xref: /linux/fs/btrfs/free-space-cache.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31 
32 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
33 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
34 
35 struct btrfs_trim_range {
36 	u64 start;
37 	u64 bytes;
38 	struct list_head list;
39 };
40 
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42 			   struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 			      struct btrfs_free_space *info);
45 
46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47 					       struct btrfs_path *path,
48 					       u64 offset)
49 {
50 	struct btrfs_key key;
51 	struct btrfs_key location;
52 	struct btrfs_disk_key disk_key;
53 	struct btrfs_free_space_header *header;
54 	struct extent_buffer *leaf;
55 	struct inode *inode = NULL;
56 	int ret;
57 
58 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59 	key.offset = offset;
60 	key.type = 0;
61 
62 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63 	if (ret < 0)
64 		return ERR_PTR(ret);
65 	if (ret > 0) {
66 		btrfs_release_path(path);
67 		return ERR_PTR(-ENOENT);
68 	}
69 
70 	leaf = path->nodes[0];
71 	header = btrfs_item_ptr(leaf, path->slots[0],
72 				struct btrfs_free_space_header);
73 	btrfs_free_space_key(leaf, header, &disk_key);
74 	btrfs_disk_key_to_cpu(&location, &disk_key);
75 	btrfs_release_path(path);
76 
77 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
78 	if (!inode)
79 		return ERR_PTR(-ENOENT);
80 	if (IS_ERR(inode))
81 		return inode;
82 	if (is_bad_inode(inode)) {
83 		iput(inode);
84 		return ERR_PTR(-ENOENT);
85 	}
86 
87 	mapping_set_gfp_mask(inode->i_mapping,
88 			mapping_gfp_constraint(inode->i_mapping,
89 			~(__GFP_FS | __GFP_HIGHMEM)));
90 
91 	return inode;
92 }
93 
94 struct inode *lookup_free_space_inode(struct btrfs_root *root,
95 				      struct btrfs_block_group_cache
96 				      *block_group, struct btrfs_path *path)
97 {
98 	struct inode *inode = NULL;
99 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100 
101 	spin_lock(&block_group->lock);
102 	if (block_group->inode)
103 		inode = igrab(block_group->inode);
104 	spin_unlock(&block_group->lock);
105 	if (inode)
106 		return inode;
107 
108 	inode = __lookup_free_space_inode(root, path,
109 					  block_group->key.objectid);
110 	if (IS_ERR(inode))
111 		return inode;
112 
113 	spin_lock(&block_group->lock);
114 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 		btrfs_info(root->fs_info,
116 			"Old style space inode found, converting.");
117 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 			BTRFS_INODE_NODATACOW;
119 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
120 	}
121 
122 	if (!block_group->iref) {
123 		block_group->inode = igrab(inode);
124 		block_group->iref = 1;
125 	}
126 	spin_unlock(&block_group->lock);
127 
128 	return inode;
129 }
130 
131 static int __create_free_space_inode(struct btrfs_root *root,
132 				     struct btrfs_trans_handle *trans,
133 				     struct btrfs_path *path,
134 				     u64 ino, u64 offset)
135 {
136 	struct btrfs_key key;
137 	struct btrfs_disk_key disk_key;
138 	struct btrfs_free_space_header *header;
139 	struct btrfs_inode_item *inode_item;
140 	struct extent_buffer *leaf;
141 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 	int ret;
143 
144 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 	if (ret)
146 		return ret;
147 
148 	/* We inline crc's for the free disk space cache */
149 	if (ino != BTRFS_FREE_INO_OBJECTID)
150 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151 
152 	leaf = path->nodes[0];
153 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 				    struct btrfs_inode_item);
155 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
157 			     sizeof(*inode_item));
158 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 	btrfs_set_inode_size(leaf, inode_item, 0);
160 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 	btrfs_set_inode_uid(leaf, inode_item, 0);
162 	btrfs_set_inode_gid(leaf, inode_item, 0);
163 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 	btrfs_set_inode_flags(leaf, inode_item, flags);
165 	btrfs_set_inode_nlink(leaf, inode_item, 1);
166 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 	btrfs_set_inode_block_group(leaf, inode_item, offset);
168 	btrfs_mark_buffer_dirty(leaf);
169 	btrfs_release_path(path);
170 
171 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172 	key.offset = offset;
173 	key.type = 0;
174 	ret = btrfs_insert_empty_item(trans, root, path, &key,
175 				      sizeof(struct btrfs_free_space_header));
176 	if (ret < 0) {
177 		btrfs_release_path(path);
178 		return ret;
179 	}
180 
181 	leaf = path->nodes[0];
182 	header = btrfs_item_ptr(leaf, path->slots[0],
183 				struct btrfs_free_space_header);
184 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
185 	btrfs_set_free_space_key(leaf, header, &disk_key);
186 	btrfs_mark_buffer_dirty(leaf);
187 	btrfs_release_path(path);
188 
189 	return 0;
190 }
191 
192 int create_free_space_inode(struct btrfs_root *root,
193 			    struct btrfs_trans_handle *trans,
194 			    struct btrfs_block_group_cache *block_group,
195 			    struct btrfs_path *path)
196 {
197 	int ret;
198 	u64 ino;
199 
200 	ret = btrfs_find_free_objectid(root, &ino);
201 	if (ret < 0)
202 		return ret;
203 
204 	return __create_free_space_inode(root, trans, path, ino,
205 					 block_group->key.objectid);
206 }
207 
208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
209 				       struct btrfs_block_rsv *rsv)
210 {
211 	u64 needed_bytes;
212 	int ret;
213 
214 	/* 1 for slack space, 1 for updating the inode */
215 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
216 		btrfs_calc_trans_metadata_size(root, 1);
217 
218 	spin_lock(&rsv->lock);
219 	if (rsv->reserved < needed_bytes)
220 		ret = -ENOSPC;
221 	else
222 		ret = 0;
223 	spin_unlock(&rsv->lock);
224 	return ret;
225 }
226 
227 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
228 				    struct btrfs_trans_handle *trans,
229 				    struct btrfs_block_group_cache *block_group,
230 				    struct inode *inode)
231 {
232 	int ret = 0;
233 	struct btrfs_path *path = btrfs_alloc_path();
234 	bool locked = false;
235 
236 	if (!path) {
237 		ret = -ENOMEM;
238 		goto fail;
239 	}
240 
241 	if (block_group) {
242 		locked = true;
243 		mutex_lock(&trans->transaction->cache_write_mutex);
244 		if (!list_empty(&block_group->io_list)) {
245 			list_del_init(&block_group->io_list);
246 
247 			btrfs_wait_cache_io(root, trans, block_group,
248 					    &block_group->io_ctl, path,
249 					    block_group->key.objectid);
250 			btrfs_put_block_group(block_group);
251 		}
252 
253 		/*
254 		 * now that we've truncated the cache away, its no longer
255 		 * setup or written
256 		 */
257 		spin_lock(&block_group->lock);
258 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 		spin_unlock(&block_group->lock);
260 	}
261 	btrfs_free_path(path);
262 
263 	btrfs_i_size_write(inode, 0);
264 	truncate_pagecache(inode, 0);
265 
266 	/*
267 	 * We don't need an orphan item because truncating the free space cache
268 	 * will never be split across transactions.
269 	 * We don't need to check for -EAGAIN because we're a free space
270 	 * cache inode
271 	 */
272 	ret = btrfs_truncate_inode_items(trans, root, inode,
273 					 0, BTRFS_EXTENT_DATA_KEY);
274 	if (ret)
275 		goto fail;
276 
277 	ret = btrfs_update_inode(trans, root, inode);
278 
279 fail:
280 	if (locked)
281 		mutex_unlock(&trans->transaction->cache_write_mutex);
282 	if (ret)
283 		btrfs_abort_transaction(trans, root, ret);
284 
285 	return ret;
286 }
287 
288 static int readahead_cache(struct inode *inode)
289 {
290 	struct file_ra_state *ra;
291 	unsigned long last_index;
292 
293 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
294 	if (!ra)
295 		return -ENOMEM;
296 
297 	file_ra_state_init(ra, inode->i_mapping);
298 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
299 
300 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
301 
302 	kfree(ra);
303 
304 	return 0;
305 }
306 
307 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
308 		       struct btrfs_root *root, int write)
309 {
310 	int num_pages;
311 	int check_crcs = 0;
312 
313 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
314 
315 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
316 		check_crcs = 1;
317 
318 	/* Make sure we can fit our crcs into the first page */
319 	if (write && check_crcs &&
320 	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
321 		return -ENOSPC;
322 
323 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
324 
325 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
326 	if (!io_ctl->pages)
327 		return -ENOMEM;
328 
329 	io_ctl->num_pages = num_pages;
330 	io_ctl->root = root;
331 	io_ctl->check_crcs = check_crcs;
332 	io_ctl->inode = inode;
333 
334 	return 0;
335 }
336 
337 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
338 {
339 	kfree(io_ctl->pages);
340 	io_ctl->pages = NULL;
341 }
342 
343 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
344 {
345 	if (io_ctl->cur) {
346 		io_ctl->cur = NULL;
347 		io_ctl->orig = NULL;
348 	}
349 }
350 
351 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
352 {
353 	ASSERT(io_ctl->index < io_ctl->num_pages);
354 	io_ctl->page = io_ctl->pages[io_ctl->index++];
355 	io_ctl->cur = page_address(io_ctl->page);
356 	io_ctl->orig = io_ctl->cur;
357 	io_ctl->size = PAGE_SIZE;
358 	if (clear)
359 		memset(io_ctl->cur, 0, PAGE_SIZE);
360 }
361 
362 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
363 {
364 	int i;
365 
366 	io_ctl_unmap_page(io_ctl);
367 
368 	for (i = 0; i < io_ctl->num_pages; i++) {
369 		if (io_ctl->pages[i]) {
370 			ClearPageChecked(io_ctl->pages[i]);
371 			unlock_page(io_ctl->pages[i]);
372 			put_page(io_ctl->pages[i]);
373 		}
374 	}
375 }
376 
377 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378 				int uptodate)
379 {
380 	struct page *page;
381 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
382 	int i;
383 
384 	for (i = 0; i < io_ctl->num_pages; i++) {
385 		page = find_or_create_page(inode->i_mapping, i, mask);
386 		if (!page) {
387 			io_ctl_drop_pages(io_ctl);
388 			return -ENOMEM;
389 		}
390 		io_ctl->pages[i] = page;
391 		if (uptodate && !PageUptodate(page)) {
392 			btrfs_readpage(NULL, page);
393 			lock_page(page);
394 			if (!PageUptodate(page)) {
395 				btrfs_err(BTRFS_I(inode)->root->fs_info,
396 					   "error reading free space cache");
397 				io_ctl_drop_pages(io_ctl);
398 				return -EIO;
399 			}
400 		}
401 	}
402 
403 	for (i = 0; i < io_ctl->num_pages; i++) {
404 		clear_page_dirty_for_io(io_ctl->pages[i]);
405 		set_page_extent_mapped(io_ctl->pages[i]);
406 	}
407 
408 	return 0;
409 }
410 
411 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
412 {
413 	__le64 *val;
414 
415 	io_ctl_map_page(io_ctl, 1);
416 
417 	/*
418 	 * Skip the csum areas.  If we don't check crcs then we just have a
419 	 * 64bit chunk at the front of the first page.
420 	 */
421 	if (io_ctl->check_crcs) {
422 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
423 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
424 	} else {
425 		io_ctl->cur += sizeof(u64);
426 		io_ctl->size -= sizeof(u64) * 2;
427 	}
428 
429 	val = io_ctl->cur;
430 	*val = cpu_to_le64(generation);
431 	io_ctl->cur += sizeof(u64);
432 }
433 
434 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435 {
436 	__le64 *gen;
437 
438 	/*
439 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
440 	 * chunk at the front of the first page.
441 	 */
442 	if (io_ctl->check_crcs) {
443 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
444 		io_ctl->size -= sizeof(u64) +
445 			(sizeof(u32) * io_ctl->num_pages);
446 	} else {
447 		io_ctl->cur += sizeof(u64);
448 		io_ctl->size -= sizeof(u64) * 2;
449 	}
450 
451 	gen = io_ctl->cur;
452 	if (le64_to_cpu(*gen) != generation) {
453 		btrfs_err_rl(io_ctl->root->fs_info,
454 			"space cache generation (%llu) does not match inode (%llu)",
455 				*gen, generation);
456 		io_ctl_unmap_page(io_ctl);
457 		return -EIO;
458 	}
459 	io_ctl->cur += sizeof(u64);
460 	return 0;
461 }
462 
463 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464 {
465 	u32 *tmp;
466 	u32 crc = ~(u32)0;
467 	unsigned offset = 0;
468 
469 	if (!io_ctl->check_crcs) {
470 		io_ctl_unmap_page(io_ctl);
471 		return;
472 	}
473 
474 	if (index == 0)
475 		offset = sizeof(u32) * io_ctl->num_pages;
476 
477 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
478 			      PAGE_SIZE - offset);
479 	btrfs_csum_final(crc, (char *)&crc);
480 	io_ctl_unmap_page(io_ctl);
481 	tmp = page_address(io_ctl->pages[0]);
482 	tmp += index;
483 	*tmp = crc;
484 }
485 
486 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
487 {
488 	u32 *tmp, val;
489 	u32 crc = ~(u32)0;
490 	unsigned offset = 0;
491 
492 	if (!io_ctl->check_crcs) {
493 		io_ctl_map_page(io_ctl, 0);
494 		return 0;
495 	}
496 
497 	if (index == 0)
498 		offset = sizeof(u32) * io_ctl->num_pages;
499 
500 	tmp = page_address(io_ctl->pages[0]);
501 	tmp += index;
502 	val = *tmp;
503 
504 	io_ctl_map_page(io_ctl, 0);
505 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
506 			      PAGE_SIZE - offset);
507 	btrfs_csum_final(crc, (char *)&crc);
508 	if (val != crc) {
509 		btrfs_err_rl(io_ctl->root->fs_info,
510 			"csum mismatch on free space cache");
511 		io_ctl_unmap_page(io_ctl);
512 		return -EIO;
513 	}
514 
515 	return 0;
516 }
517 
518 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
519 			    void *bitmap)
520 {
521 	struct btrfs_free_space_entry *entry;
522 
523 	if (!io_ctl->cur)
524 		return -ENOSPC;
525 
526 	entry = io_ctl->cur;
527 	entry->offset = cpu_to_le64(offset);
528 	entry->bytes = cpu_to_le64(bytes);
529 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
530 		BTRFS_FREE_SPACE_EXTENT;
531 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
532 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
533 
534 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
535 		return 0;
536 
537 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 
539 	/* No more pages to map */
540 	if (io_ctl->index >= io_ctl->num_pages)
541 		return 0;
542 
543 	/* map the next page */
544 	io_ctl_map_page(io_ctl, 1);
545 	return 0;
546 }
547 
548 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
549 {
550 	if (!io_ctl->cur)
551 		return -ENOSPC;
552 
553 	/*
554 	 * If we aren't at the start of the current page, unmap this one and
555 	 * map the next one if there is any left.
