1 /* 2 * Copyright (C) 2008 Red Hat. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/pagemap.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/math64.h> 23 #include <linux/ratelimit.h> 24 #include "ctree.h" 25 #include "free-space-cache.h" 26 #include "transaction.h" 27 #include "disk-io.h" 28 #include "extent_io.h" 29 #include "inode-map.h" 30 31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8) 32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024) 33 34 static int link_free_space(struct btrfs_free_space_ctl *ctl, 35 struct btrfs_free_space *info); 36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 37 struct btrfs_free_space *info); 38 39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 40 struct btrfs_path *path, 41 u64 offset) 42 { 43 struct btrfs_key key; 44 struct btrfs_key location; 45 struct btrfs_disk_key disk_key; 46 struct btrfs_free_space_header *header; 47 struct extent_buffer *leaf; 48 struct inode *inode = NULL; 49 int ret; 50 51 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 52 key.offset = offset; 53 key.type = 0; 54 55 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 56 if (ret < 0) 57 return ERR_PTR(ret); 58 if (ret > 0) { 59 btrfs_release_path(path); 60 return ERR_PTR(-ENOENT); 61 } 62 63 leaf = path->nodes[0]; 64 header = btrfs_item_ptr(leaf, path->slots[0], 65 struct btrfs_free_space_header); 66 btrfs_free_space_key(leaf, header, &disk_key); 67 btrfs_disk_key_to_cpu(&location, &disk_key); 68 btrfs_release_path(path); 69 70 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL); 71 if (!inode) 72 return ERR_PTR(-ENOENT); 73 if (IS_ERR(inode)) 74 return inode; 75 if (is_bad_inode(inode)) { 76 iput(inode); 77 return ERR_PTR(-ENOENT); 78 } 79 80 mapping_set_gfp_mask(inode->i_mapping, 81 mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS); 82 83 return inode; 84 } 85 86 struct inode *lookup_free_space_inode(struct btrfs_root *root, 87 struct btrfs_block_group_cache 88 *block_group, struct btrfs_path *path) 89 { 90 struct inode *inode = NULL; 91 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 92 93 spin_lock(&block_group->lock); 94 if (block_group->inode) 95 inode = igrab(block_group->inode); 96 spin_unlock(&block_group->lock); 97 if (inode) 98 return inode; 99 100 inode = __lookup_free_space_inode(root, path, 101 block_group->key.objectid); 102 if (IS_ERR(inode)) 103 return inode; 104 105 spin_lock(&block_group->lock); 106 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 107 btrfs_info(root->fs_info, 108 "Old style space inode found, converting."); 109 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 110 BTRFS_INODE_NODATACOW; 111 block_group->disk_cache_state = BTRFS_DC_CLEAR; 112 } 113 114 if (!block_group->iref) { 115 block_group->inode = igrab(inode); 116 block_group->iref = 1; 117 } 118 spin_unlock(&block_group->lock); 119 120 return inode; 121 } 122 123 static int __create_free_space_inode(struct btrfs_root *root, 124 struct btrfs_trans_handle *trans, 125 struct btrfs_path *path, 126 u64 ino, u64 offset) 127 { 128 struct btrfs_key key; 129 struct btrfs_disk_key disk_key; 130 struct btrfs_free_space_header *header; 131 struct btrfs_inode_item *inode_item; 132 struct extent_buffer *leaf; 133 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 134 int ret; 135 136 ret = btrfs_insert_empty_inode(trans, root, path, ino); 137 if (ret) 138 return ret; 139 140 /* We inline crc's for the free disk space cache */ 141 if (ino != BTRFS_FREE_INO_OBJECTID) 142 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 143 144 leaf = path->nodes[0]; 145 inode_item = btrfs_item_ptr(leaf, path->slots[0], 146 struct btrfs_inode_item); 147 btrfs_item_key(leaf, &disk_key, path->slots[0]); 148 memset_extent_buffer(leaf, 0, (unsigned long)inode_item, 149 sizeof(*inode_item)); 150 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 151 btrfs_set_inode_size(leaf, inode_item, 0); 152 btrfs_set_inode_nbytes(leaf, inode_item, 0); 153 btrfs_set_inode_uid(leaf, inode_item, 0); 154 btrfs_set_inode_gid(leaf, inode_item, 0); 155 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 156 btrfs_set_inode_flags(leaf, inode_item, flags); 157 btrfs_set_inode_nlink(leaf, inode_item, 1); 158 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 159 btrfs_set_inode_block_group(leaf, inode_item, offset); 160 btrfs_mark_buffer_dirty(leaf); 161 btrfs_release_path(path); 162 163 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 164 key.offset = offset; 165 key.type = 0; 166 167 ret = btrfs_insert_empty_item(trans, root, path, &key, 168 sizeof(struct btrfs_free_space_header)); 169 if (ret < 0) { 170 btrfs_release_path(path); 171 return ret; 172 } 173 leaf = path->nodes[0]; 174 header = btrfs_item_ptr(leaf, path->slots[0], 175 struct btrfs_free_space_header); 176 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header)); 177 btrfs_set_free_space_key(leaf, header, &disk_key); 178 btrfs_mark_buffer_dirty(leaf); 179 btrfs_release_path(path); 180 181 return 0; 182 } 183 184 int create_free_space_inode(struct btrfs_root *root, 185 struct btrfs_trans_handle *trans, 186 struct btrfs_block_group_cache *block_group, 187 struct btrfs_path *path) 188 { 189 int ret; 190 u64 ino; 191 192 ret = btrfs_find_free_objectid(root, &ino); 193 if (ret < 0) 194 return ret; 195 196 return __create_free_space_inode(root, trans, path, ino, 197 block_group->key.objectid); 198 } 199 200 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root, 201 struct btrfs_block_rsv *rsv) 202 { 203 u64 needed_bytes; 204 int ret; 205 206 /* 1 for slack space, 1 for updating the inode */ 207 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) + 208 btrfs_calc_trans_metadata_size(root, 1); 209 210 spin_lock(&rsv->lock); 211 if (rsv->reserved < needed_bytes) 212 ret = -ENOSPC; 213 else 214 ret = 0; 215 spin_unlock(&rsv->lock); 216 return ret; 217 } 218 219 int btrfs_truncate_free_space_cache(struct btrfs_root *root, 220 struct btrfs_trans_handle *trans, 221 struct btrfs_path *path, 222 struct inode *inode) 223 { 224 int ret = 0; 225 226 btrfs_i_size_write(inode, 0); 227 truncate_pagecache(inode, 0); 228 229 /* 230 * We don't need an orphan item because truncating the free space cache 231 * will never be split across transactions. 232 */ 233 ret = btrfs_truncate_inode_items(trans, root, inode, 234 0, BTRFS_EXTENT_DATA_KEY); 235 if (ret) { 236 btrfs_abort_transaction(trans, root, ret); 237 return ret; 238 } 239 240 ret = btrfs_update_inode(trans, root, inode); 241 if (ret) 242 btrfs_abort_transaction(trans, root, ret); 243 244 return ret; 245 } 246 247 static int readahead_cache(struct inode *inode) 248 { 249 struct file_ra_state *ra; 250 unsigned long last_index; 251 252 ra = kzalloc(sizeof(*ra), GFP_NOFS); 253 if (!ra) 254 return -ENOMEM; 255 256 file_ra_state_init(ra, inode->i_mapping); 257 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 258 259 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 260 261 kfree(ra); 262 263 return 0; 264 } 265 266 struct io_ctl { 267 void *cur, *orig; 268 struct page *page; 269 struct page **pages; 270 struct btrfs_root *root; 271 unsigned long size; 272 int index; 273 int num_pages; 274 unsigned check_crcs:1; 275 }; 276 277 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode, 278 struct btrfs_root *root) 279 { 280 memset(io_ctl, 0, sizeof(struct io_ctl)); 281 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 282 PAGE_CACHE_SHIFT; 283 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages, 284 GFP_NOFS); 285 if (!io_ctl->pages) 286 return -ENOMEM; 287 io_ctl->root = root; 288 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID) 289 io_ctl->check_crcs = 1; 290 return 0; 291 } 292 293 static void io_ctl_free(struct io_ctl *io_ctl) 294 { 295 kfree(io_ctl->pages); 296 } 297 298 static void io_ctl_unmap_page(struct io_ctl *io_ctl) 299 { 300 if (io_ctl->cur) { 301 kunmap(io_ctl->page); 302 io_ctl->cur = NULL; 303 io_ctl->orig = NULL; 304 } 305 } 306 307 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear) 308 { 309 ASSERT(io_ctl->index < io_ctl->num_pages); 310 io_ctl->page = io_ctl->pages[io_ctl->index++]; 311 io_ctl->cur = kmap(io_ctl->page); 312 io_ctl->orig = io_ctl->cur; 313 io_ctl->size = PAGE_CACHE_SIZE; 314 if (clear) 315 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE); 316 } 317 318 static void io_ctl_drop_pages(struct io_ctl *io_ctl) 319 { 320 int i; 321 322 io_ctl_unmap_page(io_ctl); 323 324 for (i = 0; i < io_ctl->num_pages; i++) { 325 if (io_ctl->pages[i]) { 326 ClearPageChecked(io_ctl->pages[i]); 327 unlock_page(io_ctl->pages[i]); 328 page_cache_release(io_ctl->pages[i]); 329 } 330 } 331 } 332 333 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode, 334 int uptodate) 335 { 336 struct page *page; 337 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 338 int i; 339 340 for (i = 0; i < io_ctl->num_pages; i++) { 341 page = find_or_create_page(inode->i_mapping, i, mask); 342 if (!page) { 343 io_ctl_drop_pages(io_ctl); 344 return -ENOMEM; 345 } 346 io_ctl->pages[i] = page; 347 if (uptodate && !PageUptodate(page)) { 348 btrfs_readpage(NULL, page); 349 lock_page(page); 350 if (!PageUptodate(page)) { 351 printk(KERN_ERR "btrfs: error reading free " 352 "space cache\n"); 353 io_ctl_drop_pages(io_ctl); 354 return -EIO; 355 } 356 } 357 } 358 359 for (i = 0; i < io_ctl->num_pages; i++) { 360 clear_page_dirty_for_io(io_ctl->pages[i]); 361 set_page_extent_mapped(io_ctl->pages[i]); 362 } 363 364 return 0; 365 } 366 367 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation) 368 { 369 __le64 *val; 370 371 io_ctl_map_page(io_ctl, 1); 372 373 /* 374 * Skip the csum areas. If we don't check crcs then we just have a 375 * 64bit chunk at the front of the first page. 376 */ 377 if (io_ctl->check_crcs) { 378 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 379 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 380 } else { 381 io_ctl->cur += sizeof(u64); 382 io_ctl->size -= sizeof(u64) * 2; 383 } 384 385 val = io_ctl->cur; 386 *val = cpu_to_le64(generation); 387 io_ctl->cur += sizeof(u64); 388 } 389 390 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation) 391 { 392 __le64 *gen; 393 394 /* 395 * Skip the crc area. If we don't check crcs then we just have a 64bit 396 * chunk at the front of the first page. 397 */ 398 if (io_ctl->check_crcs) { 399 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 400 io_ctl->size -= sizeof(u64) + 401 (sizeof(u32) * io_ctl->num_pages); 402 } else { 403 io_ctl->cur += sizeof(u64); 404 io_ctl->size -= sizeof(u64) * 2; 405 } 406 407 gen = io_ctl->cur; 408 if (le64_to_cpu(*gen) != generation) { 409 printk_ratelimited(KERN_ERR "btrfs: space cache generation " 410 "(%Lu) does