1 /* 2 * Copyright (C) 2008 Red Hat. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/pagemap.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/math64.h> 23 #include <linux/ratelimit.h> 24 #include "ctree.h" 25 #include "free-space-cache.h" 26 #include "transaction.h" 27 #include "disk-io.h" 28 #include "extent_io.h" 29 #include "inode-map.h" 30 #include "volumes.h" 31 32 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL) 33 #define MAX_CACHE_BYTES_PER_GIG SZ_32K 34 35 struct btrfs_trim_range { 36 u64 start; 37 u64 bytes; 38 struct list_head list; 39 }; 40 41 static int link_free_space(struct btrfs_free_space_ctl *ctl, 42 struct btrfs_free_space *info); 43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 44 struct btrfs_free_space *info); 45 46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root, 47 struct btrfs_path *path, 48 u64 offset) 49 { 50 struct btrfs_key key; 51 struct btrfs_key location; 52 struct btrfs_disk_key disk_key; 53 struct btrfs_free_space_header *header; 54 struct extent_buffer *leaf; 55 struct inode *inode = NULL; 56 int ret; 57 58 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 59 key.offset = offset; 60 key.type = 0; 61 62 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 63 if (ret < 0) 64 return ERR_PTR(ret); 65 if (ret > 0) { 66 btrfs_release_path(path); 67 return ERR_PTR(-ENOENT); 68 } 69 70 leaf = path->nodes[0]; 71 header = btrfs_item_ptr(leaf, path->slots[0], 72 struct btrfs_free_space_header); 73 btrfs_free_space_key(leaf, header, &disk_key); 74 btrfs_disk_key_to_cpu(&location, &disk_key); 75 btrfs_release_path(path); 76 77 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL); 78 if (!inode) 79 return ERR_PTR(-ENOENT); 80 if (IS_ERR(inode)) 81 return inode; 82 if (is_bad_inode(inode)) { 83 iput(inode); 84 return ERR_PTR(-ENOENT); 85 } 86 87 mapping_set_gfp_mask(inode->i_mapping, 88 mapping_gfp_constraint(inode->i_mapping, 89 ~(__GFP_FS | __GFP_HIGHMEM))); 90 91 return inode; 92 } 93 94 struct inode *lookup_free_space_inode(struct btrfs_root *root, 95 struct btrfs_block_group_cache 96 *block_group, struct btrfs_path *path) 97 { 98 struct inode *inode = NULL; 99 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 100 101 spin_lock(&block_group->lock); 102 if (block_group->inode) 103 inode = igrab(block_group->inode); 104 spin_unlock(&block_group->lock); 105 if (inode) 106 return inode; 107 108 inode = __lookup_free_space_inode(root, path, 109 block_group->key.objectid); 110 if (IS_ERR(inode)) 111 return inode; 112 113 spin_lock(&block_group->lock); 114 if (!((BTRFS_I(inode)->flags & flags) == flags)) { 115 btrfs_info(root->fs_info, 116 "Old style space inode found, converting."); 117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | 118 BTRFS_INODE_NODATACOW; 119 block_group->disk_cache_state = BTRFS_DC_CLEAR; 120 } 121 122 if (!block_group->iref) { 123 block_group->inode = igrab(inode); 124 block_group->iref = 1; 125 } 126 spin_unlock(&block_group->lock); 127 128 return inode; 129 } 130 131 static int __create_free_space_inode(struct btrfs_root *root, 132 struct btrfs_trans_handle *trans, 133 struct btrfs_path *path, 134 u64 ino, u64 offset) 135 { 136 struct btrfs_key key; 137 struct btrfs_disk_key disk_key; 138 struct btrfs_free_space_header *header; 139 struct btrfs_inode_item *inode_item; 140 struct extent_buffer *leaf; 141 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 142 int ret; 143 144 ret = btrfs_insert_empty_inode(trans, root, path, ino); 145 if (ret) 146 return ret; 147 148 /* We inline crc's for the free disk space cache */ 149 if (ino != BTRFS_FREE_INO_OBJECTID) 150 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; 151 152 leaf = path->nodes[0]; 153 inode_item = btrfs_item_ptr(leaf, path->slots[0], 154 struct btrfs_inode_item); 155 btrfs_item_key(leaf, &disk_key, path->slots[0]); 156 memset_extent_buffer(leaf, 0, (unsigned long)inode_item, 157 sizeof(*inode_item)); 158 btrfs_set_inode_generation(leaf, inode_item, trans->transid); 159 btrfs_set_inode_size(leaf, inode_item, 0); 160 btrfs_set_inode_nbytes(leaf, inode_item, 0); 161 btrfs_set_inode_uid(leaf, inode_item, 0); 162 btrfs_set_inode_gid(leaf, inode_item, 0); 163 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); 164 btrfs_set_inode_flags(leaf, inode_item, flags); 165 btrfs_set_inode_nlink(leaf, inode_item, 1); 166 btrfs_set_inode_transid(leaf, inode_item, trans->transid); 167 btrfs_set_inode_block_group(leaf, inode_item, offset); 168 btrfs_mark_buffer_dirty(leaf); 169 btrfs_release_path(path); 170 171 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 172 key.offset = offset; 173 key.type = 0; 174 ret = btrfs_insert_empty_item(trans, root, path, &key, 175 sizeof(struct btrfs_free_space_header)); 176 if (ret < 0) { 177 btrfs_release_path(path); 178 return ret; 179 } 180 181 leaf = path->nodes[0]; 182 header = btrfs_item_ptr(leaf, path->slots[0], 183 struct btrfs_free_space_header); 184 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header)); 185 btrfs_set_free_space_key(leaf, header, &disk_key); 186 btrfs_mark_buffer_dirty(leaf); 187 btrfs_release_path(path); 188 189 return 0; 190 } 191 192 int create_free_space_inode(struct btrfs_root *root, 193 struct btrfs_trans_handle *trans, 194 struct btrfs_block_group_cache *block_group, 195 struct btrfs_path *path) 196 { 197 int ret; 198 u64 ino; 199 200 ret = btrfs_find_free_objectid(root, &ino); 201 if (ret < 0) 202 return ret; 203 204 return __create_free_space_inode(root, trans, path, ino, 205 block_group->key.objectid); 206 } 207 208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root, 209 struct btrfs_block_rsv *rsv) 210 { 211 u64 needed_bytes; 212 int ret; 213 214 /* 1 for slack space, 1 for updating the inode */ 215 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) + 216 btrfs_calc_trans_metadata_size(root, 1); 217 218 spin_lock(&rsv->lock); 219 if (rsv->reserved < needed_bytes) 220 ret = -ENOSPC; 221 else 222 ret = 0; 223 spin_unlock(&rsv->lock); 224 return ret; 225 } 226 227 int btrfs_truncate_free_space_cache(struct btrfs_root *root, 228 struct btrfs_trans_handle *trans, 229 struct btrfs_block_group_cache *block_group, 230 struct inode *inode) 231 { 232 int ret = 0; 233 struct btrfs_path *path = btrfs_alloc_path(); 234 bool locked = false; 235 236 if (!path) { 237 ret = -ENOMEM; 238 goto fail; 239 } 240 241 if (block_group) { 242 locked = true; 243 mutex_lock(&trans->transaction->cache_write_mutex); 244 if (!list_empty(&block_group->io_list)) { 245 list_del_init(&block_group->io_list); 246 247 btrfs_wait_cache_io(root, trans, block_group, 248 &block_group->io_ctl, path, 249 block_group->key.objectid); 250 btrfs_put_block_group(block_group); 251 } 252 253 /* 254 * now that we've truncated the cache away, its no longer 255 * setup or written 256 */ 257 spin_lock(&block_group->lock); 258 block_group->disk_cache_state = BTRFS_DC_CLEAR; 259 spin_unlock(&block_group->lock); 260 } 261 btrfs_free_path(path); 262 263 btrfs_i_size_write(inode, 0); 264 truncate_pagecache(inode, 0); 265 266 /* 267 * We don't need an orphan item because truncating the free space cache 268 * will never be split across transactions. 269 * We don't need to check for -EAGAIN because we're a free space 270 * cache inode 271 */ 272 ret = btrfs_truncate_inode_items(trans, root, inode, 273 0, BTRFS_EXTENT_DATA_KEY); 274 if (ret) 275 goto fail; 276 277 ret = btrfs_update_inode(trans, root, inode); 278 279 fail: 280 if (locked) 281 mutex_unlock(&trans->transaction->cache_write_mutex); 282 if (ret) 283 btrfs_abort_transaction(trans, root, ret); 284 285 return ret; 286 } 287 288 static int readahead_cache(struct inode *inode) 289 { 290 struct file_ra_state *ra; 291 unsigned long last_index; 292 293 ra = kzalloc(sizeof(*ra), GFP_NOFS); 294 if (!ra) 295 return -ENOMEM; 296 297 file_ra_state_init(ra, inode->i_mapping); 298 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 299 300 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); 301 302 kfree(ra); 303 304 return 0; 305 } 306 307 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, 308 struct btrfs_root *root, int write) 309 { 310 int num_pages; 311 int check_crcs = 0; 312 313 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 314 315 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID) 316 check_crcs = 1; 317 318 /* Make sure we can fit our crcs into the first page */ 319 if (write && check_crcs && 320 (num_pages * sizeof(u32)) >= PAGE_SIZE) 321 return -ENOSPC; 322 323 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); 324 325 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); 326 if (!io_ctl->pages) 327 return -ENOMEM; 328 329 io_ctl->num_pages = num_pages; 330 io_ctl->root = root; 331 io_ctl->check_crcs = check_crcs; 332 io_ctl->inode = inode; 333 334 return 0; 335 } 336 337 static void io_ctl_free(struct btrfs_io_ctl *io_ctl) 338 { 339 kfree(io_ctl->pages); 340 io_ctl->pages = NULL; 341 } 342 343 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) 344 { 345 if (io_ctl->cur) { 346 io_ctl->cur = NULL; 347 io_ctl->orig = NULL; 348 } 349 } 350 351 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) 352 { 353 ASSERT(io_ctl->index < io_ctl->num_pages); 354 io_ctl->page = io_ctl->pages[io_ctl->index++]; 355 io_ctl->cur = page_address(io_ctl->page); 356 io_ctl->orig = io_ctl->cur; 357 io_ctl->size = PAGE_SIZE; 358 if (clear) 359 memset(io_ctl->cur, 0, PAGE_SIZE); 360 } 361 362 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) 363 { 364 int i; 365 366 io_ctl_unmap_page(io_ctl); 367 368 for (i = 0; i < io_ctl->num_pages; i++) { 369 if (io_ctl->pages[i]) { 370 ClearPageChecked(io_ctl->pages[i]); 371 unlock_page(io_ctl->pages[i]); 372 put_page(io_ctl->pages[i]); 373 } 374 } 375 } 376 377 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode, 378 int uptodate) 379 { 380 struct page *page; 381 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 382 int i; 383 384 for (i = 0; i < io_ctl->num_pages; i++) { 385 page = find_or_create_page(inode->i_mapping, i, mask); 386 if (!page) { 387 io_ctl_drop_pages(io_ctl); 388 return -ENOMEM; 389 } 390 io_ctl->pages[i] = page; 391 if (uptodate && !PageUptodate(page)) { 392 btrfs_readpage(NULL, page); 393 lock_page(page); 394 if (!PageUptodate(page)) { 395 btrfs_err(BTRFS_I(inode)->root->fs_info, 396 "error reading free space cache"); 397 io_ctl_drop_pages(io_ctl); 398 return -EIO; 399 } 400 } 401 } 402 403 for (i = 0; i < io_ctl->num_pages; i++) { 404 clear_page_dirty_for_io(io_ctl->pages[i]); 405 set_page_extent_mapped(io_ctl->pages[i]); 406 } 407 408 return 0; 409 } 410 411 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 412 { 413 __le64 *val; 414 415 io_ctl_map_page(io_ctl, 1); 416 417 /* 418 * Skip the csum areas. If we don't check crcs then we just have a 419 * 64bit chunk at the front of the first page. 420 */ 421 if (io_ctl->check_crcs) { 422 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); 423 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); 424 } else { 425 io_ctl->cur += sizeof(u64); 426 io_ctl->size -= sizeof(u64) * 2; 427 } 428 429 val = io_ctl->cur; 430 *val = cpu_to_le64(generation); 431 io_ctl->cur += sizeof(u64); 432 } 433 434 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) 435 { 436 __le64 *gen; 437 438 /* 439 * Skip the crc area. If we don't check crcs then we just have a 64bit 440 * chunk at the front of the first page. 441 */ 442 if (io_ctl->check_crcs) { 443 io_ctl->cur += sizeof(u32) * io_ctl->num_pages; 444 io_ctl->size -= sizeof(u64) + 445 (sizeof(u32) * io_ctl->num_pages); 446 } else { 447 io_ctl->cur += sizeof(u64); 448 io_ctl->size -= sizeof(u64) * 2; 449 } 450 451 gen = io_ctl->cur; 452 if (le64_to_cpu(*gen) != generation) { 453 btrfs_err_rl(io_ctl->root->fs_info, 454 "space cache generation (%llu) does not match inode (%llu)", 455 *gen, generation); 456 io_ctl_unmap_page(io_ctl); 457 return -EIO; 458 } 459 io_ctl->cur += sizeof(u64); 460 return 0; 461 } 462 463 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) 464 { 465 u32 *tmp; 466 u32 crc = ~(u32)0; 467 unsigned offset = 0; 468 469 if (!io_ctl->check_crcs) { 470 io_ctl_unmap_page(io_ctl); 471 return; 472 } 473 474 if (index == 0) 475 offset = sizeof(u32) * io_ctl->num_pages; 476 477 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 478 PAGE_SIZE - offset); 479 btrfs_csum_final(crc, (char *)&crc); 480 io_ctl_unmap_page(io_ctl); 481 tmp = page_address(io_ctl->pages[0]); 482 tmp += index; 483 *tmp = crc; 484 } 485 486 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) 487 { 488 u32 *tmp, val; 489 u32 crc = ~(u32)0; 490 unsigned offset = 0; 491 492 if (!io_ctl->check_crcs) { 493 io_ctl_map_page(io_ctl, 0); 494 return 0; 495 } 496 497 if (index == 0) 498 offset = sizeof(u32) * io_ctl->num_pages; 499 500 tmp = page_address(io_ctl->pages[0]); 501 tmp += index; 