->cache_inode) 2846 inode = igrab(root->cache_inode); 2847 spin_unlock(&root->cache_lock); 2848 if (inode) 2849 return inode; 2850 2851 inode = __lookup_free_space_inode(root, path, 0); 2852 if (IS_ERR(inode)) 2853 return inode; 2854 2855 spin_lock(&root->cache_lock); 2856 if (!btrfs_fs_closing(root->fs_info)) 2857 root->cache_inode = igrab(inode); 2858 spin_unlock(&root->cache_lock); 2859 2860 return inode; 2861 } 2862 2863 int create_free_ino_inode(struct btrfs_root *root, 2864 struct btrfs_trans_handle *trans, 2865 struct btrfs_path *path) 2866 { 2867 return __create_free_space_inode(root, trans, path, 2868 BTRFS_FREE_INO_OBJECTID, 0); 2869 } 2870 2871 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2872 { 2873 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 2874 struct btrfs_path *path; 2875 struct inode *inode; 2876 int ret = 0; 2877 u64 root_gen = btrfs_root_generation(&root->root_item); 2878 2879 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 2880 return 0; 2881 2882 /* 2883 * If we're unmounting then just return, since this does a search on the 2884 * normal root and not the commit root and we could deadlock. 2885 */ 2886 if (btrfs_fs_closing(fs_info)) 2887 return 0; 2888 2889 path = btrfs_alloc_path(); 2890 if (!path) 2891 return 0; 2892 2893 inode = lookup_free_ino_inode(root, path); 2894 if (IS_ERR(inode)) 2895 goto out; 2896 2897 if (root_gen != BTRFS_I(inode)->generation) 2898 goto out_put; 2899 2900 ret = __load_free_space_cache(root, inode, ctl, path, 0); 2901 2902 if (ret < 0) 2903 printk(KERN_ERR "btrfs: failed to load free ino cache for " 2904 "root %llu\n", root->root_key.objectid); 2905 out_put: 2906 iput(inode); 2907 out: 2908 btrfs_free_path(path); 2909 return ret; 2910 } 2911 2912 int btrfs_write_out_ino_cache(struct btrfs_root *root, 2913 struct btrfs_trans_handle *trans, 2914 struct btrfs_path *path) 2915 { 2916 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 2917 struct inode *inode; 2918 int ret; 2919 2920 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 2921 return 0; 2922 2923 inode = lookup_free_ino_inode(root, path); 2924 if (IS_ERR(inode)) 2925 return 0; 2926 2927 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0); 2928 if (ret) { 2929 btrfs_delalloc_release_metadata(inode, inode->i_size); 2930 #ifdef DEBUG 2931 printk(KERN_ERR "btrfs: failed to write free ino cache " 2932 "for root %llu\n", root->root_key.objectid); 2933 #endif 2934 } 2935 2936 iput(inode); 2937 return ret; 2938 } 2939