xref: /linux/fs/btrfs/free-space-cache.c (revision 45de28e31a6e250cd9e17c8b9f9db5a439fb39b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
24 #include "discard.h"
25 
26 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
27 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
28 #define FORCE_EXTENT_THRESHOLD	SZ_1M
29 
30 struct btrfs_trim_range {
31 	u64 start;
32 	u64 bytes;
33 	struct list_head list;
34 };
35 
36 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
37 				struct btrfs_free_space *bitmap_info);
38 static int link_free_space(struct btrfs_free_space_ctl *ctl,
39 			   struct btrfs_free_space *info);
40 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
41 			      struct btrfs_free_space *info);
42 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
43 			     struct btrfs_trans_handle *trans,
44 			     struct btrfs_io_ctl *io_ctl,
45 			     struct btrfs_path *path);
46 
47 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
48 					       struct btrfs_path *path,
49 					       u64 offset)
50 {
51 	struct btrfs_fs_info *fs_info = root->fs_info;
52 	struct btrfs_key key;
53 	struct btrfs_key location;
54 	struct btrfs_disk_key disk_key;
55 	struct btrfs_free_space_header *header;
56 	struct extent_buffer *leaf;
57 	struct inode *inode = NULL;
58 	unsigned nofs_flag;
59 	int ret;
60 
61 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
62 	key.offset = offset;
63 	key.type = 0;
64 
65 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66 	if (ret < 0)
67 		return ERR_PTR(ret);
68 	if (ret > 0) {
69 		btrfs_release_path(path);
70 		return ERR_PTR(-ENOENT);
71 	}
72 
73 	leaf = path->nodes[0];
74 	header = btrfs_item_ptr(leaf, path->slots[0],
75 				struct btrfs_free_space_header);
76 	btrfs_free_space_key(leaf, header, &disk_key);
77 	btrfs_disk_key_to_cpu(&location, &disk_key);
78 	btrfs_release_path(path);
79 
80 	/*
81 	 * We are often under a trans handle at this point, so we need to make
82 	 * sure NOFS is set to keep us from deadlocking.
83 	 */
84 	nofs_flag = memalloc_nofs_save();
85 	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
86 	btrfs_release_path(path);
87 	memalloc_nofs_restore(nofs_flag);
88 	if (IS_ERR(inode))
89 		return inode;
90 
91 	mapping_set_gfp_mask(inode->i_mapping,
92 			mapping_gfp_constraint(inode->i_mapping,
93 			~(__GFP_FS | __GFP_HIGHMEM)));
94 
95 	return inode;
96 }
97 
98 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
99 		struct btrfs_path *path)
100 {
101 	struct btrfs_fs_info *fs_info = block_group->fs_info;
102 	struct inode *inode = NULL;
103 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
104 
105 	spin_lock(&block_group->lock);
106 	if (block_group->inode)
107 		inode = igrab(block_group->inode);
108 	spin_unlock(&block_group->lock);
109 	if (inode)
110 		return inode;
111 
112 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
113 					  block_group->start);
114 	if (IS_ERR(inode))
115 		return inode;
116 
117 	spin_lock(&block_group->lock);
118 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
119 		btrfs_info(fs_info, "Old style space inode found, converting.");
120 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
121 			BTRFS_INODE_NODATACOW;
122 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
123 	}
124 
125 	if (!block_group->iref) {
126 		block_group->inode = igrab(inode);
127 		block_group->iref = 1;
128 	}
129 	spin_unlock(&block_group->lock);
130 
131 	return inode;
132 }
133 
134 static int __create_free_space_inode(struct btrfs_root *root,
135 				     struct btrfs_trans_handle *trans,
136 				     struct btrfs_path *path,
137 				     u64 ino, u64 offset)
138 {
139 	struct btrfs_key key;
140 	struct btrfs_disk_key disk_key;
141 	struct btrfs_free_space_header *header;
142 	struct btrfs_inode_item *inode_item;
143 	struct extent_buffer *leaf;
144 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
145 	int ret;
146 
147 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
148 	if (ret)
149 		return ret;
150 
151 	/* We inline crc's for the free disk space cache */
152 	if (ino != BTRFS_FREE_INO_OBJECTID)
153 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
154 
155 	leaf = path->nodes[0];
156 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
157 				    struct btrfs_inode_item);
158 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160 			     sizeof(*inode_item));
161 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
162 	btrfs_set_inode_size(leaf, inode_item, 0);
163 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
164 	btrfs_set_inode_uid(leaf, inode_item, 0);
165 	btrfs_set_inode_gid(leaf, inode_item, 0);
166 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167 	btrfs_set_inode_flags(leaf, inode_item, flags);
168 	btrfs_set_inode_nlink(leaf, inode_item, 1);
169 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170 	btrfs_set_inode_block_group(leaf, inode_item, offset);
171 	btrfs_mark_buffer_dirty(leaf);
172 	btrfs_release_path(path);
173 
174 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175 	key.offset = offset;
176 	key.type = 0;
177 	ret = btrfs_insert_empty_item(trans, root, path, &key,
178 				      sizeof(struct btrfs_free_space_header));
179 	if (ret < 0) {
180 		btrfs_release_path(path);
181 		return ret;
182 	}
183 
184 	leaf = path->nodes[0];
185 	header = btrfs_item_ptr(leaf, path->slots[0],
186 				struct btrfs_free_space_header);
187 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188 	btrfs_set_free_space_key(leaf, header, &disk_key);
189 	btrfs_mark_buffer_dirty(leaf);
190 	btrfs_release_path(path);
191 
192 	return 0;
193 }
194 
195 int create_free_space_inode(struct btrfs_trans_handle *trans,
196 			    struct btrfs_block_group *block_group,
197 			    struct btrfs_path *path)
198 {
199 	int ret;
200 	u64 ino;
201 
202 	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
203 	if (ret < 0)
204 		return ret;
205 
206 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
207 					 ino, block_group->start);
208 }
209 
210 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
211 				       struct btrfs_block_rsv *rsv)
212 {
213 	u64 needed_bytes;
214 	int ret;
215 
216 	/* 1 for slack space, 1 for updating the inode */
217 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
218 		btrfs_calc_metadata_size(fs_info, 1);
219 
220 	spin_lock(&rsv->lock);
221 	if (rsv->reserved < needed_bytes)
222 		ret = -ENOSPC;
223 	else
224 		ret = 0;
225 	spin_unlock(&rsv->lock);
226 	return ret;
227 }
228 
229 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
230 				    struct btrfs_block_group *block_group,
231 				    struct inode *inode)
232 {
233 	struct btrfs_root *root = BTRFS_I(inode)->root;
234 	int ret = 0;
235 	bool locked = false;
236 
237 	if (block_group) {
238 		struct btrfs_path *path = btrfs_alloc_path();
239 
240 		if (!path) {
241 			ret = -ENOMEM;
242 			goto fail;
243 		}
244 		locked = true;
245 		mutex_lock(&trans->transaction->cache_write_mutex);
246 		if (!list_empty(&block_group->io_list)) {
247 			list_del_init(&block_group->io_list);
248 
249 			btrfs_wait_cache_io(trans, block_group, path);
250 			btrfs_put_block_group(block_group);
251 		}
252 
253 		/*
254 		 * now that we've truncated the cache away, its no longer
255 		 * setup or written
256 		 */
257 		spin_lock(&block_group->lock);
258 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 		spin_unlock(&block_group->lock);
260 		btrfs_free_path(path);
261 	}
262 
263 	btrfs_i_size_write(BTRFS_I(inode), 0);
264 	truncate_pagecache(inode, 0);
265 
266 	/*
267 	 * We skip the throttling logic for free space cache inodes, so we don't
268 	 * need to check for -EAGAIN.
269 	 */
270 	ret = btrfs_truncate_inode_items(trans, root, inode,
271 					 0, BTRFS_EXTENT_DATA_KEY);
272 	if (ret)
273 		goto fail;
274 
275 	ret = btrfs_update_inode(trans, root, inode);
276 
277 fail:
278 	if (locked)
279 		mutex_unlock(&trans->transaction->cache_write_mutex);
280 	if (ret)
281 		btrfs_abort_transaction(trans, ret);
282 
283 	return ret;
284 }
285 
286 static void readahead_cache(struct inode *inode)
287 {
288 	struct file_ra_state *ra;
289 	unsigned long last_index;
290 
291 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
292 	if (!ra)
293 		return;
294 
295 	file_ra_state_init(ra, inode->i_mapping);
296 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
297 
298 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
299 
300 	kfree(ra);
301 }
302 
303 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
304 		       int write)
305 {
306 	int num_pages;
307 	int check_crcs = 0;
308 
309 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
310 
311 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
312 		check_crcs = 1;
313 
314 	/* Make sure we can fit our crcs and generation into the first page */
315 	if (write && check_crcs &&
316 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
317 		return -ENOSPC;
318 
319 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
320 
321 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
322 	if (!io_ctl->pages)
323 		return -ENOMEM;
324 
325 	io_ctl->num_pages = num_pages;
326 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
327 	io_ctl->check_crcs = check_crcs;
328 	io_ctl->inode = inode;
329 
330 	return 0;
331 }
332 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
333 
334 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
335 {
336 	kfree(io_ctl->pages);
337 	io_ctl->pages = NULL;
338 }
339 
340 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
341 {
342 	if (io_ctl->cur) {
343 		io_ctl->cur = NULL;
344 		io_ctl->orig = NULL;
345 	}
346 }
347 
348 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
349 {
350 	ASSERT(io_ctl->index < io_ctl->num_pages);
351 	io_ctl->page = io_ctl->pages[io_ctl->index++];
352 	io_ctl->cur = page_address(io_ctl->page);
353 	io_ctl->orig = io_ctl->cur;
354 	io_ctl->size = PAGE_SIZE;
355 	if (clear)
356 		clear_page(io_ctl->cur);
357 }
358 
359 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
360 {
361 	int i;
362 
363 	io_ctl_unmap_page(io_ctl);
364 
365 	for (i = 0; i < io_ctl->num_pages; i++) {
366 		if (io_ctl->pages[i]) {
367 			ClearPageChecked(io_ctl->pages[i]);
368 			unlock_page(io_ctl->pages[i]);
369 			put_page(io_ctl->pages[i]);
370 		}
371 	}
372 }
373 
374 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
375 {
376 	struct page *page;
377 	struct inode *inode = io_ctl->inode;
378 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
379 	int i;
380 
381 	for (i = 0; i < io_ctl->num_pages; i++) {
382 		page = find_or_create_page(inode->i_mapping, i, mask);
383 		if (!page) {
384 			io_ctl_drop_pages(io_ctl);
385 			return -ENOMEM;
386 		}
387 		io_ctl->pages[i] = page;
388 		if (uptodate && !PageUptodate(page)) {
389 			btrfs_readpage(NULL, page);
390 			lock_page(page);
391 			if (page->mapping != inode->i_mapping) {
392 				btrfs_err(BTRFS_I(inode)->root->fs_info,
393 					  "free space cache page truncated");
394 				io_ctl_drop_pages(io_ctl);
395 				return -EIO;
396 			}
397 			if (!PageUptodate(page)) {
398 				btrfs_err(BTRFS_I(inode)->root->fs_info,
399 					   "error reading free space cache");
400 				io_ctl_drop_pages(io_ctl);
401 				return -EIO;
402 			}
403 		}
404 	}
405 
406 	for (i = 0; i < io_ctl->num_pages; i++) {
407 		clear_page_dirty_for_io(io_ctl->pages[i]);
408 		set_page_extent_mapped(io_ctl->pages[i]);
409 	}
410 
411 	return 0;
412 }
413 
414 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
415 {
416 	__le64 *val;
417 
418 	io_ctl_map_page(io_ctl, 1);
419 
420 	/*
421 	 * Skip the csum areas.  If we don't check crcs then we just have a
422 	 * 64bit chunk at the front of the first page.
423 	 */
424 	if (io_ctl->check_crcs) {
425 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
426 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
427 	} else {
428 		io_ctl->cur += sizeof(u64);
429 		io_ctl->size -= sizeof(u64) * 2;
430 	}
431 
432 	val = io_ctl->cur;
433 	*val = cpu_to_le64(generation);
434 	io_ctl->cur += sizeof(u64);
435 }
436 
437 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
438 {
439 	__le64 *gen;
440 
441 	/*
442 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
443 	 * chunk at the front of the first page.
444 	 */
445 	if (io_ctl->check_crcs) {
446 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
447 		io_ctl->size -= sizeof(u64) +
448 			(sizeof(u32) * io_ctl->num_pages);
449 	} else {
450 		io_ctl->cur += sizeof(u64);
451 		io_ctl->size -= sizeof(u64) * 2;
452 	}
453 
454 	gen = io_ctl->cur;
455 	if (le64_to_cpu(*gen) != generation) {
456 		btrfs_err_rl(io_ctl->fs_info,
457 			"space cache generation (%llu) does not match inode (%llu)",
458 				*gen, generation);
459 		io_ctl_unmap_page(io_ctl);
460 		return -EIO;
461 	}
462 	io_ctl->cur += sizeof(u64);
463 	return 0;
464 }
465 
466 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
467 {
468 	u32 *tmp;
469 	u32 crc = ~(u32)0;
470 	unsigned offset = 0;
471 
472 	if (!io_ctl->check_crcs) {
473 		io_ctl_unmap_page(io_ctl);
474 		return;
475 	}
476 
477 	if (index == 0)
478 		offset = sizeof(u32) * io_ctl->num_pages;
479 
480 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
481 	btrfs_crc32c_final(crc, (u8 *)&crc);
482 	io_ctl_unmap_page(io_ctl);
483 	tmp = page_address(io_ctl->pages[0]);
484 	tmp += index;
485 	*tmp = crc;
486 }
487 
488 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
489 {
490 	u32 *tmp, val;
491 	u32 crc = ~(u32)0;
492 	unsigned offset = 0;
493 
494 	if (!io_ctl->check_crcs) {
495 		io_ctl_map_page(io_ctl, 0);
496 		return 0;
497 	}
498 
499 	if (index == 0)
500 		offset = sizeof(u32) * io_ctl->num_pages;
501 
502 	tmp = page_address(io_ctl->pages[0]);
503 	tmp += index;
504 	val = *tmp;
505 
506 	io_ctl_map_page(io_ctl, 0);
507 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
508 	btrfs_crc32c_final(crc, (u8 *)&crc);
509 	if (val != crc) {
510 		btrfs_err_rl(io_ctl->fs_info,
511 			"csum mismatch on free space cache");
512 		io_ctl_unmap_page(io_ctl);
513 		return -EIO;
514 	}
515 
516 	return 0;
517 }
518 
519 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
520 			    void *bitmap)
521 {
522 	struct btrfs_free_space_entry *entry;
523 
524 	if (!io_ctl->cur)
525 		return -ENOSPC;
526 
527 	entry = io_ctl->cur;
528 	entry->offset = cpu_to_le64(offset);
529 	entry->bytes = cpu_to_le64(bytes);
530 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
531 		BTRFS_FREE_SPACE_EXTENT;
532 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
533 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
534 
535 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
536 		return 0;
537 
538 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539 
540 	/* No more pages to map */
541 	if (io_ctl->index >= io_ctl->num_pages)
542 		return 0;
543 
544 	/* map the next page */
545 	io_ctl_map_page(io_ctl, 1);
546 	return 0;
547 }
548 
549 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
550 {
551 	if (!io_ctl->cur)
552 		return -ENOSPC;
553 
554 	/*
555 	 * If we aren't at the start of the current page, unmap this one and
556 	 * map the next one if there is any left.