502 val = *tmp; 503 504 io_ctl_map_page(io_ctl, 0); 505 crc = btrfs_csum_data(io_ctl->orig + offset, crc, 506 PAGE_SIZE - offset); 507 btrfs_csum_final(crc, (char *)&crc); 508 if (val != crc) { 509 btrfs_err_rl(io_ctl->root->fs_info, 510 "csum mismatch on free space cache"); 511 io_ctl_unmap_page(io_ctl); 512 return -EIO; 513 } 514 515 return 0; 516 } 517 518 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, 519 void *bitmap) 520 { 521 struct btrfs_free_space_entry *entry; 522 523 if (!io_ctl->cur) 524 return -ENOSPC; 525 526 entry = io_ctl->cur; 527 entry->offset = cpu_to_le64(offset); 528 entry->bytes = cpu_to_le64(bytes); 529 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : 530 BTRFS_FREE_SPACE_EXTENT; 531 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 532 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 533 534 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 535 return 0; 536 537 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 538 539 /* No more pages to map */ 540 if (io_ctl->index >= io_ctl->num_pages) 541 return 0; 542 543 /* map the next page */ 544 io_ctl_map_page(io_ctl, 1); 545 return 0; 546 } 547 548 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) 549 { 550 if (!io_ctl->cur) 551 return -ENOSPC; 552 553 /* 554 * If we aren't at the start of the current page, unmap this one and 555 * map the next one if there is any left. 556 */ 557 if (io_ctl->cur != io_ctl->orig) { 558 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 559 if (io_ctl->index >= io_ctl->num_pages) 560 return -ENOSPC; 561 io_ctl_map_page(io_ctl, 0); 562 } 563 564 memcpy(io_ctl->cur, bitmap, PAGE_SIZE); 565 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 566 if (io_ctl->index < io_ctl->num_pages) 567 io_ctl_map_page(io_ctl, 0); 568 return 0; 569 } 570 571 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) 572 { 573 /* 574 * If we're not on the boundary we know we've modified the page and we 575 * need to crc the page. 576 */ 577 if (io_ctl->cur != io_ctl->orig) 578 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 579 else 580 io_ctl_unmap_page(io_ctl); 581 582 while (io_ctl->index < io_ctl->num_pages) { 583 io_ctl_map_page(io_ctl, 1); 584 io_ctl_set_crc(io_ctl, io_ctl->index - 1); 585 } 586 } 587 588 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, 589 struct btrfs_free_space *entry, u8 *type) 590 { 591 struct btrfs_free_space_entry *e; 592 int ret; 593 594 if (!io_ctl->cur) { 595 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 596 if (ret) 597 return ret; 598 } 599 600 e = io_ctl->cur; 601 entry->offset = le64_to_cpu(e->offset); 602 entry->bytes = le64_to_cpu(e->bytes); 603 *type = e->type; 604 io_ctl->cur += sizeof(struct btrfs_free_space_entry); 605 io_ctl->size -= sizeof(struct btrfs_free_space_entry); 606 607 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) 608 return 0; 609 610 io_ctl_unmap_page(io_ctl); 611 612 return 0; 613 } 614 615 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, 616 struct btrfs_free_space *entry) 617 { 618 int ret; 619 620 ret = io_ctl_check_crc(io_ctl, io_ctl->index); 621 if (ret) 622 return ret; 623 624 memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE); 625 io_ctl_unmap_page(io_ctl); 626 627 return 0; 628 } 629 630 /* 631 * Since we attach pinned extents after the fact we can have contiguous sections 632 * of free space that are split up in entries. This poses a problem with the 633 * tree logging stuff since it could have allocated across what appears to be 2 634 * entries since we would have merged the entries when adding the pinned extents 635 * back to the free space cache. So run through the space cache that we just 636 * loaded and merge contiguous entries. This will make the log replay stuff not 637 * blow up and it will make for nicer allocator behavior. 638 */ 639 static void merge_space_tree(struct btrfs_free_space_ctl *ctl) 640 { 641 struct btrfs_free_space *e, *prev = NULL; 642 struct rb_node *n; 643 644 again: 645 spin_lock(&ctl->tree_lock); 646 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 647 e = rb_entry(n, struct btrfs_free_space, offset_index); 648 if (!prev) 649 goto next; 650 if (e->bitmap || prev->bitmap) 651 goto next; 652 if (prev->offset + prev->bytes == e->offset) { 653 unlink_free_space(ctl, prev); 654 unlink_free_space(ctl, e); 655 prev->bytes += e->bytes; 656 kmem_cache_free(btrfs_free_space_cachep, e); 657 link_free_space(ctl, prev); 658 prev = NULL; 659 spin_unlock(&ctl->tree_lock); 660 goto again; 661 } 662 next: 663 prev = e; 664 } 665 spin_unlock(&ctl->tree_lock); 666 } 667 668 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, 669 struct btrfs_free_space_ctl *ctl, 670 struct btrfs_path *path, u64 offset) 671 { 672 struct btrfs_free_space_header *header; 673 struct extent_buffer *leaf; 674 struct btrfs_io_ctl io_ctl; 675 struct btrfs_key key; 676 struct btrfs_free_space *e, *n; 677 LIST_HEAD(bitmaps); 678 u64 num_entries; 679 u64 num_bitmaps; 680 u64 generation; 681 u8 type; 682 int ret = 0; 683 684 /* Nothing in the space cache, goodbye */ 685 if (!i_size_read(inode)) 686 return 0; 687 688 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 689 key.offset = offset; 690 key.type = 0; 691 692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 693 if (ret < 0) 694 return 0; 695 else if (ret > 0) { 696 btrfs_release_path(path); 697 return 0; 698 } 699 700 ret = -1; 701 702 leaf = path->nodes[0]; 703 header = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_free_space_header); 705 num_entries = btrfs_free_space_entries(leaf, header); 706 num_bitmaps = btrfs_free_space_bitmaps(leaf, header); 707 generation = btrfs_free_space_generation(leaf, header); 708 btrfs_release_path(path); 709 710 if (!BTRFS_I(inode)->generation) { 711 btrfs_info(root->fs_info, 712 "The free space cache file (%llu) is invalid. skip it\n", 713 offset); 714 return 0; 715 } 716 717 if (BTRFS_I(inode)->generation != generation) { 718 btrfs_err(root->fs_info, 719 "free space inode generation (%llu) " 720 "did not match free space cache generation (%llu)", 721 BTRFS_I(inode)->generation, generation); 722 return 0; 723 } 724 725 if (!num_entries) 726 return 0; 727 728 ret = io_ctl_init(&io_ctl, inode, root, 0); 729 if (ret) 730 return ret; 731 732 ret = readahead_cache(inode); 733 if (ret) 734 goto out; 735 736 ret = io_ctl_prepare_pages(&io_ctl, inode, 1); 737 if (ret) 738 goto out; 739 740 ret = io_ctl_check_crc(&io_ctl, 0); 741 if (ret) 742 goto free_cache; 743 744 ret = io_ctl_check_generation(&io_ctl, generation); 745 if (ret) 746 goto free_cache; 747 748 while (num_entries) { 749 e = kmem_cache_zalloc(btrfs_free_space_cachep, 750 GFP_NOFS); 751 if (!e) 752 goto free_cache; 753 754 ret = io_ctl_read_entry(&io_ctl, e, &type); 755 if (ret) { 756 kmem_cache_free(btrfs_free_space_cachep, e); 757 goto free_cache; 758 } 759 760 if (!e->bytes) { 761 kmem_cache_free(btrfs_free_space_cachep, e); 762 goto free_cache; 763 } 764 765 if (type == BTRFS_FREE_SPACE_EXTENT) { 766 spin_lock(&ctl->tree_lock); 767 ret = link_free_space(ctl, e); 768 spin_unlock(&ctl->tree_lock); 769 if (ret) { 770 btrfs_err(root->fs_info, 771 "Duplicate entries in free space cache, dumping"); 772 kmem_cache_free(btrfs_free_space_cachep, e); 773 goto free_cache; 774 } 775 } else { 776 ASSERT(num_bitmaps); 777 num_bitmaps--; 778 e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS); 779 if (!e->bitmap) { 780 kmem_cache_free( 781 btrfs_free_space_cachep, e); 782 goto free_cache; 783 } 784 spin_lock(&ctl->tree_lock); 785 ret = link_free_space(ctl, e); 786 ctl->total_bitmaps++; 787 ctl->op->recalc_thresholds(ctl); 788 spin_unlock(&ctl->tree_lock); 789 if (ret) { 790 btrfs_err(root->fs_info, 791 "Duplicate entries in free space cache, dumping"); 792 kmem_cache_free(btrfs_free_space_cachep, e); 793 goto free_cache; 794 } 795 list_add_tail(&e->list, &bitmaps); 796 } 797 798 num_entries--; 799 } 800 801 io_ctl_unmap_page(&io_ctl); 802 803 /* 804 * We add the bitmaps at the end of the entries in order that 805 * the bitmap entries are added to the cache. 806 */ 807 list_for_each_entry_safe(e, n, &bitmaps, list) { 808 list_del_init(&e->list); 809 ret = io_ctl_read_bitmap(&io_ctl, e); 810 if (ret) 811 goto free_cache; 812 } 813 814 io_ctl_drop_pages(&io_ctl); 815 merge_space_tree(ctl); 816 ret = 1; 817 out: 818 io_ctl_free(&io_ctl); 819 return ret; 820 free_cache: 821 io_ctl_drop_pages(&io_ctl); 822 __btrfs_remove_free_space_cache(ctl); 823 goto out; 824 } 825 826 int load_free_space_cache(struct btrfs_fs_info *fs_info, 827 struct btrfs_block_group_cache *block_group) 828 { 829 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 830 struct btrfs_root *root = fs_info->tree_root; 831 struct inode *inode; 832 struct btrfs_path *path; 833 int ret = 0; 834 bool matched; 835 u64 used = btrfs_block_group_used(&block_group->item); 836 837 /* 838 * If this block group has been marked to be cleared for one reason or 839 * another then we can't trust the on disk cache, so just return. 840 */ 841 spin_lock(&block_group->lock); 842 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 843 spin_unlock(&block_group->lock); 844 return 0; 845 } 846 spin_unlock(&block_group->lock); 847 848 path = btrfs_alloc_path(); 849 if (!path) 850 return 0; 851 path->search_commit_root = 1; 852 path->skip_locking = 1; 853 854 inode = lookup_free_space_inode(root, block_group, path); 855 if (IS_ERR(inode)) { 856 btrfs_free_path(path); 857 return 0; 858 } 859 860 /* We may have converted the inode and made the cache invalid. */ 861 spin_lock(&block_group->lock); 862 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { 863 spin_unlock(&block_group->lock); 864 btrfs_free_path(path); 865 goto out; 866 } 867 spin_unlock(&block_group->lock); 868 869 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, 870 path, block_group->key.objectid); 871 btrfs_free_path(path); 872 if (ret <= 0) 873 goto out; 874 875 spin_lock(&ctl->tree_lock); 876 matched = (ctl->free_space == (block_group->key.offset - used - 877 block_group->bytes_super)); 878 spin_unlock(&ctl->tree_lock); 879 880 if (!matched) { 881 __btrfs_remove_free_space_cache(ctl); 882 btrfs_warn(fs_info, "block group %llu has wrong amount of free space", 883 block_group->key.objectid); 884 ret = -1; 885 } 886 out: 887 if (ret < 0) { 888 /* This cache is bogus, make sure it gets cleared */ 889 spin_lock(&block_group->lock); 890 block_group->disk_cache_state = BTRFS_DC_CLEAR; 891 spin_unlock(&block_group->lock); 892 ret = 0; 893 894 btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuilding it now", 895 block_group->key.objectid); 896 } 897 898 iput(inode); 899 return ret; 900 } 901 902 static noinline_for_stack 903 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, 904 struct btrfs_free_space_ctl *ctl, 905 struct btrfs_block_group_cache *block_group, 906 int *entries, int *bitmaps, 907 struct list_head *bitmap_list) 908 { 909 int ret; 910 struct btrfs_free_cluster *cluster = NULL; 911 struct btrfs_free_cluster *cluster_locked = NULL; 912 struct rb_node *node = rb_first(&ctl->free_space_offset); 913 struct btrfs_trim_range *trim_entry; 914 915 /* Get the cluster for this block_group if it exists */ 916 if (block_group && !list_empty(&block_group->cluster_list)) { 917 cluster = list_entry(block_group->cluster_list.next, 918 struct btrfs_free_cluster, 919 block_group_list); 920 } 921 922 if (!node && cluster) { 923 cluster_locked = cluster; 924 spin_lock(&cluster_locked->lock); 925 node = rb_first(&cluster->root); 926 cluster = NULL; 927 } 928 929 /* Write out the extent entries */ 930 while (node) { 931 struct btrfs_free_space *e; 932 933 e = rb_entry(node, struct btrfs_free_space, offset_index); 934 *entries += 1; 935 936 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, 937 e->bitmap); 938 if (ret) 939 goto fail; 940 941 if (e->bitmap) { 942 list_add_tail(&e->list, bitmap_list); 943 *bitmaps += 1; 944 } 945 node = rb_next(node); 946 if (!node && cluster) { 947 node = rb_first(&cluster->root); 948 cluster_locked = cluster; 949 spin_lock(&cluster_locked->lock); 950 cluster = NULL; 951 } 952 } 953 if (cluster_locked) { 954 spin_unlock(&cluster_locked->lock); 955 cluster_locked = NULL; 956 } 957 958 /* 959 * Make sure we don't miss any range that was removed from our rbtree 960 * because trimming is running. Otherwise after a umount+mount (or crash 961 * after committing the transaction) we would leak free space and get 962 * an inconsistent free space cache report from fsck. 963 */ 964 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { 965 ret = io_ctl_add_entry(io_ctl, trim_entry->start, 966 trim_entry->bytes, NULL); 967 if (ret) 968 goto fail; 969 *entries += 1; 970 } 971 972 return 0; 973 fail: 974 if (cluster_locked) 975 spin_unlock(&cluster_locked->lock); 976 return -ENOSPC; 