556 	 */
557 	if (io_ctl->cur != io_ctl->orig) {
558 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
559 		if (io_ctl->index >= io_ctl->num_pages)
560 			return -ENOSPC;
561 		io_ctl_map_page(io_ctl, 0);
562 	}
563 
564 	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
565 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
566 	if (io_ctl->index < io_ctl->num_pages)
567 		io_ctl_map_page(io_ctl, 0);
568 	return 0;
569 }
570 
571 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
572 {
573 	/*
574 	 * If we're not on the boundary we know we've modified the page and we
575 	 * need to crc the page.
576 	 */
577 	if (io_ctl->cur != io_ctl->orig)
578 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
579 	else
580 		io_ctl_unmap_page(io_ctl);
581 
582 	while (io_ctl->index < io_ctl->num_pages) {
583 		io_ctl_map_page(io_ctl, 1);
584 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
585 	}
586 }
587 
588 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
589 			    struct btrfs_free_space *entry, u8 *type)
590 {
591 	struct btrfs_free_space_entry *e;
592 	int ret;
593 
594 	if (!io_ctl->cur) {
595 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
596 		if (ret)
597 			return ret;
598 	}
599 
600 	e = io_ctl->cur;
601 	entry->offset = le64_to_cpu(e->offset);
602 	entry->bytes = le64_to_cpu(e->bytes);
603 	*type = e->type;
604 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
605 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
606 
607 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
608 		return 0;
609 
610 	io_ctl_unmap_page(io_ctl);
611 
612 	return 0;
613 }
614 
615 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
616 			      struct btrfs_free_space *entry)
617 {
618 	int ret;
619 
620 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
621 	if (ret)
622 		return ret;
623 
624 	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
625 	io_ctl_unmap_page(io_ctl);
626 
627 	return 0;
628 }
629 
630 /*
631  * Since we attach pinned extents after the fact we can have contiguous sections
632  * of free space that are split up in entries.  This poses a problem with the
633  * tree logging stuff since it could have allocated across what appears to be 2
634  * entries since we would have merged the entries when adding the pinned extents
635  * back to the free space cache.  So run through the space cache that we just
636  * loaded and merge contiguous entries.  This will make the log replay stuff not
637  * blow up and it will make for nicer allocator behavior.
638  */
639 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
640 {
641 	struct btrfs_free_space *e, *prev = NULL;
642 	struct rb_node *n;
643 
644 again:
645 	spin_lock(&ctl->tree_lock);
646 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
647 		e = rb_entry(n, struct btrfs_free_space, offset_index);
648 		if (!prev)
649 			goto next;
650 		if (e->bitmap || prev->bitmap)
651 			goto next;
652 		if (prev->offset + prev->bytes == e->offset) {
653 			unlink_free_space(ctl, prev);
654 			unlink_free_space(ctl, e);
655 			prev->bytes += e->bytes;
656 			kmem_cache_free(btrfs_free_space_cachep, e);
657 			link_free_space(ctl, prev);
658 			prev = NULL;
659 			spin_unlock(&ctl->tree_lock);
660 			goto again;
661 		}
662 next:
663 		prev = e;
664 	}
665 	spin_unlock(&ctl->tree_lock);
666 }
667 
668 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
669 				   struct btrfs_free_space_ctl *ctl,
670 				   struct btrfs_path *path, u64 offset)
671 {
672 	struct btrfs_free_space_header *header;
673 	struct extent_buffer *leaf;
674 	struct btrfs_io_ctl io_ctl;
675 	struct btrfs_key key;
676 	struct btrfs_free_space *e, *n;
677 	LIST_HEAD(bitmaps);
678 	u64 num_entries;
679 	u64 num_bitmaps;
680 	u64 generation;
681 	u8 type;
682 	int ret = 0;
683 
684 	/* Nothing in the space cache, goodbye */
685 	if (!i_size_read(inode))
686 		return 0;
687 
688 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
689 	key.offset = offset;
690 	key.type = 0;
691 
692 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
693 	if (ret < 0)
694 		return 0;
695 	else if (ret > 0) {
696 		btrfs_release_path(path);
697 		return 0;
698 	}
699 
700 	ret = -1;
701 
702 	leaf = path->nodes[0];
703 	header = btrfs_item_ptr(leaf, path->slots[0],
704 				struct btrfs_free_space_header);
705 	num_entries = btrfs_free_space_entries(leaf, header);
706 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
707 	generation = btrfs_free_space_generation(leaf, header);
708 	btrfs_release_path(path);
709 
710 	if (!BTRFS_I(inode)->generation) {
711 		btrfs_info(root->fs_info,
712 			   "The free space cache file (%llu) is invalid. skip it\n",
713 			   offset);
714 		return 0;
715 	}
716 
717 	if (BTRFS_I(inode)->generation != generation) {
718 		btrfs_err(root->fs_info,
719 			"free space inode generation (%llu) "
720 			"did not match free space cache generation (%llu)",
721 			BTRFS_I(inode)->generation, generation);
722 		return 0;
723 	}
724 
725 	if (!num_entries)
726 		return 0;
727 
728 	ret = io_ctl_init(&io_ctl, inode, root, 0);
729 	if (ret)
730 		return ret;
731 
732 	ret = readahead_cache(inode);
733 	if (ret)
734 		goto out;
735 
736 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
737 	if (ret)
738 		goto out;
739 
740 	ret = io_ctl_check_crc(&io_ctl, 0);
741 	if (ret)
742 		goto free_cache;
743 
744 	ret = io_ctl_check_generation(&io_ctl, generation);
745 	if (ret)
746 		goto free_cache;
747 
748 	while (num_entries) {
749 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
750 				      GFP_NOFS);
751 		if (!e)
752 			goto free_cache;
753 
754 		ret = io_ctl_read_entry(&io_ctl, e, &type);
755 		if (ret) {
756 			kmem_cache_free(btrfs_free_space_cachep, e);
757 			goto free_cache;
758 		}
759 
760 		if (!e->bytes) {
761 			kmem_cache_free(btrfs_free_space_cachep, e);
762 			goto free_cache;
763 		}
764 
765 		if (type == BTRFS_FREE_SPACE_EXTENT) {
766 			spin_lock(&ctl->tree_lock);
767 			ret = link_free_space(ctl, e);
768 			spin_unlock(&ctl->tree_lock);
769 			if (ret) {
770 				btrfs_err(root->fs_info,
771 					"Duplicate entries in free space cache, dumping");
772 				kmem_cache_free(btrfs_free_space_cachep, e);
773 				goto free_cache;
774 			}
775 		} else {
776 			ASSERT(num_bitmaps);
777 			num_bitmaps--;
778 			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
779 			if (!e->bitmap) {
780 				kmem_cache_free(
781 					btrfs_free_space_cachep, e);
782 				goto free_cache;
783 			}
784 			spin_lock(&ctl->tree_lock);
785 			ret = link_free_space(ctl, e);
786 			ctl->total_bitmaps++;
787 			ctl->op->recalc_thresholds(ctl);
788 			spin_unlock(&ctl->tree_lock);
789 			if (ret) {
790 				btrfs_err(root->fs_info,
791 					"Duplicate entries in free space cache, dumping");
792 				kmem_cache_free(btrfs_free_space_cachep, e);
793 				goto free_cache;
794 			}
795 			list_add_tail(&e->list, &bitmaps);
796 		}
797 
798 		num_entries--;
799 	}
800 
801 	io_ctl_unmap_page(&io_ctl);
802 
803 	/*
804 	 * We add the bitmaps at the end of the entries in order that
805 	 * the bitmap entries are added to the cache.
806 	 */
807 	list_for_each_entry_safe(e, n, &bitmaps, list) {
808 		list_del_init(&e->list);
809 		ret = io_ctl_read_bitmap(&io_ctl, e);
810 		if (ret)
811 			goto free_cache;
812 	}
813 
814 	io_ctl_drop_pages(&io_ctl);
815 	merge_space_tree(ctl);
816 	ret = 1;
817 out:
818 	io_ctl_free(&io_ctl);
819 	return ret;
820 free_cache:
821 	io_ctl_drop_pages(&io_ctl);
822 	__btrfs_remove_free_space_cache(ctl);
823 	goto out;
824 }
825 
826 int load_free_space_cache(struct btrfs_fs_info *fs_info,
827 			  struct btrfs_block_group_cache *block_group)
828 {
829 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
830 	struct btrfs_root *root = fs_info->tree_root;
831 	struct inode *inode;
832 	struct btrfs_path *path;
833 	int ret = 0;
834 	bool matched;
835 	u64 used = btrfs_block_group_used(&block_group->item);
836 
837 	/*
838 	 * If this block group has been marked to be cleared for one reason or
839 	 * another then we can't trust the on disk cache, so just return.
840 	 */
841 	spin_lock(&block_group->lock);
842 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
843 		spin_unlock(&block_group->lock);
844 		return 0;
845 	}
846 	spin_unlock(&block_group->lock);
847 
848 	path = btrfs_alloc_path();
849 	if (!path)
850 		return 0;
851 	path->search_commit_root = 1;
852 	path->skip_locking = 1;
853 
854 	inode = lookup_free_space_inode(root, block_group, path);
855 	if (IS_ERR(inode)) {
856 		btrfs_free_path(path);
857 		return 0;
858 	}
859 
860 	/* We may have converted the inode and made the cache invalid. */
861 	spin_lock(&block_group->lock);
862 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
863 		spin_unlock(&block_group->lock);
864 		btrfs_free_path(path);
865 		goto out;
866 	}
867 	spin_unlock(&block_group->lock);
868 
869 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
870 				      path, block_group->key.objectid);
871 	btrfs_free_path(path);
872 	if (ret <= 0)
873 		goto out;
874 
875 	spin_lock(&ctl->tree_lock);
876 	matched = (ctl->free_space == (block_group->key.offset - used -
877 				       block_group->bytes_super));
878 	spin_unlock(&ctl->tree_lock);
879 
880 	if (!matched) {
881 		__btrfs_remove_free_space_cache(ctl);
882 		btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
883 			block_group->key.objectid);
884 		ret = -1;
885 	}
886 out:
887 	if (ret < 0) {
888 		/* This cache is bogus, make sure it gets cleared */
889 		spin_lock(&block_group->lock);
890 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
891 		spin_unlock(&block_group->lock);
892 		ret = 0;
893 
894 		btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuilding it now",
895 			block_group->key.objectid);
896 	}
897 
898 	iput(inode);
899 	return ret;
900 }
901 
902 static noinline_for_stack
903 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
904 			      struct btrfs_free_space_ctl *ctl,
905 			      struct btrfs_block_group_cache *block_group,
906 			      int *entries, int *bitmaps,
907 			      struct list_head *bitmap_list)
908 {
909 	int ret;
910 	struct btrfs_free_cluster *cluster = NULL;
911 	struct btrfs_free_cluster *cluster_locked = NULL;
912 	struct rb_node *node = rb_first(&ctl->free_space_offset);
913 	struct btrfs_trim_range *trim_entry;
914 
915 	/* Get the cluster for this block_group if it exists */
916 	if (block_group && !list_empty(&block_group->cluster_list)) {
917 		cluster = list_entry(block_group->cluster_list.next,
918 				     struct btrfs_free_cluster,
919 				     block_group_list);
920 	}
921 
922 	if (!node && cluster) {
923 		cluster_locked = cluster;
924 		spin_lock(&cluster_locked->lock);
925 		node = rb_first(&cluster->root);
926 		cluster = NULL;
927 	}
928 
929 	/* Write out the extent entries */
930 	while (node) {
931 		struct btrfs_free_space *e;
932 
933 		e = rb_entry(node, struct btrfs_free_space, offset_index);
934 		*entries += 1;
935 
936 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
937 				       e->bitmap);
938 		if (ret)
939 			goto fail;
940 
941 		if (e->bitmap) {
942 			list_add_tail(&e->list, bitmap_list);
943 			*bitmaps += 1;
944 		}
945 		node = rb_next(node);
946 		if (!node && cluster) {
947 			node = rb_first(&cluster->root);
948 			cluster_locked = cluster;
949 			spin_lock(&cluster_locked->lock);
950 			cluster = NULL;
951 		}
952 	}
953 	if (cluster_locked) {
954 		spin_unlock(&cluster_locked->lock);
955 		cluster_locked = NULL;
956 	}
957 
958 	/*
959 	 * Make sure we don't miss any range that was removed from our rbtree
960 	 * because trimming is running. Otherwise after a umount+mount (or crash
961 	 * after committing the transaction) we would leak free space and get
962 	 * an inconsistent free space cache report from fsck.