557 	 */
558 	if (io_ctl->cur != io_ctl->orig) {
559 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
560 		if (io_ctl->index >= io_ctl->num_pages)
561 			return -ENOSPC;
562 		io_ctl_map_page(io_ctl, 0);
563 	}
564 
565 	copy_page(io_ctl->cur, bitmap);
566 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
567 	if (io_ctl->index < io_ctl->num_pages)
568 		io_ctl_map_page(io_ctl, 0);
569 	return 0;
570 }
571 
572 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
573 {
574 	/*
575 	 * If we're not on the boundary we know we've modified the page and we
576 	 * need to crc the page.
577 	 */
578 	if (io_ctl->cur != io_ctl->orig)
579 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
580 	else
581 		io_ctl_unmap_page(io_ctl);
582 
583 	while (io_ctl->index < io_ctl->num_pages) {
584 		io_ctl_map_page(io_ctl, 1);
585 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
586 	}
587 }
588 
589 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
590 			    struct btrfs_free_space *entry, u8 *type)
591 {
592 	struct btrfs_free_space_entry *e;
593 	int ret;
594 
595 	if (!io_ctl->cur) {
596 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
597 		if (ret)
598 			return ret;
599 	}
600 
601 	e = io_ctl->cur;
602 	entry->offset = le64_to_cpu(e->offset);
603 	entry->bytes = le64_to_cpu(e->bytes);
604 	*type = e->type;
605 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
606 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
607 
608 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
609 		return 0;
610 
611 	io_ctl_unmap_page(io_ctl);
612 
613 	return 0;
614 }
615 
616 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
617 			      struct btrfs_free_space *entry)
618 {
619 	int ret;
620 
621 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
622 	if (ret)
623 		return ret;
624 
625 	copy_page(entry->bitmap, io_ctl->cur);
626 	io_ctl_unmap_page(io_ctl);
627 
628 	return 0;
629 }
630 
631 /*
632  * Since we attach pinned extents after the fact we can have contiguous sections
633  * of free space that are split up in entries.  This poses a problem with the
634  * tree logging stuff since it could have allocated across what appears to be 2
635  * entries since we would have merged the entries when adding the pinned extents
636  * back to the free space cache.  So run through the space cache that we just
637  * loaded and merge contiguous entries.  This will make the log replay stuff not
638  * blow up and it will make for nicer allocator behavior.
639  */
640 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
641 {
642 	struct btrfs_free_space *e, *prev = NULL;
643 	struct rb_node *n;
644 
645 again:
646 	spin_lock(&ctl->tree_lock);
647 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
648 		e = rb_entry(n, struct btrfs_free_space, offset_index);
649 		if (!prev)
650 			goto next;
651 		if (e->bitmap || prev->bitmap)
652 			goto next;
653 		if (prev->offset + prev->bytes == e->offset) {
654 			unlink_free_space(ctl, prev);
655 			unlink_free_space(ctl, e);
656 			prev->bytes += e->bytes;
657 			kmem_cache_free(btrfs_free_space_cachep, e);
658 			link_free_space(ctl, prev);
659 			prev = NULL;
660 			spin_unlock(&ctl->tree_lock);
661 			goto again;
662 		}
663 next:
664 		prev = e;
665 	}
666 	spin_unlock(&ctl->tree_lock);
667 }
668 
669 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
670 				   struct btrfs_free_space_ctl *ctl,
671 				   struct btrfs_path *path, u64 offset)
672 {
673 	struct btrfs_fs_info *fs_info = root->fs_info;
674 	struct btrfs_free_space_header *header;
675 	struct extent_buffer *leaf;
676 	struct btrfs_io_ctl io_ctl;
677 	struct btrfs_key key;
678 	struct btrfs_free_space *e, *n;
679 	LIST_HEAD(bitmaps);
680 	u64 num_entries;
681 	u64 num_bitmaps;
682 	u64 generation;
683 	u8 type;
684 	int ret = 0;
685 
686 	/* Nothing in the space cache, goodbye */
687 	if (!i_size_read(inode))
688 		return 0;
689 
690 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
691 	key.offset = offset;
692 	key.type = 0;
693 
694 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
695 	if (ret < 0)
696 		return 0;
697 	else if (ret > 0) {
698 		btrfs_release_path(path);
699 		return 0;
700 	}
701 
702 	ret = -1;
703 
704 	leaf = path->nodes[0];
705 	header = btrfs_item_ptr(leaf, path->slots[0],
706 				struct btrfs_free_space_header);
707 	num_entries = btrfs_free_space_entries(leaf, header);
708 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
709 	generation = btrfs_free_space_generation(leaf, header);
710 	btrfs_release_path(path);
711 
712 	if (!BTRFS_I(inode)->generation) {
713 		btrfs_info(fs_info,
714 			   "the free space cache file (%llu) is invalid, skip it",
715 			   offset);
716 		return 0;
717 	}
718 
719 	if (BTRFS_I(inode)->generation != generation) {
720 		btrfs_err(fs_info,
721 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
722 			  BTRFS_I(inode)->generation, generation);
723 		return 0;
724 	}
725 
726 	if (!num_entries)
727 		return 0;
728 
729 	ret = io_ctl_init(&io_ctl, inode, 0);
730 	if (ret)
731 		return ret;
732 
733 	readahead_cache(inode);
734 
735 	ret = io_ctl_prepare_pages(&io_ctl, true);
736 	if (ret)
737 		goto out;
738 
739 	ret = io_ctl_check_crc(&io_ctl, 0);
740 	if (ret)
741 		goto free_cache;
742 
743 	ret = io_ctl_check_generation(&io_ctl, generation);
744 	if (ret)
745 		goto free_cache;
746 
747 	while (num_entries) {
748 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
749 				      GFP_NOFS);
750 		if (!e)
751 			goto free_cache;
752 
753 		ret = io_ctl_read_entry(&io_ctl, e, &type);
754 		if (ret) {
755 			kmem_cache_free(btrfs_free_space_cachep, e);
756 			goto free_cache;
757 		}
758 
759 		/*
760 		 * Sync discard ensures that the free space cache is always
761 		 * trimmed.  So when reading this in, the state should reflect
762 		 * that.  We also do this for async as a stop gap for lack of
763 		 * persistence.
764 		 */
765 		if (btrfs_test_opt(fs_info, DISCARD_SYNC) ||
766 		    btrfs_test_opt(fs_info, DISCARD_ASYNC))
767 			e->trim_state = BTRFS_TRIM_STATE_TRIMMED;
768 
769 		if (!e->bytes) {
770 			kmem_cache_free(btrfs_free_space_cachep, e);
771 			goto free_cache;
772 		}
773 
774 		if (type == BTRFS_FREE_SPACE_EXTENT) {
775 			spin_lock(&ctl->tree_lock);
776 			ret = link_free_space(ctl, e);
777 			spin_unlock(&ctl->tree_lock);
778 			if (ret) {
779 				btrfs_err(fs_info,
780 					"Duplicate entries in free space cache, dumping");
781 				kmem_cache_free(btrfs_free_space_cachep, e);
782 				goto free_cache;
783 			}
784 		} else {
785 			ASSERT(num_bitmaps);
786 			num_bitmaps--;
787 			e->bitmap = kmem_cache_zalloc(
788 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
789 			if (!e->bitmap) {
790 				kmem_cache_free(
791 					btrfs_free_space_cachep, e);
792 				goto free_cache;
793 			}
794 			spin_lock(&ctl->tree_lock);
795 			ret = link_free_space(ctl, e);
796 			ctl->total_bitmaps++;
797 			ctl->op->recalc_thresholds(ctl);
798 			spin_unlock(&ctl->tree_lock);
799 			if (ret) {
800 				btrfs_err(fs_info,
801 					"Duplicate entries in free space cache, dumping");
802 				kmem_cache_free(btrfs_free_space_cachep, e);
803 				goto free_cache;
804 			}
805 			list_add_tail(&e->list, &bitmaps);
806 		}
807 
808 		num_entries--;
809 	}
810 
811 	io_ctl_unmap_page(&io_ctl);
812 
813 	/*
814 	 * We add the bitmaps at the end of the entries in order that
815 	 * the bitmap entries are added to the cache.
816 	 */
817 	list_for_each_entry_safe(e, n, &bitmaps, list) {
818 		list_del_init(&e->list);
819 		ret = io_ctl_read_bitmap(&io_ctl, e);
820 		if (ret)
821 			goto free_cache;
822 		e->bitmap_extents = count_bitmap_extents(ctl, e);
823 		if (!btrfs_free_space_trimmed(e)) {
824 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
825 				e->bitmap_extents;
826 			ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes;
827 		}
828 	}
829 
830 	io_ctl_drop_pages(&io_ctl);
831 	merge_space_tree(ctl);
832 	ret = 1;
833 out:
834 	btrfs_discard_update_discardable(ctl->private, ctl);
835 	io_ctl_free(&io_ctl);
836 	return ret;
837 free_cache:
838 	io_ctl_drop_pages(&io_ctl);
839 	__btrfs_remove_free_space_cache(ctl);
840 	goto out;
841 }
842 
843 int load_free_space_cache(struct btrfs_block_group *block_group)
844 {
845 	struct btrfs_fs_info *fs_info = block_group->fs_info;
846 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
847 	struct inode *inode;
848 	struct btrfs_path *path;
849 	int ret = 0;
850 	bool matched;
851 	u64 used = block_group->used;
852 
853 	/*
854 	 * If this block group has been marked to be cleared for one reason or
855 	 * another then we can't trust the on disk cache, so just return.
856 	 */
857 	spin_lock(&block_group->lock);
858 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
859 		spin_unlock(&block_group->lock);
860 		return 0;
861 	}
862 	spin_unlock(&block_group->lock);
863 
864 	path = btrfs_alloc_path();
865 	if (!path)
866 		return 0;
867 	path->search_commit_root = 1;
868 	path->skip_locking = 1;
869 
870 	/*
871 	 * We must pass a path with search_commit_root set to btrfs_iget in
872 	 * order to avoid a deadlock when allocating extents for the tree root.
873 	 *
874 	 * When we are COWing an extent buffer from the tree root, when looking
875 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
876 	 * block group without its free space cache loaded. When we find one
877 	 * we must load its space cache which requires reading its free space
878 	 * cache's inode item from the root tree. If this inode item is located
879 	 * in the same leaf that we started COWing before, then we end up in
880 	 * deadlock on the extent buffer (trying to read lock it when we
881 	 * previously write locked it).
882 	 *
883 	 * It's safe to read the inode item using the commit root because
884 	 * block groups, once loaded, stay in memory forever (until they are
885 	 * removed) as well as their space caches once loaded. New block groups
886 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
887 	 * we will never try to read their inode item while the fs is mounted.
888 	 */
889 	inode = lookup_free_space_inode(block_group, path);
890 	if (IS_ERR(inode)) {
891 		btrfs_free_path(path);
892 		return 0;
893 	}
894 
895 	/* We may have converted the inode and made the cache invalid. */
896 	spin_lock(&block_group->lock);
897 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
898 		spin_unlock(&block_group->lock);
899 		btrfs_free_path(path);
900 		goto out;
901 	}
902 	spin_unlock(&block_group->lock);
903 
904 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
905 				      path, block_group->start);
906 	btrfs_free_path(path);
907 	if (ret <= 0)
908 		goto out;
909 
910 	spin_lock(&ctl->tree_lock);
911 	matched = (ctl->free_space == (block_group->length - used -
912 				       block_group->bytes_super));
913 	spin_unlock(&ctl->tree_lock);
914 
915 	if (!matched) {
916 		__btrfs_remove_free_space_cache(ctl);
917 		btrfs_warn(fs_info,
918 			   "block group %llu has wrong amount of free space",
919 			   block_group->start);
920 		ret = -1;
921 	}
922 out:
923 	if (ret < 0) {
924 		/* This cache is bogus, make sure it gets cleared */
925 		spin_lock(&block_group->lock);
926 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
927 		spin_unlock(&block_group->lock);
928 		ret = 0;
929 
930 		btrfs_warn(fs_info,
931 			   "failed to load free space cache for block group %llu, rebuilding it now",
932 			   block_group->start);
933 	}
934 
935 	iput(inode);
936 	return ret;
937 }
938 
939 static noinline_for_stack
940 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
941 			      struct btrfs_free_space_ctl *ctl,
942 			      struct btrfs_block_group *block_group,
943 			      int *entries, int *bitmaps,
944 			      struct list_head *bitmap_list)
945 {
946 	int ret;
947 	struct btrfs_free_cluster *cluster = NULL;
948 	struct btrfs_free_cluster *cluster_locked = NULL;
949 	struct rb_node *node = rb_first(&ctl->free_space_offset);
950 	struct btrfs_trim_range *trim_entry;
951 
952 	/* Get the cluster for this block_group if it exists */
953 	if (block_group && !list_empty(&block_group->cluster_list)) {
954 		cluster = list_entry(block_group->cluster_list.next,
955 				     struct btrfs_free_cluster,
956 				     block_group_list);
957 	}
958 
959 	if (!node && cluster) {
960 		cluster_locked = cluster;
961 		spin_lock(&cluster_locked->lock);
962 		node = rb_first(&cluster->root);
963 		cluster = NULL;
964 	}
965 
966 	/* Write out the extent entries */
967 	while (node) {
968 		struct btrfs_free_space *e;
969 
970 		e = rb_entry(node, struct btrfs_free_space, offset_index);
971 		*entries += 1;
972 
973 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
974 				       e->bitmap);
975 		if (ret)
976 			goto fail;
977 
978 		if (e->bitmap) {
979 			list_add_tail(&e->list, bitmap_list);
980 			*bitmaps += 1;
981 		}
982 		node = rb_next(node);
983 		if (!node && cluster) {
984 			node = rb_first(&cluster->root);
985 			cluster_locked = cluster;
986 			spin_lock(&cluster_locked->lock);
987 			cluster = NULL;
988 		}
989 	}
990 	if (cluster_locked) {
991 		spin_unlock(&cluster_locked->lock);
992 		cluster_locked = NULL;
993 	}
994 
995 	/*
996 	 * Make sure we don't miss any range that was removed from our rbtree
997 	 * because trimming is running. Otherwise after a umount+mount (or crash
998 	 * after committing the transaction) we would leak free space and get
999 	 * an inconsistent free space cache report from fsck.