not match inode (%Lu)\n", *gen, 411 generation); 412 io_ctl_unmap_page(io_ctl); 413 return -EIO; 414 } 415 io_ctl->cur += sizeof(u64); 416 return 0; 417 } 418 419 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index) 420 { 421 u32 *tmp; 422 u32 crc = ~(u32)0; 423 unsigned offset = 0; 424 425 if (!io_ctl->check_crcs) { 426 io_ctl_unmap_page(io_ctl); 427 return; 428 } 429 430 if (index == 0) 431 offset = sizeof(u32) * io_ctl->num_pages; 432 433 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 434 PAGE_CACHE_SIZE - offset); 435 btrfs_csum_final(crc, (char *)&crc); 436 io_ctl_unmap_page(io_ctl); 437 tmp = kmap(io_ctl->pages[0]); 438 tmp += index; 439 *tmp = crc; 440 kunmap(io_ctl->pages[0]); 441 } 442 443 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index) 444 { 445 u32 *tmp, val; 446 u32 crc = ~(u32)0; 447 unsigned offset = 0; 448 449 if (!io_ctl->check_crcs) { 450 io_ctl_map_page(io_ctl, 0); 451 return 0; 452 } 453 454 if (index == 0) 455 offset = sizeof(u32) * io_ctl->num_pages; 456 457 tmp = kmap(io_ctl->pages[0]); 458 tmp += index; 459 val = *tmp; 460 kunmap(io_ctl->pages[0]); 461 462 io_ctl_map_page(io_ctl, 0); 463 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 464 PAGE_CACHE_SIZE - offset); 465 btrfs_csum_final(crc, (char *)&crc); 466 if (val != crc) { 467 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free " 468 "space cache\n"); 469 io_ctl_unmap_page(io_ctl); 470 return -EIO; 471 } 472 473 return 0; 474 } 475 476 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes, 477 void *bitmap) 478 { 479 struct btrfs_free_space_entry *entry; 480 481 if (!io_ctl->cur) 482 return -ENOSPC; 483 484 entry = io_ctl->cur; 485 entry->offset = cpu_to_le64(offset); 486 entry->bytes = cpu_to_le64(bytes); 487 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 488 BTRFS_FREE_SPACE_EXTENT; 489 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 490 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 491 492 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 493 return 0; 494 495 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 496 497 /* No more pages to map */ 498 if (io_ctl->index >= io_ctl->num_pages) 499 return 0; 500 501 /* map the next page */ 502 io_ctl_map_page(io_ctl, 1); 503 return 0; 504 } 505 506 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap) 507 { 508 if (!io_ctl->cur) 509 return -ENOSPC; 510 511 /* 512 * If we aren't at the start of the current page, unmap this one and 513 * map the next one if there is any left. 514 */ 515 if (io_ctl->cur != io_ctl->orig) { 516 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 517 if (io_ctl->index >= io_ctl->num_pages) 518 return -ENOSPC; 519 io_ctl_map_page(io_ctl, 0); 520 } 521 522 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE); 523 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 524 if (io_ctl->index < io_ctl->num_pages) 525 io_ctl_map_page(io_ctl, 0); 526 return 0; 527 } 528 529 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl) 530 { 531 /* 532 * If we're not on the boundary we know we've modified the page and we 533 * need to crc the page. 534 */ 535 if (io_ctl->cur != io_ctl->orig) 536 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 537 else 538 io_ctl_unmap_page(io_ctl); 539 540 while (io_ctl->index < io_ctl->num_pages) { 541 io_ctl_map_page(io_ctl, 1); 542 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 543 } 544 } 545 546 static int io_ctl_read_entry(struct io_ctl *io_ctl, 547 struct btrfs_free_space *entry, u8 *type) 548 { 549 struct btrfs_free_space_entry *e; 550 int ret; 551 552 if (!io_ctl->cur) { 553 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 554 if (ret) 555 return ret; 556 } 557 558 e = io_ctl->cur; 559 entry->offset = le64_to_cpu(e->offset); 560 entry->bytes = le64_to_cpu(e->bytes); 561 *type = e->type; 562 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 563 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 564 565 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 566 return 0; 567 568 io_ctl_unmap_page(io_ctl); 569 570 return 0; 571 } 572 573 static int io_ctl_read_bitmap(struct io_ctl *io_ctl, 574 struct btrfs_free_space *entry) 575 { 576 int ret; 577 578 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 579 if (ret) 580 return ret; 581 582 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE); 583 io_ctl_unmap_page(io_ctl); 584 585 return 0; 586 } 587 588 /* 589 * Since we attach pinned extents after the fact we can have contiguous sections 590 * of free space that are split up in entries. This poses a problem with the 591 * tree logging stuff since it could have allocated across what appears to be 2 592 * entries since we would have merged the entries when adding the pinned extents 593 * back to the free space cache. So run through the space cache that we just 594 * loaded and merge contiguous entries. This will make the log replay stuff not 595 * blow up and it will make for nicer allocator behavior. 596 */ 597 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 598 { 599 struct btrfs_free_space *e, *prev = NULL; 600 struct rb_node *n; 601 602 again: 603 spin_lock(&ctl->tree_lock); 604 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 605 e = rb_entry(n, struct btrfs_free_space, offset_index); 606 if (!prev) 607 goto next; 608 if (e->bitmap || prev->bitmap) 609 goto next; 610 if (prev->offset + prev->bytes == e->offset) { 611 unlink_free_space(ctl, prev); 612 unlink_free_space(ctl, e); 613 prev->bytes += e->bytes; 614 kmem_cache_free(btrfs_free_space_cachep, e); 615 link_free_space(ctl, prev); 616 prev = NULL; 617 spin_unlock(&ctl->tree_lock); 618 goto again; 619 } 620 next: 621 prev = e; 622 } 623 spin_unlock(&ctl->tree_lock); 624 } 625 626 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 627 struct btrfs_free_space_ctl *ctl, 628 struct btrfs_path *path, u64 offset) 629 { 630 struct btrfs_free_space_header *header; 631 struct extent_buffer *leaf; 632 struct io_ctl io_ctl; 633 struct btrfs_key key; 634 struct btrfs_free_space *e, *n; 635 struct list_head bitmaps; 636 u64 num_entries; 637 u64 num_bitmaps; 638 u64 generation; 639 u8 type; 640 int ret = 0; 641 642 INIT_LIST_HEAD(&bitmaps); 643 644 /* Nothing in the space cache, goodbye */ 645 if (!i_size_read(inode)) 646 return 0; 647 648 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 649 key.offset = offset; 650 key.type = 0; 651 652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 653 if (ret < 0) 654 return 0; 655 else if (ret > 0) { 656 btrfs_release_path(path); 657 return 0; 658 } 659 660 ret = -1; 661 662 leaf = path->nodes[0]; 663 header = btrfs_item_ptr(leaf, path->slots[0], 664 struct btrfs_free_space_header); 665 num_entries = btrfs_free_space_entries(leaf, header); 666 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 667 generation = btrfs_free_space_generation(leaf, header); 668 btrfs_release_path(path); 669 670 if (BTRFS_I(inode)->generation != generation) { 671 btrfs_err(root->fs_info, 672 "free space inode generation (%llu) " 673 "did not match free space cache generation (%llu)", 674 BTRFS_I(inode)->generation, generation); 675 return 0; 676 } 677 678 if (!num_entries) 679 return 0; 680 681 ret = io_ctl_init(&io_ctl, inode, root); 682 if (ret) 683 return ret; 684 685 ret = readahead_cache(inode); 686 if (ret) 687 goto out; 688 689 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 690 if (ret) 691 goto out; 692 693 ret = io_ctl_check_crc(&io_ctl, 0); 694 if (ret) 695 goto free_cache; 696 697 ret = io_ctl_check_generation(&io_ctl, generation); 698 if (ret) 699 goto free_cache; 700 701 while (num_entries) { 702 e = kmem_cache_zalloc(btrfs_free_space_cachep, 703 GFP_NOFS); 704 if (!e) 705 goto free_cache; 706 707 ret = io_ctl_read_entry(&io_ctl, e, &type); 708 if (ret) { 709 kmem_cache_free(btrfs_free_space_cachep, e); 710 goto free_cache; 711 } 712 713 if (!e->bytes) { 714 kmem_cache_free(btrfs_free_space_cachep, e); 715 goto free_cache; 716 } 717 718 if (type == BTRFS_FREE_SPACE_EXTENT) { 719 spin_lock(&ctl->tree_lock); 720 ret = link_free_space(ctl, e); 721 spin_unlock(&ctl->tree_lock); 722 if (ret) { 723 btrfs_err(root->fs_info, 724 "Duplicate entries in free space cache, dumping"); 725 kmem_cache_free(btrfs_free_space_cachep, e); 726 goto free_cache; 727 } 728 } else { 729 ASSERT(num_bitmaps); 730 num_bitmaps--; 731 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 732 if (!e->bitmap) { 733 kmem_cache_free( 734 btrfs_free_space_cachep, e); 735 goto free_cache; 736 } 737 spin_lock(&ctl->tree_lock); 738 ret = link_free_space(ctl, e); 739 ctl->total_bitmaps++; 740 ctl->op->recalc_thresholds(ctl); 741 spin_unlock(&ctl->tree_lock); 742 if (ret) { 743 btrfs_err(root->fs_info, 744 "Duplicate entries in free space cache, dumping"); 745 kmem_cache_free(btrfs_free_space_cachep, e); 746 goto free_cache; 747 } 748 list_add_tail(&e->list, &bitmaps); 749 } 750 751 num_entries--; 752 } 753 754 io_ctl_unmap_page(&io_ctl); 755 756 /* 757 * We add the bitmaps at the end of the entries in order that 758 * the bitmap entries are added to the cache. 759 */ 760 list_for_each_entry_safe(e, n, &bitmaps, list) { 761 list_del_init(&e->list); 762 ret = io_ctl_read_bitmap(&io_ctl, e); 763 if (ret) 764 goto free_cache; 765 } 766 767 io_ctl_drop_pages(&io_ctl); 768 merge_space_tree(ctl); 769 ret = 1; 770 out: 771 io_ctl_free(&io_ctl); 772 return ret; 773 free_cache: 774 io_ctl_drop_pages(&io_ctl); 775 __btrfs_remove_free_space_cache(ctl); 776 goto out; 777 } 778 779 int load_free_space_cache(struct btrfs_fs_info *fs_info, 780 struct btrfs_block_group_cache *block_group) 781 { 782 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 783 struct btrfs_root *root = fs_info->tree_root; 784 struct inode *inode; 785 struct btrfs_path *path; 786 int ret = 0; 787 bool matched; 788 u64 used = btrfs_block_group_used(&block_group->item); 789 790 /* 791 * If this block group has been marked to be cleared for one reason or 792 * another then we can't trust the on disk cache, so just return. 