963 	 */
964 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
965 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
966 				       trim_entry->bytes, NULL);
967 		if (ret)
968 			goto fail;
969 		*entries += 1;
970 	}
971 
972 	return 0;
973 fail:
974 	if (cluster_locked)
975 		spin_unlock(&cluster_locked->lock);
976 	return -ENOSPC;
977 }
978 
979 static noinline_for_stack int
980 update_cache_item(struct btrfs_trans_handle *trans,
981 		  struct btrfs_root *root,
982 		  struct inode *inode,
983 		  struct btrfs_path *path, u64 offset,
984 		  int entries, int bitmaps)
985 {
986 	struct btrfs_key key;
987 	struct btrfs_free_space_header *header;
988 	struct extent_buffer *leaf;
989 	int ret;
990 
991 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
992 	key.offset = offset;
993 	key.type = 0;
994 
995 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
996 	if (ret < 0) {
997 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
998 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
999 				 GFP_NOFS);
1000 		goto fail;
1001 	}
1002 	leaf = path->nodes[0];
1003 	if (ret > 0) {
1004 		struct btrfs_key found_key;
1005 		ASSERT(path->slots[0]);
1006 		path->slots[0]--;
1007 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1008 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1009 		    found_key.offset != offset) {
1010 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1011 					 inode->i_size - 1,
1012 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1013 					 NULL, GFP_NOFS);
1014 			btrfs_release_path(path);
1015 			goto fail;
1016 		}
1017 	}
1018 
1019 	BTRFS_I(inode)->generation = trans->transid;
1020 	header = btrfs_item_ptr(leaf, path->slots[0],
1021 				struct btrfs_free_space_header);
1022 	btrfs_set_free_space_entries(leaf, header, entries);
1023 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1024 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1025 	btrfs_mark_buffer_dirty(leaf);
1026 	btrfs_release_path(path);
1027 
1028 	return 0;
1029 
1030 fail:
1031 	return -1;
1032 }
1033 
1034 static noinline_for_stack int
1035 write_pinned_extent_entries(struct btrfs_root *root,
1036 			    struct btrfs_block_group_cache *block_group,
1037 			    struct btrfs_io_ctl *io_ctl,
1038 			    int *entries)
1039 {
1040 	u64 start, extent_start, extent_end, len;
1041 	struct extent_io_tree *unpin = NULL;
1042 	int ret;
1043 
1044 	if (!block_group)
1045 		return 0;
1046 
1047 	/*
1048 	 * We want to add any pinned extents to our free space cache
1049 	 * so we don't leak the space
1050 	 *
1051 	 * We shouldn't have switched the pinned extents yet so this is the
1052 	 * right one
1053 	 */
1054 	unpin = root->fs_info->pinned_extents;
1055 
1056 	start = block_group->key.objectid;
1057 
1058 	while (start < block_group->key.objectid + block_group->key.offset) {
1059 		ret = find_first_extent_bit(unpin, start,
1060 					    &extent_start, &extent_end,
1061 					    EXTENT_DIRTY, NULL);
1062 		if (ret)
1063 			return 0;
1064 
1065 		/* This pinned extent is out of our range */
1066 		if (extent_start >= block_group->key.objectid +
1067 		    block_group->key.offset)
1068 			return 0;
1069 
1070 		extent_start = max(extent_start, start);
1071 		extent_end = min(block_group->key.objectid +
1072 				 block_group->key.offset, extent_end + 1);
1073 		len = extent_end - extent_start;
1074 
1075 		*entries += 1;
1076 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1077 		if (ret)
1078 			return -ENOSPC;
1079 
1080 		start = extent_end;
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 static noinline_for_stack int
1087 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1088 {
1089 	struct btrfs_free_space *entry, *next;
1090 	int ret;
1091 
1092 	/* Write out the bitmaps */
1093 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1094 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1095 		if (ret)
1096 			return -ENOSPC;
1097 		list_del_init(&entry->list);
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 static int flush_dirty_cache(struct inode *inode)
1104 {
1105 	int ret;
1106 
1107 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1108 	if (ret)
1109 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1110 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1111 				 GFP_NOFS);
1112 
1113 	return ret;
1114 }
1115 
1116 static void noinline_for_stack
1117 cleanup_bitmap_list(struct list_head *bitmap_list)
1118 {
1119 	struct btrfs_free_space *entry, *next;
1120 
1121 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1122 		list_del_init(&entry->list);
1123 }
1124 
1125 static void noinline_for_stack
1126 cleanup_write_cache_enospc(struct inode *inode,
1127 			   struct btrfs_io_ctl *io_ctl,
1128 			   struct extent_state **cached_state,
1129 			   struct list_head *bitmap_list)
1130 {
1131 	io_ctl_drop_pages(io_ctl);
1132 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1133 			     i_size_read(inode) - 1, cached_state,
1134 			     GFP_NOFS);
1135 }
1136 
1137 int btrfs_wait_cache_io(struct btrfs_root *root,
1138 			struct btrfs_trans_handle *trans,
1139 			struct btrfs_block_group_cache *block_group,
1140 			struct btrfs_io_ctl *io_ctl,
1141 			struct btrfs_path *path, u64 offset)
1142 {
1143 	int ret;
1144 	struct inode *inode = io_ctl->inode;
1145 
1146 	if (!inode)
1147 		return 0;
1148 
1149 	if (block_group)
1150 		root = root->fs_info->tree_root;
1151 
1152 	/* Flush the dirty pages in the cache file. */
1153 	ret = flush_dirty_cache(inode);
1154 	if (ret)
1155 		goto out;
1156 
1157 	/* Update the cache item to tell everyone this cache file is valid. */
1158 	ret = update_cache_item(trans, root, inode, path, offset,
1159 				io_ctl->entries, io_ctl->bitmaps);
1160 out:
1161 	io_ctl_free(io_ctl);
1162 	if (ret) {
1163 		invalidate_inode_pages2(inode->i_mapping);
1164 		BTRFS_I(inode)->generation = 0;
1165 		if (block_group) {
1166 #ifdef DEBUG
1167 			btrfs_err(root->fs_info,
1168 				"failed to write free space cache for block group %llu",
1169 				block_group->key.objectid);
1170 #endif
1171 		}
1172 	}
1173 	btrfs_update_inode(trans, root, inode);
1174 
1175 	if (block_group) {
1176 		/* the dirty list is protected by the dirty_bgs_lock */
1177 		spin_lock(&trans->transaction->dirty_bgs_lock);
1178 
1179 		/* the disk_cache_state is protected by the block group lock */
1180 		spin_lock(&block_group->lock);
1181 
1182 		/*
1183 		 * only mark this as written if we didn't get put back on
1184 		 * the dirty list while waiting for IO.   Otherwise our
1185 		 * cache state won't be right, and we won't get written again
1186 		 */
1187 		if (!ret && list_empty(&block_group->dirty_list))
1188 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1189 		else if (ret)
1190 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1191 
1192 		spin_unlock(&block_group->lock);
1193 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1194 		io_ctl->inode = NULL;
1195 		iput(inode);
1196 	}
1197 
1198 	return ret;
1199 
1200 }
1201 
1202 /**
1203  * __btrfs_write_out_cache - write out cached info to an inode
1204  * @root - the root the inode belongs to
1205  * @ctl - the free space cache we are going to write out
1206  * @block_group - the block_group for this cache if it belongs to a block_group
1207  * @trans - the trans handle
1208  * @path - the path to use
1209  * @offset - the offset for the key we'll insert
1210  *
1211  * This function writes out a free space cache struct to disk for quick recovery
1212  * on mount.  This will return 0 if it was successful in writing the cache out,
1213  * or an errno if it was not.
1214  */
1215 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1216 				   struct btrfs_free_space_ctl *ctl,
1217 				   struct btrfs_block_group_cache *block_group,
1218 				   struct btrfs_io_ctl *io_ctl,
1219 				   struct btrfs_trans_handle *trans,
1220 				   struct btrfs_path *path, u64 offset)
1221 {
1222 	struct extent_state *cached_state = NULL;
1223 	LIST_HEAD(bitmap_list);
1224 	int entries = 0;
1225 	int bitmaps = 0;
1226 	int ret;
1227 	int must_iput = 0;
1228 
1229 	if (!i_size_read(inode))
1230 		return -EIO;
1231 
1232 	WARN_ON(io_ctl->pages);
1233 	ret = io_ctl_init(io_ctl, inode, root, 1);
1234 	if (ret)
1235 		return ret;
1236 
1237 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1238 		down_write(&block_group->data_rwsem);
1239 		spin_lock(&block_group->lock);
1240 		if (block_group->delalloc_bytes) {
1241 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1242 			spin_unlock(&block_group->lock);
1243 			up_write(&block_group->data_rwsem);
1244 			BTRFS_I(inode)->generation = 0;
1245 			ret = 0;
1246 			must_iput = 1;
1247 			goto out;
1248 		}
1249 		spin_unlock(&block_group->lock);
1250 	}
1251 
1252 	/* Lock all pages first so we can lock the extent safely. */
1253 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1254 	if (ret)
1255 		goto out;
1256 
1257 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1258 			 &cached_state);
1259 
1260 	io_ctl_set_generation(io_ctl, trans->transid);
1261 
1262 	mutex_lock(&ctl->cache_writeout_mutex);
1263 	/* Write out the extent entries in the free space cache */
1264 	spin_lock(&ctl->tree_lock);
1265 	ret = write_cache_extent_entries(io_ctl, ctl,
1266 					 block_group, &entries, &bitmaps,
1267 					 &bitmap_list);
1268 	if (ret)
1269 		goto out_nospc_locked;
1270 
1271 	/*
1272 	 * Some spaces that are freed in the current transaction are pinned,
1273 	 * they will be added into free space cache after the transaction is
1274 	 * committed, we shouldn't lose them.
1275 	 *
1276 	 * If this changes while we are working we'll get added back to
1277 	 * the dirty list and redo it.  No locking needed
1278 	 */
1279 	ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1280 	if (ret)
1281 		goto out_nospc_locked;
1282 
1283 	/*
1284 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1285 	 * locked while doing it because a concurrent trim can be manipulating
1286 	 * or freeing the bitmap.
1287 	 */
1288 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1289 	spin_unlock(&ctl->tree_lock);
1290 	mutex_unlock(&ctl->cache_writeout_mutex);
1291 	if (ret)
1292 		goto out_nospc;
1293 
1294 	/* Zero out the rest of the pages just to make sure */
1295 	io_ctl_zero_remaining_pages(io_ctl);
1296 
1297 	/* Everything is written out, now we dirty the pages in the file. */
1298 	ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1299 				0, i_size_read(inode), &cached_state);
1300 	if (ret)
1301 		goto out_nospc;
1302 
1303 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1304 		up_write(&block_group->data_rwsem);
1305 	/*
1306 	 * Release the pages and unlock the extent, we will flush
1307 	 * them out later
1308 	 */
1309 	io_ctl_drop_pages(io_ctl);
1310 
1311 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1312 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1313 
1314 	/*
1315 	 * at this point the pages are under IO and we're happy,
1316 	 * The caller is responsible for waiting on them and updating the
1317 	 * the cache and the inode
1318 	 */
1319 	io_ctl->entries = entries;
1320 	io_ctl->bitmaps = bitmaps;
1321 
1322 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1323 	if (ret)
1324 		goto out;
1325 
1326 	return 0;
1327 
1328 out:
1329 	io_ctl->inode = NULL;
1330 	io_ctl_free(io_ctl);
1331 	if (ret) {
1332 		invalidate_inode_pages2(inode->i_mapping);
1333 		BTRFS_I(inode)->generation = 0;
1334 	}
1335 	btrfs_update_inode(trans, root, inode);
1336 	if (must_iput)
1337 		iput(inode);
1338 	return ret;
1339 
1340 out_nospc_locked:
1341 	cleanup_bitmap_list(&bitmap_list);
1342 	spin_unlock(&ctl->tree_lock);
1343 	mutex_unlock(&ctl->cache_writeout_mutex);
1344 
1345 out_nospc:
1346 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1347 
1348 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1349 		up_write(&block_group->data_rwsem);
1350 
1351 	goto out;
1352 }
1353 
1354 int btrfs_write_out_cache(struct btrfs_root *root,
1355 			  struct btrfs_trans_handle *trans,
1356 			  struct btrfs_block_group_cache *block_group,
1357 			  struct btrfs_path *path)
1358 {
1359 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1360 	struct inode *inode;
1361 	int ret = 0;
1362 
1363 	root = root->fs_info->tree_root;
1364 
1365 	spin_lock(&block_group->lock);
1366 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1367 		spin_unlock(&block_group->lock);
1368 		return 0;
1369 	}
1370 	spin_unlock(&block_group->lock);
1371 
1372 	inode = lookup_free_space_inode(root, block_group, path);
1373 	if (IS_ERR(inode))
1374 		return 0;
1375 
1376 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1377 				      &block_group->io_ctl, trans,
1378 				      path, block_group->key.objectid);
1379 	if (ret) {
1380 #ifdef DEBUG
1381 		btrfs_err(root->fs_info,
1382 			"failed to write free space cache for block group %llu",
1383 			block_group->key.objectid);
1384 #endif
1385 		spin_lock(&block_group->lock);
1386 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1387 		spin_unlock(&block_group->lock);
1388 
1389 		block_group->io_ctl.inode = NULL;
1390 		iput(inode);
1391 	}
1392 
1393 	/*
1394 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1395 	 * to wait for IO and put the inode
1396 	 */
1397 
1398 	return ret;
1399 }
1400 
1401 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1402 					  u64 offset)
1403 {
1404 	ASSERT(offset >= bitmap_start);
1405 	offset -= bitmap_start;
1406 	return (unsigned long)(div_u64(offset, unit));
1407 }
1408 
1409 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1410 {
1411 	return (unsigned long)(div_u64(bytes, unit));
1412 }
1413 
1414 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1415 				   u64 offset)
1416 {
1417 	u64 bitmap_start;
1418 	u64 bytes_per_bitmap;
1419 
1420 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1421 	bitmap_start = offset - ctl->start;
1422 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1423 	bitmap_start *= bytes_per_bitmap;
1424 	bitmap_start += ctl->start;
1425 
1426 	return bitmap_start;
1427 }
1428 
1429 static int tree_insert_offset(struct rb_root *root, u64 offset,
1430 			      struct rb_node *node, int bitmap)
1431 {
1432 	struct rb_node **p = &root->rb_node;
1433 	struct rb_node *parent = NULL;
1434 	struct btrfs_free_space *info;
1435 
1436 	while (*p) {
1437 		parent = *p;
1438 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1439 
1440 		if (offset < info->offset) {
1441 			p = &(*p)->rb_left;
1442 		} else if (offset > info->offset) {
1443 			p = &(*p)->rb_right;
1444 		} else {
1445 			/*
1446 			 * we could have a bitmap entry and an extent entry
1447 			 * share the same offset.  If this is the case, we want
1448 			 * the extent entry to always be found first if we do a
1449 			 * linear search through the tree, since we want to have
1450 			 * the quickest allocation time, and allocating from an
1451 			 * extent is faster than allocating from a bitmap.  So
1452 			 * if we're inserting a bitmap and we find an entry at
1453 			 * this offset, we want to go right, or after this entry
1454 			 * logically.  If we are inserting an extent and we've
1455 			 * found a bitmap, we want to go left, or before
1456 			 * logically.
