xref: /linux/fs/btrfs/free-space-cache.c (revision 7056741fd9fc14a65608549a4657cf5178f05f63)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 
31 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
33 
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 			   struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 			      struct btrfs_free_space *info);
38 
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 					       struct btrfs_path *path,
41 					       u64 offset)
42 {
43 	struct btrfs_key key;
44 	struct btrfs_key location;
45 	struct btrfs_disk_key disk_key;
46 	struct btrfs_free_space_header *header;
47 	struct extent_buffer *leaf;
48 	struct inode *inode = NULL;
49 	int ret;
50 
51 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52 	key.offset = offset;
53 	key.type = 0;
54 
55 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 	if (ret < 0)
57 		return ERR_PTR(ret);
58 	if (ret > 0) {
59 		btrfs_release_path(path);
60 		return ERR_PTR(-ENOENT);
61 	}
62 
63 	leaf = path->nodes[0];
64 	header = btrfs_item_ptr(leaf, path->slots[0],
65 				struct btrfs_free_space_header);
66 	btrfs_free_space_key(leaf, header, &disk_key);
67 	btrfs_disk_key_to_cpu(&location, &disk_key);
68 	btrfs_release_path(path);
69 
70 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 	if (!inode)
72 		return ERR_PTR(-ENOENT);
73 	if (IS_ERR(inode))
74 		return inode;
75 	if (is_bad_inode(inode)) {
76 		iput(inode);
77 		return ERR_PTR(-ENOENT);
78 	}
79 
80 	mapping_set_gfp_mask(inode->i_mapping,
81 			mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
82 
83 	return inode;
84 }
85 
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 				      struct btrfs_block_group_cache
88 				      *block_group, struct btrfs_path *path)
89 {
90 	struct inode *inode = NULL;
91 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92 
93 	spin_lock(&block_group->lock);
94 	if (block_group->inode)
95 		inode = igrab(block_group->inode);
96 	spin_unlock(&block_group->lock);
97 	if (inode)
98 		return inode;
99 
100 	inode = __lookup_free_space_inode(root, path,
101 					  block_group->key.objectid);
102 	if (IS_ERR(inode))
103 		return inode;
104 
105 	spin_lock(&block_group->lock);
106 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 		printk(KERN_INFO "Old style space inode found, converting.\n");
108 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
109 			BTRFS_INODE_NODATACOW;
110 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
111 	}
112 
113 	if (!block_group->iref) {
114 		block_group->inode = igrab(inode);
115 		block_group->iref = 1;
116 	}
117 	spin_unlock(&block_group->lock);
118 
119 	return inode;
120 }
121 
122 int __create_free_space_inode(struct btrfs_root *root,
123 			      struct btrfs_trans_handle *trans,
124 			      struct btrfs_path *path, u64 ino, u64 offset)
125 {
126 	struct btrfs_key key;
127 	struct btrfs_disk_key disk_key;
128 	struct btrfs_free_space_header *header;
129 	struct btrfs_inode_item *inode_item;
130 	struct extent_buffer *leaf;
131 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
132 	int ret;
133 
134 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
135 	if (ret)
136 		return ret;
137 
138 	/* We inline crc's for the free disk space cache */
139 	if (ino != BTRFS_FREE_INO_OBJECTID)
140 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
141 
142 	leaf = path->nodes[0];
143 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
144 				    struct btrfs_inode_item);
145 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
146 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
147 			     sizeof(*inode_item));
148 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
149 	btrfs_set_inode_size(leaf, inode_item, 0);
150 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
151 	btrfs_set_inode_uid(leaf, inode_item, 0);
152 	btrfs_set_inode_gid(leaf, inode_item, 0);
153 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
154 	btrfs_set_inode_flags(leaf, inode_item, flags);
155 	btrfs_set_inode_nlink(leaf, inode_item, 1);
156 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
157 	btrfs_set_inode_block_group(leaf, inode_item, offset);
158 	btrfs_mark_buffer_dirty(leaf);
159 	btrfs_release_path(path);
160 
161 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
162 	key.offset = offset;
163 	key.type = 0;
164 
165 	ret = btrfs_insert_empty_item(trans, root, path, &key,
166 				      sizeof(struct btrfs_free_space_header));
167 	if (ret < 0) {
168 		btrfs_release_path(path);
169 		return ret;
170 	}
171 	leaf = path->nodes[0];
172 	header = btrfs_item_ptr(leaf, path->slots[0],
173 				struct btrfs_free_space_header);
174 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
175 	btrfs_set_free_space_key(leaf, header, &disk_key);
176 	btrfs_mark_buffer_dirty(leaf);
177 	btrfs_release_path(path);
178 
179 	return 0;
180 }
181 
182 int create_free_space_inode(struct btrfs_root *root,
183 			    struct btrfs_trans_handle *trans,
184 			    struct btrfs_block_group_cache *block_group,
185 			    struct btrfs_path *path)
186 {
187 	int ret;
188 	u64 ino;
189 
190 	ret = btrfs_find_free_objectid(root, &ino);
191 	if (ret < 0)
192 		return ret;
193 
194 	return __create_free_space_inode(root, trans, path, ino,
195 					 block_group->key.objectid);
196 }
197 
198 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
199 				    struct btrfs_trans_handle *trans,
200 				    struct btrfs_path *path,
201 				    struct inode *inode)
202 {
203 	struct btrfs_block_rsv *rsv;
204 	u64 needed_bytes;
205 	loff_t oldsize;
206 	int ret = 0;
207 
208 	rsv = trans->block_rsv;
209 	trans->block_rsv = &root->fs_info->global_block_rsv;
210 
211 	/* 1 for slack space, 1 for updating the inode */
212 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
213 		btrfs_calc_trans_metadata_size(root, 1);
214 
215 	spin_lock(&trans->block_rsv->lock);
216 	if (trans->block_rsv->reserved < needed_bytes) {
217 		spin_unlock(&trans->block_rsv->lock);
218 		trans->block_rsv = rsv;
219 		return -ENOSPC;
220 	}
221 	spin_unlock(&trans->block_rsv->lock);
222 
223 	oldsize = i_size_read(inode);
224 	btrfs_i_size_write(inode, 0);
225 	truncate_pagecache(inode, oldsize, 0);
226 
227 	/*
228 	 * We don't need an orphan item because truncating the free space cache
229 	 * will never be split across transactions.
230 	 */
231 	ret = btrfs_truncate_inode_items(trans, root, inode,
232 					 0, BTRFS_EXTENT_DATA_KEY);
233 
234 	if (ret) {
235 		trans->block_rsv = rsv;
236 		btrfs_abort_transaction(trans, root, ret);
237 		return ret;
238 	}
239 
240 	ret = btrfs_update_inode(trans, root, inode);
241 	if (ret)
242 		btrfs_abort_transaction(trans, root, ret);
243 	trans->block_rsv = rsv;
244 
245 	return ret;
246 }
247 
248 static int readahead_cache(struct inode *inode)
249 {
250 	struct file_ra_state *ra;
251 	unsigned long last_index;
252 
253 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
254 	if (!ra)
255 		return -ENOMEM;
256 
257 	file_ra_state_init(ra, inode->i_mapping);
258 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
259 
260 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
261 
262 	kfree(ra);
263 
264 	return 0;
265 }
266 
267 struct io_ctl {
268 	void *cur, *orig;
269 	struct page *page;
270 	struct page **pages;
271 	struct btrfs_root *root;
272 	unsigned long size;
273 	int index;
274 	int num_pages;
275 	unsigned check_crcs:1;
276 };
277 
278 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
279 		       struct btrfs_root *root)
280 {
281 	memset(io_ctl, 0, sizeof(struct io_ctl));
282 	io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
283 		PAGE_CACHE_SHIFT;
284 	io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
285 				GFP_NOFS);
286 	if (!io_ctl->pages)
287 		return -ENOMEM;
288 	io_ctl->root = root;
289 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
290 		io_ctl->check_crcs = 1;
291 	return 0;
292 }
293 
294 static void io_ctl_free(struct io_ctl *io_ctl)
295 {
296 	kfree(io_ctl->pages);
297 }
298 
299 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
300 {
301 	if (io_ctl->cur) {
302 		kunmap(io_ctl->page);
303 		io_ctl->cur = NULL;
304 		io_ctl->orig = NULL;
305 	}
306 }
307 
308 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
309 {
310 	WARN_ON(io_ctl->cur);
311 	BUG_ON(io_ctl->index >= io_ctl->num_pages);
312 	io_ctl->page = io_ctl->pages[io_ctl->index++];
313 	io_ctl->cur = kmap(io_ctl->page);
314 	io_ctl->orig = io_ctl->cur;
315 	io_ctl->size = PAGE_CACHE_SIZE;
316 	if (clear)
317 		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
318 }
319 
320 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
321 {
322 	int i;
323 
324 	io_ctl_unmap_page(io_ctl);
325 
326 	for (i = 0; i < io_ctl->num_pages; i++) {
327 		if (io_ctl->pages[i]) {
328 			ClearPageChecked(io_ctl->pages[i]);
329 			unlock_page(io_ctl->pages[i]);
330 			page_cache_release(io_ctl->pages[i]);
331 		}
332 	}
333 }
334 
335 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
336 				int uptodate)
337 {
338 	struct page *page;
339 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
340 	int i;
341 
342 	for (i = 0; i < io_ctl->num_pages; i++) {
343 		page = find_or_create_page(inode->i_mapping, i, mask);
344 		if (!page) {
345 			io_ctl_drop_pages(io_ctl);
346 			return -ENOMEM;
347 		}
348 		io_ctl->pages[i] = page;
349 		if (uptodate && !PageUptodate(page)) {
350 			btrfs_readpage(NULL, page);
351 			lock_page(page);
352 			if (!PageUptodate(page)) {
353 				printk(KERN_ERR "btrfs: error reading free "
354 				       "space cache\n");
355 				io_ctl_drop_pages(io_ctl);
356 				return -EIO;
357 			}
358 		}
359 	}
360 
361 	for (i = 0; i < io_ctl->num_pages; i++) {
362 		clear_page_dirty_for_io(io_ctl->pages[i]);
363 		set_page_extent_mapped(io_ctl->pages[i]);
364 	}
365 
366 	return 0;
367 }
368 
369 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
370 {
371 	__le64 *val;
372 
373 	io_ctl_map_page(io_ctl, 1);
374 
375 	/*
376 	 * Skip the csum areas.  If we don't check crcs then we just have a
377 	 * 64bit chunk at the front of the first page.
378 	 */
379 	if (io_ctl->check_crcs) {
380 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
381 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
382 	} else {
383 		io_ctl->cur += sizeof(u64);
384 		io_ctl->size -= sizeof(u64) * 2;
385 	}
386 
387 	val = io_ctl->cur;
388 	*val = cpu_to_le64(generation);
389 	io_ctl->cur += sizeof(u64);
390 }
391 
392 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
393 {
394 	__le64 *gen;
395 
396 	/*
397 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
398 	 * chunk at the front of the first page.