1000 	 */
1001 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1002 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1003 				       trim_entry->bytes, NULL);
1004 		if (ret)
1005 			goto fail;
1006 		*entries += 1;
1007 	}
1008 
1009 	return 0;
1010 fail:
1011 	if (cluster_locked)
1012 		spin_unlock(&cluster_locked->lock);
1013 	return -ENOSPC;
1014 }
1015 
1016 static noinline_for_stack int
1017 update_cache_item(struct btrfs_trans_handle *trans,
1018 		  struct btrfs_root *root,
1019 		  struct inode *inode,
1020 		  struct btrfs_path *path, u64 offset,
1021 		  int entries, int bitmaps)
1022 {
1023 	struct btrfs_key key;
1024 	struct btrfs_free_space_header *header;
1025 	struct extent_buffer *leaf;
1026 	int ret;
1027 
1028 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1029 	key.offset = offset;
1030 	key.type = 0;
1031 
1032 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1033 	if (ret < 0) {
1034 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1035 				 EXTENT_DELALLOC, 0, 0, NULL);
1036 		goto fail;
1037 	}
1038 	leaf = path->nodes[0];
1039 	if (ret > 0) {
1040 		struct btrfs_key found_key;
1041 		ASSERT(path->slots[0]);
1042 		path->slots[0]--;
1043 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1044 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1045 		    found_key.offset != offset) {
1046 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1047 					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1048 					 0, NULL);
1049 			btrfs_release_path(path);
1050 			goto fail;
1051 		}
1052 	}
1053 
1054 	BTRFS_I(inode)->generation = trans->transid;
1055 	header = btrfs_item_ptr(leaf, path->slots[0],
1056 				struct btrfs_free_space_header);
1057 	btrfs_set_free_space_entries(leaf, header, entries);
1058 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1059 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1060 	btrfs_mark_buffer_dirty(leaf);
1061 	btrfs_release_path(path);
1062 
1063 	return 0;
1064 
1065 fail:
1066 	return -1;
1067 }
1068 
1069 static noinline_for_stack int write_pinned_extent_entries(
1070 			    struct btrfs_trans_handle *trans,
1071 			    struct btrfs_block_group *block_group,
1072 			    struct btrfs_io_ctl *io_ctl,
1073 			    int *entries)
1074 {
1075 	u64 start, extent_start, extent_end, len;
1076 	struct extent_io_tree *unpin = NULL;
1077 	int ret;
1078 
1079 	if (!block_group)
1080 		return 0;
1081 
1082 	/*
1083 	 * We want to add any pinned extents to our free space cache
1084 	 * so we don't leak the space
1085 	 *
1086 	 * We shouldn't have switched the pinned extents yet so this is the
1087 	 * right one
1088 	 */
1089 	unpin = &trans->transaction->pinned_extents;
1090 
1091 	start = block_group->start;
1092 
1093 	while (start < block_group->start + block_group->length) {
1094 		ret = find_first_extent_bit(unpin, start,
1095 					    &extent_start, &extent_end,
1096 					    EXTENT_DIRTY, NULL);
1097 		if (ret)
1098 			return 0;
1099 
1100 		/* This pinned extent is out of our range */
1101 		if (extent_start >= block_group->start + block_group->length)
1102 			return 0;
1103 
1104 		extent_start = max(extent_start, start);
1105 		extent_end = min(block_group->start + block_group->length,
1106 				 extent_end + 1);
1107 		len = extent_end - extent_start;
1108 
1109 		*entries += 1;
1110 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1111 		if (ret)
1112 			return -ENOSPC;
1113 
1114 		start = extent_end;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 static noinline_for_stack int
1121 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1122 {
1123 	struct btrfs_free_space *entry, *next;
1124 	int ret;
1125 
1126 	/* Write out the bitmaps */
1127 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1128 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1129 		if (ret)
1130 			return -ENOSPC;
1131 		list_del_init(&entry->list);
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int flush_dirty_cache(struct inode *inode)
1138 {
1139 	int ret;
1140 
1141 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1142 	if (ret)
1143 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1144 				 EXTENT_DELALLOC, 0, 0, NULL);
1145 
1146 	return ret;
1147 }
1148 
1149 static void noinline_for_stack
1150 cleanup_bitmap_list(struct list_head *bitmap_list)
1151 {
1152 	struct btrfs_free_space *entry, *next;
1153 
1154 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1155 		list_del_init(&entry->list);
1156 }
1157 
1158 static void noinline_for_stack
1159 cleanup_write_cache_enospc(struct inode *inode,
1160 			   struct btrfs_io_ctl *io_ctl,
1161 			   struct extent_state **cached_state)
1162 {
1163 	io_ctl_drop_pages(io_ctl);
1164 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1165 			     i_size_read(inode) - 1, cached_state);
1166 }
1167 
1168 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1169 				 struct btrfs_trans_handle *trans,
1170 				 struct btrfs_block_group *block_group,
1171 				 struct btrfs_io_ctl *io_ctl,
1172 				 struct btrfs_path *path, u64 offset)
1173 {
1174 	int ret;
1175 	struct inode *inode = io_ctl->inode;
1176 
1177 	if (!inode)
1178 		return 0;
1179 
1180 	/* Flush the dirty pages in the cache file. */
1181 	ret = flush_dirty_cache(inode);
1182 	if (ret)
1183 		goto out;
1184 
1185 	/* Update the cache item to tell everyone this cache file is valid. */
1186 	ret = update_cache_item(trans, root, inode, path, offset,
1187 				io_ctl->entries, io_ctl->bitmaps);
1188 out:
1189 	io_ctl_free(io_ctl);
1190 	if (ret) {
1191 		invalidate_inode_pages2(inode->i_mapping);
1192 		BTRFS_I(inode)->generation = 0;
1193 		if (block_group)
1194 			btrfs_debug(root->fs_info,
1195 	  "failed to write free space cache for block group %llu error %d",
1196 				  block_group->start, ret);
1197 	}
1198 	btrfs_update_inode(trans, root, inode);
1199 
1200 	if (block_group) {
1201 		/* the dirty list is protected by the dirty_bgs_lock */
1202 		spin_lock(&trans->transaction->dirty_bgs_lock);
1203 
1204 		/* the disk_cache_state is protected by the block group lock */
1205 		spin_lock(&block_group->lock);
1206 
1207 		/*
1208 		 * only mark this as written if we didn't get put back on
1209 		 * the dirty list while waiting for IO.   Otherwise our
1210 		 * cache state won't be right, and we won't get written again
1211 		 */
1212 		if (!ret && list_empty(&block_group->dirty_list))
1213 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1214 		else if (ret)
1215 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1216 
1217 		spin_unlock(&block_group->lock);
1218 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1219 		io_ctl->inode = NULL;
1220 		iput(inode);
1221 	}
1222 
1223 	return ret;
1224 
1225 }
1226 
1227 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1228 				    struct btrfs_trans_handle *trans,
1229 				    struct btrfs_io_ctl *io_ctl,
1230 				    struct btrfs_path *path)
1231 {
1232 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1233 }
1234 
1235 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1236 			struct btrfs_block_group *block_group,
1237 			struct btrfs_path *path)
1238 {
1239 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1240 				     block_group, &block_group->io_ctl,
1241 				     path, block_group->start);
1242 }
1243 
1244 /**
1245  * __btrfs_write_out_cache - write out cached info to an inode
1246  * @root - the root the inode belongs to
1247  * @ctl - the free space cache we are going to write out
1248  * @block_group - the block_group for this cache if it belongs to a block_group
1249  * @trans - the trans handle
1250  *
1251  * This function writes out a free space cache struct to disk for quick recovery
1252  * on mount.  This will return 0 if it was successful in writing the cache out,
1253  * or an errno if it was not.
1254  */
1255 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1256 				   struct btrfs_free_space_ctl *ctl,
1257 				   struct btrfs_block_group *block_group,
1258 				   struct btrfs_io_ctl *io_ctl,
1259 				   struct btrfs_trans_handle *trans)
1260 {
1261 	struct extent_state *cached_state = NULL;
1262 	LIST_HEAD(bitmap_list);
1263 	int entries = 0;
1264 	int bitmaps = 0;
1265 	int ret;
1266 	int must_iput = 0;
1267 
1268 	if (!i_size_read(inode))
1269 		return -EIO;
1270 
1271 	WARN_ON(io_ctl->pages);
1272 	ret = io_ctl_init(io_ctl, inode, 1);
1273 	if (ret)
1274 		return ret;
1275 
1276 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1277 		down_write(&block_group->data_rwsem);
1278 		spin_lock(&block_group->lock);
1279 		if (block_group->delalloc_bytes) {
1280 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1281 			spin_unlock(&block_group->lock);
1282 			up_write(&block_group->data_rwsem);
1283 			BTRFS_I(inode)->generation = 0;
1284 			ret = 0;
1285 			must_iput = 1;
1286 			goto out;
1287 		}
1288 		spin_unlock(&block_group->lock);
1289 	}
1290 
1291 	/* Lock all pages first so we can lock the extent safely. */
1292 	ret = io_ctl_prepare_pages(io_ctl, false);
1293 	if (ret)
1294 		goto out_unlock;
1295 
1296 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1297 			 &cached_state);
1298 
1299 	io_ctl_set_generation(io_ctl, trans->transid);
1300 
1301 	mutex_lock(&ctl->cache_writeout_mutex);
1302 	/* Write out the extent entries in the free space cache */
1303 	spin_lock(&ctl->tree_lock);
1304 	ret = write_cache_extent_entries(io_ctl, ctl,
1305 					 block_group, &entries, &bitmaps,
1306 					 &bitmap_list);
1307 	if (ret)
1308 		goto out_nospc_locked;
1309 
1310 	/*
1311 	 * Some spaces that are freed in the current transaction are pinned,
1312 	 * they will be added into free space cache after the transaction is
1313 	 * committed, we shouldn't lose them.
1314 	 *
1315 	 * If this changes while we are working we'll get added back to
1316 	 * the dirty list and redo it.  No locking needed
1317 	 */
1318 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1319 	if (ret)
1320 		goto out_nospc_locked;
1321 
1322 	/*
1323 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1324 	 * locked while doing it because a concurrent trim can be manipulating
1325 	 * or freeing the bitmap.
1326 	 */
1327 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1328 	spin_unlock(&ctl->tree_lock);
1329 	mutex_unlock(&ctl->cache_writeout_mutex);
1330 	if (ret)
1331 		goto out_nospc;
1332 
1333 	/* Zero out the rest of the pages just to make sure */
1334 	io_ctl_zero_remaining_pages(io_ctl);
1335 
1336 	/* Everything is written out, now we dirty the pages in the file. */
1337 	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1338 				io_ctl->num_pages, 0, i_size_read(inode),
1339 				&cached_state);
1340 	if (ret)
1341 		goto out_nospc;
1342 
1343 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1344 		up_write(&block_group->data_rwsem);
1345 	/*
1346 	 * Release the pages and unlock the extent, we will flush
1347 	 * them out later
1348 	 */
1349 	io_ctl_drop_pages(io_ctl);
1350 
1351 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1352 			     i_size_read(inode) - 1, &cached_state);
1353 
1354 	/*
1355 	 * at this point the pages are under IO and we're happy,
1356 	 * The caller is responsible for waiting on them and updating the
1357 	 * the cache and the inode
1358 	 */
1359 	io_ctl->entries = entries;
1360 	io_ctl->bitmaps = bitmaps;
1361 
1362 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1363 	if (ret)
1364 		goto out;
1365 
1366 	return 0;
1367 
1368 out_nospc_locked:
1369 	cleanup_bitmap_list(&bitmap_list);
1370 	spin_unlock(&ctl->tree_lock);
1371 	mutex_unlock(&ctl->cache_writeout_mutex);
1372 
1373 out_nospc:
1374 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1375 
1376 out_unlock:
1377 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1378 		up_write(&block_group->data_rwsem);
1379 
1380 out:
1381 	io_ctl->inode = NULL;
1382 	io_ctl_free(io_ctl);
1383 	if (ret) {
1384 		invalidate_inode_pages2(inode->i_mapping);
1385 		BTRFS_I(inode)->generation = 0;
1386 	}
1387 	btrfs_update_inode(trans, root, inode);
1388 	if (must_iput)
1389 		iput(inode);
1390 	return ret;
1391 }
1392 
1393 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1394 			  struct btrfs_block_group *block_group,
1395 			  struct btrfs_path *path)
1396 {
1397 	struct btrfs_fs_info *fs_info = trans->fs_info;
1398 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1399 	struct inode *inode;
1400 	int ret = 0;
1401 
1402 	spin_lock(&block_group->lock);
1403 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1404 		spin_unlock(&block_group->lock);
1405 		return 0;
1406 	}
1407 	spin_unlock(&block_group->lock);
1408 
1409 	inode = lookup_free_space_inode(block_group, path);
1410 	if (IS_ERR(inode))
1411 		return 0;
1412 
1413 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1414 				block_group, &block_group->io_ctl, trans);
1415 	if (ret) {
1416 		btrfs_debug(fs_info,
1417 	  "failed to write free space cache for block group %llu error %d",
1418 			  block_group->start, ret);
1419 		spin_lock(&block_group->lock);
1420 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1421 		spin_unlock(&block_group->lock);
1422 
1423 		block_group->io_ctl.inode = NULL;
1424 		iput(inode);
1425 	}
1426 
1427 	/*
1428 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1429 	 * to wait for IO and put the inode
1430 	 */
1431 
1432 	return ret;
1433 }
1434 
1435 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1436 					  u64 offset)
1437 {
1438 	ASSERT(offset >= bitmap_start);
1439 	offset -= bitmap_start;
1440 	return (unsigned long)(div_u64(offset, unit));
1441 }
1442 
1443 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1444 {
1445 	return (unsigned long)(div_u64(bytes, unit));
1446 }
1447 
1448 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1449 				   u64 offset)
1450 {
1451 	u64 bitmap_start;
1452 	u64 bytes_per_bitmap;
1453 
1454 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1455 	bitmap_start = offset - ctl->start;
1456 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1457 	bitmap_start *= bytes_per_bitmap;
1458 	bitmap_start += ctl->start;
1459 
1460 	return bitmap_start;
1461 }
1462 
1463 static int tree_insert_offset(struct rb_root *root, u64 offset,
1464 			      struct rb_node *node, int bitmap)
1465 {
1466 	struct rb_node **p = &root->rb_node;
1467 	struct rb_node *parent = NULL;
1468 	struct btrfs_free_space *info;
1469 
1470 	while (*p) {
1471 		parent = *p;
1472 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1473 
1474 		if (offset < info->offset) {
1475 			p = &(*p)->rb_left;
1476 		} else if (offset > info->offset) {
1477 			p = &(*p)->rb_right;
1478 		} else {
1479 			/*
1480 			 * we could have a bitmap entry and an extent entry
1481 			 * share the same offset.  If this is the case, we want
1482 			 * the extent entry to always be found first if we do a
1483 			 * linear search through the tree, since we want to have
1484 			 * the quickest allocation time, and allocating from an
1485 			 * extent is faster than allocating from a bitmap.  So
1486 			 * if we're inserting a bitmap and we find an entry at
1487 			 * this offset, we want to go right, or after this entry
1488 			 * logically.  If we are inserting an extent and we've
1489 			 * found a bitmap, we want to go left, or before
1490 			 * logically.
1491 			 */
1492 			if (bitmap) {
1493 				if (info->bitmap) {
1494 					WARN_ON_ONCE(1);
1495 					return -EEXIST;
1496 				}
1497 				p = &(*p)->rb_right;
1498 			} else {
1499 				if (!info->bitmap) {
1500 					WARN_ON_ONCE(1);
1501 					return -EEXIST;
1502 				}
1503 				p = &(*p)->rb_left;
1504 			}
1505 		}
1506 	}
1507 
1508 	rb_link_node(node, parent, p);
1509 	rb_insert_color(node, root);
1510 
1511 	return 0;
1512 }
1513 
1514 /*
1515  * searches the tree for the given offset.
1516  *
1517  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1518  * want a section that has at least bytes size and comes at or after the given
1519  * offset.
1520  */
1521 static struct btrfs_free_space *
1522 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1523 		   u64 offset, int bitmap_only, int fuzzy)
1524 {
1525 	struct rb_node *n = ctl->free_space_offset.rb_node;
1526 	struct btrfs_free_space *entry, *prev = NULL;
1527 
1528 	/* find entry that is closest to the 'offset' */
1529 	while (1) {
1530 		if (!n) {
1531 			entry = NULL;
1532 			break;
1533 		}
1534 
1535 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1536 		prev = entry;
1537 
1538 		if (offset < entry->offset)
1539 			n = n->rb_left;
1540 		else if (offset > entry->offset)
1541 			n = n->rb_right;
1542 		else
1543 			break;
1544 	}
1545 
1546 	if (bitmap_only) {
1547 		if (!entry)
1548 			return NULL;
1549 		if (entry->bitmap)
1550 			return entry;
1551 
1552 		/*
1553 		 * bitmap entry and extent entry may share same offset,
1554 		 * in that case, bitmap entry comes after extent entry.
