xref: /linux/fs/btrfs/free-space-cache.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include "ctree.h"
24 #include "free-space-cache.h"
25 #include "transaction.h"
26 #include "disk-io.h"
27 #include "extent_io.h"
28 #include "inode-map.h"
29 
30 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
31 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
32 
33 static int link_free_space(struct btrfs_free_space_ctl *ctl,
34 			   struct btrfs_free_space *info);
35 
36 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
37 					       struct btrfs_path *path,
38 					       u64 offset)
39 {
40 	struct btrfs_key key;
41 	struct btrfs_key location;
42 	struct btrfs_disk_key disk_key;
43 	struct btrfs_free_space_header *header;
44 	struct extent_buffer *leaf;
45 	struct inode *inode = NULL;
46 	int ret;
47 
48 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
49 	key.offset = offset;
50 	key.type = 0;
51 
52 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
53 	if (ret < 0)
54 		return ERR_PTR(ret);
55 	if (ret > 0) {
56 		btrfs_release_path(path);
57 		return ERR_PTR(-ENOENT);
58 	}
59 
60 	leaf = path->nodes[0];
61 	header = btrfs_item_ptr(leaf, path->slots[0],
62 				struct btrfs_free_space_header);
63 	btrfs_free_space_key(leaf, header, &disk_key);
64 	btrfs_disk_key_to_cpu(&location, &disk_key);
65 	btrfs_release_path(path);
66 
67 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
68 	if (!inode)
69 		return ERR_PTR(-ENOENT);
70 	if (IS_ERR(inode))
71 		return inode;
72 	if (is_bad_inode(inode)) {
73 		iput(inode);
74 		return ERR_PTR(-ENOENT);
75 	}
76 
77 	inode->i_mapping->flags &= ~__GFP_FS;
78 
79 	return inode;
80 }
81 
82 struct inode *lookup_free_space_inode(struct btrfs_root *root,
83 				      struct btrfs_block_group_cache
84 				      *block_group, struct btrfs_path *path)
85 {
86 	struct inode *inode = NULL;
87 
88 	spin_lock(&block_group->lock);
89 	if (block_group->inode)
90 		inode = igrab(block_group->inode);
91 	spin_unlock(&block_group->lock);
92 	if (inode)
93 		return inode;
94 
95 	inode = __lookup_free_space_inode(root, path,
96 					  block_group->key.objectid);
97 	if (IS_ERR(inode))
98 		return inode;
99 
100 	spin_lock(&block_group->lock);
101 	if (!btrfs_fs_closing(root->fs_info)) {
102 		block_group->inode = igrab(inode);
103 		block_group->iref = 1;
104 	}
105 	spin_unlock(&block_group->lock);
106 
107 	return inode;
108 }
109 
110 int __create_free_space_inode(struct btrfs_root *root,
111 			      struct btrfs_trans_handle *trans,
112 			      struct btrfs_path *path, u64 ino, u64 offset)
113 {
114 	struct btrfs_key key;
115 	struct btrfs_disk_key disk_key;
116 	struct btrfs_free_space_header *header;
117 	struct btrfs_inode_item *inode_item;
118 	struct extent_buffer *leaf;
119 	int ret;
120 
121 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
122 	if (ret)
123 		return ret;
124 
125 	leaf = path->nodes[0];
126 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
127 				    struct btrfs_inode_item);
128 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
129 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
130 			     sizeof(*inode_item));
131 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
132 	btrfs_set_inode_size(leaf, inode_item, 0);
133 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
134 	btrfs_set_inode_uid(leaf, inode_item, 0);
135 	btrfs_set_inode_gid(leaf, inode_item, 0);
136 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
137 	btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
138 			      BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
139 	btrfs_set_inode_nlink(leaf, inode_item, 1);
140 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
141 	btrfs_set_inode_block_group(leaf, inode_item, offset);
142 	btrfs_mark_buffer_dirty(leaf);
143 	btrfs_release_path(path);
144 
145 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
146 	key.offset = offset;
147 	key.type = 0;
148 
149 	ret = btrfs_insert_empty_item(trans, root, path, &key,
150 				      sizeof(struct btrfs_free_space_header));
151 	if (ret < 0) {
152 		btrfs_release_path(path);
153 		return ret;
154 	}
155 	leaf = path->nodes[0];
156 	header = btrfs_item_ptr(leaf, path->slots[0],
157 				struct btrfs_free_space_header);
158 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
159 	btrfs_set_free_space_key(leaf, header, &disk_key);
160 	btrfs_mark_buffer_dirty(leaf);
161 	btrfs_release_path(path);
162 
163 	return 0;
164 }
165 
166 int create_free_space_inode(struct btrfs_root *root,
167 			    struct btrfs_trans_handle *trans,
168 			    struct btrfs_block_group_cache *block_group,
169 			    struct btrfs_path *path)
170 {
171 	int ret;
172 	u64 ino;
173 
174 	ret = btrfs_find_free_objectid(root, &ino);
175 	if (ret < 0)
176 		return ret;
177 
178 	return __create_free_space_inode(root, trans, path, ino,
179 					 block_group->key.objectid);
180 }
181 
182 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
183 				    struct btrfs_trans_handle *trans,
184 				    struct btrfs_path *path,
185 				    struct inode *inode)
186 {
187 	loff_t oldsize;
188 	int ret = 0;
189 
190 	trans->block_rsv = root->orphan_block_rsv;
191 	ret = btrfs_block_rsv_check(trans, root,
192 				    root->orphan_block_rsv,
193 				    0, 5);
194 	if (ret)
195 		return ret;
196 
197 	oldsize = i_size_read(inode);
198 	btrfs_i_size_write(inode, 0);
199 	truncate_pagecache(inode, oldsize, 0);
200 
201 	/*
202 	 * We don't need an orphan item because truncating the free space cache
203 	 * will never be split across transactions.
204 	 */
205 	ret = btrfs_truncate_inode_items(trans, root, inode,
206 					 0, BTRFS_EXTENT_DATA_KEY);
207 	if (ret) {
208 		WARN_ON(1);
209 		return ret;
210 	}
211 
212 	ret = btrfs_update_inode(trans, root, inode);
213 	return ret;
214 }
215 
216 static int readahead_cache(struct inode *inode)
217 {
218 	struct file_ra_state *ra;
219 	unsigned long last_index;
220 
221 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
222 	if (!ra)
223 		return -ENOMEM;
224 
225 	file_ra_state_init(ra, inode->i_mapping);
226 	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
227 
228 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
229 
230 	kfree(ra);
231 
232 	return 0;
233 }
234 
235 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
236 			    struct btrfs_free_space_ctl *ctl,
237 			    struct btrfs_path *path, u64 offset)
238 {
239 	struct btrfs_free_space_header *header;
240 	struct extent_buffer *leaf;
241 	struct page *page;
242 	u32 *checksums = NULL, *crc;
243 	char *disk_crcs = NULL;
244 	struct btrfs_key key;
245 	struct list_head bitmaps;
246 	u64 num_entries;
247 	u64 num_bitmaps;
248 	u64 generation;
249 	u32 cur_crc = ~(u32)0;
250 	pgoff_t index = 0;
251 	unsigned long first_page_offset;
252 	int num_checksums;
253 	int ret = 0, ret2;
254 
255 	INIT_LIST_HEAD(&bitmaps);
256 
257 	/* Nothing in the space cache, goodbye */
258 	if (!i_size_read(inode))
259 		goto out;
260 
261 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
262 	key.offset = offset;
263 	key.type = 0;
264 
265 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
266 	if (ret < 0)
267 		goto out;
268 	else if (ret > 0) {
269 		btrfs_release_path(path);
270 		ret = 0;
271 		goto out;
272 	}
273 
274 	ret = -1;
275 
276 	leaf = path->nodes[0];
277 	header = btrfs_item_ptr(leaf, path->slots[0],
278 				struct btrfs_free_space_header);
279 	num_entries = btrfs_free_space_entries(leaf, header);
280 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
281 	generation = btrfs_free_space_generation(leaf, header);
282 	btrfs_release_path(path);
283 
284 	if (BTRFS_I(inode)->generation != generation) {
285 		printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
286 		       " not match free space cache generation (%llu)\n",
287 		       (unsigned long long)BTRFS_I(inode)->generation,
288 		       (unsigned long long)generation);
289 		goto out;
290 	}
291 
292 	if (!num_entries)
293 		goto out;
294 
295 	/* Setup everything for doing checksumming */
296 	num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
297 	checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
298 	if (!checksums)
299 		goto out;
300 	first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
301 	disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
302 	if (!disk_crcs)
303 		goto out;
304 
305 	ret = readahead_cache(inode);
306 	if (ret)
307 		goto out;
308 
309 	while (1) {
310 		struct btrfs_free_space_entry *entry;
311 		struct btrfs_free_space *e;
312 		void *addr;
313 		unsigned long offset = 0;
314 		unsigned long start_offset = 0;
315 		int need_loop = 0;
316 
317 		if (!num_entries && !num_bitmaps)
318 			break;
319 
320 		if (index == 0) {
321 			start_offset = first_page_offset;
322 			offset = start_offset;
323 		}
324 
325 		page = grab_cache_page(inode->i_mapping, index);
326 		if (!page)
327 			goto free_cache;
328 
329 		if (!PageUptodate(page)) {
330 			btrfs_readpage(NULL, page);
331 			lock_page(page);
332 			if (!PageUptodate(page)) {
333 				unlock_page(page);
334 				page_cache_release(page);
335 				printk(KERN_ERR "btrfs: error reading free "
336 				       "space cache\n");
337 				goto free_cache;
338 			}
339 		}
340 		addr = kmap(page);
341 
342 		if (index == 0) {
343 			u64 *gen;
344 
345 			memcpy(disk_crcs, addr, first_page_offset);
346 			gen = addr + (sizeof(u32) * num_checksums);
