xref: /linux/fs/btrfs/extent_map.c (revision ac6731870ed943c7c6a8d4114b3ccaddfbdf7d58)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/err.h>
4 #include <linux/slab.h>
5 #include <linux/spinlock.h>
6 #include "messages.h"
7 #include "ctree.h"
8 #include "extent_map.h"
9 #include "compression.h"
10 #include "btrfs_inode.h"
11 #include "disk-io.h"
12 
13 
14 static struct kmem_cache *extent_map_cache;
15 
16 int __init extent_map_init(void)
17 {
18 	extent_map_cache = kmem_cache_create("btrfs_extent_map",
19 					     sizeof(struct extent_map), 0, 0, NULL);
20 	if (!extent_map_cache)
21 		return -ENOMEM;
22 	return 0;
23 }
24 
25 void __cold extent_map_exit(void)
26 {
27 	kmem_cache_destroy(extent_map_cache);
28 }
29 
30 /*
31  * Initialize the extent tree @tree.  Should be called for each new inode or
32  * other user of the extent_map interface.
33  */
34 void extent_map_tree_init(struct extent_map_tree *tree)
35 {
36 	tree->root = RB_ROOT;
37 	INIT_LIST_HEAD(&tree->modified_extents);
38 	rwlock_init(&tree->lock);
39 }
40 
41 /*
42  * Allocate a new extent_map structure.  The new structure is returned with a
43  * reference count of one and needs to be freed using free_extent_map()
44  */
45 struct extent_map *alloc_extent_map(void)
46 {
47 	struct extent_map *em;
48 	em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS);
49 	if (!em)
50 		return NULL;
51 	RB_CLEAR_NODE(&em->rb_node);
52 	refcount_set(&em->refs, 1);
53 	INIT_LIST_HEAD(&em->list);
54 	return em;
55 }
56 
57 /*
58  * Drop the reference out on @em by one and free the structure if the reference
59  * count hits zero.
60  */
61 void free_extent_map(struct extent_map *em)
62 {
63 	if (!em)
64 		return;
65 	if (refcount_dec_and_test(&em->refs)) {
66 		WARN_ON(extent_map_in_tree(em));
67 		WARN_ON(!list_empty(&em->list));
68 		kmem_cache_free(extent_map_cache, em);
69 	}
70 }
71 
72 /* Do the math around the end of an extent, handling wrapping. */
73 static u64 range_end(u64 start, u64 len)
74 {
75 	if (start + len < start)
76 		return (u64)-1;
77 	return start + len;
78 }
79 
80 static void dec_evictable_extent_maps(struct btrfs_inode *inode)
81 {
82 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
83 
84 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root)))
85 		percpu_counter_dec(&fs_info->evictable_extent_maps);
86 }
87 
88 static int tree_insert(struct rb_root *root, struct extent_map *em)
89 {
90 	struct rb_node **p = &root->rb_node;
91 	struct rb_node *parent = NULL;
92 	struct extent_map *entry = NULL;
93 	struct rb_node *orig_parent = NULL;
94 	u64 end = range_end(em->start, em->len);
95 
96 	while (*p) {
97 		parent = *p;
98 		entry = rb_entry(parent, struct extent_map, rb_node);
99 
100 		if (em->start < entry->start)
101 			p = &(*p)->rb_left;
102 		else if (em->start >= extent_map_end(entry))
103 			p = &(*p)->rb_right;
104 		else
105 			return -EEXIST;
106 	}
107 
108 	orig_parent = parent;
109 	while (parent && em->start >= extent_map_end(entry)) {
110 		parent = rb_next(parent);
111 		entry = rb_entry(parent, struct extent_map, rb_node);
112 	}
113 	if (parent)
114 		if (end > entry->start && em->start < extent_map_end(entry))
115 			return -EEXIST;
116 
117 	parent = orig_parent;
118 	entry = rb_entry(parent, struct extent_map, rb_node);
119 	while (parent && em->start < entry->start) {
120 		parent = rb_prev(parent);
121 		entry = rb_entry(parent, struct extent_map, rb_node);
122 	}
123 	if (parent)
124 		if (end > entry->start && em->start < extent_map_end(entry))
125 			return -EEXIST;