1555 		 */
1556 		n = rb_next(n);
1557 		if (!n)
1558 			return NULL;
1559 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1560 		if (entry->offset != offset)
1561 			return NULL;
1562 
1563 		WARN_ON(!entry->bitmap);
1564 		return entry;
1565 	} else if (entry) {
1566 		if (entry->bitmap) {
1567 			/*
1568 			 * if previous extent entry covers the offset,
1569 			 * we should return it instead of the bitmap entry
1570 			 */
1571 			n = rb_prev(&entry->offset_index);
1572 			if (n) {
1573 				prev = rb_entry(n, struct btrfs_free_space,
1574 						offset_index);
1575 				if (!prev->bitmap &&
1576 				    prev->offset + prev->bytes > offset)
1577 					entry = prev;
1578 			}
1579 		}
1580 		return entry;
1581 	}
1582 
1583 	if (!prev)
1584 		return NULL;
1585 
1586 	/* find last entry before the 'offset' */
1587 	entry = prev;
1588 	if (entry->offset > offset) {
1589 		n = rb_prev(&entry->offset_index);
1590 		if (n) {
1591 			entry = rb_entry(n, struct btrfs_free_space,
1592 					offset_index);
1593 			ASSERT(entry->offset <= offset);
1594 		} else {
1595 			if (fuzzy)
1596 				return entry;
1597 			else
1598 				return NULL;
1599 		}
1600 	}
1601 
1602 	if (entry->bitmap) {
1603 		n = rb_prev(&entry->offset_index);
1604 		if (n) {
1605 			prev = rb_entry(n, struct btrfs_free_space,
1606 					offset_index);
1607 			if (!prev->bitmap &&
1608 			    prev->offset + prev->bytes > offset)
1609 				return prev;
1610 		}
1611 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1612 			return entry;
1613 	} else if (entry->offset + entry->bytes > offset)
1614 		return entry;
1615 
1616 	if (!fuzzy)
1617 		return NULL;
1618 
1619 	while (1) {
1620 		if (entry->bitmap) {
1621 			if (entry->offset + BITS_PER_BITMAP *
1622 			    ctl->unit > offset)
1623 				break;
1624 		} else {
1625 			if (entry->offset + entry->bytes > offset)
1626 				break;
1627 		}
1628 
1629 		n = rb_next(&entry->offset_index);
1630 		if (!n)
1631 			return NULL;
1632 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1633 	}
1634 	return entry;
1635 }
1636 
1637 static inline void
1638 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1639 		    struct btrfs_free_space *info)
1640 {
1641 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1642 	ctl->free_extents--;
1643 
1644 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1645 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1646 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1647 	}
1648 }
1649 
1650 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1651 			      struct btrfs_free_space *info)
1652 {
1653 	__unlink_free_space(ctl, info);
1654 	ctl->free_space -= info->bytes;
1655 }
1656 
1657 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1658 			   struct btrfs_free_space *info)
1659 {
1660 	int ret = 0;
1661 
1662 	ASSERT(info->bytes || info->bitmap);
1663 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1664 				 &info->offset_index, (info->bitmap != NULL));
1665 	if (ret)
1666 		return ret;
1667 
1668 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1669 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1670 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1671 	}
1672 
1673 	ctl->free_space += info->bytes;
1674 	ctl->free_extents++;
1675 	return ret;
1676 }
1677 
1678 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1679 {
1680 	struct btrfs_block_group *block_group = ctl->private;
1681 	u64 max_bytes;
1682 	u64 bitmap_bytes;
1683 	u64 extent_bytes;
1684 	u64 size = block_group->length;
1685 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1686 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1687 
1688 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1689 
1690 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1691 
1692 	/*
1693 	 * We are trying to keep the total amount of memory used per 1GiB of
1694 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
1695 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
1696 	 * bitmaps, we may end up using more memory than this.
1697 	 */
1698 	if (size < SZ_1G)
1699 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1700 	else
1701 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1702 
1703 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
1704 
1705 	/*
1706 	 * we want the extent entry threshold to always be at most 1/2 the max
1707 	 * bytes we can have, or whatever is less than that.
1708 	 */
1709 	extent_bytes = max_bytes - bitmap_bytes;
1710 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1711 
1712 	ctl->extents_thresh =
1713 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1714 }
1715 
1716 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1717 				       struct btrfs_free_space *info,
1718 				       u64 offset, u64 bytes)
1719 {
1720 	unsigned long start, count, end;
1721 	int extent_delta = -1;
1722 
1723 	start = offset_to_bit(info->offset, ctl->unit, offset);
1724 	count = bytes_to_bits(bytes, ctl->unit);
1725 	end = start + count;
1726 	ASSERT(end <= BITS_PER_BITMAP);
1727 
1728 	bitmap_clear(info->bitmap, start, count);
1729 
1730 	info->bytes -= bytes;
1731 	if (info->max_extent_size > ctl->unit)
1732 		info->max_extent_size = 0;
1733 
1734 	if (start && test_bit(start - 1, info->bitmap))
1735 		extent_delta++;
1736 
1737 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1738 		extent_delta++;
1739 
1740 	info->bitmap_extents += extent_delta;
1741 	if (!btrfs_free_space_trimmed(info)) {
1742 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1743 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1744 	}
1745 }
1746 
1747 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1748 			      struct btrfs_free_space *info, u64 offset,
1749 			      u64 bytes)
1750 {
1751 	__bitmap_clear_bits(ctl, info, offset, bytes);
1752 	ctl->free_space -= bytes;
1753 }
1754 
1755 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1756 			    struct btrfs_free_space *info, u64 offset,
1757 			    u64 bytes)
1758 {
1759 	unsigned long start, count, end;
1760 	int extent_delta = 1;
1761 
1762 	start = offset_to_bit(info->offset, ctl->unit, offset);
1763 	count = bytes_to_bits(bytes, ctl->unit);
1764 	end = start + count;
1765 	ASSERT(end <= BITS_PER_BITMAP);
1766 
1767 	bitmap_set(info->bitmap, start, count);
1768 
1769 	info->bytes += bytes;
1770 	ctl->free_space += bytes;
1771 
1772 	if (start && test_bit(start - 1, info->bitmap))
1773 		extent_delta--;
1774 
1775 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1776 		extent_delta--;
1777 
1778 	info->bitmap_extents += extent_delta;
1779 	if (!btrfs_free_space_trimmed(info)) {
1780 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1781 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1782 	}
1783 }
1784 
1785 /*
1786  * If we can not find suitable extent, we will use bytes to record
1787  * the size of the max extent.
1788  */
1789 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1790 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1791 			 u64 *bytes, bool for_alloc)
1792 {
1793 	unsigned long found_bits = 0;
1794 	unsigned long max_bits = 0;
1795 	unsigned long bits, i;
1796 	unsigned long next_zero;
1797 	unsigned long extent_bits;
1798 
1799 	/*
1800 	 * Skip searching the bitmap if we don't have a contiguous section that
1801 	 * is large enough for this allocation.
1802 	 */
1803 	if (for_alloc &&
1804 	    bitmap_info->max_extent_size &&
1805 	    bitmap_info->max_extent_size < *bytes) {
1806 		*bytes = bitmap_info->max_extent_size;
1807 		return -1;
1808 	}
1809 
1810 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1811 			  max_t(u64, *offset, bitmap_info->offset));
1812 	bits = bytes_to_bits(*bytes, ctl->unit);
1813 
1814 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1815 		if (for_alloc && bits == 1) {
1816 			found_bits = 1;
1817 			break;
1818 		}
1819 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1820 					       BITS_PER_BITMAP, i);
1821 		extent_bits = next_zero - i;
1822 		if (extent_bits >= bits) {
1823 			found_bits = extent_bits;
1824 			break;
1825 		} else if (extent_bits > max_bits) {
1826 			max_bits = extent_bits;
1827 		}
1828 		i = next_zero;
1829 	}
1830 
1831 	if (found_bits) {
1832 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1833 		*bytes = (u64)(found_bits) * ctl->unit;
1834 		return 0;
1835 	}
1836 
1837 	*bytes = (u64)(max_bits) * ctl->unit;
1838 	bitmap_info->max_extent_size = *bytes;
1839 	return -1;
1840 }
1841 
1842 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1843 {
1844 	if (entry->bitmap)
1845 		return entry->max_extent_size;
1846 	return entry->bytes;
1847 }
1848 
1849 /* Cache the size of the max extent in bytes */
1850 static struct btrfs_free_space *
1851 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1852 		unsigned long align, u64 *max_extent_size)
1853 {
1854 	struct btrfs_free_space *entry;
1855 	struct rb_node *node;
1856 	u64 tmp;
1857 	u64 align_off;
1858 	int ret;
1859 
1860 	if (!ctl->free_space_offset.rb_node)
1861 		goto out;
1862 
1863 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1864 	if (!entry)
1865 		goto out;
1866 
1867 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1868 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1869 		if (entry->bytes < *bytes) {
1870 			*max_extent_size = max(get_max_extent_size(entry),
1871 					       *max_extent_size);
1872 			continue;
1873 		}
1874 
1875 		/* make sure the space returned is big enough
1876 		 * to match our requested alignment
1877 		 */
1878 		if (*bytes >= align) {
1879 			tmp = entry->offset - ctl->start + align - 1;
1880 			tmp = div64_u64(tmp, align);
1881 			tmp = tmp * align + ctl->start;
1882 			align_off = tmp - entry->offset;
1883 		} else {
1884 			align_off = 0;
1885 			tmp = entry->offset;
1886 		}
1887 
1888 		if (entry->bytes < *bytes + align_off) {
1889 			*max_extent_size = max(get_max_extent_size(entry),
1890 					       *max_extent_size);
1891 			continue;
1892 		}
1893 
1894 		if (entry->bitmap) {
1895 			u64 size = *bytes;
1896 
1897 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1898 			if (!ret) {
1899 				*offset = tmp;
1900 				*bytes = size;
1901 				return entry;
1902 			} else {
1903 				*max_extent_size =
1904 					max(get_max_extent_size(entry),
1905 					    *max_extent_size);
1906 			}
1907 			continue;
1908 		}
1909 
1910 		*offset = tmp;
1911 		*bytes = entry->bytes - align_off;
1912 		return entry;
1913 	}
1914 out:
1915 	return NULL;
1916 }
1917 
1918 static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
1919 				struct btrfs_free_space *bitmap_info)
1920 {
1921 	struct btrfs_block_group *block_group = ctl->private;
1922 	u64 bytes = bitmap_info->bytes;
1923 	unsigned int rs, re;
1924 	int count = 0;
1925 
1926 	if (!block_group || !bytes)
1927 		return count;
1928 
1929 	bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0,
1930 				   BITS_PER_BITMAP) {
1931 		bytes -= (rs - re) * ctl->unit;
1932 		count++;
1933 
1934 		if (!bytes)
1935 			break;
1936 	}
1937 
1938 	return count;
1939 }
1940 
1941 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1942 			   struct btrfs_free_space *info, u64 offset)
1943 {
1944 	info->offset = offset_to_bitmap(ctl, offset);
1945 	info->bytes = 0;
1946 	info->bitmap_extents = 0;
1947 	INIT_LIST_HEAD(&info->list);
1948 	link_free_space(ctl, info);
1949 	ctl->total_bitmaps++;
1950 
1951 	ctl->op->recalc_thresholds(ctl);
1952 }
1953 
1954 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1955 			struct btrfs_free_space *bitmap_info)
1956 {
1957 	/*
1958 	 * Normally when this is called, the bitmap is completely empty. However,
1959 	 * if we are blowing up the free space cache for one reason or another
1960 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1961 	 * we may leave stats on the table.
1962 	 */
1963 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1964 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1965 			bitmap_info->bitmap_extents;
1966 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1967 
1968 	}
1969 	unlink_free_space(ctl, bitmap_info);
1970 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1971 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1972 	ctl->total_bitmaps--;
1973 	ctl->op->recalc_thresholds(ctl);
1974 }
1975 
1976 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1977 			      struct btrfs_free_space *bitmap_info,
1978 			      u64 *offset, u64 *bytes)
1979 {
1980 	u64 end;
1981 	u64 search_start, search_bytes;
1982 	int ret;
1983 
1984 again:
1985 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1986 
1987 	/*
1988 	 * We need to search for bits in this bitmap.  We could only cover some
1989 	 * of the extent in this bitmap thanks to how we add space, so we need
1990 	 * to search for as much as it as we can and clear that amount, and then
1991 	 * go searching for the next bit.
1992 	 */
1993 	search_start = *offset;
1994 	search_bytes = ctl->unit;
1995 	search_bytes = min(search_bytes, end - search_start + 1);
1996 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1997 			    false);
1998 	if (ret < 0 || search_start != *offset)
1999 		return -EINVAL;
2000 
2001 	/* We may have found more bits than what we need */
2002 	search_bytes = min(search_bytes, *bytes);
2003 
2004 	/* Cannot clear past the end of the bitmap */
2005 	search_bytes = min(search_bytes, end - search_start + 1);
2006 
2007 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2008 	*offset += search_bytes;
2009 	*bytes -= search_bytes;
2010 
2011 	if (*bytes) {
2012 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2013 		if (!bitmap_info->bytes)
2014 			free_bitmap(ctl, bitmap_info);
2015 
2016 		/*
2017 		 * no entry after this bitmap, but we still have bytes to
2018 		 * remove, so something has gone wrong.
2019 		 */
2020 		if (!next)
2021 			return -EINVAL;
2022 
2023 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2024 				       offset_index);
2025 
2026 		/*
2027 		 * if the next entry isn't a bitmap we need to return to let the
2028 		 * extent stuff do its work.
2029 		 */
2030 		if (!bitmap_info->bitmap)
2031 			return -EAGAIN;
2032 
2033 		/*
2034 		 * Ok the next item is a bitmap, but it may not actually hold
2035 		 * the information for the rest of this free space stuff, so
2036 		 * look for it, and if we don't find it return so we can try
2037 		 * everything over again.
2038 		 */
2039 		search_start = *offset;
2040 		search_bytes = ctl->unit;
2041 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2042 				    &search_bytes, false);
2043 		if (ret < 0 || search_start != *offset)
2044 			return -EAGAIN;
2045 
2046 		goto again;
2047 	} else if (!bitmap_info->bytes)
2048 		free_bitmap(ctl, bitmap_info);
2049 
2050 	return 0;
2051 }
2052 
2053 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2054 			       struct btrfs_free_space *info, u64 offset,
2055 			       u64 bytes, enum btrfs_trim_state trim_state)
2056 {
2057 	u64 bytes_to_set = 0;
2058 	u64 end;
2059 
2060 	/*
2061 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2062 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2063 	 */
2064 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2065 		if (btrfs_free_space_trimmed(info)) {
2066 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2067 				info->bitmap_extents;
2068 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2069 		}
2070 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2071 	}
2072 
2073 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2074 
2075 	bytes_to_set = min(end - offset, bytes);
2076 
2077 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2078 
2079 	/*
2080 	 * We set some bytes, we have no idea what the max extent size is
2081 	 * anymore.
2082 	 */
2083 	info->max_extent_size = 0;
2084 
2085 	return bytes_to_set;
2086 
2087 }
2088 
2089 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2090 		      struct btrfs_free_space *info)
2091 {
2092 	struct btrfs_block_group *block_group = ctl->private;
2093 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2094 	bool forced = false;
2095 
2096 #ifdef CONFIG_BTRFS_DEBUG
2097 	if (btrfs_should_fragment_free_space(block_group))
2098 		forced = true;
2099 #endif
2100 
2101 	/* This is a way to reclaim large regions from the bitmaps. */
2102 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2103 		return false;
2104 
2105 	/*
2106 	 * If we are below the extents threshold then we can add this as an
2107 	 * extent, and don't have to deal with the bitmap
2108 	 */
2109 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2110 		/*
2111 		 * If this block group has some small extents we don't want to
2112 		 * use up all of our free slots in the cache with them, we want
2113 		 * to reserve them to larger extents, however if we have plenty
2114 		 * of cache left then go ahead an dadd them, no sense in adding
2115 		 * the overhead of a bitmap if we don't have to.