347 			if (*gen != BTRFS_I(inode)->generation) {
348 				printk(KERN_ERR "btrfs: space cache generation"
349 				       " (%llu) does not match inode (%llu)\n",
350 				       (unsigned long long)*gen,
351 				       (unsigned long long)
352 				       BTRFS_I(inode)->generation);
353 				kunmap(page);
354 				unlock_page(page);
355 				page_cache_release(page);
356 				goto free_cache;
357 			}
358 			crc = (u32 *)disk_crcs;
359 		}
360 		entry = addr + start_offset;
361 
362 		/* First lets check our crc before we do anything fun */
363 		cur_crc = ~(u32)0;
364 		cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
365 					  PAGE_CACHE_SIZE - start_offset);
366 		btrfs_csum_final(cur_crc, (char *)&cur_crc);
367 		if (cur_crc != *crc) {
368 			printk(KERN_ERR "btrfs: crc mismatch for page %lu\n",
369 			       index);
370 			kunmap(page);
371 			unlock_page(page);
372 			page_cache_release(page);
373 			goto free_cache;
374 		}
375 		crc++;
376 
377 		while (1) {
378 			if (!num_entries)
379 				break;
380 
381 			need_loop = 1;
382 			e = kmem_cache_zalloc(btrfs_free_space_cachep,
383 					      GFP_NOFS);
384 			if (!e) {
385 				kunmap(page);
386 				unlock_page(page);
387 				page_cache_release(page);
388 				goto free_cache;
389 			}
390 
391 			e->offset = le64_to_cpu(entry->offset);
392 			e->bytes = le64_to_cpu(entry->bytes);
393 			if (!e->bytes) {
394 				kunmap(page);
395 				kmem_cache_free(btrfs_free_space_cachep, e);
396 				unlock_page(page);
397 				page_cache_release(page);
398 				goto free_cache;
399 			}
400 
401 			if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
402 				spin_lock(&ctl->tree_lock);
403 				ret = link_free_space(ctl, e);
404 				spin_unlock(&ctl->tree_lock);
405 				if (ret) {
406 					printk(KERN_ERR "Duplicate entries in "
407 					       "free space cache, dumping\n");
408 					kunmap(page);
409 					unlock_page(page);
410 					page_cache_release(page);
411 					goto free_cache;
412 				}
413 			} else {
414 				e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
415 				if (!e->bitmap) {
416 					kunmap(page);
417 					kmem_cache_free(
418 						btrfs_free_space_cachep, e);
419 					unlock_page(page);
420 					page_cache_release(page);
421 					goto free_cache;
422 				}
423 				spin_lock(&ctl->tree_lock);
424 				ret2 = link_free_space(ctl, e);
425 				ctl->total_bitmaps++;
426 				ctl->op->recalc_thresholds(ctl);
427 				spin_unlock(&ctl->tree_lock);
428 				list_add_tail(&e->list, &bitmaps);
429 				if (ret) {
430 					printk(KERN_ERR "Duplicate entries in "
431 					       "free space cache, dumping\n");
432 					kunmap(page);
433 					unlock_page(page);
434 					page_cache_release(page);
435 					goto free_cache;
436 				}
437 			}
438 
439 			num_entries--;
440 			offset += sizeof(struct btrfs_free_space_entry);
441 			if (offset + sizeof(struct btrfs_free_space_entry) >=
442 			    PAGE_CACHE_SIZE)
443 				break;
444 			entry++;
445 		}
446 
447 		/*
448 		 * We read an entry out of this page, we need to move on to the
449 		 * next page.
450 		 */
451 		if (need_loop) {
452 			kunmap(page);
453 			goto next;
454 		}
455 
456 		/*
457 		 * We add the bitmaps at the end of the entries in order that
458 		 * the bitmap entries are added to the cache.
459 		 */
460 		e = list_entry(bitmaps.next, struct btrfs_free_space, list);
461 		list_del_init(&e->list);
462 		memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
463 		kunmap(page);
464 		num_bitmaps--;
465 next:
466 		unlock_page(page);
467 		page_cache_release(page);
468 		index++;
469 	}
470 
471 	ret = 1;
472 out:
473 	kfree(checksums);
474 	kfree(disk_crcs);
475 	return ret;
476 free_cache:
477 	__btrfs_remove_free_space_cache(ctl);
478 	goto out;
479 }
480 
481 int load_free_space_cache(struct btrfs_fs_info *fs_info,
482 			  struct btrfs_block_group_cache *block_group)
483 {
484 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
485 	struct btrfs_root *root = fs_info->tree_root;
486 	struct inode *inode;
487 	struct btrfs_path *path;
488 	int ret;
489 	bool matched;
490 	u64 used = btrfs_block_group_used(&block_group->item);
491 
492 	/*
493 	 * If we're unmounting then just return, since this does a search on the
494 	 * normal root and not the commit root and we could deadlock.
495 	 */
496 	if (btrfs_fs_closing(fs_info))
497 		return 0;
498 
499 	/*
500 	 * If this block group has been marked to be cleared for one reason or
501 	 * another then we can't trust the on disk cache, so just return.
502 	 */
503 	spin_lock(&block_group->lock);
504 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
505 		spin_unlock(&block_group->lock);
506 		return 0;
507 	}
508 	spin_unlock(&block_group->lock);
509 
510 	path = btrfs_alloc_path();
511 	if (!path)
512 		return 0;
513 
514 	inode = lookup_free_space_inode(root, block_group, path);
515 	if (IS_ERR(inode)) {
516 		btrfs_free_path(path);
517 		return 0;
518 	}
519 
520 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
521 				      path, block_group->key.objectid);
522 	btrfs_free_path(path);
523 	if (ret <= 0)
524 		goto out;
525 
526 	spin_lock(&ctl->tree_lock);
527 	matched = (ctl->free_space == (block_group->key.offset - used -
528 				       block_group->bytes_super));
529 	spin_unlock(&ctl->tree_lock);
530 
531 	if (!matched) {
532 		__btrfs_remove_free_space_cache(ctl);
533 		printk(KERN_ERR "block group %llu has an wrong amount of free "
534 		       "space\n", block_group->key.objectid);
535 		ret = -1;
536 	}
537 out:
538 	if (ret < 0) {
539 		/* This cache is bogus, make sure it gets cleared */
540 		spin_lock(&block_group->lock);
541 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
542 		spin_unlock(&block_group->lock);
543 		ret = 0;
544 
545 		printk(KERN_ERR "btrfs: failed to load free space cache "
546 		       "for block group %llu\n", block_group->key.objectid);
547 	}
548 
549 	iput(inode);
550 	return ret;
551 }
552 
553 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
554 			    struct btrfs_free_space_ctl *ctl,
555 			    struct btrfs_block_group_cache *block_group,
556 			    struct btrfs_trans_handle *trans,
557 			    struct btrfs_path *path, u64 offset)
558 {
559 	struct btrfs_free_space_header *header;
560 	struct extent_buffer *leaf;
561 	struct rb_node *node;
562 	struct list_head *pos, *n;
563 	struct page **pages;
564 	struct page *page;
565 	struct extent_state *cached_state = NULL;
566 	struct btrfs_free_cluster *cluster = NULL;
567 	struct extent_io_tree *unpin = NULL;
568 	struct list_head bitmap_list;
569 	struct btrfs_key key;
570 	u64 start, end, len;
571 	u64 bytes = 0;
572 	u32 *crc, *checksums;
573 	unsigned long first_page_offset;
574 	int index = 0, num_pages = 0;
575 	int entries = 0;
576 	int bitmaps = 0;
577 	int ret = -1;
578 	bool next_page = false;
579 	bool out_of_space = false;
580 
581 	INIT_LIST_HEAD(&bitmap_list);
582 
583 	node = rb_first(&ctl->free_space_offset);
584 	if (!node)
585 		return 0;
586 
587 	if (!i_size_read(inode))
588 		return -1;
589 
590 	num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
591 		PAGE_CACHE_SHIFT;
592 
593 	/* Since the first page has all of our checksums and our generation we
594 	 * need to calculate the offset into the page that we can start writing
595 	 * our entries.
596 	 */
597 	first_page_offset = (sizeof(u32) * num_pages) + sizeof(u64);
598 
599 	filemap_write_and_wait(inode->i_mapping);
600 	btrfs_wait_ordered_range(inode, inode->i_size &
601 				 ~(root->sectorsize - 1), (u64)-1);
602 
603 	/* make sure we don't overflow that first page */
604 	if (first_page_offset + sizeof(struct btrfs_free_space_entry) >= PAGE_CACHE_SIZE) {
605 		/* this is really the same as running out of space, where we also return 0 */
606 		printk(KERN_CRIT "Btrfs: free space cache was too big for the crc page\n");
607 		ret = 0;
608 		goto out_update;
609 	}
610 
611 	/* We need a checksum per page. */
612 	crc = checksums = kzalloc(sizeof(u32) * num_pages, GFP_NOFS);
613 	if (!crc)
614 		return -1;
615 
616 	pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
617 	if (!pages) {
618 		kfree(crc);
619 		return -1;
620 	}
621 
622 	/* Get the cluster for this block_group if it exists */
623 	if (block_group && !list_empty(&block_group->cluster_list))
624 		cluster = list_entry(block_group->cluster_list.next,
625 				     struct btrfs_free_cluster,
626 				     block_group_list);
627 
628 	/*
629 	 * We shouldn't have switched the pinned extents yet so this is the
630 	 * right one
631 	 */
632 	unpin = root->fs_info->pinned_extents;
633 
634 	/*
635 	 * Lock all pages first so we can lock the extent safely.
636 	 *
637 	 * NOTE: Because we hold the ref the entire time we're going to write to
638 	 * the page find_get_page should never fail, so we don't do a check
639 	 * after find_get_page at this point.  Just putting this here so people
640 	 * know and don't freak out.
641 	 */
642 	while (index < num_pages) {
643 		page = grab_cache_page(inode->i_mapping, index);
644 		if (!page) {
645 			int i;
646 
647 			for (i = 0; i < num_pages; i++) {
648 				unlock_page(pages[i]);
649 				page_cache_release(pages[i]);
650 			}
651 			goto out_free;
652 		}
653 		pages[index] = page;
654 		index++;
655 	}
656 
657 	index = 0;
658 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
659 			 0, &cached_state, GFP_NOFS);
660 
661 	/*
662 	 * When searching for pinned extents, we need to start at our start
663 	 * offset.
