xref: /linux/fs/btrfs/free-space-cache.c (revision 040932cdcfca9b0ac55a4f74f194c2e2c8a2527b)
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include "ctree.h"
23 #include "free-space-cache.h"
24 #include "transaction.h"
25 
26 #define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
27 #define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
28 
29 static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
30 					  u64 offset)
31 {
32 	BUG_ON(offset < bitmap_start);
33 	offset -= bitmap_start;
34 	return (unsigned long)(div64_u64(offset, sectorsize));
35 }
36 
37 static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
38 {
39 	return (unsigned long)(div64_u64(bytes, sectorsize));
40 }
41 
42 static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
43 				   u64 offset)
44 {
45 	u64 bitmap_start;
46 	u64 bytes_per_bitmap;
47 
48 	bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
49 	bitmap_start = offset - block_group->key.objectid;
50 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
51 	bitmap_start *= bytes_per_bitmap;
52 	bitmap_start += block_group->key.objectid;
53 
54 	return bitmap_start;
55 }
56 
57 static int tree_insert_offset(struct rb_root *root, u64 offset,
58 			      struct rb_node *node, int bitmap)
59 {
60 	struct rb_node **p = &root->rb_node;
61 	struct rb_node *parent = NULL;
62 	struct btrfs_free_space *info;
63 
64 	while (*p) {
65 		parent = *p;
66 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
67 
68 		if (offset < info->offset) {
69 			p = &(*p)->rb_left;
70 		} else if (offset > info->offset) {
71 			p = &(*p)->rb_right;
72 		} else {
73 			/*
74 			 * we could have a bitmap entry and an extent entry
75 			 * share the same offset.  If this is the case, we want
76 			 * the extent entry to always be found first if we do a
77 			 * linear search through the tree, since we want to have
78 			 * the quickest allocation time, and allocating from an
79 			 * extent is faster than allocating from a bitmap.  So
80 			 * if we're inserting a bitmap and we find an entry at
81 			 * this offset, we want to go right, or after this entry
82 			 * logically.  If we are inserting an extent and we've
83 			 * found a bitmap, we want to go left, or before
84 			 * logically.
85 			 */
86 			if (bitmap) {
87 				WARN_ON(info->bitmap);
88 				p = &(*p)->rb_right;
89 			} else {
90 				WARN_ON(!info->bitmap);
91 				p = &(*p)->rb_left;
92 			}
93 		}
94 	}
95 
96 	rb_link_node(node, parent, p);
97 	rb_insert_color(node, root);
98 
99 	return 0;
100 }
101 
102 /*
103  * searches the tree for the given offset.
104  *
105  * fuzzy - If this is set, then we are trying to make an allocation, and we just
106  * want a section that has at least bytes size and comes at or after the given
107  * offset.
108  */
109 static struct btrfs_free_space *
110 tree_search_offset(struct btrfs_block_group_cache *block_group,
111 		   u64 offset, int bitmap_only, int fuzzy)
112 {
113 	struct rb_node *n = block_group->free_space_offset.rb_node;
114 	struct btrfs_free_space *entry, *prev = NULL;
115 
116 	/* find entry that is closest to the 'offset' */
117 	while (1) {
118 		if (!n) {
119 			entry = NULL;
120 			break;
121 		}
122 
123 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
124 		prev = entry;
125 
126 		if (offset < entry->offset)
127 			n = n->rb_left;
128 		else if (offset > entry->offset)
129 			n = n->rb_right;
130 		else
131 			break;
132 	}
133 
134 	if (bitmap_only) {
135 		if (!entry)
136 			return NULL;
137 		if (entry->bitmap)
138 			return entry;
139 
140 		/*
141 		 * bitmap entry and extent entry may share same offset,
142 		 * in that case, bitmap entry comes after extent entry.
143 		 */
144 		n = rb_next(n);
145 		if (!n)
146 			return NULL;
147 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
148 		if (entry->offset != offset)
149 			return NULL;
150 
151 		WARN_ON(!entry->bitmap);
152 		return entry;
153 	} else if (entry) {
154 		if (entry->bitmap) {
155 			/*
156 			 * if previous extent entry covers the offset,
157 			 * we should return it instead of the bitmap entry
158 			 */
159 			n = &entry->offset_index;
160 			while (1) {
161 				n = rb_prev(n);
162 				if (!n)
163 					break;
164 				prev = rb_entry(n, struct btrfs_free_space,
165 						offset_index);
166 				if (!prev->bitmap) {
167 					if (prev->offset + prev->bytes > offset)
168 						entry = prev;
169 					break;
170 				}
171 			}
172 		}
173 		return entry;
174 	}
175 
176 	if (!prev)
177 		return NULL;
178 
179 	/* find last entry before the 'offset' */
180 	entry = prev;
181 	if (entry->offset > offset) {
182 		n = rb_prev(&entry->offset_index);
183 		if (n) {
184 			entry = rb_entry(n, struct btrfs_free_space,
185 					offset_index);
186 			BUG_ON(entry->offset > offset);
187 		} else {
188 			if (fuzzy)
189 				return entry;
190 			else
191 				return NULL;
192 		}
193 	}
194 
195 	if (entry->bitmap) {
196 		n = &entry->offset_index;
197 		while (1) {
198 			n = rb_prev(n);
199 			if (!n)
200 				break;
201 			prev = rb_entry(n, struct btrfs_free_space,
202 					offset_index);
203 			if (!prev->bitmap) {
204 				if (prev->offset + prev->bytes > offset)
205 					return prev;
206 				break;
207 			}
208 		}
209 		if (entry->offset + BITS_PER_BITMAP *
210 		    block_group->sectorsize > offset)
211 			return entry;
212 	} else if (entry->offset + entry->bytes > offset)
213 		return entry;
214 
215 	if (!fuzzy)
216 		return NULL;
217 
218 	while (1) {
219 		if (entry->bitmap) {
220 			if (entry->offset + BITS_PER_BITMAP *
221 			    block_group->sectorsize > offset)
222 				break;
223 		} else {
224 			if (entry->offset + entry->bytes > offset)
225 				break;
226 		}
227 
228 		n = rb_next(&entry->offset_index);
229 		if (!n)