977 } 978 979 static noinline_for_stack int 980 update_cache_item(struct btrfs_trans_handle *trans, 981 struct btrfs_root *root, 982 struct inode *inode, 983 struct btrfs_path *path, u64 offset, 984 int entries, int bitmaps) 985 { 986 struct btrfs_key key; 987 struct btrfs_free_space_header *header; 988 struct extent_buffer *leaf; 989 int ret; 990 991 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 992 key.offset = offset; 993 key.type = 0; 994 995 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 996 if (ret < 0) { 997 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 998 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, 999 GFP_NOFS); 1000 goto fail; 1001 } 1002 leaf = path->nodes[0]; 1003 if (ret > 0) { 1004 struct btrfs_key found_key; 1005 ASSERT(path->slots[0]); 1006 path->slots[0]--; 1007 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1008 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || 1009 found_key.offset != offset) { 1010 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, 1011 inode->i_size - 1, 1012 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, 1013 NULL, GFP_NOFS); 1014 btrfs_release_path(path); 1015 goto fail; 1016 } 1017 } 1018 1019 BTRFS_I(inode)->generation = trans->transid; 1020 header = btrfs_item_ptr(leaf, path->slots[0], 1021 struct btrfs_free_space_header); 1022 btrfs_set_free_space_entries(leaf, header, entries); 1023 btrfs_set_free_space_bitmaps(leaf, header, bitmaps); 1024 btrfs_set_free_space_generation(leaf, header, trans->transid); 1025 btrfs_mark_buffer_dirty(leaf); 1026 btrfs_release_path(path); 1027 1028 return 0; 1029 1030 fail: 1031 return -1; 1032 } 1033 1034 static noinline_for_stack int 1035 write_pinned_extent_entries(struct btrfs_root *root, 1036 struct btrfs_block_group_cache *block_group, 1037 struct btrfs_io_ctl *io_ctl, 1038 int *entries) 1039 { 1040 u64 start, extent_start, extent_end, len; 1041 struct extent_io_tree *unpin = NULL; 1042 int ret; 1043 1044 if (!block_group) 1045 return 0; 1046 1047 /* 1048 * We want to add any pinned extents to our free space cache 1049 * so we don't leak the space 1050 * 1051 * We shouldn't have switched the pinned extents yet so this is the 1052 * right one 1053 */ 1054 unpin = root->fs_info->pinned_extents; 1055 1056 start = block_group->key.objectid; 1057 1058 while (start < block_group->key.objectid + block_group->key.offset) { 1059 ret = find_first_extent_bit(unpin, start, 1060 &extent_start, &extent_end, 1061 EXTENT_DIRTY, NULL); 1062 if (ret) 1063 return 0; 1064 1065 /* This pinned extent is out of our range */ 1066 if (extent_start >= block_group->key.objectid + 1067 block_group->key.offset) 1068 return 0; 1069 1070 extent_start = max(extent_start, start); 1071 extent_end = min(block_group->key.objectid + 1072 block_group->key.offset, extent_end + 1); 1073 len = extent_end - extent_start; 1074 1075 *entries += 1; 1076 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); 1077 if (ret) 1078 return -ENOSPC; 1079 1080 start = extent_end; 1081 } 1082 1083 return 0; 1084 } 1085 1086 static noinline_for_stack int 1087 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) 1088 { 1089 struct btrfs_free_space *entry, *next; 1090 int ret; 1091 1092 /* Write out the bitmaps */ 1093 list_for_each_entry_safe(entry, next, bitmap_list, list) { 1094 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); 1095 if (ret) 1096 return -ENOSPC; 1097 list_del_init(&entry->list); 1098 } 1099 1100 return 0; 1101 } 1102 1103 static int flush_dirty_cache(struct inode *inode) 1104 { 1105 int ret; 1106 1107 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 1108 if (ret) 1109 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, 1110 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL, 1111 GFP_NOFS); 1112 1113 return ret; 1114 } 1115 1116 static void noinline_for_stack 1117 cleanup_bitmap_list(struct list_head *bitmap_list) 1118 { 1119 struct btrfs_free_space *entry, *next; 1120 1121 list_for_each_entry_safe(entry, next, bitmap_list, list) 1122 list_del_init(&entry->list); 1123 } 1124 1125 static void noinline_for_stack 1126 cleanup_write_cache_enospc(struct inode *inode, 1127 struct btrfs_io_ctl *io_ctl, 1128 struct extent_state **cached_state, 1129 struct list_head *bitmap_list) 1130 { 1131 io_ctl_drop_pages(io_ctl); 1132 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1133 i_size_read(inode) - 1, cached_state, 1134 GFP_NOFS); 1135 } 1136 1137 int btrfs_wait_cache_io(struct btrfs_root *root, 1138 struct btrfs_trans_handle *trans, 1139 struct btrfs_block_group_cache *block_group, 1140 struct btrfs_io_ctl *io_ctl, 1141 struct btrfs_path *path, u64 offset) 1142 { 1143 int ret; 1144 struct inode *inode = io_ctl->inode; 1145 1146 if (!inode) 1147 return 0; 1148 1149 if (block_group) 1150 root = root->fs_info->tree_root; 1151 1152 /* Flush the dirty pages in the cache file. */ 1153 ret = flush_dirty_cache(inode); 1154 if (ret) 1155 goto out; 1156 1157 /* Update the cache item to tell everyone this cache file is valid. */ 1158 ret = update_cache_item(trans, root, inode, path, offset, 1159 io_ctl->entries, io_ctl->bitmaps); 1160 out: 1161 io_ctl_free(io_ctl); 1162 if (ret) { 1163 invalidate_inode_pages2(inode->i_mapping); 1164 BTRFS_I(inode)->generation = 0; 1165 if (block_group) { 1166 #ifdef DEBUG 1167 btrfs_err(root->fs_info, 1168 "failed to write free space cache for block group %llu", 1169 block_group->key.objectid); 1170 #endif 1171 } 1172 } 1173 btrfs_update_inode(trans, root, inode); 1174 1175 if (block_group) { 1176 /* the dirty list is protected by the dirty_bgs_lock */ 1177 spin_lock(&trans->transaction->dirty_bgs_lock); 1178 1179 /* the disk_cache_state is protected by the block group lock */ 1180 spin_lock(&block_group->lock); 1181 1182 /* 1183 * only mark this as written if we didn't get put back on 1184 * the dirty list while waiting for IO. Otherwise our 1185 * cache state won't be right, and we won't get written again 1186 */ 1187 if (!ret && list_empty(&block_group->dirty_list)) 1188 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1189 else if (ret) 1190 block_group->disk_cache_state = BTRFS_DC_ERROR; 1191 1192 spin_unlock(&block_group->lock); 1193 spin_unlock(&trans->transaction->dirty_bgs_lock); 1194 io_ctl->inode = NULL; 1195 iput(inode); 1196 } 1197 1198 return ret; 1199 1200 } 1201 1202 /** 1203 * __btrfs_write_out_cache - write out cached info to an inode 1204 * @root - the root the inode belongs to 1205 * @ctl - the free space cache we are going to write out 1206 * @block_group - the block_group for this cache if it belongs to a block_group 1207 * @trans - the trans handle 1208 * @path - the path to use 1209 * @offset - the offset for the key we'll insert 1210 * 1211 * This function writes out a free space cache struct to disk for quick recovery 1212 * on mount. This will return 0 if it was successful in writing the cache out, 1213 * or an errno if it was not. 1214 */ 1215 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, 1216 struct btrfs_free_space_ctl *ctl, 1217 struct btrfs_block_group_cache *block_group, 1218 struct btrfs_io_ctl *io_ctl, 1219 struct btrfs_trans_handle *trans, 1220 struct btrfs_path *path, u64 offset) 1221 { 1222 struct extent_state *cached_state = NULL; 1223 LIST_HEAD(bitmap_list); 1224 int entries = 0; 1225 int bitmaps = 0; 1226 int ret; 1227 int must_iput = 0; 1228 1229 if (!i_size_read(inode)) 1230 return -EIO; 1231 1232 WARN_ON(io_ctl->pages); 1233 ret = io_ctl_init(io_ctl, inode, root, 1); 1234 if (ret) 1235 return ret; 1236 1237 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { 1238 down_write(&block_group->data_rwsem); 1239 spin_lock(&block_group->lock); 1240 if (block_group->delalloc_bytes) { 1241 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 1242 spin_unlock(&block_group->lock); 1243 up_write(&block_group->data_rwsem); 1244 BTRFS_I(inode)->generation = 0; 1245 ret = 0; 1246 must_iput = 1; 1247 goto out; 1248 } 1249 spin_unlock(&block_group->lock); 1250 } 1251 1252 /* Lock all pages first so we can lock the extent safely. */ 1253 ret = io_ctl_prepare_pages(io_ctl, inode, 0); 1254 if (ret) 1255 goto out; 1256 1257 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 1258 &cached_state); 1259 1260 io_ctl_set_generation(io_ctl, trans->transid); 1261 1262 mutex_lock(&ctl->cache_writeout_mutex); 1263 /* Write out the extent entries in the free space cache */ 1264 spin_lock(&ctl->tree_lock); 1265 ret = write_cache_extent_entries(io_ctl, ctl, 1266 block_group, &entries, &bitmaps, 1267 &bitmap_list); 1268 if (ret) 1269 goto out_nospc_locked; 1270 1271 /* 1272 * Some spaces that are freed in the current transaction are pinned, 1273 * they will be added into free space cache after the transaction is 1274 * committed, we shouldn't lose them. 1275 * 1276 * If this changes while we are working we'll get added back to 1277 * the dirty list and redo it. No locking needed 1278 */ 1279 ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries); 1280 if (ret) 1281 goto out_nospc_locked; 1282 1283 /* 1284 * At last, we write out all the bitmaps and keep cache_writeout_mutex 1285 * locked while doing it because a concurrent trim can be manipulating 1286 * or freeing the bitmap. 1287 */ 1288 ret = write_bitmap_entries(io_ctl, &bitmap_list); 1289 spin_unlock(&ctl->tree_lock); 1290 mutex_unlock(&ctl->cache_writeout_mutex); 1291 if (ret) 1292 goto out_nospc; 1293 1294 /* Zero out the rest of the pages just to make sure */ 1295 io_ctl_zero_remaining_pages(io_ctl); 1296 1297 /* Everything is written out, now we dirty the pages in the file. */ 1298 ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages, 1299 0, i_size_read(inode), &cached_state); 1300 if (ret) 1301 goto out_nospc; 1302 1303 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1304 up_write(&block_group->data_rwsem); 1305 /* 1306 * Release the pages and unlock the extent, we will flush 1307 * them out later 1308 */ 1309 io_ctl_drop_pages(io_ctl); 1310 1311 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, 1312 i_size_read(inode) - 1, &cached_state, GFP_NOFS); 1313 1314 /* 1315 * at this point the pages are under IO and we're happy, 1316 * The caller is responsible for waiting on them and updating the 1317 * the cache and the inode 1318 */ 1319 io_ctl->entries = entries; 1320 io_ctl->bitmaps = bitmaps; 1321 1322 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); 1323 if (ret) 1324 goto out; 1325 1326 return 0; 1327 1328 out: 1329 io_ctl->inode = NULL; 1330 io_ctl_free(io_ctl); 1331 if (ret) { 1332 invalidate_inode_pages2(inode->i_mapping); 1333 BTRFS_I(inode)->generation = 0; 1334 } 1335 btrfs_update_inode(trans, root, inode); 1336 if (must_iput) 1337 iput(inode); 1338 return ret; 1339 1340 out_nospc_locked: 1341 cleanup_bitmap_list(&bitmap_list); 1342 spin_unlock(&ctl->tree_lock); 1343 mutex_unlock(&ctl->cache_writeout_mutex); 1344 1345 out_nospc: 1346 cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list); 1347 1348 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 1349 up_write(&block_group->data_rwsem); 1350 1351 goto out; 1352 } 1353 1354 int btrfs_write_out_cache(struct btrfs_root *root, 1355 struct btrfs_trans_handle *trans, 1356 struct btrfs_block_group_cache *block_group, 1357 struct btrfs_path *path) 1358 { 1359 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 1360 struct inode *inode; 1361 int ret = 0; 1362 1363 root = root->fs_info->tree_root; 1364 1365 spin_lock(&block_group->lock); 1366 if (block_group->disk_cache_state < BTRFS_DC_SETUP) { 1367 spin_unlock(&block_group->lock); 1368 return 0; 1369 } 1370 spin_unlock(&block_group->lock); 1371 1372 inode = lookup_free_space_inode(root, block_group, path); 1373 if (IS_ERR(inode)) 1374 return 0; 1375 1376 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, 1377 &block_group->io_ctl, trans, 1378 path, block_group->key.objectid); 1379 if (ret) { 1380 #ifdef DEBUG 1381 btrfs_err(root->fs_info, 1382 "failed to write free space cache for block group %llu", 1383 block_group->key.objectid); 1384 #endif 1385 spin_lock(&block_group->lock); 1386 block_group->disk_cache_state = BTRFS_DC_ERROR; 1387 spin_unlock(&block_group->lock); 1388 1389 block_group->io_ctl.inode = NULL; 1390 iput(inode); 1391 } 1392 1393 /* 1394 * if ret == 0 the caller is expected to call btrfs_wait_cache_io 1395 * to wait for IO and put the inode 1396 */ 1397 1398 return ret; 1399 } 1400 1401 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, 1402 u64 offset) 1403 { 1404 ASSERT(offset >= bitmap_start); 1405 offset -= bitmap_start; 1406 return (unsigned long)(div_u64(offset, unit)); 1407 } 1408 1409 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) 1410 { 1411 return (unsigned long)(div_u64(bytes, unit)); 1412 } 1413 1414 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, 1415 u64 offset) 1416 { 1417 u64 bitmap_start; 1418 u64 bytes_per_bitmap; 1419 1420 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; 1421 bitmap_start = offset - ctl->start; 1422 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); 1423 bitmap_start *= bytes_per_bitmap; 1424 bitmap_start += ctl->start; 1425 1426 return bitmap_start; 1427 } 1428 1429 static int tree_insert_offset(struct rb_root *root, u64 offset, 1430 struct rb_node *node, int bitmap) 1431 { 1432 struct rb_node **p = &root->rb_node; 1433 struct rb_node *parent = NULL; 1434 struct btrfs_free_space *info; 1435 1436 while (*p) { 1437 parent = *p; 1438 info = rb_entry(parent, struct btrfs_free_space, offset_index); 1439 1440 if (offset < info->offset) { 1441 p = &(*p)->rb_left; 1442 } else if (offset > info->offset) { 1443 p = &(*p)->rb_right; 1444 } else { 1445 /* 1446 * we could have a bitmap entry and an extent entry 1447 * share the same offset. If this is the case, we want 1448 * the extent entry to always be found first if we do a 1449 * linear search through the tree, since we want to have 1450 * the quickest allocation time, and allocating from an 1451 * extent is faster than allocating from a bitmap. So 1452 * if we're inserting a bitmap and we find an entry at 1453 * this offset, we want to go right, or after this entry 1454 * logically. If we are inserting an extent and we've 1455 * found a bitmap, we want to go left, or before 1456 * logically. 