664 	 */
665 	if (block_group)
666 		start = block_group->key.objectid;
667 
668 	/* Write out the extent entries */
669 	do {
670 		struct btrfs_free_space_entry *entry;
671 		void *addr;
672 		unsigned long offset = 0;
673 		unsigned long start_offset = 0;
674 
675 		next_page = false;
676 
677 		if (index == 0) {
678 			start_offset = first_page_offset;
679 			offset = start_offset;
680 		}
681 
682 		if (index >= num_pages) {
683 			out_of_space = true;
684 			break;
685 		}
686 
687 		page = pages[index];
688 
689 		addr = kmap(page);
690 		entry = addr + start_offset;
691 
692 		memset(addr, 0, PAGE_CACHE_SIZE);
693 		while (node && !next_page) {
694 			struct btrfs_free_space *e;
695 
696 			e = rb_entry(node, struct btrfs_free_space, offset_index);
697 			entries++;
698 
699 			entry->offset = cpu_to_le64(e->offset);
700 			entry->bytes = cpu_to_le64(e->bytes);
701 			if (e->bitmap) {
702 				entry->type = BTRFS_FREE_SPACE_BITMAP;
703 				list_add_tail(&e->list, &bitmap_list);
704 				bitmaps++;
705 			} else {
706 				entry->type = BTRFS_FREE_SPACE_EXTENT;
707 			}
708 			node = rb_next(node);
709 			if (!node && cluster) {
710 				node = rb_first(&cluster->root);
711 				cluster = NULL;
712 			}
713 			offset += sizeof(struct btrfs_free_space_entry);
714 			if (offset + sizeof(struct btrfs_free_space_entry) >=
715 			    PAGE_CACHE_SIZE)
716 				next_page = true;
717 			entry++;
718 		}
719 
720 		/*
721 		 * We want to add any pinned extents to our free space cache
722 		 * so we don't leak the space
723 		 */
724 		while (block_group && !next_page &&
725 		       (start < block_group->key.objectid +
726 			block_group->key.offset)) {
727 			ret = find_first_extent_bit(unpin, start, &start, &end,
728 						    EXTENT_DIRTY);
729 			if (ret) {
730 				ret = 0;
731 				break;
732 			}
733 
734 			/* This pinned extent is out of our range */
735 			if (start >= block_group->key.objectid +
736 			    block_group->key.offset)
737 				break;
738 
739 			len = block_group->key.objectid +
740 				block_group->key.offset - start;
741 			len = min(len, end + 1 - start);
742 
743 			entries++;
744 			entry->offset = cpu_to_le64(start);
745 			entry->bytes = cpu_to_le64(len);
746 			entry->type = BTRFS_FREE_SPACE_EXTENT;
747 
748 			start = end + 1;
749 			offset += sizeof(struct btrfs_free_space_entry);
750 			if (offset + sizeof(struct btrfs_free_space_entry) >=
751 			    PAGE_CACHE_SIZE)
752 				next_page = true;
753 			entry++;
754 		}
755 		*crc = ~(u32)0;
756 		*crc = btrfs_csum_data(root, addr + start_offset, *crc,
757 				       PAGE_CACHE_SIZE - start_offset);
758 		kunmap(page);
759 
760 		btrfs_csum_final(*crc, (char *)crc);
761 		crc++;
762 
763 		bytes += PAGE_CACHE_SIZE;
764 
765 		index++;
766 	} while (node || next_page);
767 
768 	/* Write out the bitmaps */
769 	list_for_each_safe(pos, n, &bitmap_list) {
770 		void *addr;
771 		struct btrfs_free_space *entry =
772 			list_entry(pos, struct btrfs_free_space, list);
773 
774 		if (index >= num_pages) {
775 			out_of_space = true;
776 			break;
777 		}
778 		page = pages[index];
779 
780 		addr = kmap(page);
781 		memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
782 		*crc = ~(u32)0;
783 		*crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
784 		kunmap(page);
785 		btrfs_csum_final(*crc, (char *)crc);
786 		crc++;
787 		bytes += PAGE_CACHE_SIZE;
788 
789 		list_del_init(&entry->list);
790 		index++;
791 	}
792 
793 	if (out_of_space) {
794 		btrfs_drop_pages(pages, num_pages);
795 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
796 				     i_size_read(inode) - 1, &cached_state,
797 				     GFP_NOFS);
798 		ret = 0;
799 		goto out_free;
800 	}
801 
802 	/* Zero out the rest of the pages just to make sure */
803 	while (index < num_pages) {
804 		void *addr;
805 
806 		page = pages[index];
807 		addr = kmap(page);
808 		memset(addr, 0, PAGE_CACHE_SIZE);
809 		kunmap(page);
810 		bytes += PAGE_CACHE_SIZE;
811 		index++;
812 	}
813 
814 	/* Write the checksums and trans id to the first page */
815 	{
816 		void *addr;
817 		u64 *gen;
818 
819 		page = pages[0];
820 
821 		addr = kmap(page);
822 		memcpy(addr, checksums, sizeof(u32) * num_pages);
823 		gen = addr + (sizeof(u32) * num_pages);
824 		*gen = trans->transid;
825 		kunmap(page);
826 	}
827 
828 	ret = btrfs_dirty_pages(root, inode, pages, num_pages, 0,
829 					    bytes, &cached_state);
830 	btrfs_drop_pages(pages, num_pages);
831 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
832 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
833 
834 	if (ret) {
835 		ret = 0;
836 		goto out_free;
837 	}
838 
839 	BTRFS_I(inode)->generation = trans->transid;
840 
841 	filemap_write_and_wait(inode->i_mapping);
842 
843 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
844 	key.offset = offset;
845 	key.type = 0;
846 
847 	ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
848 	if (ret < 0) {
849 		ret = -1;
850 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
851 				 EXTENT_DIRTY | EXTENT_DELALLOC |
852 				 EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
853 		goto out_free;
854 	}
855 	leaf = path->nodes[0];
856 	if (ret > 0) {
857 		struct btrfs_key found_key;
858 		BUG_ON(!path->slots[0]);
859 		path->slots[0]--;
860 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
861 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
862 		    found_key.offset != offset) {
863 			ret = -1;
864 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
865 					 EXTENT_DIRTY | EXTENT_DELALLOC |
866 					 EXTENT_DO_ACCOUNTING, 0, 0, NULL,
867 					 GFP_NOFS);
868 			btrfs_release_path(path);
869 			goto out_free;
870 		}
871 	}
872 	header = btrfs_item_ptr(leaf, path->slots[0],
873 				struct btrfs_free_space_header);
874 	btrfs_set_free_space_entries(leaf, header, entries);
875 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
876 	btrfs_set_free_space_generation(leaf, header, trans->transid);
877 	btrfs_mark_buffer_dirty(leaf);
878 	btrfs_release_path(path);
879 
880 	ret = 1;
881 
882 out_free:
883 	kfree(checksums);
884 	kfree(pages);
885 
886 out_update:
887 	if (ret != 1) {
888 		invalidate_inode_pages2_range(inode->i_mapping, 0, index);
889 		BTRFS_I(inode)->generation = 0;
890 	}
891 	btrfs_update_inode(trans, root, inode);
892 	return ret;
893 }
894 
895 int btrfs_write_out_cache(struct btrfs_root *root,
896 			  struct btrfs_trans_handle *trans,
897 			  struct btrfs_block_group_cache *block_group,
898 			  struct btrfs_path *path)
899 {
900 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
901 	struct inode *inode;
902 	int ret = 0;
903 
904 	root = root->fs_info->tree_root;
905 
906 	spin_lock(&block_group->lock);
907 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
908 		spin_unlock(&block_group->lock);
909 		return 0;
910 	}
911 	spin_unlock(&block_group->lock);
912 
913 	inode = lookup_free_space_inode(root, block_group, path);
914 	if (IS_ERR(inode))
915 		return 0;
916 
917 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
918 				      path, block_group->key.objectid);
919 	if (ret < 0) {
920 		spin_lock(&block_group->lock);
921 		block_group->disk_cache_state = BTRFS_DC_ERROR;
922 		spin_unlock(&block_group->lock);
923 		ret = 0;
924 
925 		printk(KERN_ERR "btrfs: failed to write free space cace "
926 		       "for block group %llu\n", block_group->key.objectid);
927 	}
928 
929 	iput(inode);
930 	return ret;
931 }
932 
933 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
934 					  u64 offset)
935 {
936 	BUG_ON(offset < bitmap_start);
937 	offset -= bitmap_start;
938 	return (unsigned long)(div_u64(offset, unit));
939 }
940 
941 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
942 {
943 	return (unsigned long)(div_u64(bytes, unit));
944 }
945 
946 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
947 				   u64 offset)
948 {
949 	u64 bitmap_start;
950 	u64 bytes_per_bitmap;
951 
952 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
953 	bitmap_start = offset - ctl->start;
954 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
955 	bitmap_start *= bytes_per_bitmap;
956 	bitmap_start += ctl->start;
957 
958 	return bitmap_start;
959 }
960 
961 static int tree_insert_offset(struct rb_root *root, u64 offset,
962 			      struct rb_node *node, int bitmap)
963 {
964 	struct rb_node **p = &root->rb_node;
965 	struct rb_node *parent = NULL;
966 	struct btrfs_free_space *info;
967 
968 	while (*p) {
969 		parent = *p;
970 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
971 
972 		if (offset < info->offset) {
973 			p = &(*p)->rb_left;
974 		} else if (offset > info->offset) {
975 			p = &(*p)->rb_right;
976 		} else {
977 			/*
978 			 * we could have a bitmap entry and an extent entry
979 			 * share the same offset.  If this is the case, we want
980 			 * the extent entry to always be found first if we do a
981 			 * linear search through the tree, since we want to have
982 			 * the quickest allocation time, and allocating from an
983 			 * extent is faster than allocating from a bitmap.  So
984 			 * if we're inserting a bitmap and we find an entry at
985 			 * this offset, we want to go right, or after this entry
986 			 * logically.  If we are inserting an extent and we've
987 			 * found a bitmap, we want to go left, or before
988 			 * logically.
