xref: /linux/fs/btrfs/free-space-cache.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include <linux/string_choices.h>
15 #include "ctree.h"
16 #include "fs.h"
17 #include "messages.h"
18 #include "misc.h"
19 #include "free-space-cache.h"
20 #include "transaction.h"
21 #include "disk-io.h"
22 #include "extent_io.h"
23 #include "space-info.h"
24 #include "block-group.h"
25 #include "discard.h"
26 #include "subpage.h"
27 #include "inode-item.h"
28 #include "accessors.h"
29 #include "file-item.h"
30 #include "file.h"
31 #include "super.h"
32 
33 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
34 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
35 #define FORCE_EXTENT_THRESHOLD	SZ_1M
36 
37 static struct kmem_cache *btrfs_free_space_cachep;
38 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
39 
40 struct btrfs_trim_range {
41 	u64 start;
42 	u64 bytes;
43 	struct list_head list;
44 };
45 
46 static int link_free_space(struct btrfs_free_space_ctl *ctl,
47 			   struct btrfs_free_space *info);
48 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
49 			      struct btrfs_free_space *info, bool update_stat);
50 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
51 			 struct btrfs_free_space *bitmap_info, u64 *offset,
52 			 u64 *bytes, bool for_alloc);
53 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
54 			struct btrfs_free_space *bitmap_info);
55 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
56 			      struct btrfs_free_space *info, u64 offset,
57 			      u64 bytes, bool update_stats);
58 
59 static void btrfs_crc32c_final(u32 crc, u8 *result)
60 {
61 	put_unaligned_le32(~crc, result);
62 }
63 
64 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
65 {
66 	struct btrfs_free_space *info;
67 	struct rb_node *node;
68 
69 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
70 		info = rb_entry(node, struct btrfs_free_space, offset_index);
71 		if (!info->bitmap) {
72 			unlink_free_space(ctl, info, true);
73 			kmem_cache_free(btrfs_free_space_cachep, info);
74 		} else {
75 			free_bitmap(ctl, info);
76 		}
77 
78 		cond_resched_lock(&ctl->tree_lock);
79 	}
80 }
81 
82 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
83 					       struct btrfs_path *path,
84 					       u64 offset)
85 {
86 	struct btrfs_key key;
87 	struct btrfs_key location;
88 	struct btrfs_disk_key disk_key;
89 	struct btrfs_free_space_header *header;
90 	struct extent_buffer *leaf;
91 	struct inode *inode = NULL;
92 	unsigned nofs_flag;
93 	int ret;
94 
95 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
96 	key.offset = offset;
97 	key.type = 0;
98 
99 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
100 	if (ret < 0)
101 		return ERR_PTR(ret);
102 	if (ret > 0) {
103 		btrfs_release_path(path);
104 		return ERR_PTR(-ENOENT);
105 	}
106 
107 	leaf = path->nodes[0];
108 	header = btrfs_item_ptr(leaf, path->slots[0],
109 				struct btrfs_free_space_header);
110 	btrfs_free_space_key(leaf, header, &disk_key);
111 	btrfs_disk_key_to_cpu(&location, &disk_key);
112 	btrfs_release_path(path);
113 
114 	/*
115 	 * We are often under a trans handle at this point, so we need to make
116 	 * sure NOFS is set to keep us from deadlocking.
117 	 */
118 	nofs_flag = memalloc_nofs_save();
119 	inode = btrfs_iget_path(location.objectid, root, path);
120 	btrfs_release_path(path);
121 	memalloc_nofs_restore(nofs_flag);
122 	if (IS_ERR(inode))
123 		return inode;
124 
125 	mapping_set_gfp_mask(inode->i_mapping,
126 			mapping_gfp_constraint(inode->i_mapping,
127 			~(__GFP_FS | __GFP_HIGHMEM)));
128 
129 	return inode;
130 }
131 
132 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
133 		struct btrfs_path *path)
134 {
135 	struct btrfs_fs_info *fs_info = block_group->fs_info;
136 	struct inode *inode = NULL;
137 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138 
139 	spin_lock(&block_group->lock);
140 	if (block_group->inode)
141 		inode = igrab(&block_group->inode->vfs_inode);
142 	spin_unlock(&block_group->lock);
143 	if (inode)
144 		return inode;
145 
146 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
147 					  block_group->start);
148 	if (IS_ERR(inode))
149 		return inode;
150 
151 	spin_lock(&block_group->lock);
152 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
153 		btrfs_info(fs_info, "Old style space inode found, converting.");
154 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
155 			BTRFS_INODE_NODATACOW;
156 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
157 	}
158 
159 	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
160 		block_group->inode = BTRFS_I(igrab(inode));
161 	spin_unlock(&block_group->lock);
162 
163 	return inode;
164 }
165 
166 static int __create_free_space_inode(struct btrfs_root *root,
167 				     struct btrfs_trans_handle *trans,
168 				     struct btrfs_path *path,
169 				     u64 ino, u64 offset)
170 {
171 	struct btrfs_key key;
172 	struct btrfs_disk_key disk_key;
173 	struct btrfs_free_space_header *header;
174 	struct btrfs_inode_item *inode_item;
175 	struct extent_buffer *leaf;
176 	/* We inline CRCs for the free disk space cache */
177 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
178 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
179 	int ret;
180 
181 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
182 	if (ret)
183 		return ret;
184 
185 	leaf = path->nodes[0];
186 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
187 				    struct btrfs_inode_item);
188 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
189 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
190 			     sizeof(*inode_item));
191 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
192 	btrfs_set_inode_size(leaf, inode_item, 0);
193 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
194 	btrfs_set_inode_uid(leaf, inode_item, 0);
195 	btrfs_set_inode_gid(leaf, inode_item, 0);
196 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
197 	btrfs_set_inode_flags(leaf, inode_item, flags);
198 	btrfs_set_inode_nlink(leaf, inode_item, 1);
199 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
200 	btrfs_set_inode_block_group(leaf, inode_item, offset);
201 	btrfs_mark_buffer_dirty(trans, leaf);
202 	btrfs_release_path(path);
203 
204 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
205 	key.offset = offset;
206 	key.type = 0;
207 	ret = btrfs_insert_empty_item(trans, root, path, &key,
208 				      sizeof(struct btrfs_free_space_header));
209 	if (ret < 0) {
210 		btrfs_release_path(path);
211 		return ret;
212 	}
213 
214 	leaf = path->nodes[0];
215 	header = btrfs_item_ptr(leaf, path->slots[0],
216 				struct btrfs_free_space_header);
217 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
218 	btrfs_set_free_space_key(leaf, header, &disk_key);
219 	btrfs_mark_buffer_dirty(trans, leaf);
220 	btrfs_release_path(path);
221 
222 	return 0;
223 }
224 
225 int create_free_space_inode(struct btrfs_trans_handle *trans,
226 			    struct btrfs_block_group *block_group,
227 			    struct btrfs_path *path)
228 {
229 	int ret;
230 	u64 ino;
231 
232 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
233 	if (ret < 0)
234 		return ret;
235 
236 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
237 					 ino, block_group->start);
238 }
239 
240 /*
241  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
242  * handles lookup, otherwise it takes ownership and iputs the inode.
243  * Don't reuse an inode pointer after passing it into this function.
244  */
245 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
246 				  struct inode *inode,
247 				  struct btrfs_block_group *block_group)
248 {
249 	struct btrfs_path *path;
250 	struct btrfs_key key;
251 	int ret = 0;
252 
253 	path = btrfs_alloc_path();
254 	if (!path)
255 		return -ENOMEM;
256 
257 	if (!inode)
258 		inode = lookup_free_space_inode(block_group, path);
259 	if (IS_ERR(inode)) {
260 		if (PTR_ERR(inode) != -ENOENT)
261 			ret = PTR_ERR(inode);
262 		goto out;
263 	}
264 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
265 	if (ret) {
266 		btrfs_add_delayed_iput(BTRFS_I(inode));
267 		goto out;
268 	}
269 	clear_nlink(inode);
270 	/* One for the block groups ref */
271 	spin_lock(&block_group->lock);
272 	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
273 		block_group->inode = NULL;
274 		spin_unlock(&block_group->lock);
275 		iput(inode);
276 	} else {
277 		spin_unlock(&block_group->lock);
278 	}
279 	/* One for the lookup ref */
280 	btrfs_add_delayed_iput(BTRFS_I(inode));
281 
282 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
283 	key.type = 0;
284 	key.offset = block_group->start;
285 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
286 				-1, 1);
287 	if (ret) {
288 		if (ret > 0)
289 			ret = 0;
290 		goto out;
291 	}
292 	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
293 out:
294 	btrfs_free_path(path);
295 	return ret;
296 }
297 
298 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
299 				    struct btrfs_block_group *block_group,
300 				    struct inode *vfs_inode)
301 {
302 	struct btrfs_truncate_control control = {
303 		.inode = BTRFS_I(vfs_inode),
304 		.new_size = 0,
305 		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
306 		.min_type = BTRFS_EXTENT_DATA_KEY,
307 		.clear_extent_range = true,
308 	};
309 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
310 	struct btrfs_root *root = inode->root;
311 	struct extent_state *cached_state = NULL;
312 	int ret = 0;
313 	bool locked = false;
314 
315 	if (block_group) {
316 		struct btrfs_path *path = btrfs_alloc_path();
317 
318 		if (!path) {
319 			ret = -ENOMEM;
320 			goto fail;
321 		}
322 		locked = true;
323 		mutex_lock(&trans->transaction->cache_write_mutex);
324 		if (!list_empty(&block_group->io_list)) {
325 			list_del_init(&block_group->io_list);
326 
327 			btrfs_wait_cache_io(trans, block_group, path);
328 			btrfs_put_block_group(block_group);
329 		}
330 
331 		/*
332 		 * now that we've truncated the cache away, its no longer
333 		 * setup or written
334 		 */
335 		spin_lock(&block_group->lock);
336 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
337 		spin_unlock(&block_group->lock);
338 		btrfs_free_path(path);
339 	}
340 
341 	btrfs_i_size_write(inode, 0);
342 	truncate_pagecache(vfs_inode, 0);
343 
344 	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
345 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
346 
347 	/*
348 	 * We skip the throttling logic for free space cache inodes, so we don't
349 	 * need to check for -EAGAIN.
350 	 */
351 	ret = btrfs_truncate_inode_items(trans, root, &control);
352 
353 	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
354 	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
355 
356 	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
357 	if (ret)
358 		goto fail;
359 
360 	ret = btrfs_update_inode(trans, inode);
361 
362 fail:
363 	if (locked)
364 		mutex_unlock(&trans->transaction->cache_write_mutex);
365 	if (ret)
366 		btrfs_abort_transaction(trans, ret);
367 
368 	return ret;
369 }
370 
371 static void readahead_cache(struct inode *inode)
372 {
373 	struct file_ra_state ra;
374 	unsigned long last_index;
375 
376 	file_ra_state_init(&ra, inode->i_mapping);
377 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
378 
379 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
380 }
381 
382 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
383 		       int write)
384 {
385 	int num_pages;
386 
387 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
388 
389 	/* Make sure we can fit our crcs and generation into the first page */
390 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
391 		return -ENOSPC;
392 
393 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
394 
395 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
396 	if (!io_ctl->pages)
397 		return -ENOMEM;
398 
399 	io_ctl->num_pages = num_pages;
400 	io_ctl->fs_info = inode_to_fs_info(inode);
401 	io_ctl->inode = inode;
402 
403 	return 0;
404 }
405 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
406 
407 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
408 {
409 	kfree(io_ctl->pages);
410 	io_ctl->pages = NULL;
411 }
412 
413 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
414 {
415 	if (io_ctl->cur) {
416 		io_ctl->cur = NULL;
417 		io_ctl->orig = NULL;
418 	}
419 }
420 
421 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
422 {
423 	ASSERT(io_ctl->index < io_ctl->num_pages);
424 	io_ctl->page = io_ctl->pages[io_ctl->index++];
425 	io_ctl->cur = page_address(io_ctl->page);
426 	io_ctl->orig = io_ctl->cur;
427 	io_ctl->size = PAGE_SIZE;
428 	if (clear)
429 		clear_page(io_ctl->cur);
430 }
431 
432 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
433 {
434 	int i;
435 
436 	io_ctl_unmap_page(io_ctl);
437 
438 	for (i = 0; i < io_ctl->num_pages; i++) {
439 		if (io_ctl->pages[i]) {
440 			btrfs_folio_clear_checked(io_ctl->fs_info,
441 					page_folio(io_ctl->pages[i]),
442 					page_offset(io_ctl->pages[i]),
443 					PAGE_SIZE);
444 			unlock_page(io_ctl->pages[i]);
445 			put_page(io_ctl->pages[i]);
446 		}
447 	}
448 }
449 
450 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
451 {
452 	struct page *page;
453 	struct inode *inode = io_ctl->inode;
454 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
455 	int i;
456 
457 	for (i = 0; i < io_ctl->num_pages; i++) {
458 		int ret;
459 
460 		page = find_or_create_page(inode->i_mapping, i, mask);
461 		if (!page) {
462 			io_ctl_drop_pages(io_ctl);
463 			return -ENOMEM;
464 		}
465 
466 		ret = set_page_extent_mapped(page);
467 		if (ret < 0) {
468 			unlock_page(page);
469 			put_page(page);
470 			io_ctl_drop_pages(io_ctl);
471 			return ret;
472 		}
473 
474 		io_ctl->pages[i] = page;
475 		if (uptodate && !PageUptodate(page)) {
476 			btrfs_read_folio(NULL, page_folio(page));
477 			lock_page(page);
478 			if (page->mapping != inode->i_mapping) {
479 				btrfs_err(BTRFS_I(inode)->root->fs_info,
480 					  "free space cache page truncated");
481 				io_ctl_drop_pages(io_ctl);
482 				return -EIO;
483 			}
484 			if (!PageUptodate(page)) {
485 				btrfs_err(BTRFS_I(inode)->root->fs_info,
486 					   "error reading free space cache");
487 				io_ctl_drop_pages(io_ctl);
488 				return -EIO;
489 			}
490 		}
491 	}
492 
493 	for (i = 0; i < io_ctl->num_pages; i++)
494 		clear_page_dirty_for_io(io_ctl->pages[i]);
495 
496 	return 0;
497 }
498 
499 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
500 {
501 	io_ctl_map_page(io_ctl, 1);
502 
503 	/*
504 	 * Skip the csum areas.  If we don't check crcs then we just have a
505 	 * 64bit chunk at the front of the first page.
506 	 */
507 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
508 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
509 
510 	put_unaligned_le64(generation, io_ctl->cur);
511 	io_ctl->cur += sizeof(u64);
512 }
513 
514 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
515 {
516 	u64 cache_gen;
517 
518 	/*
519 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
520 	 * chunk at the front of the first page.
521 	 */
522 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
523 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
524 
525 	cache_gen = get_unaligned_le64(io_ctl->cur);
526 	if (cache_gen != generation) {
527 		btrfs_err_rl(io_ctl->fs_info,
528 			"space cache generation (%llu) does not match inode (%llu)",
529 				cache_gen, generation);
530 		io_ctl_unmap_page(io_ctl);
531 		return -EIO;
532 	}
533 	io_ctl->cur += sizeof(u64);
534 	return 0;
535 }
536 
537 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
538 {
539 	u32 *tmp;
540 	u32 crc = ~(u32)0;
541 	unsigned offset = 0;
542 
543 	if (index == 0)
544 		offset = sizeof(u32) * io_ctl->num_pages;
545 
546 	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
547 	btrfs_crc32c_final(crc, (u8 *)&crc);
548 	io_ctl_unmap_page(io_ctl);
549 	tmp = page_address(io_ctl->pages[0]);
550 	tmp += index;
551 	*tmp = crc;
552 }
553 
554 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
555 {
556 	u32 *tmp, val;
557 	u32 crc = ~(u32)0;
558 	unsigned offset = 0;
559 
560 	if (index == 0)
561 		offset = sizeof(u32) * io_ctl->num_pages;
562 
563 	tmp = page_address(io_ctl->pages[0]);
564 	tmp += index;
565 	val = *tmp;
566 
567 	io_ctl_map_page(io_ctl, 0);
568 	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
569 	btrfs_crc32c_final(crc, (u8 *)&crc);
570 	if (val != crc) {
571 		btrfs_err_rl(io_ctl->fs_info,
572 			"csum mismatch on free space cache");
573 		io_ctl_unmap_page(io_ctl);
574 		return -EIO;
575 	}
576 
577 	return 0;
578 }
579 
580 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
581 			    void *bitmap)
582 {
583 	struct btrfs_free_space_entry *entry;
584 
585 	if (!io_ctl->cur)
586 		return -ENOSPC;
587 
588 	entry = io_ctl->cur;
589 	put_unaligned_le64(offset, &entry->offset);
590 	put_unaligned_le64(bytes, &entry->bytes);
591 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
592 		BTRFS_FREE_SPACE_EXTENT;
593 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
594 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
595 
596 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
597 		return 0;
598 
599 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
600 
601 	/* No more pages to map */
602 	if (io_ctl->index >= io_ctl->num_pages)
603 		return 0;
604 
605 	/* map the next page */
606 	io_ctl_map_page(io_ctl, 1);
607 	return 0;
608 }
609 
610 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
611 {
612 	if (!io_ctl->cur)
613 		return -ENOSPC;
614 
615 	/*
616 	 * If we aren't at the start of the current page, unmap this one and
617 	 * map the next one if there is any left.