1457 */ 1458 if (bitmap) { 1459 if (info->bitmap) { 1460 WARN_ON_ONCE(1); 1461 return -EEXIST; 1462 } 1463 p = &(*p)->rb_right; 1464 } else { 1465 if (!info->bitmap) { 1466 WARN_ON_ONCE(1); 1467 return -EEXIST; 1468 } 1469 p = &(*p)->rb_left; 1470 } 1471 } 1472 } 1473 1474 rb_link_node(node, parent, p); 1475 rb_insert_color(node, root); 1476 1477 return 0; 1478 } 1479 1480 /* 1481 * searches the tree for the given offset. 1482 * 1483 * fuzzy - If this is set, then we are trying to make an allocation, and we just 1484 * want a section that has at least bytes size and comes at or after the given 1485 * offset. 1486 */ 1487 static struct btrfs_free_space * 1488 tree_search_offset(struct btrfs_free_space_ctl *ctl, 1489 u64 offset, int bitmap_only, int fuzzy) 1490 { 1491 struct rb_node *n = ctl->free_space_offset.rb_node; 1492 struct btrfs_free_space *entry, *prev = NULL; 1493 1494 /* find entry that is closest to the 'offset' */ 1495 while (1) { 1496 if (!n) { 1497 entry = NULL; 1498 break; 1499 } 1500 1501 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1502 prev = entry; 1503 1504 if (offset < entry->offset) 1505 n = n->rb_left; 1506 else if (offset > entry->offset) 1507 n = n->rb_right; 1508 else 1509 break; 1510 } 1511 1512 if (bitmap_only) { 1513 if (!entry) 1514 return NULL; 1515 if (entry->bitmap) 1516 return entry; 1517 1518 /* 1519 * bitmap entry and extent entry may share same offset, 1520 * in that case, bitmap entry comes after extent entry. 1521 */ 1522 n = rb_next(n); 1523 if (!n) 1524 return NULL; 1525 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1526 if (entry->offset != offset) 1527 return NULL; 1528 1529 WARN_ON(!entry->bitmap); 1530 return entry; 1531 } else if (entry) { 1532 if (entry->bitmap) { 1533 /* 1534 * if previous extent entry covers the offset, 1535 * we should return it instead of the bitmap entry 1536 */ 1537 n = rb_prev(&entry->offset_index); 1538 if (n) { 1539 prev = rb_entry(n, struct btrfs_free_space, 1540 offset_index); 1541 if (!prev->bitmap && 1542 prev->offset + prev->bytes > offset) 1543 entry = prev; 1544 } 1545 } 1546 return entry; 1547 } 1548 1549 if (!prev) 1550 return NULL; 1551 1552 /* find last entry before the 'offset' */ 1553 entry = prev; 1554 if (entry->offset > offset) { 1555 n = rb_prev(&entry->offset_index); 1556 if (n) { 1557 entry = rb_entry(n, struct btrfs_free_space, 1558 offset_index); 1559 ASSERT(entry->offset <= offset); 1560 } else { 1561 if (fuzzy) 1562 return entry; 1563 else 1564 return NULL; 1565 } 1566 } 1567 1568 if (entry->bitmap) { 1569 n = rb_prev(&entry->offset_index); 1570 if (n) { 1571 prev = rb_entry(n, struct btrfs_free_space, 1572 offset_index); 1573 if (!prev->bitmap && 1574 prev->offset + prev->bytes > offset) 1575 return prev; 1576 } 1577 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) 1578 return entry; 1579 } else if (entry->offset + entry->bytes > offset) 1580 return entry; 1581 1582 if (!fuzzy) 1583 return NULL; 1584 1585 while (1) { 1586 if (entry->bitmap) { 1587 if (entry->offset + BITS_PER_BITMAP * 1588 ctl->unit > offset) 1589 break; 1590 } else { 1591 if (entry->offset + entry->bytes > offset) 1592 break; 1593 } 1594 1595 n = rb_next(&entry->offset_index); 1596 if (!n) 1597 return NULL; 1598 entry = rb_entry(n, struct btrfs_free_space, offset_index); 1599 } 1600 return entry; 1601 } 1602 1603 static inline void 1604 __unlink_free_space(struct btrfs_free_space_ctl *ctl, 1605 struct btrfs_free_space *info) 1606 { 1607 rb_erase(&info->offset_index, &ctl->free_space_offset); 1608 ctl->free_extents--; 1609 } 1610 1611 static void unlink_free_space(struct btrfs_free_space_ctl *ctl, 1612 struct btrfs_free_space *info) 1613 { 1614 __unlink_free_space(ctl, info); 1615 ctl->free_space -= info->bytes; 1616 } 1617 1618 static int link_free_space(struct btrfs_free_space_ctl *ctl, 1619 struct btrfs_free_space *info) 1620 { 1621 int ret = 0; 1622 1623 ASSERT(info->bytes || info->bitmap); 1624 ret = tree_insert_offset(&ctl->free_space_offset, info->offset, 1625 &info->offset_index, (info->bitmap != NULL)); 1626 if (ret) 1627 return ret; 1628 1629 ctl->free_space += info->bytes; 1630 ctl->free_extents++; 1631 return ret; 1632 } 1633 1634 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) 1635 { 1636 struct btrfs_block_group_cache *block_group = ctl->private; 1637 u64 max_bytes; 1638 u64 bitmap_bytes; 1639 u64 extent_bytes; 1640 u64 size = block_group->key.offset; 1641 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; 1642 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); 1643 1644 max_bitmaps = max_t(u64, max_bitmaps, 1); 1645 1646 ASSERT(ctl->total_bitmaps <= max_bitmaps); 1647 1648 /* 1649 * The goal is to keep the total amount of memory used per 1gb of space 1650 * at or below 32k, so we need to adjust how much memory we allow to be 1651 * used by extent based free space tracking 1652 */ 1653 if (size < SZ_1G) 1654 max_bytes = MAX_CACHE_BYTES_PER_GIG; 1655 else 1656 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); 1657 1658 /* 1659 * we want to account for 1 more bitmap than what we have so we can make 1660 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as 1661 * we add more bitmaps. 1662 */ 1663 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit; 1664 1665 if (bitmap_bytes >= max_bytes) { 1666 ctl->extents_thresh = 0; 1667 return; 1668 } 1669 1670 /* 1671 * we want the extent entry threshold to always be at most 1/2 the max 1672 * bytes we can have, or whatever is less than that. 1673 */ 1674 extent_bytes = max_bytes - bitmap_bytes; 1675 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); 1676 1677 ctl->extents_thresh = 1678 div_u64(extent_bytes, sizeof(struct btrfs_free_space)); 1679 } 1680 1681 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1682 struct btrfs_free_space *info, 1683 u64 offset, u64 bytes) 1684 { 1685 unsigned long start, count; 1686 1687 start = offset_to_bit(info->offset, ctl->unit, offset); 1688 count = bytes_to_bits(bytes, ctl->unit); 1689 ASSERT(start + count <= BITS_PER_BITMAP); 1690 1691 bitmap_clear(info->bitmap, start, count); 1692 1693 info->bytes -= bytes; 1694 } 1695 1696 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, 1697 struct btrfs_free_space *info, u64 offset, 1698 u64 bytes) 1699 { 1700 __bitmap_clear_bits(ctl, info, offset, bytes); 1701 ctl->free_space -= bytes; 1702 } 1703 1704 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, 1705 struct btrfs_free_space *info, u64 offset, 1706 u64 bytes) 1707 { 1708 unsigned long start, count; 1709 1710 start = offset_to_bit(info->offset, ctl->unit, offset); 1711 count = bytes_to_bits(bytes, ctl->unit); 1712 ASSERT(start + count <= BITS_PER_BITMAP); 1713 1714 bitmap_set(info->bitmap, start, count); 1715 1716 info->bytes += bytes; 1717 ctl->free_space += bytes; 1718 } 1719 1720 /* 1721 * If we can not find suitable extent, we will use bytes to record 1722 * the size of the max extent. 1723 */ 1724 static int search_bitmap(struct btrfs_free_space_ctl *ctl, 1725 struct btrfs_free_space *bitmap_info, u64 *offset, 1726 u64 *bytes, bool for_alloc) 1727 { 1728 unsigned long found_bits = 0; 1729 unsigned long max_bits = 0; 1730 unsigned long bits, i; 1731 unsigned long next_zero; 1732 unsigned long extent_bits; 1733 1734 /* 1735 * Skip searching the bitmap if we don't have a contiguous section that 1736 * is large enough for this allocation. 1737 */ 1738 if (for_alloc && 1739 bitmap_info->max_extent_size && 1740 bitmap_info->max_extent_size < *bytes) { 1741 *bytes = bitmap_info->max_extent_size; 1742 return -1; 1743 } 1744 1745 i = offset_to_bit(bitmap_info->offset, ctl->unit, 1746 max_t(u64, *offset, bitmap_info->offset)); 1747 bits = bytes_to_bits(*bytes, ctl->unit); 1748 1749 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { 1750 if (for_alloc && bits == 1) { 1751 found_bits = 1; 1752 break; 1753 } 1754 next_zero = find_next_zero_bit(bitmap_info->bitmap, 1755 BITS_PER_BITMAP, i); 1756 extent_bits = next_zero - i; 1757 if (extent_bits >= bits) { 1758 found_bits = extent_bits; 1759 break; 1760 } else if (extent_bits > max_bits) { 1761 max_bits = extent_bits; 1762 } 1763 i = next_zero; 1764 } 1765 1766 if (found_bits) { 1767 *offset = (u64)(i * ctl->unit) + bitmap_info->offset; 1768 *bytes = (u64)(found_bits) * ctl->unit; 1769 return 0; 1770 } 1771 1772 *bytes = (u64)(max_bits) * ctl->unit; 1773 bitmap_info->max_extent_size = *bytes; 1774 return -1; 1775 } 1776 1777 /* Cache the size of the max extent in bytes */ 1778 static struct btrfs_free_space * 1779 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, 1780 unsigned long align, u64 *max_extent_size) 1781 { 1782 struct btrfs_free_space *entry; 1783 struct rb_node *node; 1784 u64 tmp; 1785 u64 align_off; 1786 int ret; 1787 1788 if (!ctl->free_space_offset.rb_node) 1789 goto out; 1790 1791 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); 1792 if (!entry) 1793 goto out; 1794 1795 for (node = &entry->offset_index; node; node = rb_next(node)) { 1796 entry = rb_entry(node, struct btrfs_free_space, offset_index); 1797 if (entry->bytes < *bytes) { 1798 if (entry->bytes > *max_extent_size) 1799 *max_extent_size = entry->bytes; 1800 continue; 1801 } 1802 1803 /* make sure the space returned is big enough 1804 * to match our requested alignment 1805 */ 1806 if (*bytes >= align) { 1807 tmp = entry->offset - ctl->start + align - 1; 1808 tmp = div64_u64(tmp, align); 1809 tmp = tmp * align + ctl->start; 1810 align_off = tmp - entry->offset; 1811 } else { 1812 align_off = 0; 1813 tmp = entry->offset; 1814 } 1815 1816 if (entry->bytes < *bytes + align_off) { 1817 if (entry->bytes > *max_extent_size) 1818 *max_extent_size = entry->bytes; 1819 continue; 1820 } 1821 1822 if (entry->bitmap) { 1823 u64 size = *bytes; 1824 1825 ret = search_bitmap(ctl, entry, &tmp, &size, true); 1826 if (!ret) { 1827 *offset = tmp; 1828 *bytes = size; 1829 return entry; 1830 } else if (size > *max_extent_size) { 1831 *max_extent_size = size; 1832 } 1833 continue; 1834 } 1835 1836 *offset = tmp; 1837 *bytes = entry->bytes - align_off; 1838 return entry; 1839 } 1840 out: 1841 return NULL; 1842 } 1843 1844 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, 1845 struct btrfs_free_space *info, u64 offset) 1846 { 1847 info->offset = offset_to_bitmap(ctl, offset); 1848 info->bytes = 0; 1849 INIT_LIST_HEAD(&info->list); 1850 link_free_space(ctl, info); 1851 ctl->total_bitmaps++; 1852 1853 ctl->op->recalc_thresholds(ctl); 1854 } 1855 1856 static void free_bitmap(struct btrfs_free_space_ctl *ctl, 1857 struct btrfs_free_space *bitmap_info) 1858 { 1859 unlink_free_space(ctl, bitmap_info); 1860 kfree(bitmap_info->bitmap); 1861 kmem_cache_free(btrfs_free_space_cachep, bitmap_info); 1862 ctl->total_bitmaps--; 1863 ctl->op->recalc_thresholds(ctl); 1864 } 1865 1866 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, 1867 struct btrfs_free_space *bitmap_info, 1868 u64 *offset, u64 *bytes) 1869 { 1870 u64 end; 1871 u64 search_start, search_bytes; 1872 int ret; 1873 1874 again: 1875 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; 1876 1877 /* 1878 * We need to search for bits in this bitmap. We could only cover some 1879 * of the extent in this bitmap thanks to how we add space, so we need 1880 * to search for as much as it as we can and clear that amount, and then 1881 * go searching for the next bit. 1882 */ 1883 search_start = *offset; 1884 search_bytes = ctl->unit; 1885 search_bytes = min(search_bytes, end - search_start + 1); 1886 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, 1887 false); 1888 if (ret < 0 || search_start != *offset) 1889 return -EINVAL; 1890 1891 /* We may have found more bits than what we need */ 1892 search_bytes = min(search_bytes, *bytes); 1893 1894 /* Cannot clear past the end of the bitmap */ 1895 search_bytes = min(search_bytes, end - search_start + 1); 1896 1897 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); 1898 *offset += search_bytes; 1899 *bytes -= search_bytes; 1900 1901 if (*bytes) { 1902 struct rb_node *next = rb_next(&bitmap_info->offset_index); 1903 if (!bitmap_info->bytes) 1904 free_bitmap(ctl, bitmap_info); 1905 1906 /* 1907 * no entry after this bitmap, but we still have bytes to 1908 * remove, so something has gone wrong. 