989 			 */
990 			if (bitmap) {
991 				if (info->bitmap) {
992 					WARN_ON_ONCE(1);
993 					return -EEXIST;
994 				}
995 				p = &(*p)->rb_right;
996 			} else {
997 				if (!info->bitmap) {
998 					WARN_ON_ONCE(1);
999 					return -EEXIST;
1000 				}
1001 				p = &(*p)->rb_left;
1002 			}
1003 		}
1004 	}
1005 
1006 	rb_link_node(node, parent, p);
1007 	rb_insert_color(node, root);
1008 
1009 	return 0;
1010 }
1011 
1012 /*
1013  * searches the tree for the given offset.
1014  *
1015  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1016  * want a section that has at least bytes size and comes at or after the given
1017  * offset.
1018  */
1019 static struct btrfs_free_space *
1020 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1021 		   u64 offset, int bitmap_only, int fuzzy)
1022 {
1023 	struct rb_node *n = ctl->free_space_offset.rb_node;
1024 	struct btrfs_free_space *entry, *prev = NULL;
1025 
1026 	/* find entry that is closest to the 'offset' */
1027 	while (1) {
1028 		if (!n) {
1029 			entry = NULL;
1030 			break;
1031 		}
1032 
1033 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1034 		prev = entry;
1035 
1036 		if (offset < entry->offset)
1037 			n = n->rb_left;
1038 		else if (offset > entry->offset)
1039 			n = n->rb_right;
1040 		else
1041 			break;
1042 	}
1043 
1044 	if (bitmap_only) {
1045 		if (!entry)
1046 			return NULL;
1047 		if (entry->bitmap)
1048 			return entry;
1049 
1050 		/*
1051 		 * bitmap entry and extent entry may share same offset,
1052 		 * in that case, bitmap entry comes after extent entry.
1053 		 */
1054 		n = rb_next(n);
1055 		if (!n)
1056 			return NULL;
1057 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1058 		if (entry->offset != offset)
1059 			return NULL;
1060 
1061 		WARN_ON(!entry->bitmap);
1062 		return entry;
1063 	} else if (entry) {
1064 		if (entry->bitmap) {
1065 			/*
1066 			 * if previous extent entry covers the offset,
1067 			 * we should return it instead of the bitmap entry
1068 			 */
1069 			n = &entry->offset_index;
1070 			while (1) {
1071 				n = rb_prev(n);
1072 				if (!n)
1073 					break;
1074 				prev = rb_entry(n, struct btrfs_free_space,
1075 						offset_index);
1076 				if (!prev->bitmap) {
1077 					if (prev->offset + prev->bytes > offset)
1078 						entry = prev;
1079 					break;
1080 				}
1081 			}
1082 		}
1083 		return entry;
1084 	}
1085 
1086 	if (!prev)
1087 		return NULL;
1088 
1089 	/* find last entry before the 'offset' */
1090 	entry = prev;
1091 	if (entry->offset > offset) {
1092 		n = rb_prev(&entry->offset_index);
1093 		if (n) {
1094 			entry = rb_entry(n, struct btrfs_free_space,
1095 					offset_index);
1096 			BUG_ON(entry->offset > offset);
1097 		} else {
1098 			if (fuzzy)
1099 				return entry;
1100 			else
1101 				return NULL;
1102 		}
1103 	}
1104 
1105 	if (entry->bitmap) {
1106 		n = &entry->offset_index;
1107 		while (1) {
1108 			n = rb_prev(n);
1109 			if (!n)
1110 				break;
1111 			prev = rb_entry(n, struct btrfs_free_space,
1112 					offset_index);
1113 			if (!prev->bitmap) {
1114 				if (prev->offset + prev->bytes > offset)
1115 					return prev;
1116 				break;
1117 			}
1118 		}
1119 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1120 			return entry;
1121 	} else if (entry->offset + entry->bytes > offset)
1122 		return entry;
1123 
1124 	if (!fuzzy)
1125 		return NULL;
1126 
1127 	while (1) {
1128 		if (entry->bitmap) {
1129 			if (entry->offset + BITS_PER_BITMAP *
1130 			    ctl->unit > offset)
1131 				break;
1132 		} else {
1133 			if (entry->offset + entry->bytes > offset)
1134 				break;
1135 		}
1136 
1137 		n = rb_next(&entry->offset_index);
1138 		if (!n)
1139 			return NULL;
1140 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1141 	}
1142 	return entry;
1143 }
1144 
1145 static inline void
1146 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1147 		    struct btrfs_free_space *info)
1148 {
1149 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1150 	ctl->free_extents--;
1151 }
1152 
1153 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1154 			      struct btrfs_free_space *info)
1155 {
1156 	__unlink_free_space(ctl, info);
1157 	ctl->free_space -= info->bytes;
1158 }
1159 
1160 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1161 			   struct btrfs_free_space *info)
1162 {
1163 	int ret = 0;
1164 
1165 	BUG_ON(!info->bitmap && !info->bytes);
1166 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1167 				 &info->offset_index, (info->bitmap != NULL));
1168 	if (ret)
1169 		return ret;
1170 
1171 	ctl->free_space += info->bytes;
1172 	ctl->free_extents++;
1173 	return ret;
1174 }
1175 
1176 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1177 {
1178 	struct btrfs_block_group_cache *block_group = ctl->private;
1179 	u64 max_bytes;
1180 	u64 bitmap_bytes;
1181 	u64 extent_bytes;
1182 	u64 size = block_group->key.offset;
1183 	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1184 	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1185 
1186 	BUG_ON(ctl->total_bitmaps > max_bitmaps);
1187 
1188 	/*
1189 	 * The goal is to keep the total amount of memory used per 1gb of space
1190 	 * at or below 32k, so we need to adjust how much memory we allow to be
1191 	 * used by extent based free space tracking
1192 	 */
1193 	if (size < 1024 * 1024 * 1024)
1194 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1195 	else
1196 		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1197 			div64_u64(size, 1024 * 1024 * 1024);
1198 
1199 	/*
1200 	 * we want to account for 1 more bitmap than what we have so we can make
1201 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1202 	 * we add more bitmaps.
1203 	 */
1204 	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1205 
1206 	if (bitmap_bytes >= max_bytes) {
1207 		ctl->extents_thresh = 0;
1208 		return;
1209 	}
1210 
1211 	/*
1212 	 * we want the extent entry threshold to always be at most 1/2 the maxw
1213 	 * bytes we can have, or whatever is less than that.
1214 	 */
1215 	extent_bytes = max_bytes - bitmap_bytes;
1216 	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1217 
1218 	ctl->extents_thresh =
1219 		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1220 }
1221 
1222 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1223 			      struct btrfs_free_space *info, u64 offset,
1224 			      u64 bytes)
1225 {
1226 	unsigned long start, count;
1227 
1228 	start = offset_to_bit(info->offset, ctl->unit, offset);
1229 	count = bytes_to_bits(bytes, ctl->unit);
1230 	BUG_ON(start + count > BITS_PER_BITMAP);
1231 
1232 	bitmap_clear(info->bitmap, start, count);
1233 
1234 	info->bytes -= bytes;
1235 	ctl->free_space -= bytes;
1236 }
1237 
1238 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1239 			    struct btrfs_free_space *info, u64 offset,
1240 			    u64 bytes)
1241 {
1242 	unsigned long start, count;
1243 
1244 	start = offset_to_bit(info->offset, ctl->unit, offset);
1245 	count = bytes_to_bits(bytes, ctl->unit);
1246 	BUG_ON(start + count > BITS_PER_BITMAP);
1247 
1248 	bitmap_set(info->bitmap, start, count);
1249 
1250 	info->bytes += bytes;
1251 	ctl->free_space += bytes;
1252 }
1253 
1254 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1255 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1256 			 u64 *bytes)
1257 {
1258 	unsigned long found_bits = 0;
1259 	unsigned long bits, i;
1260 	unsigned long next_zero;
1261 
1262 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1263 			  max_t(u64, *offset, bitmap_info->offset));
1264 	bits = bytes_to_bits(*bytes, ctl->unit);
1265 
1266 	for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1267 	     i < BITS_PER_BITMAP;
1268 	     i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1269 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1270 					       BITS_PER_BITMAP, i);
1271 		if ((next_zero - i) >= bits) {
1272 			found_bits = next_zero - i;
1273 			break;
1274 		}
1275 		i = next_zero;
1276 	}
1277 
1278 	if (found_bits) {
1279 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1280 		*bytes = (u64)(found_bits) * ctl->unit;
1281 		return 0;
1282 	}
1283 
1284 	return -1;
1285 }
1286 
1287 static struct btrfs_free_space *
1288 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1289 {
1290 	struct btrfs_free_space *entry;
1291 	struct rb_node *node;
1292 	int ret;
1293 
1294 	if (!ctl->free_space_offset.rb_node)
1295 		return NULL;
1296 
1297 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1298 	if (!entry)
1299 		return NULL;
1300 
1301 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1302 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1303 		if (entry->bytes < *bytes)
1304 			continue;
1305 
1306 		if (entry->bitmap) {
1307 			ret = search_bitmap(ctl, entry, offset, bytes);
1308 			if (!ret)
1309 				return entry;
1310 			continue;
1311 		}
1312 
1313 		*offset = entry->offset;
1314 		*bytes = entry->bytes;
1315 		return entry;
1316 	}
1317 
1318 	return NULL;
1319 }
1320 
1321 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1322 			   struct btrfs_free_space *info, u64 offset)
1323 {
1324 	info->offset = offset_to_bitmap(ctl, offset);
1325 	info->bytes = 0;
1326 	link_free_space(ctl, info);
1327 	ctl->total_bitmaps++;
1328 
1329 	ctl->op->recalc_thresholds(ctl);
1330 }
1331 
1332 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1333 			struct btrfs_free_space *bitmap_info)
1334 {
1335 	unlink_free_space(ctl, bitmap_info);
1336 	kfree(bitmap_info->bitmap);
1337 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1338 	ctl->total_bitmaps--;
1339 	ctl->op->recalc_thresholds(ctl);
1340 }
1341 
1342 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1343 			      struct btrfs_free_space *bitmap_info,
1344 			      u64 *offset, u64 *bytes)
1345 {
1346 	u64 end;
1347 	u64 search_start, search_bytes;
1348 	int ret;
1349 
1350 again:
1351 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1352 
1353 	/*
1354 	 * XXX - this can go away after a few releases.