2116 		 */
2117 		if (info->bytes <= fs_info->sectorsize * 8) {
2118 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2119 				return false;
2120 		} else {
2121 			return false;
2122 		}
2123 	}
2124 
2125 	/*
2126 	 * The original block groups from mkfs can be really small, like 8
2127 	 * megabytes, so don't bother with a bitmap for those entries.  However
2128 	 * some block groups can be smaller than what a bitmap would cover but
2129 	 * are still large enough that they could overflow the 32k memory limit,
2130 	 * so allow those block groups to still be allowed to have a bitmap
2131 	 * entry.
2132 	 */
2133 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2134 		return false;
2135 
2136 	return true;
2137 }
2138 
2139 static const struct btrfs_free_space_op free_space_op = {
2140 	.recalc_thresholds	= recalculate_thresholds,
2141 	.use_bitmap		= use_bitmap,
2142 };
2143 
2144 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2145 			      struct btrfs_free_space *info)
2146 {
2147 	struct btrfs_free_space *bitmap_info;
2148 	struct btrfs_block_group *block_group = NULL;
2149 	int added = 0;
2150 	u64 bytes, offset, bytes_added;
2151 	enum btrfs_trim_state trim_state;
2152 	int ret;
2153 
2154 	bytes = info->bytes;
2155 	offset = info->offset;
2156 	trim_state = info->trim_state;
2157 
2158 	if (!ctl->op->use_bitmap(ctl, info))
2159 		return 0;
2160 
2161 	if (ctl->op == &free_space_op)
2162 		block_group = ctl->private;
2163 again:
2164 	/*
2165 	 * Since we link bitmaps right into the cluster we need to see if we
2166 	 * have a cluster here, and if so and it has our bitmap we need to add
2167 	 * the free space to that bitmap.
2168 	 */
2169 	if (block_group && !list_empty(&block_group->cluster_list)) {
2170 		struct btrfs_free_cluster *cluster;
2171 		struct rb_node *node;
2172 		struct btrfs_free_space *entry;
2173 
2174 		cluster = list_entry(block_group->cluster_list.next,
2175 				     struct btrfs_free_cluster,
2176 				     block_group_list);
2177 		spin_lock(&cluster->lock);
2178 		node = rb_first(&cluster->root);
2179 		if (!node) {
2180 			spin_unlock(&cluster->lock);
2181 			goto no_cluster_bitmap;
2182 		}
2183 
2184 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2185 		if (!entry->bitmap) {
2186 			spin_unlock(&cluster->lock);
2187 			goto no_cluster_bitmap;
2188 		}
2189 
2190 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2191 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2192 							  bytes, trim_state);
2193 			bytes -= bytes_added;
2194 			offset += bytes_added;
2195 		}
2196 		spin_unlock(&cluster->lock);
2197 		if (!bytes) {
2198 			ret = 1;
2199 			goto out;
2200 		}
2201 	}
2202 
2203 no_cluster_bitmap:
2204 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2205 					 1, 0);
2206 	if (!bitmap_info) {
2207 		ASSERT(added == 0);
2208 		goto new_bitmap;
2209 	}
2210 
2211 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2212 					  trim_state);
2213 	bytes -= bytes_added;
2214 	offset += bytes_added;
2215 	added = 0;
2216 
2217 	if (!bytes) {
2218 		ret = 1;
2219 		goto out;
2220 	} else
2221 		goto again;
2222 
2223 new_bitmap:
2224 	if (info && info->bitmap) {
2225 		add_new_bitmap(ctl, info, offset);
2226 		added = 1;
2227 		info = NULL;
2228 		goto again;
2229 	} else {
2230 		spin_unlock(&ctl->tree_lock);
2231 
2232 		/* no pre-allocated info, allocate a new one */
2233 		if (!info) {
2234 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2235 						 GFP_NOFS);
2236 			if (!info) {
2237 				spin_lock(&ctl->tree_lock);
2238 				ret = -ENOMEM;
2239 				goto out;
2240 			}
2241 		}
2242 
2243 		/* allocate the bitmap */
2244 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2245 						 GFP_NOFS);
2246 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2247 		spin_lock(&ctl->tree_lock);
2248 		if (!info->bitmap) {
2249 			ret = -ENOMEM;
2250 			goto out;
2251 		}
2252 		goto again;
2253 	}
2254 
2255 out:
2256 	if (info) {
2257 		if (info->bitmap)
2258 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2259 					info->bitmap);
2260 		kmem_cache_free(btrfs_free_space_cachep, info);
2261 	}
2262 
2263 	return ret;
2264 }
2265 
2266 /*
2267  * Free space merging rules:
2268  *  1) Merge trimmed areas together
2269  *  2) Let untrimmed areas coalesce with trimmed areas
2270  *  3) Always pull neighboring regions from bitmaps
2271  *
2272  * The above rules are for when we merge free space based on btrfs_trim_state.
2273  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2274  * same reason: to promote larger extent regions which makes life easier for
2275  * find_free_extent().  Rule 2 enables coalescing based on the common path
2276  * being returning free space from btrfs_finish_extent_commit().  So when free
2277  * space is trimmed, it will prevent aggregating trimmed new region and
2278  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2279  * and provide find_free_extent() with the largest extents possible hoping for
2280  * the reuse path.
2281  */
2282 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2283 			  struct btrfs_free_space *info, bool update_stat)
2284 {
2285 	struct btrfs_free_space *left_info = NULL;
2286 	struct btrfs_free_space *right_info;
2287 	bool merged = false;
2288 	u64 offset = info->offset;
2289 	u64 bytes = info->bytes;
2290 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2291 
2292 	/*
2293 	 * first we want to see if there is free space adjacent to the range we
2294 	 * are adding, if there is remove that struct and add a new one to
2295 	 * cover the entire range
2296 	 */
2297 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2298 	if (right_info && rb_prev(&right_info->offset_index))
2299 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2300 				     struct btrfs_free_space, offset_index);
2301 	else if (!right_info)
2302 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2303 
2304 	/* See try_merge_free_space() comment. */
2305 	if (right_info && !right_info->bitmap &&
2306 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2307 		if (update_stat)
2308 			unlink_free_space(ctl, right_info);
2309 		else
2310 			__unlink_free_space(ctl, right_info);
2311 		info->bytes += right_info->bytes;
2312 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2313 		merged = true;
2314 	}
2315 
2316 	/* See try_merge_free_space() comment. */
2317 	if (left_info && !left_info->bitmap &&
2318 	    left_info->offset + left_info->bytes == offset &&
2319 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2320 		if (update_stat)
2321 			unlink_free_space(ctl, left_info);
2322 		else
2323 			__unlink_free_space(ctl, left_info);
2324 		info->offset = left_info->offset;
2325 		info->bytes += left_info->bytes;
2326 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2327 		merged = true;
2328 	}
2329 
2330 	return merged;
2331 }
2332 
2333 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2334 				     struct btrfs_free_space *info,
2335 				     bool update_stat)
2336 {
2337 	struct btrfs_free_space *bitmap;
2338 	unsigned long i;
2339 	unsigned long j;
2340 	const u64 end = info->offset + info->bytes;
2341 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2342 	u64 bytes;
2343 
2344 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2345 	if (!bitmap)
2346 		return false;
2347 
2348 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2349 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2350 	if (j == i)
2351 		return false;
2352 	bytes = (j - i) * ctl->unit;
2353 	info->bytes += bytes;
2354 
2355 	/* See try_merge_free_space() comment. */
2356 	if (!btrfs_free_space_trimmed(bitmap))
2357 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2358 
2359 	if (update_stat)
2360 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2361 	else
2362 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2363 
2364 	if (!bitmap->bytes)
2365 		free_bitmap(ctl, bitmap);
2366 
2367 	return true;
2368 }
2369 
2370 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2371 				       struct btrfs_free_space *info,
2372 				       bool update_stat)
2373 {
2374 	struct btrfs_free_space *bitmap;
2375 	u64 bitmap_offset;
2376 	unsigned long i;
2377 	unsigned long j;
2378 	unsigned long prev_j;
2379 	u64 bytes;
2380 
2381 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2382 	/* If we're on a boundary, try the previous logical bitmap. */
2383 	if (bitmap_offset == info->offset) {
2384 		if (info->offset == 0)
2385 			return false;
2386 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2387 	}
2388 
2389 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2390 	if (!bitmap)
2391 		return false;
2392 
2393 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2394 	j = 0;
2395 	prev_j = (unsigned long)-1;
2396 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2397 		if (j > i)
2398 			break;
2399 		prev_j = j;
2400 	}
2401 	if (prev_j == i)
2402 		return false;
2403 
2404 	if (prev_j == (unsigned long)-1)
2405 		bytes = (i + 1) * ctl->unit;
2406 	else
2407 		bytes = (i - prev_j) * ctl->unit;
2408 
2409 	info->offset -= bytes;
2410 	info->bytes += bytes;
2411 
2412 	/* See try_merge_free_space() comment. */
2413 	if (!btrfs_free_space_trimmed(bitmap))
2414 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2415 
2416 	if (update_stat)
2417 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2418 	else
2419 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2420 
2421 	if (!bitmap->bytes)
2422 		free_bitmap(ctl, bitmap);
2423 
2424 	return true;
2425 }
2426 
2427 /*
2428  * We prefer always to allocate from extent entries, both for clustered and
2429  * non-clustered allocation requests. So when attempting to add a new extent
2430  * entry, try to see if there's adjacent free space in bitmap entries, and if
2431  * there is, migrate that space from the bitmaps to the extent.
2432  * Like this we get better chances of satisfying space allocation requests
2433  * because we attempt to satisfy them based on a single cache entry, and never
2434  * on 2 or more entries - even if the entries represent a contiguous free space
2435  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2436  * ends).
2437  */
2438 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2439 			      struct btrfs_free_space *info,
2440 			      bool update_stat)
2441 {
2442 	/*
2443 	 * Only work with disconnected entries, as we can change their offset,
2444 	 * and must be extent entries.
2445 	 */
2446 	ASSERT(!info->bitmap);
2447 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2448 
2449 	if (ctl->total_bitmaps > 0) {
2450 		bool stole_end;
2451 		bool stole_front = false;
2452 
2453 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2454 		if (ctl->total_bitmaps > 0)
2455 			stole_front = steal_from_bitmap_to_front(ctl, info,
2456 								 update_stat);
2457 
2458 		if (stole_end || stole_front)
2459 			try_merge_free_space(ctl, info, update_stat);
2460 	}
2461 }
2462 
2463 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2464 			   struct btrfs_free_space_ctl *ctl,
2465 			   u64 offset, u64 bytes,
2466 			   enum btrfs_trim_state trim_state)
2467 {
2468 	struct btrfs_block_group *block_group = ctl->private;
2469 	struct btrfs_free_space *info;
2470 	int ret = 0;
2471 	u64 filter_bytes = bytes;
2472 
2473 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2474 	if (!info)
2475 		return -ENOMEM;
2476 
2477 	info->offset = offset;
2478 	info->bytes = bytes;
2479 	info->trim_state = trim_state;
2480 	RB_CLEAR_NODE(&info->offset_index);
2481 
2482 	spin_lock(&ctl->tree_lock);
2483 
2484 	if (try_merge_free_space(ctl, info, true))
2485 		goto link;
2486 
2487 	/*
2488 	 * There was no extent directly to the left or right of this new
2489 	 * extent then we know we're going to have to allocate a new extent, so
2490 	 * before we do that see if we need to drop this into a bitmap
2491 	 */
2492 	ret = insert_into_bitmap(ctl, info);
2493 	if (ret < 0) {
2494 		goto out;
2495 	} else if (ret) {
2496 		ret = 0;
2497 		goto out;
2498 	}
2499 link:
2500 	/*
2501 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2502 	 * going to add the new free space to existing bitmap entries - because
2503 	 * that would mean unnecessary work that would be reverted. Therefore
2504 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2505 	 */
2506 	steal_from_bitmap(ctl, info, true);
2507 
2508 	filter_bytes = max(filter_bytes, info->bytes);
2509 
2510 	ret = link_free_space(ctl, info);
2511 	if (ret)
2512 		kmem_cache_free(btrfs_free_space_cachep, info);
2513 out:
2514 	btrfs_discard_update_discardable(block_group, ctl);
2515 	spin_unlock(&ctl->tree_lock);
2516 
2517 	if (ret) {
2518 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2519 		ASSERT(ret != -EEXIST);
2520 	}
2521 
2522 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2523 		btrfs_discard_check_filter(block_group, filter_bytes);
2524 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2525 	}
2526 
2527 	return ret;
2528 }
2529 
2530 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2531 			 u64 bytenr, u64 size)
2532 {
2533 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2534 
2535 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2536 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2537 
2538 	return __btrfs_add_free_space(block_group->fs_info,
2539 				      block_group->free_space_ctl,
2540 				      bytenr, size, trim_state);
2541 }
2542 
2543 /*
2544  * This is a subtle distinction because when adding free space back in general,
2545  * we want it to be added as untrimmed for async. But in the case where we add
2546  * it on loading of a block group, we want to consider it trimmed.
2547  */
2548 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2549 				       u64 bytenr, u64 size)
2550 {
2551 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2552 
2553 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2554 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2555 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2556 
2557 	return __btrfs_add_free_space(block_group->fs_info,
2558 				      block_group->free_space_ctl,
2559 				      bytenr, size, trim_state);
2560 }
2561 
2562 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2563 			    u64 offset, u64 bytes)
2564 {
2565 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2566 	struct btrfs_free_space *info;
2567 	int ret;
2568 	bool re_search = false;
2569 
2570 	spin_lock(&ctl->tree_lock);
2571 
2572 again:
2573 	ret = 0;
2574 	if (!bytes)
2575 		goto out_lock;
2576 
2577 	info = tree_search_offset(ctl, offset, 0, 0);
2578 	if (!info) {
2579 		/*
2580 		 * oops didn't find an extent that matched the space we wanted
2581 		 * to remove, look for a bitmap instead
2582 		 */
2583 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2584 					  1, 0);
2585 		if (!info) {
2586 			/*
2587 			 * If we found a partial bit of our free space in a
2588 			 * bitmap but then couldn't find the other part this may
2589 			 * be a problem, so WARN about it.