230 			return NULL;
231 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
232 	}
233 	return entry;
234 }
235 
236 static void unlink_free_space(struct btrfs_block_group_cache *block_group,
237 			      struct btrfs_free_space *info)
238 {
239 	rb_erase(&info->offset_index, &block_group->free_space_offset);
240 	block_group->free_extents--;
241 	block_group->free_space -= info->bytes;
242 }
243 
244 static int link_free_space(struct btrfs_block_group_cache *block_group,
245 			   struct btrfs_free_space *info)
246 {
247 	int ret = 0;
248 
249 	BUG_ON(!info->bitmap && !info->bytes);
250 	ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
251 				 &info->offset_index, (info->bitmap != NULL));
252 	if (ret)
253 		return ret;
254 
255 	block_group->free_space += info->bytes;
256 	block_group->free_extents++;
257 	return ret;
258 }
259 
260 static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
261 {
262 	u64 max_bytes, possible_bytes;
263 
264 	/*
265 	 * The goal is to keep the total amount of memory used per 1gb of space
266 	 * at or below 32k, so we need to adjust how much memory we allow to be
267 	 * used by extent based free space tracking
268 	 */
269 	max_bytes = MAX_CACHE_BYTES_PER_GIG *
270 		(div64_u64(block_group->key.offset, 1024 * 1024 * 1024));
271 
272 	possible_bytes = (block_group->total_bitmaps * PAGE_CACHE_SIZE) +
273 		(sizeof(struct btrfs_free_space) *
274 		 block_group->extents_thresh);
275 
276 	if (possible_bytes > max_bytes) {
277 		int extent_bytes = max_bytes -
278 			(block_group->total_bitmaps * PAGE_CACHE_SIZE);
279 
280 		if (extent_bytes <= 0) {
281 			block_group->extents_thresh = 0;
282 			return;
283 		}
284 
285 		block_group->extents_thresh = extent_bytes /
286 			(sizeof(struct btrfs_free_space));
287 	}
288 }
289 
290 static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
291 			      struct btrfs_free_space *info, u64 offset,
292 			      u64 bytes)
293 {
294 	unsigned long start, end;
295 	unsigned long i;
296 
297 	start = offset_to_bit(info->offset, block_group->sectorsize, offset);
298 	end = start + bytes_to_bits(bytes, block_group->sectorsize);
299 	BUG_ON(end > BITS_PER_BITMAP);
300 
301 	for (i = start; i < end; i++)
302 		clear_bit(i, info->bitmap);
303 
304 	info->bytes -= bytes;
305 	block_group->free_space -= bytes;
306 }
307 
308 static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
309 			    struct btrfs_free_space *info, u64 offset,
310 			    u64 bytes)
311 {
312 	unsigned long start, end;
313 	unsigned long i;
314 
315 	start = offset_to_bit(info->offset, block_group->sectorsize, offset);
316 	end = start + bytes_to_bits(bytes, block_group->sectorsize);
317 	BUG_ON(end > BITS_PER_BITMAP);
318 
319 	for (i = start; i < end; i++)
320 		set_bit(i, info->bitmap);
321 
322 	info->bytes += bytes;
323 	block_group->free_space += bytes;
324 }
325 
326 static int search_bitmap(struct btrfs_block_group_cache *block_group,
327 			 struct btrfs_free_space *bitmap_info, u64 *offset,
328 			 u64 *bytes)
329 {
330 	unsigned long found_bits = 0;
331 	unsigned long bits, i;
332 	unsigned long next_zero;
333 
334 	i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
335 			  max_t(u64, *offset, bitmap_info->offset));
336 	bits = bytes_to_bits(*bytes, block_group->sectorsize);
337 
338 	for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
339 	     i < BITS_PER_BITMAP;
340 	     i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
341 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
342 					       BITS_PER_BITMAP, i);
343 		if ((next_zero - i) >= bits) {
344 			found_bits = next_zero - i;
345 			break;
346 		}
347 		i = next_zero;
348 	}
349 
350 	if (found_bits) {
351 		*offset = (u64)(i * block_group->sectorsize) +
352 			bitmap_info->offset;
353 		*bytes = (u64)(found_bits) * block_group->sectorsize;
354 		return 0;
355 	}
356 
357 	return -1;
358 }
359 
360 static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
361 						*block_group, u64 *offset,
362 						u64 *bytes, int debug)
363 {
364 	struct btrfs_free_space *entry;
365 	struct rb_node *node;
366 	int ret;
367 
368 	if (!block_group->free_space_offset.rb_node)
369 		return NULL;
370 
371 	entry = tree_search_offset(block_group,
372 				   offset_to_bitmap(block_group, *offset),
373 				   0, 1);
374 	if (!entry)
375 		return NULL;
376 
377 	for (node = &entry->offset_index; node; node = rb_next(node)) {
378 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
379 		if (entry->bytes < *bytes)
380 			continue;
381 
382 		if (entry->bitmap) {
383 			ret = search_bitmap(block_group, entry, offset, bytes);
384 			if (!ret)
385 				return entry;
386 			continue;
387 		}
388 
389 		*offset = entry->offset;
390 		*bytes = entry->bytes;
391 		return entry;
392 	}
393 
394 	return NULL;
395 }
396 
397 static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
398 			   struct btrfs_free_space *info, u64 offset)
399 {
400 	u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
401 	int max_bitmaps = (int)div64_u64(block_group->key.offset +
402 					 bytes_per_bg - 1, bytes_per_bg);
403 	BUG_ON(block_group->total_bitmaps >= max_bitmaps);
404 
405 	info->offset = offset_to_bitmap(block_group, offset);
406 	link_free_space(block_group, info);
407 	block_group->total_bitmaps++;
408 
409 	recalculate_thresholds(block_group);
410 }
411 
412 static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
413 			      struct btrfs_free_space *bitmap_info,
414 			      u64 *offset, u64 *bytes)
415 {
416 	u64 end;
417 	u64 search_start, search_bytes;
418 	int ret;
419 
420 again:
421 	end = bitmap_info->offset +
422 		(u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
423 
424 	/*
425 	 * XXX - this can go away after a few releases.