1355 	 *
1356 	 * since the only user of btrfs_remove_free_space is the tree logging
1357 	 * stuff, and the only way to test that is under crash conditions, we
1358 	 * want to have this debug stuff here just in case somethings not
1359 	 * working.  Search the bitmap for the space we are trying to use to
1360 	 * make sure its actually there.  If its not there then we need to stop
1361 	 * because something has gone wrong.
1362 	 */
1363 	search_start = *offset;
1364 	search_bytes = *bytes;
1365 	search_bytes = min(search_bytes, end - search_start + 1);
1366 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1367 	BUG_ON(ret < 0 || search_start != *offset);
1368 
1369 	if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1370 		bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
1371 		*bytes -= end - *offset + 1;
1372 		*offset = end + 1;
1373 	} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1374 		bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
1375 		*bytes = 0;
1376 	}
1377 
1378 	if (*bytes) {
1379 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1380 		if (!bitmap_info->bytes)
1381 			free_bitmap(ctl, bitmap_info);
1382 
1383 		/*
1384 		 * no entry after this bitmap, but we still have bytes to
1385 		 * remove, so something has gone wrong.
1386 		 */
1387 		if (!next)
1388 			return -EINVAL;
1389 
1390 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1391 				       offset_index);
1392 
1393 		/*
1394 		 * if the next entry isn't a bitmap we need to return to let the
1395 		 * extent stuff do its work.
1396 		 */
1397 		if (!bitmap_info->bitmap)
1398 			return -EAGAIN;
1399 
1400 		/*
1401 		 * Ok the next item is a bitmap, but it may not actually hold
1402 		 * the information for the rest of this free space stuff, so
1403 		 * look for it, and if we don't find it return so we can try
1404 		 * everything over again.
1405 		 */
1406 		search_start = *offset;
1407 		search_bytes = *bytes;
1408 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1409 				    &search_bytes);
1410 		if (ret < 0 || search_start != *offset)
1411 			return -EAGAIN;
1412 
1413 		goto again;
1414 	} else if (!bitmap_info->bytes)
1415 		free_bitmap(ctl, bitmap_info);
1416 
1417 	return 0;
1418 }
1419 
1420 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1421 		      struct btrfs_free_space *info)
1422 {
1423 	struct btrfs_block_group_cache *block_group = ctl->private;
1424 
1425 	/*
1426 	 * If we are below the extents threshold then we can add this as an
1427 	 * extent, and don't have to deal with the bitmap
1428 	 */
1429 	if (ctl->free_extents < ctl->extents_thresh) {
1430 		/*
1431 		 * If this block group has some small extents we don't want to
1432 		 * use up all of our free slots in the cache with them, we want
1433 		 * to reserve them to larger extents, however if we have plent
1434 		 * of cache left then go ahead an dadd them, no sense in adding
1435 		 * the overhead of a bitmap if we don't have to.
1436 		 */
1437 		if (info->bytes <= block_group->sectorsize * 4) {
1438 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1439 				return false;
1440 		} else {
1441 			return false;
1442 		}
1443 	}
1444 
1445 	/*
1446 	 * some block groups are so tiny they can't be enveloped by a bitmap, so
1447 	 * don't even bother to create a bitmap for this
1448 	 */
1449 	if (BITS_PER_BITMAP * block_group->sectorsize >
1450 	    block_group->key.offset)
1451 		return false;
1452 
1453 	return true;
1454 }
1455 
1456 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1457 			      struct btrfs_free_space *info)
1458 {
1459 	struct btrfs_free_space *bitmap_info;
1460 	int added = 0;
1461 	u64 bytes, offset, end;
1462 	int ret;
1463 
1464 	bytes = info->bytes;
1465 	offset = info->offset;
1466 
1467 	if (!ctl->op->use_bitmap(ctl, info))
1468 		return 0;
1469 
1470 again:
1471 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1472 					 1, 0);
1473 	if (!bitmap_info) {
1474 		BUG_ON(added);
1475 		goto new_bitmap;
1476 	}
1477 
1478 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1479 
1480 	if (offset >= bitmap_info->offset && offset + bytes > end) {
1481 		bitmap_set_bits(ctl, bitmap_info, offset, end - offset);
1482 		bytes -= end - offset;
1483 		offset = end;
1484 		added = 0;
1485 	} else if (offset >= bitmap_info->offset && offset + bytes <= end) {
1486 		bitmap_set_bits(ctl, bitmap_info, offset, bytes);
1487 		bytes = 0;
1488 	} else {
1489 		BUG();
1490 	}
1491 
1492 	if (!bytes) {
1493 		ret = 1;
1494 		goto out;
1495 	} else
1496 		goto again;
1497 
1498 new_bitmap:
1499 	if (info && info->bitmap) {
1500 		add_new_bitmap(ctl, info, offset);
1501 		added = 1;
1502 		info = NULL;
1503 		goto again;
1504 	} else {
1505 		spin_unlock(&ctl->tree_lock);
1506 
1507 		/* no pre-allocated info, allocate a new one */
1508 		if (!info) {
1509 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1510 						 GFP_NOFS);
1511 			if (!info) {
1512 				spin_lock(&ctl->tree_lock);
1513 				ret = -ENOMEM;
1514 				goto out;
1515 			}
1516 		}
1517 
1518 		/* allocate the bitmap */
1519 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1520 		spin_lock(&ctl->tree_lock);
1521 		if (!info->bitmap) {
1522 			ret = -ENOMEM;
1523 			goto out;
1524 		}
1525 		goto again;
1526 	}
1527 
1528 out:
1529 	if (info) {
1530 		if (info->bitmap)
1531 			kfree(info->bitmap);
1532 		kmem_cache_free(btrfs_free_space_cachep, info);
1533 	}
1534 
1535 	return ret;
1536 }
1537 
1538 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1539 			  struct btrfs_free_space *info, bool update_stat)
1540 {
1541 	struct btrfs_free_space *left_info;
1542 	struct btrfs_free_space *right_info;
1543 	bool merged = false;
1544 	u64 offset = info->offset;
1545 	u64 bytes = info->bytes;
1546 
1547 	/*
1548 	 * first we want to see if there is free space adjacent to the range we
1549 	 * are adding, if there is remove that struct and add a new one to
1550 	 * cover the entire range
1551 	 */
1552 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1553 	if (right_info && rb_prev(&right_info->offset_index))
1554 		left_info = rb_entry(rb_prev(&right_info->offset_index),
1555 				     struct btrfs_free_space, offset_index);
1556 	else
1557 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1558 
1559 	if (right_info && !right_info->bitmap) {
1560 		if (update_stat)
1561 			unlink_free_space(ctl, right_info);
1562 		else
1563 			__unlink_free_space(ctl, right_info);
1564 		info->bytes += right_info->bytes;
1565 		kmem_cache_free(btrfs_free_space_cachep, right_info);
1566 		merged = true;
1567 	}
1568 
1569 	if (left_info && !left_info->bitmap &&
1570 	    left_info->offset + left_info->bytes == offset) {
1571 		if (update_stat)
1572 			unlink_free_space(ctl, left_info);
1573 		else
1574 			__unlink_free_space(ctl, left_info);
1575 		info->offset = left_info->offset;
1576 		info->bytes += left_info->bytes;
1577 		kmem_cache_free(btrfs_free_space_cachep, left_info);
1578 		merged = true;
1579 	}
1580 
1581 	return merged;
1582 }
1583 
1584 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1585 			   u64 offset, u64 bytes)
1586 {
1587 	struct btrfs_free_space *info;
1588 	int ret = 0;
1589 
1590 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1591 	if (!info)
1592 		return -ENOMEM;
1593 
1594 	info->offset = offset;
1595 	info->bytes = bytes;
1596 
1597 	spin_lock(&ctl->tree_lock);
1598 
1599 	if (try_merge_free_space(ctl, info, true))
1600 		goto link;
1601 
1602 	/*
1603 	 * There was no extent directly to the left or right of this new
1604 	 * extent then we know we're going to have to allocate a new extent, so
1605 	 * before we do that see if we need to drop this into a bitmap
1606 	 */
1607 	ret = insert_into_bitmap(ctl, info);
1608 	if (ret < 0) {
1609 		goto out;
1610 	} else if (ret) {
1611 		ret = 0;
1612 		goto out;
1613 	}
1614 link:
1615 	ret = link_free_space(ctl, info);
1616 	if (ret)
1617 		kmem_cache_free(btrfs_free_space_cachep, info);
1618 out:
1619 	spin_unlock(&ctl->tree_lock);
1620 
1621 	if (ret) {
1622 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1623 		BUG_ON(ret == -EEXIST);
1624 	}
1625 
1626 	return ret;
1627 }
1628 
1629 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1630 			    u64 offset, u64 bytes)
1631 {
1632 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1633 	struct btrfs_free_space *info;
1634 	struct btrfs_free_space *next_info = NULL;
1635 	int ret = 0;
1636 
1637 	spin_lock(&ctl->tree_lock);
1638 
1639 again:
1640 	info = tree_search_offset(ctl, offset, 0, 0);
1641 	if (!info) {
1642 		/*
1643 		 * oops didn't find an extent that matched the space we wanted
1644 		 * to remove, look for a bitmap instead
1645 		 */
1646 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1647 					  1, 0);