618 	 */
619 	if (io_ctl->cur != io_ctl->orig) {
620 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
621 		if (io_ctl->index >= io_ctl->num_pages)
622 			return -ENOSPC;
623 		io_ctl_map_page(io_ctl, 0);
624 	}
625 
626 	copy_page(io_ctl->cur, bitmap);
627 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
628 	if (io_ctl->index < io_ctl->num_pages)
629 		io_ctl_map_page(io_ctl, 0);
630 	return 0;
631 }
632 
633 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
634 {
635 	/*
636 	 * If we're not on the boundary we know we've modified the page and we
637 	 * need to crc the page.
638 	 */
639 	if (io_ctl->cur != io_ctl->orig)
640 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
641 	else
642 		io_ctl_unmap_page(io_ctl);
643 
644 	while (io_ctl->index < io_ctl->num_pages) {
645 		io_ctl_map_page(io_ctl, 1);
646 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
647 	}
648 }
649 
650 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
651 			    struct btrfs_free_space *entry, u8 *type)
652 {
653 	struct btrfs_free_space_entry *e;
654 	int ret;
655 
656 	if (!io_ctl->cur) {
657 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
658 		if (ret)
659 			return ret;
660 	}
661 
662 	e = io_ctl->cur;
663 	entry->offset = get_unaligned_le64(&e->offset);
664 	entry->bytes = get_unaligned_le64(&e->bytes);
665 	*type = e->type;
666 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
667 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
668 
669 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
670 		return 0;
671 
672 	io_ctl_unmap_page(io_ctl);
673 
674 	return 0;
675 }
676 
677 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
678 			      struct btrfs_free_space *entry)
679 {
680 	int ret;
681 
682 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
683 	if (ret)
684 		return ret;
685 
686 	copy_page(entry->bitmap, io_ctl->cur);
687 	io_ctl_unmap_page(io_ctl);
688 
689 	return 0;
690 }
691 
692 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
693 {
694 	struct btrfs_block_group *block_group = ctl->block_group;
695 	u64 max_bytes;
696 	u64 bitmap_bytes;
697 	u64 extent_bytes;
698 	u64 size = block_group->length;
699 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
700 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
701 
702 	max_bitmaps = max_t(u64, max_bitmaps, 1);
703 
704 	if (ctl->total_bitmaps > max_bitmaps)
705 		btrfs_err(block_group->fs_info,
706 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
707 			  block_group->start, block_group->length,
708 			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
709 			  bytes_per_bg);
710 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
711 
712 	/*
713 	 * We are trying to keep the total amount of memory used per 1GiB of
714 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
715 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
716 	 * bitmaps, we may end up using more memory than this.
717 	 */
718 	if (size < SZ_1G)
719 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
720 	else
721 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
722 
723 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
724 
725 	/*
726 	 * we want the extent entry threshold to always be at most 1/2 the max
727 	 * bytes we can have, or whatever is less than that.
728 	 */
729 	extent_bytes = max_bytes - bitmap_bytes;
730 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
731 
732 	ctl->extents_thresh =
733 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
734 }
735 
736 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
737 				   struct btrfs_free_space_ctl *ctl,
738 				   struct btrfs_path *path, u64 offset)
739 {
740 	struct btrfs_fs_info *fs_info = root->fs_info;
741 	struct btrfs_free_space_header *header;
742 	struct extent_buffer *leaf;
743 	struct btrfs_io_ctl io_ctl;
744 	struct btrfs_key key;
745 	struct btrfs_free_space *e, *n;
746 	LIST_HEAD(bitmaps);
747 	u64 num_entries;
748 	u64 num_bitmaps;
749 	u64 generation;
750 	u8 type;
751 	int ret = 0;
752 
753 	/* Nothing in the space cache, goodbye */
754 	if (!i_size_read(inode))
755 		return 0;
756 
757 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
758 	key.offset = offset;
759 	key.type = 0;
760 
761 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
762 	if (ret < 0)
763 		return 0;
764 	else if (ret > 0) {
765 		btrfs_release_path(path);
766 		return 0;
767 	}
768 
769 	ret = -1;
770 
771 	leaf = path->nodes[0];
772 	header = btrfs_item_ptr(leaf, path->slots[0],
773 				struct btrfs_free_space_header);
774 	num_entries = btrfs_free_space_entries(leaf, header);
775 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
776 	generation = btrfs_free_space_generation(leaf, header);
777 	btrfs_release_path(path);
778 
779 	if (!BTRFS_I(inode)->generation) {
780 		btrfs_info(fs_info,
781 			   "the free space cache file (%llu) is invalid, skip it",
782 			   offset);
783 		return 0;
784 	}
785 
786 	if (BTRFS_I(inode)->generation != generation) {
787 		btrfs_err(fs_info,
788 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
789 			  BTRFS_I(inode)->generation, generation);
790 		return 0;
791 	}
792 
793 	if (!num_entries)
794 		return 0;
795 
796 	ret = io_ctl_init(&io_ctl, inode, 0);
797 	if (ret)
798 		return ret;
799 
800 	readahead_cache(inode);
801 
802 	ret = io_ctl_prepare_pages(&io_ctl, true);
803 	if (ret)
804 		goto out;
805 
806 	ret = io_ctl_check_crc(&io_ctl, 0);
807 	if (ret)
808 		goto free_cache;
809 
810 	ret = io_ctl_check_generation(&io_ctl, generation);
811 	if (ret)
812 		goto free_cache;
813 
814 	while (num_entries) {
815 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
816 				      GFP_NOFS);
817 		if (!e) {
818 			ret = -ENOMEM;
819 			goto free_cache;
820 		}
821 
822 		ret = io_ctl_read_entry(&io_ctl, e, &type);
823 		if (ret) {
824 			kmem_cache_free(btrfs_free_space_cachep, e);
825 			goto free_cache;
826 		}
827 
828 		if (!e->bytes) {
829 			ret = -1;
830 			kmem_cache_free(btrfs_free_space_cachep, e);
831 			goto free_cache;
832 		}
833 
834 		if (type == BTRFS_FREE_SPACE_EXTENT) {
835 			spin_lock(&ctl->tree_lock);
836 			ret = link_free_space(ctl, e);
837 			spin_unlock(&ctl->tree_lock);
838 			if (ret) {
839 				btrfs_err(fs_info,
840 					"Duplicate entries in free space cache, dumping");
841 				kmem_cache_free(btrfs_free_space_cachep, e);
842 				goto free_cache;
843 			}
844 		} else {
845 			ASSERT(num_bitmaps);
846 			num_bitmaps--;
847 			e->bitmap = kmem_cache_zalloc(
848 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
849 			if (!e->bitmap) {
850 				ret = -ENOMEM;
851 				kmem_cache_free(
852 					btrfs_free_space_cachep, e);
853 				goto free_cache;
854 			}
855 			spin_lock(&ctl->tree_lock);
856 			ret = link_free_space(ctl, e);
857 			if (ret) {
858 				spin_unlock(&ctl->tree_lock);
859 				btrfs_err(fs_info,
860 					"Duplicate entries in free space cache, dumping");
861 				kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
862 				kmem_cache_free(btrfs_free_space_cachep, e);
863 				goto free_cache;
864 			}
865 			ctl->total_bitmaps++;
866 			recalculate_thresholds(ctl);
867 			spin_unlock(&ctl->tree_lock);
868 			list_add_tail(&e->list, &bitmaps);
869 		}
870 
871 		num_entries--;
872 	}
873 
874 	io_ctl_unmap_page(&io_ctl);
875 
876 	/*
877 	 * We add the bitmaps at the end of the entries in order that
878 	 * the bitmap entries are added to the cache.
879 	 */
880 	list_for_each_entry_safe(e, n, &bitmaps, list) {
881 		list_del_init(&e->list);
882 		ret = io_ctl_read_bitmap(&io_ctl, e);
883 		if (ret)
884 			goto free_cache;
885 	}
886 
887 	io_ctl_drop_pages(&io_ctl);
888 	ret = 1;
889 out:
890 	io_ctl_free(&io_ctl);
891 	return ret;
892 free_cache:
893 	io_ctl_drop_pages(&io_ctl);
894 
895 	spin_lock(&ctl->tree_lock);
896 	__btrfs_remove_free_space_cache(ctl);
897 	spin_unlock(&ctl->tree_lock);
898 	goto out;
899 }
900 
901 static int copy_free_space_cache(struct btrfs_block_group *block_group,
902 				 struct btrfs_free_space_ctl *ctl)
903 {
904 	struct btrfs_free_space *info;
905 	struct rb_node *n;
906 	int ret = 0;
907 
908 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
909 		info = rb_entry(n, struct btrfs_free_space, offset_index);
910 		if (!info->bitmap) {
911 			const u64 offset = info->offset;
912 			const u64 bytes = info->bytes;
913 
914 			unlink_free_space(ctl, info, true);
915 			spin_unlock(&ctl->tree_lock);
916 			kmem_cache_free(btrfs_free_space_cachep, info);
917 			ret = btrfs_add_free_space(block_group, offset, bytes);
918 			spin_lock(&ctl->tree_lock);
919 		} else {
920 			u64 offset = info->offset;
921 			u64 bytes = ctl->unit;
922 
923 			ret = search_bitmap(ctl, info, &offset, &bytes, false);
924 			if (ret == 0) {
925 				bitmap_clear_bits(ctl, info, offset, bytes, true);
926 				spin_unlock(&ctl->tree_lock);
927 				ret = btrfs_add_free_space(block_group, offset,
928 							   bytes);
929 				spin_lock(&ctl->tree_lock);
930 			} else {
931 				free_bitmap(ctl, info);
932 				ret = 0;
933 			}
934 		}
935 		cond_resched_lock(&ctl->tree_lock);
936 	}
937 	return ret;
938 }
939 
940 static struct lock_class_key btrfs_free_space_inode_key;
941 
942 int load_free_space_cache(struct btrfs_block_group *block_group)
943 {
944 	struct btrfs_fs_info *fs_info = block_group->fs_info;
945 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
946 	struct btrfs_free_space_ctl tmp_ctl = {};
947 	struct inode *inode;
948 	struct btrfs_path *path;
949 	int ret = 0;
950 	bool matched;
951 	u64 used = block_group->used;
952 
953 	/*
954 	 * Because we could potentially discard our loaded free space, we want
955 	 * to load everything into a temporary structure first, and then if it's
956 	 * valid copy it all into the actual free space ctl.
957 	 */
958 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
959 
960 	/*
961 	 * If this block group has been marked to be cleared for one reason or
962 	 * another then we can't trust the on disk cache, so just return.
963 	 */
964 	spin_lock(&block_group->lock);
965 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
966 		spin_unlock(&block_group->lock);
967 		return 0;
968 	}
969 	spin_unlock(&block_group->lock);
970 
971 	path = btrfs_alloc_path();
972 	if (!path)
973 		return 0;
974 	path->search_commit_root = 1;
975 	path->skip_locking = 1;
976 
977 	/*
978 	 * We must pass a path with search_commit_root set to btrfs_iget in
979 	 * order to avoid a deadlock when allocating extents for the tree root.
980 	 *
981 	 * When we are COWing an extent buffer from the tree root, when looking
982 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
983 	 * block group without its free space cache loaded. When we find one
984 	 * we must load its space cache which requires reading its free space
985 	 * cache's inode item from the root tree. If this inode item is located
986 	 * in the same leaf that we started COWing before, then we end up in
987 	 * deadlock on the extent buffer (trying to read lock it when we
988 	 * previously write locked it).
989 	 *
990 	 * It's safe to read the inode item using the commit root because
991 	 * block groups, once loaded, stay in memory forever (until they are
992 	 * removed) as well as their space caches once loaded. New block groups
993 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
994 	 * we will never try to read their inode item while the fs is mounted.
995 	 */
996 	inode = lookup_free_space_inode(block_group, path);
997 	if (IS_ERR(inode)) {
998 		btrfs_free_path(path);
999 		return 0;
1000 	}
1001 
1002 	/* We may have converted the inode and made the cache invalid. */
1003 	spin_lock(&block_group->lock);
1004 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1005 		spin_unlock(&block_group->lock);
1006 		btrfs_free_path(path);
1007 		goto out;
1008 	}
1009 	spin_unlock(&block_group->lock);
1010 
1011 	/*
1012 	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1013 	 * free space inodes to prevent false positives related to locks for normal
1014 	 * inodes.
1015 	 */
1016 	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1017 			  &btrfs_free_space_inode_key);
1018 
1019 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1020 				      path, block_group->start);
1021 	btrfs_free_path(path);
1022 	if (ret <= 0)
1023 		goto out;
1024 
1025 	matched = (tmp_ctl.free_space == (block_group->length - used -
1026 					  block_group->bytes_super));
1027 
1028 	if (matched) {
1029 		spin_lock(&tmp_ctl.tree_lock);
1030 		ret = copy_free_space_cache(block_group, &tmp_ctl);
1031 		spin_unlock(&tmp_ctl.tree_lock);
1032 		/*
1033 		 * ret == 1 means we successfully loaded the free space cache,
1034 		 * so we need to re-set it here.
1035 		 */
1036 		if (ret == 0)
1037 			ret = 1;
1038 	} else {
1039 		/*
1040 		 * We need to call the _locked variant so we don't try to update
1041 		 * the discard counters.
1042 		 */
1043 		spin_lock(&tmp_ctl.tree_lock);
1044 		__btrfs_remove_free_space_cache(&tmp_ctl);
1045 		spin_unlock(&tmp_ctl.tree_lock);
1046 		btrfs_warn(fs_info,
1047 			   "block group %llu has wrong amount of free space",
1048 			   block_group->start);
1049 		ret = -1;
1050 	}
1051 out:
1052 	if (ret < 0) {
1053 		/* This cache is bogus, make sure it gets cleared */
1054 		spin_lock(&block_group->lock);
1055 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1056 		spin_unlock(&block_group->lock);
1057 		ret = 0;
1058 
1059 		btrfs_warn(fs_info,
1060 			   "failed to load free space cache for block group %llu, rebuilding it now",
1061 			   block_group->start);
1062 	}
1063 
1064 	spin_lock(&ctl->tree_lock);
1065 	btrfs_discard_update_discardable(block_group);
1066 	spin_unlock(&ctl->tree_lock);
1067 	iput(inode);
1068 	return ret;
1069 }
1070 
1071 static noinline_for_stack
1072 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1073 			      struct btrfs_free_space_ctl *ctl,
1074 			      struct btrfs_block_group *block_group,
1075 			      int *entries, int *bitmaps,
1076 			      struct list_head *bitmap_list)
1077 {
1078 	int ret;
1079 	struct btrfs_free_cluster *cluster = NULL;
1080 	struct btrfs_free_cluster *cluster_locked = NULL;
1081 	struct rb_node *node = rb_first(&ctl->free_space_offset);
1082 	struct btrfs_trim_range *trim_entry;
1083 
1084 	/* Get the cluster for this block_group if it exists */
1085 	if (block_group && !list_empty(&block_group->cluster_list)) {
1086 		cluster = list_entry(block_group->cluster_list.next,
1087 				     struct btrfs_free_cluster,
1088 				     block_group_list);
1089 	}
1090 
1091 	if (!node && cluster) {
1092 		cluster_locked = cluster;
1093 		spin_lock(&cluster_locked->lock);
1094 		node = rb_first(&cluster->root);
1095 		cluster = NULL;
1096 	}
1097 
1098 	/* Write out the extent entries */
1099 	while (node) {
1100 		struct btrfs_free_space *e;
1101 
1102 		e = rb_entry(node, struct btrfs_free_space, offset_index);
1103 		*entries += 1;
1104 
1105 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1106 				       e->bitmap);
1107 		if (ret)
1108 			goto fail;
1109 
1110 		if (e->bitmap) {
1111 			list_add_tail(&e->list, bitmap_list);
1112 			*bitmaps += 1;
1113 		}
1114 		node = rb_next(node);
1115 		if (!node && cluster) {
1116 			node = rb_first(&cluster->root);
1117 			cluster_locked = cluster;
1118 			spin_lock(&cluster_locked->lock);
1119 			cluster = NULL;
1120 		}
1121 	}
1122 	if (cluster_locked) {
1123 		spin_unlock(&cluster_locked->lock);
1124 		cluster_locked = NULL;
1125 	}
1126 
1127 	/*
1128 	 * Make sure we don't miss any range that was removed from our rbtree
1129 	 * because trimming is running. Otherwise after a umount+mount (or crash
1130 	 * after committing the transaction) we would leak free space and get
1131 	 * an inconsistent free space cache report from fsck.