399 	 */
400 	if (io_ctl->check_crcs) {
401 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
402 		io_ctl->size -= sizeof(u64) +
403 			(sizeof(u32) * io_ctl->num_pages);
404 	} else {
405 		io_ctl->cur += sizeof(u64);
406 		io_ctl->size -= sizeof(u64) * 2;
407 	}
408 
409 	gen = io_ctl->cur;
410 	if (le64_to_cpu(*gen) != generation) {
411 		printk_ratelimited(KERN_ERR "btrfs: space cache generation "
412 				   "(%Lu) does not match inode (%Lu)\n", *gen,
413 				   generation);
414 		io_ctl_unmap_page(io_ctl);
415 		return -EIO;
416 	}
417 	io_ctl->cur += sizeof(u64);
418 	return 0;
419 }
420 
421 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
422 {
423 	u32 *tmp;
424 	u32 crc = ~(u32)0;
425 	unsigned offset = 0;
426 
427 	if (!io_ctl->check_crcs) {
428 		io_ctl_unmap_page(io_ctl);
429 		return;
430 	}
431 
432 	if (index == 0)
433 		offset = sizeof(u32) * io_ctl->num_pages;
434 
435 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
436 			      PAGE_CACHE_SIZE - offset);
437 	btrfs_csum_final(crc, (char *)&crc);
438 	io_ctl_unmap_page(io_ctl);
439 	tmp = kmap(io_ctl->pages[0]);
440 	tmp += index;
441 	*tmp = crc;
442 	kunmap(io_ctl->pages[0]);
443 }
444 
445 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
446 {
447 	u32 *tmp, val;
448 	u32 crc = ~(u32)0;
449 	unsigned offset = 0;
450 
451 	if (!io_ctl->check_crcs) {
452 		io_ctl_map_page(io_ctl, 0);
453 		return 0;
454 	}
455 
456 	if (index == 0)
457 		offset = sizeof(u32) * io_ctl->num_pages;
458 
459 	tmp = kmap(io_ctl->pages[0]);
460 	tmp += index;
461 	val = *tmp;
462 	kunmap(io_ctl->pages[0]);
463 
464 	io_ctl_map_page(io_ctl, 0);
465 	crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
466 			      PAGE_CACHE_SIZE - offset);
467 	btrfs_csum_final(crc, (char *)&crc);
468 	if (val != crc) {
469 		printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
470 				   "space cache\n");
471 		io_ctl_unmap_page(io_ctl);
472 		return -EIO;
473 	}
474 
475 	return 0;
476 }
477 
478 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
479 			    void *bitmap)
480 {
481 	struct btrfs_free_space_entry *entry;
482 
483 	if (!io_ctl->cur)
484 		return -ENOSPC;
485 
486 	entry = io_ctl->cur;
487 	entry->offset = cpu_to_le64(offset);
488 	entry->bytes = cpu_to_le64(bytes);
489 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
490 		BTRFS_FREE_SPACE_EXTENT;
491 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
492 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
493 
494 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
495 		return 0;
496 
497 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
498 
499 	/* No more pages to map */
500 	if (io_ctl->index >= io_ctl->num_pages)
501 		return 0;
502 
503 	/* map the next page */
504 	io_ctl_map_page(io_ctl, 1);
505 	return 0;
506 }
507 
508 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
509 {
510 	if (!io_ctl->cur)
511 		return -ENOSPC;
512 
513 	/*
514 	 * If we aren't at the start of the current page, unmap this one and
515 	 * map the next one if there is any left.
516 	 */
517 	if (io_ctl->cur != io_ctl->orig) {
518 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
519 		if (io_ctl->index >= io_ctl->num_pages)
520 			return -ENOSPC;
521 		io_ctl_map_page(io_ctl, 0);
522 	}
523 
524 	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
525 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
526 	if (io_ctl->index < io_ctl->num_pages)
527 		io_ctl_map_page(io_ctl, 0);
528 	return 0;
529 }
530 
531 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
532 {
533 	/*
534 	 * If we're not on the boundary we know we've modified the page and we
535 	 * need to crc the page.
536 	 */
537 	if (io_ctl->cur != io_ctl->orig)
538 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539 	else
540 		io_ctl_unmap_page(io_ctl);
541 
542 	while (io_ctl->index < io_ctl->num_pages) {
543 		io_ctl_map_page(io_ctl, 1);
544 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
545 	}
546 }
547 
548 static int io_ctl_read_entry(struct io_ctl *io_ctl,
549 			    struct btrfs_free_space *entry, u8 *type)
550 {
551 	struct btrfs_free_space_entry *e;
552 	int ret;
553 
554 	if (!io_ctl->cur) {
555 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
556 		if (ret)
557 			return ret;
558 	}
559 
560 	e = io_ctl->cur;
561 	entry->offset = le64_to_cpu(e->offset);
562 	entry->bytes = le64_to_cpu(e->bytes);
563 	*type = e->type;
564 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
565 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
566 
567 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
568 		return 0;
569 
570 	io_ctl_unmap_page(io_ctl);
571 
572 	return 0;
573 }
574 
575 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
576 			      struct btrfs_free_space *entry)
577 {
578 	int ret;
579 
580 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
581 	if (ret)
582 		return ret;
583 
584 	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
585 	io_ctl_unmap_page(io_ctl);
586 
587 	return 0;
588 }
589 
590 /*
591  * Since we attach pinned extents after the fact we can have contiguous sections
592  * of free space that are split up in entries.  This poses a problem with the
593  * tree logging stuff since it could have allocated across what appears to be 2
594  * entries since we would have merged the entries when adding the pinned extents
595  * back to the free space cache.  So run through the space cache that we just
596  * loaded and merge contiguous entries.  This will make the log replay stuff not
597  * blow up and it will make for nicer allocator behavior.
598  */
599 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
600 {
601 	struct btrfs_free_space *e, *prev = NULL;
602 	struct rb_node *n;
603 
604 again:
605 	spin_lock(&ctl->tree_lock);
606 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
607 		e = rb_entry(n, struct btrfs_free_space, offset_index);
608 		if (!prev)
609 			goto next;
610 		if (e->bitmap || prev->bitmap)
611 			goto next;
612 		if (prev->offset + prev->bytes == e->offset) {
613 			unlink_free_space(ctl, prev);
614 			unlink_free_space(ctl, e);
615 			prev->bytes += e->bytes;
616 			kmem_cache_free(btrfs_free_space_cachep, e);
617 			link_free_space(ctl, prev);
618 			prev = NULL;
619 			spin_unlock(&ctl->tree_lock);
620 			goto again;
621 		}
622 next:
623 		prev = e;
624 	}
625 	spin_unlock(&ctl->tree_lock);
626 }
627 
628 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
629 			    struct btrfs_free_space_ctl *ctl,
630 			    struct btrfs_path *path, u64 offset)
631 {
632 	struct btrfs_free_space_header *header;
633 	struct extent_buffer *leaf;
634 	struct io_ctl io_ctl;
635 	struct btrfs_key key;
636 	struct btrfs_free_space *e, *n;
637 	struct list_head bitmaps;
638 	u64 num_entries;
639 	u64 num_bitmaps;
640 	u64 generation;
641 	u8 type;
642 	int ret = 0;
643 
644 	INIT_LIST_HEAD(&bitmaps);
645 
646 	/* Nothing in the space cache, goodbye */
647 	if (!i_size_read(inode))
648 		return 0;
649 
650 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
651 	key.offset = offset;
652 	key.type = 0;
653 
654 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
655 	if (ret < 0)
656 		return 0;
657 	else if (ret > 0) {
658 		btrfs_release_path(path);
659 		return 0;
660 	}
661 
662 	ret = -1;
663 
664 	leaf = path->nodes[0];
665 	header = btrfs_item_ptr(leaf, path->slots[0],
666 				struct btrfs_free_space_header);
667 	num_entries = btrfs_free_space_entries(leaf, header);
668 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
669 	generation = btrfs_free_space_generation(leaf, header);
670 	btrfs_release_path(path);
671 
672 	if (BTRFS_I(inode)->generation != generation) {
673 		printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
674 		       " not match free space cache generation (%llu)\n",
675 		       (unsigned long long)BTRFS_I(inode)->generation,
676 		       (unsigned long long)generation);
677 		return 0;
678 	}
679 
680 	if (!num_entries)
681 		return 0;
682 
683 	ret = io_ctl_init(&io_ctl, inode, root);
684 	if (ret)
685 		return ret;
686 
687 	ret = readahead_cache(inode);
688 	if (ret)
689 		goto out;
690 
691 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
692 	if (ret)
693 		goto out;
694 
695 	ret = io_ctl_check_crc(&io_ctl, 0);
696 	if (ret)
697 		goto free_cache;
698 
699 	ret = io_ctl_check_generation(&io_ctl, generation);
700 	if (ret)
701 		goto free_cache;
702 
703 	while (num_entries) {
704 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
705 				      GFP_NOFS);
706 		if (!e)
707 			goto free_cache;
708 
709 		ret = io_ctl_read_entry(&io_ctl, e, &type);
710 		if (ret) {
711 			kmem_cache_free(btrfs_free_space_cachep, e);
712 			goto free_cache;
713 		}
714 
715 		if (!e->bytes) {
716 			kmem_cache_free(btrfs_free_space_cachep, e);
717 			goto free_cache;
718 		}
719 
720 		if (type == BTRFS_FREE_SPACE_EXTENT) {
721 			spin_lock(&ctl->tree_lock);
722 			ret = link_free_space(ctl, e);
723 			spin_unlock(&ctl->tree_lock);
724 			if (ret) {
725 				printk(KERN_ERR "Duplicate entries in "
726 				       "free space cache, dumping\n");
727 				kmem_cache_free(btrfs_free_space_cachep, e);
728 				goto free_cache;
729 			}
730 		} else {
731 			BUG_ON(!num_bitmaps);
732 			num_bitmaps--;
733 			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
734 			if (!e->bitmap) {
735 				kmem_cache_free(
736 					btrfs_free_space_cachep, e);
737 				goto free_cache;
738 			}
739 			spin_lock(&ctl->tree_lock);
740 			ret = link_free_space(ctl, e);
741 			ctl->total_bitmaps++;
742 			ctl->op->recalc_thresholds(ctl);
743 			spin_unlock(&ctl->tree_lock);
744 			if (ret) {
745 				printk(KERN_ERR "Duplicate entries in "
746 				       "free space cache, dumping\n");
747 				kmem_cache_free(btrfs_free_space_cachep, e);
748 				goto free_cache;
749 			}
750 			list_add_tail(&e->list, &bitmaps);
751 		}
752 
753 		num_entries--;
754 	}
755 
756 	io_ctl_unmap_page(&io_ctl);
757 
758 	/*
759 	 * We add the bitmaps at the end of the entries in order that
760 	 * the bitmap entries are added to the cache.