2590 			 */
2591 			WARN_ON(re_search);
2592 			goto out_lock;
2593 		}
2594 	}
2595 
2596 	re_search = false;
2597 	if (!info->bitmap) {
2598 		unlink_free_space(ctl, info);
2599 		if (offset == info->offset) {
2600 			u64 to_free = min(bytes, info->bytes);
2601 
2602 			info->bytes -= to_free;
2603 			info->offset += to_free;
2604 			if (info->bytes) {
2605 				ret = link_free_space(ctl, info);
2606 				WARN_ON(ret);
2607 			} else {
2608 				kmem_cache_free(btrfs_free_space_cachep, info);
2609 			}
2610 
2611 			offset += to_free;
2612 			bytes -= to_free;
2613 			goto again;
2614 		} else {
2615 			u64 old_end = info->bytes + info->offset;
2616 
2617 			info->bytes = offset - info->offset;
2618 			ret = link_free_space(ctl, info);
2619 			WARN_ON(ret);
2620 			if (ret)
2621 				goto out_lock;
2622 
2623 			/* Not enough bytes in this entry to satisfy us */
2624 			if (old_end < offset + bytes) {
2625 				bytes -= old_end - offset;
2626 				offset = old_end;
2627 				goto again;
2628 			} else if (old_end == offset + bytes) {
2629 				/* all done */
2630 				goto out_lock;
2631 			}
2632 			spin_unlock(&ctl->tree_lock);
2633 
2634 			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2635 						     offset + bytes,
2636 						     old_end - (offset + bytes),
2637 						     info->trim_state);
2638 			WARN_ON(ret);
2639 			goto out;
2640 		}
2641 	}
2642 
2643 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2644 	if (ret == -EAGAIN) {
2645 		re_search = true;
2646 		goto again;
2647 	}
2648 out_lock:
2649 	btrfs_discard_update_discardable(block_group, ctl);
2650 	spin_unlock(&ctl->tree_lock);
2651 out:
2652 	return ret;
2653 }
2654 
2655 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2656 			   u64 bytes)
2657 {
2658 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2659 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2660 	struct btrfs_free_space *info;
2661 	struct rb_node *n;
2662 	int count = 0;
2663 
2664 	spin_lock(&ctl->tree_lock);
2665 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2666 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2667 		if (info->bytes >= bytes && !block_group->ro)
2668 			count++;
2669 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2670 			   info->offset, info->bytes,
2671 		       (info->bitmap) ? "yes" : "no");
2672 	}
2673 	spin_unlock(&ctl->tree_lock);
2674 	btrfs_info(fs_info, "block group has cluster?: %s",
2675 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2676 	btrfs_info(fs_info,
2677 		   "%d blocks of free space at or bigger than bytes is", count);
2678 }
2679 
2680 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
2681 {
2682 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2683 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2684 
2685 	spin_lock_init(&ctl->tree_lock);
2686 	ctl->unit = fs_info->sectorsize;
2687 	ctl->start = block_group->start;
2688 	ctl->private = block_group;
2689 	ctl->op = &free_space_op;
2690 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2691 	mutex_init(&ctl->cache_writeout_mutex);
2692 
2693 	/*
2694 	 * we only want to have 32k of ram per block group for keeping
2695 	 * track of free space, and if we pass 1/2 of that we want to
2696 	 * start converting things over to using bitmaps
2697 	 */
2698 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2699 }
2700 
2701 /*
2702  * for a given cluster, put all of its extents back into the free
2703  * space cache.  If the block group passed doesn't match the block group
2704  * pointed to by the cluster, someone else raced in and freed the
2705  * cluster already.  In that case, we just return without changing anything
2706  */
2707 static void __btrfs_return_cluster_to_free_space(
2708 			     struct btrfs_block_group *block_group,
2709 			     struct btrfs_free_cluster *cluster)
2710 {
2711 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2712 	struct btrfs_free_space *entry;
2713 	struct rb_node *node;
2714 
2715 	spin_lock(&cluster->lock);
2716 	if (cluster->block_group != block_group)
2717 		goto out;
2718 
2719 	cluster->block_group = NULL;
2720 	cluster->window_start = 0;
2721 	list_del_init(&cluster->block_group_list);
2722 
2723 	node = rb_first(&cluster->root);
2724 	while (node) {
2725 		bool bitmap;
2726 
2727 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2728 		node = rb_next(&entry->offset_index);
2729 		rb_erase(&entry->offset_index, &cluster->root);
2730 		RB_CLEAR_NODE(&entry->offset_index);
2731 
2732 		bitmap = (entry->bitmap != NULL);
2733 		if (!bitmap) {
2734 			/* Merging treats extents as if they were new */
2735 			if (!btrfs_free_space_trimmed(entry)) {
2736 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2737 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2738 					entry->bytes;
2739 			}
2740 
2741 			try_merge_free_space(ctl, entry, false);
2742 			steal_from_bitmap(ctl, entry, false);
2743 
2744 			/* As we insert directly, update these statistics */
2745 			if (!btrfs_free_space_trimmed(entry)) {
2746 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2747 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2748 					entry->bytes;
2749 			}
2750 		}
2751 		tree_insert_offset(&ctl->free_space_offset,
2752 				   entry->offset, &entry->offset_index, bitmap);
2753 	}
2754 	cluster->root = RB_ROOT;
2755 
2756 out:
2757 	spin_unlock(&cluster->lock);
2758 	btrfs_put_block_group(block_group);
2759 }
2760 
2761 static void __btrfs_remove_free_space_cache_locked(
2762 				struct btrfs_free_space_ctl *ctl)
2763 {
2764 	struct btrfs_free_space *info;
2765 	struct rb_node *node;
2766 
2767 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2768 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2769 		if (!info->bitmap) {
2770 			unlink_free_space(ctl, info);
2771 			kmem_cache_free(btrfs_free_space_cachep, info);
2772 		} else {
2773 			free_bitmap(ctl, info);
2774 		}
2775 
2776 		cond_resched_lock(&ctl->tree_lock);
2777 	}
2778 }
2779 
2780 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2781 {
2782 	spin_lock(&ctl->tree_lock);
2783 	__btrfs_remove_free_space_cache_locked(ctl);
2784 	if (ctl->private)
2785 		btrfs_discard_update_discardable(ctl->private, ctl);
2786 	spin_unlock(&ctl->tree_lock);
2787 }
2788 
2789 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2790 {
2791 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2792 	struct btrfs_free_cluster *cluster;
2793 	struct list_head *head;
2794 
2795 	spin_lock(&ctl->tree_lock);
2796 	while ((head = block_group->cluster_list.next) !=
2797 	       &block_group->cluster_list) {
2798 		cluster = list_entry(head, struct btrfs_free_cluster,
2799 				     block_group_list);
2800 
2801 		WARN_ON(cluster->block_group != block_group);
2802 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2803 
2804 		cond_resched_lock(&ctl->tree_lock);
2805 	}
2806 	__btrfs_remove_free_space_cache_locked(ctl);
2807 	btrfs_discard_update_discardable(block_group, ctl);
2808 	spin_unlock(&ctl->tree_lock);
2809 
2810 }
2811 
2812 /**
2813  * btrfs_is_free_space_trimmed - see if everything is trimmed
2814  * @block_group: block_group of interest
2815  *
2816  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2817  */
2818 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2819 {
2820 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2821 	struct btrfs_free_space *info;
2822 	struct rb_node *node;
2823 	bool ret = true;
2824 
2825 	spin_lock(&ctl->tree_lock);
2826 	node = rb_first(&ctl->free_space_offset);
2827 
2828 	while (node) {
2829 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2830 
2831 		if (!btrfs_free_space_trimmed(info)) {
2832 			ret = false;
2833 			break;
2834 		}
2835 
2836 		node = rb_next(node);
2837 	}
2838 
2839 	spin_unlock(&ctl->tree_lock);
2840 	return ret;
2841 }
2842 
2843 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2844 			       u64 offset, u64 bytes, u64 empty_size,
2845 			       u64 *max_extent_size)
2846 {
2847 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2848 	struct btrfs_discard_ctl *discard_ctl =
2849 					&block_group->fs_info->discard_ctl;
2850 	struct btrfs_free_space *entry = NULL;
2851 	u64 bytes_search = bytes + empty_size;
2852 	u64 ret = 0;
2853 	u64 align_gap = 0;
2854 	u64 align_gap_len = 0;
2855 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2856 
2857 	spin_lock(&ctl->tree_lock);
2858 	entry = find_free_space(ctl, &offset, &bytes_search,
2859 				block_group->full_stripe_len, max_extent_size);
2860 	if (!entry)
2861 		goto out;
2862 
2863 	ret = offset;
2864 	if (entry->bitmap) {
2865 		bitmap_clear_bits(ctl, entry, offset, bytes);
2866 
2867 		if (!btrfs_free_space_trimmed(entry))
2868 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2869 
2870 		if (!entry->bytes)
2871 			free_bitmap(ctl, entry);
2872 	} else {
2873 		unlink_free_space(ctl, entry);
2874 		align_gap_len = offset - entry->offset;
2875 		align_gap = entry->offset;
2876 		align_gap_trim_state = entry->trim_state;
2877 
2878 		if (!btrfs_free_space_trimmed(entry))
2879 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2880 
2881 		entry->offset = offset + bytes;
2882 		WARN_ON(entry->bytes < bytes + align_gap_len);
2883 
2884 		entry->bytes -= bytes + align_gap_len;
2885 		if (!entry->bytes)
2886 			kmem_cache_free(btrfs_free_space_cachep, entry);
2887 		else
2888 			link_free_space(ctl, entry);
2889 	}
2890 out:
2891 	btrfs_discard_update_discardable(block_group, ctl);
2892 	spin_unlock(&ctl->tree_lock);
2893 
2894 	if (align_gap_len)
2895 		__btrfs_add_free_space(block_group->fs_info, ctl,
2896 				       align_gap, align_gap_len,
2897 				       align_gap_trim_state);
2898 	return ret;
2899 }
2900 
2901 /*
2902  * given a cluster, put all of its extents back into the free space
2903  * cache.  If a block group is passed, this function will only free
2904  * a cluster that belongs to the passed block group.
2905  *
2906  * Otherwise, it'll get a reference on the block group pointed to by the
2907  * cluster and remove the cluster from it.
2908  */
2909 void btrfs_return_cluster_to_free_space(
2910 			       struct btrfs_block_group *block_group,
2911 			       struct btrfs_free_cluster *cluster)
2912 {
2913 	struct btrfs_free_space_ctl *ctl;
2914 
2915 	/* first, get a safe pointer to the block group */
2916 	spin_lock(&cluster->lock);
2917 	if (!block_group) {
2918 		block_group = cluster->block_group;
2919 		if (!block_group) {
2920 			spin_unlock(&cluster->lock);
2921 			return;
2922 		}
2923 	} else if (cluster->block_group != block_group) {
2924 		/* someone else has already freed it don't redo their work */
2925 		spin_unlock(&cluster->lock);
2926 		return;
2927 	}
2928 	btrfs_get_block_group(block_group);
2929 	spin_unlock(&cluster->lock);
2930 
2931 	ctl = block_group->free_space_ctl;
2932 
2933 	/* now return any extents the cluster had on it */
2934 	spin_lock(&ctl->tree_lock);
2935 	__btrfs_return_cluster_to_free_space(block_group, cluster);
2936 	spin_unlock(&ctl->tree_lock);
2937 
2938 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
2939 
2940 	/* finally drop our ref */
2941 	btrfs_put_block_group(block_group);
2942 }
2943 
2944 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2945 				   struct btrfs_free_cluster *cluster,
2946 				   struct btrfs_free_space *entry,
2947 				   u64 bytes, u64 min_start,
2948 				   u64 *max_extent_size)
2949 {
2950 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2951 	int err;
2952 	u64 search_start = cluster->window_start;
2953 	u64 search_bytes = bytes;
2954 	u64 ret = 0;
2955 
2956 	search_start = min_start;
2957 	search_bytes = bytes;
2958 
2959 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2960 	if (err) {
2961 		*max_extent_size = max(get_max_extent_size(entry),
2962 				       *max_extent_size);
2963 		return 0;
2964 	}
2965 
2966 	ret = search_start;
2967 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2968 
2969 	return ret;
2970 }
2971 
2972 /*
2973  * given a cluster, try to allocate 'bytes' from it, returns 0
2974  * if it couldn't find anything suitably large, or a logical disk offset
2975  * if things worked out
2976  */
2977 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2978 			     struct btrfs_free_cluster *cluster, u64 bytes,
2979 			     u64 min_start, u64 *max_extent_size)
2980 {
2981 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2982 	struct btrfs_discard_ctl *discard_ctl =
2983 					&block_group->fs_info->discard_ctl;
2984 	struct btrfs_free_space *entry = NULL;
2985 	struct rb_node *node;
2986 	u64 ret = 0;
2987 
2988 	spin_lock(&cluster->lock);
2989 	if (bytes > cluster->max_size)
2990 		goto out;
2991 
2992 	if (cluster->block_group != block_group)
2993 		goto out;
2994 
2995 	node = rb_first(&cluster->root);
2996 	if (!node)
2997 		goto out;
2998 
2999 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3000 	while (1) {
3001 		if (entry->bytes < bytes)
3002 			*max_extent_size = max(get_max_extent_size(entry),
3003 					       *max_extent_size);
3004 
3005 		if (entry->bytes < bytes ||
3006 		    (!entry->bitmap && entry->offset < min_start)) {
3007 			node = rb_next(&entry->offset_index);
3008 			if (!node)
3009 				break;
3010 			entry = rb_entry(node, struct btrfs_free_space,
3011 					 offset_index);
3012 			continue;
3013 		}
3014 
3015 		if (entry->bitmap) {
3016 			ret = btrfs_alloc_from_bitmap(block_group,
3017 						      cluster, entry, bytes,
3018 						      cluster->window_start,
3019 						      max_extent_size);
3020 			if (ret == 0) {
3021 				node = rb_next(&entry->offset_index);
3022 				if (!node)
3023 					break;
3024 				entry = rb_entry(node, struct btrfs_free_space,
3025 						 offset_index);
3026 				continue;
3027 			}
3028 			cluster->window_start += bytes;
3029 		} else {
3030 			ret = entry->offset;
3031 
3032 			entry->offset += bytes;
3033 			entry->bytes -= bytes;
3034 		}
3035 
3036 		if (entry->bytes == 0)
3037 			rb_erase(&entry->offset_index, &cluster->root);
3038 		break;
3039 	}
3040 out:
3041 	spin_unlock(&cluster->lock);
3042 
3043 	if (!ret)
3044 		return 0;
3045 
3046 	spin_lock(&ctl->tree_lock);
3047 
3048 	if (!btrfs_free_space_trimmed(entry))
3049 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3050 
3051 	ctl->free_space -= bytes;
3052 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3053 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3054 	if (entry->bytes == 0) {
3055 		ctl->free_extents--;
3056 		if (entry->bitmap) {
3057 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3058 					entry->bitmap);
3059 			ctl->total_bitmaps--;
3060 			ctl->op->recalc_thresholds(ctl);
3061 		} else if (!btrfs_free_space_trimmed(entry)) {
3062 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3063 		}
3064 		kmem_cache_free(btrfs_free_space_cachep, entry);
3065 	}
3066 
3067 	spin_unlock(&ctl->tree_lock);
3068 
3069 	return ret;
3070 }
3071 
3072 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3073 				struct btrfs_free_space *entry,
3074 				struct btrfs_free_cluster *cluster,
3075 				u64 offset, u64 bytes,
3076 				u64 cont1_bytes, u64 min_bytes)
3077 {
3078 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3079 	unsigned long next_zero;
3080 	unsigned long i;
3081 	unsigned long want_bits;
3082 	unsigned long min_bits;
3083 	unsigned long found_bits;
3084 	unsigned long max_bits = 0;
3085 	unsigned long start = 0;
3086 	unsigned long total_found = 0;
3087 	int ret;
3088 
3089 	i = offset_to_bit(entry->offset, ctl->unit,
3090 			  max_t(u64, offset, entry->offset));
3091 	want_bits = bytes_to_bits(bytes, ctl->unit);
3092 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3093 
3094 	/*
3095 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3096 	 * fragmented.
3097 	 */
3098 	if (entry->max_extent_size &&
3099 	    entry->max_extent_size < cont1_bytes)
3100 		return -ENOSPC;
3101 again:
3102 	found_bits = 0;
3103 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3104 		next_zero = find_next_zero_bit(entry->bitmap,
3105 					       BITS_PER_BITMAP, i);
3106 		if (next_zero - i >= min_bits) {
3107 			found_bits = next_zero - i;
3108 			if (found_bits > max_bits)
3109 				max_bits = found_bits;
3110 			break;
3111 		}
3112 		if (next_zero - i > max_bits)
3113 			max_bits = next_zero - i;
3114 		i = next_zero;
3115 	}
3116 
3117 	if (!found_bits) {
3118 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3119 		return -ENOSPC;
3120 	}
3121 
3122 	if (!total_found) {
3123 		start = i;
3124 		cluster->max_size = 0;
3125 	}
3126 
3127 	total_found += found_bits;
3128 
3129 	if (cluster->max_size < found_bits * ctl->unit)
3130 		cluster->max_size = found_bits * ctl->unit;
3131 
3132 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3133 		i = next_zero + 1;
3134 		goto again;
3135 	}
3136 
3137 	cluster->window_start = start * ctl->unit + entry->offset;
3138 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3139 	ret = tree_insert_offset(&cluster->root, entry->offset,
3140 				 &entry->offset_index, 1);
3141 	ASSERT(!ret); /* -EEXIST; Logic error */
3142 
3143 	trace_btrfs_setup_cluster(block_group, cluster,
3144 				  total_found * ctl->unit, 1);
3145 	return 0;
3146 }
3147 
3148 /*
3149  * This searches the block group for just extents to fill the cluster with.