793 */ 794 spin_lock(&block_group->lock); 795 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 796 spin_unlock(&block_group->lock); 797 return 0; 798 } 799 spin_unlock(&block_group->lock); 800 801 path = btrfs_alloc_path(); 802 if (!path) 803 return 0; 804 path->search_commit_root = 1; 805 path->skip_locking = 1; 806 807 inode = lookup_free_space_inode(root, block_group, path); 808 if (IS_ERR(inode)) { 809 btrfs_free_path(path); 810 return 0; 811 } 812 813 /* We may have converted the inode and made the cache invalid. */ 814 spin_lock(&block_group->lock); 815 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 816 spin_unlock(&block_group->lock); 817 btrfs_free_path(path); 818 goto out; 819 } 820 spin_unlock(&block_group->lock); 821 822 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 823 path, block_group->key.objectid); 824 btrfs_free_path(path); 825 if (ret <= 0) 826 goto out; 827 828 spin_lock(&ctl->tree_lock); 829 matched = (ctl->free_space == (block_group->key.offset - used - 830 block_group->bytes_super)); 831 spin_unlock(&ctl->tree_lock); 832 833 if (!matched) { 834 __btrfs_remove_free_space_cache(ctl); 835 btrfs_err(fs_info, "block group %llu has wrong amount of free space", 836 block_group->key.objectid); 837 ret = -1; 838 } 839 out: 840 if (ret < 0) { 841 /* This cache is bogus, make sure it gets cleared */ 842 spin_lock(&block_group->lock); 843 block_group->disk_cache_state = BTRFS_DC_CLEAR; 844 spin_unlock(&block_group->lock); 845 ret = 0; 846 847 btrfs_err(fs_info, "failed to load free space cache for block group %llu", 848 block_group->key.objectid); 849 } 850 851 iput(inode); 852 return ret; 853 } 854 855 /** 856 * __btrfs_write_out_cache - write out cached info to an inode 857 * @root - the root the inode belongs to 858 * @ctl - the free space cache we are going to write out 859 * @block_group - the block_group for this cache if it belongs to a block_group 860 * @trans - the trans handle 861 * @path - the path to use 862 * @offset - the offset for the key we'll insert 863 * 864 * This function writes out a free space cache struct to disk for quick recovery 865 * on mount. This will return 0 if it was successfull in writing the cache out, 866 * and -1 if it was not. 867 */ 868 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 869 struct btrfs_free_space_ctl *ctl, 870 struct btrfs_block_group_cache *block_group, 871 struct btrfs_trans_handle *trans, 872 struct btrfs_path *path, u64 offset) 873 { 874 struct btrfs_free_space_header *header; 875 struct extent_buffer *leaf; 876 struct rb_node *node; 877 struct list_head *pos, *n; 878 struct extent_state *cached_state = NULL; 879 struct btrfs_free_cluster *cluster = NULL; 880 struct extent_io_tree *unpin = NULL; 881 struct io_ctl io_ctl; 882 struct list_head bitmap_list; 883 struct btrfs_key key; 884 u64 start, extent_start, extent_end, len; 885 int entries = 0; 886 int bitmaps = 0; 887 int ret; 888 int err = -1; 889 890 INIT_LIST_HEAD(&bitmap_list); 891 892 if (!i_size_read(inode)) 893 return -1; 894 895 ret = io_ctl_init(&io_ctl, inode, root); 896 if (ret) 897 return -1; 898 899 /* Get the cluster for this block_group if it exists */ 900 if (block_group && !list_empty(&block_group->cluster_list)) 901 cluster = list_entry(block_group->cluster_list.next, 902 struct btrfs_free_cluster, 903 block_group_list); 904 905 /* Lock all pages first so we can lock the extent safely. */ 906 io_ctl_prepare_pages(&io_ctl, inode, 0); 907 908 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 909 0, &cached_state); 910 911 node = rb_first(&ctl->free_space_offset); 912 if (!node && cluster) { 913 node = rb_first(&cluster->root); 914 cluster = NULL; 915 } 916 917 /* Make sure we can fit our crcs into the first page */ 918 if (io_ctl.check_crcs && 919 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) 920 goto out_nospc; 921 922 io_ctl_set_generation(&io_ctl, trans->transid); 923 924 /* Write out the extent entries */ 925 while (node) { 926 struct btrfs_free_space *e; 927 928 e = rb_entry(node, struct btrfs_free_space, offset_index); 929 entries++; 930 931 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes, 932 e->bitmap); 933 if (ret) 934 goto out_nospc; 935 936 if (e->bitmap) { 937 list_add_tail(&e->list, &bitmap_list); 938 bitmaps++; 939 } 940 node = rb_next(node); 941 if (!node && cluster) { 942 node = rb_first(&cluster->root); 943 cluster = NULL; 944 } 945 } 946 947 /* 948 * We want to add any pinned extents to our free space cache 949 * so we don't leak the space 950 */ 951 952 /* 953 * We shouldn't have switched the pinned extents yet so this is the 954 * right one 955 */ 956 unpin = root->fs_info->pinned_extents; 957 958 if (block_group) 959 start = block_group->key.objectid; 960 961 while (block_group && (start < block_group->key.objectid + 962 block_group->key.offset)) { 963 ret = find_first_extent_bit(unpin, start, 964 &extent_start, &extent_end, 965 EXTENT_DIRTY, NULL); 966 if (ret) { 967 ret = 0; 968 break; 969 } 970 971 /* This pinned extent is out of our range */ 972 if (extent_start >= block_group->key.objectid + 973 block_group->key.offset) 974 break; 975 976 extent_start = max(extent_start, start); 977 extent_end = min(block_group->key.objectid + 978 block_group->key.offset, extent_end + 1); 979 len = extent_end - extent_start; 980 981 entries++; 982 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL); 983 if (ret) 984 goto out_nospc; 985 986 start = extent_end; 987 } 988 989 /* Write out the bitmaps */ 990 list_for_each_safe(pos, n, &bitmap_list) { 991 struct btrfs_free_space *entry = 992 list_entry(pos, struct btrfs_free_space, list); 993 994 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap); 995 if (ret) 996 goto out_nospc; 997 list_del_init(&entry->list); 998 } 999 1000 /* Zero out the rest of the pages just to make sure */ 1001 io_ctl_zero_remaining_pages(&io_ctl); 1002 1003 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages, 1004 0, i_size_read(inode), &cached_state); 1005 io_ctl_drop_pages(&io_ctl); 1006 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1007 i_size_read(inode) - 1, &cached_state, GFP_NOFS); 1008 1009 if (ret) 1010 goto out; 1011 1012 1013 btrfs_wait_ordered_range(inode, 0, (u64)-1); 1014 1015 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 1016 key.offset = offset; 1017 key.type = 0; 1018 1019 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1020 if (ret < 0) { 1021 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1022 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, 1023 GFP_NOFS); 1024 goto out; 1025 } 1026 leaf = path->nodes[0]; 1027 if (ret > 0) { 1028 struct btrfs_key found_key; 1029 ASSERT(path->slots[0]); 1030 path->slots[0]--; 1031 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1032 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1033 found_key.offset != offset) { 1034 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1035 inode->i_size - 1, 1036 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, 1037 NULL, GFP_NOFS); 1038 btrfs_release_path(path); 1039 goto out; 1040 } 1041 } 1042 1043 BTRFS_I(inode)->generation = trans->transid; 1044 header = btrfs_item_ptr(leaf, path->slots[0], 1045 struct btrfs_free_space_header); 1046 btrfs_set_free_space_entries(leaf, header, entries); 1047 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1048 btrfs_set_free_space_generation(leaf, header, trans->transid); 1049 btrfs_mark_buffer_dirty(leaf); 1050 btrfs_release_path(path); 1051 1052 err = 0; 1053 out: 1054 io_ctl_free(&io_ctl); 1055 if (err) { 1056 invalidate_inode_pages2(inode->i_mapping); 1057 BTRFS_I(inode)->generation = 0; 1058 } 1059 btrfs_update_inode(trans, root, inode); 1060 return err; 1061 1062 out_nospc: 1063 list_for_each_safe(pos, n, &bitmap_list) { 1064 struct btrfs_free_space *entry = 1065 list_entry(pos, struct btrfs_free_space, list); 1066 list_del_init(&entry->list); 1067 } 1068 io_ctl_drop_pages(&io_ctl); 1069 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1070 i_size_read(inode) - 1, &cached_state, GFP_NOFS); 1071 goto out; 1072 } 1073 1074 int btrfs_write_out_cache(struct btrfs_root *root, 1075 struct btrfs_trans_handle *trans, 1076 struct btrfs_block_group_cache *block_group, 1077 struct btrfs_path *path) 1078 { 1079 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1080 struct inode *inode; 1081 int ret = 0; 1082 1083 root = root->fs_info->tree_root; 1084 1085 spin_lock(&block_group->lock); 1086 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1087 spin_unlock(&block_group->lock); 1088 return 0; 1089 } 1090 spin_unlock(&block_group->lock); 1091 1092 inode = lookup_free_space_inode(root, block_group, path); 1093 if (IS_ERR(inode)) 1094 return 0; 1095 1096 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans, 1097 path, block_group->key.objectid); 1098 if (ret) { 1099 spin_lock(&block_group->lock); 1100 block_group->disk_cache_state = BTRFS_DC_ERROR; 1101 spin_unlock(&block_group->lock); 1102 ret = 0; 1103 #ifdef DEBUG 1104 btrfs_err(root->fs_info, 1105 "failed to write free space cache for block group %llu", 1106 block_group->key.objectid); 1107 #endif 1108 } 1109 1110 iput(inode); 1111 return ret; 1112 } 1113 1114 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1115 u64 offset) 1116 { 1117 ASSERT(offset >= bitmap_start); 1118 offset -= bitmap_start; 1119 return (unsigned long)(div_u64(offset, unit)); 1120 } 1121 1122 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1123 { 1124 return (unsigned long)(div_u64(bytes, unit)); 1125 } 1126 1127 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1128 u64 offset) 1129 { 1130 u64 bitmap_start; 1131 u64 bytes_per_bitmap; 1132 1133 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1134 bitmap_start = offset - ctl->start; 1135 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1136 bitmap_start *= bytes_per_bitmap; 1137 bitmap_start += ctl->start; 1138 1139 return bitmap_start; 1140 } 1141 1142 static int tree_insert_offset(struct rb_root *root, u64 offset, 1143 struct rb_node *node, int bitmap) 1144 { 1145 struct rb_node **p = &root->rb_node; 1146 struct rb_node *parent = NULL; 1147 struct btrfs_free_space *info; 1148 1149 while (*p) { 1150 parent = *p; 1151 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1152 1153 if (offset < info->offset) { 1154 p = &(*p)->rb_left; 1155 } else if (offset > info->offset) { 1156 p = &(*p)->rb_right; 1157 } else { 1158 /* 1159 * we could have a bitmap entry and an extent entry 1160 * share the same offset. If this is the case, we want 1161 * the extent entry to always be found first if we do a 1162 * linear search through the tree, since we want to have 1163 * the quickest allocation time, and allocating from an 1164 * extent is faster than allocating from a bitmap. So 1165 * if we're inserting a bitmap and we find an entry at 1166 * this offset, we want to go right, or after this entry 1167 * logically. If we are inserting an extent and we've 1168 * found a bitmap, we want to go left, or before 1169 * logically. 1170 */ 1171 if (bitmap) { 1172 if (info->bitmap) { 1173 WARN_ON_ONCE(1); 1174 return -EEXIST; 1175 } 1176 p = &(*p)->rb_right; 1177 } else { 1178 if (!info->bitmap) { 1179 WARN_ON_ONCE(1); 1180 return -EEXIST; 1181 } 1182 p = &(*p)->rb_left; 1183 } 1184 } 1185 } 1186 1187 rb_link_node(node, parent, p); 1188 rb_insert_color(node, root); 1189 1190 return 0; 1191 } 1192 1193 /* 1194 * searches the tree for the given offset. 