761 	 */
762 	list_for_each_entry_safe(e, n, &bitmaps, list) {
763 		list_del_init(&e->list);
764 		ret = io_ctl_read_bitmap(&io_ctl, e);
765 		if (ret)
766 			goto free_cache;
767 	}
768 
769 	io_ctl_drop_pages(&io_ctl);
770 	merge_space_tree(ctl);
771 	ret = 1;
772 out:
773 	io_ctl_free(&io_ctl);
774 	return ret;
775 free_cache:
776 	io_ctl_drop_pages(&io_ctl);
777 	__btrfs_remove_free_space_cache(ctl);
778 	goto out;
779 }
780 
781 int load_free_space_cache(struct btrfs_fs_info *fs_info,
782 			  struct btrfs_block_group_cache *block_group)
783 {
784 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
785 	struct btrfs_root *root = fs_info->tree_root;
786 	struct inode *inode;
787 	struct btrfs_path *path;
788 	int ret = 0;
789 	bool matched;
790 	u64 used = btrfs_block_group_used(&block_group->item);
791 
792 	/*
793 	 * If this block group has been marked to be cleared for one reason or
794 	 * another then we can't trust the on disk cache, so just return.
795 	 */
796 	spin_lock(&block_group->lock);
797 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
798 		spin_unlock(&block_group->lock);
799 		return 0;
800 	}
801 	spin_unlock(&block_group->lock);
802 
803 	path = btrfs_alloc_path();
804 	if (!path)
805 		return 0;
806 	path->search_commit_root = 1;
807 	path->skip_locking = 1;
808 
809 	inode = lookup_free_space_inode(root, block_group, path);
810 	if (IS_ERR(inode)) {
811 		btrfs_free_path(path);
812 		return 0;
813 	}
814 
815 	/* We may have converted the inode and made the cache invalid. */
816 	spin_lock(&block_group->lock);
817 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
818 		spin_unlock(&block_group->lock);
819 		btrfs_free_path(path);
820 		goto out;
821 	}
822 	spin_unlock(&block_group->lock);
823 
824 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
825 				      path, block_group->key.objectid);
826 	btrfs_free_path(path);
827 	if (ret <= 0)
828 		goto out;
829 
830 	spin_lock(&ctl->tree_lock);
831 	matched = (ctl->free_space == (block_group->key.offset - used -
832 				       block_group->bytes_super));
833 	spin_unlock(&ctl->tree_lock);
834 
835 	if (!matched) {
836 		__btrfs_remove_free_space_cache(ctl);
837 		printk(KERN_ERR "block group %llu has an wrong amount of free "
838 		       "space\n", block_group->key.objectid);
839 		ret = -1;
840 	}
841 out:
842 	if (ret < 0) {
843 		/* This cache is bogus, make sure it gets cleared */
844 		spin_lock(&block_group->lock);
845 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
846 		spin_unlock(&block_group->lock);
847 		ret = 0;
848 
849 		printk(KERN_ERR "btrfs: failed to load free space cache "
850 		       "for block group %llu\n", block_group->key.objectid);
851 	}
852 
853 	iput(inode);
854 	return ret;
855 }
856 
857 /**
858  * __btrfs_write_out_cache - write out cached info to an inode
859  * @root - the root the inode belongs to
860  * @ctl - the free space cache we are going to write out
861  * @block_group - the block_group for this cache if it belongs to a block_group
862  * @trans - the trans handle
863  * @path - the path to use
864  * @offset - the offset for the key we'll insert
865  *
866  * This function writes out a free space cache struct to disk for quick recovery
867  * on mount.  This will return 0 if it was successfull in writing the cache out,
868  * and -1 if it was not.
869  */
870 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
871 			    struct btrfs_free_space_ctl *ctl,
872 			    struct btrfs_block_group_cache *block_group,
873 			    struct btrfs_trans_handle *trans,
874 			    struct btrfs_path *path, u64 offset)
875 {
876 	struct btrfs_free_space_header *header;
877 	struct extent_buffer *leaf;
878 	struct rb_node *node;
879 	struct list_head *pos, *n;
880 	struct extent_state *cached_state = NULL;
881 	struct btrfs_free_cluster *cluster = NULL;
882 	struct extent_io_tree *unpin = NULL;
883 	struct io_ctl io_ctl;
884 	struct list_head bitmap_list;
885 	struct btrfs_key key;
886 	u64 start, extent_start, extent_end, len;
887 	int entries = 0;
888 	int bitmaps = 0;
889 	int ret;
890 	int err = -1;
891 
892 	INIT_LIST_HEAD(&bitmap_list);
893 
894 	if (!i_size_read(inode))
895 		return -1;
896 
897 	ret = io_ctl_init(&io_ctl, inode, root);
898 	if (ret)
899 		return -1;
900 
901 	/* Get the cluster for this block_group if it exists */
902 	if (block_group && !list_empty(&block_group->cluster_list))
903 		cluster = list_entry(block_group->cluster_list.next,
904 				     struct btrfs_free_cluster,
905 				     block_group_list);
906 
907 	/* Lock all pages first so we can lock the extent safely. */
908 	io_ctl_prepare_pages(&io_ctl, inode, 0);
909 
910 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
911 			 0, &cached_state);
912 
913 	node = rb_first(&ctl->free_space_offset);
914 	if (!node && cluster) {
915 		node = rb_first(&cluster->root);
916 		cluster = NULL;
917 	}
918 
919 	/* Make sure we can fit our crcs into the first page */
920 	if (io_ctl.check_crcs &&
921 	    (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
922 		WARN_ON(1);
923 		goto out_nospc;
924 	}
925 
926 	io_ctl_set_generation(&io_ctl, trans->transid);
927 
928 	/* Write out the extent entries */
929 	while (node) {
930 		struct btrfs_free_space *e;
931 
932 		e = rb_entry(node, struct btrfs_free_space, offset_index);
933 		entries++;
934 
935 		ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
936 				       e->bitmap);
937 		if (ret)
938 			goto out_nospc;
939 
940 		if (e->bitmap) {
941 			list_add_tail(&e->list, &bitmap_list);
942 			bitmaps++;
943 		}
944 		node = rb_next(node);
945 		if (!node && cluster) {
946 			node = rb_first(&cluster->root);
947 			cluster = NULL;
948 		}
949 	}
950 
951 	/*
952 	 * We want to add any pinned extents to our free space cache
953 	 * so we don't leak the space
954 	 */
955 
956 	/*
957 	 * We shouldn't have switched the pinned extents yet so this is the
958 	 * right one
959 	 */
960 	unpin = root->fs_info->pinned_extents;
961 
962 	if (block_group)
963 		start = block_group->key.objectid;
964 
965 	while (block_group && (start < block_group->key.objectid +
966 			       block_group->key.offset)) {
967 		ret = find_first_extent_bit(unpin, start,
968 					    &extent_start, &extent_end,
969 					    EXTENT_DIRTY, NULL);
970 		if (ret) {
971 			ret = 0;
972 			break;
973 		}
974 
975 		/* This pinned extent is out of our range */
976 		if (extent_start >= block_group->key.objectid +
977 		    block_group->key.offset)
978 			break;
979 
980 		extent_start = max(extent_start, start);
981 		extent_end = min(block_group->key.objectid +
982 				 block_group->key.offset, extent_end + 1);
983 		len = extent_end - extent_start;
984 
985 		entries++;
986 		ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
987 		if (ret)
988 			goto out_nospc;
989 
990 		start = extent_end;
991 	}
992 
993 	/* Write out the bitmaps */
994 	list_for_each_safe(pos, n, &bitmap_list) {
995 		struct btrfs_free_space *entry =
996 			list_entry(pos, struct btrfs_free_space, list);
997 
998 		ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
999 		if (ret)
1000 			goto out_nospc;
1001 		list_del_init(&entry->list);
1002 	}
1003 
1004 	/* Zero out the rest of the pages just to make sure */
1005 	io_ctl_zero_remaining_pages(&io_ctl);
1006 
1007 	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1008 				0, i_size_read(inode), &cached_state);
1009 	io_ctl_drop_pages(&io_ctl);
1010 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1011 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1012 
1013 	if (ret)
1014 		goto out;
1015 
1016 
1017 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1018 
1019 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1020 	key.offset = offset;
1021 	key.type = 0;
1022 
1023 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1024 	if (ret < 0) {
1025 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1026 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1027 				 GFP_NOFS);
1028 		goto out;
1029 	}
1030 	leaf = path->nodes[0];
1031 	if (ret > 0) {
1032 		struct btrfs_key found_key;
1033 		BUG_ON(!path->slots[0]);
1034 		path->slots[0]--;
1035 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1036 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1037 		    found_key.offset != offset) {
1038 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1039 					 inode->i_size - 1,
1040 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1041 					 NULL, GFP_NOFS);
1042 			btrfs_release_path(path);
1043 			goto out;
1044 		}
1045 	}
1046 
1047 	BTRFS_I(inode)->generation = trans->transid;
1048 	header = btrfs_item_ptr(leaf, path->slots[0],
1049 				struct btrfs_free_space_header);
1050 	btrfs_set_free_space_entries(leaf, header, entries);
1051 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1052 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1053 	btrfs_mark_buffer_dirty(leaf);
1054 	btrfs_release_path(path);
1055 
1056 	err = 0;
1057 out:
1058 	io_ctl_free(&io_ctl);
1059 	if (err) {
1060 		invalidate_inode_pages2(inode->i_mapping);
1061 		BTRFS_I(inode)->generation = 0;
1062 	}
1063 	btrfs_update_inode(trans, root, inode);
1064 	return err;
1065 
1066 out_nospc:
1067 	list_for_each_safe(pos, n, &bitmap_list) {
1068 		struct btrfs_free_space *entry =
1069 			list_entry(pos, struct btrfs_free_space, list);
1070 		list_del_init(&entry->list);
1071 	}
1072 	io_ctl_drop_pages(&io_ctl);
1073 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1074 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1075 	goto out;
1076 }
1077 
1078 int btrfs_write_out_cache(struct btrfs_root *root,
1079 			  struct btrfs_trans_handle *trans,
1080 			  struct btrfs_block_group_cache *block_group,
1081 			  struct btrfs_path *path)
1082 {
1083 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1084 	struct inode *inode;
1085 	int ret = 0;
1086 
1087 	root = root->fs_info->tree_root;
1088 
1089 	spin_lock(&block_group->lock);
1090 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1091 		spin_unlock(&block_group->lock);
1092 		return 0;
1093 	}
1094 	spin_unlock(&block_group->lock);
1095 
1096 	inode = lookup_free_space_inode(root, block_group, path);
1097 	if (IS_ERR(inode))
1098 		return 0;
1099 
1100 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1101 				      path, block_group->key.objectid);
1102 	if (ret) {
1103 		spin_lock(&block_group->lock);
1104 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1105 		spin_unlock(&block_group->lock);
1106 		ret = 0;
1107 #ifdef DEBUG
1108 		printk(KERN_ERR "btrfs: failed to write free space cache "
1109 		       "for block group %llu\n", block_group->key.objectid);
1110 #endif
1111 	}
1112 
1113 	iput(inode);
1114 	return ret;
1115 }
1116 
1117 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1118 					  u64 offset)
1119 {
1120 	BUG_ON(offset < bitmap_start);
1121 	offset -= bitmap_start;
1122 	return (unsigned long)(div_u64(offset, unit));
1123 }
1124 
1125 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1126 {
1127 	return (unsigned long)(div_u64(bytes, unit));
1128 }
1129 
1130 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1131 				   u64 offset)
1132 {
1133 	u64 bitmap_start;
1134 	u64 bytes_per_bitmap;
1135 
1136 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1137 	bitmap_start = offset - ctl->start;
1138 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1139 	bitmap_start *= bytes_per_bitmap;
1140 	bitmap_start += ctl->start;
1141 
1142 	return bitmap_start;
1143 }
1144 
1145 static int tree_insert_offset(struct rb_root *root, u64 offset,
1146 			      struct rb_node *node, int bitmap)
1147 {
1148 	struct rb_node **p = &root->rb_node;
1149 	struct rb_node *parent = NULL;
1150 	struct btrfs_free_space *info;
1151 
1152 	while (*p) {
1153 		parent = *p;
1154 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1155 
1156 		if (offset < info->offset) {
1157 			p = &(*p)->rb_left;
1158 		} else if (offset > info->offset) {
1159 			p = &(*p)->rb_right;
1160 		} else {
1161 			/*
1162 			 * we could have a bitmap entry and an extent entry
1163 			 * share the same offset.  If this is the case, we want
1164 			 * the extent entry to always be found first if we do a
1165 			 * linear search through the tree, since we want to have
1166 			 * the quickest allocation time, and allocating from an
1167 			 * extent is faster than allocating from a bitmap.  So
1168 			 * if we're inserting a bitmap and we find an entry at
1169 			 * this offset, we want to go right, or after this entry
1170 			 * logically.  If we are inserting an extent and we've
1171 			 * found a bitmap, we want to go left, or before
1172 			 * logically.