3150  * Try to find a cluster with at least bytes total bytes, at least one
3151  * extent of cont1_bytes, and other clusters of at least min_bytes.
3152  */
3153 static noinline int
3154 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3155 			struct btrfs_free_cluster *cluster,
3156 			struct list_head *bitmaps, u64 offset, u64 bytes,
3157 			u64 cont1_bytes, u64 min_bytes)
3158 {
3159 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3160 	struct btrfs_free_space *first = NULL;
3161 	struct btrfs_free_space *entry = NULL;
3162 	struct btrfs_free_space *last;
3163 	struct rb_node *node;
3164 	u64 window_free;
3165 	u64 max_extent;
3166 	u64 total_size = 0;
3167 
3168 	entry = tree_search_offset(ctl, offset, 0, 1);
3169 	if (!entry)
3170 		return -ENOSPC;
3171 
3172 	/*
3173 	 * We don't want bitmaps, so just move along until we find a normal
3174 	 * extent entry.
3175 	 */
3176 	while (entry->bitmap || entry->bytes < min_bytes) {
3177 		if (entry->bitmap && list_empty(&entry->list))
3178 			list_add_tail(&entry->list, bitmaps);
3179 		node = rb_next(&entry->offset_index);
3180 		if (!node)
3181 			return -ENOSPC;
3182 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3183 	}
3184 
3185 	window_free = entry->bytes;
3186 	max_extent = entry->bytes;
3187 	first = entry;
3188 	last = entry;
3189 
3190 	for (node = rb_next(&entry->offset_index); node;
3191 	     node = rb_next(&entry->offset_index)) {
3192 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3193 
3194 		if (entry->bitmap) {
3195 			if (list_empty(&entry->list))
3196 				list_add_tail(&entry->list, bitmaps);
3197 			continue;
3198 		}
3199 
3200 		if (entry->bytes < min_bytes)
3201 			continue;
3202 
3203 		last = entry;
3204 		window_free += entry->bytes;
3205 		if (entry->bytes > max_extent)
3206 			max_extent = entry->bytes;
3207 	}
3208 
3209 	if (window_free < bytes || max_extent < cont1_bytes)
3210 		return -ENOSPC;
3211 
3212 	cluster->window_start = first->offset;
3213 
3214 	node = &first->offset_index;
3215 
3216 	/*
3217 	 * now we've found our entries, pull them out of the free space
3218 	 * cache and put them into the cluster rbtree
3219 	 */
3220 	do {
3221 		int ret;
3222 
3223 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3224 		node = rb_next(&entry->offset_index);
3225 		if (entry->bitmap || entry->bytes < min_bytes)
3226 			continue;
3227 
3228 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3229 		ret = tree_insert_offset(&cluster->root, entry->offset,
3230 					 &entry->offset_index, 0);
3231 		total_size += entry->bytes;
3232 		ASSERT(!ret); /* -EEXIST; Logic error */
3233 	} while (node && entry != last);
3234 
3235 	cluster->max_size = max_extent;
3236 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3237 	return 0;
3238 }
3239 
3240 /*
3241  * This specifically looks for bitmaps that may work in the cluster, we assume
3242  * that we have already failed to find extents that will work.
3243  */
3244 static noinline int
3245 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3246 		     struct btrfs_free_cluster *cluster,
3247 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3248 		     u64 cont1_bytes, u64 min_bytes)
3249 {
3250 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3251 	struct btrfs_free_space *entry = NULL;
3252 	int ret = -ENOSPC;
3253 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3254 
3255 	if (ctl->total_bitmaps == 0)
3256 		return -ENOSPC;
3257 
3258 	/*
3259 	 * The bitmap that covers offset won't be in the list unless offset
3260 	 * is just its start offset.
3261 	 */
3262 	if (!list_empty(bitmaps))
3263 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3264 
3265 	if (!entry || entry->offset != bitmap_offset) {
3266 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3267 		if (entry && list_empty(&entry->list))
3268 			list_add(&entry->list, bitmaps);
3269 	}
3270 
3271 	list_for_each_entry(entry, bitmaps, list) {
3272 		if (entry->bytes < bytes)
3273 			continue;
3274 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3275 					   bytes, cont1_bytes, min_bytes);
3276 		if (!ret)
3277 			return 0;
3278 	}
3279 
3280 	/*
3281 	 * The bitmaps list has all the bitmaps that record free space
3282 	 * starting after offset, so no more search is required.
3283 	 */
3284 	return -ENOSPC;
3285 }
3286 
3287 /*
3288  * here we try to find a cluster of blocks in a block group.  The goal
3289  * is to find at least bytes+empty_size.
3290  * We might not find them all in one contiguous area.
3291  *
3292  * returns zero and sets up cluster if things worked out, otherwise
3293  * it returns -enospc
3294  */
3295 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3296 			     struct btrfs_free_cluster *cluster,
3297 			     u64 offset, u64 bytes, u64 empty_size)
3298 {
3299 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3300 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3301 	struct btrfs_free_space *entry, *tmp;
3302 	LIST_HEAD(bitmaps);
3303 	u64 min_bytes;
3304 	u64 cont1_bytes;
3305 	int ret;
3306 
3307 	/*
3308 	 * Choose the minimum extent size we'll require for this
3309 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3310 	 * For metadata, allow allocates with smaller extents.  For
3311 	 * data, keep it dense.
3312 	 */
3313 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3314 		cont1_bytes = min_bytes = bytes + empty_size;
3315 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3316 		cont1_bytes = bytes;
3317 		min_bytes = fs_info->sectorsize;
3318 	} else {
3319 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3320 		min_bytes = fs_info->sectorsize;
3321 	}
3322 
3323 	spin_lock(&ctl->tree_lock);
3324 
3325 	/*
3326 	 * If we know we don't have enough space to make a cluster don't even
3327 	 * bother doing all the work to try and find one.
3328 	 */
3329 	if (ctl->free_space < bytes) {
3330 		spin_unlock(&ctl->tree_lock);
3331 		return -ENOSPC;
3332 	}
3333 
3334 	spin_lock(&cluster->lock);
3335 
3336 	/* someone already found a cluster, hooray */
3337 	if (cluster->block_group) {
3338 		ret = 0;
3339 		goto out;
3340 	}
3341 
3342 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3343 				 min_bytes);
3344 
3345 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3346 				      bytes + empty_size,
3347 				      cont1_bytes, min_bytes);
3348 	if (ret)
3349 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3350 					   offset, bytes + empty_size,
3351 					   cont1_bytes, min_bytes);
3352 
3353 	/* Clear our temporary list */
3354 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3355 		list_del_init(&entry->list);
3356 
3357 	if (!ret) {
3358 		btrfs_get_block_group(block_group);
3359 		list_add_tail(&cluster->block_group_list,
3360 			      &block_group->cluster_list);
3361 		cluster->block_group = block_group;
3362 	} else {
3363 		trace_btrfs_failed_cluster_setup(block_group);
3364 	}
3365 out:
3366 	spin_unlock(&cluster->lock);
3367 	spin_unlock(&ctl->tree_lock);
3368 
3369 	return ret;
3370 }
3371 
3372 /*
3373  * simple code to zero out a cluster
3374  */
3375 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3376 {
3377 	spin_lock_init(&cluster->lock);
3378 	spin_lock_init(&cluster->refill_lock);
3379 	cluster->root = RB_ROOT;
3380 	cluster->max_size = 0;
3381 	cluster->fragmented = false;
3382 	INIT_LIST_HEAD(&cluster->block_group_list);
3383 	cluster->block_group = NULL;
3384 }
3385 
3386 static int do_trimming(struct btrfs_block_group *block_group,
3387 		       u64 *total_trimmed, u64 start, u64 bytes,
3388 		       u64 reserved_start, u64 reserved_bytes,
3389 		       enum btrfs_trim_state reserved_trim_state,
3390 		       struct btrfs_trim_range *trim_entry)
3391 {
3392 	struct btrfs_space_info *space_info = block_group->space_info;
3393 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3394 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3395 	int ret;
3396 	int update = 0;
3397 	const u64 end = start + bytes;
3398 	const u64 reserved_end = reserved_start + reserved_bytes;
3399 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3400 	u64 trimmed = 0;
3401 
3402 	spin_lock(&space_info->lock);
3403 	spin_lock(&block_group->lock);
3404 	if (!block_group->ro) {
3405 		block_group->reserved += reserved_bytes;
3406 		space_info->bytes_reserved += reserved_bytes;
3407 		update = 1;
3408 	}
3409 	spin_unlock(&block_group->lock);
3410 	spin_unlock(&space_info->lock);
3411 
3412 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3413 	if (!ret) {
3414 		*total_trimmed += trimmed;
3415 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3416 	}
3417 
3418 	mutex_lock(&ctl->cache_writeout_mutex);
3419 	if (reserved_start < start)
3420 		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3421 				       start - reserved_start,
3422 				       reserved_trim_state);
3423 	if (start + bytes < reserved_start + reserved_bytes)
3424 		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3425 				       reserved_trim_state);
3426 	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3427 	list_del(&trim_entry->list);
3428 	mutex_unlock(&ctl->cache_writeout_mutex);
3429 
3430 	if (update) {
3431 		spin_lock(&space_info->lock);
3432 		spin_lock(&block_group->lock);
3433 		if (block_group->ro)
3434 			space_info->bytes_readonly += reserved_bytes;
3435 		block_group->reserved -= reserved_bytes;
3436 		space_info->bytes_reserved -= reserved_bytes;
3437 		spin_unlock(&block_group->lock);
3438 		spin_unlock(&space_info->lock);
3439 	}
3440 
3441 	return ret;
3442 }
3443 
3444 /*
3445  * If @async is set, then we will trim 1 region and return.
3446  */
3447 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3448 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3449 			  bool async)
3450 {
3451 	struct btrfs_discard_ctl *discard_ctl =
3452 					&block_group->fs_info->discard_ctl;
3453 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3454 	struct btrfs_free_space *entry;
3455 	struct rb_node *node;
3456 	int ret = 0;
3457 	u64 extent_start;
3458 	u64 extent_bytes;
3459 	enum btrfs_trim_state extent_trim_state;
3460 	u64 bytes;
3461 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3462 
3463 	while (start < end) {
3464 		struct btrfs_trim_range trim_entry;
3465 
3466 		mutex_lock(&ctl->cache_writeout_mutex);
3467 		spin_lock(&ctl->tree_lock);
3468 
3469 		if (ctl->free_space < minlen)
3470 			goto out_unlock;
3471 
3472 		entry = tree_search_offset(ctl, start, 0, 1);
3473 		if (!entry)
3474 			goto out_unlock;
3475 
3476 		/* Skip bitmaps and if async, already trimmed entries */
3477 		while (entry->bitmap ||
3478 		       (async && btrfs_free_space_trimmed(entry))) {
3479 			node = rb_next(&entry->offset_index);
3480 			if (!node)
3481 				goto out_unlock;
3482 			entry = rb_entry(node, struct btrfs_free_space,
3483 					 offset_index);
3484 		}
3485 
3486 		if (entry->offset >= end)
3487 			goto out_unlock;
3488 
3489 		extent_start = entry->offset;
3490 		extent_bytes = entry->bytes;
3491 		extent_trim_state = entry->trim_state;
3492 		if (async) {
3493 			start = entry->offset;
3494 			bytes = entry->bytes;
3495 			if (bytes < minlen) {
3496 				spin_unlock(&ctl->tree_lock);
3497 				mutex_unlock(&ctl->cache_writeout_mutex);
3498 				goto next;
3499 			}
3500 			unlink_free_space(ctl, entry);
3501 			/*
3502 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3503 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3504 			 * X when we come back around.  So trim it now.
3505 			 */
3506 			if (max_discard_size &&
3507 			    bytes >= (max_discard_size +
3508 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3509 				bytes = max_discard_size;
3510 				extent_bytes = max_discard_size;
3511 				entry->offset += max_discard_size;
3512 				entry->bytes -= max_discard_size;
3513 				link_free_space(ctl, entry);
3514 			} else {
3515 				kmem_cache_free(btrfs_free_space_cachep, entry);
3516 			}
3517 		} else {
3518 			start = max(start, extent_start);
3519 			bytes = min(extent_start + extent_bytes, end) - start;
3520 			if (bytes < minlen) {
3521 				spin_unlock(&ctl->tree_lock);
3522 				mutex_unlock(&ctl->cache_writeout_mutex);
3523 				goto next;
3524 			}
3525 
3526 			unlink_free_space(ctl, entry);
3527 			kmem_cache_free(btrfs_free_space_cachep, entry);
3528 		}
3529 
3530 		spin_unlock(&ctl->tree_lock);
3531 		trim_entry.start = extent_start;
3532 		trim_entry.bytes = extent_bytes;
3533 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3534 		mutex_unlock(&ctl->cache_writeout_mutex);
3535 
3536 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3537 				  extent_start, extent_bytes, extent_trim_state,
3538 				  &trim_entry);
3539 		if (ret) {
3540 			block_group->discard_cursor = start + bytes;
3541 			break;
3542 		}
3543 next:
3544 		start += bytes;
3545 		block_group->discard_cursor = start;
3546 		if (async && *total_trimmed)
3547 			break;
3548 
3549 		if (fatal_signal_pending(current)) {
3550 			ret = -ERESTARTSYS;
3551 			break;
3552 		}
3553 
3554 		cond_resched();
3555 	}
3556 
3557 	return ret;
3558 
3559 out_unlock:
3560 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3561 	spin_unlock(&ctl->tree_lock);
3562 	mutex_unlock(&ctl->cache_writeout_mutex);
3563 
3564 	return ret;
3565 }
3566 
3567 /*
3568  * If we break out of trimming a bitmap prematurely, we should reset the
3569  * trimming bit.  In a rather contrieved case, it's possible to race here so
3570  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3571  *
3572  * start = start of bitmap
3573  * end = near end of bitmap
3574  *
3575  * Thread 1:			Thread 2:
3576  * trim_bitmaps(start)
3577  *				trim_bitmaps(end)
3578  *				end_trimming_bitmap()
3579  * reset_trimming_bitmap()
3580  */
3581 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3582 {
3583 	struct btrfs_free_space *entry;
3584 
3585 	spin_lock(&ctl->tree_lock);
3586 	entry = tree_search_offset(ctl, offset, 1, 0);
3587 	if (entry) {
3588 		if (btrfs_free_space_trimmed(entry)) {
3589 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3590 				entry->bitmap_extents;
3591 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3592 		}
3593 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3594 	}
3595 
3596 	spin_unlock(&ctl->tree_lock);
3597 }
3598 
3599 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3600 				struct btrfs_free_space *entry)
3601 {
3602 	if (btrfs_free_space_trimming_bitmap(entry)) {
3603 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3604 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3605 			entry->bitmap_extents;
3606 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3607 	}
3608 }
3609 
3610 /*
3611  * If @async is set, then we will trim 1 region and return.