1457 			 */
1458 			if (bitmap) {
1459 				if (info->bitmap) {
1460 					WARN_ON_ONCE(1);
1461 					return -EEXIST;
1462 				}
1463 				p = &(*p)->rb_right;
1464 			} else {
1465 				if (!info->bitmap) {
1466 					WARN_ON_ONCE(1);
1467 					return -EEXIST;
1468 				}
1469 				p = &(*p)->rb_left;
1470 			}
1471 		}
1472 	}
1473 
1474 	rb_link_node(node, parent, p);
1475 	rb_insert_color(node, root);
1476 
1477 	return 0;
1478 }
1479 
1480 /*
1481  * searches the tree for the given offset.
1482  *
1483  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1484  * want a section that has at least bytes size and comes at or after the given
1485  * offset.
1486  */
1487 static struct btrfs_free_space *
1488 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1489 		   u64 offset, int bitmap_only, int fuzzy)
1490 {
1491 	struct rb_node *n = ctl->free_space_offset.rb_node;
1492 	struct btrfs_free_space *entry, *prev = NULL;
1493 
1494 	/* find entry that is closest to the 'offset' */
1495 	while (1) {
1496 		if (!n) {
1497 			entry = NULL;
1498 			break;
1499 		}
1500 
1501 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1502 		prev = entry;
1503 
1504 		if (offset < entry->offset)
1505 			n = n->rb_left;
1506 		else if (offset > entry->offset)
1507 			n = n->rb_right;
1508 		else
1509 			break;
1510 	}
1511 
1512 	if (bitmap_only) {
1513 		if (!entry)
1514 			return NULL;
1515 		if (entry->bitmap)
1516 			return entry;
1517 
1518 		/*
1519 		 * bitmap entry and extent entry may share same offset,
1520 		 * in that case, bitmap entry comes after extent entry.
1521 		 */
1522 		n = rb_next(n);
1523 		if (!n)
1524 			return NULL;
1525 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1526 		if (entry->offset != offset)
1527 			return NULL;
1528 
1529 		WARN_ON(!entry->bitmap);
1530 		return entry;
1531 	} else if (entry) {
1532 		if (entry->bitmap) {
1533 			/*
1534 			 * if previous extent entry covers the offset,
1535 			 * we should return it instead of the bitmap entry
1536 			 */
1537 			n = rb_prev(&entry->offset_index);
1538 			if (n) {
1539 				prev = rb_entry(n, struct btrfs_free_space,
1540 						offset_index);
1541 				if (!prev->bitmap &&
1542 				    prev->offset + prev->bytes > offset)
1543 					entry = prev;
1544 			}
1545 		}
1546 		return entry;
1547 	}
1548 
1549 	if (!prev)
1550 		return NULL;
1551 
1552 	/* find last entry before the 'offset' */
1553 	entry = prev;
1554 	if (entry->offset > offset) {
1555 		n = rb_prev(&entry->offset_index);
1556 		if (n) {
1557 			entry = rb_entry(n, struct btrfs_free_space,
1558 					offset_index);
1559 			ASSERT(entry->offset <= offset);
1560 		} else {
1561 			if (fuzzy)
1562 				return entry;
1563 			else
1564 				return NULL;
1565 		}
1566 	}
1567 
1568 	if (entry->bitmap) {
1569 		n = rb_prev(&entry->offset_index);
1570 		if (n) {
1571 			prev = rb_entry(n, struct btrfs_free_space,
1572 					offset_index);
1573 			if (!prev->bitmap &&
1574 			    prev->offset + prev->bytes > offset)
1575 				return prev;
1576 		}
1577 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1578 			return entry;
1579 	} else if (entry->offset + entry->bytes > offset)
1580 		return entry;
1581 
1582 	if (!fuzzy)
1583 		return NULL;
1584 
1585 	while (1) {
1586 		if (entry->bitmap) {
1587 			if (entry->offset + BITS_PER_BITMAP *
1588 			    ctl->unit > offset)
1589 				break;
1590 		} else {
1591 			if (entry->offset + entry->bytes > offset)
1592 				break;
1593 		}
1594 
1595 		n = rb_next(&entry->offset_index);
1596 		if (!n)
1597 			return NULL;
1598 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1599 	}
1600 	return entry;
1601 }
1602 
1603 static inline void
1604 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1605 		    struct btrfs_free_space *info)
1606 {
1607 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1608 	ctl->free_extents--;
1609 }
1610 
1611 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1612 			      struct btrfs_free_space *info)
1613 {
1614 	__unlink_free_space(ctl, info);
1615 	ctl->free_space -= info->bytes;
1616 }
1617 
1618 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1619 			   struct btrfs_free_space *info)
1620 {
1621 	int ret = 0;
1622 
1623 	ASSERT(info->bytes || info->bitmap);
1624 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1625 				 &info->offset_index, (info->bitmap != NULL));
1626 	if (ret)
1627 		return ret;
1628 
1629 	ctl->free_space += info->bytes;
1630 	ctl->free_extents++;
1631 	return ret;
1632 }
1633 
1634 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1635 {
1636 	struct btrfs_block_group_cache *block_group = ctl->private;
1637 	u64 max_bytes;
1638 	u64 bitmap_bytes;
1639 	u64 extent_bytes;
1640 	u64 size = block_group->key.offset;
1641 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1642 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1643 
1644 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1645 
1646 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1647 
1648 	/*
1649 	 * The goal is to keep the total amount of memory used per 1gb of space
1650 	 * at or below 32k, so we need to adjust how much memory we allow to be
1651 	 * used by extent based free space tracking
1652 	 */
1653 	if (size < SZ_1G)
1654 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1655 	else
1656 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1657 
1658 	/*
1659 	 * we want to account for 1 more bitmap than what we have so we can make
1660 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1661 	 * we add more bitmaps.
1662 	 */
1663 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1664 
1665 	if (bitmap_bytes >= max_bytes) {
1666 		ctl->extents_thresh = 0;
1667 		return;
1668 	}
1669 
1670 	/*
1671 	 * we want the extent entry threshold to always be at most 1/2 the max
1672 	 * bytes we can have, or whatever is less than that.
1673 	 */
1674 	extent_bytes = max_bytes - bitmap_bytes;
1675 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1676 
1677 	ctl->extents_thresh =
1678 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1679 }
1680 
1681 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1682 				       struct btrfs_free_space *info,
1683 				       u64 offset, u64 bytes)
1684 {
1685 	unsigned long start, count;
1686 
1687 	start = offset_to_bit(info->offset, ctl->unit, offset);
1688 	count = bytes_to_bits(bytes, ctl->unit);
1689 	ASSERT(start + count <= BITS_PER_BITMAP);
1690 
1691 	bitmap_clear(info->bitmap, start, count);
1692 
1693 	info->bytes -= bytes;
1694 }
1695 
1696 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1697 			      struct btrfs_free_space *info, u64 offset,
1698 			      u64 bytes)
1699 {
1700 	__bitmap_clear_bits(ctl, info, offset, bytes);
1701 	ctl->free_space -= bytes;
1702 }
1703 
1704 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1705 			    struct btrfs_free_space *info, u64 offset,
1706 			    u64 bytes)
1707 {
1708 	unsigned long start, count;
1709 
1710 	start = offset_to_bit(info->offset, ctl->unit, offset);
1711 	count = bytes_to_bits(bytes, ctl->unit);
1712 	ASSERT(start + count <= BITS_PER_BITMAP);
1713 
1714 	bitmap_set(info->bitmap, start, count);
1715 
1716 	info->bytes += bytes;
1717 	ctl->free_space += bytes;
1718 }
1719 
1720 /*
1721  * If we can not find suitable extent, we will use bytes to record
1722  * the size of the max extent.
1723  */
1724 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1725 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1726 			 u64 *bytes, bool for_alloc)
1727 {
1728 	unsigned long found_bits = 0;
1729 	unsigned long max_bits = 0;
1730 	unsigned long bits, i;
1731 	unsigned long next_zero;
1732 	unsigned long extent_bits;
1733 
1734 	/*
1735 	 * Skip searching the bitmap if we don't have a contiguous section that
1736 	 * is large enough for this allocation.
1737 	 */
1738 	if (for_alloc &&
1739 	    bitmap_info->max_extent_size &&
1740 	    bitmap_info->max_extent_size < *bytes) {
1741 		*bytes = bitmap_info->max_extent_size;
1742 		return -1;
1743 	}
1744 
1745 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1746 			  max_t(u64, *offset, bitmap_info->offset));
1747 	bits = bytes_to_bits(*bytes, ctl->unit);
1748 
1749 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1750 		if (for_alloc && bits == 1) {
1751 			found_bits = 1;
1752 			break;
1753 		}
1754 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1755 					       BITS_PER_BITMAP, i);
1756 		extent_bits = next_zero - i;
1757 		if (extent_bits >= bits) {
1758 			found_bits = extent_bits;
1759 			break;
1760 		} else if (extent_bits > max_bits) {
1761 			max_bits = extent_bits;
1762 		}
1763 		i = next_zero;
1764 	}
1765 
1766 	if (found_bits) {
1767 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1768 		*bytes = (u64)(found_bits) * ctl->unit;
1769 		return 0;
1770 	}
1771 
1772 	*bytes = (u64)(max_bits) * ctl->unit;
1773 	bitmap_info->max_extent_size = *bytes;
1774 	return -1;
1775 }
1776 
1777 /* Cache the size of the max extent in bytes */
1778 static struct btrfs_free_space *
1779 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1780 		unsigned long align, u64 *max_extent_size)
1781 {
1782 	struct btrfs_free_space *entry;
1783 	struct rb_node *node;
1784 	u64 tmp;
1785 	u64 align_off;
1786 	int ret;
1787 
1788 	if (!ctl->free_space_offset.rb_node)
1789 		goto out;
1790 
1791 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1792 	if (!entry)
1793 		goto out;
1794 
1795 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1796 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1797 		if (entry->bytes < *bytes) {
1798 			if (entry->bytes > *max_extent_size)
1799 				*max_extent_size = entry->bytes;
1800 			continue;
1801 		}
1802 
1803 		/* make sure the space returned is big enough
1804 		 * to match our requested alignment
1805 		 */
1806 		if (*bytes >= align) {
1807 			tmp = entry->offset - ctl->start + align - 1;
1808 			tmp = div64_u64(tmp, align);
1809 			tmp = tmp * align + ctl->start;
1810 			align_off = tmp - entry->offset;
1811 		} else {
1812 			align_off = 0;
1813 			tmp = entry->offset;
1814 		}
1815 
1816 		if (entry->bytes < *bytes + align_off) {
1817 			if (entry->bytes > *max_extent_size)
1818 				*max_extent_size = entry->bytes;
1819 			continue;
1820 		}
1821 
1822 		if (entry->bitmap) {
1823 			u64 size = *bytes;
1824 
1825 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1826 			if (!ret) {
1827 				*offset = tmp;
1828 				*bytes = size;
1829 				return entry;
1830 			} else if (size > *max_extent_size) {
1831 				*max_extent_size = size;
1832 			}
1833 			continue;
1834 		}
1835 
1836 		*offset = tmp;
1837 		*bytes = entry->bytes - align_off;
1838 		return entry;
1839 	}
1840 out:
1841 	return NULL;
1842 }
1843 
1844 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1845 			   struct btrfs_free_space *info, u64 offset)
1846 {
1847 	info->offset = offset_to_bitmap(ctl, offset);
1848 	info->bytes = 0;
1849 	INIT_LIST_HEAD(&info->list);
1850 	link_free_space(ctl, info);
1851 	ctl->total_bitmaps++;
1852 
1853 	ctl->op->recalc_thresholds(ctl);
1854 }
1855 
1856 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1857 			struct btrfs_free_space *bitmap_info)
1858 {
1859 	unlink_free_space(ctl, bitmap_info);
1860 	kfree(bitmap_info->bitmap);
1861 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1862 	ctl->total_bitmaps--;
1863 	ctl->op->recalc_thresholds(ctl);
1864 }
1865 
1866 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1867 			      struct btrfs_free_space *bitmap_info,
1868 			      u64 *offset, u64 *bytes)
1869 {
1870 	u64 end;
1871 	u64 search_start, search_bytes;
1872 	int ret;
1873 
1874 again:
1875 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1876 
1877 	/*
1878 	 * We need to search for bits in this bitmap.  We could only cover some
1879 	 * of the extent in this bitmap thanks to how we add space, so we need
1880 	 * to search for as much as it as we can and clear that amount, and then
1881 	 * go searching for the next bit.
1882 	 */
1883 	search_start = *offset;
1884 	search_bytes = ctl->unit;
1885 	search_bytes = min(search_bytes, end - search_start + 1);
1886 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1887 			    false);
1888 	if (ret < 0 || search_start != *offset)
1889 		return -EINVAL;
1890 
1891 	/* We may have found more bits than what we need */
1892 	search_bytes = min(search_bytes, *bytes);
1893 
1894 	/* Cannot clear past the end of the bitmap */
1895 	search_bytes = min(search_bytes, end - search_start + 1);
1896 
1897 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1898 	*offset += search_bytes;
1899 	*bytes -= search_bytes;
1900 
1901 	if (*bytes) {
1902 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1903 		if (!bitmap_info->bytes)
1904 			free_bitmap(ctl, bitmap_info);
1905 
1906 		/*
1907 		 * no entry after this bitmap, but we still have bytes to
1908 		 * remove, so something has gone wrong.