1173 			 */
1174 			if (bitmap) {
1175 				if (info->bitmap) {
1176 					WARN_ON_ONCE(1);
1177 					return -EEXIST;
1178 				}
1179 				p = &(*p)->rb_right;
1180 			} else {
1181 				if (!info->bitmap) {
1182 					WARN_ON_ONCE(1);
1183 					return -EEXIST;
1184 				}
1185 				p = &(*p)->rb_left;
1186 			}
1187 		}
1188 	}
1189 
1190 	rb_link_node(node, parent, p);
1191 	rb_insert_color(node, root);
1192 
1193 	return 0;
1194 }
1195 
1196 /*
1197  * searches the tree for the given offset.
1198  *
1199  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1200  * want a section that has at least bytes size and comes at or after the given
1201  * offset.
1202  */
1203 static struct btrfs_free_space *
1204 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1205 		   u64 offset, int bitmap_only, int fuzzy)
1206 {
1207 	struct rb_node *n = ctl->free_space_offset.rb_node;
1208 	struct btrfs_free_space *entry, *prev = NULL;
1209 
1210 	/* find entry that is closest to the 'offset' */
1211 	while (1) {
1212 		if (!n) {
1213 			entry = NULL;
1214 			break;
1215 		}
1216 
1217 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1218 		prev = entry;
1219 
1220 		if (offset < entry->offset)
1221 			n = n->rb_left;
1222 		else if (offset > entry->offset)
1223 			n = n->rb_right;
1224 		else
1225 			break;
1226 	}
1227 
1228 	if (bitmap_only) {
1229 		if (!entry)
1230 			return NULL;
1231 		if (entry->bitmap)
1232 			return entry;
1233 
1234 		/*
1235 		 * bitmap entry and extent entry may share same offset,
1236 		 * in that case, bitmap entry comes after extent entry.
1237 		 */
1238 		n = rb_next(n);
1239 		if (!n)
1240 			return NULL;
1241 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1242 		if (entry->offset != offset)
1243 			return NULL;
1244 
1245 		WARN_ON(!entry->bitmap);
1246 		return entry;
1247 	} else if (entry) {
1248 		if (entry->bitmap) {
1249 			/*
1250 			 * if previous extent entry covers the offset,
1251 			 * we should return it instead of the bitmap entry
1252 			 */
1253 			n = &entry->offset_index;
1254 			while (1) {
1255 				n = rb_prev(n);
1256 				if (!n)
1257 					break;
1258 				prev = rb_entry(n, struct btrfs_free_space,
1259 						offset_index);
1260 				if (!prev->bitmap) {
1261 					if (prev->offset + prev->bytes > offset)
1262 						entry = prev;
1263 					break;
1264 				}
1265 			}
1266 		}
1267 		return entry;
1268 	}
1269 
1270 	if (!prev)
1271 		return NULL;
1272 
1273 	/* find last entry before the 'offset' */
1274 	entry = prev;
1275 	if (entry->offset > offset) {
1276 		n = rb_prev(&entry->offset_index);
1277 		if (n) {
1278 			entry = rb_entry(n, struct btrfs_free_space,
1279 					offset_index);
1280 			BUG_ON(entry->offset > offset);
1281 		} else {
1282 			if (fuzzy)
1283 				return entry;
1284 			else
1285 				return NULL;
1286 		}
1287 	}
1288 
1289 	if (entry->bitmap) {
1290 		n = &entry->offset_index;
1291 		while (1) {
1292 			n = rb_prev(n);
1293 			if (!n)
1294 				break;
1295 			prev = rb_entry(n, struct btrfs_free_space,
1296 					offset_index);
1297 			if (!prev->bitmap) {
1298 				if (prev->offset + prev->bytes > offset)
1299 					return prev;
1300 				break;
1301 			}
1302 		}
1303 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1304 			return entry;
1305 	} else if (entry->offset + entry->bytes > offset)
1306 		return entry;
1307 
1308 	if (!fuzzy)
1309 		return NULL;
1310 
1311 	while (1) {
1312 		if (entry->bitmap) {
1313 			if (entry->offset + BITS_PER_BITMAP *
1314 			    ctl->unit > offset)
1315 				break;
1316 		} else {
1317 			if (entry->offset + entry->bytes > offset)
1318 				break;
1319 		}
1320 
1321 		n = rb_next(&entry->offset_index);
1322 		if (!n)
1323 			return NULL;
1324 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1325 	}
1326 	return entry;
1327 }
1328 
1329 static inline void
1330 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1331 		    struct btrfs_free_space *info)
1332 {
1333 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1334 	ctl->free_extents--;
1335 }
1336 
1337 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1338 			      struct btrfs_free_space *info)
1339 {
1340 	__unlink_free_space(ctl, info);
1341 	ctl->free_space -= info->bytes;
1342 }
1343 
1344 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1345 			   struct btrfs_free_space *info)
1346 {
1347 	int ret = 0;
1348 
1349 	BUG_ON(!info->bitmap && !info->bytes);
1350 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1351 				 &info->offset_index, (info->bitmap != NULL));
1352 	if (ret)
1353 		return ret;
1354 
1355 	ctl->free_space += info->bytes;
1356 	ctl->free_extents++;
1357 	return ret;
1358 }
1359 
1360 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1361 {
1362 	struct btrfs_block_group_cache *block_group = ctl->private;
1363 	u64 max_bytes;
1364 	u64 bitmap_bytes;
1365 	u64 extent_bytes;
1366 	u64 size = block_group->key.offset;
1367 	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1368 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1369 
1370 	BUG_ON(ctl->total_bitmaps > max_bitmaps);
1371 
1372 	/*
1373 	 * The goal is to keep the total amount of memory used per 1gb of space
1374 	 * at or below 32k, so we need to adjust how much memory we allow to be
1375 	 * used by extent based free space tracking
1376 	 */
1377 	if (size < 1024 * 1024 * 1024)
1378 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1379 	else
1380 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1381 			div64_u64(size, 1024 * 1024 * 1024);
1382 
1383 	/*
1384 	 * we want to account for 1 more bitmap than what we have so we can make
1385 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1386 	 * we add more bitmaps.
1387 	 */
1388 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1389 
1390 	if (bitmap_bytes >= max_bytes) {
1391 		ctl->extents_thresh = 0;
1392 		return;
1393 	}
1394 
1395 	/*
1396 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1397 	 * bytes we can have, or whatever is less than that.
1398 	 */
1399 	extent_bytes = max_bytes - bitmap_bytes;
1400 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1401 
1402 	ctl->extents_thresh =
1403 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1404 }
1405 
1406 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1407 				       struct btrfs_free_space *info,
1408 				       u64 offset, u64 bytes)
1409 {
1410 	unsigned long start, count;
1411 
1412 	start = offset_to_bit(info->offset, ctl->unit, offset);
1413 	count = bytes_to_bits(bytes, ctl->unit);
1414 	BUG_ON(start + count > BITS_PER_BITMAP);
1415 
1416 	bitmap_clear(info->bitmap, start, count);
1417 
1418 	info->bytes -= bytes;
1419 }
1420 
1421 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1422 			      struct btrfs_free_space *info, u64 offset,
1423 			      u64 bytes)
1424 {
1425 	__bitmap_clear_bits(ctl, info, offset, bytes);
1426 	ctl->free_space -= bytes;
1427 }
1428 
1429 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1430 			    struct btrfs_free_space *info, u64 offset,
1431 			    u64 bytes)
1432 {
1433 	unsigned long start, count;
1434 
1435 	start = offset_to_bit(info->offset, ctl->unit, offset);
1436 	count = bytes_to_bits(bytes, ctl->unit);
1437 	BUG_ON(start + count > BITS_PER_BITMAP);
1438 
1439 	bitmap_set(info->bitmap, start, count);
1440 
1441 	info->bytes += bytes;
1442 	ctl->free_space += bytes;
1443 }
1444 
1445 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1446 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1447 			 u64 *bytes)
1448 {
1449 	unsigned long found_bits = 0;
1450 	unsigned long bits, i;
1451 	unsigned long next_zero;
1452 
1453 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1454 			  max_t(u64, *offset, bitmap_info->offset));
1455 	bits = bytes_to_bits(*bytes, ctl->unit);
1456 
1457 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1458 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1459 					       BITS_PER_BITMAP, i);
1460 		if ((next_zero - i) >= bits) {
1461 			found_bits = next_zero - i;
1462 			break;
1463 		}
1464 		i = next_zero;
1465 	}
1466 
1467 	if (found_bits) {
1468 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1469 		*bytes = (u64)(found_bits) * ctl->unit;
1470 		return 0;
1471 	}
1472 
1473 	return -1;
1474 }
1475 
1476 static struct btrfs_free_space *
1477 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1478 {
1479 	struct btrfs_free_space *entry;
1480 	struct rb_node *node;
1481 	int ret;
1482 
1483 	if (!ctl->free_space_offset.rb_node)
1484 		return NULL;
1485 
1486 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1487 	if (!entry)
1488 		return NULL;
1489 
1490 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1491 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1492 		if (entry->bytes < *bytes)
1493 			continue;
1494 
1495 		if (entry->bitmap) {
1496 			ret = search_bitmap(ctl, entry, offset, bytes);
1497 			if (!ret)
1498 				return entry;
1499 			continue;
1500 		}
1501 
1502 		*offset = entry->offset;
1503 		*bytes = entry->bytes;
1504 		return entry;
1505 	}
1506 
1507 	return NULL;
1508 }
1509 
1510 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1511 			   struct btrfs_free_space *info, u64 offset)
1512 {
1513 	info->offset = offset_to_bitmap(ctl, offset);
1514 	info->bytes = 0;
1515 	INIT_LIST_HEAD(&info->list);
1516 	link_free_space(ctl, info);
1517 	ctl->total_bitmaps++;
1518 
1519 	ctl->op->recalc_thresholds(ctl);
1520 }
1521 
1522 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1523 			struct btrfs_free_space *bitmap_info)
1524 {
1525 	unlink_free_space(ctl, bitmap_info);
1526 	kfree(bitmap_info->bitmap);
1527 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1528 	ctl->total_bitmaps--;
1529 	ctl->op->recalc_thresholds(ctl);
1530 }
1531 
1532 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1533 			      struct btrfs_free_space *bitmap_info,
1534 			      u64 *offset, u64 *bytes)
1535 {
1536 	u64 end;
1537 	u64 search_start, search_bytes;
1538 	int ret;
1539 
1540 again:
1541 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1542 
1543 	/*
1544 	 * We need to search for bits in this bitmap.  We could only cover some
1545 	 * of the extent in this bitmap thanks to how we add space, so we need
1546 	 * to search for as much as it as we can and clear that amount, and then
1547 	 * go searching for the next bit.