1195 * 1196 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1197 * want a section that has at least bytes size and comes at or after the given 1198 * offset. 1199 */ 1200 static struct btrfs_free_space * 1201 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1202 u64 offset, int bitmap_only, int fuzzy) 1203 { 1204 struct rb_node *n = ctl->free_space_offset.rb_node; 1205 struct btrfs_free_space *entry, *prev = NULL; 1206 1207 /* find entry that is closest to the 'offset' */ 1208 while (1) { 1209 if (!n) { 1210 entry = NULL; 1211 break; 1212 } 1213 1214 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1215 prev = entry; 1216 1217 if (offset < entry->offset) 1218 n = n->rb_left; 1219 else if (offset > entry->offset) 1220 n = n->rb_right; 1221 else 1222 break; 1223 } 1224 1225 if (bitmap_only) { 1226 if (!entry) 1227 return NULL; 1228 if (entry->bitmap) 1229 return entry; 1230 1231 /* 1232 * bitmap entry and extent entry may share same offset, 1233 * in that case, bitmap entry comes after extent entry. 1234 */ 1235 n = rb_next(n); 1236 if (!n) 1237 return NULL; 1238 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1239 if (entry->offset != offset) 1240 return NULL; 1241 1242 WARN_ON(!entry->bitmap); 1243 return entry; 1244 } else if (entry) { 1245 if (entry->bitmap) { 1246 /* 1247 * if previous extent entry covers the offset, 1248 * we should return it instead of the bitmap entry 1249 */ 1250 n = rb_prev(&entry->offset_index); 1251 if (n) { 1252 prev = rb_entry(n, struct btrfs_free_space, 1253 offset_index); 1254 if (!prev->bitmap && 1255 prev->offset + prev->bytes > offset) 1256 entry = prev; 1257 } 1258 } 1259 return entry; 1260 } 1261 1262 if (!prev) 1263 return NULL; 1264 1265 /* find last entry before the 'offset' */ 1266 entry = prev; 1267 if (entry->offset > offset) { 1268 n = rb_prev(&entry->offset_index); 1269 if (n) { 1270 entry = rb_entry(n, struct btrfs_free_space, 1271 offset_index); 1272 ASSERT(entry->offset <= offset); 1273 } else { 1274 if (fuzzy) 1275 return entry; 1276 else 1277 return NULL; 1278 } 1279 } 1280 1281 if (entry->bitmap) { 1282 n = rb_prev(&entry->offset_index); 1283 if (n) { 1284 prev = rb_entry(n, struct btrfs_free_space, 1285 offset_index); 1286 if (!prev->bitmap && 1287 prev->offset + prev->bytes > offset) 1288 return prev; 1289 } 1290 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1291 return entry; 1292 } else if (entry->offset + entry->bytes > offset) 1293 return entry; 1294 1295 if (!fuzzy) 1296 return NULL; 1297 1298 while (1) { 1299 if (entry->bitmap) { 1300 if (entry->offset + BITS_PER_BITMAP * 1301 ctl->unit > offset) 1302 break; 1303 } else { 1304 if (entry->offset + entry->bytes > offset) 1305 break; 1306 } 1307 1308 n = rb_next(&entry->offset_index); 1309 if (!n) 1310 return NULL; 1311 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1312 } 1313 return entry; 1314 } 1315 1316 static inline void 1317 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1318 struct btrfs_free_space *info) 1319 { 1320 rb_erase(&info->offset_index, &ctl->free_space_offset); 1321 ctl->free_extents--; 1322 } 1323 1324 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1325 struct btrfs_free_space *info) 1326 { 1327 __unlink_free_space(ctl, info); 1328 ctl->free_space -= info->bytes; 1329 } 1330 1331 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1332 struct btrfs_free_space *info) 1333 { 1334 int ret = 0; 1335 1336 ASSERT(info->bytes || info->bitmap); 1337 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1338 &info->offset_index, (info->bitmap != NULL)); 1339 if (ret) 1340 return ret; 1341 1342 ctl->free_space += info->bytes; 1343 ctl->free_extents++; 1344 return ret; 1345 } 1346 1347 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1348 { 1349 struct btrfs_block_group_cache *block_group = ctl->private; 1350 u64 max_bytes; 1351 u64 bitmap_bytes; 1352 u64 extent_bytes; 1353 u64 size = block_group->key.offset; 1354 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1355 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1356 1357 max_bitmaps = max(max_bitmaps, 1); 1358 1359 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1360 1361 /* 1362 * The goal is to keep the total amount of memory used per 1gb of space 1363 * at or below 32k, so we need to adjust how much memory we allow to be 1364 * used by extent based free space tracking 1365 */ 1366 if (size < 1024 * 1024 * 1024) 1367 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1368 else 1369 max_bytes = MAX_CACHE_BYTES_PER_GIG * 1370 div64_u64(size, 1024 * 1024 * 1024); 1371 1372 /* 1373 * we want to account for 1 more bitmap than what we have so we can make 1374 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as 1375 * we add more bitmaps. 1376 */ 1377 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE; 1378 1379 if (bitmap_bytes >= max_bytes) { 1380 ctl->extents_thresh = 0; 1381 return; 1382 } 1383 1384 /* 1385 * we want the extent entry threshold to always be at most 1/2 the maxw 1386 * bytes we can have, or whatever is less than that. 1387 */ 1388 extent_bytes = max_bytes - bitmap_bytes; 1389 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2)); 1390 1391 ctl->extents_thresh = 1392 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space))); 1393 } 1394 1395 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1396 struct btrfs_free_space *info, 1397 u64 offset, u64 bytes) 1398 { 1399 unsigned long start, count; 1400 1401 start = offset_to_bit(info->offset, ctl->unit, offset); 1402 count = bytes_to_bits(bytes, ctl->unit); 1403 ASSERT(start + count <= BITS_PER_BITMAP); 1404 1405 bitmap_clear(info->bitmap, start, count); 1406 1407 info->bytes -= bytes; 1408 } 1409 1410 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1411 struct btrfs_free_space *info, u64 offset, 1412 u64 bytes) 1413 { 1414 __bitmap_clear_bits(ctl, info, offset, bytes); 1415 ctl->free_space -= bytes; 1416 } 1417 1418 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1419 struct btrfs_free_space *info, u64 offset, 1420 u64 bytes) 1421 { 1422 unsigned long start, count; 1423 1424 start = offset_to_bit(info->offset, ctl->unit, offset); 1425 count = bytes_to_bits(bytes, ctl->unit); 1426 ASSERT(start + count <= BITS_PER_BITMAP); 1427 1428 bitmap_set(info->bitmap, start, count); 1429 1430 info->bytes += bytes; 1431 ctl->free_space += bytes; 1432 } 1433 1434 /* 1435 * If we can not find suitable extent, we will use bytes to record 1436 * the size of the max extent. 1437 */ 1438 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1439 struct btrfs_free_space *bitmap_info, u64 *offset, 1440 u64 *bytes) 1441 { 1442 unsigned long found_bits = 0; 1443 unsigned long max_bits = 0; 1444 unsigned long bits, i; 1445 unsigned long next_zero; 1446 unsigned long extent_bits; 1447 1448 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1449 max_t(u64, *offset, bitmap_info->offset)); 1450 bits = bytes_to_bits(*bytes, ctl->unit); 1451 1452 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1453 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1454 BITS_PER_BITMAP, i); 1455 extent_bits = next_zero - i; 1456 if (extent_bits >= bits) { 1457 found_bits = extent_bits; 1458 break; 1459 } else if (extent_bits > max_bits) { 1460 max_bits = extent_bits; 1461 } 1462 i = next_zero; 1463 } 1464 1465 if (found_bits) { 1466 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1467 *bytes = (u64)(found_bits) * ctl->unit; 1468 return 0; 1469 } 1470 1471 *bytes = (u64)(max_bits) * ctl->unit; 1472 return -1; 1473 } 1474 1475 /* Cache the size of the max extent in bytes */ 1476 static struct btrfs_free_space * 1477 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1478 unsigned long align, u64 *max_extent_size) 1479 { 1480 struct btrfs_free_space *entry; 1481 struct rb_node *node; 1482 u64 tmp; 1483 u64 align_off; 1484 int ret; 1485 1486 if (!ctl->free_space_offset.rb_node) 1487 goto out; 1488 1489 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1490 if (!entry) 1491 goto out; 1492 1493 for (node = &entry->offset_index; node; node = rb_next(node)) { 1494 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1495 if (entry->bytes < *bytes) { 1496 if (entry->bytes > *max_extent_size) 1497 *max_extent_size = entry->bytes; 1498 continue; 1499 } 1500 1501 /* make sure the space returned is big enough 1502 * to match our requested alignment 1503 */ 1504 if (*bytes >= align) { 1505 tmp = entry->offset - ctl->start + align - 1; 1506 do_div(tmp, align); 1507 tmp = tmp * align + ctl->start; 1508 align_off = tmp - entry->offset; 1509 } else { 1510 align_off = 0; 1511 tmp = entry->offset; 1512 } 1513 1514 if (entry->bytes < *bytes + align_off) { 1515 if (entry->bytes > *max_extent_size) 1516 *max_extent_size = entry->bytes; 1517 continue; 1518 } 1519 1520 if (entry->bitmap) { 1521 u64 size = *bytes; 1522 1523 ret = search_bitmap(ctl, entry, &tmp, &size); 1524 if (!ret) { 1525 *offset = tmp; 1526 *bytes = size; 1527 return entry; 1528 } else if (size > *max_extent_size) { 1529 *max_extent_size = size; 1530 } 1531 continue; 1532 } 1533 1534 *offset = tmp; 1535 *bytes = entry->bytes - align_off; 1536 return entry; 1537 } 1538 out: 1539 return NULL; 1540 } 1541 1542 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1543 struct btrfs_free_space *info, u64 offset) 1544 { 1545 info->offset = offset_to_bitmap(ctl, offset); 1546 info->bytes = 0; 1547 INIT_LIST_HEAD(&info->list); 1548 link_free_space(ctl, info); 1549 ctl->total_bitmaps++; 1550 1551 ctl->op->recalc_thresholds(ctl); 1552 } 1553 1554 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1555 struct btrfs_free_space *bitmap_info) 1556 { 1557 unlink_free_space(ctl, bitmap_info); 1558 kfree(bitmap_info->bitmap); 1559 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1560 ctl->total_bitmaps--; 1561 ctl->op->recalc_thresholds(ctl); 1562 } 1563 1564 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1565 struct btrfs_free_space *bitmap_info, 1566 u64 *offset, u64 *bytes) 1567 { 1568 u64 end; 1569 u64 search_start, search_bytes; 1570 int ret; 1571 1572 again: 1573 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1574 1575 /* 1576 * We need to search for bits in this bitmap. We could only cover some 1577 * of the extent in this bitmap thanks to how we add space, so we need 1578 * to search for as much as it as we can and clear that amount, and then 1579 * go searching for the next bit. 1580 */ 1581 search_start = *offset; 1582 search_bytes = ctl->unit; 1583 search_bytes = min(search_bytes, end - search_start + 1); 1584 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes); 1585 if (ret < 0 || search_start != *offset) 1586 return -EINVAL; 1587 1588 /* We may have found more bits than what we need */ 1589 search_bytes = min(search_bytes, *bytes); 1590 1591 /* Cannot clear past the end of the bitmap */ 1592 search_bytes = min(search_bytes, end - search_start + 1); 1593 1594 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 1595 *offset += search_bytes; 1596 *bytes -= search_bytes; 1597 1598 if (*bytes) { 1599 struct rb_node *next = rb_next(&bitmap_info->offset_index); 1600 if (!bitmap_info->bytes) 1601 free_bitmap(ctl, bitmap_info); 1602 1603 /* 1604 * no entry after this bitmap, but we still have bytes to 1605 * remove, so something has gone wrong. 