1132 	 */
1133 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1134 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1135 				       trim_entry->bytes, NULL);
1136 		if (ret)
1137 			goto fail;
1138 		*entries += 1;
1139 	}
1140 
1141 	return 0;
1142 fail:
1143 	if (cluster_locked)
1144 		spin_unlock(&cluster_locked->lock);
1145 	return -ENOSPC;
1146 }
1147 
1148 static noinline_for_stack int
1149 update_cache_item(struct btrfs_trans_handle *trans,
1150 		  struct btrfs_root *root,
1151 		  struct inode *inode,
1152 		  struct btrfs_path *path, u64 offset,
1153 		  int entries, int bitmaps)
1154 {
1155 	struct btrfs_key key;
1156 	struct btrfs_free_space_header *header;
1157 	struct extent_buffer *leaf;
1158 	int ret;
1159 
1160 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1161 	key.offset = offset;
1162 	key.type = 0;
1163 
1164 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1165 	if (ret < 0) {
1166 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1167 				 EXTENT_DELALLOC, NULL);
1168 		goto fail;
1169 	}
1170 	leaf = path->nodes[0];
1171 	if (ret > 0) {
1172 		struct btrfs_key found_key;
1173 		ASSERT(path->slots[0]);
1174 		path->slots[0]--;
1175 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1176 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1177 		    found_key.offset != offset) {
1178 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1179 					 inode->i_size - 1, EXTENT_DELALLOC,
1180 					 NULL);
1181 			btrfs_release_path(path);
1182 			goto fail;
1183 		}
1184 	}
1185 
1186 	BTRFS_I(inode)->generation = trans->transid;
1187 	header = btrfs_item_ptr(leaf, path->slots[0],
1188 				struct btrfs_free_space_header);
1189 	btrfs_set_free_space_entries(leaf, header, entries);
1190 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1191 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1192 	btrfs_mark_buffer_dirty(trans, leaf);
1193 	btrfs_release_path(path);
1194 
1195 	return 0;
1196 
1197 fail:
1198 	return -1;
1199 }
1200 
1201 static noinline_for_stack int write_pinned_extent_entries(
1202 			    struct btrfs_trans_handle *trans,
1203 			    struct btrfs_block_group *block_group,
1204 			    struct btrfs_io_ctl *io_ctl,
1205 			    int *entries)
1206 {
1207 	u64 start, extent_start, extent_end, len;
1208 	struct extent_io_tree *unpin = NULL;
1209 	int ret;
1210 
1211 	if (!block_group)
1212 		return 0;
1213 
1214 	/*
1215 	 * We want to add any pinned extents to our free space cache
1216 	 * so we don't leak the space
1217 	 *
1218 	 * We shouldn't have switched the pinned extents yet so this is the
1219 	 * right one
1220 	 */
1221 	unpin = &trans->transaction->pinned_extents;
1222 
1223 	start = block_group->start;
1224 
1225 	while (start < block_group->start + block_group->length) {
1226 		if (!find_first_extent_bit(unpin, start,
1227 					   &extent_start, &extent_end,
1228 					   EXTENT_DIRTY, NULL))
1229 			return 0;
1230 
1231 		/* This pinned extent is out of our range */
1232 		if (extent_start >= block_group->start + block_group->length)
1233 			return 0;
1234 
1235 		extent_start = max(extent_start, start);
1236 		extent_end = min(block_group->start + block_group->length,
1237 				 extent_end + 1);
1238 		len = extent_end - extent_start;
1239 
1240 		*entries += 1;
1241 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1242 		if (ret)
1243 			return -ENOSPC;
1244 
1245 		start = extent_end;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 static noinline_for_stack int
1252 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1253 {
1254 	struct btrfs_free_space *entry, *next;
1255 	int ret;
1256 
1257 	/* Write out the bitmaps */
1258 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1259 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1260 		if (ret)
1261 			return -ENOSPC;
1262 		list_del_init(&entry->list);
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 static int flush_dirty_cache(struct inode *inode)
1269 {
1270 	int ret;
1271 
1272 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
1273 	if (ret)
1274 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1275 				 EXTENT_DELALLOC, NULL);
1276 
1277 	return ret;
1278 }
1279 
1280 static void noinline_for_stack
1281 cleanup_bitmap_list(struct list_head *bitmap_list)
1282 {
1283 	struct btrfs_free_space *entry, *next;
1284 
1285 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1286 		list_del_init(&entry->list);
1287 }
1288 
1289 static void noinline_for_stack
1290 cleanup_write_cache_enospc(struct inode *inode,
1291 			   struct btrfs_io_ctl *io_ctl,
1292 			   struct extent_state **cached_state)
1293 {
1294 	io_ctl_drop_pages(io_ctl);
1295 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1296 		      cached_state);
1297 }
1298 
1299 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1300 				 struct btrfs_trans_handle *trans,
1301 				 struct btrfs_block_group *block_group,
1302 				 struct btrfs_io_ctl *io_ctl,
1303 				 struct btrfs_path *path, u64 offset)
1304 {
1305 	int ret;
1306 	struct inode *inode = io_ctl->inode;
1307 
1308 	if (!inode)
1309 		return 0;
1310 
1311 	/* Flush the dirty pages in the cache file. */
1312 	ret = flush_dirty_cache(inode);
1313 	if (ret)
1314 		goto out;
1315 
1316 	/* Update the cache item to tell everyone this cache file is valid. */
1317 	ret = update_cache_item(trans, root, inode, path, offset,
1318 				io_ctl->entries, io_ctl->bitmaps);
1319 out:
1320 	if (ret) {
1321 		invalidate_inode_pages2(inode->i_mapping);
1322 		BTRFS_I(inode)->generation = 0;
1323 		if (block_group)
1324 			btrfs_debug(root->fs_info,
1325 	  "failed to write free space cache for block group %llu error %d",
1326 				  block_group->start, ret);
1327 	}
1328 	btrfs_update_inode(trans, BTRFS_I(inode));
1329 
1330 	if (block_group) {
1331 		/* the dirty list is protected by the dirty_bgs_lock */
1332 		spin_lock(&trans->transaction->dirty_bgs_lock);
1333 
1334 		/* the disk_cache_state is protected by the block group lock */
1335 		spin_lock(&block_group->lock);
1336 
1337 		/*
1338 		 * only mark this as written if we didn't get put back on
1339 		 * the dirty list while waiting for IO.   Otherwise our
1340 		 * cache state won't be right, and we won't get written again
1341 		 */
1342 		if (!ret && list_empty(&block_group->dirty_list))
1343 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1344 		else if (ret)
1345 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1346 
1347 		spin_unlock(&block_group->lock);
1348 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1349 		io_ctl->inode = NULL;
1350 		iput(inode);
1351 	}
1352 
1353 	return ret;
1354 
1355 }
1356 
1357 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1358 			struct btrfs_block_group *block_group,
1359 			struct btrfs_path *path)
1360 {
1361 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1362 				     block_group, &block_group->io_ctl,
1363 				     path, block_group->start);
1364 }
1365 
1366 /*
1367  * Write out cached info to an inode.
1368  *
1369  * @inode:       freespace inode we are writing out
1370  * @ctl:         free space cache we are going to write out
1371  * @block_group: block_group for this cache if it belongs to a block_group
1372  * @io_ctl:      holds context for the io
1373  * @trans:       the trans handle
1374  *
1375  * This function writes out a free space cache struct to disk for quick recovery
1376  * on mount.  This will return 0 if it was successful in writing the cache out,
1377  * or an errno if it was not.
1378  */
1379 static int __btrfs_write_out_cache(struct inode *inode,
1380 				   struct btrfs_free_space_ctl *ctl,
1381 				   struct btrfs_block_group *block_group,
1382 				   struct btrfs_io_ctl *io_ctl,
1383 				   struct btrfs_trans_handle *trans)
1384 {
1385 	struct extent_state *cached_state = NULL;
1386 	LIST_HEAD(bitmap_list);
1387 	int entries = 0;
1388 	int bitmaps = 0;
1389 	int ret;
1390 	int must_iput = 0;
1391 	int i_size;
1392 
1393 	if (!i_size_read(inode))
1394 		return -EIO;
1395 
1396 	WARN_ON(io_ctl->pages);
1397 	ret = io_ctl_init(io_ctl, inode, 1);
1398 	if (ret)
1399 		return ret;
1400 
1401 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1402 		down_write(&block_group->data_rwsem);
1403 		spin_lock(&block_group->lock);
1404 		if (block_group->delalloc_bytes) {
1405 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1406 			spin_unlock(&block_group->lock);
1407 			up_write(&block_group->data_rwsem);
1408 			BTRFS_I(inode)->generation = 0;
1409 			ret = 0;
1410 			must_iput = 1;
1411 			goto out;
1412 		}
1413 		spin_unlock(&block_group->lock);
1414 	}
1415 
1416 	/* Lock all pages first so we can lock the extent safely. */
1417 	ret = io_ctl_prepare_pages(io_ctl, false);
1418 	if (ret)
1419 		goto out_unlock;
1420 
1421 	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1422 		    &cached_state);
1423 
1424 	io_ctl_set_generation(io_ctl, trans->transid);
1425 
1426 	mutex_lock(&ctl->cache_writeout_mutex);
1427 	/* Write out the extent entries in the free space cache */
1428 	spin_lock(&ctl->tree_lock);
1429 	ret = write_cache_extent_entries(io_ctl, ctl,
1430 					 block_group, &entries, &bitmaps,
1431 					 &bitmap_list);
1432 	if (ret)
1433 		goto out_nospc_locked;
1434 
1435 	/*
1436 	 * Some spaces that are freed in the current transaction are pinned,
1437 	 * they will be added into free space cache after the transaction is
1438 	 * committed, we shouldn't lose them.
1439 	 *
1440 	 * If this changes while we are working we'll get added back to
1441 	 * the dirty list and redo it.  No locking needed
1442 	 */
1443 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1444 	if (ret)
1445 		goto out_nospc_locked;
1446 
1447 	/*
1448 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1449 	 * locked while doing it because a concurrent trim can be manipulating
1450 	 * or freeing the bitmap.
1451 	 */
1452 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1453 	spin_unlock(&ctl->tree_lock);
1454 	mutex_unlock(&ctl->cache_writeout_mutex);
1455 	if (ret)
1456 		goto out_nospc;
1457 
1458 	/* Zero out the rest of the pages just to make sure */
1459 	io_ctl_zero_remaining_pages(io_ctl);
1460 
1461 	/* Everything is written out, now we dirty the pages in the file. */
1462 	i_size = i_size_read(inode);
1463 	for (int i = 0; i < round_up(i_size, PAGE_SIZE) / PAGE_SIZE; i++) {
1464 		u64 dirty_start = i * PAGE_SIZE;
1465 		u64 dirty_len = min_t(u64, dirty_start + PAGE_SIZE, i_size) - dirty_start;
1466 
1467 		ret = btrfs_dirty_folio(BTRFS_I(inode), page_folio(io_ctl->pages[i]),
1468 					dirty_start, dirty_len, &cached_state, false);
1469 		if (ret < 0)
1470 			goto out_nospc;
1471 	}
1472 
1473 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1474 		up_write(&block_group->data_rwsem);
1475 	/*
1476 	 * Release the pages and unlock the extent, we will flush
1477 	 * them out later
1478 	 */
1479 	io_ctl_drop_pages(io_ctl);
1480 	io_ctl_free(io_ctl);
1481 
1482 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1483 		      &cached_state);
1484 
1485 	/*
1486 	 * at this point the pages are under IO and we're happy,
1487 	 * The caller is responsible for waiting on them and updating
1488 	 * the cache and the inode
1489 	 */
1490 	io_ctl->entries = entries;
1491 	io_ctl->bitmaps = bitmaps;
1492 
1493 	ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
1494 	if (ret)
1495 		goto out;
1496 
1497 	return 0;
1498 
1499 out_nospc_locked:
1500 	cleanup_bitmap_list(&bitmap_list);
1501 	spin_unlock(&ctl->tree_lock);
1502 	mutex_unlock(&ctl->cache_writeout_mutex);
1503 
1504 out_nospc:
1505 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1506 
1507 out_unlock:
1508 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1509 		up_write(&block_group->data_rwsem);
1510 
1511 out:
1512 	io_ctl->inode = NULL;
1513 	io_ctl_free(io_ctl);
1514 	if (ret) {
1515 		invalidate_inode_pages2(inode->i_mapping);
1516 		BTRFS_I(inode)->generation = 0;
1517 	}
1518 	btrfs_update_inode(trans, BTRFS_I(inode));
1519 	if (must_iput)
1520 		iput(inode);
1521 	return ret;
1522 }
1523 
1524 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1525 			  struct btrfs_block_group *block_group,
1526 			  struct btrfs_path *path)
1527 {
1528 	struct btrfs_fs_info *fs_info = trans->fs_info;
1529 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1530 	struct inode *inode;
1531 	int ret = 0;
1532 
1533 	spin_lock(&block_group->lock);
1534 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1535 		spin_unlock(&block_group->lock);
1536 		return 0;
1537 	}
1538 	spin_unlock(&block_group->lock);
1539 
1540 	inode = lookup_free_space_inode(block_group, path);
1541 	if (IS_ERR(inode))
1542 		return 0;
1543 
1544 	ret = __btrfs_write_out_cache(inode, ctl, block_group,
1545 				      &block_group->io_ctl, trans);
1546 	if (ret) {
1547 		btrfs_debug(fs_info,
1548 	  "failed to write free space cache for block group %llu error %d",
1549 			  block_group->start, ret);
1550 		spin_lock(&block_group->lock);
1551 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1552 		spin_unlock(&block_group->lock);
1553 
1554 		block_group->io_ctl.inode = NULL;
1555 		iput(inode);
1556 	}
1557 
1558 	/*
1559 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1560 	 * to wait for IO and put the inode
1561 	 */
1562 
1563 	return ret;
1564 }
1565 
1566 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1567 					  u64 offset)
1568 {
1569 	ASSERT(offset >= bitmap_start);
1570 	offset -= bitmap_start;
1571 	return (unsigned long)(div_u64(offset, unit));
1572 }
1573 
1574 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1575 {
1576 	return (unsigned long)(div_u64(bytes, unit));
1577 }
1578 
1579 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1580 				   u64 offset)
1581 {
1582 	u64 bitmap_start;
1583 	u64 bytes_per_bitmap;
1584 
1585 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1586 	bitmap_start = offset - ctl->start;
1587 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1588 	bitmap_start *= bytes_per_bitmap;
1589 	bitmap_start += ctl->start;
1590 
1591 	return bitmap_start;
1592 }
1593 
1594 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1595 			      struct btrfs_free_cluster *cluster,
1596 			      struct btrfs_free_space *new_entry)
1597 {
1598 	struct rb_root *root;
1599 	struct rb_node **p;
1600 	struct rb_node *parent = NULL;
1601 
1602 	lockdep_assert_held(&ctl->tree_lock);
1603 
1604 	if (cluster) {
1605 		lockdep_assert_held(&cluster->lock);
1606 		root = &cluster->root;
1607 	} else {
1608 		root = &ctl->free_space_offset;
1609 	}
1610 
1611 	p = &root->rb_node;
1612 
1613 	while (*p) {
1614 		struct btrfs_free_space *info;
1615 
1616 		parent = *p;
1617 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1618 
1619 		if (new_entry->offset < info->offset) {
1620 			p = &(*p)->rb_left;
1621 		} else if (new_entry->offset > info->offset) {
1622 			p = &(*p)->rb_right;
1623 		} else {
1624 			/*
1625 			 * we could have a bitmap entry and an extent entry
1626 			 * share the same offset.  If this is the case, we want
1627 			 * the extent entry to always be found first if we do a
1628 			 * linear search through the tree, since we want to have
1629 			 * the quickest allocation time, and allocating from an
1630 			 * extent is faster than allocating from a bitmap.  So
1631 			 * if we're inserting a bitmap and we find an entry at
1632 			 * this offset, we want to go right, or after this entry
1633 			 * logically.  If we are inserting an extent and we've
1634 			 * found a bitmap, we want to go left, or before
1635 			 * logically.