1548 	 */
1549 	search_start = *offset;
1550 	search_bytes = ctl->unit;
1551 	search_bytes = min(search_bytes, end - search_start + 1);
1552 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1553 	BUG_ON(ret < 0 || search_start != *offset);
1554 
1555 	/* We may have found more bits than what we need */
1556 	search_bytes = min(search_bytes, *bytes);
1557 
1558 	/* Cannot clear past the end of the bitmap */
1559 	search_bytes = min(search_bytes, end - search_start + 1);
1560 
1561 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1562 	*offset += search_bytes;
1563 	*bytes -= search_bytes;
1564 
1565 	if (*bytes) {
1566 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1567 		if (!bitmap_info->bytes)
1568 			free_bitmap(ctl, bitmap_info);
1569 
1570 		/*
1571 		 * no entry after this bitmap, but we still have bytes to
1572 		 * remove, so something has gone wrong.
1573 		 */
1574 		if (!next)
1575 			return -EINVAL;
1576 
1577 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1578 				       offset_index);
1579 
1580 		/*
1581 		 * if the next entry isn't a bitmap we need to return to let the
1582 		 * extent stuff do its work.
1583 		 */
1584 		if (!bitmap_info->bitmap)
1585 			return -EAGAIN;
1586 
1587 		/*
1588 		 * Ok the next item is a bitmap, but it may not actually hold
1589 		 * the information for the rest of this free space stuff, so
1590 		 * look for it, and if we don't find it return so we can try
1591 		 * everything over again.
1592 		 */
1593 		search_start = *offset;
1594 		search_bytes = ctl->unit;
1595 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1596 				    &search_bytes);
1597 		if (ret < 0 || search_start != *offset)
1598 			return -EAGAIN;
1599 
1600 		goto again;
1601 	} else if (!bitmap_info->bytes)
1602 		free_bitmap(ctl, bitmap_info);
1603 
1604 	return 0;
1605 }
1606 
1607 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1608 			       struct btrfs_free_space *info, u64 offset,
1609 			       u64 bytes)
1610 {
1611 	u64 bytes_to_set = 0;
1612 	u64 end;
1613 
1614 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1615 
1616 	bytes_to_set = min(end - offset, bytes);
1617 
1618 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1619 
1620 	return bytes_to_set;
1621 
1622 }
1623 
1624 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1625 		      struct btrfs_free_space *info)
1626 {
1627 	struct btrfs_block_group_cache *block_group = ctl->private;
1628 
1629 	/*
1630 	 * If we are below the extents threshold then we can add this as an
1631 	 * extent, and don't have to deal with the bitmap
1632 	 */
1633 	if (ctl->free_extents < ctl->extents_thresh) {
1634 		/*
1635 		 * If this block group has some small extents we don't want to
1636 		 * use up all of our free slots in the cache with them, we want
1637 		 * to reserve them to larger extents, however if we have plent
1638 		 * of cache left then go ahead an dadd them, no sense in adding
1639 		 * the overhead of a bitmap if we don't have to.
1640 		 */
1641 		if (info->bytes <= block_group->sectorsize * 4) {
1642 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1643 				return false;
1644 		} else {
1645 			return false;
1646 		}
1647 	}
1648 
1649 	/*
1650 	 * some block groups are so tiny they can't be enveloped by a bitmap, so
1651 	 * don't even bother to create a bitmap for this
1652 	 */
1653 	if (BITS_PER_BITMAP * block_group->sectorsize >
1654 	    block_group->key.offset)
1655 		return false;
1656 
1657 	return true;
1658 }
1659 
1660 static struct btrfs_free_space_op free_space_op = {
1661 	.recalc_thresholds	= recalculate_thresholds,
1662 	.use_bitmap		= use_bitmap,
1663 };
1664 
1665 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1666 			      struct btrfs_free_space *info)
1667 {
1668 	struct btrfs_free_space *bitmap_info;
1669 	struct btrfs_block_group_cache *block_group = NULL;
1670 	int added = 0;
1671 	u64 bytes, offset, bytes_added;
1672 	int ret;
1673 
1674 	bytes = info->bytes;
1675 	offset = info->offset;
1676 
1677 	if (!ctl->op->use_bitmap(ctl, info))
1678 		return 0;
1679 
1680 	if (ctl->op == &free_space_op)
1681 		block_group = ctl->private;
1682 again:
1683 	/*
1684 	 * Since we link bitmaps right into the cluster we need to see if we
1685 	 * have a cluster here, and if so and it has our bitmap we need to add
1686 	 * the free space to that bitmap.
1687 	 */
1688 	if (block_group && !list_empty(&block_group->cluster_list)) {
1689 		struct btrfs_free_cluster *cluster;
1690 		struct rb_node *node;
1691 		struct btrfs_free_space *entry;
1692 
1693 		cluster = list_entry(block_group->cluster_list.next,
1694 				     struct btrfs_free_cluster,
1695 				     block_group_list);
1696 		spin_lock(&cluster->lock);
1697 		node = rb_first(&cluster->root);
1698 		if (!node) {
1699 			spin_unlock(&cluster->lock);
1700 			goto no_cluster_bitmap;
1701 		}
1702 
1703 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1704 		if (!entry->bitmap) {
1705 			spin_unlock(&cluster->lock);
1706 			goto no_cluster_bitmap;
1707 		}
1708 
1709 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1710 			bytes_added = add_bytes_to_bitmap(ctl, entry,
1711 							  offset, bytes);
1712 			bytes -= bytes_added;
1713 			offset += bytes_added;
1714 		}
1715 		spin_unlock(&cluster->lock);
1716 		if (!bytes) {
1717 			ret = 1;
1718 			goto out;
1719 		}
1720 	}
1721 
1722 no_cluster_bitmap:
1723 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1724 					 1, 0);
1725 	if (!bitmap_info) {
1726 		BUG_ON(added);
1727 		goto new_bitmap;
1728 	}
1729 
1730 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1731 	bytes -= bytes_added;
1732 	offset += bytes_added;
1733 	added = 0;
1734 
1735 	if (!bytes) {
1736 		ret = 1;
1737 		goto out;
1738 	} else
1739 		goto again;
1740 
1741 new_bitmap:
1742 	if (info && info->bitmap) {
1743 		add_new_bitmap(ctl, info, offset);
1744 		added = 1;
1745 		info = NULL;
1746 		goto again;
1747 	} else {
1748 		spin_unlock(&ctl->tree_lock);
1749 
1750 		/* no pre-allocated info, allocate a new one */
1751 		if (!info) {
1752 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1753 						 GFP_NOFS);
1754 			if (!info) {
1755 				spin_lock(&ctl->tree_lock);
1756 				ret = -ENOMEM;
1757 				goto out;
1758 			}
1759 		}
1760 
1761 		/* allocate the bitmap */
1762 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1763 		spin_lock(&ctl->tree_lock);
1764 		if (!info->bitmap) {
1765 			ret = -ENOMEM;
1766 			goto out;
1767 		}
1768 		goto again;
1769 	}
1770 
1771 out:
1772 	if (info) {
1773 		if (info->bitmap)
1774 			kfree(info->bitmap);
1775 		kmem_cache_free(btrfs_free_space_cachep, info);
1776 	}
1777 
1778 	return ret;
1779 }
1780 
1781 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1782 			  struct btrfs_free_space *info, bool update_stat)
1783 {
1784 	struct btrfs_free_space *left_info;
1785 	struct btrfs_free_space *right_info;
1786 	bool merged = false;
1787 	u64 offset = info->offset;
1788 	u64 bytes = info->bytes;
1789 
1790 	/*
1791 	 * first we want to see if there is free space adjacent to the range we
1792 	 * are adding, if there is remove that struct and add a new one to
1793 	 * cover the entire range
1794 	 */
1795 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1796 	if (right_info && rb_prev(&right_info->offset_index))
1797 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1798 				     struct btrfs_free_space, offset_index);
1799 	else
1800 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1801 
1802 	if (right_info && !right_info->bitmap) {
1803 		if (update_stat)
1804 			unlink_free_space(ctl, right_info);
1805 		else
1806 			__unlink_free_space(ctl, right_info);
1807 		info->bytes += right_info->bytes;
1808 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1809 		merged = true;
1810 	}
1811 
1812 	if (left_info && !left_info->bitmap &&
1813 	    left_info->offset + left_info->bytes == offset) {
1814 		if (update_stat)
1815 			unlink_free_space(ctl, left_info);
1816 		else
1817 			__unlink_free_space(ctl, left_info);
1818 		info->offset = left_info->offset;
1819 		info->bytes += left_info->bytes;
1820 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1821 		merged = true;
1822 	}
1823 
1824 	return merged;
1825 }
1826 
1827 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1828 			   u64 offset, u64 bytes)
1829 {
1830 	struct btrfs_free_space *info;
1831 	int ret = 0;
1832 
1833 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1834 	if (!info)
1835 		return -ENOMEM;
1836 
1837 	info->offset = offset;
1838 	info->bytes = bytes;
1839 
1840 	spin_lock(&ctl->tree_lock);
1841 
1842 	if (try_merge_free_space(ctl, info, true))
1843 		goto link;
1844 
1845 	/*
1846 	 * There was no extent directly to the left or right of this new
1847 	 * extent then we know we're going to have to allocate a new extent, so
1848 	 * before we do that see if we need to drop this into a bitmap
1849 	 */
1850 	ret = insert_into_bitmap(ctl, info);
1851 	if (ret < 0) {
1852 		goto out;
1853 	} else if (ret) {
1854 		ret = 0;
1855 		goto out;
1856 	}
1857 link:
1858 	ret = link_free_space(ctl, info);
1859 	if (ret)
1860 		kmem_cache_free(btrfs_free_space_cachep, info);
1861 out:
1862 	spin_unlock(&ctl->tree_lock);
1863 
1864 	if (ret) {
1865 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1866 		BUG_ON(ret == -EEXIST);
1867 	}
1868 
1869 	return ret;
1870 }
1871 
1872 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1873 			    u64 offset, u64 bytes)
1874 {
1875 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1876 	struct btrfs_free_space *info;
1877 	int ret = 0;
1878 
1879 	spin_lock(&ctl->tree_lock);
1880 
1881 again:
1882 	if (!bytes)
1883 		goto out_lock;
1884 
1885 	info = tree_search_offset(ctl, offset, 0, 0);
1886 	if (!info) {
1887 		/*
1888 		 * oops didn't find an extent that matched the space we wanted
1889 		 * to remove, look for a bitmap instead
1890 		 */
1891 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1892 					  1, 0);
1893 		if (!info) {
1894 			/* the tree logging code might be calling us before we
1895 			 * have fully loaded the free space rbtree for this
1896 			 * block group.  So it is possible the entry won't
1897 			 * be in the rbtree yet at all.  The caching code
1898 			 * will make sure not to put it in the rbtree if
1899 			 * the logging code has pinned it.