1606 */ 1607 if (!next) 1608 return -EINVAL; 1609 1610 bitmap_info = rb_entry(next, struct btrfs_free_space, 1611 offset_index); 1612 1613 /* 1614 * if the next entry isn't a bitmap we need to return to let the 1615 * extent stuff do its work. 1616 */ 1617 if (!bitmap_info->bitmap) 1618 return -EAGAIN; 1619 1620 /* 1621 * Ok the next item is a bitmap, but it may not actually hold 1622 * the information for the rest of this free space stuff, so 1623 * look for it, and if we don't find it return so we can try 1624 * everything over again. 1625 */ 1626 search_start = *offset; 1627 search_bytes = ctl->unit; 1628 ret = search_bitmap(ctl, bitmap_info, &search_start, 1629 &search_bytes); 1630 if (ret < 0 || search_start != *offset) 1631 return -EAGAIN; 1632 1633 goto again; 1634 } else if (!bitmap_info->bytes) 1635 free_bitmap(ctl, bitmap_info); 1636 1637 return 0; 1638 } 1639 1640 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 1641 struct btrfs_free_space *info, u64 offset, 1642 u64 bytes) 1643 { 1644 u64 bytes_to_set = 0; 1645 u64 end; 1646 1647 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 1648 1649 bytes_to_set = min(end - offset, bytes); 1650 1651 bitmap_set_bits(ctl, info, offset, bytes_to_set); 1652 1653 return bytes_to_set; 1654 1655 } 1656 1657 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 1658 struct btrfs_free_space *info) 1659 { 1660 struct btrfs_block_group_cache *block_group = ctl->private; 1661 1662 /* 1663 * If we are below the extents threshold then we can add this as an 1664 * extent, and don't have to deal with the bitmap 1665 */ 1666 if (ctl->free_extents < ctl->extents_thresh) { 1667 /* 1668 * If this block group has some small extents we don't want to 1669 * use up all of our free slots in the cache with them, we want 1670 * to reserve them to larger extents, however if we have plent 1671 * of cache left then go ahead an dadd them, no sense in adding 1672 * the overhead of a bitmap if we don't have to. 1673 */ 1674 if (info->bytes <= block_group->sectorsize * 4) { 1675 if (ctl->free_extents * 2 <= ctl->extents_thresh) 1676 return false; 1677 } else { 1678 return false; 1679 } 1680 } 1681 1682 /* 1683 * The original block groups from mkfs can be really small, like 8 1684 * megabytes, so don't bother with a bitmap for those entries. However 1685 * some block groups can be smaller than what a bitmap would cover but 1686 * are still large enough that they could overflow the 32k memory limit, 1687 * so allow those block groups to still be allowed to have a bitmap 1688 * entry. 1689 */ 1690 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset) 1691 return false; 1692 1693 return true; 1694 } 1695 1696 static struct btrfs_free_space_op free_space_op = { 1697 .recalc_thresholds = recalculate_thresholds, 1698 .use_bitmap = use_bitmap, 1699 }; 1700 1701 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 1702 struct btrfs_free_space *info) 1703 { 1704 struct btrfs_free_space *bitmap_info; 1705 struct btrfs_block_group_cache *block_group = NULL; 1706 int added = 0; 1707 u64 bytes, offset, bytes_added; 1708 int ret; 1709 1710 bytes = info->bytes; 1711 offset = info->offset; 1712 1713 if (!ctl->op->use_bitmap(ctl, info)) 1714 return 0; 1715 1716 if (ctl->op == &free_space_op) 1717 block_group = ctl->private; 1718 again: 1719 /* 1720 * Since we link bitmaps right into the cluster we need to see if we 1721 * have a cluster here, and if so and it has our bitmap we need to add 1722 * the free space to that bitmap. 1723 */ 1724 if (block_group && !list_empty(&block_group->cluster_list)) { 1725 struct btrfs_free_cluster *cluster; 1726 struct rb_node *node; 1727 struct btrfs_free_space *entry; 1728 1729 cluster = list_entry(block_group->cluster_list.next, 1730 struct btrfs_free_cluster, 1731 block_group_list); 1732 spin_lock(&cluster->lock); 1733 node = rb_first(&cluster->root); 1734 if (!node) { 1735 spin_unlock(&cluster->lock); 1736 goto no_cluster_bitmap; 1737 } 1738 1739 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1740 if (!entry->bitmap) { 1741 spin_unlock(&cluster->lock); 1742 goto no_cluster_bitmap; 1743 } 1744 1745 if (entry->offset == offset_to_bitmap(ctl, offset)) { 1746 bytes_added = add_bytes_to_bitmap(ctl, entry, 1747 offset, bytes); 1748 bytes -= bytes_added; 1749 offset += bytes_added; 1750 } 1751 spin_unlock(&cluster->lock); 1752 if (!bytes) { 1753 ret = 1; 1754 goto out; 1755 } 1756 } 1757 1758 no_cluster_bitmap: 1759 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 1760 1, 0); 1761 if (!bitmap_info) { 1762 ASSERT(added == 0); 1763 goto new_bitmap; 1764 } 1765 1766 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 1767 bytes -= bytes_added; 1768 offset += bytes_added; 1769 added = 0; 1770 1771 if (!bytes) { 1772 ret = 1; 1773 goto out; 1774 } else 1775 goto again; 1776 1777 new_bitmap: 1778 if (info && info->bitmap) { 1779 add_new_bitmap(ctl, info, offset); 1780 added = 1; 1781 info = NULL; 1782 goto again; 1783 } else { 1784 spin_unlock(&ctl->tree_lock); 1785 1786 /* no pre-allocated info, allocate a new one */ 1787 if (!info) { 1788 info = kmem_cache_zalloc(btrfs_free_space_cachep, 1789 GFP_NOFS); 1790 if (!info) { 1791 spin_lock(&ctl->tree_lock); 1792 ret = -ENOMEM; 1793 goto out; 1794 } 1795 } 1796 1797 /* allocate the bitmap */ 1798 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 1799 spin_lock(&ctl->tree_lock); 1800 if (!info->bitmap) { 1801 ret = -ENOMEM; 1802 goto out; 1803 } 1804 goto again; 1805 } 1806 1807 out: 1808 if (info) { 1809 if (info->bitmap) 1810 kfree(info->bitmap); 1811 kmem_cache_free(btrfs_free_space_cachep, info); 1812 } 1813 1814 return ret; 1815 } 1816 1817 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 1818 struct btrfs_free_space *info, bool update_stat) 1819 { 1820 struct btrfs_free_space *left_info; 1821 struct btrfs_free_space *right_info; 1822 bool merged = false; 1823 u64 offset = info->offset; 1824 u64 bytes = info->bytes; 1825 1826 /* 1827 * first we want to see if there is free space adjacent to the range we 1828 * are adding, if there is remove that struct and add a new one to 1829 * cover the entire range 1830 */ 1831 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 1832 if (right_info && rb_prev(&right_info->offset_index)) 1833 left_info = rb_entry(rb_prev(&right_info->offset_index), 1834 struct btrfs_free_space, offset_index); 1835 else 1836 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 1837 1838 if (right_info && !right_info->bitmap) { 1839 if (update_stat) 1840 unlink_free_space(ctl, right_info); 1841 else 1842 __unlink_free_space(ctl, right_info); 1843 info->bytes += right_info->bytes; 1844 kmem_cache_free(btrfs_free_space_cachep, right_info); 1845 merged = true; 1846 } 1847 1848 if (left_info && !left_info->bitmap && 1849 left_info->offset + left_info->bytes == offset) { 1850 if (update_stat) 1851 unlink_free_space(ctl, left_info); 1852 else 1853 __unlink_free_space(ctl, left_info); 1854 info->offset = left_info->offset; 1855 info->bytes += left_info->bytes; 1856 kmem_cache_free(btrfs_free_space_cachep, left_info); 1857 merged = true; 1858 } 1859 1860 return merged; 1861 } 1862 1863 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, 1864 u64 offset, u64 bytes) 1865 { 1866 struct btrfs_free_space *info; 1867 int ret = 0; 1868 1869 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 1870 if (!info) 1871 return -ENOMEM; 1872 1873 info->offset = offset; 1874 info->bytes = bytes; 1875 1876 spin_lock(&ctl->tree_lock); 1877 1878 if (try_merge_free_space(ctl, info, true)) 1879 goto link; 1880 1881 /* 1882 * There was no extent directly to the left or right of this new 1883 * extent then we know we're going to have to allocate a new extent, so 1884 * before we do that see if we need to drop this into a bitmap 1885 */ 1886 ret = insert_into_bitmap(ctl, info); 1887 if (ret < 0) { 1888 goto out; 1889 } else if (ret) { 1890 ret = 0; 1891 goto out; 1892 } 1893 link: 1894 ret = link_free_space(ctl, info); 1895 if (ret) 1896 kmem_cache_free(btrfs_free_space_cachep, info); 1897 out: 1898 spin_unlock(&ctl->tree_lock); 1899 1900 if (ret) { 1901 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret); 1902 ASSERT(ret != -EEXIST); 1903 } 1904 1905 return ret; 1906 } 1907 1908 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, 1909 u64 offset, u64 bytes) 1910 { 1911 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1912 struct btrfs_free_space *info; 1913 int ret; 1914 bool re_search = false; 1915 1916 spin_lock(&ctl->tree_lock); 1917 1918 again: 1919 ret = 0; 1920 if (!bytes) 1921 goto out_lock; 1922 1923 info = tree_search_offset(ctl, offset, 0, 0); 1924 if (!info) { 1925 /* 1926 * oops didn't find an extent that matched the space we wanted 1927 * to remove, look for a bitmap instead 1928 */ 1929 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 1930 1, 0); 1931 if (!info) { 1932 /* 1933 * If we found a partial bit of our free space in a 1934 * bitmap but then couldn't find the other part this may 1935 * be a problem, so WARN about it. 1936 */ 1937 WARN_ON(re_search); 1938 goto out_lock; 1939 } 1940 } 1941 1942 re_search = false; 1943 if (!info->bitmap) { 1944 unlink_free_space(ctl, info); 1945 if (offset == info->offset) { 1946 u64 to_free = min(bytes, info->bytes); 1947 1948 info->bytes -= to_free; 1949 info->offset += to_free; 1950 if (info->bytes) { 1951 ret = link_free_space(ctl, info); 1952 WARN_ON(ret); 1953 } else { 1954 kmem_cache_free(btrfs_free_space_cachep, info); 1955 } 1956 1957 offset += to_free; 1958 bytes -= to_free; 1959 goto again; 1960 } else { 1961 u64 old_end = info->bytes + info->offset; 1962 1963 info->bytes = offset - info->offset; 1964 ret = link_free_space(ctl, info); 1965 WARN_ON(ret); 1966 if (ret) 1967 goto out_lock; 1968 1969 /* Not enough bytes in this entry to satisfy us */ 1970 if (old_end < offset + bytes) { 1971 bytes -= old_end - offset; 1972 offset = old_end; 1973 goto again; 1974 } else if (old_end == offset + bytes) { 1975 /* all done */ 1976 goto out_lock; 