1636 			 */
1637 			if (new_entry->bitmap) {
1638 				if (info->bitmap) {
1639 					WARN_ON_ONCE(1);
1640 					return -EEXIST;
1641 				}
1642 				p = &(*p)->rb_right;
1643 			} else {
1644 				if (!info->bitmap) {
1645 					WARN_ON_ONCE(1);
1646 					return -EEXIST;
1647 				}
1648 				p = &(*p)->rb_left;
1649 			}
1650 		}
1651 	}
1652 
1653 	rb_link_node(&new_entry->offset_index, parent, p);
1654 	rb_insert_color(&new_entry->offset_index, root);
1655 
1656 	return 0;
1657 }
1658 
1659 /*
1660  * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1661  * searched through the bitmap and figured out the largest ->max_extent_size,
1662  * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1663  * allocator the wrong thing, we want to use the actual real max_extent_size
1664  * we've found already if it's larger, or we want to use ->bytes.
1665  *
1666  * This matters because find_free_space() will skip entries who's ->bytes is
1667  * less than the required bytes.  So if we didn't search down this bitmap, we
1668  * may pick some previous entry that has a smaller ->max_extent_size than we
1669  * have.  For example, assume we have two entries, one that has
1670  * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1671  * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1672  *  call into find_free_space(), and return with max_extent_size == 4K, because
1673  *  that first bitmap entry had ->max_extent_size set, but the second one did
1674  *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1675  *  8K contiguous range.
1676  *
1677  *  Consider the other case, we have 2 8K chunks in that second entry and still
1678  *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1679  *  allocator comes in it'll fully search our second bitmap, and this time it'll
1680  *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1681  *  right allocation the next loop through.
1682  */
1683 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1684 {
1685 	if (entry->bitmap && entry->max_extent_size)
1686 		return entry->max_extent_size;
1687 	return entry->bytes;
1688 }
1689 
1690 /*
1691  * We want the largest entry to be leftmost, so this is inverted from what you'd
1692  * normally expect.
1693  */
1694 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1695 {
1696 	const struct btrfs_free_space *entry, *exist;
1697 
1698 	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1699 	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1700 	return get_max_extent_size(exist) < get_max_extent_size(entry);
1701 }
1702 
1703 /*
1704  * searches the tree for the given offset.
1705  *
1706  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1707  * want a section that has at least bytes size and comes at or after the given
1708  * offset.
1709  */
1710 static struct btrfs_free_space *
1711 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1712 		   u64 offset, int bitmap_only, int fuzzy)
1713 {
1714 	struct rb_node *n = ctl->free_space_offset.rb_node;
1715 	struct btrfs_free_space *entry = NULL, *prev = NULL;
1716 
1717 	lockdep_assert_held(&ctl->tree_lock);
1718 
1719 	/* find entry that is closest to the 'offset' */
1720 	while (n) {
1721 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1722 		prev = entry;
1723 
1724 		if (offset < entry->offset)
1725 			n = n->rb_left;
1726 		else if (offset > entry->offset)
1727 			n = n->rb_right;
1728 		else
1729 			break;
1730 
1731 		entry = NULL;
1732 	}
1733 
1734 	if (bitmap_only) {
1735 		if (!entry)
1736 			return NULL;
1737 		if (entry->bitmap)
1738 			return entry;
1739 
1740 		/*
1741 		 * bitmap entry and extent entry may share same offset,
1742 		 * in that case, bitmap entry comes after extent entry.
1743 		 */
1744 		n = rb_next(n);
1745 		if (!n)
1746 			return NULL;
1747 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1748 		if (entry->offset != offset)
1749 			return NULL;
1750 
1751 		WARN_ON(!entry->bitmap);
1752 		return entry;
1753 	} else if (entry) {
1754 		if (entry->bitmap) {
1755 			/*
1756 			 * if previous extent entry covers the offset,
1757 			 * we should return it instead of the bitmap entry
1758 			 */
1759 			n = rb_prev(&entry->offset_index);
1760 			if (n) {
1761 				prev = rb_entry(n, struct btrfs_free_space,
1762 						offset_index);
1763 				if (!prev->bitmap &&
1764 				    prev->offset + prev->bytes > offset)
1765 					entry = prev;
1766 			}
1767 		}
1768 		return entry;
1769 	}
1770 
1771 	if (!prev)
1772 		return NULL;
1773 
1774 	/* find last entry before the 'offset' */
1775 	entry = prev;
1776 	if (entry->offset > offset) {
1777 		n = rb_prev(&entry->offset_index);
1778 		if (n) {
1779 			entry = rb_entry(n, struct btrfs_free_space,
1780 					offset_index);
1781 			ASSERT(entry->offset <= offset);
1782 		} else {
1783 			if (fuzzy)
1784 				return entry;
1785 			else
1786 				return NULL;
1787 		}
1788 	}
1789 
1790 	if (entry->bitmap) {
1791 		n = rb_prev(&entry->offset_index);
1792 		if (n) {
1793 			prev = rb_entry(n, struct btrfs_free_space,
1794 					offset_index);
1795 			if (!prev->bitmap &&
1796 			    prev->offset + prev->bytes > offset)
1797 				return prev;
1798 		}
1799 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1800 			return entry;
1801 	} else if (entry->offset + entry->bytes > offset)
1802 		return entry;
1803 
1804 	if (!fuzzy)
1805 		return NULL;
1806 
1807 	while (1) {
1808 		n = rb_next(&entry->offset_index);
1809 		if (!n)
1810 			return NULL;
1811 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1812 		if (entry->bitmap) {
1813 			if (entry->offset + BITS_PER_BITMAP *
1814 			    ctl->unit > offset)
1815 				break;
1816 		} else {
1817 			if (entry->offset + entry->bytes > offset)
1818 				break;
1819 		}
1820 	}
1821 	return entry;
1822 }
1823 
1824 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1825 				     struct btrfs_free_space *info,
1826 				     bool update_stat)
1827 {
1828 	lockdep_assert_held(&ctl->tree_lock);
1829 
1830 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1831 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1832 	ctl->free_extents--;
1833 
1834 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1835 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1836 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1837 	}
1838 
1839 	if (update_stat)
1840 		ctl->free_space -= info->bytes;
1841 }
1842 
1843 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1844 			   struct btrfs_free_space *info)
1845 {
1846 	int ret = 0;
1847 
1848 	lockdep_assert_held(&ctl->tree_lock);
1849 
1850 	ASSERT(info->bytes || info->bitmap);
1851 	ret = tree_insert_offset(ctl, NULL, info);
1852 	if (ret)
1853 		return ret;
1854 
1855 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1856 
1857 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1858 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1859 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1860 	}
1861 
1862 	ctl->free_space += info->bytes;
1863 	ctl->free_extents++;
1864 	return ret;
1865 }
1866 
1867 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1868 				struct btrfs_free_space *info)
1869 {
1870 	ASSERT(info->bitmap);
1871 
1872 	/*
1873 	 * If our entry is empty it's because we're on a cluster and we don't
1874 	 * want to re-link it into our ctl bytes index.
1875 	 */
1876 	if (RB_EMPTY_NODE(&info->bytes_index))
1877 		return;
1878 
1879 	lockdep_assert_held(&ctl->tree_lock);
1880 
1881 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1882 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1883 }
1884 
1885 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1886 				     struct btrfs_free_space *info,
1887 				     u64 offset, u64 bytes, bool update_stat)
1888 {
1889 	unsigned long start, count, end;
1890 	int extent_delta = -1;
1891 
1892 	start = offset_to_bit(info->offset, ctl->unit, offset);
1893 	count = bytes_to_bits(bytes, ctl->unit);
1894 	end = start + count;
1895 	ASSERT(end <= BITS_PER_BITMAP);
1896 
1897 	bitmap_clear(info->bitmap, start, count);
1898 
1899 	info->bytes -= bytes;
1900 	if (info->max_extent_size > ctl->unit)
1901 		info->max_extent_size = 0;
1902 
1903 	relink_bitmap_entry(ctl, info);
1904 
1905 	if (start && test_bit(start - 1, info->bitmap))
1906 		extent_delta++;
1907 
1908 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1909 		extent_delta++;
1910 
1911 	info->bitmap_extents += extent_delta;
1912 	if (!btrfs_free_space_trimmed(info)) {
1913 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1914 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1915 	}
1916 
1917 	if (update_stat)
1918 		ctl->free_space -= bytes;
1919 }
1920 
1921 static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1922 				  struct btrfs_free_space *info, u64 offset,
1923 				  u64 bytes)
1924 {
1925 	unsigned long start, count, end;
1926 	int extent_delta = 1;
1927 
1928 	start = offset_to_bit(info->offset, ctl->unit, offset);
1929 	count = bytes_to_bits(bytes, ctl->unit);
1930 	end = start + count;
1931 	ASSERT(end <= BITS_PER_BITMAP);
1932 
1933 	bitmap_set(info->bitmap, start, count);
1934 
1935 	/*
1936 	 * We set some bytes, we have no idea what the max extent size is
1937 	 * anymore.
1938 	 */
1939 	info->max_extent_size = 0;
1940 	info->bytes += bytes;
1941 	ctl->free_space += bytes;
1942 
1943 	relink_bitmap_entry(ctl, info);
1944 
1945 	if (start && test_bit(start - 1, info->bitmap))
1946 		extent_delta--;
1947 
1948 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1949 		extent_delta--;
1950 
1951 	info->bitmap_extents += extent_delta;
1952 	if (!btrfs_free_space_trimmed(info)) {
1953 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1954 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1955 	}
1956 }
1957 
1958 /*
1959  * If we can not find suitable extent, we will use bytes to record
1960  * the size of the max extent.
1961  */
1962 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1963 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1964 			 u64 *bytes, bool for_alloc)
1965 {
1966 	unsigned long found_bits = 0;
1967 	unsigned long max_bits = 0;
1968 	unsigned long bits, i;
1969 	unsigned long next_zero;
1970 	unsigned long extent_bits;
1971 
1972 	/*
1973 	 * Skip searching the bitmap if we don't have a contiguous section that
1974 	 * is large enough for this allocation.
1975 	 */
1976 	if (for_alloc &&
1977 	    bitmap_info->max_extent_size &&
1978 	    bitmap_info->max_extent_size < *bytes) {
1979 		*bytes = bitmap_info->max_extent_size;
1980 		return -1;
1981 	}
1982 
1983 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1984 			  max_t(u64, *offset, bitmap_info->offset));
1985 	bits = bytes_to_bits(*bytes, ctl->unit);
1986 
1987 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1988 		if (for_alloc && bits == 1) {
1989 			found_bits = 1;
1990 			break;
1991 		}
1992 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1993 					       BITS_PER_BITMAP, i);
1994 		extent_bits = next_zero - i;
1995 		if (extent_bits >= bits) {
1996 			found_bits = extent_bits;
1997 			break;
1998 		} else if (extent_bits > max_bits) {
1999 			max_bits = extent_bits;
2000 		}
2001 		i = next_zero;
2002 	}
2003 
2004 	if (found_bits) {
2005 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2006 		*bytes = (u64)(found_bits) * ctl->unit;
2007 		return 0;
2008 	}
2009 
2010 	*bytes = (u64)(max_bits) * ctl->unit;
2011 	bitmap_info->max_extent_size = *bytes;
2012 	relink_bitmap_entry(ctl, bitmap_info);
2013 	return -1;
2014 }
2015 
2016 /* Cache the size of the max extent in bytes */
2017 static struct btrfs_free_space *
2018 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2019 		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2020 {
2021 	struct btrfs_free_space *entry;
2022 	struct rb_node *node;
2023 	u64 tmp;
2024 	u64 align_off;
2025 	int ret;
2026 
2027 	if (!ctl->free_space_offset.rb_node)
2028 		goto out;
2029 again:
2030 	if (use_bytes_index) {
2031 		node = rb_first_cached(&ctl->free_space_bytes);
2032 	} else {
2033 		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2034 					   0, 1);
2035 		if (!entry)
2036 			goto out;
2037 		node = &entry->offset_index;
2038 	}
2039 
2040 	for (; node; node = rb_next(node)) {
2041 		if (use_bytes_index)
2042 			entry = rb_entry(node, struct btrfs_free_space,
2043 					 bytes_index);
2044 		else
2045 			entry = rb_entry(node, struct btrfs_free_space,
2046 					 offset_index);
2047 
2048 		/*
2049 		 * If we are using the bytes index then all subsequent entries
2050 		 * in this tree are going to be < bytes, so simply set the max
2051 		 * extent size and exit the loop.
2052 		 *
2053 		 * If we're using the offset index then we need to keep going
2054 		 * through the rest of the tree.
2055 		 */
2056 		if (entry->bytes < *bytes) {
2057 			*max_extent_size = max(get_max_extent_size(entry),
2058 					       *max_extent_size);
2059 			if (use_bytes_index)
2060 				break;
2061 			continue;
2062 		}
2063 
2064 		/* make sure the space returned is big enough
2065 		 * to match our requested alignment
2066 		 */
2067 		if (*bytes >= align) {
2068 			tmp = entry->offset - ctl->start + align - 1;
2069 			tmp = div64_u64(tmp, align);
2070 			tmp = tmp * align + ctl->start;
2071 			align_off = tmp - entry->offset;
2072 		} else {
2073 			align_off = 0;
2074 			tmp = entry->offset;
2075 		}
2076 
2077 		/*
2078 		 * We don't break here if we're using the bytes index because we
2079 		 * may have another entry that has the correct alignment that is
2080 		 * the right size, so we don't want to miss that possibility.
2081 		 * At worst this adds another loop through the logic, but if we
2082 		 * broke here we could prematurely ENOSPC.
2083 		 */
2084 		if (entry->bytes < *bytes + align_off) {
2085 			*max_extent_size = max(get_max_extent_size(entry),
2086 					       *max_extent_size);
2087 			continue;
2088 		}
2089 
2090 		if (entry->bitmap) {
2091 			struct rb_node *old_next = rb_next(node);
2092 			u64 size = *bytes;
2093 
2094 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2095 			if (!ret) {
2096 				*offset = tmp;
2097 				*bytes = size;
2098 				return entry;
2099 			} else {
2100 				*max_extent_size =
2101 					max(get_max_extent_size(entry),
2102 					    *max_extent_size);
2103 			}
2104 
2105 			/*
2106 			 * The bitmap may have gotten re-arranged in the space
2107 			 * index here because the max_extent_size may have been
2108 			 * updated.  Start from the beginning again if this
2109 			 * happened.
2110 			 */
2111 			if (use_bytes_index && old_next != rb_next(node))
2112 				goto again;
2113 			continue;
2114 		}
2115 
2116 		*offset = tmp;
2117 		*bytes = entry->bytes - align_off;
2118 		return entry;
2119 	}
2120 out:
2121 	return NULL;
2122 }
2123 
2124 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2125 			   struct btrfs_free_space *info, u64 offset)
2126 {
2127 	info->offset = offset_to_bitmap(ctl, offset);
2128 	info->bytes = 0;
2129 	info->bitmap_extents = 0;
2130 	INIT_LIST_HEAD(&info->list);
2131 	link_free_space(ctl, info);
2132 	ctl->total_bitmaps++;
2133 	recalculate_thresholds(ctl);
2134 }
2135 
2136 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2137 			struct btrfs_free_space *bitmap_info)
2138 {
2139 	/*
2140 	 * Normally when this is called, the bitmap is completely empty. However,
2141 	 * if we are blowing up the free space cache for one reason or another
2142 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2143 	 * we may leave stats on the table.
2144 	 */
2145 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2146 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2147 			bitmap_info->bitmap_extents;
2148 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2149 
2150 	}
2151 	unlink_free_space(ctl, bitmap_info, true);
2152 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2153 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2154 	ctl->total_bitmaps--;
2155 	recalculate_thresholds(ctl);
2156 }
2157 
2158 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2159 			      struct btrfs_free_space *bitmap_info,
2160 			      u64 *offset, u64 *bytes)
2161 {
2162 	u64 end;
2163 	u64 search_start, search_bytes;
2164 	int ret;
2165 
2166 again:
2167 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2168 
2169 	/*
2170 	 * We need to search for bits in this bitmap.  We could only cover some
2171 	 * of the extent in this bitmap thanks to how we add space, so we need
2172 	 * to search for as much as it as we can and clear that amount, and then
2173 	 * go searching for the next bit.
2174 	 */
2175 	search_start = *offset;
2176 	search_bytes = ctl->unit;
2177 	search_bytes = min(search_bytes, end - search_start + 1);
2178 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2179 			    false);
2180 	if (ret < 0 || search_start != *offset)
2181 		return -EINVAL;
2182 
2183 	/* We may have found more bits than what we need */
2184 	search_bytes = min(search_bytes, *bytes);
2185 
2186 	/* Cannot clear past the end of the bitmap */
2187 	search_bytes = min(search_bytes, end - search_start + 1);
2188 
2189 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2190 	*offset += search_bytes;
2191 	*bytes -= search_bytes;
2192 
2193 	if (*bytes) {
2194 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2195 		if (!bitmap_info->bytes)
2196 			free_bitmap(ctl, bitmap_info);
2197 
2198 		/*
2199 		 * no entry after this bitmap, but we still have bytes to
2200 		 * remove, so something has gone wrong.