426 	 *
427 	 * since the only user of btrfs_remove_free_space is the tree logging
428 	 * stuff, and the only way to test that is under crash conditions, we
429 	 * want to have this debug stuff here just in case somethings not
430 	 * working.  Search the bitmap for the space we are trying to use to
431 	 * make sure its actually there.  If its not there then we need to stop
432 	 * because something has gone wrong.
433 	 */
434 	search_start = *offset;
435 	search_bytes = *bytes;
436 	ret = search_bitmap(block_group, bitmap_info, &search_start,
437 			    &search_bytes);
438 	BUG_ON(ret < 0 || search_start != *offset);
439 
440 	if (*offset > bitmap_info->offset && *offset + *bytes > end) {
441 		bitmap_clear_bits(block_group, bitmap_info, *offset,
442 				  end - *offset + 1);
443 		*bytes -= end - *offset + 1;
444 		*offset = end + 1;
445 	} else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
446 		bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
447 		*bytes = 0;
448 	}
449 
450 	if (*bytes) {
451 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
452 		if (!bitmap_info->bytes) {
453 			unlink_free_space(block_group, bitmap_info);
454 			kfree(bitmap_info->bitmap);
455 			kfree(bitmap_info);
456 			block_group->total_bitmaps--;
457 			recalculate_thresholds(block_group);
458 		}
459 
460 		/*
461 		 * no entry after this bitmap, but we still have bytes to
462 		 * remove, so something has gone wrong.
463 		 */
464 		if (!next)
465 			return -EINVAL;
466 
467 		bitmap_info = rb_entry(next, struct btrfs_free_space,
468 				       offset_index);
469 
470 		/*
471 		 * if the next entry isn't a bitmap we need to return to let the
472 		 * extent stuff do its work.
473 		 */
474 		if (!bitmap_info->bitmap)
475 			return -EAGAIN;
476 
477 		/*
478 		 * Ok the next item is a bitmap, but it may not actually hold
479 		 * the information for the rest of this free space stuff, so
480 		 * look for it, and if we don't find it return so we can try
481 		 * everything over again.
482 		 */
483 		search_start = *offset;
484 		search_bytes = *bytes;
485 		ret = search_bitmap(block_group, bitmap_info, &search_start,
486 				    &search_bytes);
487 		if (ret < 0 || search_start != *offset)
488 			return -EAGAIN;
489 
490 		goto again;
491 	} else if (!bitmap_info->bytes) {
492 		unlink_free_space(block_group, bitmap_info);
493 		kfree(bitmap_info->bitmap);
494 		kfree(bitmap_info);
495 		block_group->total_bitmaps--;
496 		recalculate_thresholds(block_group);
497 	}
498 
499 	return 0;
500 }
501 
502 static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
503 			      struct btrfs_free_space *info)
504 {
505 	struct btrfs_free_space *bitmap_info;
506 	int added = 0;
507 	u64 bytes, offset, end;
508 	int ret;
509 
510 	/*
511 	 * If we are below the extents threshold then we can add this as an
512 	 * extent, and don't have to deal with the bitmap
513 	 */
514 	if (block_group->free_extents < block_group->extents_thresh &&
515 	    info->bytes > block_group->sectorsize * 4)
516 		return 0;
517 
518 	/*
519 	 * some block groups are so tiny they can't be enveloped by a bitmap, so
520 	 * don't even bother to create a bitmap for this
521 	 */
522 	if (BITS_PER_BITMAP * block_group->sectorsize >
523 	    block_group->key.offset)
524 		return 0;
525 
526 	bytes = info->bytes;
527 	offset = info->offset;
528 
529 again:
530 	bitmap_info = tree_search_offset(block_group,
531 					 offset_to_bitmap(block_group, offset),
532 					 1, 0);
533 	if (!bitmap_info) {
534 		BUG_ON(added);
535 		goto new_bitmap;
536 	}
537 
538 	end = bitmap_info->offset +
539 		(u64)(BITS_PER_BITMAP * block_group->sectorsize);
540 
541 	if (offset >= bitmap_info->offset && offset + bytes > end) {
542 		bitmap_set_bits(block_group, bitmap_info, offset,
543 				end - offset);
544 		bytes -= end - offset;
545 		offset = end;
546 		added = 0;
547 	} else if (offset >= bitmap_info->offset && offset + bytes <= end) {
548 		bitmap_set_bits(block_group, bitmap_info, offset, bytes);
549 		bytes = 0;
550 	} else {
551 		BUG();
552 	}
553 
554 	if (!bytes) {
555 		ret = 1;
556 		goto out;
557 	} else
558 		goto again;
559 
560 new_bitmap:
561 	if (info && info->bitmap) {
562 		add_new_bitmap(block_group, info, offset);
563 		added = 1;
564 		info = NULL;
565 		goto again;
566 	} else {
567 		spin_unlock(&block_group->tree_lock);
568 
569 		/* no pre-allocated info, allocate a new one */
570 		if (!info) {
571 			info = kzalloc(sizeof(struct btrfs_free_space),
572 				       GFP_NOFS);