1648 		if (!info) {
1649 			WARN_ON(1);
1650 			goto out_lock;
1651 		}
1652 	}
1653 
1654 	if (info->bytes < bytes && rb_next(&info->offset_index)) {
1655 		u64 end;
1656 		next_info = rb_entry(rb_next(&info->offset_index),
1657 					     struct btrfs_free_space,
1658 					     offset_index);
1659 
1660 		if (next_info->bitmap)
1661 			end = next_info->offset +
1662 			      BITS_PER_BITMAP * ctl->unit - 1;
1663 		else
1664 			end = next_info->offset + next_info->bytes;
1665 
1666 		if (next_info->bytes < bytes ||
1667 		    next_info->offset > offset || offset > end) {
1668 			printk(KERN_CRIT "Found free space at %llu, size %llu,"
1669 			      " trying to use %llu\n",
1670 			      (unsigned long long)info->offset,
1671 			      (unsigned long long)info->bytes,
1672 			      (unsigned long long)bytes);
1673 			WARN_ON(1);
1674 			ret = -EINVAL;
1675 			goto out_lock;
1676 		}
1677 
1678 		info = next_info;
1679 	}
1680 
1681 	if (info->bytes == bytes) {
1682 		unlink_free_space(ctl, info);
1683 		if (info->bitmap) {
1684 			kfree(info->bitmap);
1685 			ctl->total_bitmaps--;
1686 		}
1687 		kmem_cache_free(btrfs_free_space_cachep, info);
1688 		goto out_lock;
1689 	}
1690 
1691 	if (!info->bitmap && info->offset == offset) {
1692 		unlink_free_space(ctl, info);
1693 		info->offset += bytes;
1694 		info->bytes -= bytes;
1695 		link_free_space(ctl, info);
1696 		goto out_lock;
1697 	}
1698 
1699 	if (!info->bitmap && info->offset <= offset &&
1700 	    info->offset + info->bytes >= offset + bytes) {
1701 		u64 old_start = info->offset;
1702 		/*
1703 		 * we're freeing space in the middle of the info,
1704 		 * this can happen during tree log replay
1705 		 *
1706 		 * first unlink the old info and then
1707 		 * insert it again after the hole we're creating
1708 		 */
1709 		unlink_free_space(ctl, info);
1710 		if (offset + bytes < info->offset + info->bytes) {
1711 			u64 old_end = info->offset + info->bytes;
1712 
1713 			info->offset = offset + bytes;
1714 			info->bytes = old_end - info->offset;
1715 			ret = link_free_space(ctl, info);
1716 			WARN_ON(ret);
1717 			if (ret)
1718 				goto out_lock;
1719 		} else {
1720 			/* the hole we're creating ends at the end
1721 			 * of the info struct, just free the info
1722 			 */
1723 			kmem_cache_free(btrfs_free_space_cachep, info);
1724 		}
1725 		spin_unlock(&ctl->tree_lock);
1726 
1727 		/* step two, insert a new info struct to cover
1728 		 * anything before the hole
1729 		 */
1730 		ret = btrfs_add_free_space(block_group, old_start,
1731 					   offset - old_start);
1732 		WARN_ON(ret);
1733 		goto out;
1734 	}
1735 
1736 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1737 	if (ret == -EAGAIN)
1738 		goto again;
1739 	BUG_ON(ret);
1740 out_lock:
1741 	spin_unlock(&ctl->tree_lock);
1742 out:
1743 	return ret;
1744 }
1745 
1746 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1747 			   u64 bytes)
1748 {
1749 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1750 	struct btrfs_free_space *info;
1751 	struct rb_node *n;
1752 	int count = 0;
1753 
1754 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
1755 		info = rb_entry(n, struct btrfs_free_space, offset_index);
1756 		if (info->bytes >= bytes)
1757 			count++;
1758 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
1759 		       (unsigned long long)info->offset,
1760 		       (unsigned long long)info->bytes,
1761 		       (info->bitmap) ? "yes" : "no");
1762 	}
1763 	printk(KERN_INFO "block group has cluster?: %s\n",
1764 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
1765 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1766 	       "\n", count);
1767 }
1768 
1769 static struct btrfs_free_space_op free_space_op = {
1770 	.recalc_thresholds	= recalculate_thresholds,
1771 	.use_bitmap		= use_bitmap,
1772 };
1773 
1774 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
1775 {
1776 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1777 
1778 	spin_lock_init(&ctl->tree_lock);
1779 	ctl->unit = block_group->sectorsize;
1780 	ctl->start = block_group->key.objectid;
1781 	ctl->private = block_group;
1782 	ctl->op = &free_space_op;
1783 
1784 	/*
1785 	 * we only want to have 32k of ram per block group for keeping
1786 	 * track of free space, and if we pass 1/2 of that we want to
1787 	 * start converting things over to using bitmaps
1788 	 */
1789 	ctl->extents_thresh = ((1024 * 32) / 2) /
1790 				sizeof(struct btrfs_free_space);
1791 }
1792 
1793 /*
1794  * for a given cluster, put all of its extents back into the free
1795  * space cache.  If the block group passed doesn't match the block group
1796  * pointed to by the cluster, someone else raced in and freed the
1797  * cluster already.  In that case, we just return without changing anything
1798  */
1799 static int
1800 __btrfs_return_cluster_to_free_space(
1801 			     struct btrfs_block_group_cache *block_group,
1802 			     struct btrfs_free_cluster *cluster)
1803 {
1804 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1805 	struct btrfs_free_space *entry;
1806 	struct rb_node *node;
1807 
1808 	spin_lock(&cluster->lock);
1809 	if (cluster->block_group != block_group)
1810 		goto out;
1811 
1812 	cluster->block_group = NULL;
1813 	cluster->window_start = 0;
1814 	list_del_init(&cluster->block_group_list);
1815 
1816 	node = rb_first(&cluster->root);
1817 	while (node) {
1818 		bool bitmap;
1819 
1820 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1821 		node = rb_next(&entry->offset_index);
1822 		rb_erase(&entry->offset_index, &cluster->root);
1823 
1824 		bitmap = (entry->bitmap != NULL);
1825 		if (!bitmap)
1826 			try_merge_free_space(ctl, entry, false);
1827 		tree_insert_offset(&ctl->free_space_offset,
1828 				   entry->offset, &entry->offset_index, bitmap);
1829 	}
1830 	cluster->root = RB_ROOT;
1831 
1832 out:
1833 	spin_unlock(&cluster->lock);
1834 	btrfs_put_block_group(block_group);
1835 	return 0;
1836 }
1837 
1838 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
1839 {
1840 	struct btrfs_free_space *info;
1841 	struct rb_node *node;
1842 
1843 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
1844 		info = rb_entry(node, struct btrfs_free_space, offset_index);
1845 		unlink_free_space(ctl, info);
1846 		kfree(info->bitmap);
1847 		kmem_cache_free(btrfs_free_space_cachep, info);
1848 		if (need_resched()) {
1849 			spin_unlock(&ctl->tree_lock);
1850 			cond_resched();
1851 			spin_lock(&ctl->tree_lock);
1852 		}
1853 	}
1854 }
1855 
1856 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
1857 {
1858 	spin_lock(&ctl->tree_lock);
1859 	__btrfs_remove_free_space_cache_locked(ctl);
1860 	spin_unlock(&ctl->tree_lock);
1861 }
1862 
1863 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
1864 {
1865 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1866 	struct btrfs_free_cluster *cluster;
1867 	struct list_head *head;
1868 
1869 	spin_lock(&ctl->tree_lock);
1870 	while ((head = block_group->cluster_list.next) !=
1871 	       &block_group->cluster_list) {
1872 		cluster = list_entry(head, struct btrfs_free_cluster,
1873 				     block_group_list);
1874 
1875 		WARN_ON(cluster->block_group != block_group);
1876 		__btrfs_return_cluster_to_free_space(block_group, cluster);
1877 		if (need_resched()) {
1878 			spin_unlock(&ctl->tree_lock);
1879 			cond_resched();
1880 			spin_lock(&ctl->tree_lock);
1881 		}
1882 	}
1883 	__btrfs_remove_free_space_cache_locked(ctl);
1884 	spin_unlock(&ctl->tree_lock);
1885 
1886 }
1887 
1888 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
1889 			       u64 offset, u64 bytes, u64 empty_size)
1890 {
1891 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1892 	struct btrfs_free_space *entry = NULL;
1893 	u64 bytes_search = bytes + empty_size;
1894 	u64 ret = 0;
1895 
1896 	spin_lock(&ctl->tree_lock);
1897 	entry = find_free_space(ctl, &offset, &bytes_search);
1898 	if (!entry)
1899 		goto out;
1900 
1901 	ret = offset;
1902 	if (entry->bitmap) {
1903 		bitmap_clear_bits(ctl, entry, offset, bytes);
1904 		if (!entry->bytes)
1905 			free_bitmap(ctl, entry);
1906 	} else {
1907 		unlink_free_space(ctl, entry);
1908 		entry->offset += bytes;
1909 		entry->bytes -= bytes;
1910 		if (!entry->bytes)
1911 			kmem_cache_free(btrfs_free_space_cachep, entry);
1912 		else
1913 			link_free_space(ctl, entry);
1914 	}
1915 
1916 out:
1917 	spin_unlock(&ctl->tree_lock);
1918 
1919 	return ret;
1920 }
1921 
1922 /*
1923  * given a cluster, put all of its extents back into the free space
1924  * cache.  If a block group is passed, this function will only free
1925  * a cluster that belongs to the passed block group.
1926  *
1927  * Otherwise, it'll get a reference on the block group pointed to by the
1928  * cluster and remove the cluster from it.