1900 			 */
1901 			goto out_lock;
1902 		}
1903 	}
1904 
1905 	if (!info->bitmap) {
1906 		unlink_free_space(ctl, info);
1907 		if (offset == info->offset) {
1908 			u64 to_free = min(bytes, info->bytes);
1909 
1910 			info->bytes -= to_free;
1911 			info->offset += to_free;
1912 			if (info->bytes) {
1913 				ret = link_free_space(ctl, info);
1914 				WARN_ON(ret);
1915 			} else {
1916 				kmem_cache_free(btrfs_free_space_cachep, info);
1917 			}
1918 
1919 			offset += to_free;
1920 			bytes -= to_free;
1921 			goto again;
1922 		} else {
1923 			u64 old_end = info->bytes + info->offset;
1924 
1925 			info->bytes = offset - info->offset;
1926 			ret = link_free_space(ctl, info);
1927 			WARN_ON(ret);
1928 			if (ret)
1929 				goto out_lock;
1930 
1931 			/* Not enough bytes in this entry to satisfy us */
1932 			if (old_end < offset + bytes) {
1933 				bytes -= old_end - offset;
1934 				offset = old_end;
1935 				goto again;
1936 			} else if (old_end == offset + bytes) {
1937 				/* all done */
1938 				goto out_lock;
1939 			}
1940 			spin_unlock(&ctl->tree_lock);
1941 
1942 			ret = btrfs_add_free_space(block_group, offset + bytes,
1943 						   old_end - (offset + bytes));
1944 			WARN_ON(ret);
1945 			goto out;
1946 		}
1947 	}
1948 
1949 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1950 	if (ret == -EAGAIN)
1951 		goto again;
1952 	BUG_ON(ret); /* logic error */
1953 out_lock:
1954 	spin_unlock(&ctl->tree_lock);
1955 out:
1956 	return ret;
1957 }
1958 
1959 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1960 			   u64 bytes)
1961 {
1962 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1963 	struct btrfs_free_space *info;
1964 	struct rb_node *n;
1965 	int count = 0;
1966 
1967 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1968 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1969 		if (info->bytes >= bytes && !block_group->ro)
1970 			count++;
1971 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1972 		       (unsigned long long)info->offset,
1973 		       (unsigned long long)info->bytes,
1974 		       (info->bitmap) ? "yes" : "no");
1975 	}
1976 	printk(KERN_INFO "block group has cluster?: %s\n",
1977 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
1978 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1979 	       "\n", count);
1980 }
1981 
1982 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
1983 {
1984 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1985 
1986 	spin_lock_init(&ctl->tree_lock);
1987 	ctl->unit = block_group->sectorsize;
1988 	ctl->start = block_group->key.objectid;
1989 	ctl->private = block_group;
1990 	ctl->op = &free_space_op;
1991 
1992 	/*
1993 	 * we only want to have 32k of ram per block group for keeping
1994 	 * track of free space, and if we pass 1/2 of that we want to
1995 	 * start converting things over to using bitmaps
1996 	 */
1997 	ctl->extents_thresh = ((1024 * 32) / 2) /
1998 				sizeof(struct btrfs_free_space);
1999 }
2000 
2001 /*
2002  * for a given cluster, put all of its extents back into the free
2003  * space cache.  If the block group passed doesn't match the block group
2004  * pointed to by the cluster, someone else raced in and freed the
2005  * cluster already.  In that case, we just return without changing anything
2006  */
2007 static int
2008 __btrfs_return_cluster_to_free_space(
2009 			     struct btrfs_block_group_cache *block_group,
2010 			     struct btrfs_free_cluster *cluster)
2011 {
2012 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2013 	struct btrfs_free_space *entry;
2014 	struct rb_node *node;
2015 
2016 	spin_lock(&cluster->lock);
2017 	if (cluster->block_group != block_group)
2018 		goto out;
2019 
2020 	cluster->block_group = NULL;
2021 	cluster->window_start = 0;
2022 	list_del_init(&cluster->block_group_list);
2023 
2024 	node = rb_first(&cluster->root);
2025 	while (node) {
2026 		bool bitmap;
2027 
2028 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2029 		node = rb_next(&entry->offset_index);
2030 		rb_erase(&entry->offset_index, &cluster->root);
2031 
2032 		bitmap = (entry->bitmap != NULL);
2033 		if (!bitmap)
2034 			try_merge_free_space(ctl, entry, false);
2035 		tree_insert_offset(&ctl->free_space_offset,
2036 				   entry->offset, &entry->offset_index, bitmap);
2037 	}
2038 	cluster->root = RB_ROOT;
2039 
2040 out:
2041 	spin_unlock(&cluster->lock);
2042 	btrfs_put_block_group(block_group);
2043 	return 0;
2044 }
2045 
2046 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
2047 {
2048 	struct btrfs_free_space *info;
2049 	struct rb_node *node;
2050 
2051 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2052 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2053 		if (!info->bitmap) {
2054 			unlink_free_space(ctl, info);
2055 			kmem_cache_free(btrfs_free_space_cachep, info);
2056 		} else {
2057 			free_bitmap(ctl, info);
2058 		}
2059 		if (need_resched()) {
2060 			spin_unlock(&ctl->tree_lock);
2061 			cond_resched();
2062 			spin_lock(&ctl->tree_lock);
2063 		}
2064 	}
2065 }
2066 
2067 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2068 {
2069 	spin_lock(&ctl->tree_lock);
2070 	__btrfs_remove_free_space_cache_locked(ctl);
2071 	spin_unlock(&ctl->tree_lock);
2072 }
2073 
2074 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2075 {
2076 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2077 	struct btrfs_free_cluster *cluster;
2078 	struct list_head *head;
2079 
2080 	spin_lock(&ctl->tree_lock);
2081 	while ((head = block_group->cluster_list.next) !=
2082 	       &block_group->cluster_list) {
2083 		cluster = list_entry(head, struct btrfs_free_cluster,
2084 				     block_group_list);
2085 
2086 		WARN_ON(cluster->block_group != block_group);
2087 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2088 		if (need_resched()) {
2089 			spin_unlock(&ctl->tree_lock);
2090 			cond_resched();
2091 			spin_lock(&ctl->tree_lock);
2092 		}
2093 	}
2094 	__btrfs_remove_free_space_cache_locked(ctl);
2095 	spin_unlock(&ctl->tree_lock);
2096 
2097 }
2098 
2099 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2100 			       u64 offset, u64 bytes, u64 empty_size)
2101 {
2102 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2103 	struct btrfs_free_space *entry = NULL;
2104 	u64 bytes_search = bytes + empty_size;
2105 	u64 ret = 0;
2106 
2107 	spin_lock(&ctl->tree_lock);
2108 	entry = find_free_space(ctl, &offset, &bytes_search);
2109 	if (!entry)
2110 		goto out;
2111 
2112 	ret = offset;
2113 	if (entry->bitmap) {
2114 		bitmap_clear_bits(ctl, entry, offset, bytes);
2115 		if (!entry->bytes)
2116 			free_bitmap(ctl, entry);
2117 	} else {
2118 		unlink_free_space(ctl, entry);
2119 		entry->offset += bytes;
2120 		entry->bytes -= bytes;
2121 		if (!entry->bytes)
2122 			kmem_cache_free(btrfs_free_space_cachep, entry);
2123 		else
2124 			link_free_space(ctl, entry);
2125 	}
2126 
2127 out:
2128 	spin_unlock(&ctl->tree_lock);
2129 
2130 	return ret;
2131 }
2132 
2133 /*
2134  * given a cluster, put all of its extents back into the free space
2135  * cache.  If a block group is passed, this function will only free
2136  * a cluster that belongs to the passed block group.
2137  *
2138  * Otherwise, it'll get a reference on the block group pointed to by the
2139  * cluster and remove the cluster from it.