2201 		 */
2202 		if (!next)
2203 			return -EINVAL;
2204 
2205 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2206 				       offset_index);
2207 
2208 		/*
2209 		 * if the next entry isn't a bitmap we need to return to let the
2210 		 * extent stuff do its work.
2211 		 */
2212 		if (!bitmap_info->bitmap)
2213 			return -EAGAIN;
2214 
2215 		/*
2216 		 * Ok the next item is a bitmap, but it may not actually hold
2217 		 * the information for the rest of this free space stuff, so
2218 		 * look for it, and if we don't find it return so we can try
2219 		 * everything over again.
2220 		 */
2221 		search_start = *offset;
2222 		search_bytes = ctl->unit;
2223 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2224 				    &search_bytes, false);
2225 		if (ret < 0 || search_start != *offset)
2226 			return -EAGAIN;
2227 
2228 		goto again;
2229 	} else if (!bitmap_info->bytes)
2230 		free_bitmap(ctl, bitmap_info);
2231 
2232 	return 0;
2233 }
2234 
2235 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2236 			       struct btrfs_free_space *info, u64 offset,
2237 			       u64 bytes, enum btrfs_trim_state trim_state)
2238 {
2239 	u64 bytes_to_set = 0;
2240 	u64 end;
2241 
2242 	/*
2243 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2244 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2245 	 */
2246 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2247 		if (btrfs_free_space_trimmed(info)) {
2248 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2249 				info->bitmap_extents;
2250 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2251 		}
2252 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2253 	}
2254 
2255 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2256 
2257 	bytes_to_set = min(end - offset, bytes);
2258 
2259 	btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
2260 
2261 	return bytes_to_set;
2262 
2263 }
2264 
2265 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2266 		      struct btrfs_free_space *info)
2267 {
2268 	struct btrfs_block_group *block_group = ctl->block_group;
2269 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2270 	bool forced = false;
2271 
2272 #ifdef CONFIG_BTRFS_DEBUG
2273 	if (btrfs_should_fragment_free_space(block_group))
2274 		forced = true;
2275 #endif
2276 
2277 	/* This is a way to reclaim large regions from the bitmaps. */
2278 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2279 		return false;
2280 
2281 	/*
2282 	 * If we are below the extents threshold then we can add this as an
2283 	 * extent, and don't have to deal with the bitmap
2284 	 */
2285 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2286 		/*
2287 		 * If this block group has some small extents we don't want to
2288 		 * use up all of our free slots in the cache with them, we want
2289 		 * to reserve them to larger extents, however if we have plenty
2290 		 * of cache left then go ahead an dadd them, no sense in adding
2291 		 * the overhead of a bitmap if we don't have to.
2292 		 */
2293 		if (info->bytes <= fs_info->sectorsize * 8) {
2294 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2295 				return false;
2296 		} else {
2297 			return false;
2298 		}
2299 	}
2300 
2301 	/*
2302 	 * The original block groups from mkfs can be really small, like 8
2303 	 * megabytes, so don't bother with a bitmap for those entries.  However
2304 	 * some block groups can be smaller than what a bitmap would cover but
2305 	 * are still large enough that they could overflow the 32k memory limit,
2306 	 * so allow those block groups to still be allowed to have a bitmap
2307 	 * entry.
2308 	 */
2309 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2310 		return false;
2311 
2312 	return true;
2313 }
2314 
2315 static const struct btrfs_free_space_op free_space_op = {
2316 	.use_bitmap		= use_bitmap,
2317 };
2318 
2319 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2320 			      struct btrfs_free_space *info)
2321 {
2322 	struct btrfs_free_space *bitmap_info;
2323 	struct btrfs_block_group *block_group = NULL;
2324 	int added = 0;
2325 	u64 bytes, offset, bytes_added;
2326 	enum btrfs_trim_state trim_state;
2327 	int ret;
2328 
2329 	bytes = info->bytes;
2330 	offset = info->offset;
2331 	trim_state = info->trim_state;
2332 
2333 	if (!ctl->op->use_bitmap(ctl, info))
2334 		return 0;
2335 
2336 	if (ctl->op == &free_space_op)
2337 		block_group = ctl->block_group;
2338 again:
2339 	/*
2340 	 * Since we link bitmaps right into the cluster we need to see if we
2341 	 * have a cluster here, and if so and it has our bitmap we need to add
2342 	 * the free space to that bitmap.
2343 	 */
2344 	if (block_group && !list_empty(&block_group->cluster_list)) {
2345 		struct btrfs_free_cluster *cluster;
2346 		struct rb_node *node;
2347 		struct btrfs_free_space *entry;
2348 
2349 		cluster = list_entry(block_group->cluster_list.next,
2350 				     struct btrfs_free_cluster,
2351 				     block_group_list);
2352 		spin_lock(&cluster->lock);
2353 		node = rb_first(&cluster->root);
2354 		if (!node) {
2355 			spin_unlock(&cluster->lock);
2356 			goto no_cluster_bitmap;
2357 		}
2358 
2359 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2360 		if (!entry->bitmap) {
2361 			spin_unlock(&cluster->lock);
2362 			goto no_cluster_bitmap;
2363 		}
2364 
2365 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2366 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2367 							  bytes, trim_state);
2368 			bytes -= bytes_added;
2369 			offset += bytes_added;
2370 		}
2371 		spin_unlock(&cluster->lock);
2372 		if (!bytes) {
2373 			ret = 1;
2374 			goto out;
2375 		}
2376 	}
2377 
2378 no_cluster_bitmap:
2379 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2380 					 1, 0);
2381 	if (!bitmap_info) {
2382 		ASSERT(added == 0);
2383 		goto new_bitmap;
2384 	}
2385 
2386 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2387 					  trim_state);
2388 	bytes -= bytes_added;
2389 	offset += bytes_added;
2390 	added = 0;
2391 
2392 	if (!bytes) {
2393 		ret = 1;
2394 		goto out;
2395 	} else
2396 		goto again;
2397 
2398 new_bitmap:
2399 	if (info && info->bitmap) {
2400 		add_new_bitmap(ctl, info, offset);
2401 		added = 1;
2402 		info = NULL;
2403 		goto again;
2404 	} else {
2405 		spin_unlock(&ctl->tree_lock);
2406 
2407 		/* no pre-allocated info, allocate a new one */
2408 		if (!info) {
2409 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2410 						 GFP_NOFS);
2411 			if (!info) {
2412 				spin_lock(&ctl->tree_lock);
2413 				ret = -ENOMEM;
2414 				goto out;
2415 			}
2416 		}
2417 
2418 		/* allocate the bitmap */
2419 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2420 						 GFP_NOFS);
2421 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2422 		spin_lock(&ctl->tree_lock);
2423 		if (!info->bitmap) {
2424 			ret = -ENOMEM;
2425 			goto out;
2426 		}
2427 		goto again;
2428 	}
2429 
2430 out:
2431 	if (info) {
2432 		if (info->bitmap)
2433 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2434 					info->bitmap);
2435 		kmem_cache_free(btrfs_free_space_cachep, info);
2436 	}
2437 
2438 	return ret;
2439 }
2440 
2441 /*
2442  * Free space merging rules:
2443  *  1) Merge trimmed areas together
2444  *  2) Let untrimmed areas coalesce with trimmed areas
2445  *  3) Always pull neighboring regions from bitmaps
2446  *
2447  * The above rules are for when we merge free space based on btrfs_trim_state.
2448  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2449  * same reason: to promote larger extent regions which makes life easier for
2450  * find_free_extent().  Rule 2 enables coalescing based on the common path
2451  * being returning free space from btrfs_finish_extent_commit().  So when free
2452  * space is trimmed, it will prevent aggregating trimmed new region and
2453  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2454  * and provide find_free_extent() with the largest extents possible hoping for
2455  * the reuse path.
2456  */
2457 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2458 			  struct btrfs_free_space *info, bool update_stat)
2459 {
2460 	struct btrfs_free_space *left_info = NULL;
2461 	struct btrfs_free_space *right_info;
2462 	bool merged = false;
2463 	u64 offset = info->offset;
2464 	u64 bytes = info->bytes;
2465 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2466 	struct rb_node *right_prev = NULL;
2467 
2468 	/*
2469 	 * first we want to see if there is free space adjacent to the range we
2470 	 * are adding, if there is remove that struct and add a new one to
2471 	 * cover the entire range
2472 	 */
2473 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2474 	if (right_info)
2475 		right_prev = rb_prev(&right_info->offset_index);
2476 
2477 	if (right_prev)
2478 		left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2479 	else if (!right_info)
2480 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2481 
2482 	/* See try_merge_free_space() comment. */
2483 	if (right_info && !right_info->bitmap &&
2484 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2485 		unlink_free_space(ctl, right_info, update_stat);
2486 		info->bytes += right_info->bytes;
2487 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2488 		merged = true;
2489 	}
2490 
2491 	/* See try_merge_free_space() comment. */
2492 	if (left_info && !left_info->bitmap &&
2493 	    left_info->offset + left_info->bytes == offset &&
2494 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2495 		unlink_free_space(ctl, left_info, update_stat);
2496 		info->offset = left_info->offset;
2497 		info->bytes += left_info->bytes;
2498 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2499 		merged = true;
2500 	}
2501 
2502 	return merged;
2503 }
2504 
2505 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2506 				     struct btrfs_free_space *info,
2507 				     bool update_stat)
2508 {
2509 	struct btrfs_free_space *bitmap;
2510 	unsigned long i;
2511 	unsigned long j;
2512 	const u64 end = info->offset + info->bytes;
2513 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2514 	u64 bytes;
2515 
2516 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2517 	if (!bitmap)
2518 		return false;
2519 
2520 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2521 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2522 	if (j == i)
2523 		return false;
2524 	bytes = (j - i) * ctl->unit;
2525 	info->bytes += bytes;
2526 
2527 	/* See try_merge_free_space() comment. */
2528 	if (!btrfs_free_space_trimmed(bitmap))
2529 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2530 
2531 	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2532 
2533 	if (!bitmap->bytes)
2534 		free_bitmap(ctl, bitmap);
2535 
2536 	return true;
2537 }
2538 
2539 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2540 				       struct btrfs_free_space *info,
2541 				       bool update_stat)
2542 {
2543 	struct btrfs_free_space *bitmap;
2544 	u64 bitmap_offset;
2545 	unsigned long i;
2546 	unsigned long j;
2547 	unsigned long prev_j;
2548 	u64 bytes;
2549 
2550 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2551 	/* If we're on a boundary, try the previous logical bitmap. */
2552 	if (bitmap_offset == info->offset) {
2553 		if (info->offset == 0)
2554 			return false;
2555 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2556 	}
2557 
2558 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2559 	if (!bitmap)
2560 		return false;
2561 
2562 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2563 	j = 0;
2564 	prev_j = (unsigned long)-1;
2565 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2566 		if (j > i)
2567 			break;
2568 		prev_j = j;
2569 	}
2570 	if (prev_j == i)
2571 		return false;
2572 
2573 	if (prev_j == (unsigned long)-1)
2574 		bytes = (i + 1) * ctl->unit;
2575 	else
2576 		bytes = (i - prev_j) * ctl->unit;
2577 
2578 	info->offset -= bytes;
2579 	info->bytes += bytes;
2580 
2581 	/* See try_merge_free_space() comment. */
2582 	if (!btrfs_free_space_trimmed(bitmap))
2583 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2584 
2585 	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2586 
2587 	if (!bitmap->bytes)
2588 		free_bitmap(ctl, bitmap);
2589 
2590 	return true;
2591 }
2592 
2593 /*
2594  * We prefer always to allocate from extent entries, both for clustered and
2595  * non-clustered allocation requests. So when attempting to add a new extent
2596  * entry, try to see if there's adjacent free space in bitmap entries, and if
2597  * there is, migrate that space from the bitmaps to the extent.
2598  * Like this we get better chances of satisfying space allocation requests
2599  * because we attempt to satisfy them based on a single cache entry, and never
2600  * on 2 or more entries - even if the entries represent a contiguous free space
2601  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2602  * ends).
2603  */
2604 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2605 			      struct btrfs_free_space *info,
2606 			      bool update_stat)
2607 {
2608 	/*
2609 	 * Only work with disconnected entries, as we can change their offset,
2610 	 * and must be extent entries.
2611 	 */
2612 	ASSERT(!info->bitmap);
2613 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2614 
2615 	if (ctl->total_bitmaps > 0) {
2616 		bool stole_end;
2617 		bool stole_front = false;
2618 
2619 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2620 		if (ctl->total_bitmaps > 0)
2621 			stole_front = steal_from_bitmap_to_front(ctl, info,
2622 								 update_stat);
2623 
2624 		if (stole_end || stole_front)
2625 			try_merge_free_space(ctl, info, update_stat);
2626 	}
2627 }
2628 
2629 static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2630 			   u64 offset, u64 bytes,
2631 			   enum btrfs_trim_state trim_state)
2632 {
2633 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2634 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2635 	struct btrfs_free_space *info;
2636 	int ret = 0;
2637 	u64 filter_bytes = bytes;
2638 
2639 	ASSERT(!btrfs_is_zoned(fs_info));
2640 
2641 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2642 	if (!info)
2643 		return -ENOMEM;
2644 
2645 	info->offset = offset;
2646 	info->bytes = bytes;
2647 	info->trim_state = trim_state;
2648 	RB_CLEAR_NODE(&info->offset_index);
2649 	RB_CLEAR_NODE(&info->bytes_index);
2650 
2651 	spin_lock(&ctl->tree_lock);
2652 
2653 	if (try_merge_free_space(ctl, info, true))
2654 		goto link;
2655 
2656 	/*
2657 	 * There was no extent directly to the left or right of this new
2658 	 * extent then we know we're going to have to allocate a new extent, so
2659 	 * before we do that see if we need to drop this into a bitmap
2660 	 */
2661 	ret = insert_into_bitmap(ctl, info);
2662 	if (ret < 0) {
2663 		goto out;
2664 	} else if (ret) {
2665 		ret = 0;
2666 		goto out;
2667 	}
2668 link:
2669 	/*
2670 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2671 	 * going to add the new free space to existing bitmap entries - because
2672 	 * that would mean unnecessary work that would be reverted. Therefore
2673 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2674 	 */
2675 	steal_from_bitmap(ctl, info, true);
2676 
2677 	filter_bytes = max(filter_bytes, info->bytes);
2678 
2679 	ret = link_free_space(ctl, info);
2680 	if (ret)
2681 		kmem_cache_free(btrfs_free_space_cachep, info);
2682 out:
2683 	btrfs_discard_update_discardable(block_group);
2684 	spin_unlock(&ctl->tree_lock);
2685 
2686 	if (ret) {
2687 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2688 		ASSERT(ret != -EEXIST);
2689 	}
2690 
2691 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2692 		btrfs_discard_check_filter(block_group, filter_bytes);
2693 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2694 	}
2695 
2696 	return ret;
2697 }
2698 
2699 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2700 					u64 bytenr, u64 size, bool used)
2701 {
2702 	struct btrfs_space_info *sinfo = block_group->space_info;
2703 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2704 	u64 offset = bytenr - block_group->start;
2705 	u64 to_free, to_unusable;
2706 	int bg_reclaim_threshold = 0;
2707 	bool initial;
2708 	u64 reclaimable_unusable;
2709 
2710 	spin_lock(&block_group->lock);
2711 
2712 	initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
2713 	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2714 	if (!initial)
2715 		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2716 
2717 	if (!used)
2718 		to_free = size;
2719 	else if (initial)
2720 		to_free = block_group->zone_capacity;
2721 	else if (offset >= block_group->alloc_offset)
2722 		to_free = size;
2723 	else if (offset + size <= block_group->alloc_offset)
2724 		to_free = 0;
2725 	else
2726 		to_free = offset + size - block_group->alloc_offset;
2727 	to_unusable = size - to_free;
2728 
2729 	spin_lock(&ctl->tree_lock);
2730 	ctl->free_space += to_free;
2731 	spin_unlock(&ctl->tree_lock);
2732 	/*
2733 	 * If the block group is read-only, we should account freed space into
2734 	 * bytes_readonly.