1977 } 1978 spin_unlock(&ctl->tree_lock); 1979 1980 ret = btrfs_add_free_space(block_group, offset + bytes, 1981 old_end - (offset + bytes)); 1982 WARN_ON(ret); 1983 goto out; 1984 } 1985 } 1986 1987 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 1988 if (ret == -EAGAIN) { 1989 re_search = true; 1990 goto again; 1991 } 1992 out_lock: 1993 spin_unlock(&ctl->tree_lock); 1994 out: 1995 return ret; 1996 } 1997 1998 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, 1999 u64 bytes) 2000 { 2001 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2002 struct btrfs_free_space *info; 2003 struct rb_node *n; 2004 int count = 0; 2005 2006 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2007 info = rb_entry(n, struct btrfs_free_space, offset_index); 2008 if (info->bytes >= bytes && !block_group->ro) 2009 count++; 2010 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n", 2011 info->offset, info->bytes, 2012 (info->bitmap) ? "yes" : "no"); 2013 } 2014 printk(KERN_INFO "block group has cluster?: %s\n", 2015 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2016 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" 2017 "\n", count); 2018 } 2019 2020 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) 2021 { 2022 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2023 2024 spin_lock_init(&ctl->tree_lock); 2025 ctl->unit = block_group->sectorsize; 2026 ctl->start = block_group->key.objectid; 2027 ctl->private = block_group; 2028 ctl->op = &free_space_op; 2029 2030 /* 2031 * we only want to have 32k of ram per block group for keeping 2032 * track of free space, and if we pass 1/2 of that we want to 2033 * start converting things over to using bitmaps 2034 */ 2035 ctl->extents_thresh = ((1024 * 32) / 2) / 2036 sizeof(struct btrfs_free_space); 2037 } 2038 2039 /* 2040 * for a given cluster, put all of its extents back into the free 2041 * space cache. If the block group passed doesn't match the block group 2042 * pointed to by the cluster, someone else raced in and freed the 2043 * cluster already. In that case, we just return without changing anything 2044 */ 2045 static int 2046 __btrfs_return_cluster_to_free_space( 2047 struct btrfs_block_group_cache *block_group, 2048 struct btrfs_free_cluster *cluster) 2049 { 2050 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2051 struct btrfs_free_space *entry; 2052 struct rb_node *node; 2053 2054 spin_lock(&cluster->lock); 2055 if (cluster->block_group != block_group) 2056 goto out; 2057 2058 cluster->block_group = NULL; 2059 cluster->window_start = 0; 2060 list_del_init(&cluster->block_group_list); 2061 2062 node = rb_first(&cluster->root); 2063 while (node) { 2064 bool bitmap; 2065 2066 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2067 node = rb_next(&entry->offset_index); 2068 rb_erase(&entry->offset_index, &cluster->root); 2069 2070 bitmap = (entry->bitmap != NULL); 2071 if (!bitmap) 2072 try_merge_free_space(ctl, entry, false); 2073 tree_insert_offset(&ctl->free_space_offset, 2074 entry->offset, &entry->offset_index, bitmap); 2075 } 2076 cluster->root = RB_ROOT; 2077 2078 out: 2079 spin_unlock(&cluster->lock); 2080 btrfs_put_block_group(block_group); 2081 return 0; 2082 } 2083 2084 static void __btrfs_remove_free_space_cache_locked( 2085 struct btrfs_free_space_ctl *ctl) 2086 { 2087 struct btrfs_free_space *info; 2088 struct rb_node *node; 2089 2090 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2091 info = rb_entry(node, struct btrfs_free_space, offset_index); 2092 if (!info->bitmap) { 2093 unlink_free_space(ctl, info); 2094 kmem_cache_free(btrfs_free_space_cachep, info); 2095 } else { 2096 free_bitmap(ctl, info); 2097 } 2098 if (need_resched()) { 2099 spin_unlock(&ctl->tree_lock); 2100 cond_resched(); 2101 spin_lock(&ctl->tree_lock); 2102 } 2103 } 2104 } 2105 2106 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2107 { 2108 spin_lock(&ctl->tree_lock); 2109 __btrfs_remove_free_space_cache_locked(ctl); 2110 spin_unlock(&ctl->tree_lock); 2111 } 2112 2113 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) 2114 { 2115 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2116 struct btrfs_free_cluster *cluster; 2117 struct list_head *head; 2118 2119 spin_lock(&ctl->tree_lock); 2120 while ((head = block_group->cluster_list.next) != 2121 &block_group->cluster_list) { 2122 cluster = list_entry(head, struct btrfs_free_cluster, 2123 block_group_list); 2124 2125 WARN_ON(cluster->block_group != block_group); 2126 __btrfs_return_cluster_to_free_space(block_group, cluster); 2127 if (need_resched()) { 2128 spin_unlock(&ctl->tree_lock); 2129 cond_resched(); 2130 spin_lock(&ctl->tree_lock); 2131 } 2132 } 2133 __btrfs_remove_free_space_cache_locked(ctl); 2134 spin_unlock(&ctl->tree_lock); 2135 2136 } 2137 2138 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, 2139 u64 offset, u64 bytes, u64 empty_size, 2140 u64 *max_extent_size) 2141 { 2142 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2143 struct btrfs_free_space *entry = NULL; 2144 u64 bytes_search = bytes + empty_size; 2145 u64 ret = 0; 2146 u64 align_gap = 0; 2147 u64 align_gap_len = 0; 2148 2149 spin_lock(&ctl->tree_lock); 2150 entry = find_free_space(ctl, &offset, &bytes_search, 2151 block_group->full_stripe_len, max_extent_size); 2152 if (!entry) 2153 goto out; 2154 2155 ret = offset; 2156 if (entry->bitmap) { 2157 bitmap_clear_bits(ctl, entry, offset, bytes); 2158 if (!entry->bytes) 2159 free_bitmap(ctl, entry); 2160 } else { 2161 unlink_free_space(ctl, entry); 2162 align_gap_len = offset - entry->offset; 2163 align_gap = entry->offset; 2164 2165 entry->offset = offset + bytes; 2166 WARN_ON(entry->bytes < bytes + align_gap_len); 2167 2168 entry->bytes -= bytes + align_gap_len; 2169 if (!entry->bytes) 2170 kmem_cache_free(btrfs_free_space_cachep, entry); 2171 else 2172 link_free_space(ctl, entry); 2173 } 2174 out: 2175 spin_unlock(&ctl->tree_lock); 2176 2177 if (align_gap_len) 2178 __btrfs_add_free_space(ctl, align_gap, align_gap_len); 2179 return ret; 2180 } 2181 2182 /* 2183 * given a cluster, put all of its extents back into the free space 2184 * cache. If a block group is passed, this function will only free 2185 * a cluster that belongs to the passed block group. 2186 * 2187 * Otherwise, it'll get a reference on the block group pointed to by the 2188 * cluster and remove the cluster from it. 2189 */ 2190 int btrfs_return_cluster_to_free_space( 2191 struct btrfs_block_group_cache *block_group, 2192 struct btrfs_free_cluster *cluster) 2193 { 2194 struct btrfs_free_space_ctl *ctl; 2195 int ret; 2196 2197 /* first, get a safe pointer to the block group */ 2198 spin_lock(&cluster->lock); 2199 if (!block_group) { 2200 block_group = cluster->block_group; 2201 if (!block_group) { 2202 spin_unlock(&cluster->lock); 2203 return 0; 2204 } 2205 } else if (cluster->block_group != block_group) { 2206 /* someone else has already freed it don't redo their work */ 2207 spin_unlock(&cluster->lock); 2208 return 0; 2209 } 2210 atomic_inc(&block_group->count); 2211 spin_unlock(&cluster->lock); 2212 2213 ctl = block_group->free_space_ctl; 2214 2215 /* now return any extents the cluster had on it */ 2216 spin_lock(&ctl->tree_lock); 2217 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2218 spin_unlock(&ctl->tree_lock); 2219 2220 /* finally drop our ref */ 2221 btrfs_put_block_group(block_group); 2222 return ret; 2223 } 2224 2225 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, 2226 struct btrfs_free_cluster *cluster, 2227 struct btrfs_free_space *entry, 2228 u64 bytes, u64 min_start, 2229 u64 *max_extent_size) 2230 { 2231 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2232 int err; 2233 u64 search_start = cluster->window_start; 2234 u64 search_bytes = bytes; 2235 u64 ret = 0; 2236 2237 search_start = min_start; 2238 search_bytes = bytes; 2239 2240 err = search_bitmap(ctl, entry, &search_start, &search_bytes); 2241 if (err) { 2242 if (search_bytes > *max_extent_size) 2243 *max_extent_size = search_bytes; 2244 return 0; 2245 } 2246 2247 ret = search_start; 2248 __bitmap_clear_bits(ctl, entry, ret, bytes); 2249 2250 return ret; 2251 } 2252 2253 /* 2254 * given a cluster, try to allocate 'bytes' from it, returns 0 2255 * if it couldn't find anything suitably large, or a logical disk offset 2256 * if things worked out 2257 */ 2258 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, 2259 struct btrfs_free_cluster *cluster, u64 bytes, 2260 u64 min_start, u64 *max_extent_size) 2261 { 2262 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2263 struct btrfs_free_space *entry = NULL; 2264 struct rb_node *node; 2265 u64 ret = 0; 2266 2267 spin_lock(&cluster->lock); 2268 if (bytes > cluster->max_size) 2269 goto out; 2270 2271 if (cluster->block_group != block_group) 2272 goto out; 2273 2274 node = rb_first(&cluster->root); 2275 if (!node) 2276 goto out; 2277 2278 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2279 while(1) { 2280 if (entry->bytes < bytes && entry->bytes > *max_extent_size) 2281 *max_extent_size = entry->bytes; 2282 2283 if (entry->bytes < bytes || 2284 (!entry->bitmap && entry->offset < min_start)) { 2285 node = rb_next(&entry->offset_index); 2286 if (!node) 2287 break; 2288 entry = rb_entry(node, struct btrfs_free_space, 2289 offset_index); 2290 continue; 2291 } 2292 2293 if (entry->bitmap) { 2294 ret = btrfs_alloc_from_bitmap(block_group, 2295 cluster, entry, bytes, 2296 cluster->window_start, 2297 max_extent_size); 2298 if (ret == 0) { 2299 node = rb_next(&entry->offset_index); 2300 if (!node) 2301 break; 2302 entry = rb_entry(node, struct btrfs_free_space, 2303 offset_index); 2304 continue; 2305 } 2306 cluster->window_start += bytes; 2307 } else { 2308 ret = entry->offset; 2309 2310 entry->offset += bytes; 2311 entry->bytes -= bytes; 2312 } 2313 2314 if (entry->bytes == 0) 2315 rb_erase(&entry->offset_index, &cluster->root); 2316 break; 2317 } 2318 out: 2319 spin_unlock(&cluster->lock); 2320 2321 if (!ret) 2322 return 0; 2323 2324 spin_lock(&ctl->tree_lock); 2325 2326 ctl->free_space -= bytes; 2327 if (entry->bytes == 0) { 2328 ctl->free_extents--; 2329 if (entry->bitmap) { 2330 kfree(entry->bitmap); 2331 ctl->total_bitmaps--; 2332 ctl->op->recalc_thresholds(ctl); 2333 } 2334 kmem_cache_free(btrfs_free_space_cachep, entry); 2335 } 2336 2337 spin_unlock(&ctl->tree_lock); 2338 2339 return ret; 2340 } 2341 2342 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, 2343 struct btrfs_free_space *entry, 2344 struct btrfs_free_cluster *cluster, 2345 u64 offset, u64 bytes, 2346 u64 cont1_bytes, u64 min_bytes) 2347 { 2348 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2349 unsigned long next_zero; 2350 unsigned long i; 2351 unsigned long