1909 		 */
1910 		if (!next)
1911 			return -EINVAL;
1912 
1913 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1914 				       offset_index);
1915 
1916 		/*
1917 		 * if the next entry isn't a bitmap we need to return to let the
1918 		 * extent stuff do its work.
1919 		 */
1920 		if (!bitmap_info->bitmap)
1921 			return -EAGAIN;
1922 
1923 		/*
1924 		 * Ok the next item is a bitmap, but it may not actually hold
1925 		 * the information for the rest of this free space stuff, so
1926 		 * look for it, and if we don't find it return so we can try
1927 		 * everything over again.
1928 		 */
1929 		search_start = *offset;
1930 		search_bytes = ctl->unit;
1931 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1932 				    &search_bytes, false);
1933 		if (ret < 0 || search_start != *offset)
1934 			return -EAGAIN;
1935 
1936 		goto again;
1937 	} else if (!bitmap_info->bytes)
1938 		free_bitmap(ctl, bitmap_info);
1939 
1940 	return 0;
1941 }
1942 
1943 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1944 			       struct btrfs_free_space *info, u64 offset,
1945 			       u64 bytes)
1946 {
1947 	u64 bytes_to_set = 0;
1948 	u64 end;
1949 
1950 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1951 
1952 	bytes_to_set = min(end - offset, bytes);
1953 
1954 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1955 
1956 	/*
1957 	 * We set some bytes, we have no idea what the max extent size is
1958 	 * anymore.
1959 	 */
1960 	info->max_extent_size = 0;
1961 
1962 	return bytes_to_set;
1963 
1964 }
1965 
1966 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1967 		      struct btrfs_free_space *info)
1968 {
1969 	struct btrfs_block_group_cache *block_group = ctl->private;
1970 	bool forced = false;
1971 
1972 #ifdef CONFIG_BTRFS_DEBUG
1973 	if (btrfs_should_fragment_free_space(block_group->fs_info->extent_root,
1974 					     block_group))
1975 		forced = true;
1976 #endif
1977 
1978 	/*
1979 	 * If we are below the extents threshold then we can add this as an
1980 	 * extent, and don't have to deal with the bitmap
1981 	 */
1982 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1983 		/*
1984 		 * If this block group has some small extents we don't want to
1985 		 * use up all of our free slots in the cache with them, we want
1986 		 * to reserve them to larger extents, however if we have plenty
1987 		 * of cache left then go ahead an dadd them, no sense in adding
1988 		 * the overhead of a bitmap if we don't have to.
1989 		 */
1990 		if (info->bytes <= block_group->sectorsize * 4) {
1991 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1992 				return false;
1993 		} else {
1994 			return false;
1995 		}
1996 	}
1997 
1998 	/*
1999 	 * The original block groups from mkfs can be really small, like 8
2000 	 * megabytes, so don't bother with a bitmap for those entries.  However
2001 	 * some block groups can be smaller than what a bitmap would cover but
2002 	 * are still large enough that they could overflow the 32k memory limit,
2003 	 * so allow those block groups to still be allowed to have a bitmap
2004 	 * entry.
2005 	 */
2006 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2007 		return false;
2008 
2009 	return true;
2010 }
2011 
2012 static const struct btrfs_free_space_op free_space_op = {
2013 	.recalc_thresholds	= recalculate_thresholds,
2014 	.use_bitmap		= use_bitmap,
2015 };
2016 
2017 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2018 			      struct btrfs_free_space *info)
2019 {
2020 	struct btrfs_free_space *bitmap_info;
2021 	struct btrfs_block_group_cache *block_group = NULL;
2022 	int added = 0;
2023 	u64 bytes, offset, bytes_added;
2024 	int ret;
2025 
2026 	bytes = info->bytes;
2027 	offset = info->offset;
2028 
2029 	if (!ctl->op->use_bitmap(ctl, info))
2030 		return 0;
2031 
2032 	if (ctl->op == &free_space_op)
2033 		block_group = ctl->private;
2034 again:
2035 	/*
2036 	 * Since we link bitmaps right into the cluster we need to see if we
2037 	 * have a cluster here, and if so and it has our bitmap we need to add
2038 	 * the free space to that bitmap.
2039 	 */
2040 	if (block_group && !list_empty(&block_group->cluster_list)) {
2041 		struct btrfs_free_cluster *cluster;
2042 		struct rb_node *node;
2043 		struct btrfs_free_space *entry;
2044 
2045 		cluster = list_entry(block_group->cluster_list.next,
2046 				     struct btrfs_free_cluster,
2047 				     block_group_list);
2048 		spin_lock(&cluster->lock);
2049 		node = rb_first(&cluster->root);
2050 		if (!node) {
2051 			spin_unlock(&cluster->lock);
2052 			goto no_cluster_bitmap;
2053 		}
2054 
2055 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2056 		if (!entry->bitmap) {
2057 			spin_unlock(&cluster->lock);
2058 			goto no_cluster_bitmap;
2059 		}
2060 
2061 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2062 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2063 							  offset, bytes);
2064 			bytes -= bytes_added;
2065 			offset += bytes_added;
2066 		}
2067 		spin_unlock(&cluster->lock);
2068 		if (!bytes) {
2069 			ret = 1;
2070 			goto out;
2071 		}
2072 	}
2073 
2074 no_cluster_bitmap:
2075 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2076 					 1, 0);
2077 	if (!bitmap_info) {
2078 		ASSERT(added == 0);
2079 		goto new_bitmap;
2080 	}
2081 
2082 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2083 	bytes -= bytes_added;
2084 	offset += bytes_added;
2085 	added = 0;
2086 
2087 	if (!bytes) {
2088 		ret = 1;
2089 		goto out;
2090 	} else
2091 		goto again;
2092 
2093 new_bitmap:
2094 	if (info && info->bitmap) {
2095 		add_new_bitmap(ctl, info, offset);
2096 		added = 1;
2097 		info = NULL;
2098 		goto again;
2099 	} else {
2100 		spin_unlock(&ctl->tree_lock);
2101 
2102 		/* no pre-allocated info, allocate a new one */
2103 		if (!info) {
2104 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2105 						 GFP_NOFS);
2106 			if (!info) {
2107 				spin_lock(&ctl->tree_lock);
2108 				ret = -ENOMEM;
2109 				goto out;
2110 			}
2111 		}
2112 
2113 		/* allocate the bitmap */
2114 		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2115 		spin_lock(&ctl->tree_lock);
2116 		if (!info->bitmap) {
2117 			ret = -ENOMEM;
2118 			goto out;
2119 		}
2120 		goto again;
2121 	}
2122 
2123 out:
2124 	if (info) {
2125 		if (info->bitmap)
2126 			kfree(info->bitmap);
2127 		kmem_cache_free(btrfs_free_space_cachep, info);
2128 	}
2129 
2130 	return ret;
2131 }
2132 
2133 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2134 			  struct btrfs_free_space *info, bool update_stat)
2135 {
2136 	struct btrfs_free_space *left_info;
2137 	struct btrfs_free_space *right_info;
2138 	bool merged = false;
2139 	u64 offset = info->offset;
2140 	u64 bytes = info->bytes;
2141 
2142 	/*
2143 	 * first we want to see if there is free space adjacent to the range we
2144 	 * are adding, if there is remove that struct and add a new one to
2145 	 * cover the entire range
2146 	 */
2147 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2148 	if (right_info && rb_prev(&right_info->offset_index))
2149 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2150 				     struct btrfs_free_space, offset_index);
2151 	else
2152 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2153 
2154 	if (right_info && !right_info->bitmap) {
2155 		if (update_stat)
2156 			unlink_free_space(ctl, right_info);
2157 		else
2158 			__unlink_free_space(ctl, right_info);
2159 		info->bytes += right_info->bytes;
2160 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2161 		merged = true;
2162 	}
2163 
2164 	if (left_info && !left_info->bitmap &&
2165 	    left_info->offset + left_info->bytes == offset) {
2166 		if (update_stat)
2167 			unlink_free_space(ctl, left_info);
2168 		else
2169 			__unlink_free_space(ctl, left_info);
2170 		info->offset = left_info->offset;
2171 		info->bytes += left_info->bytes;
2172 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2173 		merged = true;
2174 	}
2175 
2176 	return merged;
2177 }
2178 
2179 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2180 				     struct btrfs_free_space *info,
2181 				     bool update_stat)
2182 {
2183 	struct btrfs_free_space *bitmap;
2184 	unsigned long i;
2185 	unsigned long j;
2186 	const u64 end = info->offset + info->bytes;
2187 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2188 	u64 bytes;
2189 
2190 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2191 	if (!bitmap)
2192 		return false;
2193 
2194 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2195 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2196 	if (j == i)
2197 		return false;
2198 	bytes = (j - i) * ctl->unit;
2199 	info->bytes += bytes;
2200 
2201 	if (update_stat)
2202 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2203 	else
2204 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2205 
2206 	if (!bitmap->bytes)
2207 		free_bitmap(ctl, bitmap);
2208 
2209 	return true;
2210 }
2211 
2212 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2213 				       struct btrfs_free_space *info,
2214 				       bool update_stat)
2215 {
2216 	struct btrfs_free_space *bitmap;
2217 	u64 bitmap_offset;
2218 	unsigned long i;
2219 	unsigned long j;
2220 	unsigned long prev_j;
2221 	u64 bytes;
2222 
2223 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2224 	/* If we're on a boundary, try the previous logical bitmap. */
2225 	if (bitmap_offset == info->offset) {
2226 		if (info->offset == 0)
2227 			return false;
2228 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2229 	}
2230 
2231 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2232 	if (!bitmap)
2233 		return false;
2234 
2235 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2236 	j = 0;
2237 	prev_j = (unsigned long)-1;
2238 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2239 		if (j > i)
2240 			break;
2241 		prev_j = j;
2242 	}
2243 	if (prev_j == i)
2244 		return false;
2245 
2246 	if (prev_j == (unsigned long)-1)
2247 		bytes = (i + 1) * ctl->unit;
2248 	else
2249 		bytes = (i - prev_j) * ctl->unit;
2250 
2251 	info->offset -= bytes;
2252 	info->bytes += bytes;
2253 
2254 	if (update_stat)
2255 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2256 	else
2257 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2258 
2259 	if (!bitmap->bytes)
2260 		free_bitmap(ctl, bitmap);
2261 
2262 	return true;
2263 }
2264 
2265 /*
2266  * We prefer always to allocate from extent entries, both for clustered and
2267  * non-clustered allocation requests. So when attempting to add a new extent
2268  * entry, try to see if there's adjacent free space in bitmap entries, and if
2269  * there is, migrate that space from the bitmaps to the extent.
2270  * Like this we get better chances of satisfying space allocation requests
2271  * because we attempt to satisfy them based on a single cache entry, and never
2272  * on 2 or more entries - even if the entries represent a contiguous free space
2273  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2274  * ends).
2275  */
2276 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2277 			      struct btrfs_free_space *info,
2278 			      bool update_stat)
2279 {
2280 	/*
2281 	 * Only work with disconnected entries, as we can change their offset,
2282 	 * and must be extent entries.
2283 	 */
2284 	ASSERT(!info->bitmap);
2285 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2286 
2287 	if (ctl->total_bitmaps > 0) {
2288 		bool stole_end;
2289 		bool stole_front = false;
2290 
2291 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2292 		if (ctl->total_bitmaps > 0)
2293 			stole_front = steal_from_bitmap_to_front(ctl, info,
2294 								 update_stat);
2295 
2296 		if (stole_end || stole_front)
2297 			try_merge_free_space(ctl, info, update_stat);
2298 	}
2299 }
2300 
2301 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
2302 			   u64 offset, u64 bytes)
2303 {
2304 	struct btrfs_free_space *info;
2305 	int ret = 0;
2306 
2307 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2308 	if (!info)
2309 		return -ENOMEM;
2310 
2311 	info->offset = offset;
2312 	info->bytes = bytes;
2313 	RB_CLEAR_NODE(&info->offset_index);
2314 
2315 	spin_lock(&ctl->tree_lock);
2316 
2317 	if (try_merge_free_space(ctl, info, true))
2318 		goto link;
2319 
2320 	/*
2321 	 * There was no extent directly to the left or right of this new
2322 	 * extent then we know we're going to have to allocate a new extent, so
2323 	 * before we do that see if we need to drop this into a bitmap
2324 	 */
2325 	ret = insert_into_bitmap(ctl, info);
2326 	if (ret < 0) {
2327 		goto out;
2328 	} else if (ret) {
2329 		ret = 0;
2330 		goto out;
2331 	}
2332 link:
2333 	/*
2334 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2335 	 * going to add the new free space to existing bitmap entries - because
2336 	 * that would mean unnecessary work that would be reverted. Therefore
2337 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2338 	 */
2339 	steal_from_bitmap(ctl, info, true);
2340 
2341 	ret = link_free_space(ctl, info);
2342 	if (ret)
2343 		kmem_cache_free(btrfs_free_space_cachep, info);
2344 out:
2345 	spin_unlock(&ctl->tree_lock);
2346 
2347 	if (ret) {
2348 		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2349 		ASSERT(ret != -EEXIST);
2350 	}
2351 
2352 	return ret;
2353 }
2354 
2355 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2356 			    u64 offset, u64 bytes)
2357 {
2358 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2359 	struct btrfs_free_space *info;
2360 	int ret;
2361 	bool re_search = false;
2362 
2363 	spin_lock(&ctl->tree_lock);
2364 
2365 again:
2366 	ret = 0;
2367 	if (!bytes)
2368 		goto out_lock;
2369 
2370 	info = tree_search_offset(ctl, offset, 0, 0);
2371 	if (!info) {
2372 		/*
2373 		 * oops didn't find an extent that matched the space we wanted
2374 		 * to remove, look for a bitmap instead
2375 		 */
2376 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2377 					  1, 0);
2378 		if (!info) {
2379 			/*
2380 			 * If we found a partial bit of our free space in a
2381 			 * bitmap but then couldn't find the other part this may
2382 			 * be a problem, so WARN about it.