573 			if (!info) {
574 				spin_lock(&block_group->tree_lock);
575 				ret = -ENOMEM;
576 				goto out;
577 			}
578 		}
579 
580 		/* allocate the bitmap */
581 		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
582 		spin_lock(&block_group->tree_lock);
583 		if (!info->bitmap) {
584 			ret = -ENOMEM;
585 			goto out;
586 		}
587 		goto again;
588 	}
589 
590 out:
591 	if (info) {
592 		if (info->bitmap)
593 			kfree(info->bitmap);
594 		kfree(info);
595 	}
596 
597 	return ret;
598 }
599 
600 int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
601 			 u64 offset, u64 bytes)
602 {
603 	struct btrfs_free_space *right_info = NULL;
604 	struct btrfs_free_space *left_info = NULL;
605 	struct btrfs_free_space *info = NULL;
606 	int ret = 0;
607 
608 	info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
609 	if (!info)
610 		return -ENOMEM;
611 
612 	info->offset = offset;
613 	info->bytes = bytes;
614 
615 	spin_lock(&block_group->tree_lock);
616 
617 	/*
618 	 * first we want to see if there is free space adjacent to the range we
619 	 * are adding, if there is remove that struct and add a new one to
620 	 * cover the entire range
621 	 */
622 	right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
623 	if (right_info && rb_prev(&right_info->offset_index))
624 		left_info = rb_entry(rb_prev(&right_info->offset_index),
625 				     struct btrfs_free_space, offset_index);
626 	else
627 		left_info = tree_search_offset(block_group, offset - 1, 0, 0);
628 
629 	/*
630 	 * If there was no extent directly to the left or right of this new
631 	 * extent then we know we're going to have to allocate a new extent, so
632 	 * before we do that see if we need to drop this into a bitmap
633 	 */
634 	if ((!left_info || left_info->bitmap) &&
635 	    (!right_info || right_info->bitmap)) {
636 		ret = insert_into_bitmap(block_group, info);
637 
638 		if (ret < 0) {
639 			goto out;
640 		} else if (ret) {
641 			ret = 0;
642 			goto out;
643 		}
644 	}
645 
646 	if (right_info && !right_info->bitmap) {
647 		unlink_free_space(block_group, right_info);
648 		info->bytes += right_info->bytes;
649 		kfree(right_info);
650 	}
651 
652 	if (left_info && !left_info->bitmap &&
653 	    left_info->offset + left_info->bytes == offset) {
654 		unlink_free_space(block_group, left_info);
655 		info->offset = left_info->offset;
656 		info->bytes += left_info->bytes;
657 		kfree(left_info);
658 	}
659 
660 	ret = link_free_space(block_group, info);
661 	if (ret)
662 		kfree(info);
663 out:
664 	spin_unlock(&block_group->tree_lock);
665 
666 	if (ret) {
667 		printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
668 		BUG_ON(ret == -EEXIST);
669 	}
670 
671 	return ret;
672 }
673 
674 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
675 			    u64 offset, u64 bytes)
676 {
677 	struct btrfs_free_space *info;
678 	struct btrfs_free_space *next_info = NULL;
679 	int ret = 0;
680 
681 	spin_lock(&block_group->tree_lock);
682 
683 again:
684 	info = tree_search_offset(block_group, offset, 0, 0);
685 	if (!info) {
686 		/*
687 		 * oops didn't find an extent that matched the space we wanted
688 		 * to remove, look for a bitmap instead
689 		 */
690 		info = tree_search_offset(block_group,
691 					  offset_to_bitmap(block_group, offset),
692 					  1, 0);
693 		if (!info) {
694 			WARN_ON(1);
695 			goto out_lock;
696 		}
697 	}
698 
699 	if (info->bytes < bytes && rb_next(&info->offset_index)) {
700 		u64 end;
701 		next_info = rb_entry(rb_next(&info->offset_index),
702 					     struct btrfs_free_space,
703 					     offset_index);
704 
705 		if (next_info->bitmap)
706 			end = next_info->offset + BITS_PER_BITMAP *
707 				block_group->sectorsize - 1;
708 		else
709 			end = next_info->offset + next_info->bytes;
710 
711 		if (next_info->bytes < bytes ||
712 		    next_info->offset > offset || offset > end) {
713 			printk(KERN_CRIT "Found free space at %llu, size %llu,"
714 			      " trying to use %llu\n",
715 			      (unsigned long long)info->offset,
716 			      (unsigned long long)info->bytes,
717 			      (unsigned long long)bytes);
718 			WARN_ON(1);
719 			ret = -EINVAL;
720 			goto out_lock;
721 		}
722 
723 		info = next_info;
724 	}
725 
726 	if (info->bytes == bytes) {
727 		unlink_free_space(block_group, info);
728 		if (info->bitmap) {
729 			kfree(info->bitmap);
730 			block_group->total_bitmaps--;
731 		}
732 		kfree(info);
733 		goto out_lock;
734 	}
735 
736 	if (!info->bitmap && info->offset == offset) {
737 		unlink_free_space(block_group, info);