2140  */
2141 int btrfs_return_cluster_to_free_space(
2142 			       struct btrfs_block_group_cache *block_group,
2143 			       struct btrfs_free_cluster *cluster)
2144 {
2145 	struct btrfs_free_space_ctl *ctl;
2146 	int ret;
2147 
2148 	/* first, get a safe pointer to the block group */
2149 	spin_lock(&cluster->lock);
2150 	if (!block_group) {
2151 		block_group = cluster->block_group;
2152 		if (!block_group) {
2153 			spin_unlock(&cluster->lock);
2154 			return 0;
2155 		}
2156 	} else if (cluster->block_group != block_group) {
2157 		/* someone else has already freed it don't redo their work */
2158 		spin_unlock(&cluster->lock);
2159 		return 0;
2160 	}
2161 	atomic_inc(&block_group->count);
2162 	spin_unlock(&cluster->lock);
2163 
2164 	ctl = block_group->free_space_ctl;
2165 
2166 	/* now return any extents the cluster had on it */
2167 	spin_lock(&ctl->tree_lock);
2168 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2169 	spin_unlock(&ctl->tree_lock);
2170 
2171 	/* finally drop our ref */
2172 	btrfs_put_block_group(block_group);
2173 	return ret;
2174 }
2175 
2176 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2177 				   struct btrfs_free_cluster *cluster,
2178 				   struct btrfs_free_space *entry,
2179 				   u64 bytes, u64 min_start)
2180 {
2181 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2182 	int err;
2183 	u64 search_start = cluster->window_start;
2184 	u64 search_bytes = bytes;
2185 	u64 ret = 0;
2186 
2187 	search_start = min_start;
2188 	search_bytes = bytes;
2189 
2190 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2191 	if (err)
2192 		return 0;
2193 
2194 	ret = search_start;
2195 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2196 
2197 	return ret;
2198 }
2199 
2200 /*
2201  * given a cluster, try to allocate 'bytes' from it, returns 0
2202  * if it couldn't find anything suitably large, or a logical disk offset
2203  * if things worked out
2204  */
2205 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2206 			     struct btrfs_free_cluster *cluster, u64 bytes,
2207 			     u64 min_start)
2208 {
2209 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2210 	struct btrfs_free_space *entry = NULL;
2211 	struct rb_node *node;
2212 	u64 ret = 0;
2213 
2214 	spin_lock(&cluster->lock);
2215 	if (bytes > cluster->max_size)
2216 		goto out;
2217 
2218 	if (cluster->block_group != block_group)
2219 		goto out;
2220 
2221 	node = rb_first(&cluster->root);
2222 	if (!node)
2223 		goto out;
2224 
2225 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2226 	while(1) {
2227 		if (entry->bytes < bytes ||
2228 		    (!entry->bitmap && entry->offset < min_start)) {
2229 			node = rb_next(&entry->offset_index);
2230 			if (!node)
2231 				break;
2232 			entry = rb_entry(node, struct btrfs_free_space,
2233 					 offset_index);
2234 			continue;
2235 		}
2236 
2237 		if (entry->bitmap) {
2238 			ret = btrfs_alloc_from_bitmap(block_group,
2239 						      cluster, entry, bytes,
2240 						      cluster->window_start);
2241 			if (ret == 0) {
2242 				node = rb_next(&entry->offset_index);
2243 				if (!node)
2244 					break;
2245 				entry = rb_entry(node, struct btrfs_free_space,
2246 						 offset_index);
2247 				continue;
2248 			}
2249 			cluster->window_start += bytes;
2250 		} else {
2251 			ret = entry->offset;
2252 
2253 			entry->offset += bytes;
2254 			entry->bytes -= bytes;
2255 		}
2256 
2257 		if (entry->bytes == 0)
2258 			rb_erase(&entry->offset_index, &cluster->root);
2259 		break;
2260 	}
2261 out:
2262 	spin_unlock(&cluster->lock);
2263 
2264 	if (!ret)
2265 		return 0;
2266 
2267 	spin_lock(&ctl->tree_lock);
2268 
2269 	ctl->free_space -= bytes;
2270 	if (entry->bytes == 0) {
2271 		ctl->free_extents--;
2272 		if (entry->bitmap) {
2273 			kfree(entry->bitmap);
2274 			ctl->total_bitmaps--;
2275 			ctl->op->recalc_thresholds(ctl);
2276 		}
2277 		kmem_cache_free(btrfs_free_space_cachep, entry);
2278 	}
2279 
2280 	spin_unlock(&ctl->tree_lock);
2281 
2282 	return ret;
2283 }
2284 
2285 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2286 				struct btrfs_free_space *entry,
2287 				struct btrfs_free_cluster *cluster,
2288 				u64 offset, u64 bytes,
2289 				u64 cont1_bytes, u64 min_bytes)
2290 {
2291 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2292 	unsigned long next_zero;
2293 	unsigned long i;
2294 	unsigned long want_bits;
2295 	unsigned long min_bits;
2296 	unsigned long found_bits;
2297 	unsigned long start = 0;
2298 	unsigned long total_found = 0;
2299 	int ret;
2300 
2301 	i = offset_to_bit(entry->offset, block_group->sectorsize,
2302 			  max_t(u64, offset, entry->offset));
2303 	want_bits = bytes_to_bits(bytes, block_group->sectorsize);
2304 	min_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2305 
2306 again:
2307 	found_bits = 0;
2308 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2309 		next_zero = find_next_zero_bit(entry->bitmap,
2310 					       BITS_PER_BITMAP, i);
2311 		if (next_zero - i >= min_bits) {
2312 			found_bits = next_zero - i;
2313 			break;
2314 		}
2315 		i = next_zero;
2316 	}
2317 
2318 	if (!found_bits)
2319 		return -ENOSPC;
2320 
2321 	if (!total_found) {
2322 		start = i;
2323 		cluster->max_size = 0;
2324 	}
2325 
2326 	total_found += found_bits;
2327 
2328 	if (cluster->max_size < found_bits * block_group->sectorsize)
2329 		cluster->max_size = found_bits * block_group->sectorsize;
2330 
2331 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2332 		i = next_zero + 1;
2333 		goto again;
2334 	}
2335 
2336 	cluster->window_start = start * block_group->sectorsize +
2337 		entry->offset;
2338 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2339 	ret = tree_insert_offset(&cluster->root, entry->offset,
2340 				 &entry->offset_index, 1);
2341 	BUG_ON(ret); /* -EEXIST; Logic error */
2342 
2343 	trace_btrfs_setup_cluster(block_group, cluster,
2344 				  total_found * block_group->sectorsize, 1);
2345 	return 0;
2346 }
2347 
2348 /*
2349  * This searches the block group for just extents to fill the cluster with.
2350  * Try to find a cluster with at least bytes total bytes, at least one
2351  * extent of cont1_bytes, and other clusters of at least min_bytes.
2352  */
2353 static noinline int
2354 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2355 			struct btrfs_free_cluster *cluster,
2356 			struct list_head *bitmaps, u64 offset, u64 bytes,
2357 			u64 cont1_bytes, u64 min_bytes)
2358 {
2359 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2360 	struct btrfs_free_space *first = NULL;
2361 	struct btrfs_free_space *entry = NULL;
2362 	struct btrfs_free_space *last;
2363 	struct rb_node *node;
2364 	u64 window_start;
2365 	u64 window_free;
2366 	u64 max_extent;
2367 	u64 total_size = 0;
2368 
2369 	entry = tree_search_offset(ctl, offset, 0, 1);
2370 	if (!entry)
2371 		return -ENOSPC;
2372 
2373 	/*
2374 	 * We don't want bitmaps, so just move along until we find a normal
2375 	 * extent entry.
2376 	 */
2377 	while (entry->bitmap || entry->bytes < min_bytes) {
2378 		if (entry->bitmap && list_empty(&entry->list))
2379 			list_add_tail(&entry->list, bitmaps);
2380 		node = rb_next(&entry->offset_index);
2381 		if (!node)
2382 			return -ENOSPC;
2383 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2384 	}
2385 
2386 	window_start = entry->offset;
2387 	window_free = entry->bytes;
2388 	max_extent = entry->bytes;
2389 	first = entry;
2390 	last = entry;
2391 
2392 	for (node = rb_next(&entry->offset_index); node;
2393 	     node = rb_next(&entry->offset_index)) {
2394 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2395 
2396 		if (entry->bitmap) {
2397 			if (list_empty(&entry->list))
2398 				list_add_tail(&entry->list, bitmaps);
2399 			continue;
2400 		}
2401 
2402 		if (entry->bytes < min_bytes)
2403 			continue;
2404 
2405 		last = entry;
2406 		window_free += entry->bytes;
2407 		if (entry->bytes > max_extent)
2408 			max_extent = entry->bytes;
2409 	}
2410 
2411 	if (window_free < bytes || max_extent < cont1_bytes)
2412 		return -ENOSPC;
2413 
2414 	cluster->window_start = first->offset;
2415 
2416 	node = &first->offset_index;
2417 
2418 	/*
2419 	 * now we've found our entries, pull them out of the free space
2420 	 * cache and put them into the cluster rbtree
2421 	 */
2422 	do {
2423 		int ret;
2424 
2425 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2426 		node = rb_next(&entry->offset_index);
2427 		if (entry->bitmap || entry->bytes < min_bytes)
2428 			continue;
2429 
2430 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2431 		ret = tree_insert_offset(&cluster->root, entry->offset,
2432 					 &entry->offset_index, 0);
2433 		total_size += entry->bytes;
2434 		BUG_ON(ret); /* -EEXIST; Logic error */
2435 	} while (node && entry != last);
2436 
2437 	cluster->max_size = max_extent;
2438 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2439 	return 0;
2440 }
2441 
2442 /*
2443  * This specifically looks for bitmaps that may work in the cluster, we assume
2444  * that we have already failed to find extents that will work.
2445  */
2446 static noinline int
2447 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2448 		     struct btrfs_free_cluster *cluster,
2449 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2450 		     u64 cont1_bytes, u64 min_bytes)
2451 {
2452 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2453 	struct btrfs_free_space *entry;
2454 	int ret = -ENOSPC;
2455 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2456 
2457 	if (ctl->total_bitmaps == 0)
2458 		return -ENOSPC;
2459 
2460 	/*
2461 	 * The bitmap that covers offset won't be in the list unless offset
2462 	 * is just its start offset.
2463 	 */
2464 	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2465 	if (entry->offset != bitmap_offset) {
2466 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2467 		if (entry && list_empty(&entry->list))
2468 			list_add(&entry->list, bitmaps);
2469 	}
2470 
2471 	list_for_each_entry(entry, bitmaps, list) {
2472 		if (entry->bytes < bytes)
2473 			continue;
2474 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2475 					   bytes, cont1_bytes, min_bytes);
2476 		if (!ret)
2477 			return 0;
2478 	}
2479 
2480 	/*
2481 	 * The bitmaps list has all the bitmaps that record free space
2482 	 * starting after offset, so no more search is required.
2483 	 */
2484 	return -ENOSPC;
2485 }
2486 
2487 /*
2488  * here we try to find a cluster of blocks in a block group.  The goal
2489  * is to find at least bytes+empty_size.
2490  * We might not find them all in one contiguous area.
2491  *
2492  * returns zero and sets up cluster if things worked out, otherwise
2493  * it returns -enospc
2494  */
2495 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2496 			     struct btrfs_root *root,
2497 			     struct btrfs_block_group_cache *block_group,
2498 			     struct btrfs_free_cluster *cluster,
2499 			     u64 offset, u64 bytes, u64 empty_size)
2500 {
2501 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2502 	struct btrfs_free_space *entry, *tmp;
2503 	LIST_HEAD(bitmaps);
2504 	u64 min_bytes;
2505 	u64 cont1_bytes;
2506 	int ret;
2507 
2508 	/*
2509 	 * Choose the minimum extent size we'll require for this
2510 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2511 	 * For metadata, allow allocates with smaller extents.  For
2512 	 * data, keep it dense.
2513 	 */
2514 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2515 		cont1_bytes = min_bytes = bytes + empty_size;
2516 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2517 		cont1_bytes = bytes;
2518 		min_bytes = block_group->sectorsize;
2519 	} else {
2520 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2521 		min_bytes = block_group->sectorsize;
2522 	}
2523 
2524 	spin_lock(&ctl->tree_lock);
2525 
2526 	/*
2527 	 * If we know we don't have enough space to make a cluster don't even
2528 	 * bother doing all the work to try and find one.