126 
127 	rb_link_node(&em->rb_node, orig_parent, p);
128 	rb_insert_color(&em->rb_node, root);
129 	return 0;
130 }
131 
132 /*
133  * Search through the tree for an extent_map with a given offset.  If it can't
134  * be found, try to find some neighboring extents
135  */
136 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
137 				     struct rb_node **prev_or_next_ret)
138 {
139 	struct rb_node *n = root->rb_node;
140 	struct rb_node *prev = NULL;
141 	struct rb_node *orig_prev = NULL;
142 	struct extent_map *entry;
143 	struct extent_map *prev_entry = NULL;
144 
145 	ASSERT(prev_or_next_ret);
146 
147 	while (n) {
148 		entry = rb_entry(n, struct extent_map, rb_node);
149 		prev = n;
150 		prev_entry = entry;
151 
152 		if (offset < entry->start)
153 			n = n->rb_left;
154 		else if (offset >= extent_map_end(entry))
155 			n = n->rb_right;
156 		else
157 			return n;
158 	}
159 
160 	orig_prev = prev;
161 	while (prev && offset >= extent_map_end(prev_entry)) {
162 		prev = rb_next(prev);
163 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
164 	}
165 
166 	/*
167 	 * Previous extent map found, return as in this case the caller does not
168 	 * care about the next one.
169 	 */
170 	if (prev) {
171 		*prev_or_next_ret = prev;
172 		return NULL;
173 	}
174 
175 	prev = orig_prev;
176 	prev_entry = rb_entry(prev, struct extent_map, rb_node);
177 	while (prev && offset < prev_entry->start) {
178 		prev = rb_prev(prev);
179 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
180 	}
181 	*prev_or_next_ret = prev;
182 
183 	return NULL;
184 }
185 
186 static inline u64 extent_map_block_len(const struct extent_map *em)
187 {
188 	if (extent_map_is_compressed(em))
189 		return em->disk_num_bytes;
190 	return em->len;
191 }
192 
193 static inline u64 extent_map_block_end(const struct extent_map *em)
194 {
195 	if (extent_map_block_start(em) + extent_map_block_len(em) <
196 	    extent_map_block_start(em))
197 		return (u64)-1;
198 	return extent_map_block_start(em) + extent_map_block_len(em);
199 }
200 
201 static bool can_merge_extent_map(const struct extent_map *em)
202 {
203 	if (em->flags & EXTENT_FLAG_PINNED)
204 		return false;
205 
206 	/* Don't merge compressed extents, we need to know their actual size. */
207 	if (extent_map_is_compressed(em))
208 		return false;
209 
210 	if (em->flags & EXTENT_FLAG_LOGGING)
211 		return false;
212 
213 	/*
214 	 * We don't want to merge stuff that hasn't been written to the log yet
215 	 * since it may not reflect exactly what is on disk, and that would be
216 	 * bad.
217 	 */
218 	if (!list_empty(&em->list))
219 		return false;
220 
221 	return true;
222 }
223 
224 /* Check to see if two extent_map structs are adjacent and safe to merge. */
225 static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next)
226 {
227 	if (extent_map_end(prev) != next->start)
228 		return false;
229 
230 	if (prev->flags != next->flags)
231 		return false;
232 
233 	if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1)
234 		return extent_map_block_start(next) == extent_map_block_end(prev);
235 
236 	/* HOLES and INLINE extents. */
237 	return next->disk_bytenr == prev->disk_bytenr;
238 }
239 
240 /*
241  * Handle the on-disk data extents merge for @prev and @next.
242  *
243  * Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes.
244  * For now only uncompressed regular extent can be merged.
245  *
246  * @prev and @next will be both updated to point to the new merged range.
247  * Thus one of them should be removed by the caller.