738 		info->offset += bytes;
739 		info->bytes -= bytes;
740 		link_free_space(block_group, info);
741 		goto out_lock;
742 	}
743 
744 	if (!info->bitmap && info->offset <= offset &&
745 	    info->offset + info->bytes >= offset + bytes) {
746 		u64 old_start = info->offset;
747 		/*
748 		 * we're freeing space in the middle of the info,
749 		 * this can happen during tree log replay
750 		 *
751 		 * first unlink the old info and then
752 		 * insert it again after the hole we're creating
753 		 */
754 		unlink_free_space(block_group, info);
755 		if (offset + bytes < info->offset + info->bytes) {
756 			u64 old_end = info->offset + info->bytes;
757 
758 			info->offset = offset + bytes;
759 			info->bytes = old_end - info->offset;
760 			ret = link_free_space(block_group, info);
761 			WARN_ON(ret);
762 			if (ret)
763 				goto out_lock;
764 		} else {
765 			/* the hole we're creating ends at the end
766 			 * of the info struct, just free the info
767 			 */
768 			kfree(info);
769 		}
770 		spin_unlock(&block_group->tree_lock);
771 
772 		/* step two, insert a new info struct to cover
773 		 * anything before the hole
774 		 */
775 		ret = btrfs_add_free_space(block_group, old_start,
776 					   offset - old_start);
777 		WARN_ON(ret);
778 		goto out;
779 	}
780 
781 	ret = remove_from_bitmap(block_group, info, &offset, &bytes);
782 	if (ret == -EAGAIN)
783 		goto again;
784 	BUG_ON(ret);
785 out_lock:
786 	spin_unlock(&block_group->tree_lock);
787 out:
788 	return ret;
789 }
790 
791 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
792 			   u64 bytes)
793 {
794 	struct btrfs_free_space *info;
795 	struct rb_node *n;
796 	int count = 0;
797 
798 	for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
799 		info = rb_entry(n, struct btrfs_free_space, offset_index);
800 		if (info->bytes >= bytes)
801 			count++;
802 		printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
803 		       (unsigned long long)info->offset,
804 		       (unsigned long long)info->bytes,
805 		       (info->bitmap) ? "yes" : "no");
806 	}
807 	printk(KERN_INFO "block group has cluster?: %s\n",
808 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
809 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
810 	       "\n", count);
811 }
812 
813 u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
814 {
815 	struct btrfs_free_space *info;
816 	struct rb_node *n;
817 	u64 ret = 0;
818 
819 	for (n = rb_first(&block_group->free_space_offset); n;
820 	     n = rb_next(n)) {
821 		info = rb_entry(n, struct btrfs_free_space, offset_index);
822 		ret += info->bytes;
823 	}
824 
825 	return ret;
826 }
827 
828 /*
829  * for a given cluster, put all of its extents back into the free
830  * space cache.  If the block group passed doesn't match the block group
831  * pointed to by the cluster, someone else raced in and freed the
832  * cluster already.  In that case, we just return without changing anything
833  */
834 static int
835 __btrfs_return_cluster_to_free_space(
836 			     struct btrfs_block_group_cache *block_group,
837 			     struct btrfs_free_cluster *cluster)
838 {
839 	struct btrfs_free_space *entry;
840 	struct rb_node *node;
841 	bool bitmap;
842 
843 	spin_lock(&cluster->lock);
844 	if (cluster->block_group != block_group)
845 		goto out;
846 
847 	bitmap = cluster->points_to_bitmap;
848 	cluster->block_group = NULL;
849 	cluster->window_start = 0;
850 	list_del_init(&cluster->block_group_list);
851 	cluster->points_to_bitmap = false;
852 
853 	if (bitmap)
854 		goto out;
855 
856 	node = rb_first(&cluster->root);
857 	while (node) {
858 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
859 		node = rb_next(&entry->offset_index);
860 		rb_erase(&entry->offset_index, &cluster->root);
861 		BUG_ON(entry->bitmap);
862 		tree_insert_offset(&block_group->free_space_offset,
863 				   entry->offset, &entry->offset_index, 0);
864 	}
865 	cluster->root.rb_node = NULL;
866 
867 out:
868 	spin_unlock(&cluster->lock);
869 	btrfs_put_block_group(block_group);
870 	return 0;
871 }
872 
873 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
874 {
875 	struct btrfs_free_space *info;
876 	struct rb_node *node;
877 	struct btrfs_free_cluster *cluster;
878 	struct list_head *head;
879 
880 	spin_lock(&block_group->tree_lock);
881 	while ((head = block_group->cluster_list.next) !=
882 	       &block_group->cluster_list) {
883 		cluster = list_entry(head, struct btrfs_free_cluster,
884 				     block_group_list);
885 
886 		WARN_ON(cluster->block_group != block_group);