3612  */
3613 static int trim_bitmaps(struct btrfs_block_group *block_group,
3614 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3615 			u64 maxlen, bool async)
3616 {
3617 	struct btrfs_discard_ctl *discard_ctl =
3618 					&block_group->fs_info->discard_ctl;
3619 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3620 	struct btrfs_free_space *entry;
3621 	int ret = 0;
3622 	int ret2;
3623 	u64 bytes;
3624 	u64 offset = offset_to_bitmap(ctl, start);
3625 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3626 
3627 	while (offset < end) {
3628 		bool next_bitmap = false;
3629 		struct btrfs_trim_range trim_entry;
3630 
3631 		mutex_lock(&ctl->cache_writeout_mutex);
3632 		spin_lock(&ctl->tree_lock);
3633 
3634 		if (ctl->free_space < minlen) {
3635 			block_group->discard_cursor =
3636 				btrfs_block_group_end(block_group);
3637 			spin_unlock(&ctl->tree_lock);
3638 			mutex_unlock(&ctl->cache_writeout_mutex);
3639 			break;
3640 		}
3641 
3642 		entry = tree_search_offset(ctl, offset, 1, 0);
3643 		/*
3644 		 * Bitmaps are marked trimmed lossily now to prevent constant
3645 		 * discarding of the same bitmap (the reason why we are bound
3646 		 * by the filters).  So, retrim the block group bitmaps when we
3647 		 * are preparing to punt to the unused_bgs list.  This uses
3648 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3649 		 * which is the only discard index which sets minlen to 0.
3650 		 */
3651 		if (!entry || (async && minlen && start == offset &&
3652 			       btrfs_free_space_trimmed(entry))) {
3653 			spin_unlock(&ctl->tree_lock);
3654 			mutex_unlock(&ctl->cache_writeout_mutex);
3655 			next_bitmap = true;
3656 			goto next;
3657 		}
3658 
3659 		/*
3660 		 * Async discard bitmap trimming begins at by setting the start
3661 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3662 		 * start of the bitmap.  This lets us know we are fully
3663 		 * scanning the bitmap rather than only some portion of it.
3664 		 */
3665 		if (start == offset)
3666 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3667 
3668 		bytes = minlen;
3669 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3670 		if (ret2 || start >= end) {
3671 			/*
3672 			 * We lossily consider a bitmap trimmed if we only skip
3673 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3674 			 */
3675 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3676 				end_trimming_bitmap(ctl, entry);
3677 			else
3678 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3679 			spin_unlock(&ctl->tree_lock);
3680 			mutex_unlock(&ctl->cache_writeout_mutex);
3681 			next_bitmap = true;
3682 			goto next;
3683 		}
3684 
3685 		/*
3686 		 * We already trimmed a region, but are using the locking above
3687 		 * to reset the trim_state.
3688 		 */
3689 		if (async && *total_trimmed) {
3690 			spin_unlock(&ctl->tree_lock);
3691 			mutex_unlock(&ctl->cache_writeout_mutex);
3692 			goto out;
3693 		}
3694 
3695 		bytes = min(bytes, end - start);
3696 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3697 			spin_unlock(&ctl->tree_lock);
3698 			mutex_unlock(&ctl->cache_writeout_mutex);
3699 			goto next;
3700 		}
3701 
3702 		/*
3703 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3704 		 * If X < @minlen, we won't trim X when we come back around.
3705 		 * So trim it now.  We differ here from trimming extents as we
3706 		 * don't keep individual state per bit.
3707 		 */
3708 		if (async &&
3709 		    max_discard_size &&
3710 		    bytes > (max_discard_size + minlen))
3711 			bytes = max_discard_size;
3712 
3713 		bitmap_clear_bits(ctl, entry, start, bytes);
3714 		if (entry->bytes == 0)
3715 			free_bitmap(ctl, entry);
3716 
3717 		spin_unlock(&ctl->tree_lock);
3718 		trim_entry.start = start;
3719 		trim_entry.bytes = bytes;
3720 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3721 		mutex_unlock(&ctl->cache_writeout_mutex);
3722 
3723 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3724 				  start, bytes, 0, &trim_entry);
3725 		if (ret) {
3726 			reset_trimming_bitmap(ctl, offset);
3727 			block_group->discard_cursor =
3728 				btrfs_block_group_end(block_group);
3729 			break;
3730 		}
3731 next:
3732 		if (next_bitmap) {
3733 			offset += BITS_PER_BITMAP * ctl->unit;
3734 			start = offset;
3735 		} else {
3736 			start += bytes;
3737 		}
3738 		block_group->discard_cursor = start;
3739 
3740 		if (fatal_signal_pending(current)) {
3741 			if (start != offset)
3742 				reset_trimming_bitmap(ctl, offset);
3743 			ret = -ERESTARTSYS;
3744 			break;
3745 		}
3746 
3747 		cond_resched();
3748 	}
3749 
3750 	if (offset >= end)
3751 		block_group->discard_cursor = end;
3752 
3753 out:
3754 	return ret;
3755 }
3756 
3757 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3758 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3759 {
3760 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3761 	int ret;
3762 	u64 rem = 0;
3763 
3764 	*trimmed = 0;
3765 
3766 	spin_lock(&block_group->lock);
3767 	if (block_group->removed) {
3768 		spin_unlock(&block_group->lock);
3769 		return 0;
3770 	}
3771 	btrfs_freeze_block_group(block_group);
3772 	spin_unlock(&block_group->lock);
3773 
3774 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3775 	if (ret)
3776 		goto out;
3777 
3778 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3779 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3780 	/* If we ended in the middle of a bitmap, reset the trimming flag */
3781 	if (rem)
3782 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3783 out:
3784 	btrfs_unfreeze_block_group(block_group);
3785 	return ret;
3786 }
3787 
3788 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3789 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3790 				   bool async)
3791 {
3792 	int ret;
3793 
3794 	*trimmed = 0;
3795 
3796 	spin_lock(&block_group->lock);
3797 	if (block_group->removed) {
3798 		spin_unlock(&block_group->lock);
3799 		return 0;
3800 	}
3801 	btrfs_freeze_block_group(block_group);
3802 	spin_unlock(&block_group->lock);
3803 
3804 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3805 	btrfs_unfreeze_block_group(block_group);
3806 
3807 	return ret;
3808 }
3809 
3810 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3811 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3812 				   u64 maxlen, bool async)
3813 {
3814 	int ret;
3815 
3816 	*trimmed = 0;
3817 
3818 	spin_lock(&block_group->lock);
3819 	if (block_group->removed) {
3820 		spin_unlock(&block_group->lock);
3821 		return 0;
3822 	}
3823 	btrfs_freeze_block_group(block_group);
3824 	spin_unlock(&block_group->lock);
3825 
3826 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3827 			   async);
3828 
3829 	btrfs_unfreeze_block_group(block_group);
3830 
3831 	return ret;
3832 }
3833 
3834 /*
3835  * Find the left-most item in the cache tree, and then return the
3836  * smallest inode number in the item.
3837  *
3838  * Note: the returned inode number may not be the smallest one in
3839  * the tree, if the left-most item is a bitmap.
3840  */
3841 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3842 {
3843 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3844 	struct btrfs_free_space *entry = NULL;
3845 	u64 ino = 0;
3846 
3847 	spin_lock(&ctl->tree_lock);
3848 
3849 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3850 		goto out;
3851 
3852 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3853 			 struct btrfs_free_space, offset_index);
3854 
3855 	if (!entry->bitmap) {
3856 		ino = entry->offset;
3857 
3858 		unlink_free_space(ctl, entry);
3859 		entry->offset++;
3860 		entry->bytes--;
3861 		if (!entry->bytes)
3862 			kmem_cache_free(btrfs_free_space_cachep, entry);
3863 		else
3864 			link_free_space(ctl, entry);
3865 	} else {
3866 		u64 offset = 0;
3867 		u64 count = 1;
3868 		int ret;
3869 
3870 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3871 		/* Logic error; Should be empty if it can't find anything */
3872 		ASSERT(!ret);
3873 
3874 		ino = offset;
3875 		bitmap_clear_bits(ctl, entry, offset, 1);
3876 		if (entry->bytes == 0)
3877 			free_bitmap(ctl, entry);
3878 	}
3879 out:
3880 	spin_unlock(&ctl->tree_lock);
3881 
3882 	return ino;
3883 }
3884 
3885 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3886 				    struct btrfs_path *path)
3887 {
3888 	struct inode *inode = NULL;
3889 
3890 	spin_lock(&root->ino_cache_lock);
3891 	if (root->ino_cache_inode)
3892 		inode = igrab(root->ino_cache_inode);
3893 	spin_unlock(&root->ino_cache_lock);
3894 	if (inode)
3895 		return inode;
3896 
3897 	inode = __lookup_free_space_inode(root, path, 0);
3898 	if (IS_ERR(inode))
3899 		return inode;
3900 
3901 	spin_lock(&root->ino_cache_lock);
3902 	if (!btrfs_fs_closing(root->fs_info))
3903 		root->ino_cache_inode = igrab(inode);
3904 	spin_unlock(&root->ino_cache_lock);
3905 
3906 	return inode;
3907 }
3908 
3909 int create_free_ino_inode(struct btrfs_root *root,
3910 			  struct btrfs_trans_handle *trans,
3911 			  struct btrfs_path *path)
3912 {
3913 	return __create_free_space_inode(root, trans, path,
3914 					 BTRFS_FREE_INO_OBJECTID, 0);
3915 }
3916 
3917 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3918 {
3919 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3920 	struct btrfs_path *path;
3921 	struct inode *inode;
3922 	int ret = 0;
3923 	u64 root_gen = btrfs_root_generation(&root->root_item);
3924 
3925 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3926 		return 0;
3927 
3928 	/*
3929 	 * If we're unmounting then just return, since this does a search on the
3930 	 * normal root and not the commit root and we could deadlock.
3931 	 */
3932 	if (btrfs_fs_closing(fs_info))
3933 		return 0;
3934 
3935 	path = btrfs_alloc_path();
3936 	if (!path)
3937 		return 0;
3938 
3939 	inode = lookup_free_ino_inode(root, path);
3940 	if (IS_ERR(inode))
3941 		goto out;
3942 
3943 	if (root_gen != BTRFS_I(inode)->generation)
3944 		goto out_put;
3945 
3946 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3947 
3948 	if (ret < 0)
3949 		btrfs_err(fs_info,
3950 			"failed to load free ino cache for root %llu",
3951 			root->root_key.objectid);
3952 out_put:
3953 	iput(inode);
3954 out:
3955 	btrfs_free_path(path);
3956 	return ret;
3957 }
3958 
3959 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3960 			      struct btrfs_trans_handle *trans,
3961 			      struct btrfs_path *path,
3962 			      struct inode *inode)
3963 {
3964 	struct btrfs_fs_info *fs_info = root->fs_info;
3965 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3966 	int ret;
3967 	struct btrfs_io_ctl io_ctl;
3968 	bool release_metadata = true;
3969 
3970 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3971 		return 0;
3972 
3973 	memset(&io_ctl, 0, sizeof(io_ctl));
3974 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3975 	if (!ret) {
3976 		/*
3977 		 * At this point writepages() didn't error out, so our metadata
3978 		 * reservation is released when the writeback finishes, at
3979 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3980 		 * with or without an error.
3981 		 */
3982 		release_metadata = false;
3983 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3984 	}
3985 
3986 	if (ret) {
3987 		if (release_metadata)
3988 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3989 					inode->i_size, true);
3990 		btrfs_debug(fs_info,
3991 			  "failed to write free ino cache for root %llu error %d",
3992 			  root->root_key.objectid, ret);
3993 	}
3994 
3995 	return ret;
3996 }
3997 
3998 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3999 /*
4000  * Use this if you need to make a bitmap or extent entry specifically, it
4001  * doesn't do any of the merging that add_free_space does, this acts a lot like
4002  * how the free space cache loading stuff works, so you can get really weird
4003  * configurations.
4004  */
4005 int test_add_free_space_entry(struct btrfs_block_group *cache,
4006 			      u64 offset, u64 bytes, bool bitmap)
4007 {
4008 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4009 	struct btrfs_free_space *info = NULL, *bitmap_info;
4010 	void *map = NULL;
4011 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4012 	u64 bytes_added;
4013 	int ret;
4014 
4015 again:
4016 	if (!info) {
4017 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4018 		if (!info)
4019 			return -ENOMEM;
4020 	}
4021 
4022 	if (!bitmap) {
4023 		spin_lock(&ctl->tree_lock);
4024 		info->offset = offset;
4025 		info->bytes = bytes;
4026 		info->max_extent_size = 0;
4027 		ret = link_free_space(ctl, info);
4028 		spin_unlock(&ctl->tree_lock);
4029 		if (ret)
4030 			kmem_cache_free(btrfs_free_space_cachep, info);
4031 		return ret;
4032 	}
4033 
4034 	if (!map) {
4035 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4036 		if (!map) {
4037 			kmem_cache_free(btrfs_free_space_cachep, info);
4038 			return -ENOMEM;
4039 		}
4040 	}
4041 
4042 	spin_lock(&ctl->tree_lock);
4043 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4044 					 1, 0);
4045 	if (!bitmap_info) {
4046 		info->bitmap = map;
4047 		map = NULL;
4048 		add_new_bitmap(ctl, info, offset);
4049 		bitmap_info = info;
4050 		info = NULL;
4051 	}
4052 
4053 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4054 					  trim_state);
4055 
4056 	bytes -= bytes_added;
4057 	offset += bytes_added;
4058 	spin_unlock(&ctl->tree_lock);
4059 
4060 	if (bytes)
4061 		goto again;
4062 
4063 	if (info)
4064 		kmem_cache_free(btrfs_free_space_cachep, info);
4065 	if (map)
4066 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4067 	return 0;
4068 }
4069 
4070 /*
4071  * Checks to see if the given range is in the free space cache.  This is really
4072  * just used to check the absence of space, so if there is free space in the
4073  * range at all we will return 1.
4074  */
4075 int test_check_exists(struct btrfs_block_group *cache,
4076 		      u64 offset, u64 bytes)
4077 {
4078 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4079 	struct btrfs_free_space *info;
4080 	int ret = 0;
4081 
4082 	spin_lock(&ctl->tree_lock);
4083 	info = tree_search_offset(ctl, offset, 0, 0);
4084 	if (!info) {
4085 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4086 					  1, 0);
4087 		if (!info)
4088 			goto out;
4089 	}
4090 
4091 have_info:
4092 	if (info->bitmap) {
4093 		u64 bit_off, bit_bytes;
4094 		struct rb_node *n;
4095 		struct btrfs_free_space *tmp;
4096 
4097 		bit_off = offset;
4098 		bit_bytes = ctl->unit;
4099 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4100 		if (!ret) {
4101 			if (bit_off == offset) {
4102 				ret = 1;
4103 				goto out;
4104 			} else if (bit_off > offset &&
4105 				   offset + bytes > bit_off) {
4106 				ret = 1;
4107 				goto out;
4108 			}
4109 		}
4110 
4111 		n = rb_prev(&info->offset_index);
4112 		while (n) {
4113 			tmp = rb_entry(n, struct btrfs_free_space,
4114 				       offset_index);
4115 			if (tmp->offset + tmp->bytes < offset)
4116 				break;
4117 			if (offset + bytes < tmp->offset) {
4118 				n = rb_prev(&tmp->offset_index);
4119 				continue;
4120 			}
4121 			info = tmp;
4122 			goto have_info;
4123 		}
4124 
4125 		n = rb_next(&info->offset_index);
4126 		while (n) {
4127 			tmp = rb_entry(n, struct btrfs_free_space,
4128 				       offset_index);
4129 			if (offset + bytes < tmp->offset)
4130 				break;
4131 			if (tmp->offset + tmp->bytes < offset) {
4132 				n = rb_next(&tmp->offset_index);
4133 				continue;
4134 			}
4135 			info = tmp;
4136 			goto have_info;
4137 		}
4138 
4139 		ret = 0;
4140 		goto out;
4141 	}
4142 
4143 	if (info->offset == offset) {
4144 		ret = 1;
4145 		goto out;
4146 	}
4147 
4148 	if (offset > info->offset && offset < info->offset + info->bytes)
4149 		ret = 1;
4150 out:
4151 	spin_unlock(&ctl->tree_lock);
4152 	return ret;
4153 }
4154 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4155