248  */
249 static void merge_ondisk_extents(struct extent_map *prev, struct extent_map *next)
250 {
251 	u64 new_disk_bytenr;
252 	u64 new_disk_num_bytes;
253 	u64 new_offset;
254 
255 	/* @prev and @next should not be compressed. */
256 	ASSERT(!extent_map_is_compressed(prev));
257 	ASSERT(!extent_map_is_compressed(next));
258 
259 	/*
260 	 * There are two different cases where @prev and @next can be merged.
261 	 *
262 	 * 1) They are referring to the same data extent:
263 	 *
264 	 * |<----- data extent A ----->|
265 	 *    |<- prev ->|<- next ->|
266 	 *
267 	 * 2) They are referring to different data extents but still adjacent:
268 	 *
269 	 * |<-- data extent A -->|<-- data extent B -->|
270 	 *            |<- prev ->|<- next ->|
271 	 *
272 	 * The calculation here always merges the data extents first, then updates
273 	 * @offset using the new data extents.
274 	 *
275 	 * For case 1), the merged data extent would be the same.
276 	 * For case 2), we just merge the two data extents into one.
277 	 */
278 	new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr);
279 	new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes,
280 				 next->disk_bytenr + next->disk_num_bytes) -
281 			     new_disk_bytenr;
282 	new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr;
283 
284 	prev->disk_bytenr = new_disk_bytenr;
285 	prev->disk_num_bytes = new_disk_num_bytes;
286 	prev->ram_bytes = new_disk_num_bytes;
287 	prev->offset = new_offset;
288 
289 	next->disk_bytenr = new_disk_bytenr;
290 	next->disk_num_bytes = new_disk_num_bytes;
291 	next->ram_bytes = new_disk_num_bytes;
292 	next->offset = new_offset;
293 }
294 
295 static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix,
296 			    struct extent_map *em)
297 {
298 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
299 		return;
300 	btrfs_crit(fs_info,
301 "%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x",
302 		prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes,
303 		em->ram_bytes, em->offset, em->flags);
304 	ASSERT(0);
305 }
306 
307 /* Internal sanity checks for btrfs debug builds. */
308 static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em)
309 {
310 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
311 		return;
312 	if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
313 		if (em->disk_num_bytes == 0)
314 			dump_extent_map(fs_info, "zero disk_num_bytes", em);
315 		if (em->offset + em->len > em->ram_bytes)
316 			dump_extent_map(fs_info, "ram_bytes too small", em);
317 		if (em->offset + em->len > em->disk_num_bytes &&
318 		    !extent_map_is_compressed(em))
319 			dump_extent_map(fs_info, "disk_num_bytes too small", em);
320 		if (!extent_map_is_compressed(em) &&
321 		    em->ram_bytes != em->disk_num_bytes)
322 			dump_extent_map(fs_info,
323 		"ram_bytes mismatch with disk_num_bytes for non-compressed em",
324 					em);
325 	} else if (em->offset) {
326 		dump_extent_map(fs_info, "non-zero offset for hole/inline", em);
327 	}
328 }
329 
330 static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em)
331 {
332 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
333 	struct extent_map_tree *tree = &inode->extent_tree;
334 	struct extent_map *merge = NULL;
335 	struct rb_node *rb;
336 
337 	/*
338 	 * We can't modify an extent map that is in the tree and that is being
339 	 * used by another task, as it can cause that other task to see it in
340 	 * inconsistent state during the merging. We always have 1 reference for
341 	 * the tree and 1 for this task (which is unpinning the extent map or
342 	 * clearing the logging flag), so anything > 2 means it's being used by
343 	 * other tasks too.