887 		__btrfs_return_cluster_to_free_space(block_group, cluster);
888 		if (need_resched()) {
889 			spin_unlock(&block_group->tree_lock);
890 			cond_resched();
891 			spin_lock(&block_group->tree_lock);
892 		}
893 	}
894 
895 	while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
896 		info = rb_entry(node, struct btrfs_free_space, offset_index);
897 		unlink_free_space(block_group, info);
898 		if (info->bitmap)
899 			kfree(info->bitmap);
900 		kfree(info);
901 		if (need_resched()) {
902 			spin_unlock(&block_group->tree_lock);
903 			cond_resched();
904 			spin_lock(&block_group->tree_lock);
905 		}
906 	}
907 
908 	spin_unlock(&block_group->tree_lock);
909 }
910 
911 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
912 			       u64 offset, u64 bytes, u64 empty_size)
913 {
914 	struct btrfs_free_space *entry = NULL;
915 	u64 bytes_search = bytes + empty_size;
916 	u64 ret = 0;
917 
918 	spin_lock(&block_group->tree_lock);
919 	entry = find_free_space(block_group, &offset, &bytes_search, 0);
920 	if (!entry)
921 		goto out;
922 
923 	ret = offset;
924 	if (entry->bitmap) {
925 		bitmap_clear_bits(block_group, entry, offset, bytes);
926 		if (!entry->bytes) {
927 			unlink_free_space(block_group, entry);
928 			kfree(entry->bitmap);
929 			kfree(entry);
930 			block_group->total_bitmaps--;
931 			recalculate_thresholds(block_group);
932 		}
933 	} else {
934 		unlink_free_space(block_group, entry);
935 		entry->offset += bytes;
936 		entry->bytes -= bytes;
937 		if (!entry->bytes)
938 			kfree(entry);
939 		else
940 			link_free_space(block_group, entry);
941 	}
942 
943 out:
944 	spin_unlock(&block_group->tree_lock);
945 
946 	return ret;
947 }
948 
949 /*
950  * given a cluster, put all of its extents back into the free space
951  * cache.  If a block group is passed, this function will only free
952  * a cluster that belongs to the passed block group.
953  *
954  * Otherwise, it'll get a reference on the block group pointed to by the
955  * cluster and remove the cluster from it.
956  */
957 int btrfs_return_cluster_to_free_space(
958 			       struct btrfs_block_group_cache *block_group,
959 			       struct btrfs_free_cluster *cluster)
960 {
961 	int ret;
962 
963 	/* first, get a safe pointer to the block group */
964 	spin_lock(&cluster->lock);
965 	if (!block_group) {
966 		block_group = cluster->block_group;
967 		if (!block_group) {
968 			spin_unlock(&cluster->lock);
969 			return 0;
970 		}
971 	} else if (cluster->block_group != block_group) {
972 		/* someone else has already freed it don't redo their work */
973 		spin_unlock(&cluster->lock);
974 		return 0;
975 	}
976 	atomic_inc(&block_group->count);
977 	spin_unlock(&cluster->lock);
978 
979 	/* now return any extents the cluster had on it */
980 	spin_lock(&block_group->tree_lock);
981 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
982 	spin_unlock(&block_group->tree_lock);
983 
984 	/* finally drop our ref */
985 	btrfs_put_block_group(block_group);
986 	return ret;
987 }
988 
989 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
990 				   struct btrfs_free_cluster *cluster,
991 				   u64 bytes, u64 min_start)
992 {
993 	struct btrfs_free_space *entry;
994 	int err;
995 	u64 search_start = cluster->window_start;
996 	u64 search_bytes = bytes;
997 	u64 ret = 0;
998 
999 	spin_lock(&block_group->tree_lock);
1000 	spin_lock(&cluster->lock);
1001 
1002 	if (!cluster->points_to_bitmap)
1003 		goto out;
1004 
1005 	if (cluster->block_group != block_group)
1006 		goto out;
1007 
1008 	/*
1009 	 * search_start is the beginning of the bitmap, but at some point it may
1010 	 * be a good idea to point to the actual start of the free area in the
1011 	 * bitmap, so do the offset_to_bitmap trick anyway, and set bitmap_only
1012 	 * to 1 to make sure we get the bitmap entry
1013 	 */
1014 	entry = tree_search_offset(block_group,
1015 				   offset_to_bitmap(block_group, search_start),
1016 				   1, 0);
1017 	if (!entry || !entry->bitmap)
1018 		goto out;
1019 
1020 	search_start = min_start;
1021 	search_bytes = bytes;
1022 
1023 	err = search_bitmap(block_group, entry, &search_start,
1024 			    &search_bytes);
1025 	if (err)
1026 		goto out;
1027 
1028 	ret = search_start;
1029 	bitmap_clear_bits(block_group, entry, ret, bytes);
1030 out:
1031 	spin_unlock(&cluster->lock);
1032 	spin_unlock(&block_group->tree_lock);
1033 
1034 	return ret;
1035 }
1036 
1037 /*
1038  * given a cluster, try to allocate 'bytes' from it, returns 0