1929  */
1930 int btrfs_return_cluster_to_free_space(
1931 			       struct btrfs_block_group_cache *block_group,
1932 			       struct btrfs_free_cluster *cluster)
1933 {
1934 	struct btrfs_free_space_ctl *ctl;
1935 	int ret;
1936 
1937 	/* first, get a safe pointer to the block group */
1938 	spin_lock(&cluster->lock);
1939 	if (!block_group) {
1940 		block_group = cluster->block_group;
1941 		if (!block_group) {
1942 			spin_unlock(&cluster->lock);
1943 			return 0;
1944 		}
1945 	} else if (cluster->block_group != block_group) {
1946 		/* someone else has already freed it don't redo their work */
1947 		spin_unlock(&cluster->lock);
1948 		return 0;
1949 	}
1950 	atomic_inc(&block_group->count);
1951 	spin_unlock(&cluster->lock);
1952 
1953 	ctl = block_group->free_space_ctl;
1954 
1955 	/* now return any extents the cluster had on it */
1956 	spin_lock(&ctl->tree_lock);
1957 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
1958 	spin_unlock(&ctl->tree_lock);
1959 
1960 	/* finally drop our ref */
1961 	btrfs_put_block_group(block_group);
1962 	return ret;
1963 }
1964 
1965 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
1966 				   struct btrfs_free_cluster *cluster,
1967 				   struct btrfs_free_space *entry,
1968 				   u64 bytes, u64 min_start)
1969 {
1970 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1971 	int err;
1972 	u64 search_start = cluster->window_start;
1973 	u64 search_bytes = bytes;
1974 	u64 ret = 0;
1975 
1976 	search_start = min_start;
1977 	search_bytes = bytes;
1978 
1979 	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
1980 	if (err)
1981 		return 0;
1982 
1983 	ret = search_start;
1984 	bitmap_clear_bits(ctl, entry, ret, bytes);
1985 
1986 	return ret;
1987 }
1988 
1989 /*
1990  * given a cluster, try to allocate 'bytes' from it, returns 0
1991  * if it couldn't find anything suitably large, or a logical disk offset
1992  * if things worked out
1993  */
1994 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
1995 			     struct btrfs_free_cluster *cluster, u64 bytes,
1996 			     u64 min_start)
1997 {
1998 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1999 	struct btrfs_free_space *entry = NULL;
2000 	struct rb_node *node;
2001 	u64 ret = 0;
2002 
2003 	spin_lock(&cluster->lock);
2004 	if (bytes > cluster->max_size)
2005 		goto out;
2006 
2007 	if (cluster->block_group != block_group)
2008 		goto out;
2009 
2010 	node = rb_first(&cluster->root);
2011 	if (!node)
2012 		goto out;
2013 
2014 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2015 	while(1) {
2016 		if (entry->bytes < bytes ||
2017 		    (!entry->bitmap && entry->offset < min_start)) {
2018 			node = rb_next(&entry->offset_index);
2019 			if (!node)
2020 				break;
2021 			entry = rb_entry(node, struct btrfs_free_space,
2022 					 offset_index);
2023 			continue;
2024 		}
2025 
2026 		if (entry->bitmap) {
2027 			ret = btrfs_alloc_from_bitmap(block_group,
2028 						      cluster, entry, bytes,
2029 						      min_start);
2030 			if (ret == 0) {
2031 				node = rb_next(&entry->offset_index);
2032 				if (!node)
2033 					break;
2034 				entry = rb_entry(node, struct btrfs_free_space,
2035 						 offset_index);
2036 				continue;
2037 			}
2038 		} else {
2039 
2040 			ret = entry->offset;
2041 
2042 			entry->offset += bytes;
2043 			entry->bytes -= bytes;
2044 		}
2045 
2046 		if (entry->bytes == 0)
2047 			rb_erase(&entry->offset_index, &cluster->root);
2048 		break;
2049 	}
2050 out:
2051 	spin_unlock(&cluster->lock);
2052 
2053 	if (!ret)
2054 		return 0;
2055 
2056 	spin_lock(&ctl->tree_lock);
2057 
2058 	ctl->free_space -= bytes;
2059 	if (entry->bytes == 0) {
2060 		ctl->free_extents--;
2061 		if (entry->bitmap) {
2062 			kfree(entry->bitmap);
2063 			ctl->total_bitmaps--;
2064 			ctl->op->recalc_thresholds(ctl);
2065 		}
2066 		kmem_cache_free(btrfs_free_space_cachep, entry);
2067 	}
2068 
2069 	spin_unlock(&ctl->tree_lock);
2070 
2071 	return ret;
2072 }
2073 
2074 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2075 				struct btrfs_free_space *entry,
2076 				struct btrfs_free_cluster *cluster,
2077 				u64 offset, u64 bytes, u64 min_bytes)
2078 {
2079 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2080 	unsigned long next_zero;
2081 	unsigned long i;
2082 	unsigned long search_bits;
2083 	unsigned long total_bits;
2084 	unsigned long found_bits;
2085 	unsigned long start = 0;
2086 	unsigned long total_found = 0;
2087 	int ret;
2088 	bool found = false;
2089 
2090 	i = offset_to_bit(entry->offset, block_group->sectorsize,
2091 			  max_t(u64, offset, entry->offset));
2092 	search_bits = bytes_to_bits(bytes, block_group->sectorsize);
2093 	total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2094 
2095 again:
2096 	found_bits = 0;
2097 	for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2098 	     i < BITS_PER_BITMAP;
2099 	     i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2100 		next_zero = find_next_zero_bit(entry->bitmap,
2101 					       BITS_PER_BITMAP, i);
2102 		if (next_zero - i >= search_bits) {
2103 			found_bits = next_zero - i;
2104 			break;
2105 		}
2106 		i = next_zero;
2107 	}
2108 
2109 	if (!found_bits)
2110 		return -ENOSPC;
2111 
2112 	if (!found) {
2113 		start = i;
2114 		found = true;
2115 	}
2116 
2117 	total_found += found_bits;
2118 
2119 	if (cluster->max_size < found_bits * block_group->sectorsize)
2120 		cluster->max_size = found_bits * block_group->sectorsize;
2121 
2122 	if (total_found < total_bits) {
2123 		i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
2124 		if (i - start > total_bits * 2) {
2125 			total_found = 0;
2126 			cluster->max_size = 0;
2127 			found = false;
2128 		}
2129 		goto again;
2130 	}
2131 
2132 	cluster->window_start = start * block_group->sectorsize +
2133 		entry->offset;
2134 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2135 	ret = tree_insert_offset(&cluster->root, entry->offset,
2136 				 &entry->offset_index, 1);
2137 	BUG_ON(ret);
2138 
2139 	return 0;
2140 }
2141 
2142 /*
2143  * This searches the block group for just extents to fill the cluster with.
2144  */
2145 static int setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2146 				   struct btrfs_free_cluster *cluster,
2147 				   u64 offset, u64 bytes, u64 min_bytes)
2148 {
2149 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2150 	struct btrfs_free_space *first = NULL;
2151 	struct btrfs_free_space *entry = NULL;
2152 	struct btrfs_free_space *prev = NULL;
2153 	struct btrfs_free_space *last;
2154 	struct rb_node *node;
2155 	u64 window_start;
2156 	u64 window_free;
2157 	u64 max_extent;
2158 	u64 max_gap = 128 * 1024;
2159 
2160 	entry = tree_search_offset(ctl, offset, 0, 1);
2161 	if (!entry)
2162 		return -ENOSPC;
2163 
2164 	/*
2165 	 * We don't want bitmaps, so just move along until we find a normal
2166 	 * extent entry.
2167 	 */
2168 	while (entry->bitmap) {
2169 		node = rb_next(&entry->offset_index);
2170 		if (!node)
2171 			return -ENOSPC;
2172 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2173 	}
2174 
2175 	window_start = entry->offset;
2176 	window_free = entry->bytes;
2177 	max_extent = entry->bytes;
2178 	first = entry;
2179 	last = entry;
2180 	prev = entry;
2181 
2182 	while (window_free <= min_bytes) {
2183 		node = rb_next(&entry->offset_index);
2184 		if (!node)
2185 			return -ENOSPC;
2186 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2187 
2188 		if (entry->bitmap)
2189 			continue;
2190 		/*
2191 		 * we haven't filled the empty size and the window is
2192 		 * very large.  reset and try again
2193 		 */
2194 		if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
2195 		    entry->offset - window_start > (min_bytes * 2)) {
2196 			first = entry;
2197 			window_start = entry->offset;
2198 			window_free = entry->bytes;
2199 			last = entry;
2200 			max_extent = entry->bytes;
2201 		} else {
2202 			last = entry;
2203 			window_free += entry->bytes;
2204 			if (entry->bytes > max_extent)
2205 				max_extent = entry->bytes;
2206 		}
2207 		prev = entry;
2208 	}
2209 
2210 	cluster->window_start = first->offset;
2211 
2212 	node = &first->offset_index;
2213 
2214 	/*
2215 	 * now we've found our entries, pull them out of the free space
2216 	 * cache and put them into the cluster rbtree
2217 	 */
2218 	do {
2219 		int ret;
2220 
2221 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2222 		node = rb_next(&entry->offset_index);
2223 		if (entry->bitmap)
2224 			continue;
2225 
2226 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2227 		ret = tree_insert_offset(&cluster->root, entry->offset,
2228 					 &entry->offset_index, 0);
2229 		BUG_ON(ret);
2230 	} while (node && entry != last);
2231 
2232 	cluster->max_size = max_extent;
2233 
2234 	return 0;
2235 }
2236 
2237 /*
2238  * This specifically looks for bitmaps that may work in the cluster, we assume
2239  * that we have already failed to find extents that will work.
2240  */
2241 static int setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2242 				struct btrfs_free_cluster *cluster,
2243 				u64 offset, u64 bytes, u64 min_bytes)
2244 {
2245 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2246 	struct btrfs_free_space *entry;
2247 	struct rb_node *node;
2248 	int ret = -ENOSPC;
2249 
2250 	if (ctl->total_bitmaps == 0)
2251 		return -ENOSPC;
2252 
2253 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 0, 1);
2254 	if (!entry)
2255 		return -ENOSPC;
2256 
2257 	node = &entry->offset_index;
2258 	do {
2259 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2260 		node = rb_next(&entry->offset_index);
2261 		if (!entry->bitmap)
2262 			continue;
2263 		if (entry->bytes < min_bytes)
2264 			continue;
2265 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2266 					   bytes, min_bytes);
2267 	} while (ret && node);
2268 
2269 	return ret;
2270 }
2271 
2272 /*
2273  * here we try to find a cluster of blocks in a block group.  The goal
2274  * is to find at least bytes free and up to empty_size + bytes free.
2275  * We might not find them all in one contiguous area.