2529 	 */
2530 	if (ctl->free_space < bytes) {
2531 		spin_unlock(&ctl->tree_lock);
2532 		return -ENOSPC;
2533 	}
2534 
2535 	spin_lock(&cluster->lock);
2536 
2537 	/* someone already found a cluster, hooray */
2538 	if (cluster->block_group) {
2539 		ret = 0;
2540 		goto out;
2541 	}
2542 
2543 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2544 				 min_bytes);
2545 
2546 	INIT_LIST_HEAD(&bitmaps);
2547 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2548 				      bytes + empty_size,
2549 				      cont1_bytes, min_bytes);
2550 	if (ret)
2551 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2552 					   offset, bytes + empty_size,
2553 					   cont1_bytes, min_bytes);
2554 
2555 	/* Clear our temporary list */
2556 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2557 		list_del_init(&entry->list);
2558 
2559 	if (!ret) {
2560 		atomic_inc(&block_group->count);
2561 		list_add_tail(&cluster->block_group_list,
2562 			      &block_group->cluster_list);
2563 		cluster->block_group = block_group;
2564 	} else {
2565 		trace_btrfs_failed_cluster_setup(block_group);
2566 	}
2567 out:
2568 	spin_unlock(&cluster->lock);
2569 	spin_unlock(&ctl->tree_lock);
2570 
2571 	return ret;
2572 }
2573 
2574 /*
2575  * simple code to zero out a cluster
2576  */
2577 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2578 {
2579 	spin_lock_init(&cluster->lock);
2580 	spin_lock_init(&cluster->refill_lock);
2581 	cluster->root = RB_ROOT;
2582 	cluster->max_size = 0;
2583 	INIT_LIST_HEAD(&cluster->block_group_list);
2584 	cluster->block_group = NULL;
2585 }
2586 
2587 static int do_trimming(struct btrfs_block_group_cache *block_group,
2588 		       u64 *total_trimmed, u64 start, u64 bytes,
2589 		       u64 reserved_start, u64 reserved_bytes)
2590 {
2591 	struct btrfs_space_info *space_info = block_group->space_info;
2592 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2593 	int ret;
2594 	int update = 0;
2595 	u64 trimmed = 0;
2596 
2597 	spin_lock(&space_info->lock);
2598 	spin_lock(&block_group->lock);
2599 	if (!block_group->ro) {
2600 		block_group->reserved += reserved_bytes;
2601 		space_info->bytes_reserved += reserved_bytes;
2602 		update = 1;
2603 	}
2604 	spin_unlock(&block_group->lock);
2605 	spin_unlock(&space_info->lock);
2606 
2607 	ret = btrfs_error_discard_extent(fs_info->extent_root,
2608 					 start, bytes, &trimmed);
2609 	if (!ret)
2610 		*total_trimmed += trimmed;
2611 
2612 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2613 
2614 	if (update) {
2615 		spin_lock(&space_info->lock);
2616 		spin_lock(&block_group->lock);
2617 		if (block_group->ro)
2618 			space_info->bytes_readonly += reserved_bytes;
2619 		block_group->reserved -= reserved_bytes;
2620 		space_info->bytes_reserved -= reserved_bytes;
2621 		spin_unlock(&space_info->lock);
2622 		spin_unlock(&block_group->lock);
2623 	}
2624 
2625 	return ret;
2626 }
2627 
2628 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2629 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2630 {
2631 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2632 	struct btrfs_free_space *entry;
2633 	struct rb_node *node;
2634 	int ret = 0;
2635 	u64 extent_start;
2636 	u64 extent_bytes;
2637 	u64 bytes;
2638 
2639 	while (start < end) {
2640 		spin_lock(&ctl->tree_lock);
2641 
2642 		if (ctl->free_space < minlen) {
2643 			spin_unlock(&ctl->tree_lock);
2644 			break;
2645 		}
2646 
2647 		entry = tree_search_offset(ctl, start, 0, 1);
2648 		if (!entry) {
2649 			spin_unlock(&ctl->tree_lock);
2650 			break;
2651 		}
2652 
2653 		/* skip bitmaps */
2654 		while (entry->bitmap) {
2655 			node = rb_next(&entry->offset_index);
2656 			if (!node) {
2657 				spin_unlock(&ctl->tree_lock);
2658 				goto out;
2659 			}
2660 			entry = rb_entry(node, struct btrfs_free_space,
2661 					 offset_index);
2662 		}
2663 
2664 		if (entry->offset >= end) {
2665 			spin_unlock(&ctl->tree_lock);
2666 			break;
2667 		}
2668 
2669 		extent_start = entry->offset;
2670 		extent_bytes = entry->bytes;
2671 		start = max(start, extent_start);
2672 		bytes = min(extent_start + extent_bytes, end) - start;
2673 		if (bytes < minlen) {
2674 			spin_unlock(&ctl->tree_lock);
2675 			goto next;
2676 		}
2677 
2678 		unlink_free_space(ctl, entry);
2679 		kmem_cache_free(btrfs_free_space_cachep, entry);
2680 
2681 		spin_unlock(&ctl->tree_lock);
2682 
2683 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2684 				  extent_start, extent_bytes);
2685 		if (ret)
2686 			break;
2687 next:
2688 		start += bytes;
2689 
2690 		if (fatal_signal_pending(current)) {
2691 			ret = -ERESTARTSYS;
2692 			break;
2693 		}
2694 
2695 		cond_resched();
2696 	}
2697 out:
2698 	return ret;
2699 }
2700 
2701 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2702 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2703 {
2704 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2705 	struct btrfs_free_space *entry;
2706 	int ret = 0;
2707 	int ret2;
2708 	u64 bytes;
2709 	u64 offset = offset_to_bitmap(ctl, start);
2710 
2711 	while (offset < end) {
2712 		bool next_bitmap = false;
2713 
2714 		spin_lock(&ctl->tree_lock);
2715 
2716 		if (ctl->free_space < minlen) {
2717 			spin_unlock(&ctl->tree_lock);
2718 			break;
2719 		}
2720 
2721 		entry = tree_search_offset(ctl, offset, 1, 0);
2722 		if (!entry) {
2723 			spin_unlock(&ctl->tree_lock);
2724 			next_bitmap = true;
2725 			goto next;
2726 		}
2727 
2728 		bytes = minlen;
2729 		ret2 = search_bitmap(ctl, entry, &start, &bytes);
2730 		if (ret2 || start >= end) {
2731 			spin_unlock(&ctl->tree_lock);
2732 			next_bitmap = true;
2733 			goto next;
2734 		}
2735 
2736 		bytes = min(bytes, end - start);
2737 		if (bytes < minlen) {
2738 			spin_unlock(&ctl->tree_lock);
2739 			goto next;
2740 		}
2741 
2742 		bitmap_clear_bits(ctl, entry, start, bytes);
2743 		if (entry->bytes == 0)
2744 			free_bitmap(ctl, entry);
2745 
2746 		spin_unlock(&ctl->tree_lock);
2747 
2748 		ret = do_trimming(block_group, total_trimmed, start, bytes,
2749 				  start, bytes);
2750 		if (ret)
2751 			break;
2752 next:
2753 		if (next_bitmap) {
2754 			offset += BITS_PER_BITMAP * ctl->unit;
2755 		} else {
2756 			start += bytes;
2757 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2758 				offset += BITS_PER_BITMAP * ctl->unit;
2759 		}
2760 
2761 		if (fatal_signal_pending(current)) {
2762 			ret = -ERESTARTSYS;
2763 			break;
2764 		}
2765 
2766 		cond_resched();
2767 	}
2768 
2769 	return ret;
2770 }
2771 
2772 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2773 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2774 {
2775 	int ret;
2776 
2777 	*trimmed = 0;
2778 
2779 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2780 	if (ret)
2781 		return ret;
2782 
2783 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2784 
2785 	return ret;
2786 }
2787 
2788 /*
2789  * Find the left-most item in the cache tree, and then return the
2790  * smallest inode number in the item.
2791  *
2792  * Note: the returned inode number may not be the smallest one in
2793  * the tree, if the left-most item is a bitmap.
2794  */
2795 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2796 {
2797 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2798 	struct btrfs_free_space *entry = NULL;
2799 	u64 ino = 0;
2800 
2801 	spin_lock(&ctl->tree_lock);
2802 
2803 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2804 		goto out;
2805 
2806 	entry = rb_entry(rb_first(&ctl->free_space_offset),
2807 			 struct btrfs_free_space, offset_index);
2808 
2809 	if (!entry->bitmap) {
2810 		ino = entry->offset;
2811 
2812 		unlink_free_space(ctl, entry);
2813 		entry->offset++;
2814 		entry->bytes--;
2815 		if (!entry->bytes)
2816 			kmem_cache_free(btrfs_free_space_cachep, entry);
2817 		else
2818 			link_free_space(ctl, entry);
2819 	} else {
2820 		u64 offset = 0;
2821 		u64 count = 1;
2822 		int ret;
2823 
2824 		ret = search_bitmap(ctl, entry, &offset, &count);
2825 		/* Logic error; Should be empty if it can't find anything */
2826 		BUG_ON(ret);
2827 
2828 		ino = offset;
2829 		bitmap_clear_bits(ctl, entry, offset, 1);
2830 		if (entry->bytes == 0)
2831 			free_bitmap(ctl, entry);
2832 	}
2833 out:
2834 	spin_unlock(&ctl->tree_lock);
2835 
2836 	return ino;
2837 }
2838 
2839 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2840 				    struct btrfs_path *path)
2841 {
2842 	struct inode *inode = NULL;
2843 
2844 	spin_lock(&root->cache_lock);
2845 	if (root->cache_inode)
2846 		inode = igrab(root->cache_inode);
2847 	spin_unlock(&root->cache_lock);
2848 	if (inode)
2849 		return inode;
2850 
2851 	inode = __lookup_free_space_inode(root, path, 0);
2852 	if (IS_ERR(inode))
2853 		return inode;
2854 
2855 	spin_lock(&root->cache_lock);
2856 	if (!btrfs_fs_closing(root->fs_info))
2857 		root->cache_inode = igrab(inode);
2858 	spin_unlock(&root->cache_lock);
2859 
2860 	return inode;
2861 }
2862 
2863 int create_free_ino_inode(struct btrfs_root *root,
2864 			  struct btrfs_trans_handle *trans,
2865 			  struct btrfs_path *path)
2866 {
2867 	return __create_free_space_inode(root, trans, path,
2868 					 BTRFS_FREE_INO_OBJECTID, 0);
2869 }
2870 
2871 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2872 {
2873 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2874 	struct btrfs_path *path;
2875 	struct inode *inode;
2876 	int ret = 0;
2877 	u64 root_gen = btrfs_root_generation(&root->root_item);
2878 
2879 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2880 		return 0;
2881 
2882 	/*
2883 	 * If we're unmounting then just return, since this does a search on the
2884 	 * normal root and not the commit root and we could deadlock.
2885 	 */
2886 	if (btrfs_fs_closing(fs_info))
2887 		return 0;
2888 
2889 	path = btrfs_alloc_path();
2890 	if (!path)
2891 		return 0;
2892 
2893 	inode = lookup_free_ino_inode(root, path);
2894 	if (IS_ERR(inode))
2895 		goto out;
2896 
2897 	if (root_gen != BTRFS_I(inode)->generation)
2898 		goto out_put;
2899 
2900 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
2901 
2902 	if (ret < 0)
2903 		printk(KERN_ERR "btrfs: failed to load free ino cache for "
2904 		       "root %llu\n", root->root_key.objectid);
2905 out_put:
2906 	iput(inode);
2907 out:
2908 	btrfs_free_path(path);
2909 	return ret;
2910 }
2911 
2912 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2913 			      struct btrfs_trans_handle *trans,
2914 			      struct btrfs_path *path)
2915 {
2916 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2917 	struct inode *inode;
2918 	int ret;
2919 
2920 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2921 		return 0;
2922 
2923 	inode = lookup_free_ino_inode(root, path);
2924 	if (IS_ERR(inode))
2925 		return 0;
2926 
2927 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2928 	if (ret) {
2929 		btrfs_delalloc_release_metadata(inode, inode->i_size);
2930 #ifdef DEBUG
2931 		printk(KERN_ERR "btrfs: failed to write free ino cache "
2932 		       "for root %llu\n", root->root_key.objectid);
2933 #endif
2934 	}
2935 
2936 	iput(inode);
2937 	return ret;
2938 }
2939