1039  * if it couldn't find anything suitably large, or a logical disk offset
1040  * if things worked out
1041  */
1042 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
1043 			     struct btrfs_free_cluster *cluster, u64 bytes,
1044 			     u64 min_start)
1045 {
1046 	struct btrfs_free_space *entry = NULL;
1047 	struct rb_node *node;
1048 	u64 ret = 0;
1049 
1050 	if (cluster->points_to_bitmap)
1051 		return btrfs_alloc_from_bitmap(block_group, cluster, bytes,
1052 					       min_start);
1053 
1054 	spin_lock(&cluster->lock);
1055 	if (bytes > cluster->max_size)
1056 		goto out;
1057 
1058 	if (cluster->block_group != block_group)
1059 		goto out;
1060 
1061 	node = rb_first(&cluster->root);
1062 	if (!node)
1063 		goto out;
1064 
1065 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
1066 
1067 	while(1) {
1068 		if (entry->bytes < bytes || entry->offset < min_start) {
1069 			struct rb_node *node;
1070 
1071 			node = rb_next(&entry->offset_index);
1072 			if (!node)
1073 				break;
1074 			entry = rb_entry(node, struct btrfs_free_space,
1075 					 offset_index);
1076 			continue;
1077 		}
1078 		ret = entry->offset;
1079 
1080 		entry->offset += bytes;
1081 		entry->bytes -= bytes;
1082 
1083 		if (entry->bytes == 0) {
1084 			rb_erase(&entry->offset_index, &cluster->root);
1085 			kfree(entry);
1086 		}
1087 		break;
1088 	}
1089 out:
1090 	spin_unlock(&cluster->lock);
1091 
1092 	return ret;
1093 }
1094 
1095 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
1096 				struct btrfs_free_space *entry,
1097 				struct btrfs_free_cluster *cluster,
1098 				u64 offset, u64 bytes, u64 min_bytes)
1099 {
1100 	unsigned long next_zero;
1101 	unsigned long i;
1102 	unsigned long search_bits;
1103 	unsigned long total_bits;
1104 	unsigned long found_bits;
1105 	unsigned long start = 0;
1106 	unsigned long total_found = 0;
1107 	bool found = false;
1108 
1109 	i = offset_to_bit(entry->offset, block_group->sectorsize,
1110 			  max_t(u64, offset, entry->offset));
1111 	search_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
1112 	total_bits = bytes_to_bits(bytes, block_group->sectorsize);
1113 
1114 again:
1115 	found_bits = 0;
1116 	for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
1117 	     i < BITS_PER_BITMAP;
1118 	     i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
1119 		next_zero = find_next_zero_bit(entry->bitmap,
1120 					       BITS_PER_BITMAP, i);
1121 		if (next_zero - i >= search_bits) {
1122 			found_bits = next_zero - i;
1123 			break;
1124 		}
1125 		i = next_zero;
1126 	}
1127 
1128 	if (!found_bits)
1129 		return -1;
1130 
1131 	if (!found) {
1132 		start = i;
1133 		found = true;
1134 	}
1135 
1136 	total_found += found_bits;
1137 
1138 	if (cluster->max_size < found_bits * block_group->sectorsize)
1139 		cluster->max_size = found_bits * block_group->sectorsize;
1140 
1141 	if (total_found < total_bits) {
1142 		i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
1143 		if (i - start > total_bits * 2) {
1144 			total_found = 0;
1145 			cluster->max_size = 0;
1146 			found = false;
1147 		}
1148 		goto again;
1149 	}
1150 
1151 	cluster->window_start = start * block_group->sectorsize +
1152 		entry->offset;
1153 	cluster->points_to_bitmap = true;
1154 
1155 	return 0;
1156 }
1157 
1158 /*
1159  * here we try to find a cluster of blocks in a block group.  The goal
1160  * is to find at least bytes free and up to empty_size + bytes free.
1161  * We might not find them all in one contiguous area.
1162  *
1163  * returns zero and sets up cluster if things worked out, otherwise
1164  * it returns -enospc
1165  */
1166 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
1167 			     struct btrfs_root *root,
1168 			     struct btrfs_block_group_cache *block_group,
1169 			     struct btrfs_free_cluster *cluster,
1170 			     u64 offset, u64 bytes, u64 empty_size)
1171 {
1172 	struct btrfs_free_space *entry = NULL;
1173 	struct rb_node *node;
1174 	struct btrfs_free_space *next;
1175 	struct btrfs_free_space *last = NULL;
1176 	u64 min_bytes;
1177 	u64 window_start;
1178 	u64 window_free;
1179 	u64 max_extent = 0;
1180 	bool found_bitmap = false;
1181 	int ret;
1182 
1183 	/* for metadata, allow allocates with more holes */
1184 	if (btrfs_test_opt(root, SSD_SPREAD)) {
1185 		min_bytes = bytes + empty_size;
1186 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1187 		/*
1188 		 * we want to do larger allocations when we are
1189 		 * flushing out the delayed refs, it helps prevent
1190 		 * making more work as we go along.