2276  *
2277  * returns zero and sets up cluster if things worked out, otherwise
2278  * it returns -enospc
2279  */
2280 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2281 			     struct btrfs_root *root,
2282 			     struct btrfs_block_group_cache *block_group,
2283 			     struct btrfs_free_cluster *cluster,
2284 			     u64 offset, u64 bytes, u64 empty_size)
2285 {
2286 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2287 	u64 min_bytes;
2288 	int ret;
2289 
2290 	/* for metadata, allow allocates with more holes */
2291 	if (btrfs_test_opt(root, SSD_SPREAD)) {
2292 		min_bytes = bytes + empty_size;
2293 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2294 		/*
2295 		 * we want to do larger allocations when we are
2296 		 * flushing out the delayed refs, it helps prevent
2297 		 * making more work as we go along.
2298 		 */
2299 		if (trans->transaction->delayed_refs.flushing)
2300 			min_bytes = max(bytes, (bytes + empty_size) >> 1);
2301 		else
2302 			min_bytes = max(bytes, (bytes + empty_size) >> 4);
2303 	} else
2304 		min_bytes = max(bytes, (bytes + empty_size) >> 2);
2305 
2306 	spin_lock(&ctl->tree_lock);
2307 
2308 	/*
2309 	 * If we know we don't have enough space to make a cluster don't even
2310 	 * bother doing all the work to try and find one.
2311 	 */
2312 	if (ctl->free_space < min_bytes) {
2313 		spin_unlock(&ctl->tree_lock);
2314 		return -ENOSPC;
2315 	}
2316 
2317 	spin_lock(&cluster->lock);
2318 
2319 	/* someone already found a cluster, hooray */
2320 	if (cluster->block_group) {
2321 		ret = 0;
2322 		goto out;
2323 	}
2324 
2325 	ret = setup_cluster_no_bitmap(block_group, cluster, offset, bytes,
2326 				      min_bytes);
2327 	if (ret)
2328 		ret = setup_cluster_bitmap(block_group, cluster, offset,
2329 					   bytes, min_bytes);
2330 
2331 	if (!ret) {
2332 		atomic_inc(&block_group->count);
2333 		list_add_tail(&cluster->block_group_list,
2334 			      &block_group->cluster_list);
2335 		cluster->block_group = block_group;
2336 	}
2337 out:
2338 	spin_unlock(&cluster->lock);
2339 	spin_unlock(&ctl->tree_lock);
2340 
2341 	return ret;
2342 }
2343 
2344 /*
2345  * simple code to zero out a cluster
2346  */
2347 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2348 {
2349 	spin_lock_init(&cluster->lock);
2350 	spin_lock_init(&cluster->refill_lock);
2351 	cluster->root = RB_ROOT;
2352 	cluster->max_size = 0;
2353 	INIT_LIST_HEAD(&cluster->block_group_list);
2354 	cluster->block_group = NULL;
2355 }
2356 
2357 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2358 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2359 {
2360 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2361 	struct btrfs_free_space *entry = NULL;
2362 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2363 	u64 bytes = 0;
2364 	u64 actually_trimmed;
2365 	int ret = 0;
2366 
2367 	*trimmed = 0;
2368 
2369 	while (start < end) {
2370 		spin_lock(&ctl->tree_lock);
2371 
2372 		if (ctl->free_space < minlen) {
2373 			spin_unlock(&ctl->tree_lock);
2374 			break;
2375 		}
2376 
2377 		entry = tree_search_offset(ctl, start, 0, 1);
2378 		if (!entry)
2379 			entry = tree_search_offset(ctl,
2380 						   offset_to_bitmap(ctl, start),
2381 						   1, 1);
2382 
2383 		if (!entry || entry->offset >= end) {
2384 			spin_unlock(&ctl->tree_lock);
2385 			break;
2386 		}
2387 
2388 		if (entry->bitmap) {
2389 			ret = search_bitmap(ctl, entry, &start, &bytes);
2390 			if (!ret) {
2391 				if (start >= end) {
2392 					spin_unlock(&ctl->tree_lock);
2393 					break;
2394 				}
2395 				bytes = min(bytes, end - start);
2396 				bitmap_clear_bits(ctl, entry, start, bytes);
2397 				if (entry->bytes == 0)
2398 					free_bitmap(ctl, entry);
2399 			} else {
2400 				start = entry->offset + BITS_PER_BITMAP *
2401 					block_group->sectorsize;
2402 				spin_unlock(&ctl->tree_lock);
2403 				ret = 0;
2404 				continue;
2405 			}
2406 		} else {
2407 			start = entry->offset;
2408 			bytes = min(entry->bytes, end - start);
2409 			unlink_free_space(ctl, entry);
2410 			kmem_cache_free(btrfs_free_space_cachep, entry);
2411 		}
2412 
2413 		spin_unlock(&ctl->tree_lock);
2414 
2415 		if (bytes >= minlen) {
2416 			int update_ret;
2417 			update_ret = btrfs_update_reserved_bytes(block_group,
2418 								 bytes, 1, 1);
2419 
2420 			ret = btrfs_error_discard_extent(fs_info->extent_root,
2421 							 start,
2422 							 bytes,
2423 							 &actually_trimmed);
2424 
2425 			btrfs_add_free_space(block_group, start, bytes);
2426 			if (!update_ret)
2427 				btrfs_update_reserved_bytes(block_group,
2428 							    bytes, 0, 1);
2429 
2430 			if (ret)
2431 				break;
2432 			*trimmed += actually_trimmed;
2433 		}
2434 		start += bytes;
2435 		bytes = 0;
2436 
2437 		if (fatal_signal_pending(current)) {
2438 			ret = -ERESTARTSYS;
2439 			break;
2440 		}
2441 
2442 		cond_resched();
2443 	}
2444 
2445 	return ret;
2446 }
2447 
2448 /*
2449  * Find the left-most item in the cache tree, and then return the
2450  * smallest inode number in the item.
2451  *
2452  * Note: the returned inode number may not be the smallest one in
2453  * the tree, if the left-most item is a bitmap.
2454  */
2455 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2456 {
2457 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2458 	struct btrfs_free_space *entry = NULL;
2459 	u64 ino = 0;
2460 
2461 	spin_lock(&ctl->tree_lock);
2462 
2463 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2464 		goto out;
2465 
2466 	entry = rb_entry(rb_first(&ctl->free_space_offset),
2467 			 struct btrfs_free_space, offset_index);
2468 
2469 	if (!entry->bitmap) {
2470 		ino = entry->offset;
2471 
2472 		unlink_free_space(ctl, entry);
2473 		entry->offset++;
2474 		entry->bytes--;
2475 		if (!entry->bytes)
2476 			kmem_cache_free(btrfs_free_space_cachep, entry);
2477 		else
2478 			link_free_space(ctl, entry);
2479 	} else {
2480 		u64 offset = 0;
2481 		u64 count = 1;
2482 		int ret;
2483 
2484 		ret = search_bitmap(ctl, entry, &offset, &count);
2485 		BUG_ON(ret);
2486 
2487 		ino = offset;
2488 		bitmap_clear_bits(ctl, entry, offset, 1);
2489 		if (entry->bytes == 0)
2490 			free_bitmap(ctl, entry);
2491 	}
2492 out:
2493 	spin_unlock(&ctl->tree_lock);
2494 
2495 	return ino;
2496 }
2497 
2498 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2499 				    struct btrfs_path *path)
2500 {
2501 	struct inode *inode = NULL;
2502 
2503 	spin_lock(&root->cache_lock);
2504 	if (root->cache_inode)
2505 		inode = igrab(root->cache_inode);
2506 	spin_unlock(&root->cache_lock);
2507 	if (inode)
2508 		return inode;
2509 
2510 	inode = __lookup_free_space_inode(root, path, 0);
2511 	if (IS_ERR(inode))
2512 		return inode;
2513 
2514 	spin_lock(&root->cache_lock);
2515 	if (!btrfs_fs_closing(root->fs_info))
2516 		root->cache_inode = igrab(inode);
2517 	spin_unlock(&root->cache_lock);
2518 
2519 	return inode;
2520 }
2521 
2522 int create_free_ino_inode(struct btrfs_root *root,
2523 			  struct btrfs_trans_handle *trans,
2524 			  struct btrfs_path *path)
2525 {
2526 	return __create_free_space_inode(root, trans, path,
2527 					 BTRFS_FREE_INO_OBJECTID, 0);
2528 }
2529 
2530 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2531 {
2532 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2533 	struct btrfs_path *path;
2534 	struct inode *inode;
2535 	int ret = 0;
2536 	u64 root_gen = btrfs_root_generation(&root->root_item);
2537 
2538 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2539 		return 0;
2540 
2541 	/*
2542 	 * If we're unmounting then just return, since this does a search on the
2543 	 * normal root and not the commit root and we could deadlock.
2544 	 */
2545 	if (btrfs_fs_closing(fs_info))
2546 		return 0;
2547 
2548 	path = btrfs_alloc_path();
2549 	if (!path)
2550 		return 0;
2551 
2552 	inode = lookup_free_ino_inode(root, path);
2553 	if (IS_ERR(inode))
2554 		goto out;
2555 
2556 	if (root_gen != BTRFS_I(inode)->generation)
2557 		goto out_put;
2558 
2559 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
2560 
2561 	if (ret < 0)
2562 		printk(KERN_ERR "btrfs: failed to load free ino cache for "
2563 		       "root %llu\n", root->root_key.objectid);
2564 out_put:
2565 	iput(inode);
2566 out:
2567 	btrfs_free_path(path);
2568 	return ret;
2569 }
2570 
2571 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2572 			      struct btrfs_trans_handle *trans,
2573 			      struct btrfs_path *path)
2574 {
2575 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2576 	struct inode *inode;
2577 	int ret;
2578 
2579 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2580 		return 0;
2581 
2582 	inode = lookup_free_ino_inode(root, path);
2583 	if (IS_ERR(inode))
2584 		return 0;
2585 
2586 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2587 	if (ret < 0)
2588 		printk(KERN_ERR "btrfs: failed to write free ino cache "
2589 		       "for root %llu\n", root->root_key.objectid);
2590 
2591 	iput(inode);
2592 	return ret;
2593 }
2594