344 	 */
345 	if (refcount_read(&em->refs) > 2)
346 		return;
347 
348 	if (!can_merge_extent_map(em))
349 		return;
350 
351 	if (em->start != 0) {
352 		rb = rb_prev(&em->rb_node);
353 		if (rb)
354 			merge = rb_entry(rb, struct extent_map, rb_node);
355 		if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) {
356 			em->start = merge->start;
357 			em->len += merge->len;
358 			em->generation = max(em->generation, merge->generation);
359 
360 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
361 				merge_ondisk_extents(merge, em);
362 			em->flags |= EXTENT_FLAG_MERGED;
363 
364 			validate_extent_map(fs_info, em);
365 			rb_erase(&merge->rb_node, &tree->root);
366 			RB_CLEAR_NODE(&merge->rb_node);
367 			free_extent_map(merge);
368 			dec_evictable_extent_maps(inode);
369 		}
370 	}
371 
372 	rb = rb_next(&em->rb_node);
373 	if (rb)
374 		merge = rb_entry(rb, struct extent_map, rb_node);
375 	if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) {
376 		em->len += merge->len;
377 		if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
378 			merge_ondisk_extents(em, merge);
379 		validate_extent_map(fs_info, em);
380 		rb_erase(&merge->rb_node, &tree->root);
381 		RB_CLEAR_NODE(&merge->rb_node);
382 		em->generation = max(em->generation, merge->generation);
383 		em->flags |= EXTENT_FLAG_MERGED;
384 		free_extent_map(merge);
385 		dec_evictable_extent_maps(inode);
386 	}
387 }
388 
389 /*
390  * Unpin an extent from the cache.
391  *
392  * @inode:	the inode from which we are unpinning an extent range
393  * @start:	logical offset in the file
394  * @len:	length of the extent
395  * @gen:	generation that this extent has been modified in
396  *
397  * Called after an extent has been written to disk properly.  Set the generation
398  * to the generation that actually added the file item to the inode so we know
399  * we need to sync this extent when we call fsync().
400  *
401  * Returns: 0	     on success
402  * 	    -ENOENT  when the extent is not found in the tree
403  * 	    -EUCLEAN if the found extent does not match the expected start
404  */
405 int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen)
406 {
407 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
408 	struct extent_map_tree *tree = &inode->extent_tree;
409 	int ret = 0;
410 	struct extent_map *em;
411 
412 	write_lock(&tree->lock);
413 	em = lookup_extent_mapping(tree, start, len);
414 
415 	if (WARN_ON(!em)) {
416 		btrfs_warn(fs_info,
417 "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu",
418 			   btrfs_ino(inode), btrfs_root_id(inode->root),
419 			   start, start + len, gen);
420 		ret = -ENOENT;
421 		goto out;
422 	}
423 
424 	if (WARN_ON(em->start != start)) {
425 		btrfs_warn(fs_info,
426 "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu",
427 			   btrfs_ino(inode), btrfs_root_id(inode->root),
428 			   em->start, start, start + len, gen);
429 		ret = -EUCLEAN;
430 		goto out;
431 	}
432 
433 	em->generation = gen;
434 	em->flags &= ~EXTENT_FLAG_PINNED;
435 
436 	try_merge_map(inode, em);
437 
438 out:
439 	write_unlock(&tree->lock);
440 	free_extent_map(em);
441 	return ret;
442 
443 }
444 
445 void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em)
446 {
447 	lockdep_assert_held_write(&inode->extent_tree.lock);
448 
449 	em->flags &= ~EXTENT_FLAG_LOGGING;
450 	if (extent_map_in_tree(em))
451 		try_merge_map(inode, em);
452 }
453 
454 static inline void setup_extent_mapping(struct btrfs_inode *inode,
455 					struct extent_map *em,
456 					int modified)
457 {
458 	refcount_inc(&em->refs);
459 
460 	ASSERT(list_empty(&em->list));
461 
462 	if (modified)
463 		list_add(&em->list, &inode->extent_tree.modified_extents);
464 	else
465 		try_merge_map(inode, em);
466 }
467 
468 /*
469  * Add a new extent map to an inode's extent map tree.