want_bits; 2352 unsigned long min_bits; 2353 unsigned long found_bits; 2354 unsigned long start = 0; 2355 unsigned long total_found = 0; 2356 int ret; 2357 2358 i = offset_to_bit(entry->offset, ctl->unit, 2359 max_t(u64, offset, entry->offset)); 2360 want_bits = bytes_to_bits(bytes, ctl->unit); 2361 min_bits = bytes_to_bits(min_bytes, ctl->unit); 2362 2363 again: 2364 found_bits = 0; 2365 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 2366 next_zero = find_next_zero_bit(entry->bitmap, 2367 BITS_PER_BITMAP, i); 2368 if (next_zero - i >= min_bits) { 2369 found_bits = next_zero - i; 2370 break; 2371 } 2372 i = next_zero; 2373 } 2374 2375 if (!found_bits) 2376 return -ENOSPC; 2377 2378 if (!total_found) { 2379 start = i; 2380 cluster->max_size = 0; 2381 } 2382 2383 total_found += found_bits; 2384 2385 if (cluster->max_size < found_bits * ctl->unit) 2386 cluster->max_size = found_bits * ctl->unit; 2387 2388 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 2389 i = next_zero + 1; 2390 goto again; 2391 } 2392 2393 cluster->window_start = start * ctl->unit + entry->offset; 2394 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2395 ret = tree_insert_offset(&cluster->root, entry->offset, 2396 &entry->offset_index, 1); 2397 ASSERT(!ret); /* -EEXIST; Logic error */ 2398 2399 trace_btrfs_setup_cluster(block_group, cluster, 2400 total_found * ctl->unit, 1); 2401 return 0; 2402 } 2403 2404 /* 2405 * This searches the block group for just extents to fill the cluster with. 2406 * Try to find a cluster with at least bytes total bytes, at least one 2407 * extent of cont1_bytes, and other clusters of at least min_bytes. 2408 */ 2409 static noinline int 2410 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, 2411 struct btrfs_free_cluster *cluster, 2412 struct list_head *bitmaps, u64 offset, u64 bytes, 2413 u64 cont1_bytes, u64 min_bytes) 2414 { 2415 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2416 struct btrfs_free_space *first = NULL; 2417 struct btrfs_free_space *entry = NULL; 2418 struct btrfs_free_space *last; 2419 struct rb_node *node; 2420 u64 window_start; 2421 u64 window_free; 2422 u64 max_extent; 2423 u64 total_size = 0; 2424 2425 entry = tree_search_offset(ctl, offset, 0, 1); 2426 if (!entry) 2427 return -ENOSPC; 2428 2429 /* 2430 * We don't want bitmaps, so just move along until we find a normal 2431 * extent entry. 2432 */ 2433 while (entry->bitmap || entry->bytes < min_bytes) { 2434 if (entry->bitmap && list_empty(&entry->list)) 2435 list_add_tail(&entry->list, bitmaps); 2436 node = rb_next(&entry->offset_index); 2437 if (!node) 2438 return -ENOSPC; 2439 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2440 } 2441 2442 window_start = entry->offset; 2443 window_free = entry->bytes; 2444 max_extent = entry->bytes; 2445 first = entry; 2446 last = entry; 2447 2448 for (node = rb_next(&entry->offset_index); node; 2449 node = rb_next(&entry->offset_index)) { 2450 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2451 2452 if (entry->bitmap) { 2453 if (list_empty(&entry->list)) 2454 list_add_tail(&entry->list, bitmaps); 2455 continue; 2456 } 2457 2458 if (entry->bytes < min_bytes) 2459 continue; 2460 2461 last = entry; 2462 window_free += entry->bytes; 2463 if (entry->bytes > max_extent) 2464 max_extent = entry->bytes; 2465 } 2466 2467 if (window_free < bytes || max_extent < cont1_bytes) 2468 return -ENOSPC; 2469 2470 cluster->window_start = first->offset; 2471 2472 node = &first->offset_index; 2473 2474 /* 2475 * now we've found our entries, pull them out of the free space 2476 * cache and put them into the cluster rbtree 2477 */ 2478 do { 2479 int ret; 2480 2481 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2482 node = rb_next(&entry->offset_index); 2483 if (entry->bitmap || entry->bytes < min_bytes) 2484 continue; 2485 2486 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2487 ret = tree_insert_offset(&cluster->root, entry->offset, 2488 &entry->offset_index, 0); 2489 total_size += entry->bytes; 2490 ASSERT(!ret); /* -EEXIST; Logic error */ 2491 } while (node && entry != last); 2492 2493 cluster->max_size = max_extent; 2494 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 2495 return 0; 2496 } 2497 2498 /* 2499 * This specifically looks for bitmaps that may work in the cluster, we assume 2500 * that we have already failed to find extents that will work. 2501 */ 2502 static noinline int 2503 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, 2504 struct btrfs_free_cluster *cluster, 2505 struct list_head *bitmaps, u64 offset, u64 bytes, 2506 u64 cont1_bytes, u64 min_bytes) 2507 { 2508 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2509 struct btrfs_free_space *entry; 2510 int ret = -ENOSPC; 2511 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 2512 2513 if (ctl->total_bitmaps == 0) 2514 return -ENOSPC; 2515 2516 /* 2517 * The bitmap that covers offset won't be in the list unless offset 2518 * is just its start offset. 2519 */ 2520 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 2521 if (entry->offset != bitmap_offset) { 2522 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 2523 if (entry && list_empty(&entry->list)) 2524 list_add(&entry->list, bitmaps); 2525 } 2526 2527 list_for_each_entry(entry, bitmaps, list) { 2528 if (entry->bytes < bytes) 2529 continue; 2530 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 2531 bytes, cont1_bytes, min_bytes); 2532 if (!ret) 2533 return 0; 2534 } 2535 2536 /* 2537 * The bitmaps list has all the bitmaps that record free space 2538 * starting after offset, so no more search is required. 2539 */ 2540 return -ENOSPC; 2541 } 2542 2543 /* 2544 * here we try to find a cluster of blocks in a block group. The goal 2545 * is to find at least bytes+empty_size. 2546 * We might not find them all in one contiguous area. 2547 * 2548 * returns zero and sets up cluster if things worked out, otherwise 2549 * it returns -enospc 2550 */ 2551 int btrfs_find_space_cluster(struct btrfs_root *root, 2552 struct btrfs_block_group_cache *block_group, 2553 struct btrfs_free_cluster *cluster, 2554 u64 offset, u64 bytes, u64 empty_size) 2555 { 2556 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2557 struct btrfs_free_space *entry, *tmp; 2558 LIST_HEAD(bitmaps); 2559 u64 min_bytes; 2560 u64 cont1_bytes; 2561 int ret; 2562 2563 /* 2564 * Choose the minimum extent size we'll require for this 2565 * cluster. For SSD_SPREAD, don't allow any fragmentation. 2566 * For metadata, allow allocates with smaller extents. For 2567 * data, keep it dense. 2568 */ 2569 if (btrfs_test_opt(root, SSD_SPREAD)) { 2570 cont1_bytes = min_bytes = bytes + empty_size; 2571 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 2572 cont1_bytes = bytes; 2573 min_bytes = block_group->sectorsize; 2574 } else { 2575 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 2576 min_bytes = block_group->sectorsize; 2577 } 2578 2579 spin_lock(&ctl->tree_lock); 2580 2581 /* 2582 * If we know we don't have enough space to make a cluster don't even 2583 * bother doing all the work to try and find one. 2584 */ 2585 if (ctl->free_space < bytes) { 2586 spin_unlock(&ctl->tree_lock); 2587 return -ENOSPC; 2588 } 2589 2590 spin_lock(&cluster->lock); 2591 2592 /* someone already found a cluster, hooray */ 2593 if (cluster->block_group) { 2594 ret = 0; 2595 goto out; 2596 } 2597 2598 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 2599 min_bytes); 2600 2601 INIT_LIST_HEAD(&bitmaps); 2602 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 2603 bytes + empty_size, 2604 cont1_bytes, min_bytes); 2605 if (ret) 2606 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 2607 offset, bytes + empty_size, 2608 cont1_bytes, min_bytes); 2609 2610 /* Clear our temporary list */ 2611 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 2612 list_del_init(&entry->list); 2613 2614 if (!ret) { 2615 atomic_inc(&block_group->count); 2616 list_add_tail(&cluster->block_group_list, 2617 &block_group->cluster_list); 2618 cluster->block_group = block_group; 2619 } else { 2620 trace_btrfs_failed_cluster_setup(block_group); 2621 } 2622 out: 2623 spin_unlock(&cluster->lock); 2624 spin_unlock(&ctl->tree_lock); 2625 2626 return ret; 2627 } 2628 2629 /* 2630 * simple code to zero out a cluster 2631 */ 2632 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 2633 { 2634 spin_lock_init(&cluster->lock); 2635 spin_lock_init(&cluster->refill_lock); 2636 cluster->root = RB_ROOT; 2637 cluster->max_size = 0; 2638 INIT_LIST_HEAD(&cluster->block_group_list); 2639 cluster->block_group = NULL; 2640 } 2641 2642 static int do_trimming(struct btrfs_block_group_cache *block_group, 2643 u64 *total_trimmed, u64 start, u64 bytes, 2644 u64 reserved_start, u64 reserved_bytes) 2645 { 2646 struct btrfs_space_info *space_info = block_group->space_info; 2647 struct btrfs_fs_info *fs_info = block_group->fs_info; 2648 int ret; 2649 int update = 0; 2650 u64 trimmed = 0; 2651 2652 spin_lock(&space_info->lock); 2653 spin_lock(&block_group->lock); 2654 if (!block_group->ro) { 2655 block_group->reserved += reserved_bytes; 2656 space_info->bytes_reserved += reserved_bytes; 2657 update = 1; 2658 } 2659 spin_unlock(&block_group->lock); 2660 spin_unlock(&space_info->lock); 2661 2662 ret = btrfs_error_discard_extent(fs_info->extent_root, 2663 start, bytes, &trimmed); 2664 if (!ret) 2665 *total_trimmed += trimmed; 2666 2667 btrfs_add_free_space(block_group, reserved_start, reserved_bytes); 2668 2669 if (update) { 2670 spin_lock(&space_info->lock); 2671 spin_lock(&block_group->lock); 2672 if (block_group->ro) 2673 space_info->bytes_readonly += reserved_bytes; 2674 block_group->reserved -= reserved_bytes; 2675 space_info->bytes_reserved -= reserved_bytes; 2676 spin_unlock(&space_info->lock); 2677 spin_unlock(&block_group->lock); 2678 } 2679 2680 return ret; 2681 } 2682 2683 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, 2684 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 2685 { 2686 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2687 struct btrfs_free_space *entry; 2688 struct rb_node *node; 2689 int ret = 0; 2690 u64 extent_start; 2691 u64 extent_bytes; 2692 u64 bytes; 2693 2694 while (start < end) { 2695 spin_lock(&ctl->tree_lock); 2696 2697 if (ctl->free_space < minlen) { 2698 spin_unlock(&ctl->tree_lock); 2699 break; 2700 } 2701 2702 entry = tree_search_offset(ctl, start, 0, 1); 2703 if (!entry) { 2704 spin_unlock(&ctl->tree_lock); 2705 break; 2706 } 2707 2708 /* skip bitmaps */ 2709 while (entry->bitmap) { 2710 node = rb_next(&entry->offset_index); 2711 if (!node) { 2712 spin_unlock(&ctl->tree_lock); 2713 goto out; 2714 } 2715 entry = rb_entry(node, struct btrfs_free_space, 2716 offset_index); 