2383 			 */
2384 			WARN_ON(re_search);
2385 			goto out_lock;
2386 		}
2387 	}
2388 
2389 	re_search = false;
2390 	if (!info->bitmap) {
2391 		unlink_free_space(ctl, info);
2392 		if (offset == info->offset) {
2393 			u64 to_free = min(bytes, info->bytes);
2394 
2395 			info->bytes -= to_free;
2396 			info->offset += to_free;
2397 			if (info->bytes) {
2398 				ret = link_free_space(ctl, info);
2399 				WARN_ON(ret);
2400 			} else {
2401 				kmem_cache_free(btrfs_free_space_cachep, info);
2402 			}
2403 
2404 			offset += to_free;
2405 			bytes -= to_free;
2406 			goto again;
2407 		} else {
2408 			u64 old_end = info->bytes + info->offset;
2409 
2410 			info->bytes = offset - info->offset;
2411 			ret = link_free_space(ctl, info);
2412 			WARN_ON(ret);
2413 			if (ret)
2414 				goto out_lock;
2415 
2416 			/* Not enough bytes in this entry to satisfy us */
2417 			if (old_end < offset + bytes) {
2418 				bytes -= old_end - offset;
2419 				offset = old_end;
2420 				goto again;
2421 			} else if (old_end == offset + bytes) {
2422 				/* all done */
2423 				goto out_lock;
2424 			}
2425 			spin_unlock(&ctl->tree_lock);
2426 
2427 			ret = btrfs_add_free_space(block_group, offset + bytes,
2428 						   old_end - (offset + bytes));
2429 			WARN_ON(ret);
2430 			goto out;
2431 		}
2432 	}
2433 
2434 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2435 	if (ret == -EAGAIN) {
2436 		re_search = true;
2437 		goto again;
2438 	}
2439 out_lock:
2440 	spin_unlock(&ctl->tree_lock);
2441 out:
2442 	return ret;
2443 }
2444 
2445 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2446 			   u64 bytes)
2447 {
2448 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2449 	struct btrfs_free_space *info;
2450 	struct rb_node *n;
2451 	int count = 0;
2452 
2453 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2454 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2455 		if (info->bytes >= bytes && !block_group->ro)
2456 			count++;
2457 		btrfs_crit(block_group->fs_info,
2458 			   "entry offset %llu, bytes %llu, bitmap %s",
2459 			   info->offset, info->bytes,
2460 		       (info->bitmap) ? "yes" : "no");
2461 	}
2462 	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2463 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2464 	btrfs_info(block_group->fs_info,
2465 		   "%d blocks of free space at or bigger than bytes is", count);
2466 }
2467 
2468 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2469 {
2470 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2471 
2472 	spin_lock_init(&ctl->tree_lock);
2473 	ctl->unit = block_group->sectorsize;
2474 	ctl->start = block_group->key.objectid;
2475 	ctl->private = block_group;
2476 	ctl->op = &free_space_op;
2477 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2478 	mutex_init(&ctl->cache_writeout_mutex);
2479 
2480 	/*
2481 	 * we only want to have 32k of ram per block group for keeping
2482 	 * track of free space, and if we pass 1/2 of that we want to
2483 	 * start converting things over to using bitmaps
2484 	 */
2485 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2486 }
2487 
2488 /*
2489  * for a given cluster, put all of its extents back into the free
2490  * space cache.  If the block group passed doesn't match the block group
2491  * pointed to by the cluster, someone else raced in and freed the
2492  * cluster already.  In that case, we just return without changing anything
2493  */
2494 static int
2495 __btrfs_return_cluster_to_free_space(
2496 			     struct btrfs_block_group_cache *block_group,
2497 			     struct btrfs_free_cluster *cluster)
2498 {
2499 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2500 	struct btrfs_free_space *entry;
2501 	struct rb_node *node;
2502 
2503 	spin_lock(&cluster->lock);
2504 	if (cluster->block_group != block_group)
2505 		goto out;
2506 
2507 	cluster->block_group = NULL;
2508 	cluster->window_start = 0;
2509 	list_del_init(&cluster->block_group_list);
2510 
2511 	node = rb_first(&cluster->root);
2512 	while (node) {
2513 		bool bitmap;
2514 
2515 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2516 		node = rb_next(&entry->offset_index);
2517 		rb_erase(&entry->offset_index, &cluster->root);
2518 		RB_CLEAR_NODE(&entry->offset_index);
2519 
2520 		bitmap = (entry->bitmap != NULL);
2521 		if (!bitmap) {
2522 			try_merge_free_space(ctl, entry, false);
2523 			steal_from_bitmap(ctl, entry, false);
2524 		}
2525 		tree_insert_offset(&ctl->free_space_offset,
2526 				   entry->offset, &entry->offset_index, bitmap);
2527 	}
2528 	cluster->root = RB_ROOT;
2529 
2530 out:
2531 	spin_unlock(&cluster->lock);
2532 	btrfs_put_block_group(block_group);
2533 	return 0;
2534 }
2535 
2536 static void __btrfs_remove_free_space_cache_locked(
2537 				struct btrfs_free_space_ctl *ctl)
2538 {
2539 	struct btrfs_free_space *info;
2540 	struct rb_node *node;
2541 
2542 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2543 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2544 		if (!info->bitmap) {
2545 			unlink_free_space(ctl, info);
2546 			kmem_cache_free(btrfs_free_space_cachep, info);
2547 		} else {
2548 			free_bitmap(ctl, info);
2549 		}
2550 
2551 		cond_resched_lock(&ctl->tree_lock);
2552 	}
2553 }
2554 
2555 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2556 {
2557 	spin_lock(&ctl->tree_lock);
2558 	__btrfs_remove_free_space_cache_locked(ctl);
2559 	spin_unlock(&ctl->tree_lock);
2560 }
2561 
2562 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2563 {
2564 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2565 	struct btrfs_free_cluster *cluster;
2566 	struct list_head *head;
2567 
2568 	spin_lock(&ctl->tree_lock);
2569 	while ((head = block_group->cluster_list.next) !=
2570 	       &block_group->cluster_list) {
2571 		cluster = list_entry(head, struct btrfs_free_cluster,
2572 				     block_group_list);
2573 
2574 		WARN_ON(cluster->block_group != block_group);
2575 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2576 
2577 		cond_resched_lock(&ctl->tree_lock);
2578 	}
2579 	__btrfs_remove_free_space_cache_locked(ctl);
2580 	spin_unlock(&ctl->tree_lock);
2581 
2582 }
2583 
2584 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2585 			       u64 offset, u64 bytes, u64 empty_size,
2586 			       u64 *max_extent_size)
2587 {
2588 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2589 	struct btrfs_free_space *entry = NULL;
2590 	u64 bytes_search = bytes + empty_size;
2591 	u64 ret = 0;
2592 	u64 align_gap = 0;
2593 	u64 align_gap_len = 0;
2594 
2595 	spin_lock(&ctl->tree_lock);
2596 	entry = find_free_space(ctl, &offset, &bytes_search,
2597 				block_group->full_stripe_len, max_extent_size);
2598 	if (!entry)
2599 		goto out;
2600 
2601 	ret = offset;
2602 	if (entry->bitmap) {
2603 		bitmap_clear_bits(ctl, entry, offset, bytes);
2604 		if (!entry->bytes)
2605 			free_bitmap(ctl, entry);
2606 	} else {
2607 		unlink_free_space(ctl, entry);
2608 		align_gap_len = offset - entry->offset;
2609 		align_gap = entry->offset;
2610 
2611 		entry->offset = offset + bytes;
2612 		WARN_ON(entry->bytes < bytes + align_gap_len);
2613 
2614 		entry->bytes -= bytes + align_gap_len;
2615 		if (!entry->bytes)
2616 			kmem_cache_free(btrfs_free_space_cachep, entry);
2617 		else
2618 			link_free_space(ctl, entry);
2619 	}
2620 out:
2621 	spin_unlock(&ctl->tree_lock);
2622 
2623 	if (align_gap_len)
2624 		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
2625 	return ret;
2626 }
2627 
2628 /*
2629  * given a cluster, put all of its extents back into the free space
2630  * cache.  If a block group is passed, this function will only free
2631  * a cluster that belongs to the passed block group.
2632  *
2633  * Otherwise, it'll get a reference on the block group pointed to by the
2634  * cluster and remove the cluster from it.
2635  */
2636 int btrfs_return_cluster_to_free_space(
2637 			       struct btrfs_block_group_cache *block_group,
2638 			       struct btrfs_free_cluster *cluster)
2639 {
2640 	struct btrfs_free_space_ctl *ctl;
2641 	int ret;
2642 
2643 	/* first, get a safe pointer to the block group */
2644 	spin_lock(&cluster->lock);
2645 	if (!block_group) {
2646 		block_group = cluster->block_group;
2647 		if (!block_group) {
2648 			spin_unlock(&cluster->lock);
2649 			return 0;
2650 		}
2651 	} else if (cluster->block_group != block_group) {
2652 		/* someone else has already freed it don't redo their work */
2653 		spin_unlock(&cluster->lock);
2654 		return 0;
2655 	}
2656 	atomic_inc(&block_group->count);
2657 	spin_unlock(&cluster->lock);
2658 
2659 	ctl = block_group->free_space_ctl;
2660 
2661 	/* now return any extents the cluster had on it */
2662 	spin_lock(&ctl->tree_lock);
2663 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2664 	spin_unlock(&ctl->tree_lock);
2665 
2666 	/* finally drop our ref */
2667 	btrfs_put_block_group(block_group);
2668 	return ret;
2669 }
2670 
2671 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2672 				   struct btrfs_free_cluster *cluster,
2673 				   struct btrfs_free_space *entry,
2674 				   u64 bytes, u64 min_start,
2675 				   u64 *max_extent_size)
2676 {
2677 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2678 	int err;
2679 	u64 search_start = cluster->window_start;
2680 	u64 search_bytes = bytes;
2681 	u64 ret = 0;
2682 
2683 	search_start = min_start;
2684 	search_bytes = bytes;
2685 
2686 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2687 	if (err) {
2688 		if (search_bytes > *max_extent_size)
2689 			*max_extent_size = search_bytes;
2690 		return 0;
2691 	}
2692 
2693 	ret = search_start;
2694 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2695 
2696 	return ret;
2697 }
2698 
2699 /*
2700  * given a cluster, try to allocate 'bytes' from it, returns 0
2701  * if it couldn't find anything suitably large, or a logical disk offset
2702  * if things worked out
2703  */
2704 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2705 			     struct btrfs_free_cluster *cluster, u64 bytes,
2706 			     u64 min_start, u64 *max_extent_size)
2707 {
2708 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2709 	struct btrfs_free_space *entry = NULL;
2710 	struct rb_node *node;
2711 	u64 ret = 0;
2712 
2713 	spin_lock(&cluster->lock);
2714 	if (bytes > cluster->max_size)
2715 		goto out;
2716 
2717 	if (cluster->block_group != block_group)
2718 		goto out;
2719 
2720 	node = rb_first(&cluster->root);
2721 	if (!node)
2722 		goto out;
2723 
2724 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2725 	while (1) {
2726 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2727 			*max_extent_size = entry->bytes;
2728 
2729 		if (entry->bytes < bytes ||
2730 		    (!entry->bitmap && entry->offset < min_start)) {
2731 			node = rb_next(&entry->offset_index);
2732 			if (!node)
2733 				break;
2734 			entry = rb_entry(node, struct btrfs_free_space,
2735 					 offset_index);
2736 			continue;
2737 		}
2738 
2739 		if (entry->bitmap) {
2740 			ret = btrfs_alloc_from_bitmap(block_group,
2741 						      cluster, entry, bytes,
2742 						      cluster->window_start,
2743 						      max_extent_size);
2744 			if (ret == 0) {
2745 				node = rb_next(&entry->offset_index);
2746 				if (!node)
2747 					break;
2748 				entry = rb_entry(node, struct btrfs_free_space,
2749 						 offset_index);
2750 				continue;
2751 			}
2752 			cluster->window_start += bytes;
2753 		} else {
2754 			ret = entry->offset;
2755 
2756 			entry->offset += bytes;
2757 			entry->bytes -= bytes;
2758 		}
2759 
2760 		if (entry->bytes == 0)
2761 			rb_erase(&entry->offset_index, &cluster->root);
2762 		break;
2763 	}
2764 out:
2765 	spin_unlock(&cluster->lock);
2766 
2767 	if (!ret)
2768 		return 0;
2769 
2770 	spin_lock(&ctl->tree_lock);
2771 
2772 	ctl->free_space -= bytes;
2773 	if (entry->bytes == 0) {
2774 		ctl->free_extents--;
2775 		if (entry->bitmap) {
2776 			kfree(entry->bitmap);
2777 			ctl->total_bitmaps--;
2778 			ctl->op->recalc_thresholds(ctl);
2779 		}
2780 		kmem_cache_free(btrfs_free_space_cachep, entry);
2781 	}
2782 
2783 	spin_unlock(&ctl->tree_lock);
2784 
2785 	return ret;
2786 }
2787 
2788 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2789 				struct btrfs_free_space *entry,
2790 				struct btrfs_free_cluster *cluster,
2791 				u64 offset, u64 bytes,
2792 				u64 cont1_bytes, u64 min_bytes)
2793 {
2794 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2795 	unsigned long next_zero;
2796 	unsigned long i;
2797 	unsigned long want_bits;
2798 	unsigned long min_bits;
2799 	unsigned long found_bits;
2800 	unsigned long max_bits = 0;
2801 	unsigned long start = 0;
2802 	unsigned long total_found = 0;
2803 	int ret;
2804 
2805 	i = offset_to_bit(entry->offset, ctl->unit,
2806 			  max_t(u64, offset, entry->offset));
2807 	want_bits = bytes_to_bits(bytes, ctl->unit);
2808 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2809 
2810 	/*
2811 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2812 	 * fragmented.