2735 	 */
2736 	if (!block_group->ro) {
2737 		block_group->zone_unusable += to_unusable;
2738 		WARN_ON(block_group->zone_unusable > block_group->length);
2739 	}
2740 	if (!used) {
2741 		block_group->alloc_offset -= size;
2742 	}
2743 
2744 	reclaimable_unusable = block_group->zone_unusable -
2745 			       (block_group->length - block_group->zone_capacity);
2746 	/* All the region is now unusable. Mark it as unused and reclaim */
2747 	if (block_group->zone_unusable == block_group->length) {
2748 		btrfs_mark_bg_unused(block_group);
2749 	} else if (bg_reclaim_threshold &&
2750 		   reclaimable_unusable >=
2751 		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2752 		btrfs_mark_bg_to_reclaim(block_group);
2753 	}
2754 
2755 	spin_unlock(&block_group->lock);
2756 
2757 	return 0;
2758 }
2759 
2760 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2761 			 u64 bytenr, u64 size)
2762 {
2763 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2764 
2765 	if (btrfs_is_zoned(block_group->fs_info))
2766 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2767 						    true);
2768 
2769 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2770 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2771 
2772 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2773 }
2774 
2775 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2776 				u64 bytenr, u64 size)
2777 {
2778 	if (btrfs_is_zoned(block_group->fs_info))
2779 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2780 						    false);
2781 
2782 	return btrfs_add_free_space(block_group, bytenr, size);
2783 }
2784 
2785 /*
2786  * This is a subtle distinction because when adding free space back in general,
2787  * we want it to be added as untrimmed for async. But in the case where we add
2788  * it on loading of a block group, we want to consider it trimmed.
2789  */
2790 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2791 				       u64 bytenr, u64 size)
2792 {
2793 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2794 
2795 	if (btrfs_is_zoned(block_group->fs_info))
2796 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2797 						    true);
2798 
2799 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2800 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2801 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2802 
2803 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2804 }
2805 
2806 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2807 			    u64 offset, u64 bytes)
2808 {
2809 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2810 	struct btrfs_free_space *info;
2811 	int ret;
2812 	bool re_search = false;
2813 
2814 	if (btrfs_is_zoned(block_group->fs_info)) {
2815 		/*
2816 		 * This can happen with conventional zones when replaying log.
2817 		 * Since the allocation info of tree-log nodes are not recorded
2818 		 * to the extent-tree, calculate_alloc_pointer() failed to
2819 		 * advance the allocation pointer after last allocated tree log
2820 		 * node blocks.
2821 		 *
2822 		 * This function is called from
2823 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2824 		 * Advance the pointer not to overwrite the tree-log nodes.
2825 		 */
2826 		if (block_group->start + block_group->alloc_offset <
2827 		    offset + bytes) {
2828 			block_group->alloc_offset =
2829 				offset + bytes - block_group->start;
2830 		}
2831 		return 0;
2832 	}
2833 
2834 	spin_lock(&ctl->tree_lock);
2835 
2836 again:
2837 	ret = 0;
2838 	if (!bytes)
2839 		goto out_lock;
2840 
2841 	info = tree_search_offset(ctl, offset, 0, 0);
2842 	if (!info) {
2843 		/*
2844 		 * oops didn't find an extent that matched the space we wanted
2845 		 * to remove, look for a bitmap instead
2846 		 */
2847 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2848 					  1, 0);
2849 		if (!info) {
2850 			/*
2851 			 * If we found a partial bit of our free space in a
2852 			 * bitmap but then couldn't find the other part this may
2853 			 * be a problem, so WARN about it.
2854 			 */
2855 			WARN_ON(re_search);
2856 			goto out_lock;
2857 		}
2858 	}
2859 
2860 	re_search = false;
2861 	if (!info->bitmap) {
2862 		unlink_free_space(ctl, info, true);
2863 		if (offset == info->offset) {
2864 			u64 to_free = min(bytes, info->bytes);
2865 
2866 			info->bytes -= to_free;
2867 			info->offset += to_free;
2868 			if (info->bytes) {
2869 				ret = link_free_space(ctl, info);
2870 				WARN_ON(ret);
2871 			} else {
2872 				kmem_cache_free(btrfs_free_space_cachep, info);
2873 			}
2874 
2875 			offset += to_free;
2876 			bytes -= to_free;
2877 			goto again;
2878 		} else {
2879 			u64 old_end = info->bytes + info->offset;
2880 
2881 			info->bytes = offset - info->offset;
2882 			ret = link_free_space(ctl, info);
2883 			WARN_ON(ret);
2884 			if (ret)
2885 				goto out_lock;
2886 
2887 			/* Not enough bytes in this entry to satisfy us */
2888 			if (old_end < offset + bytes) {
2889 				bytes -= old_end - offset;
2890 				offset = old_end;
2891 				goto again;
2892 			} else if (old_end == offset + bytes) {
2893 				/* all done */
2894 				goto out_lock;
2895 			}
2896 			spin_unlock(&ctl->tree_lock);
2897 
2898 			ret = __btrfs_add_free_space(block_group,
2899 						     offset + bytes,
2900 						     old_end - (offset + bytes),
2901 						     info->trim_state);
2902 			WARN_ON(ret);
2903 			goto out;
2904 		}
2905 	}
2906 
2907 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2908 	if (ret == -EAGAIN) {
2909 		re_search = true;
2910 		goto again;
2911 	}
2912 out_lock:
2913 	btrfs_discard_update_discardable(block_group);
2914 	spin_unlock(&ctl->tree_lock);
2915 out:
2916 	return ret;
2917 }
2918 
2919 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2920 			   u64 bytes)
2921 {
2922 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2923 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2924 	struct btrfs_free_space *info;
2925 	struct rb_node *n;
2926 	int count = 0;
2927 
2928 	/*
2929 	 * Zoned btrfs does not use free space tree and cluster. Just print
2930 	 * out the free space after the allocation offset.
2931 	 */
2932 	if (btrfs_is_zoned(fs_info)) {
2933 		btrfs_info(fs_info, "free space %llu active %d",
2934 			   block_group->zone_capacity - block_group->alloc_offset,
2935 			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2936 				    &block_group->runtime_flags));
2937 		return;
2938 	}
2939 
2940 	spin_lock(&ctl->tree_lock);
2941 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2942 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2943 		if (info->bytes >= bytes && !block_group->ro)
2944 			count++;
2945 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2946 			   info->offset, info->bytes, str_yes_no(info->bitmap));
2947 	}
2948 	spin_unlock(&ctl->tree_lock);
2949 	btrfs_info(fs_info, "block group has cluster?: %s",
2950 	       str_no_yes(list_empty(&block_group->cluster_list)));
2951 	btrfs_info(fs_info,
2952 		   "%d free space entries at or bigger than %llu bytes",
2953 		   count, bytes);
2954 }
2955 
2956 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2957 			       struct btrfs_free_space_ctl *ctl)
2958 {
2959 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2960 
2961 	spin_lock_init(&ctl->tree_lock);
2962 	ctl->unit = fs_info->sectorsize;
2963 	ctl->start = block_group->start;
2964 	ctl->block_group = block_group;
2965 	ctl->op = &free_space_op;
2966 	ctl->free_space_bytes = RB_ROOT_CACHED;
2967 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2968 	mutex_init(&ctl->cache_writeout_mutex);
2969 
2970 	/*
2971 	 * we only want to have 32k of ram per block group for keeping
2972 	 * track of free space, and if we pass 1/2 of that we want to
2973 	 * start converting things over to using bitmaps
2974 	 */
2975 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2976 }
2977 
2978 /*
2979  * for a given cluster, put all of its extents back into the free
2980  * space cache.  If the block group passed doesn't match the block group
2981  * pointed to by the cluster, someone else raced in and freed the
2982  * cluster already.  In that case, we just return without changing anything
2983  */
2984 static void __btrfs_return_cluster_to_free_space(
2985 			     struct btrfs_block_group *block_group,
2986 			     struct btrfs_free_cluster *cluster)
2987 {
2988 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2989 	struct rb_node *node;
2990 
2991 	lockdep_assert_held(&ctl->tree_lock);
2992 
2993 	spin_lock(&cluster->lock);
2994 	if (cluster->block_group != block_group) {
2995 		spin_unlock(&cluster->lock);
2996 		return;
2997 	}
2998 
2999 	cluster->block_group = NULL;
3000 	cluster->window_start = 0;
3001 	list_del_init(&cluster->block_group_list);
3002 
3003 	node = rb_first(&cluster->root);
3004 	while (node) {
3005 		struct btrfs_free_space *entry;
3006 
3007 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3008 		node = rb_next(&entry->offset_index);
3009 		rb_erase(&entry->offset_index, &cluster->root);
3010 		RB_CLEAR_NODE(&entry->offset_index);
3011 
3012 		if (!entry->bitmap) {
3013 			/* Merging treats extents as if they were new */
3014 			if (!btrfs_free_space_trimmed(entry)) {
3015 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
3016 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3017 					entry->bytes;
3018 			}
3019 
3020 			try_merge_free_space(ctl, entry, false);
3021 			steal_from_bitmap(ctl, entry, false);
3022 
3023 			/* As we insert directly, update these statistics */
3024 			if (!btrfs_free_space_trimmed(entry)) {
3025 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3026 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3027 					entry->bytes;
3028 			}
3029 		}
3030 		tree_insert_offset(ctl, NULL, entry);
3031 		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3032 			      entry_less);
3033 	}
3034 	cluster->root = RB_ROOT;
3035 	spin_unlock(&cluster->lock);
3036 	btrfs_put_block_group(block_group);
3037 }
3038 
3039 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3040 {
3041 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3042 	struct btrfs_free_cluster *cluster;
3043 	struct list_head *head;
3044 
3045 	spin_lock(&ctl->tree_lock);
3046 	while ((head = block_group->cluster_list.next) !=
3047 	       &block_group->cluster_list) {
3048 		cluster = list_entry(head, struct btrfs_free_cluster,
3049 				     block_group_list);
3050 
3051 		WARN_ON(cluster->block_group != block_group);
3052 		__btrfs_return_cluster_to_free_space(block_group, cluster);
3053 
3054 		cond_resched_lock(&ctl->tree_lock);
3055 	}
3056 	__btrfs_remove_free_space_cache(ctl);
3057 	btrfs_discard_update_discardable(block_group);
3058 	spin_unlock(&ctl->tree_lock);
3059 
3060 }
3061 
3062 /*
3063  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3064  */
3065 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3066 {
3067 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3068 	struct btrfs_free_space *info;
3069 	struct rb_node *node;
3070 	bool ret = true;
3071 
3072 	spin_lock(&ctl->tree_lock);
3073 	node = rb_first(&ctl->free_space_offset);
3074 
3075 	while (node) {
3076 		info = rb_entry(node, struct btrfs_free_space, offset_index);
3077 
3078 		if (!btrfs_free_space_trimmed(info)) {
3079 			ret = false;
3080 			break;
3081 		}
3082 
3083 		node = rb_next(node);
3084 	}
3085 
3086 	spin_unlock(&ctl->tree_lock);
3087 	return ret;
3088 }
3089 
3090 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3091 			       u64 offset, u64 bytes, u64 empty_size,
3092 			       u64 *max_extent_size)
3093 {
3094 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3095 	struct btrfs_discard_ctl *discard_ctl =
3096 					&block_group->fs_info->discard_ctl;
3097 	struct btrfs_free_space *entry = NULL;
3098 	u64 bytes_search = bytes + empty_size;
3099 	u64 ret = 0;
3100 	u64 align_gap = 0;
3101 	u64 align_gap_len = 0;
3102 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3103 	bool use_bytes_index = (offset == block_group->start);
3104 
3105 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3106 
3107 	spin_lock(&ctl->tree_lock);
3108 	entry = find_free_space(ctl, &offset, &bytes_search,
3109 				block_group->full_stripe_len, max_extent_size,
3110 				use_bytes_index);
3111 	if (!entry)
3112 		goto out;
3113 
3114 	ret = offset;
3115 	if (entry->bitmap) {
3116 		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3117 
3118 		if (!btrfs_free_space_trimmed(entry))
3119 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3120 
3121 		if (!entry->bytes)
3122 			free_bitmap(ctl, entry);
3123 	} else {
3124 		unlink_free_space(ctl, entry, true);
3125 		align_gap_len = offset - entry->offset;
3126 		align_gap = entry->offset;
3127 		align_gap_trim_state = entry->trim_state;
3128 
3129 		if (!btrfs_free_space_trimmed(entry))
3130 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3131 
3132 		entry->offset = offset + bytes;
3133 		WARN_ON(entry->bytes < bytes + align_gap_len);
3134 
3135 		entry->bytes -= bytes + align_gap_len;
3136 		if (!entry->bytes)
3137 			kmem_cache_free(btrfs_free_space_cachep, entry);
3138 		else
3139 			link_free_space(ctl, entry);
3140 	}
3141 out:
3142 	btrfs_discard_update_discardable(block_group);
3143 	spin_unlock(&ctl->tree_lock);
3144 
3145 	if (align_gap_len)
3146 		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3147 				       align_gap_trim_state);
3148 	return ret;
3149 }
3150 
3151 /*
3152  * given a cluster, put all of its extents back into the free space
3153  * cache.  If a block group is passed, this function will only free
3154  * a cluster that belongs to the passed block group.
3155  *
3156  * Otherwise, it'll get a reference on the block group pointed to by the
3157  * cluster and remove the cluster from it.
3158  */
3159 void btrfs_return_cluster_to_free_space(
3160 			       struct btrfs_block_group *block_group,
3161 			       struct btrfs_free_cluster *cluster)
3162 {
3163 	struct btrfs_free_space_ctl *ctl;
3164 
3165 	/* first, get a safe pointer to the block group */
3166 	spin_lock(&cluster->lock);
3167 	if (!block_group) {
3168 		block_group = cluster->block_group;
3169 		if (!block_group) {
3170 			spin_unlock(&cluster->lock);
3171 			return;
3172 		}
3173 	} else if (cluster->block_group != block_group) {
3174 		/* someone else has already freed it don't redo their work */
3175 		spin_unlock(&cluster->lock);
3176 		return;
3177 	}
3178 	btrfs_get_block_group(block_group);
3179 	spin_unlock(&cluster->lock);
3180 
3181 	ctl = block_group->free_space_ctl;
3182 
3183 	/* now return any extents the cluster had on it */
3184 	spin_lock(&ctl->tree_lock);
3185 	__btrfs_return_cluster_to_free_space(block_group, cluster);
3186 	spin_unlock(&ctl->tree_lock);
3187 
3188 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3189 
3190 	/* finally drop our ref */
3191 	btrfs_put_block_group(block_group);
3192 }
3193 
3194 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3195 				   struct btrfs_free_cluster *cluster,
3196 				   struct btrfs_free_space *entry,
3197 				   u64 bytes, u64 min_start,
3198 				   u64 *max_extent_size)
3199 {
3200 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3201 	int err;
3202 	u64 search_start = cluster->window_start;
3203 	u64 search_bytes = bytes;
3204 	u64 ret = 0;
3205 
3206 	search_start = min_start;
3207 	search_bytes = bytes;
3208 
3209 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3210 	if (err) {
3211 		*max_extent_size = max(get_max_extent_size(entry),
3212 				       *max_extent_size);
3213 		return 0;
3214 	}
3215 
3216 	ret = search_start;
3217 	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3218 
3219 	return ret;
3220 }
3221 
3222 /*
3223  * given a cluster, try to allocate 'bytes' from it, returns 0
3224  * if it couldn't find anything suitably large, or a logical disk offset
3225  * if things worked out
3226  */
3227 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3228 			     struct btrfs_free_cluster *cluster, u64 bytes,
3229 			     u64 min_start, u64 *max_extent_size)
3230 {
3231 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3232 	struct btrfs_discard_ctl *discard_ctl =
3233 					&block_group->fs_info->discard_ctl;
3234 	struct btrfs_free_space *entry = NULL;
3235 	struct rb_node *node;
3236 	u64 ret = 0;
3237 
3238 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3239 
3240 	spin_lock(&cluster->lock);
3241 	if (bytes > cluster->max_size)
3242 		goto out;
3243 
3244 	if (cluster->block_group != block_group)
3245 		goto out;
3246 
3247 	node = rb_first(&cluster->root);
3248 	if (!node)
3249 		goto out;
3250 
3251 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3252 	while (1) {
3253 		if (entry->bytes < bytes)
3254 			*max_extent_size = max(get_max_extent_size(entry),
3255 					       *max_extent_size);
3256 
3257 		if (entry->bytes < bytes ||
3258 		    (!entry->bitmap && entry->offset < min_start)) {
3259 			node = rb_next(&entry->offset_index);
3260 			if (!node)
3261 				break;
3262 			entry = rb_entry(node, struct btrfs_free_space,
3263 					 offset_index);
3264 			continue;
3265 		}
3266 
3267 		if (entry->bitmap) {
3268 			ret = btrfs_alloc_from_bitmap(block_group,
3269 						      cluster, entry, bytes,
3270 						      cluster->window_start,
3271 						      max_extent_size);
3272 			if (ret == 0) {
3273 				node = rb_next(&entry->offset_index);
3274 				if (!node)
3275 					break;
3276 				entry = rb_entry(node, struct btrfs_free_space,
3277 						 offset_index);
3278 				continue;
3279 			}
3280 			cluster->window_start += bytes;
3281 		} else {
3282 			ret = entry->offset;
3283 
3284 			entry->offset += bytes;
3285 			entry->bytes -= bytes;
3286 		}
3287 
3288 		break;
3289 	}
3290 out:
3291 	spin_unlock(&cluster->lock);
3292 
3293 	if (!ret)
3294 		return 0;
3295 
3296 	spin_lock(&ctl->tree_lock);
3297 
3298 	if (!btrfs_free_space_trimmed(entry))
3299 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3300 
3301 	ctl->free_space -= bytes;
3302 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3303 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3304 
3305 	spin_lock(&cluster->lock);
3306 	if (entry->bytes == 0) {
3307 		rb_erase(&entry->offset_index, &cluster->root);
3308 		ctl->free_extents--;
3309 		if (entry->bitmap) {
3310 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3311 					entry->bitmap);
3312 			ctl->total_bitmaps--;
3313 			recalculate_thresholds(ctl);
3314 		} else if (!btrfs_free_space_trimmed(entry)) {
3315 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3316 		}
3317 		kmem_cache_free(btrfs_free_space_cachep, entry);
3318 	}
3319 
3320 	spin_unlock(&cluster->lock);
3321 	spin_unlock(&ctl->tree_lock);
3322 
3323 	return ret;
3324 }
3325 
3326 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3327 				struct btrfs_free_space *entry,
3328 				struct btrfs_free_cluster *cluster,
3329 				u64 offset, u64 bytes,
3330 				u64 cont1_bytes, u64 min_bytes)
3331 {
3332 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3333 	unsigned long next_zero;
3334 	unsigned long i;
3335 	unsigned long want_bits;
3336 	unsigned long min_bits;
3337 	unsigned long found_bits;
3338 	unsigned long max_bits = 0;
3339 	unsigned long start = 0;
3340 	unsigned long total_found = 0;
3341 	int ret;
3342 
3343 	lockdep_assert_held(&ctl->tree_lock);
3344 
3345 	i = offset_to_bit(entry->offset, ctl->unit,
3346 			  max_t(u64, offset, entry->offset));
3347 	want_bits = bytes_to_bits(bytes, ctl->unit);
3348 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3349 
3350 	/*
3351 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3352 	 * fragmented.