1909 */ 1910 if (!next) 1911 return -EINVAL; 1912 1913 bitmap_info = rb_entry(next, struct btrfs_free_space, 1914 offset_index); 1915 1916 /* 1917 * if the next entry isn't a bitmap we need to return to let the 1918 * extent stuff do its work. 1919 */ 1920 if (!bitmap_info->bitmap) 1921 return -EAGAIN; 1922 1923 /* 1924 * Ok the next item is a bitmap, but it may not actually hold 1925 * the information for the rest of this free space stuff, so 1926 * look for it, and if we don't find it return so we can try 1927 * everything over again. 1928 */ 1929 search_start = *offset; 1930 search_bytes = ctl->unit; 1931 ret = search_bitmap(ctl, bitmap_info, &search_start, 1932 &search_bytes, false); 1933 if (ret < 0 || search_start != *offset) 1934 return -EAGAIN; 1935 1936 goto again; 1937 } else if (!bitmap_info->bytes) 1938 free_bitmap(ctl, bitmap_info); 1939 1940 return 0; 1941 } 1942 1943 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, 1944 struct btrfs_free_space *info, u64 offset, 1945 u64 bytes) 1946 { 1947 u64 bytes_to_set = 0; 1948 u64 end; 1949 1950 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); 1951 1952 bytes_to_set = min(end - offset, bytes); 1953 1954 bitmap_set_bits(ctl, info, offset, bytes_to_set); 1955 1956 /* 1957 * We set some bytes, we have no idea what the max extent size is 1958 * anymore. 1959 */ 1960 info->max_extent_size = 0; 1961 1962 return bytes_to_set; 1963 1964 } 1965 1966 static bool use_bitmap(struct btrfs_free_space_ctl *ctl, 1967 struct btrfs_free_space *info) 1968 { 1969 struct btrfs_block_group_cache *block_group = ctl->private; 1970 bool forced = false; 1971 1972 #ifdef CONFIG_BTRFS_DEBUG 1973 if (btrfs_should_fragment_free_space(block_group->fs_info->extent_root, 1974 block_group)) 1975 forced = true; 1976 #endif 1977 1978 /* 1979 * If we are below the extents threshold then we can add this as an 1980 * extent, and don't have to deal with the bitmap 1981 */ 1982 if (!forced && ctl->free_extents < ctl->extents_thresh) { 1983 /* 1984 * If this block group has some small extents we don't want to 1985 * use up all of our free slots in the cache with them, we want 1986 * to reserve them to larger extents, however if we have plenty 1987 * of cache left then go ahead an dadd them, no sense in adding 1988 * the overhead of a bitmap if we don't have to. 1989 */ 1990 if (info->bytes <= block_group->sectorsize * 4) { 1991 if (ctl->free_extents * 2 <= ctl->extents_thresh) 1992 return false; 1993 } else { 1994 return false; 1995 } 1996 } 1997 1998 /* 1999 * The original block groups from mkfs can be really small, like 8 2000 * megabytes, so don't bother with a bitmap for those entries. However 2001 * some block groups can be smaller than what a bitmap would cover but 2002 * are still large enough that they could overflow the 32k memory limit, 2003 * so allow those block groups to still be allowed to have a bitmap 2004 * entry. 2005 */ 2006 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset) 2007 return false; 2008 2009 return true; 2010 } 2011 2012 static const struct btrfs_free_space_op free_space_op = { 2013 .recalc_thresholds = recalculate_thresholds, 2014 .use_bitmap = use_bitmap, 2015 }; 2016 2017 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, 2018 struct btrfs_free_space *info) 2019 { 2020 struct btrfs_free_space *bitmap_info; 2021 struct btrfs_block_group_cache *block_group = NULL; 2022 int added = 0; 2023 u64 bytes, offset, bytes_added; 2024 int ret; 2025 2026 bytes = info->bytes; 2027 offset = info->offset; 2028 2029 if (!ctl->op->use_bitmap(ctl, info)) 2030 return 0; 2031 2032 if (ctl->op == &free_space_op) 2033 block_group = ctl->private; 2034 again: 2035 /* 2036 * Since we link bitmaps right into the cluster we need to see if we 2037 * have a cluster here, and if so and it has our bitmap we need to add 2038 * the free space to that bitmap. 2039 */ 2040 if (block_group && !list_empty(&block_group->cluster_list)) { 2041 struct btrfs_free_cluster *cluster; 2042 struct rb_node *node; 2043 struct btrfs_free_space *entry; 2044 2045 cluster = list_entry(block_group->cluster_list.next, 2046 struct btrfs_free_cluster, 2047 block_group_list); 2048 spin_lock(&cluster->lock); 2049 node = rb_first(&cluster->root); 2050 if (!node) { 2051 spin_unlock(&cluster->lock); 2052 goto no_cluster_bitmap; 2053 } 2054 2055 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2056 if (!entry->bitmap) { 2057 spin_unlock(&cluster->lock); 2058 goto no_cluster_bitmap; 2059 } 2060 2061 if (entry->offset == offset_to_bitmap(ctl, offset)) { 2062 bytes_added = add_bytes_to_bitmap(ctl, entry, 2063 offset, bytes); 2064 bytes -= bytes_added; 2065 offset += bytes_added; 2066 } 2067 spin_unlock(&cluster->lock); 2068 if (!bytes) { 2069 ret = 1; 2070 goto out; 2071 } 2072 } 2073 2074 no_cluster_bitmap: 2075 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2076 1, 0); 2077 if (!bitmap_info) { 2078 ASSERT(added == 0); 2079 goto new_bitmap; 2080 } 2081 2082 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 2083 bytes -= bytes_added; 2084 offset += bytes_added; 2085 added = 0; 2086 2087 if (!bytes) { 2088 ret = 1; 2089 goto out; 2090 } else 2091 goto again; 2092 2093 new_bitmap: 2094 if (info && info->bitmap) { 2095 add_new_bitmap(ctl, info, offset); 2096 added = 1; 2097 info = NULL; 2098 goto again; 2099 } else { 2100 spin_unlock(&ctl->tree_lock); 2101 2102 /* no pre-allocated info, allocate a new one */ 2103 if (!info) { 2104 info = kmem_cache_zalloc(btrfs_free_space_cachep, 2105 GFP_NOFS); 2106 if (!info) { 2107 spin_lock(&ctl->tree_lock); 2108 ret = -ENOMEM; 2109 goto out; 2110 } 2111 } 2112 2113 /* allocate the bitmap */ 2114 info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS); 2115 spin_lock(&ctl->tree_lock); 2116 if (!info->bitmap) { 2117 ret = -ENOMEM; 2118 goto out; 2119 } 2120 goto again; 2121 } 2122 2123 out: 2124 if (info) { 2125 if (info->bitmap) 2126 kfree(info->bitmap); 2127 kmem_cache_free(btrfs_free_space_cachep, info); 2128 } 2129 2130 return ret; 2131 } 2132 2133 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, 2134 struct btrfs_free_space *info, bool update_stat) 2135 { 2136 struct btrfs_free_space *left_info; 2137 struct btrfs_free_space *right_info; 2138 bool merged = false; 2139 u64 offset = info->offset; 2140 u64 bytes = info->bytes; 2141 2142 /* 2143 * first we want to see if there is free space adjacent to the range we 2144 * are adding, if there is remove that struct and add a new one to 2145 * cover the entire range 2146 */ 2147 right_info = tree_search_offset(ctl, offset + bytes, 0, 0); 2148 if (right_info && rb_prev(&right_info->offset_index)) 2149 left_info = rb_entry(rb_prev(&right_info->offset_index), 2150 struct btrfs_free_space, offset_index); 2151 else 2152 left_info = tree_search_offset(ctl, offset - 1, 0, 0); 2153 2154 if (right_info && !right_info->bitmap) { 2155 if (update_stat) 2156 unlink_free_space(ctl, right_info); 2157 else 2158 __unlink_free_space(ctl, right_info); 2159 info->bytes += right_info->bytes; 2160 kmem_cache_free(btrfs_free_space_cachep, right_info); 2161 merged = true; 2162 } 2163 2164 if (left_info && !left_info->bitmap && 2165 left_info->offset + left_info->bytes == offset) { 2166 if (update_stat) 2167 unlink_free_space(ctl, left_info); 2168 else 2169 __unlink_free_space(ctl, left_info); 2170 info->offset = left_info->offset; 2171 info->bytes += left_info->bytes; 2172 kmem_cache_free(btrfs_free_space_cachep, left_info); 2173 merged = true; 2174 } 2175 2176 return merged; 2177 } 2178 2179 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, 2180 struct btrfs_free_space *info, 2181 bool update_stat) 2182 { 2183 struct btrfs_free_space *bitmap; 2184 unsigned long i; 2185 unsigned long j; 2186 const u64 end = info->offset + info->bytes; 2187 const u64 bitmap_offset = offset_to_bitmap(ctl, end); 2188 u64 bytes; 2189 2190 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2191 if (!bitmap) 2192 return false; 2193 2194 i = offset_to_bit(bitmap->offset, ctl->unit, end); 2195 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); 2196 if (j == i) 2197 return false; 2198 bytes = (j - i) * ctl->unit; 2199 info->bytes += bytes; 2200 2201 if (update_stat) 2202 bitmap_clear_bits(ctl, bitmap, end, bytes); 2203 else 2204 __bitmap_clear_bits(ctl, bitmap, end, bytes); 2205 2206 if (!bitmap->bytes) 2207 free_bitmap(ctl, bitmap); 2208 2209 return true; 2210 } 2211 2212 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, 2213 struct btrfs_free_space *info, 2214 bool update_stat) 2215 { 2216 struct btrfs_free_space *bitmap; 2217 u64 bitmap_offset; 2218 unsigned long i; 2219 unsigned long j; 2220 unsigned long prev_j; 2221 u64 bytes; 2222 2223 bitmap_offset = offset_to_bitmap(ctl, info->offset); 2224 /* If we're on a boundary, try the previous logical bitmap. */ 2225 if (bitmap_offset == info->offset) { 2226 if (info->offset == 0) 2227 return false; 2228 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); 2229 } 2230 2231 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); 2232 if (!bitmap) 2233 return false; 2234 2235 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; 2236 j = 0; 2237 prev_j = (unsigned long)-1; 2238 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { 2239 if (j > i) 2240 break; 2241 prev_j = j; 2242 } 2243 if (prev_j == i) 2244 return false; 2245 2246 if (prev_j == (unsigned long)-1) 2247 bytes = (i + 1) * ctl->unit; 2248 else 2249 bytes = (i - prev_j) * ctl->unit; 2250 2251 info->offset -= bytes; 2252 info->bytes += bytes; 2253 2254 if (update_stat) 2255 bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2256 else 2257 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); 2258 2259 if (!bitmap->bytes) 2260 free_bitmap(ctl, bitmap); 2261 2262 return true; 2263 } 2264 2265 /* 2266 * We prefer always to allocate from extent entries, both for clustered and 2267 * non-clustered allocation requests. So when attempting to add a new extent 2268 * entry, try to see if there's adjacent free space in bitmap entries, and if 2269 * there is, migrate that space from the bitmaps to the extent. 2270 * Like this we get better chances of satisfying space allocation requests 2271 * because we attempt to satisfy them based on a single cache entry, and never 2272 * on 2 or more entries - even if the entries represent a contiguous free space 2273 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry 2274 * ends). 2275 */ 2276 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, 2277 struct btrfs_free_space *info, 2278 bool update_stat) 2279 { 2280 /* 2281 * Only work with disconnected entries, as we can change their offset, 2282 * and must be extent entries. 2283 */ 2284 ASSERT(!info->bitmap); 2285 ASSERT(RB_EMPTY_NODE(&info->offset_index)); 2286 2287 if (ctl->total_bitmaps > 0) { 2288 bool stole_end; 2289 bool stole_front = false; 2290 2291 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); 2292 if (ctl->total_bitmaps > 0) 2293 stole_front = steal_from_bitmap_to_front(ctl, info, 2294 update_stat); 2295 2296 if (stole_end || stole_front) 2297 try_merge_free_space(ctl, info, update_stat); 2298 } 2299 } 2300 2301 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, 2302 u64 offset, u64 bytes) 2303 { 2304 struct btrfs_free_space *info; 2305 int ret = 0; 2306 2307 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 2308 if (!info) 2309 return -ENOMEM; 2310 2311 info->offset = offset; 2312 info->bytes = bytes; 2313 RB_CLEAR_NODE(&info->offset_index); 2314 2315 spin_lock(&ctl->tree_lock); 2316 2317 if (try_merge_free_space(ctl, info, true)) 2318 goto link; 2319 2320 /* 2321 * There was no extent directly to the left or right of this new 2322 * extent then we know we're going to have to allocate a new extent, so 2323 * before we do that see if we need to drop this into a bitmap 2324 */ 2325 ret = insert_into_bitmap(ctl, info); 2326 if (ret < 0) { 2327 goto out; 2328 } else if (ret) { 2329 ret = 0; 2330 goto out; 2331 } 2332 link: 2333 /* 2334 * Only steal free space from adjacent bitmaps if we're sure we're not 2335 * going to add the new free space to existing bitmap entries - because 2336 * that would mean unnecessary work that would be reverted. Therefore 2337 * attempt to steal space from bitmaps if we're adding an extent entry. 