1191 		 */
1192 		if (trans->transaction->delayed_refs.flushing)
1193 			min_bytes = max(bytes, (bytes + empty_size) >> 1);
1194 		else
1195 			min_bytes = max(bytes, (bytes + empty_size) >> 4);
1196 	} else
1197 		min_bytes = max(bytes, (bytes + empty_size) >> 2);
1198 
1199 	spin_lock(&block_group->tree_lock);
1200 	spin_lock(&cluster->lock);
1201 
1202 	/* someone already found a cluster, hooray */
1203 	if (cluster->block_group) {
1204 		ret = 0;
1205 		goto out;
1206 	}
1207 again:
1208 	entry = tree_search_offset(block_group, offset, found_bitmap, 1);
1209 	if (!entry) {
1210 		ret = -ENOSPC;
1211 		goto out;
1212 	}
1213 
1214 	/*
1215 	 * If found_bitmap is true, we exhausted our search for extent entries,
1216 	 * and we just want to search all of the bitmaps that we can find, and
1217 	 * ignore any extent entries we find.
1218 	 */
1219 	while (entry->bitmap || found_bitmap ||
1220 	       (!entry->bitmap && entry->bytes < min_bytes)) {
1221 		struct rb_node *node = rb_next(&entry->offset_index);
1222 
1223 		if (entry->bitmap && entry->bytes > bytes + empty_size) {
1224 			ret = btrfs_bitmap_cluster(block_group, entry, cluster,
1225 						   offset, bytes + empty_size,
1226 						   min_bytes);
1227 			if (!ret)
1228 				goto got_it;
1229 		}
1230 
1231 		if (!node) {
1232 			ret = -ENOSPC;
1233 			goto out;
1234 		}
1235 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1236 	}
1237 
1238 	/*
1239 	 * We already searched all the extent entries from the passed in offset
1240 	 * to the end and didn't find enough space for the cluster, and we also
1241 	 * didn't find any bitmaps that met our criteria, just go ahead and exit
1242 	 */
1243 	if (found_bitmap) {
1244 		ret = -ENOSPC;
1245 		goto out;
1246 	}
1247 
1248 	cluster->points_to_bitmap = false;
1249 	window_start = entry->offset;
1250 	window_free = entry->bytes;
1251 	last = entry;
1252 	max_extent = entry->bytes;
1253 
1254 	while (1) {
1255 		/* out window is just right, lets fill it */
1256 		if (window_free >= bytes + empty_size)
1257 			break;
1258 
1259 		node = rb_next(&last->offset_index);
1260 		if (!node) {
1261 			if (found_bitmap)
1262 				goto again;
1263 			ret = -ENOSPC;
1264 			goto out;
1265 		}
1266 		next = rb_entry(node, struct btrfs_free_space, offset_index);
1267 
1268 		/*
1269 		 * we found a bitmap, so if this search doesn't result in a
1270 		 * cluster, we know to go and search again for the bitmaps and
1271 		 * start looking for space there
1272 		 */
1273 		if (next->bitmap) {
1274 			if (!found_bitmap)
1275 				offset = next->offset;
1276 			found_bitmap = true;
1277 			last = next;
1278 			continue;
1279 		}
1280 
1281 		/*
1282 		 * we haven't filled the empty size and the window is
1283 		 * very large.  reset and try again
1284 		 */
1285 		if (next->offset - (last->offset + last->bytes) > 128 * 1024 ||
1286 		    next->offset - window_start > (bytes + empty_size) * 2) {
1287 			entry = next;
1288 			window_start = entry->offset;
1289 			window_free = entry->bytes;
1290 			last = entry;
1291 			max_extent = 0;
1292 		} else {
1293 			last = next;
1294 			window_free += next->bytes;
1295 			if (entry->bytes > max_extent)
1296 				max_extent = entry->bytes;
1297 		}
1298 	}
1299 
1300 	cluster->window_start = entry->offset;
1301 
1302 	/*
1303 	 * now we've found our entries, pull them out of the free space
1304 	 * cache and put them into the cluster rbtree
1305 	 *
1306 	 * The cluster includes an rbtree, but only uses the offset index
1307 	 * of each free space cache entry.
1308 	 */
1309 	while (1) {
1310 		node = rb_next(&entry->offset_index);
1311 		if (entry->bitmap && node) {
1312 			entry = rb_entry(node, struct btrfs_free_space,
1313 					 offset_index);
1314 			continue;
1315 		} else if (entry->bitmap && !node) {
1316 			break;
1317 		}
1318 
1319 		rb_erase(&entry->offset_index, &block_group->free_space_offset);
1320 		ret = tree_insert_offset(&cluster->root, entry->offset,
1321 					 &entry->offset_index, 0);
1322 		BUG_ON(ret);
1323 
1324 		if (!node || entry == last)
1325 			break;
1326 
1327 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1328 	}
1329 
1330 	cluster->max_size = max_extent;
1331 got_it:
1332 	ret = 0;
1333 	atomic_inc(&block_group->count);
1334 	list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
1335 	cluster->block_group = block_group;
1336 out:
1337 	spin_unlock(&cluster->lock);
1338 	spin_unlock(&block_group->tree_lock);
1339 
1340 	return ret;
1341 }
1342 
1343 /*
1344  * simple code to zero out a cluster
1345  */
1346 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
1347 {
1348 	spin_lock_init(&cluster->lock);
1349 	spin_lock_init(&cluster->refill_lock);
1350 	cluster->root.rb_node = NULL;
1351 	cluster->max_size = 0;
1352 	cluster->points_to_bitmap = false;
1353 	INIT_LIST_HEAD(&cluster->block_group_list);
1354 	cluster->block_group = NULL;
1355 }
1356 
1357