2717 } 2718 2719 if (entry->offset >= end) { 2720 spin_unlock(&ctl->tree_lock); 2721 break; 2722 } 2723 2724 extent_start = entry->offset; 2725 extent_bytes = entry->bytes; 2726 start = max(start, extent_start); 2727 bytes = min(extent_start + extent_bytes, end) - start; 2728 if (bytes < minlen) { 2729 spin_unlock(&ctl->tree_lock); 2730 goto next; 2731 } 2732 2733 unlink_free_space(ctl, entry); 2734 kmem_cache_free(btrfs_free_space_cachep, entry); 2735 2736 spin_unlock(&ctl->tree_lock); 2737 2738 ret = do_trimming(block_group, total_trimmed, start, bytes, 2739 extent_start, extent_bytes); 2740 if (ret) 2741 break; 2742 next: 2743 start += bytes; 2744 2745 if (fatal_signal_pending(current)) { 2746 ret = -ERESTARTSYS; 2747 break; 2748 } 2749 2750 cond_resched(); 2751 } 2752 out: 2753 return ret; 2754 } 2755 2756 static int trim_bitmaps(struct btrfs_block_group_cache *block_group, 2757 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 2758 { 2759 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2760 struct btrfs_free_space *entry; 2761 int ret = 0; 2762 int ret2; 2763 u64 bytes; 2764 u64 offset = offset_to_bitmap(ctl, start); 2765 2766 while (offset < end) { 2767 bool next_bitmap = false; 2768 2769 spin_lock(&ctl->tree_lock); 2770 2771 if (ctl->free_space < minlen) { 2772 spin_unlock(&ctl->tree_lock); 2773 break; 2774 } 2775 2776 entry = tree_search_offset(ctl, offset, 1, 0); 2777 if (!entry) { 2778 spin_unlock(&ctl->tree_lock); 2779 next_bitmap = true; 2780 goto next; 2781 } 2782 2783 bytes = minlen; 2784 ret2 = search_bitmap(ctl, entry, &start, &bytes); 2785 if (ret2 || start >= end) { 2786 spin_unlock(&ctl->tree_lock); 2787 next_bitmap = true; 2788 goto next; 2789 } 2790 2791 bytes = min(bytes, end - start); 2792 if (bytes < minlen) { 2793 spin_unlock(&ctl->tree_lock); 2794 goto next; 2795 } 2796 2797 bitmap_clear_bits(ctl, entry, start, bytes); 2798 if (entry->bytes == 0) 2799 free_bitmap(ctl, entry); 2800 2801 spin_unlock(&ctl->tree_lock); 2802 2803 ret = do_trimming(block_group, total_trimmed, start, bytes, 2804 start, bytes); 2805 if (ret) 2806 break; 2807 next: 2808 if (next_bitmap) { 2809 offset += BITS_PER_BITMAP * ctl->unit; 2810 } else { 2811 start += bytes; 2812 if (start >= offset + BITS_PER_BITMAP * ctl->unit) 2813 offset += BITS_PER_BITMAP * ctl->unit; 2814 } 2815 2816 if (fatal_signal_pending(current)) { 2817 ret = -ERESTARTSYS; 2818 break; 2819 } 2820 2821 cond_resched(); 2822 } 2823 2824 return ret; 2825 } 2826 2827 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, 2828 u64 *trimmed, u64 start, u64 end, u64 minlen) 2829 { 2830 int ret; 2831 2832 *trimmed = 0; 2833 2834 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); 2835 if (ret) 2836 return ret; 2837 2838 ret = trim_bitmaps(block_group, trimmed, start, end, minlen); 2839 2840 return ret; 2841 } 2842 2843 /* 2844 * Find the left-most item in the cache tree, and then return the 2845 * smallest inode number in the item. 2846 * 2847 * Note: the returned inode number may not be the smallest one in 2848 * the tree, if the left-most item is a bitmap. 2849 */ 2850 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 2851 { 2852 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 2853 struct btrfs_free_space *entry = NULL; 2854 u64 ino = 0; 2855 2856 spin_lock(&ctl->tree_lock); 2857 2858 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 2859 goto out; 2860 2861 entry = rb_entry(rb_first(&ctl->free_space_offset), 2862 struct btrfs_free_space, offset_index); 2863 2864 if (!entry->bitmap) { 2865 ino = entry->offset; 2866 2867 unlink_free_space(ctl, entry); 2868 entry->offset++; 2869 entry->bytes--; 2870 if (!entry->bytes) 2871 kmem_cache_free(btrfs_free_space_cachep, entry); 2872 else 2873 link_free_space(ctl, entry); 2874 } else { 2875 u64 offset = 0; 2876 u64 count = 1; 2877 int ret; 2878 2879 ret = search_bitmap(ctl, entry, &offset, &count); 2880 /* Logic error; Should be empty if it can't find anything */ 2881 ASSERT(!ret); 2882 2883 ino = offset; 2884 bitmap_clear_bits(ctl, entry, offset, 1); 2885 if (entry->bytes == 0) 2886 free_bitmap(ctl, entry); 2887 } 2888 out: 2889 spin_unlock(&ctl->tree_lock); 2890 2891 return ino; 2892 } 2893 2894 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 2895 struct btrfs_path *path) 2896 { 2897 struct inode *inode = NULL; 2898 2899 spin_lock(&root->cache_lock); 2900 if (root->cache_inode) 2901 inode = igrab(root->cache_inode); 2902 spin_unlock(&root->cache_lock); 2903 if (inode) 2904 return inode; 2905 2906 inode = __lookup_free_space_inode(root, path, 0); 2907 if (IS_ERR(inode)) 2908 return inode; 2909 2910 spin_lock(&root->cache_lock); 2911 if (!btrfs_fs_closing(root->fs_info)) 2912 root->cache_inode = igrab(inode); 2913 spin_unlock(&root->cache_lock); 2914 2915 return inode; 2916 } 2917 2918 int create_free_ino_inode(struct btrfs_root *root, 2919 struct btrfs_trans_handle *trans, 2920 struct btrfs_path *path) 2921 { 2922 return __create_free_space_inode(root, trans, path, 2923 BTRFS_FREE_INO_OBJECTID, 0); 2924 } 2925 2926 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2927 { 2928 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 2929 struct btrfs_path *path; 2930 struct inode *inode; 2931 int ret = 0; 2932 u64 root_gen = btrfs_root_generation(&root->root_item); 2933 2934 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 2935 return 0; 2936 2937 /* 2938 * If we're unmounting then just return, since this does a search on the 2939 * normal root and not the commit root and we could deadlock. 2940 */ 2941 if (btrfs_fs_closing(fs_info)) 2942 return 0; 2943 2944 path = btrfs_alloc_path(); 2945 if (!path) 2946 return 0; 2947 2948 inode = lookup_free_ino_inode(root, path); 2949 if (IS_ERR(inode)) 2950 goto out; 2951 2952 if (root_gen != BTRFS_I(inode)->generation) 2953 goto out_put; 2954 2955 ret = __load_free_space_cache(root, inode, ctl, path, 0); 2956 2957 if (ret < 0) 2958 btrfs_err(fs_info, 2959 "failed to load free ino cache for root %llu", 2960 root->root_key.objectid); 2961 out_put: 2962 iput(inode); 2963 out: 2964 btrfs_free_path(path); 2965 return ret; 2966 } 2967 2968 int btrfs_write_out_ino_cache(struct btrfs_root *root, 2969 struct btrfs_trans_handle *trans, 2970 struct btrfs_path *path) 2971 { 2972 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 2973 struct inode *inode; 2974 int ret; 2975 2976 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 2977 return 0; 2978 2979 inode = lookup_free_ino_inode(root, path); 2980 if (IS_ERR(inode)) 2981 return 0; 2982 2983 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0); 2984 if (ret) { 2985 btrfs_delalloc_release_metadata(inode, inode->i_size); 2986 #ifdef DEBUG 2987 btrfs_err(root->fs_info, 2988 "failed to write free ino cache for root %llu", 2989 root->root_key.objectid); 2990 #endif 2991 } 2992 2993 iput(inode); 2994 return ret; 2995 } 2996 2997 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 2998 /* 2999 * Use this if you need to make a bitmap or extent entry specifically, it 3000 * doesn't do any of the merging that add_free_space does, this acts a lot like 3001 * how the free space cache loading stuff works, so you can get really weird 3002 * configurations. 3003 */ 3004 int test_add_free_space_entry(struct btrfs_block_group_cache *cache, 3005 u64 offset, u64 bytes, bool bitmap) 3006 { 3007 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3008 struct btrfs_free_space *info = NULL, *bitmap_info; 3009 void *map = NULL; 3010 u64 bytes_added; 3011 int ret; 3012 3013 again: 3014 if (!info) { 3015 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 3016 if (!info) 3017 return -ENOMEM; 3018 } 3019 3020 if (!bitmap) { 3021 spin_lock(&ctl->tree_lock); 3022 info->offset = offset; 3023 info->bytes = bytes; 3024 ret = link_free_space(ctl, info); 3025 spin_unlock(&ctl->tree_lock); 3026 if (ret) 3027 kmem_cache_free(btrfs_free_space_cachep, info); 3028 return ret; 3029 } 3030 3031 if (!map) { 3032 map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); 3033 if (!map) { 3034 kmem_cache_free(btrfs_free_space_cachep, info); 3035 return -ENOMEM; 3036 } 3037 } 3038 3039 spin_lock(&ctl->tree_lock); 3040 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3041 1, 0); 3042 if (!bitmap_info) { 3043 info->bitmap = map; 3044 map = NULL; 3045 add_new_bitmap(ctl, info, offset); 3046 bitmap_info = info; 3047 } 3048 3049 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 3050 bytes -= bytes_added; 3051 offset += bytes_added; 3052 spin_unlock(&ctl->tree_lock); 3053 3054 if (bytes) 3055 goto again; 3056 3057 if (map) 3058 kfree(map); 3059 return 0; 3060 } 3061 3062 /* 3063 * Checks to see if the given range is in the free space cache. This is really 3064 * just used to check the absence of space, so if there is free space in the 3065 * range at all we will return 1. 3066 */ 3067 int test_check_exists(struct btrfs_block_group_cache *cache, 3068 u64 offset, u64 bytes) 3069 { 3070 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3071 struct btrfs_free_space *info; 3072 int ret = 0; 3073 3074 spin_lock(&ctl->tree_lock); 3075 info = tree_search_offset(ctl, offset, 0, 0); 3076 if (!info) { 3077 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3078 1, 0); 3079 if (!info) 3080 goto out; 3081 } 3082 3083 have_info: 3084 if (info->bitmap) { 3085 u64 bit_off, bit_bytes; 3086 struct rb_node *n; 3087 struct btrfs_free_space *tmp; 3088 3089 bit_off = offset; 3090 bit_bytes = ctl->unit; 3091 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes); 3092 if (!ret) { 3093 if (bit_off == offset) { 3094 ret = 1; 3095 goto out; 3096 } else if (bit_off > offset && 3097 offset + bytes > bit_off) { 3098 ret = 1; 3099 goto out; 3100 } 3101 } 3102 3103 n = rb_prev(&info->offset_index); 3104 while (n) { 3105 tmp = rb_entry(n, struct btrfs_free_space, 3106 offset_index); 3107 if (tmp->offset + tmp->bytes < offset) 3108 break; 3109 if (offset + bytes < tmp->offset) { 3110 n = rb_prev(&info->offset_index); 3111 continue; 3112 } 3113 info = tmp; 3114 goto have_info; 3115 } 3116 3117 n = rb_next(&info->offset_index); 3118 while (n) { 3119 tmp = rb_entry(n, struct btrfs_free_space, 3120 offset_index); 3121 if (offset + bytes < tmp->offset) 3122 break; 3123 if (tmp->offset + tmp->bytes < offset) { 3124 n = rb_next(&info->offset_index); 3125 continue; 3126 } 3127 info = tmp; 3128 goto have_info; 3129 } 3130 3131 goto out; 3132 } 3133 3134 if (info->offset == offset) { 3135 ret = 1; 3136 goto out; 3137 } 3138 3139 if (offset > info->offset && offset < info->offset + info->bytes) 3140 ret = 1; 3141 out: 3142 spin_unlock(&ctl->tree_lock); 3143 return ret; 3144 } 3145 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 3146