2338 */ 2339 steal_from_bitmap(ctl, info, true); 2340 2341 ret = link_free_space(ctl, info); 2342 if (ret) 2343 kmem_cache_free(btrfs_free_space_cachep, info); 2344 out: 2345 spin_unlock(&ctl->tree_lock); 2346 2347 if (ret) { 2348 printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret); 2349 ASSERT(ret != -EEXIST); 2350 } 2351 2352 return ret; 2353 } 2354 2355 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, 2356 u64 offset, u64 bytes) 2357 { 2358 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2359 struct btrfs_free_space *info; 2360 int ret; 2361 bool re_search = false; 2362 2363 spin_lock(&ctl->tree_lock); 2364 2365 again: 2366 ret = 0; 2367 if (!bytes) 2368 goto out_lock; 2369 2370 info = tree_search_offset(ctl, offset, 0, 0); 2371 if (!info) { 2372 /* 2373 * oops didn't find an extent that matched the space we wanted 2374 * to remove, look for a bitmap instead 2375 */ 2376 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 2377 1, 0); 2378 if (!info) { 2379 /* 2380 * If we found a partial bit of our free space in a 2381 * bitmap but then couldn't find the other part this may 2382 * be a problem, so WARN about it. 2383 */ 2384 WARN_ON(re_search); 2385 goto out_lock; 2386 } 2387 } 2388 2389 re_search = false; 2390 if (!info->bitmap) { 2391 unlink_free_space(ctl, info); 2392 if (offset == info->offset) { 2393 u64 to_free = min(bytes, info->bytes); 2394 2395 info->bytes -= to_free; 2396 info->offset += to_free; 2397 if (info->bytes) { 2398 ret = link_free_space(ctl, info); 2399 WARN_ON(ret); 2400 } else { 2401 kmem_cache_free(btrfs_free_space_cachep, info); 2402 } 2403 2404 offset += to_free; 2405 bytes -= to_free; 2406 goto again; 2407 } else { 2408 u64 old_end = info->bytes + info->offset; 2409 2410 info->bytes = offset - info->offset; 2411 ret = link_free_space(ctl, info); 2412 WARN_ON(ret); 2413 if (ret) 2414 goto out_lock; 2415 2416 /* Not enough bytes in this entry to satisfy us */ 2417 if (old_end < offset + bytes) { 2418 bytes -= old_end - offset; 2419 offset = old_end; 2420 goto again; 2421 } else if (old_end == offset + bytes) { 2422 /* all done */ 2423 goto out_lock; 2424 } 2425 spin_unlock(&ctl->tree_lock); 2426 2427 ret = btrfs_add_free_space(block_group, offset + bytes, 2428 old_end - (offset + bytes)); 2429 WARN_ON(ret); 2430 goto out; 2431 } 2432 } 2433 2434 ret = remove_from_bitmap(ctl, info, &offset, &bytes); 2435 if (ret == -EAGAIN) { 2436 re_search = true; 2437 goto again; 2438 } 2439 out_lock: 2440 spin_unlock(&ctl->tree_lock); 2441 out: 2442 return ret; 2443 } 2444 2445 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, 2446 u64 bytes) 2447 { 2448 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2449 struct btrfs_free_space *info; 2450 struct rb_node *n; 2451 int count = 0; 2452 2453 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { 2454 info = rb_entry(n, struct btrfs_free_space, offset_index); 2455 if (info->bytes >= bytes && !block_group->ro) 2456 count++; 2457 btrfs_crit(block_group->fs_info, 2458 "entry offset %llu, bytes %llu, bitmap %s", 2459 info->offset, info->bytes, 2460 (info->bitmap) ? "yes" : "no"); 2461 } 2462 btrfs_info(block_group->fs_info, "block group has cluster?: %s", 2463 list_empty(&block_group->cluster_list) ? "no" : "yes"); 2464 btrfs_info(block_group->fs_info, 2465 "%d blocks of free space at or bigger than bytes is", count); 2466 } 2467 2468 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) 2469 { 2470 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2471 2472 spin_lock_init(&ctl->tree_lock); 2473 ctl->unit = block_group->sectorsize; 2474 ctl->start = block_group->key.objectid; 2475 ctl->private = block_group; 2476 ctl->op = &free_space_op; 2477 INIT_LIST_HEAD(&ctl->trimming_ranges); 2478 mutex_init(&ctl->cache_writeout_mutex); 2479 2480 /* 2481 * we only want to have 32k of ram per block group for keeping 2482 * track of free space, and if we pass 1/2 of that we want to 2483 * start converting things over to using bitmaps 2484 */ 2485 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); 2486 } 2487 2488 /* 2489 * for a given cluster, put all of its extents back into the free 2490 * space cache. If the block group passed doesn't match the block group 2491 * pointed to by the cluster, someone else raced in and freed the 2492 * cluster already. In that case, we just return without changing anything 2493 */ 2494 static int 2495 __btrfs_return_cluster_to_free_space( 2496 struct btrfs_block_group_cache *block_group, 2497 struct btrfs_free_cluster *cluster) 2498 { 2499 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2500 struct btrfs_free_space *entry; 2501 struct rb_node *node; 2502 2503 spin_lock(&cluster->lock); 2504 if (cluster->block_group != block_group) 2505 goto out; 2506 2507 cluster->block_group = NULL; 2508 cluster->window_start = 0; 2509 list_del_init(&cluster->block_group_list); 2510 2511 node = rb_first(&cluster->root); 2512 while (node) { 2513 bool bitmap; 2514 2515 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2516 node = rb_next(&entry->offset_index); 2517 rb_erase(&entry->offset_index, &cluster->root); 2518 RB_CLEAR_NODE(&entry->offset_index); 2519 2520 bitmap = (entry->bitmap != NULL); 2521 if (!bitmap) { 2522 try_merge_free_space(ctl, entry, false); 2523 steal_from_bitmap(ctl, entry, false); 2524 } 2525 tree_insert_offset(&ctl->free_space_offset, 2526 entry->offset, &entry->offset_index, bitmap); 2527 } 2528 cluster->root = RB_ROOT; 2529 2530 out: 2531 spin_unlock(&cluster->lock); 2532 btrfs_put_block_group(block_group); 2533 return 0; 2534 } 2535 2536 static void __btrfs_remove_free_space_cache_locked( 2537 struct btrfs_free_space_ctl *ctl) 2538 { 2539 struct btrfs_free_space *info; 2540 struct rb_node *node; 2541 2542 while ((node = rb_last(&ctl->free_space_offset)) != NULL) { 2543 info = rb_entry(node, struct btrfs_free_space, offset_index); 2544 if (!info->bitmap) { 2545 unlink_free_space(ctl, info); 2546 kmem_cache_free(btrfs_free_space_cachep, info); 2547 } else { 2548 free_bitmap(ctl, info); 2549 } 2550 2551 cond_resched_lock(&ctl->tree_lock); 2552 } 2553 } 2554 2555 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) 2556 { 2557 spin_lock(&ctl->tree_lock); 2558 __btrfs_remove_free_space_cache_locked(ctl); 2559 spin_unlock(&ctl->tree_lock); 2560 } 2561 2562 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) 2563 { 2564 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2565 struct btrfs_free_cluster *cluster; 2566 struct list_head *head; 2567 2568 spin_lock(&ctl->tree_lock); 2569 while ((head = block_group->cluster_list.next) != 2570 &block_group->cluster_list) { 2571 cluster = list_entry(head, struct btrfs_free_cluster, 2572 block_group_list); 2573 2574 WARN_ON(cluster->block_group != block_group); 2575 __btrfs_return_cluster_to_free_space(block_group, cluster); 2576 2577 cond_resched_lock(&ctl->tree_lock); 2578 } 2579 __btrfs_remove_free_space_cache_locked(ctl); 2580 spin_unlock(&ctl->tree_lock); 2581 2582 } 2583 2584 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, 2585 u64 offset, u64 bytes, u64 empty_size, 2586 u64 *max_extent_size) 2587 { 2588 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2589 struct btrfs_free_space *entry = NULL; 2590 u64 bytes_search = bytes + empty_size; 2591 u64 ret = 0; 2592 u64 align_gap = 0; 2593 u64 align_gap_len = 0; 2594 2595 spin_lock(&ctl->tree_lock); 2596 entry = find_free_space(ctl, &offset, &bytes_search, 2597 block_group->full_stripe_len, max_extent_size); 2598 if (!entry) 2599 goto out; 2600 2601 ret = offset; 2602 if (entry->bitmap) { 2603 bitmap_clear_bits(ctl, entry, offset, bytes); 2604 if (!entry->bytes) 2605 free_bitmap(ctl, entry); 2606 } else { 2607 unlink_free_space(ctl, entry); 2608 align_gap_len = offset - entry->offset; 2609 align_gap = entry->offset; 2610 2611 entry->offset = offset + bytes; 2612 WARN_ON(entry->bytes < bytes + align_gap_len); 2613 2614 entry->bytes -= bytes + align_gap_len; 2615 if (!entry->bytes) 2616 kmem_cache_free(btrfs_free_space_cachep, entry); 2617 else 2618 link_free_space(ctl, entry); 2619 } 2620 out: 2621 spin_unlock(&ctl->tree_lock); 2622 2623 if (align_gap_len) 2624 __btrfs_add_free_space(ctl, align_gap, align_gap_len); 2625 return ret; 2626 } 2627 2628 /* 2629 * given a cluster, put all of its extents back into the free space 2630 * cache. If a block group is passed, this function will only free 2631 * a cluster that belongs to the passed block group. 2632 * 2633 * Otherwise, it'll get a reference on the block group pointed to by the 2634 * cluster and remove the cluster from it. 2635 */ 2636 int btrfs_return_cluster_to_free_space( 2637 struct btrfs_block_group_cache *block_group, 2638 struct btrfs_free_cluster *cluster) 2639 { 2640 struct btrfs_free_space_ctl *ctl; 2641 int ret; 2642 2643 /* first, get a safe pointer to the block group */ 2644 spin_lock(&cluster->lock); 2645 if (!block_group) { 2646 block_group = cluster->block_group; 2647 if (!block_group) { 2648 spin_unlock(&cluster->lock); 2649 return 0; 2650 } 2651 } else if (cluster->block_group != block_group) { 2652 /* someone else has already freed it don't redo their work */ 2653 spin_unlock(&cluster->lock); 2654 return 0; 2655 } 2656 atomic_inc(&block_group->count); 2657 spin_unlock(&cluster->lock); 2658 2659 ctl = block_group->free_space_ctl; 2660 2661 /* now return any extents the cluster had on it */ 2662 spin_lock(&ctl->tree_lock); 2663 ret = __btrfs_return_cluster_to_free_space(block_group, cluster); 2664 spin_unlock(&ctl->tree_lock); 2665 2666 /* finally drop our ref */ 2667 btrfs_put_block_group(block_group); 2668 return ret; 2669 } 2670 2671 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, 2672 struct btrfs_free_cluster *cluster, 2673 struct btrfs_free_space *entry, 2674 u64 bytes, u64 min_start, 2675 u64 *max_extent_size) 2676 { 2677 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2678 int err; 2679 u64 search_start = cluster->window_start; 2680 u64 search_bytes = bytes; 2681 u64 ret = 0; 2682 2683 search_start = min_start; 2684 search_bytes = bytes; 2685 2686 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); 2687 if (err) { 2688 if (search_bytes > *max_extent_size) 2689 *max_extent_size = search_bytes; 2690 return 0; 2691 } 2692 2693 ret = search_start; 2694 __bitmap_clear_bits(ctl, entry, ret, bytes); 2695 2696 return ret; 2697 } 2698 2699 /* 2700 * given a cluster, try to allocate 'bytes' from it, returns 0 2701 * if it couldn't find anything suitably large, or a logical disk offset 2702 * if things worked out 2703 */ 2704 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, 2705 struct btrfs_free_cluster *cluster, u64 bytes, 2706 u64 min_start, u64 *max_extent_size) 2707 { 2708 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2709 struct btrfs_free_space *entry = NULL; 2710 struct rb_node *node; 2711 u64 ret = 0; 2712 2713 spin_lock(&cluster->lock); 2714 if (bytes > cluster->max_size) 2715 goto out; 2716 2717 if (cluster->block_group != block_group) 2718 goto out; 2719 2720 node = rb_first(&cluster->root); 2721 if (!node) 2722 goto out; 2723 2724 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2725 while (1) { 2726 if (entry->bytes < bytes && entry->bytes > *max_extent_size) 2727 *max_extent_size = entry->bytes; 2728 2729 if (entry->bytes < bytes || 2730 (!entry->bitmap && entry->offset < min_start)) { 2731 node = rb_next(&entry->offset_index); 2732 if (!node) 2733 break; 2734 entry = rb_entry(node, struct btrfs_free_space, 2735 offset_index); 2736 continue; 2737 } 2738 2739 if (entry->bitmap) { 2740 ret = btrfs_alloc_from_bitmap(block_group, 2741 cluster, entry, bytes, 2742 cluster->window_start, 2743 max_extent_size); 2744 if (ret == 0) { 2745 node = rb_next(&entry->offset_index); 2746 if (!node) 2747 break; 2748 entry = rb_entry(node, struct btrfs_free_space, 2749 offset_index); 2750 continue; 2751 } 2752 cluster->window_start += bytes; 2753 } else { 2754 ret = entry->offset; 2755 2756 entry->offset += bytes; 2757 entry->bytes -= bytes; 2758 } 2759 2760 if (entry->bytes == 0) 2761 rb_erase(&entry->offset_index, &cluster->root); 2762 break; 2763 } 2764 out: 2765 spin_unlock(&cluster->lock); 2766 2767 if (!ret) 2768 return 0; 2769 2770 spin_lock(&ctl->tree_lock); 2771 2772 ctl->free_space -= bytes; 2773 if (entry->bytes == 0) { 2774 ctl->free_extents--; 2775 if (entry->bitmap) { 2776 kfree(entry->bitmap); 2777 ctl->total_bitmaps--; 2778 ctl->op->recalc_thresholds(ctl); 2779 } 2780 kmem_cache_free(btrfs_free_space_cachep, entry); 2781 } 2782 2783 spin_unlock(&ctl->tree_lock); 2784 2785 return ret; 2786 } 2787 2788 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, 2789 struct btrfs_free_space *entry, 2790 struct btrfs_free_cluster *cluster, 2791 u64 offset, u64 bytes, 2792 u64 cont1_bytes, u64 min_bytes) 2793 { 2794 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2795 unsigned long next_zero; 2796 unsigned long i; 2797 unsigned long want_bits; 2798 unsigned long min_bits; 2799 unsigned long found_bits; 2800 unsigned long max_bits = 0; 2801 unsigned long start = 0; 2802 unsigned long total_found = 0; 2803 int ret; 2804 2805 i = offset_to_bit(entry->offset, ctl->unit, 2806 max_t(u64, offset, entry->offset)); 2807 want_bits = bytes_to_bits(bytes, ctl->unit); 2808 min_bits = bytes_to_bits(min_bytes, ctl->unit); 2809 2810 /* 2811 * Don't bother looking for a cluster in this bitmap if it's heavily 2812 * fragmented. 