2813 	 */
2814 	if (entry->max_extent_size &&
2815 	    entry->max_extent_size < cont1_bytes)
2816 		return -ENOSPC;
2817 again:
2818 	found_bits = 0;
2819 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2820 		next_zero = find_next_zero_bit(entry->bitmap,
2821 					       BITS_PER_BITMAP, i);
2822 		if (next_zero - i >= min_bits) {
2823 			found_bits = next_zero - i;
2824 			if (found_bits > max_bits)
2825 				max_bits = found_bits;
2826 			break;
2827 		}
2828 		if (next_zero - i > max_bits)
2829 			max_bits = next_zero - i;
2830 		i = next_zero;
2831 	}
2832 
2833 	if (!found_bits) {
2834 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2835 		return -ENOSPC;
2836 	}
2837 
2838 	if (!total_found) {
2839 		start = i;
2840 		cluster->max_size = 0;
2841 	}
2842 
2843 	total_found += found_bits;
2844 
2845 	if (cluster->max_size < found_bits * ctl->unit)
2846 		cluster->max_size = found_bits * ctl->unit;
2847 
2848 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2849 		i = next_zero + 1;
2850 		goto again;
2851 	}
2852 
2853 	cluster->window_start = start * ctl->unit + entry->offset;
2854 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2855 	ret = tree_insert_offset(&cluster->root, entry->offset,
2856 				 &entry->offset_index, 1);
2857 	ASSERT(!ret); /* -EEXIST; Logic error */
2858 
2859 	trace_btrfs_setup_cluster(block_group, cluster,
2860 				  total_found * ctl->unit, 1);
2861 	return 0;
2862 }
2863 
2864 /*
2865  * This searches the block group for just extents to fill the cluster with.
2866  * Try to find a cluster with at least bytes total bytes, at least one
2867  * extent of cont1_bytes, and other clusters of at least min_bytes.
2868  */
2869 static noinline int
2870 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2871 			struct btrfs_free_cluster *cluster,
2872 			struct list_head *bitmaps, u64 offset, u64 bytes,
2873 			u64 cont1_bytes, u64 min_bytes)
2874 {
2875 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2876 	struct btrfs_free_space *first = NULL;
2877 	struct btrfs_free_space *entry = NULL;
2878 	struct btrfs_free_space *last;
2879 	struct rb_node *node;
2880 	u64 window_free;
2881 	u64 max_extent;
2882 	u64 total_size = 0;
2883 
2884 	entry = tree_search_offset(ctl, offset, 0, 1);
2885 	if (!entry)
2886 		return -ENOSPC;
2887 
2888 	/*
2889 	 * We don't want bitmaps, so just move along until we find a normal
2890 	 * extent entry.
2891 	 */
2892 	while (entry->bitmap || entry->bytes < min_bytes) {
2893 		if (entry->bitmap && list_empty(&entry->list))
2894 			list_add_tail(&entry->list, bitmaps);
2895 		node = rb_next(&entry->offset_index);
2896 		if (!node)
2897 			return -ENOSPC;
2898 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2899 	}
2900 
2901 	window_free = entry->bytes;
2902 	max_extent = entry->bytes;
2903 	first = entry;
2904 	last = entry;
2905 
2906 	for (node = rb_next(&entry->offset_index); node;
2907 	     node = rb_next(&entry->offset_index)) {
2908 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2909 
2910 		if (entry->bitmap) {
2911 			if (list_empty(&entry->list))
2912 				list_add_tail(&entry->list, bitmaps);
2913 			continue;
2914 		}
2915 
2916 		if (entry->bytes < min_bytes)
2917 			continue;
2918 
2919 		last = entry;
2920 		window_free += entry->bytes;
2921 		if (entry->bytes > max_extent)
2922 			max_extent = entry->bytes;
2923 	}
2924 
2925 	if (window_free < bytes || max_extent < cont1_bytes)
2926 		return -ENOSPC;
2927 
2928 	cluster->window_start = first->offset;
2929 
2930 	node = &first->offset_index;
2931 
2932 	/*
2933 	 * now we've found our entries, pull them out of the free space
2934 	 * cache and put them into the cluster rbtree
2935 	 */
2936 	do {
2937 		int ret;
2938 
2939 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2940 		node = rb_next(&entry->offset_index);
2941 		if (entry->bitmap || entry->bytes < min_bytes)
2942 			continue;
2943 
2944 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2945 		ret = tree_insert_offset(&cluster->root, entry->offset,
2946 					 &entry->offset_index, 0);
2947 		total_size += entry->bytes;
2948 		ASSERT(!ret); /* -EEXIST; Logic error */
2949 	} while (node && entry != last);
2950 
2951 	cluster->max_size = max_extent;
2952 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2953 	return 0;
2954 }
2955 
2956 /*
2957  * This specifically looks for bitmaps that may work in the cluster, we assume
2958  * that we have already failed to find extents that will work.
2959  */
2960 static noinline int
2961 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2962 		     struct btrfs_free_cluster *cluster,
2963 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2964 		     u64 cont1_bytes, u64 min_bytes)
2965 {
2966 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2967 	struct btrfs_free_space *entry = NULL;
2968 	int ret = -ENOSPC;
2969 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2970 
2971 	if (ctl->total_bitmaps == 0)
2972 		return -ENOSPC;
2973 
2974 	/*
2975 	 * The bitmap that covers offset won't be in the list unless offset
2976 	 * is just its start offset.
2977 	 */
2978 	if (!list_empty(bitmaps))
2979 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2980 
2981 	if (!entry || entry->offset != bitmap_offset) {
2982 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2983 		if (entry && list_empty(&entry->list))
2984 			list_add(&entry->list, bitmaps);
2985 	}
2986 
2987 	list_for_each_entry(entry, bitmaps, list) {
2988 		if (entry->bytes < bytes)
2989 			continue;
2990 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2991 					   bytes, cont1_bytes, min_bytes);
2992 		if (!ret)
2993 			return 0;
2994 	}
2995 
2996 	/*
2997 	 * The bitmaps list has all the bitmaps that record free space
2998 	 * starting after offset, so no more search is required.
2999 	 */
3000 	return -ENOSPC;
3001 }
3002 
3003 /*
3004  * here we try to find a cluster of blocks in a block group.  The goal
3005  * is to find at least bytes+empty_size.
3006  * We might not find them all in one contiguous area.
3007  *
3008  * returns zero and sets up cluster if things worked out, otherwise
3009  * it returns -enospc
3010  */
3011 int btrfs_find_space_cluster(struct btrfs_root *root,
3012 			     struct btrfs_block_group_cache *block_group,
3013 			     struct btrfs_free_cluster *cluster,
3014 			     u64 offset, u64 bytes, u64 empty_size)
3015 {
3016 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3017 	struct btrfs_free_space *entry, *tmp;
3018 	LIST_HEAD(bitmaps);
3019 	u64 min_bytes;
3020 	u64 cont1_bytes;
3021 	int ret;
3022 
3023 	/*
3024 	 * Choose the minimum extent size we'll require for this
3025 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3026 	 * For metadata, allow allocates with smaller extents.  For
3027 	 * data, keep it dense.
3028 	 */
3029 	if (btrfs_test_opt(root, SSD_SPREAD)) {
3030 		cont1_bytes = min_bytes = bytes + empty_size;
3031 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3032 		cont1_bytes = bytes;
3033 		min_bytes = block_group->sectorsize;
3034 	} else {
3035 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3036 		min_bytes = block_group->sectorsize;
3037 	}
3038 
3039 	spin_lock(&ctl->tree_lock);
3040 
3041 	/*
3042 	 * If we know we don't have enough space to make a cluster don't even
3043 	 * bother doing all the work to try and find one.
3044 	 */
3045 	if (ctl->free_space < bytes) {
3046 		spin_unlock(&ctl->tree_lock);
3047 		return -ENOSPC;
3048 	}
3049 
3050 	spin_lock(&cluster->lock);
3051 
3052 	/* someone already found a cluster, hooray */
3053 	if (cluster->block_group) {
3054 		ret = 0;
3055 		goto out;
3056 	}
3057 
3058 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3059 				 min_bytes);
3060 
3061 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3062 				      bytes + empty_size,
3063 				      cont1_bytes, min_bytes);
3064 	if (ret)
3065 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3066 					   offset, bytes + empty_size,
3067 					   cont1_bytes, min_bytes);
3068 
3069 	/* Clear our temporary list */
3070 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3071 		list_del_init(&entry->list);
3072 
3073 	if (!ret) {
3074 		atomic_inc(&block_group->count);
3075 		list_add_tail(&cluster->block_group_list,
3076 			      &block_group->cluster_list);
3077 		cluster->block_group = block_group;
3078 	} else {
3079 		trace_btrfs_failed_cluster_setup(block_group);
3080 	}
3081 out:
3082 	spin_unlock(&cluster->lock);
3083 	spin_unlock(&ctl->tree_lock);
3084 
3085 	return ret;
3086 }
3087 
3088 /*
3089  * simple code to zero out a cluster
3090  */
3091 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3092 {
3093 	spin_lock_init(&cluster->lock);
3094 	spin_lock_init(&cluster->refill_lock);
3095 	cluster->root = RB_ROOT;
3096 	cluster->max_size = 0;
3097 	cluster->fragmented = false;
3098 	INIT_LIST_HEAD(&cluster->block_group_list);
3099 	cluster->block_group = NULL;
3100 }
3101 
3102 static int do_trimming(struct btrfs_block_group_cache *block_group,
3103 		       u64 *total_trimmed, u64 start, u64 bytes,
3104 		       u64 reserved_start, u64 reserved_bytes,
3105 		       struct btrfs_trim_range *trim_entry)
3106 {
3107 	struct btrfs_space_info *space_info = block_group->space_info;
3108 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3109 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3110 	int ret;
3111 	int update = 0;
3112 	u64 trimmed = 0;
3113 
3114 	spin_lock(&space_info->lock);
3115 	spin_lock(&block_group->lock);
3116 	if (!block_group->ro) {
3117 		block_group->reserved += reserved_bytes;
3118 		space_info->bytes_reserved += reserved_bytes;
3119 		update = 1;
3120 	}
3121 	spin_unlock(&block_group->lock);
3122 	spin_unlock(&space_info->lock);
3123 
3124 	ret = btrfs_discard_extent(fs_info->extent_root,
3125 				   start, bytes, &trimmed);
3126 	if (!ret)
3127 		*total_trimmed += trimmed;
3128 
3129 	mutex_lock(&ctl->cache_writeout_mutex);
3130 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3131 	list_del(&trim_entry->list);
3132 	mutex_unlock(&ctl->cache_writeout_mutex);
3133 
3134 	if (update) {
3135 		spin_lock(&space_info->lock);
3136 		spin_lock(&block_group->lock);
3137 		if (block_group->ro)
3138 			space_info->bytes_readonly += reserved_bytes;
3139 		block_group->reserved -= reserved_bytes;
3140 		space_info->bytes_reserved -= reserved_bytes;
3141 		spin_unlock(&space_info->lock);
3142 		spin_unlock(&block_group->lock);
3143 	}
3144 
3145 	return ret;
3146 }
3147 
3148 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3149 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3150 {
3151 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3152 	struct btrfs_free_space *entry;
3153 	struct rb_node *node;
3154 	int ret = 0;
3155 	u64 extent_start;
3156 	u64 extent_bytes;
3157 	u64 bytes;
3158 
3159 	while (start < end) {
3160 		struct btrfs_trim_range trim_entry;
3161 
3162 		mutex_lock(&ctl->cache_writeout_mutex);
3163 		spin_lock(&ctl->tree_lock);
3164 
3165 		if (ctl->free_space < minlen) {
3166 			spin_unlock(&ctl->tree_lock);
3167 			mutex_unlock(&ctl->cache_writeout_mutex);
3168 			break;
3169 		}
3170 
3171 		entry = tree_search_offset(ctl, start, 0, 1);
3172 		if (!entry) {
3173 			spin_unlock(&ctl->tree_lock);
3174 			mutex_unlock(&ctl->cache_writeout_mutex);
3175 			break;
3176 		}
3177 
3178 		/* skip bitmaps */
3179 		while (entry->bitmap) {
3180 			node = rb_next(&entry->offset_index);
3181 			if (!node) {
3182 				spin_unlock(&ctl->tree_lock);
3183 				mutex_unlock(&ctl->cache_writeout_mutex);
3184 				goto out;
3185 			}
3186 			entry = rb_entry(node, struct btrfs_free_space,
3187 					 offset_index);
3188 		}
3189 
3190 		if (entry->offset >= end) {
3191 			spin_unlock(&ctl->tree_lock);
3192 			mutex_unlock(&ctl->cache_writeout_mutex);
3193 			break;
3194 		}
3195 
3196 		extent_start = entry->offset;
3197 		extent_bytes = entry->bytes;
3198 		start = max(start, extent_start);
3199 		bytes = min(extent_start + extent_bytes, end) - start;
3200 		if (bytes < minlen) {
3201 			spin_unlock(&ctl->tree_lock);
3202 			mutex_unlock(&ctl->cache_writeout_mutex);
3203 			goto next;
3204 		}
3205 
3206 		unlink_free_space(ctl, entry);
3207 		kmem_cache_free(btrfs_free_space_cachep, entry);
3208 
3209 		spin_unlock(&ctl->tree_lock);
3210 		trim_entry.start = extent_start;
3211 		trim_entry.bytes = extent_bytes;
3212 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3213 		mutex_unlock(&ctl->cache_writeout_mutex);
3214 
3215 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3216 				  extent_start, extent_bytes, &trim_entry);
3217 		if (ret)
3218 			break;
3219 next:
3220 		start += bytes;
3221 
3222 		if (fatal_signal_pending(current)) {
3223 			ret = -ERESTARTSYS;
3224 			break;
3225 		}
3226 
3227 		cond_resched();
3228 	}
3229 out:
3230 	return ret;
3231 }
3232 
3233 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3234 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3235 {
3236 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3237 	struct btrfs_free_space *entry;
3238 	int ret = 0;
3239 	int ret2;
3240 	u64 bytes;
3241 	u64 offset = offset_to_bitmap(ctl, start);
3242 
3243 	while (offset < end) {
3244 		bool next_bitmap = false;
3245 		struct btrfs_trim_range trim_entry;
3246 
3247 		mutex_lock(&ctl->cache_writeout_mutex);
3248 		spin_lock(&ctl->tree_lock);
3249 
3250 		if (ctl->free_space < minlen) {
3251 			spin_unlock(&ctl->tree_lock);
3252 			mutex_unlock(&ctl->cache_writeout_mutex);
3253 			break;
3254 		}
3255 
3256 		entry = tree_search_offset(ctl, offset, 1, 0);
3257 		if (!entry) {
3258 			spin_unlock(&ctl->tree_lock);
3259 			mutex_unlock(&ctl->cache_writeout_mutex);
3260 			next_bitmap = true;
3261 			goto next;
3262 		}
3263 
3264 		bytes = minlen;
3265 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3266 		if (ret2 || start >= end) {
3267 			spin_unlock(&ctl->tree_lock);
3268 			mutex_unlock(&ctl->cache_writeout_mutex);
3269 			next_bitmap = true;
3270 			goto next;
3271 		}
3272 
3273 		bytes = min(bytes, end - start);
3274 		if (bytes < minlen) {
3275 			spin_unlock(&ctl->tree_lock);
3276 			mutex_unlock(&ctl->cache_writeout_mutex);
3277 			goto next;
3278 		}
3279 
3280 		bitmap_clear_bits(ctl, entry, start, bytes);
3281 		if (entry->bytes == 0)
3282 			free_bitmap(ctl, entry);
3283 
3284 		spin_unlock(&ctl->tree_lock);
3285 		trim_entry.start = start;
3286 		trim_entry.bytes = bytes;
3287 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3288 		mutex_unlock(&ctl->cache_writeout_mutex);
3289 
3290 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3291 				  start, bytes, &trim_entry);
3292 		if (ret)
3293 			break;
3294 next:
3295 		if (next_bitmap) {
3296 			offset += BITS_PER_BITMAP * ctl->unit;
3297 		} else {
3298 			start += bytes;
3299 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3300 				offset += BITS_PER_BITMAP * ctl->unit;
3301 		}
3302 
3303 		if (fatal_signal_pending(current)) {
3304 			ret = -ERESTARTSYS;
3305 			break;
3306 		}
3307 
3308 		cond_resched();
3309 	}
3310 
3311 	return ret;
3312 }
3313 
3314 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3315 {
3316 	atomic_inc(&cache->trimming);
3317 }
3318 
3319 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3320 {
3321 	struct extent_map_tree *em_tree;
3322 	struct extent_map *em;
3323 	bool cleanup;
3324 
3325 	spin_lock(&block_group->lock);
3326 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3327 		   block_group->removed);
3328 	spin_unlock(&block_group->lock);
3329 
3330 	if (cleanup) {
3331 		lock_chunks(block_group->fs_info->chunk_root);
3332 		em_tree = &block_group->fs_info->mapping_tree.map_tree;
3333 		write_lock(&em_tree->lock);
3334 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3335 					   1);
3336 		BUG_ON(!em); /* logic error, can't happen */
3337 		/*
3338 		 * remove_extent_mapping() will delete us from the pinned_chunks
3339 		 * list, which is protected by the chunk mutex.