3353 	 */
3354 	if (entry->max_extent_size &&
3355 	    entry->max_extent_size < cont1_bytes)
3356 		return -ENOSPC;
3357 again:
3358 	found_bits = 0;
3359 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3360 		next_zero = find_next_zero_bit(entry->bitmap,
3361 					       BITS_PER_BITMAP, i);
3362 		if (next_zero - i >= min_bits) {
3363 			found_bits = next_zero - i;
3364 			if (found_bits > max_bits)
3365 				max_bits = found_bits;
3366 			break;
3367 		}
3368 		if (next_zero - i > max_bits)
3369 			max_bits = next_zero - i;
3370 		i = next_zero;
3371 	}
3372 
3373 	if (!found_bits) {
3374 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3375 		return -ENOSPC;
3376 	}
3377 
3378 	if (!total_found) {
3379 		start = i;
3380 		cluster->max_size = 0;
3381 	}
3382 
3383 	total_found += found_bits;
3384 
3385 	if (cluster->max_size < found_bits * ctl->unit)
3386 		cluster->max_size = found_bits * ctl->unit;
3387 
3388 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3389 		i = next_zero + 1;
3390 		goto again;
3391 	}
3392 
3393 	cluster->window_start = start * ctl->unit + entry->offset;
3394 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3395 	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3396 
3397 	/*
3398 	 * We need to know if we're currently on the normal space index when we
3399 	 * manipulate the bitmap so that we know we need to remove and re-insert
3400 	 * it into the space_index tree.  Clear the bytes_index node here so the
3401 	 * bitmap manipulation helpers know not to mess with the space_index
3402 	 * until this bitmap entry is added back into the normal cache.
3403 	 */
3404 	RB_CLEAR_NODE(&entry->bytes_index);
3405 
3406 	ret = tree_insert_offset(ctl, cluster, entry);
3407 	ASSERT(!ret); /* -EEXIST; Logic error */
3408 
3409 	trace_btrfs_setup_cluster(block_group, cluster,
3410 				  total_found * ctl->unit, 1);
3411 	return 0;
3412 }
3413 
3414 /*
3415  * This searches the block group for just extents to fill the cluster with.
3416  * Try to find a cluster with at least bytes total bytes, at least one
3417  * extent of cont1_bytes, and other clusters of at least min_bytes.
3418  */
3419 static noinline int
3420 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3421 			struct btrfs_free_cluster *cluster,
3422 			struct list_head *bitmaps, u64 offset, u64 bytes,
3423 			u64 cont1_bytes, u64 min_bytes)
3424 {
3425 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3426 	struct btrfs_free_space *first = NULL;
3427 	struct btrfs_free_space *entry = NULL;
3428 	struct btrfs_free_space *last;
3429 	struct rb_node *node;
3430 	u64 window_free;
3431 	u64 max_extent;
3432 	u64 total_size = 0;
3433 
3434 	lockdep_assert_held(&ctl->tree_lock);
3435 
3436 	entry = tree_search_offset(ctl, offset, 0, 1);
3437 	if (!entry)
3438 		return -ENOSPC;
3439 
3440 	/*
3441 	 * We don't want bitmaps, so just move along until we find a normal
3442 	 * extent entry.
3443 	 */
3444 	while (entry->bitmap || entry->bytes < min_bytes) {
3445 		if (entry->bitmap && list_empty(&entry->list))
3446 			list_add_tail(&entry->list, bitmaps);
3447 		node = rb_next(&entry->offset_index);
3448 		if (!node)
3449 			return -ENOSPC;
3450 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3451 	}
3452 
3453 	window_free = entry->bytes;
3454 	max_extent = entry->bytes;
3455 	first = entry;
3456 	last = entry;
3457 
3458 	for (node = rb_next(&entry->offset_index); node;
3459 	     node = rb_next(&entry->offset_index)) {
3460 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3461 
3462 		if (entry->bitmap) {
3463 			if (list_empty(&entry->list))
3464 				list_add_tail(&entry->list, bitmaps);
3465 			continue;
3466 		}
3467 
3468 		if (entry->bytes < min_bytes)
3469 			continue;
3470 
3471 		last = entry;
3472 		window_free += entry->bytes;
3473 		if (entry->bytes > max_extent)
3474 			max_extent = entry->bytes;
3475 	}
3476 
3477 	if (window_free < bytes || max_extent < cont1_bytes)
3478 		return -ENOSPC;
3479 
3480 	cluster->window_start = first->offset;
3481 
3482 	node = &first->offset_index;
3483 
3484 	/*
3485 	 * now we've found our entries, pull them out of the free space
3486 	 * cache and put them into the cluster rbtree
3487 	 */
3488 	do {
3489 		int ret;
3490 
3491 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3492 		node = rb_next(&entry->offset_index);
3493 		if (entry->bitmap || entry->bytes < min_bytes)
3494 			continue;
3495 
3496 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3497 		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3498 		ret = tree_insert_offset(ctl, cluster, entry);
3499 		total_size += entry->bytes;
3500 		ASSERT(!ret); /* -EEXIST; Logic error */
3501 	} while (node && entry != last);
3502 
3503 	cluster->max_size = max_extent;
3504 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3505 	return 0;
3506 }
3507 
3508 /*
3509  * This specifically looks for bitmaps that may work in the cluster, we assume
3510  * that we have already failed to find extents that will work.
3511  */
3512 static noinline int
3513 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3514 		     struct btrfs_free_cluster *cluster,
3515 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3516 		     u64 cont1_bytes, u64 min_bytes)
3517 {
3518 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3519 	struct btrfs_free_space *entry = NULL;
3520 	int ret = -ENOSPC;
3521 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3522 
3523 	if (ctl->total_bitmaps == 0)
3524 		return -ENOSPC;
3525 
3526 	/*
3527 	 * The bitmap that covers offset won't be in the list unless offset
3528 	 * is just its start offset.
3529 	 */
3530 	if (!list_empty(bitmaps))
3531 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3532 
3533 	if (!entry || entry->offset != bitmap_offset) {
3534 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3535 		if (entry && list_empty(&entry->list))
3536 			list_add(&entry->list, bitmaps);
3537 	}
3538 
3539 	list_for_each_entry(entry, bitmaps, list) {
3540 		if (entry->bytes < bytes)
3541 			continue;
3542 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3543 					   bytes, cont1_bytes, min_bytes);
3544 		if (!ret)
3545 			return 0;
3546 	}
3547 
3548 	/*
3549 	 * The bitmaps list has all the bitmaps that record free space
3550 	 * starting after offset, so no more search is required.
3551 	 */
3552 	return -ENOSPC;
3553 }
3554 
3555 /*
3556  * here we try to find a cluster of blocks in a block group.  The goal
3557  * is to find at least bytes+empty_size.
3558  * We might not find them all in one contiguous area.
3559  *
3560  * returns zero and sets up cluster if things worked out, otherwise
3561  * it returns -enospc
3562  */
3563 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3564 			     struct btrfs_free_cluster *cluster,
3565 			     u64 offset, u64 bytes, u64 empty_size)
3566 {
3567 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3568 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3569 	struct btrfs_free_space *entry, *tmp;
3570 	LIST_HEAD(bitmaps);
3571 	u64 min_bytes;
3572 	u64 cont1_bytes;
3573 	int ret;
3574 
3575 	/*
3576 	 * Choose the minimum extent size we'll require for this
3577 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3578 	 * For metadata, allow allocates with smaller extents.  For
3579 	 * data, keep it dense.
3580 	 */
3581 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3582 		cont1_bytes = bytes + empty_size;
3583 		min_bytes = cont1_bytes;
3584 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3585 		cont1_bytes = bytes;
3586 		min_bytes = fs_info->sectorsize;
3587 	} else {
3588 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3589 		min_bytes = fs_info->sectorsize;
3590 	}
3591 
3592 	spin_lock(&ctl->tree_lock);
3593 
3594 	/*
3595 	 * If we know we don't have enough space to make a cluster don't even
3596 	 * bother doing all the work to try and find one.
3597 	 */
3598 	if (ctl->free_space < bytes) {
3599 		spin_unlock(&ctl->tree_lock);
3600 		return -ENOSPC;
3601 	}
3602 
3603 	spin_lock(&cluster->lock);
3604 
3605 	/* someone already found a cluster, hooray */
3606 	if (cluster->block_group) {
3607 		ret = 0;
3608 		goto out;
3609 	}
3610 
3611 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3612 				 min_bytes);
3613 
3614 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3615 				      bytes + empty_size,
3616 				      cont1_bytes, min_bytes);
3617 	if (ret)
3618 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3619 					   offset, bytes + empty_size,
3620 					   cont1_bytes, min_bytes);
3621 
3622 	/* Clear our temporary list */
3623 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3624 		list_del_init(&entry->list);
3625 
3626 	if (!ret) {
3627 		btrfs_get_block_group(block_group);
3628 		list_add_tail(&cluster->block_group_list,
3629 			      &block_group->cluster_list);
3630 		cluster->block_group = block_group;
3631 	} else {
3632 		trace_btrfs_failed_cluster_setup(block_group);
3633 	}
3634 out:
3635 	spin_unlock(&cluster->lock);
3636 	spin_unlock(&ctl->tree_lock);
3637 
3638 	return ret;
3639 }
3640 
3641 /*
3642  * simple code to zero out a cluster
3643  */
3644 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3645 {
3646 	spin_lock_init(&cluster->lock);
3647 	spin_lock_init(&cluster->refill_lock);
3648 	cluster->root = RB_ROOT;
3649 	cluster->max_size = 0;
3650 	cluster->fragmented = false;
3651 	INIT_LIST_HEAD(&cluster->block_group_list);
3652 	cluster->block_group = NULL;
3653 }
3654 
3655 static int do_trimming(struct btrfs_block_group *block_group,
3656 		       u64 *total_trimmed, u64 start, u64 bytes,
3657 		       u64 reserved_start, u64 reserved_bytes,
3658 		       enum btrfs_trim_state reserved_trim_state,
3659 		       struct btrfs_trim_range *trim_entry)
3660 {
3661 	struct btrfs_space_info *space_info = block_group->space_info;
3662 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3663 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3664 	int ret;
3665 	int update = 0;
3666 	const u64 end = start + bytes;
3667 	const u64 reserved_end = reserved_start + reserved_bytes;
3668 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3669 	u64 trimmed = 0;
3670 
3671 	spin_lock(&space_info->lock);
3672 	spin_lock(&block_group->lock);
3673 	if (!block_group->ro) {
3674 		block_group->reserved += reserved_bytes;
3675 		space_info->bytes_reserved += reserved_bytes;
3676 		update = 1;
3677 	}
3678 	spin_unlock(&block_group->lock);
3679 	spin_unlock(&space_info->lock);
3680 
3681 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3682 	if (!ret) {
3683 		*total_trimmed += trimmed;
3684 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3685 	}
3686 
3687 	mutex_lock(&ctl->cache_writeout_mutex);
3688 	if (reserved_start < start)
3689 		__btrfs_add_free_space(block_group, reserved_start,
3690 				       start - reserved_start,
3691 				       reserved_trim_state);
3692 	if (end < reserved_end)
3693 		__btrfs_add_free_space(block_group, end, reserved_end - end,
3694 				       reserved_trim_state);
3695 	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3696 	list_del(&trim_entry->list);
3697 	mutex_unlock(&ctl->cache_writeout_mutex);
3698 
3699 	if (update) {
3700 		spin_lock(&space_info->lock);
3701 		spin_lock(&block_group->lock);
3702 		if (block_group->ro)
3703 			space_info->bytes_readonly += reserved_bytes;
3704 		block_group->reserved -= reserved_bytes;
3705 		space_info->bytes_reserved -= reserved_bytes;
3706 		spin_unlock(&block_group->lock);
3707 		spin_unlock(&space_info->lock);
3708 	}
3709 
3710 	return ret;
3711 }
3712 
3713 /*
3714  * If @async is set, then we will trim 1 region and return.
3715  */
3716 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3717 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3718 			  bool async)
3719 {
3720 	struct btrfs_discard_ctl *discard_ctl =
3721 					&block_group->fs_info->discard_ctl;
3722 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3723 	struct btrfs_free_space *entry;
3724 	struct rb_node *node;
3725 	int ret = 0;
3726 	u64 extent_start;
3727 	u64 extent_bytes;
3728 	enum btrfs_trim_state extent_trim_state;
3729 	u64 bytes;
3730 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3731 
3732 	while (start < end) {
3733 		struct btrfs_trim_range trim_entry;
3734 
3735 		mutex_lock(&ctl->cache_writeout_mutex);
3736 		spin_lock(&ctl->tree_lock);
3737 
3738 		if (ctl->free_space < minlen)
3739 			goto out_unlock;
3740 
3741 		entry = tree_search_offset(ctl, start, 0, 1);
3742 		if (!entry)
3743 			goto out_unlock;
3744 
3745 		/* Skip bitmaps and if async, already trimmed entries */
3746 		while (entry->bitmap ||
3747 		       (async && btrfs_free_space_trimmed(entry))) {
3748 			node = rb_next(&entry->offset_index);
3749 			if (!node)
3750 				goto out_unlock;
3751 			entry = rb_entry(node, struct btrfs_free_space,
3752 					 offset_index);
3753 		}
3754 
3755 		if (entry->offset >= end)
3756 			goto out_unlock;
3757 
3758 		extent_start = entry->offset;
3759 		extent_bytes = entry->bytes;
3760 		extent_trim_state = entry->trim_state;
3761 		if (async) {
3762 			start = entry->offset;
3763 			bytes = entry->bytes;
3764 			if (bytes < minlen) {
3765 				spin_unlock(&ctl->tree_lock);
3766 				mutex_unlock(&ctl->cache_writeout_mutex);
3767 				goto next;
3768 			}
3769 			unlink_free_space(ctl, entry, true);
3770 			/*
3771 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3772 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3773 			 * X when we come back around.  So trim it now.