2813 */ 2814 if (entry->max_extent_size && 2815 entry->max_extent_size < cont1_bytes) 2816 return -ENOSPC; 2817 again: 2818 found_bits = 0; 2819 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { 2820 next_zero = find_next_zero_bit(entry->bitmap, 2821 BITS_PER_BITMAP, i); 2822 if (next_zero - i >= min_bits) { 2823 found_bits = next_zero - i; 2824 if (found_bits > max_bits) 2825 max_bits = found_bits; 2826 break; 2827 } 2828 if (next_zero - i > max_bits) 2829 max_bits = next_zero - i; 2830 i = next_zero; 2831 } 2832 2833 if (!found_bits) { 2834 entry->max_extent_size = (u64)max_bits * ctl->unit; 2835 return -ENOSPC; 2836 } 2837 2838 if (!total_found) { 2839 start = i; 2840 cluster->max_size = 0; 2841 } 2842 2843 total_found += found_bits; 2844 2845 if (cluster->max_size < found_bits * ctl->unit) 2846 cluster->max_size = found_bits * ctl->unit; 2847 2848 if (total_found < want_bits || cluster->max_size < cont1_bytes) { 2849 i = next_zero + 1; 2850 goto again; 2851 } 2852 2853 cluster->window_start = start * ctl->unit + entry->offset; 2854 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2855 ret = tree_insert_offset(&cluster->root, entry->offset, 2856 &entry->offset_index, 1); 2857 ASSERT(!ret); /* -EEXIST; Logic error */ 2858 2859 trace_btrfs_setup_cluster(block_group, cluster, 2860 total_found * ctl->unit, 1); 2861 return 0; 2862 } 2863 2864 /* 2865 * This searches the block group for just extents to fill the cluster with. 2866 * Try to find a cluster with at least bytes total bytes, at least one 2867 * extent of cont1_bytes, and other clusters of at least min_bytes. 2868 */ 2869 static noinline int 2870 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, 2871 struct btrfs_free_cluster *cluster, 2872 struct list_head *bitmaps, u64 offset, u64 bytes, 2873 u64 cont1_bytes, u64 min_bytes) 2874 { 2875 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2876 struct btrfs_free_space *first = NULL; 2877 struct btrfs_free_space *entry = NULL; 2878 struct btrfs_free_space *last; 2879 struct rb_node *node; 2880 u64 window_free; 2881 u64 max_extent; 2882 u64 total_size = 0; 2883 2884 entry = tree_search_offset(ctl, offset, 0, 1); 2885 if (!entry) 2886 return -ENOSPC; 2887 2888 /* 2889 * We don't want bitmaps, so just move along until we find a normal 2890 * extent entry. 2891 */ 2892 while (entry->bitmap || entry->bytes < min_bytes) { 2893 if (entry->bitmap && list_empty(&entry->list)) 2894 list_add_tail(&entry->list, bitmaps); 2895 node = rb_next(&entry->offset_index); 2896 if (!node) 2897 return -ENOSPC; 2898 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2899 } 2900 2901 window_free = entry->bytes; 2902 max_extent = entry->bytes; 2903 first = entry; 2904 last = entry; 2905 2906 for (node = rb_next(&entry->offset_index); node; 2907 node = rb_next(&entry->offset_index)) { 2908 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2909 2910 if (entry->bitmap) { 2911 if (list_empty(&entry->list)) 2912 list_add_tail(&entry->list, bitmaps); 2913 continue; 2914 } 2915 2916 if (entry->bytes < min_bytes) 2917 continue; 2918 2919 last = entry; 2920 window_free += entry->bytes; 2921 if (entry->bytes > max_extent) 2922 max_extent = entry->bytes; 2923 } 2924 2925 if (window_free < bytes || max_extent < cont1_bytes) 2926 return -ENOSPC; 2927 2928 cluster->window_start = first->offset; 2929 2930 node = &first->offset_index; 2931 2932 /* 2933 * now we've found our entries, pull them out of the free space 2934 * cache and put them into the cluster rbtree 2935 */ 2936 do { 2937 int ret; 2938 2939 entry = rb_entry(node, struct btrfs_free_space, offset_index); 2940 node = rb_next(&entry->offset_index); 2941 if (entry->bitmap || entry->bytes < min_bytes) 2942 continue; 2943 2944 rb_erase(&entry->offset_index, &ctl->free_space_offset); 2945 ret = tree_insert_offset(&cluster->root, entry->offset, 2946 &entry->offset_index, 0); 2947 total_size += entry->bytes; 2948 ASSERT(!ret); /* -EEXIST; Logic error */ 2949 } while (node && entry != last); 2950 2951 cluster->max_size = max_extent; 2952 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); 2953 return 0; 2954 } 2955 2956 /* 2957 * This specifically looks for bitmaps that may work in the cluster, we assume 2958 * that we have already failed to find extents that will work. 2959 */ 2960 static noinline int 2961 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, 2962 struct btrfs_free_cluster *cluster, 2963 struct list_head *bitmaps, u64 offset, u64 bytes, 2964 u64 cont1_bytes, u64 min_bytes) 2965 { 2966 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 2967 struct btrfs_free_space *entry = NULL; 2968 int ret = -ENOSPC; 2969 u64 bitmap_offset = offset_to_bitmap(ctl, offset); 2970 2971 if (ctl->total_bitmaps == 0) 2972 return -ENOSPC; 2973 2974 /* 2975 * The bitmap that covers offset won't be in the list unless offset 2976 * is just its start offset. 2977 */ 2978 if (!list_empty(bitmaps)) 2979 entry = list_first_entry(bitmaps, struct btrfs_free_space, list); 2980 2981 if (!entry || entry->offset != bitmap_offset) { 2982 entry = tree_search_offset(ctl, bitmap_offset, 1, 0); 2983 if (entry && list_empty(&entry->list)) 2984 list_add(&entry->list, bitmaps); 2985 } 2986 2987 list_for_each_entry(entry, bitmaps, list) { 2988 if (entry->bytes < bytes) 2989 continue; 2990 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, 2991 bytes, cont1_bytes, min_bytes); 2992 if (!ret) 2993 return 0; 2994 } 2995 2996 /* 2997 * The bitmaps list has all the bitmaps that record free space 2998 * starting after offset, so no more search is required. 2999 */ 3000 return -ENOSPC; 3001 } 3002 3003 /* 3004 * here we try to find a cluster of blocks in a block group. The goal 3005 * is to find at least bytes+empty_size. 3006 * We might not find them all in one contiguous area. 3007 * 3008 * returns zero and sets up cluster if things worked out, otherwise 3009 * it returns -enospc 3010 */ 3011 int btrfs_find_space_cluster(struct btrfs_root *root, 3012 struct btrfs_block_group_cache *block_group, 3013 struct btrfs_free_cluster *cluster, 3014 u64 offset, u64 bytes, u64 empty_size) 3015 { 3016 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3017 struct btrfs_free_space *entry, *tmp; 3018 LIST_HEAD(bitmaps); 3019 u64 min_bytes; 3020 u64 cont1_bytes; 3021 int ret; 3022 3023 /* 3024 * Choose the minimum extent size we'll require for this 3025 * cluster. For SSD_SPREAD, don't allow any fragmentation. 3026 * For metadata, allow allocates with smaller extents. For 3027 * data, keep it dense. 3028 */ 3029 if (btrfs_test_opt(root, SSD_SPREAD)) { 3030 cont1_bytes = min_bytes = bytes + empty_size; 3031 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { 3032 cont1_bytes = bytes; 3033 min_bytes = block_group->sectorsize; 3034 } else { 3035 cont1_bytes = max(bytes, (bytes + empty_size) >> 2); 3036 min_bytes = block_group->sectorsize; 3037 } 3038 3039 spin_lock(&ctl->tree_lock); 3040 3041 /* 3042 * If we know we don't have enough space to make a cluster don't even 3043 * bother doing all the work to try and find one. 3044 */ 3045 if (ctl->free_space < bytes) { 3046 spin_unlock(&ctl->tree_lock); 3047 return -ENOSPC; 3048 } 3049 3050 spin_lock(&cluster->lock); 3051 3052 /* someone already found a cluster, hooray */ 3053 if (cluster->block_group) { 3054 ret = 0; 3055 goto out; 3056 } 3057 3058 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, 3059 min_bytes); 3060 3061 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, 3062 bytes + empty_size, 3063 cont1_bytes, min_bytes); 3064 if (ret) 3065 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, 3066 offset, bytes + empty_size, 3067 cont1_bytes, min_bytes); 3068 3069 /* Clear our temporary list */ 3070 list_for_each_entry_safe(entry, tmp, &bitmaps, list) 3071 list_del_init(&entry->list); 3072 3073 if (!ret) { 3074 atomic_inc(&block_group->count); 3075 list_add_tail(&cluster->block_group_list, 3076 &block_group->cluster_list); 3077 cluster->block_group = block_group; 3078 } else { 3079 trace_btrfs_failed_cluster_setup(block_group); 3080 } 3081 out: 3082 spin_unlock(&cluster->lock); 3083 spin_unlock(&ctl->tree_lock); 3084 3085 return ret; 3086 } 3087 3088 /* 3089 * simple code to zero out a cluster 3090 */ 3091 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) 3092 { 3093 spin_lock_init(&cluster->lock); 3094 spin_lock_init(&cluster->refill_lock); 3095 cluster->root = RB_ROOT; 3096 cluster->max_size = 0; 3097 cluster->fragmented = false; 3098 INIT_LIST_HEAD(&cluster->block_group_list); 3099 cluster->block_group = NULL; 3100 } 3101 3102 static int do_trimming(struct btrfs_block_group_cache *block_group, 3103 u64 *total_trimmed, u64 start, u64 bytes, 3104 u64 reserved_start, u64 reserved_bytes, 3105 struct btrfs_trim_range *trim_entry) 3106 { 3107 struct btrfs_space_info *space_info = block_group->space_info; 3108 struct btrfs_fs_info *fs_info = block_group->fs_info; 3109 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3110 int ret; 3111 int update = 0; 3112 u64 trimmed = 0; 3113 3114 spin_lock(&space_info->lock); 3115 spin_lock(&block_group->lock); 3116 if (!block_group->ro) { 3117 block_group->reserved += reserved_bytes; 3118 space_info->bytes_reserved += reserved_bytes; 3119 update = 1; 3120 } 3121 spin_unlock(&block_group->lock); 3122 spin_unlock(&space_info->lock); 3123 3124 ret = btrfs_discard_extent(fs_info->extent_root, 3125 start, bytes, &trimmed); 3126 if (!ret) 3127 *total_trimmed += trimmed; 3128 3129 mutex_lock(&ctl->cache_writeout_mutex); 3130 btrfs_add_free_space(block_group, reserved_start, reserved_bytes); 3131 list_del(&trim_entry->list); 3132 mutex_unlock(&ctl->cache_writeout_mutex); 3133 3134 if (update) { 3135 spin_lock(&space_info->lock); 3136 spin_lock(&block_group->lock); 3137 if (block_group->ro) 3138 space_info->bytes_readonly += reserved_bytes; 3139 block_group->reserved -= reserved_bytes; 3140 space_info->bytes_reserved -= reserved_bytes; 3141 spin_unlock(&space_info->lock); 3142 spin_unlock(&block_group->lock); 3143 } 3144 3145 return ret; 3146 } 3147 3148 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, 3149 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3150 { 3151 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3152 struct btrfs_free_space *entry; 3153 struct rb_node *node; 3154 int ret = 0; 3155 u64 extent_start; 3156 u64 extent_bytes; 3157 u64 bytes; 3158 3159 while (start < end) { 3160 struct btrfs_trim_range trim_entry; 3161 3162 mutex_lock(&ctl->cache_writeout_mutex); 3163 spin_lock(&ctl->tree_lock); 3164 3165 if (ctl->free_space < minlen) { 3166 spin_unlock(&ctl->tree_lock); 3167 mutex_unlock(&ctl->cache_writeout_mutex); 3168 break; 3169 } 3170 3171 entry = tree_search_offset(ctl, start, 0, 1); 3172 if (!entry) { 3173 spin_unlock(&ctl->tree_lock); 3174 mutex_unlock(&ctl->cache_writeout_mutex); 3175 break; 3176 } 3177 3178 /* skip bitmaps */ 3179 while (entry->bitmap) { 3180 node = rb_next(&entry->offset_index); 3181 if (!node) { 3182 spin_unlock(&ctl->tree_lock); 3183 mutex_unlock(&ctl->cache_writeout_mutex); 3184 goto out; 3185 } 3186 entry = rb_entry(node, struct btrfs_free_space, 3187 offset_index); 3188 } 3189 3190 if (entry->offset >= end) { 3191 spin_unlock(&ctl->tree_lock); 3192 mutex_unlock(&ctl->cache_writeout_mutex); 3193 break; 3194 } 3195 3196 extent_start = entry->offset; 3197 extent_bytes = entry->bytes; 3198 start = max(start, extent_start); 3199 bytes = min(extent_start + extent_bytes, end) - start; 3200 if (bytes < minlen) { 3201 spin_unlock(&ctl->tree_lock); 3202 mutex_unlock(&ctl->cache_writeout_mutex); 3203 goto next; 3204 } 3205 3206 unlink_free_space(ctl, entry); 3207 kmem_cache_free(btrfs_free_space_cachep, entry); 3208 3209 spin_unlock(&ctl->tree_lock); 3210 trim_entry.start = extent_start; 3211 trim_entry.bytes = extent_bytes; 3212 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3213 mutex_unlock(&ctl->cache_writeout_mutex); 3214 3215 ret = do_trimming(block_group, total_trimmed, start, bytes, 3216 extent_start, extent_bytes, &trim_entry); 3217 if (ret) 3218 break; 3219 next: 3220 start += bytes; 3221 3222 if (fatal_signal_pending(current)) { 3223 ret = -ERESTARTSYS; 3224 break; 3225 } 3226 3227 cond_resched(); 3228 } 3229 out: 3230 return ret; 3231 } 3232 3233 static int trim_bitmaps(struct btrfs_block_group_cache *block_group, 3234 u64 *total_trimmed, u64 start, u64 end, u64 minlen) 3235 { 3236 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3237 struct btrfs_free_space *entry; 3238 int ret = 0; 3239 int ret2; 3240 u64 bytes; 3241 u64 offset = offset_to_bitmap(ctl, start); 3242 3243 while (offset < end) { 3244 bool next_bitmap = false; 3245 struct btrfs_trim_range trim_entry; 3246 3247 mutex_lock(&ctl->cache_writeout_mutex); 3248 spin_lock(&ctl->tree_lock); 3249 3250 if (ctl->free_space < minlen) { 3251 spin_unlock(&ctl->tree_lock); 3252 mutex_unlock(&ctl->cache_writeout_mutex); 3253 break; 3254 } 3255 3256 entry = tree_search_offset(ctl, offset, 1, 0); 3257 if (!entry) { 3258 spin_unlock(&ctl->tree_lock); 3259 mutex_unlock(&ctl->cache_writeout_mutex); 3260 next_bitmap = true; 3261 goto next; 3262 } 3263 3264 bytes = minlen; 3265 ret2 = search_bitmap(ctl, entry, &start, &bytes, false); 3266 if (ret2 || start >= end) { 3267 spin_unlock(&ctl->tree_lock); 3268 mutex_unlock(&ctl->cache_writeout_mutex); 3269 next_bitmap = true; 3270 goto next; 3271 } 3272 3273 bytes = min(bytes, end - start); 3274 if (bytes < minlen) { 3275 spin_unlock(&ctl->tree_lock); 3276 mutex_unlock(&ctl->cache_writeout_mutex); 3277 goto next; 3278 } 3279 3280 bitmap_clear_bits(ctl, entry, start, bytes); 3281 if (entry->bytes == 0) 3282 free_bitmap(ctl, entry); 3283 3284 spin_unlock(&ctl->tree_lock); 3285 trim_entry.start = start; 3286 trim_entry.bytes = bytes; 3287 list_add_tail(&trim_entry.list, &ctl->trimming_ranges); 3288 mutex_unlock(&ctl->cache_writeout_mutex); 3289 3290 ret = do_trimming(block_group, total_trimmed, start, bytes, 3291 start, bytes, &trim_entry); 3292 if (ret) 3293 break; 3294 next: 3295 if (next_bitmap) { 3296 offset += BITS_PER_BITMAP * ctl->unit; 3297 } else { 3298 start += bytes; 3299 if (start >= offset + BITS_PER_BITMAP * ctl->unit) 3300 offset += BITS_PER_BITMAP * ctl->unit; 3301 } 3302 3303 if (fatal_signal_pending(current)) { 3304 ret = -ERESTARTSYS; 3305 break; 3306 } 3307 3308 cond_resched(); 3309 } 3310 3311 return ret; 3312 } 3313 3314 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache) 3315 { 3316 atomic_inc(&cache->trimming); 3317 } 3318 3319 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group) 3320 { 3321 struct extent_map_tree *em_tree; 3322 struct extent_map *em; 3323 bool cleanup; 3324 3325 spin_lock(&block_group->lock); 3326 cleanup = (atomic_dec_and_test(&block_group->trimming) && 3327 block_group->removed); 3328 spin_unlock(&block_group->lock); 3329 3330 if (cleanup) { 3331 lock_chunks(block_group->fs_info->chunk_root); 3332 em_tree = &block_group->fs_info->mapping_tree.map_tree; 3333 write_lock(&em_tree->lock); 3334 em = lookup_extent_mapping(em_tree, block_group->key.objectid, 3335 1); 3336 BUG_ON(!em); /* logic error, can't happen */ 3337 /* 3338 * remove_extent_mapping() will delete us from the pinned_chunks 3339 * list, which is protected by the chunk mutex. 3340 */ 3341 remove_extent_mapping(em_tree, em); 3342 write_unlock(&em_tree->lock); 3343 unlock_chunks(block_group->fs_info->chunk_root); 3344 3345 /* once for us and once for the tree */ 3346 free_extent_map(em); 3347 free_extent_map(em); 3348 3349 /* 3350 * We've left one free space entry and other tasks trimming 3351 * this block group have left 1 entry each one. Free them. 3352 */ 3353 __btrfs_remove_free_space_cache(block_group->free_space_ctl); 3354 } 3355 } 3356 3357 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, 3358 u64 *trimmed, u64 start, u64 end, u64 minlen) 3359 { 3360 int ret; 3361 3362 *trimmed = 0; 3363 3364 spin_lock(&block_group->lock); 3365 if (block_group->removed) { 3366 spin_unlock(&block_group->lock); 3367 return 0; 3368 } 3369 btrfs_get_block_group_trimming(block_group); 3370 spin_unlock(&block_group->lock); 3371 3372 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); 3373 if (ret) 3374 goto out; 3375 3376 ret = trim_bitmaps(block_group, trimmed, start, end, minlen); 3377 out: 3378 btrfs_put_block_group_trimming(block_group); 3379 return ret; 3380 } 3381 3382 /* 3383 * Find the left-most item in the cache tree, and then return the 3384 * smallest inode number in the item. 3385 * 3386 * Note: the returned inode number may not be the smallest one in 3387 * the tree, if the left-most item is a bitmap. 3388 */ 3389 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) 3390 { 3391 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; 3392 struct btrfs_free_space *entry = NULL; 3393 u64 ino = 0; 3394 3395 spin_lock(&ctl->tree_lock); 3396 3397 if (RB_EMPTY_ROOT(&ctl->free_space_offset)) 3398 goto out; 3399 3400 entry = rb_entry(rb_first(&ctl->free_space_offset), 3401 struct btrfs_free_space, offset_index); 3402 3403 if (!entry->bitmap) { 3404 ino = entry->offset; 3405 3406 unlink_free_space(ctl, entry); 3407 entry->offset++; 3408 entry->bytes--; 3409 if (!entry->bytes) 3410 kmem_cache_free(btrfs_free_space_cachep, entry); 3411 else 3412 link_free_space(ctl, entry); 3413 } else { 3414 u64 offset = 0; 3415 u64 count = 1; 3416 int ret; 3417 3418 ret = search_bitmap(ctl, entry, &offset, &count, true); 3419 /* Logic error; Should be empty if it can't find anything */ 3420 ASSERT(!ret); 3421 3422 ino = offset; 3423 bitmap_clear_bits(ctl, entry, offset, 1); 3424 if (entry->bytes == 0) 3425 free_bitmap(ctl, entry); 3426 } 3427 out: 3428 spin_unlock(&ctl->tree_lock); 3429 3430 return ino; 3431 } 3432 3433 struct inode *lookup_free_ino_inode(struct btrfs_root *root, 3434 struct btrfs_path *path) 3435 { 3436 struct inode *inode = NULL; 3437 3438 spin_lock(&root->ino_cache_lock); 3439 if (root->ino_cache_inode) 3440 inode = igrab(root->ino_cache_inode); 3441 spin_unlock(&root->ino_cache_lock); 3442 if (inode) 3443 return inode; 3444 3445 inode = __lookup_free_space_inode(root, path, 0); 3446 if (IS_ERR(inode)) 3447 return inode; 3448 3449 spin_lock(&root->ino_cache_lock); 3450 if (!btrfs_fs_closing(root->fs_info)) 3451 root->ino_cache_inode = igrab(inode); 3452 spin_unlock(&root->ino_cache_lock); 3453 3454 return inode; 3455 } 3456 3457 int create_free_ino_inode(struct btrfs_root *root, 3458 struct btrfs_trans_handle *trans, 3459 struct btrfs_path *path) 3460 { 3461 return __create_free_space_inode(root, trans, path, 3462 BTRFS_FREE_INO_OBJECTID, 0); 3463 } 3464 3465 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3466 { 3467 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3468 struct btrfs_path *path; 3469 struct inode *inode; 3470 int ret = 0; 3471 u64 root_gen = btrfs_root_generation(&root->root_item); 3472 3473 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 3474 return 0; 3475 3476 /* 3477 * If we're unmounting then just return, since this does a search on the 3478 * normal root and not the commit root and we could deadlock. 3479 */ 3480 if (btrfs_fs_closing(fs_info)) 3481 return 0; 3482 3483 path = btrfs_alloc_path(); 3484 if (!path) 3485 return 0; 3486 3487 inode = lookup_free_ino_inode(root, path); 3488 if (IS_ERR(inode)) 3489 goto out; 3490 3491 if (root_gen != BTRFS_I(inode)->generation) 3492 goto out_put; 3493 3494 ret = __load_free_space_cache(root, inode, ctl, path, 0); 3495 3496 if (ret < 0) 3497 btrfs_err(fs_info, 3498 "failed to load free ino cache for root %llu", 3499 root->root_key.objectid); 3500 out_put: 3501 iput(inode); 3502 out: 3503 btrfs_free_path(path); 3504 return ret; 3505 } 3506 3507 int btrfs_write_out_ino_cache(struct btrfs_root *root, 3508 struct btrfs_trans_handle *trans, 3509 struct btrfs_path *path, 3510 struct inode *inode) 3511 { 3512 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; 3513 int ret; 3514 struct btrfs_io_ctl io_ctl; 3515 bool release_metadata = true; 3516 3517 if (!btrfs_test_opt(root, INODE_MAP_CACHE)) 3518 return 0; 3519 3520 memset(&io_ctl, 0, sizeof(io_ctl)); 3521 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, 3522 trans, path, 0); 3523 if (!ret) { 3524 /* 3525 * At this point writepages() didn't error out, so our metadata 3526 * reservation is released when the writeback finishes, at 3527 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing 3528 * with or without an error. 3529 */ 3530 release_metadata = false; 3531 ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0); 3532 } 3533 3534 if (ret) { 3535 if (release_metadata) 3536 btrfs_delalloc_release_metadata(inode, inode->i_size); 3537 #ifdef DEBUG 3538 btrfs_err(root->fs_info, 3539 "failed to write free ino cache for root %llu", 3540 root->root_key.objectid); 3541 #endif 3542 } 3543 3544 return ret; 3545 } 3546 3547 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3548 /* 3549 * Use this if you need to make a bitmap or extent entry specifically, it 3550 * doesn't do any of the merging that add_free_space does, this acts a lot like 3551 * how the free space cache loading stuff works, so you can get really weird 3552 * configurations. 3553 */ 3554 int test_add_free_space_entry(struct btrfs_block_group_cache *cache, 3555 u64 offset, u64 bytes, bool bitmap) 3556 { 3557 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3558 struct btrfs_free_space *info = NULL, *bitmap_info; 3559 void *map = NULL; 3560 u64 bytes_added; 3561 int ret; 3562 3563 again: 3564 if (!info) { 3565 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); 3566 if (!info) 3567 return -ENOMEM; 3568 } 3569 3570 if (!bitmap) { 3571 spin_lock(&ctl->tree_lock); 3572 info->offset = offset; 3573 info->bytes = bytes; 3574 info->max_extent_size = 0; 3575 ret = link_free_space(ctl, info); 3576 spin_unlock(&ctl->tree_lock); 3577 if (ret) 3578 kmem_cache_free(btrfs_free_space_cachep, info); 3579 return ret; 3580 } 3581 3582 if (!map) { 3583 map = kzalloc(PAGE_SIZE, GFP_NOFS); 3584 if (!map) { 3585 kmem_cache_free(btrfs_free_space_cachep, info); 3586 return -ENOMEM; 3587 } 3588 } 3589 3590 spin_lock(&ctl->tree_lock); 3591 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3592 1, 0); 3593 if (!bitmap_info) { 3594 info->bitmap = map; 3595 map = NULL; 3596 add_new_bitmap(ctl, info, offset); 3597 bitmap_info = info; 3598 info = NULL; 3599 } 3600 3601 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); 3602 3603 bytes -= bytes_added; 3604 offset += bytes_added; 3605 spin_unlock(&ctl->tree_lock); 3606 3607 if (bytes) 3608 goto again; 3609 3610 if (info) 3611 kmem_cache_free(btrfs_free_space_cachep, info); 3612 if (map) 3613 kfree(map); 3614 return 0; 3615 } 3616 3617 /* 3618 * Checks to see if the given range is in the free space cache. This is really 3619 * just used to check the absence of space, so if there is free space in the 3620 * range at all we will return 1. 3621 */ 3622 int test_check_exists(struct btrfs_block_group_cache *cache, 3623 u64 offset, u64 bytes) 3624 { 3625 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; 3626 struct btrfs_free_space *info; 3627 int ret = 0; 3628 3629 spin_lock(&ctl->tree_lock); 3630 info = tree_search_offset(ctl, offset, 0, 0); 3631 if (!info) { 3632 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 3633 1, 0); 3634 if (!info) 3635 goto out; 3636 } 3637 3638 have_info: 3639 if (info->bitmap) { 3640 u64 bit_off, bit_bytes; 3641 struct rb_node *n; 3642 struct btrfs_free_space *tmp; 3643 3644 bit_off = offset; 3645 bit_bytes = ctl->unit; 3646 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); 3647 if (!ret) { 3648 if (bit_off == offset) { 3649 ret = 1; 3650 goto out; 3651 } else if (bit_off > offset && 3652 offset + bytes > bit_off) { 3653 ret = 1; 3654 goto out; 3655 } 3656 } 3657 3658 n = rb_prev(&info->offset_index); 3659 while (n) { 3660 tmp = rb_entry(n, struct btrfs_free_space, 3661 offset_index); 3662 if (tmp->offset + tmp->bytes < offset) 3663 break; 3664 if (offset + bytes < tmp->offset) { 3665 n = rb_prev(&tmp->offset_index); 3666 continue; 3667 } 3668 info = tmp; 3669 goto have_info; 3670 } 3671 3672 n = rb_next(&info->offset_index); 3673 while (n) { 3674 tmp = rb_entry(n, struct btrfs_free_space, 3675 offset_index); 3676 if (offset + bytes < tmp->offset) 3677 break; 3678 if (tmp->offset + tmp->bytes < offset) { 3679 n = rb_next(&tmp->offset_index); 3680 continue; 3681 } 3682 info = tmp; 3683 goto have_info; 3684 } 3685 3686 ret = 0; 3687 goto out; 3688 } 3689 3690 if (info->offset == offset) { 3691 ret = 1; 3692 goto out; 3693 } 3694 3695 if (offset > info->offset && offset < info->offset + info->bytes) 3696 ret = 1; 3697 out: 3698 spin_unlock(&ctl->tree_lock); 3699 return ret; 3700 } 3701 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ 3702