3340 		 */
3341 		remove_extent_mapping(em_tree, em);
3342 		write_unlock(&em_tree->lock);
3343 		unlock_chunks(block_group->fs_info->chunk_root);
3344 
3345 		/* once for us and once for the tree */
3346 		free_extent_map(em);
3347 		free_extent_map(em);
3348 
3349 		/*
3350 		 * We've left one free space entry and other tasks trimming
3351 		 * this block group have left 1 entry each one. Free them.
3352 		 */
3353 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3354 	}
3355 }
3356 
3357 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3358 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3359 {
3360 	int ret;
3361 
3362 	*trimmed = 0;
3363 
3364 	spin_lock(&block_group->lock);
3365 	if (block_group->removed) {
3366 		spin_unlock(&block_group->lock);
3367 		return 0;
3368 	}
3369 	btrfs_get_block_group_trimming(block_group);
3370 	spin_unlock(&block_group->lock);
3371 
3372 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3373 	if (ret)
3374 		goto out;
3375 
3376 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3377 out:
3378 	btrfs_put_block_group_trimming(block_group);
3379 	return ret;
3380 }
3381 
3382 /*
3383  * Find the left-most item in the cache tree, and then return the
3384  * smallest inode number in the item.
3385  *
3386  * Note: the returned inode number may not be the smallest one in
3387  * the tree, if the left-most item is a bitmap.
3388  */
3389 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3390 {
3391 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3392 	struct btrfs_free_space *entry = NULL;
3393 	u64 ino = 0;
3394 
3395 	spin_lock(&ctl->tree_lock);
3396 
3397 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3398 		goto out;
3399 
3400 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3401 			 struct btrfs_free_space, offset_index);
3402 
3403 	if (!entry->bitmap) {
3404 		ino = entry->offset;
3405 
3406 		unlink_free_space(ctl, entry);
3407 		entry->offset++;
3408 		entry->bytes--;
3409 		if (!entry->bytes)
3410 			kmem_cache_free(btrfs_free_space_cachep, entry);
3411 		else
3412 			link_free_space(ctl, entry);
3413 	} else {
3414 		u64 offset = 0;
3415 		u64 count = 1;
3416 		int ret;
3417 
3418 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3419 		/* Logic error; Should be empty if it can't find anything */
3420 		ASSERT(!ret);
3421 
3422 		ino = offset;
3423 		bitmap_clear_bits(ctl, entry, offset, 1);
3424 		if (entry->bytes == 0)
3425 			free_bitmap(ctl, entry);
3426 	}
3427 out:
3428 	spin_unlock(&ctl->tree_lock);
3429 
3430 	return ino;
3431 }
3432 
3433 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3434 				    struct btrfs_path *path)
3435 {
3436 	struct inode *inode = NULL;
3437 
3438 	spin_lock(&root->ino_cache_lock);
3439 	if (root->ino_cache_inode)
3440 		inode = igrab(root->ino_cache_inode);
3441 	spin_unlock(&root->ino_cache_lock);
3442 	if (inode)
3443 		return inode;
3444 
3445 	inode = __lookup_free_space_inode(root, path, 0);
3446 	if (IS_ERR(inode))
3447 		return inode;
3448 
3449 	spin_lock(&root->ino_cache_lock);
3450 	if (!btrfs_fs_closing(root->fs_info))
3451 		root->ino_cache_inode = igrab(inode);
3452 	spin_unlock(&root->ino_cache_lock);
3453 
3454 	return inode;
3455 }
3456 
3457 int create_free_ino_inode(struct btrfs_root *root,
3458 			  struct btrfs_trans_handle *trans,
3459 			  struct btrfs_path *path)
3460 {
3461 	return __create_free_space_inode(root, trans, path,
3462 					 BTRFS_FREE_INO_OBJECTID, 0);
3463 }
3464 
3465 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3466 {
3467 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3468 	struct btrfs_path *path;
3469 	struct inode *inode;
3470 	int ret = 0;
3471 	u64 root_gen = btrfs_root_generation(&root->root_item);
3472 
3473 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3474 		return 0;
3475 
3476 	/*
3477 	 * If we're unmounting then just return, since this does a search on the
3478 	 * normal root and not the commit root and we could deadlock.
3479 	 */
3480 	if (btrfs_fs_closing(fs_info))
3481 		return 0;
3482 
3483 	path = btrfs_alloc_path();
3484 	if (!path)
3485 		return 0;
3486 
3487 	inode = lookup_free_ino_inode(root, path);
3488 	if (IS_ERR(inode))
3489 		goto out;
3490 
3491 	if (root_gen != BTRFS_I(inode)->generation)
3492 		goto out_put;
3493 
3494 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3495 
3496 	if (ret < 0)
3497 		btrfs_err(fs_info,
3498 			"failed to load free ino cache for root %llu",
3499 			root->root_key.objectid);
3500 out_put:
3501 	iput(inode);
3502 out:
3503 	btrfs_free_path(path);
3504 	return ret;
3505 }
3506 
3507 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3508 			      struct btrfs_trans_handle *trans,
3509 			      struct btrfs_path *path,
3510 			      struct inode *inode)
3511 {
3512 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3513 	int ret;
3514 	struct btrfs_io_ctl io_ctl;
3515 	bool release_metadata = true;
3516 
3517 	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3518 		return 0;
3519 
3520 	memset(&io_ctl, 0, sizeof(io_ctl));
3521 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3522 				      trans, path, 0);
3523 	if (!ret) {
3524 		/*
3525 		 * At this point writepages() didn't error out, so our metadata
3526 		 * reservation is released when the writeback finishes, at
3527 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3528 		 * with or without an error.
3529 		 */
3530 		release_metadata = false;
3531 		ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3532 	}
3533 
3534 	if (ret) {
3535 		if (release_metadata)
3536 			btrfs_delalloc_release_metadata(inode, inode->i_size);
3537 #ifdef DEBUG
3538 		btrfs_err(root->fs_info,
3539 			"failed to write free ino cache for root %llu",
3540 			root->root_key.objectid);
3541 #endif
3542 	}
3543 
3544 	return ret;
3545 }
3546 
3547 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3548 /*
3549  * Use this if you need to make a bitmap or extent entry specifically, it
3550  * doesn't do any of the merging that add_free_space does, this acts a lot like
3551  * how the free space cache loading stuff works, so you can get really weird
3552  * configurations.
3553  */
3554 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3555 			      u64 offset, u64 bytes, bool bitmap)
3556 {
3557 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3558 	struct btrfs_free_space *info = NULL, *bitmap_info;
3559 	void *map = NULL;
3560 	u64 bytes_added;
3561 	int ret;
3562 
3563 again:
3564 	if (!info) {
3565 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3566 		if (!info)
3567 			return -ENOMEM;
3568 	}
3569 
3570 	if (!bitmap) {
3571 		spin_lock(&ctl->tree_lock);
3572 		info->offset = offset;
3573 		info->bytes = bytes;
3574 		info->max_extent_size = 0;
3575 		ret = link_free_space(ctl, info);
3576 		spin_unlock(&ctl->tree_lock);
3577 		if (ret)
3578 			kmem_cache_free(btrfs_free_space_cachep, info);
3579 		return ret;
3580 	}
3581 
3582 	if (!map) {
3583 		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3584 		if (!map) {
3585 			kmem_cache_free(btrfs_free_space_cachep, info);
3586 			return -ENOMEM;
3587 		}
3588 	}
3589 
3590 	spin_lock(&ctl->tree_lock);
3591 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3592 					 1, 0);
3593 	if (!bitmap_info) {
3594 		info->bitmap = map;
3595 		map = NULL;
3596 		add_new_bitmap(ctl, info, offset);
3597 		bitmap_info = info;
3598 		info = NULL;
3599 	}
3600 
3601 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3602 
3603 	bytes -= bytes_added;
3604 	offset += bytes_added;
3605 	spin_unlock(&ctl->tree_lock);
3606 
3607 	if (bytes)
3608 		goto again;
3609 
3610 	if (info)
3611 		kmem_cache_free(btrfs_free_space_cachep, info);
3612 	if (map)
3613 		kfree(map);
3614 	return 0;
3615 }
3616 
3617 /*
3618  * Checks to see if the given range is in the free space cache.  This is really
3619  * just used to check the absence of space, so if there is free space in the
3620  * range at all we will return 1.
3621  */
3622 int test_check_exists(struct btrfs_block_group_cache *cache,
3623 		      u64 offset, u64 bytes)
3624 {
3625 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3626 	struct btrfs_free_space *info;
3627 	int ret = 0;
3628 
3629 	spin_lock(&ctl->tree_lock);
3630 	info = tree_search_offset(ctl, offset, 0, 0);
3631 	if (!info) {
3632 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3633 					  1, 0);
3634 		if (!info)
3635 			goto out;
3636 	}
3637 
3638 have_info:
3639 	if (info->bitmap) {
3640 		u64 bit_off, bit_bytes;
3641 		struct rb_node *n;
3642 		struct btrfs_free_space *tmp;
3643 
3644 		bit_off = offset;
3645 		bit_bytes = ctl->unit;
3646 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3647 		if (!ret) {
3648 			if (bit_off == offset) {
3649 				ret = 1;
3650 				goto out;
3651 			} else if (bit_off > offset &&
3652 				   offset + bytes > bit_off) {
3653 				ret = 1;
3654 				goto out;
3655 			}
3656 		}
3657 
3658 		n = rb_prev(&info->offset_index);
3659 		while (n) {
3660 			tmp = rb_entry(n, struct btrfs_free_space,
3661 				       offset_index);
3662 			if (tmp->offset + tmp->bytes < offset)
3663 				break;
3664 			if (offset + bytes < tmp->offset) {
3665 				n = rb_prev(&tmp->offset_index);
3666 				continue;
3667 			}
3668 			info = tmp;
3669 			goto have_info;
3670 		}
3671 
3672 		n = rb_next(&info->offset_index);
3673 		while (n) {
3674 			tmp = rb_entry(n, struct btrfs_free_space,
3675 				       offset_index);
3676 			if (offset + bytes < tmp->offset)
3677 				break;
3678 			if (tmp->offset + tmp->bytes < offset) {
3679 				n = rb_next(&tmp->offset_index);
3680 				continue;
3681 			}
3682 			info = tmp;
3683 			goto have_info;
3684 		}
3685 
3686 		ret = 0;
3687 		goto out;
3688 	}
3689 
3690 	if (info->offset == offset) {
3691 		ret = 1;
3692 		goto out;
3693 	}
3694 
3695 	if (offset > info->offset && offset < info->offset + info->bytes)
3696 		ret = 1;
3697 out:
3698 	spin_unlock(&ctl->tree_lock);
3699 	return ret;
3700 }
3701 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3702