3774 			 */
3775 			if (max_discard_size &&
3776 			    bytes >= (max_discard_size +
3777 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3778 				bytes = max_discard_size;
3779 				extent_bytes = max_discard_size;
3780 				entry->offset += max_discard_size;
3781 				entry->bytes -= max_discard_size;
3782 				link_free_space(ctl, entry);
3783 			} else {
3784 				kmem_cache_free(btrfs_free_space_cachep, entry);
3785 			}
3786 		} else {
3787 			start = max(start, extent_start);
3788 			bytes = min(extent_start + extent_bytes, end) - start;
3789 			if (bytes < minlen) {
3790 				spin_unlock(&ctl->tree_lock);
3791 				mutex_unlock(&ctl->cache_writeout_mutex);
3792 				goto next;
3793 			}
3794 
3795 			unlink_free_space(ctl, entry, true);
3796 			kmem_cache_free(btrfs_free_space_cachep, entry);
3797 		}
3798 
3799 		spin_unlock(&ctl->tree_lock);
3800 		trim_entry.start = extent_start;
3801 		trim_entry.bytes = extent_bytes;
3802 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3803 		mutex_unlock(&ctl->cache_writeout_mutex);
3804 
3805 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3806 				  extent_start, extent_bytes, extent_trim_state,
3807 				  &trim_entry);
3808 		if (ret) {
3809 			block_group->discard_cursor = start + bytes;
3810 			break;
3811 		}
3812 next:
3813 		start += bytes;
3814 		block_group->discard_cursor = start;
3815 		if (async && *total_trimmed)
3816 			break;
3817 
3818 		if (btrfs_trim_interrupted()) {
3819 			ret = -ERESTARTSYS;
3820 			break;
3821 		}
3822 
3823 		cond_resched();
3824 	}
3825 
3826 	return ret;
3827 
3828 out_unlock:
3829 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3830 	spin_unlock(&ctl->tree_lock);
3831 	mutex_unlock(&ctl->cache_writeout_mutex);
3832 
3833 	return ret;
3834 }
3835 
3836 /*
3837  * If we break out of trimming a bitmap prematurely, we should reset the
3838  * trimming bit.  In a rather contrieved case, it's possible to race here so
3839  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3840  *
3841  * start = start of bitmap
3842  * end = near end of bitmap
3843  *
3844  * Thread 1:			Thread 2:
3845  * trim_bitmaps(start)
3846  *				trim_bitmaps(end)
3847  *				end_trimming_bitmap()
3848  * reset_trimming_bitmap()
3849  */
3850 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3851 {
3852 	struct btrfs_free_space *entry;
3853 
3854 	spin_lock(&ctl->tree_lock);
3855 	entry = tree_search_offset(ctl, offset, 1, 0);
3856 	if (entry) {
3857 		if (btrfs_free_space_trimmed(entry)) {
3858 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3859 				entry->bitmap_extents;
3860 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3861 		}
3862 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3863 	}
3864 
3865 	spin_unlock(&ctl->tree_lock);
3866 }
3867 
3868 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3869 				struct btrfs_free_space *entry)
3870 {
3871 	if (btrfs_free_space_trimming_bitmap(entry)) {
3872 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3873 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3874 			entry->bitmap_extents;
3875 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3876 	}
3877 }
3878 
3879 /*
3880  * If @async is set, then we will trim 1 region and return.
3881  */
3882 static int trim_bitmaps(struct btrfs_block_group *block_group,
3883 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3884 			u64 maxlen, bool async)
3885 {
3886 	struct btrfs_discard_ctl *discard_ctl =
3887 					&block_group->fs_info->discard_ctl;
3888 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3889 	struct btrfs_free_space *entry;
3890 	int ret = 0;
3891 	int ret2;
3892 	u64 bytes;
3893 	u64 offset = offset_to_bitmap(ctl, start);
3894 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3895 
3896 	while (offset < end) {
3897 		bool next_bitmap = false;
3898 		struct btrfs_trim_range trim_entry;
3899 
3900 		mutex_lock(&ctl->cache_writeout_mutex);
3901 		spin_lock(&ctl->tree_lock);
3902 
3903 		if (ctl->free_space < minlen) {
3904 			block_group->discard_cursor =
3905 				btrfs_block_group_end(block_group);
3906 			spin_unlock(&ctl->tree_lock);
3907 			mutex_unlock(&ctl->cache_writeout_mutex);
3908 			break;
3909 		}
3910 
3911 		entry = tree_search_offset(ctl, offset, 1, 0);
3912 		/*
3913 		 * Bitmaps are marked trimmed lossily now to prevent constant
3914 		 * discarding of the same bitmap (the reason why we are bound
3915 		 * by the filters).  So, retrim the block group bitmaps when we
3916 		 * are preparing to punt to the unused_bgs list.  This uses
3917 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3918 		 * which is the only discard index which sets minlen to 0.
3919 		 */
3920 		if (!entry || (async && minlen && start == offset &&
3921 			       btrfs_free_space_trimmed(entry))) {
3922 			spin_unlock(&ctl->tree_lock);
3923 			mutex_unlock(&ctl->cache_writeout_mutex);
3924 			next_bitmap = true;
3925 			goto next;
3926 		}
3927 
3928 		/*
3929 		 * Async discard bitmap trimming begins at by setting the start
3930 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3931 		 * start of the bitmap.  This lets us know we are fully
3932 		 * scanning the bitmap rather than only some portion of it.
3933 		 */
3934 		if (start == offset)
3935 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3936 
3937 		bytes = minlen;
3938 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3939 		if (ret2 || start >= end) {
3940 			/*
3941 			 * We lossily consider a bitmap trimmed if we only skip
3942 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3943 			 */
3944 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3945 				end_trimming_bitmap(ctl, entry);
3946 			else
3947 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3948 			spin_unlock(&ctl->tree_lock);
3949 			mutex_unlock(&ctl->cache_writeout_mutex);
3950 			next_bitmap = true;
3951 			goto next;
3952 		}
3953 
3954 		/*
3955 		 * We already trimmed a region, but are using the locking above
3956 		 * to reset the trim_state.
3957 		 */
3958 		if (async && *total_trimmed) {
3959 			spin_unlock(&ctl->tree_lock);
3960 			mutex_unlock(&ctl->cache_writeout_mutex);
3961 			goto out;
3962 		}
3963 
3964 		bytes = min(bytes, end - start);
3965 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3966 			spin_unlock(&ctl->tree_lock);
3967 			mutex_unlock(&ctl->cache_writeout_mutex);
3968 			goto next;
3969 		}
3970 
3971 		/*
3972 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3973 		 * If X < @minlen, we won't trim X when we come back around.
3974 		 * So trim it now.  We differ here from trimming extents as we
3975 		 * don't keep individual state per bit.
3976 		 */
3977 		if (async &&
3978 		    max_discard_size &&
3979 		    bytes > (max_discard_size + minlen))
3980 			bytes = max_discard_size;
3981 
3982 		bitmap_clear_bits(ctl, entry, start, bytes, true);
3983 		if (entry->bytes == 0)
3984 			free_bitmap(ctl, entry);
3985 
3986 		spin_unlock(&ctl->tree_lock);
3987 		trim_entry.start = start;
3988 		trim_entry.bytes = bytes;
3989 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3990 		mutex_unlock(&ctl->cache_writeout_mutex);
3991 
3992 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3993 				  start, bytes, 0, &trim_entry);
3994 		if (ret) {
3995 			reset_trimming_bitmap(ctl, offset);
3996 			block_group->discard_cursor =
3997 				btrfs_block_group_end(block_group);
3998 			break;
3999 		}
4000 next:
4001 		if (next_bitmap) {
4002 			offset += BITS_PER_BITMAP * ctl->unit;
4003 			start = offset;
4004 		} else {
4005 			start += bytes;
4006 		}
4007 		block_group->discard_cursor = start;
4008 
4009 		if (btrfs_trim_interrupted()) {
4010 			if (start != offset)
4011 				reset_trimming_bitmap(ctl, offset);
4012 			ret = -ERESTARTSYS;
4013 			break;
4014 		}
4015 
4016 		cond_resched();
4017 	}
4018 
4019 	if (offset >= end)
4020 		block_group->discard_cursor = end;
4021 
4022 out:
4023 	return ret;
4024 }
4025 
4026 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4027 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4028 {
4029 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4030 	int ret;
4031 	u64 rem = 0;
4032 
4033 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4034 
4035 	*trimmed = 0;
4036 
4037 	spin_lock(&block_group->lock);
4038 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4039 		spin_unlock(&block_group->lock);
4040 		return 0;
4041 	}
4042 	btrfs_freeze_block_group(block_group);
4043 	spin_unlock(&block_group->lock);
4044 
4045 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4046 	if (ret)
4047 		goto out;
4048 
4049 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4050 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4051 	/* If we ended in the middle of a bitmap, reset the trimming flag */
4052 	if (rem)
4053 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4054 out:
4055 	btrfs_unfreeze_block_group(block_group);
4056 	return ret;
4057 }
4058 
4059 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4060 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4061 				   bool async)
4062 {
4063 	int ret;
4064 
4065 	*trimmed = 0;
4066 
4067 	spin_lock(&block_group->lock);
4068 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4069 		spin_unlock(&block_group->lock);
4070 		return 0;
4071 	}
4072 	btrfs_freeze_block_group(block_group);
4073 	spin_unlock(&block_group->lock);
4074 
4075 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4076 	btrfs_unfreeze_block_group(block_group);
4077 
4078 	return ret;
4079 }
4080 
4081 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4082 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4083 				   u64 maxlen, bool async)
4084 {
4085 	int ret;
4086 
4087 	*trimmed = 0;
4088 
4089 	spin_lock(&block_group->lock);
4090 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4091 		spin_unlock(&block_group->lock);
4092 		return 0;
4093 	}
4094 	btrfs_freeze_block_group(block_group);
4095 	spin_unlock(&block_group->lock);
4096 
4097 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4098 			   async);
4099 
4100 	btrfs_unfreeze_block_group(block_group);
4101 
4102 	return ret;
4103 }
4104 
4105 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4106 {
4107 	return btrfs_super_cache_generation(fs_info->super_copy);
4108 }
4109 
4110 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4111 				       struct btrfs_trans_handle *trans)
4112 {
4113 	struct btrfs_block_group *block_group;
4114 	struct rb_node *node;
4115 	int ret = 0;
4116 
4117 	btrfs_info(fs_info, "cleaning free space cache v1");
4118 
4119 	node = rb_first_cached(&fs_info->block_group_cache_tree);
4120 	while (node) {
4121 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4122 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4123 		if (ret)
4124 			goto out;
4125 		node = rb_next(node);
4126 	}
4127 out:
4128 	return ret;
4129 }
4130 
4131 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4132 {
4133 	struct btrfs_trans_handle *trans;
4134 	int ret;
4135 
4136 	/*
4137 	 * update_super_roots will appropriately set or unset
4138 	 * super_copy->cache_generation based on SPACE_CACHE and
4139 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4140 	 * transaction commit whether we are enabling space cache v1 and don't
4141 	 * have any other work to do, or are disabling it and removing free
4142 	 * space inodes.
4143 	 */
4144 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4145 	if (IS_ERR(trans))
4146 		return PTR_ERR(trans);
4147 
4148 	if (!active) {
4149 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4150 		ret = cleanup_free_space_cache_v1(fs_info, trans);
4151 		if (ret) {
4152 			btrfs_abort_transaction(trans, ret);
4153 			btrfs_end_transaction(trans);
4154 			goto out;
4155 		}
4156 	}
4157 
4158 	ret = btrfs_commit_transaction(trans);
4159 out:
4160 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4161 
4162 	return ret;
4163 }
4164 
4165 int __init btrfs_free_space_init(void)
4166 {
4167 	btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4168 	if (!btrfs_free_space_cachep)
4169 		return -ENOMEM;
4170 
4171 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4172 							PAGE_SIZE, PAGE_SIZE,
4173 							0, NULL);
4174 	if (!btrfs_free_space_bitmap_cachep) {
4175 		kmem_cache_destroy(btrfs_free_space_cachep);
4176 		return -ENOMEM;
4177 	}
4178 
4179 	return 0;
4180 }
4181 
4182 void __cold btrfs_free_space_exit(void)
4183 {
4184 	kmem_cache_destroy(btrfs_free_space_cachep);
4185 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4186 }
4187 
4188 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4189 /*
4190  * Use this if you need to make a bitmap or extent entry specifically, it
4191  * doesn't do any of the merging that add_free_space does, this acts a lot like
4192  * how the free space cache loading stuff works, so you can get really weird
4193  * configurations.
4194  */
4195 int test_add_free_space_entry(struct btrfs_block_group *cache,
4196 			      u64 offset, u64 bytes, bool bitmap)
4197 {
4198 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4199 	struct btrfs_free_space *info = NULL, *bitmap_info;
4200 	void *map = NULL;
4201 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4202 	u64 bytes_added;
4203 	int ret;
4204 
4205 again:
4206 	if (!info) {
4207 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4208 		if (!info)
4209 			return -ENOMEM;
4210 	}
4211 
4212 	if (!bitmap) {
4213 		spin_lock(&ctl->tree_lock);
4214 		info->offset = offset;
4215 		info->bytes = bytes;
4216 		info->max_extent_size = 0;
4217 		ret = link_free_space(ctl, info);
4218 		spin_unlock(&ctl->tree_lock);
4219 		if (ret)
4220 			kmem_cache_free(btrfs_free_space_cachep, info);
4221 		return ret;
4222 	}
4223 
4224 	if (!map) {
4225 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4226 		if (!map) {
4227 			kmem_cache_free(btrfs_free_space_cachep, info);
4228 			return -ENOMEM;
4229 		}
4230 	}
4231 
4232 	spin_lock(&ctl->tree_lock);
4233 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4234 					 1, 0);
4235 	if (!bitmap_info) {
4236 		info->bitmap = map;
4237 		map = NULL;
4238 		add_new_bitmap(ctl, info, offset);
4239 		bitmap_info = info;
4240 		info = NULL;
4241 	}
4242 
4243 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4244 					  trim_state);
4245 
4246 	bytes -= bytes_added;
4247 	offset += bytes_added;
4248 	spin_unlock(&ctl->tree_lock);
4249 
4250 	if (bytes)
4251 		goto again;
4252 
4253 	if (info)
4254 		kmem_cache_free(btrfs_free_space_cachep, info);
4255 	if (map)
4256 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4257 	return 0;
4258 }
4259 
4260 /*
4261  * Checks to see if the given range is in the free space cache.  This is really
4262  * just used to check the absence of space, so if there is free space in the
4263  * range at all we will return 1.
4264  */
4265 int test_check_exists(struct btrfs_block_group *cache,
4266 		      u64 offset, u64 bytes)
4267 {
4268 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4269 	struct btrfs_free_space *info;
4270 	int ret = 0;
4271 
4272 	spin_lock(&ctl->tree_lock);
4273 	info = tree_search_offset(ctl, offset, 0, 0);
4274 	if (!info) {
4275 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4276 					  1, 0);
4277 		if (!info)
4278 			goto out;
4279 	}
4280 
4281 have_info:
4282 	if (info->bitmap) {
4283 		u64 bit_off, bit_bytes;
4284 		struct rb_node *n;
4285 		struct btrfs_free_space *tmp;
4286 
4287 		bit_off = offset;
4288 		bit_bytes = ctl->unit;
4289 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4290 		if (!ret) {
4291 			if (bit_off == offset) {
4292 				ret = 1;
4293 				goto out;
4294 			} else if (bit_off > offset &&
4295 				   offset + bytes > bit_off) {
4296 				ret = 1;
4297 				goto out;
4298 			}
4299 		}
4300 
4301 		n = rb_prev(&info->offset_index);
4302 		while (n) {
4303 			tmp = rb_entry(n, struct btrfs_free_space,
4304 				       offset_index);
4305 			if (tmp->offset + tmp->bytes < offset)
4306 				break;
4307 			if (offset + bytes < tmp->offset) {
4308 				n = rb_prev(&tmp->offset_index);
4309 				continue;
4310 			}
4311 			info = tmp;
4312 			goto have_info;
4313 		}
4314 
4315 		n = rb_next(&info->offset_index);
4316 		while (n) {
4317 			tmp = rb_entry(n, struct btrfs_free_space,
4318 				       offset_index);
4319 			if (offset + bytes < tmp->offset)
4320 				break;
4321 			if (tmp->offset + tmp->bytes < offset) {
4322 				n = rb_next(&tmp->offset_index);
4323 				continue;
4324 			}
4325 			info = tmp;
4326 			goto have_info;
4327 		}
4328 
4329 		ret = 0;
4330 		goto out;
4331 	}
4332 
4333 	if (info->offset == offset) {
4334 		ret = 1;
4335 		goto out;
4336 	}
4337 
4338 	if (offset > info->offset && offset < info->offset + info->bytes)
4339 		ret = 1;
4340 out:
4341 	spin_unlock(&ctl->tree_lock);
4342 	return ret;
4343 }
4344 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4345