470  *
471  * @inode:	the target inode
472  * @em:		map to insert
473  * @modified:	indicate whether the given @em should be added to the
474  *	        modified list, which indicates the extent needs to be logged
475  *
476  * Insert @em into the @inode's extent map tree or perform a simple
477  * forward/backward merge with existing mappings.  The extent_map struct passed
478  * in will be inserted into the tree directly, with an additional reference
479  * taken, or a reference dropped if the merge attempt was successful.
480  */
481 static int add_extent_mapping(struct btrfs_inode *inode,
482 			      struct extent_map *em, int modified)
483 {
484 	struct extent_map_tree *tree = &inode->extent_tree;
485 	struct btrfs_root *root = inode->root;
486 	struct btrfs_fs_info *fs_info = root->fs_info;
487 	int ret;
488 
489 	lockdep_assert_held_write(&tree->lock);
490 
491 	validate_extent_map(fs_info, em);
492 	ret = tree_insert(&tree->root, em);
493 	if (ret)
494 		return ret;
495 
496 	setup_extent_mapping(inode, em, modified);
497 
498 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root)))
499 		percpu_counter_inc(&fs_info->evictable_extent_maps);
500 
501 	return 0;
502 }
503 
504 static struct extent_map *
505 __lookup_extent_mapping(struct extent_map_tree *tree,
506 			u64 start, u64 len, int strict)
507 {
508 	struct extent_map *em;
509 	struct rb_node *rb_node;
510 	struct rb_node *prev_or_next = NULL;
511 	u64 end = range_end(start, len);
512 
513 	rb_node = __tree_search(&tree->root, start, &prev_or_next);
514 	if (!rb_node) {
515 		if (prev_or_next)
516 			rb_node = prev_or_next;
517 		else
518 			return NULL;
519 	}
520 
521 	em = rb_entry(rb_node, struct extent_map, rb_node);
522 
523 	if (strict && !(end > em->start && start < extent_map_end(em)))
524 		return NULL;
525 
526 	refcount_inc(&em->refs);
527 	return em;
528 }
529 
530 /*
531  * Lookup extent_map that intersects @start + @len range.
532  *
533  * @tree:	tree to lookup in
534  * @start:	byte offset to start the search
535  * @len:	length of the lookup range
536  *
537  * Find and return the first extent_map struct in @tree that intersects the
538  * [start, len] range.  There may be additional objects in the tree that
539  * intersect, so check the object returned carefully to make sure that no
540  * additional lookups are needed.
541  */
542 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
543 					 u64 start, u64 len)
544 {
545 	return __lookup_extent_mapping(tree, start, len, 1);
546 }
547 
548 /*
549  * Find a nearby extent map intersecting @start + @len (not an exact search).
550  *
551  * @tree:	tree to lookup in
552  * @start:	byte offset to start the search
553  * @len:	length of the lookup range
554  *
555  * Find and return the first extent_map struct in @tree that intersects the
556  * [start, len] range.
557  *
558  * If one can't be found, any nearby extent may be returned
559  */
560 struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
561 					 u64 start, u64 len)
562 {
563 	return __lookup_extent_mapping(tree, start, len, 0);
564 }
565 
566 /*
567  * Remove an extent_map from its inode's extent tree.
568  *
569  * @inode:	the inode the extent map belongs to
570  * @em:		extent map being removed
571  *
572  * Remove @em from the extent tree of @inode.  No reference counts are dropped,
573  * and no checks are done to see if the range is in use.
574  */
575 void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em)
576 {
577 	struct extent_map_tree *tree = &inode->extent_tree;
578 
579 	lockdep_assert_held_write(&tree->lock);
580 
581 	WARN_ON(em->flags & EXTENT_FLAG_PINNED);
582 	rb_erase(&em->rb_node, &tree->root);
583 	if (!(em->flags & EXTENT_FLAG_LOGGING))
584 		list_del_init(&em->list);
585 	RB_CLEAR_NODE(&em->rb_node);
586 
587 	dec_evictable_extent_maps(inode);
588 }
589 
590 static void replace_extent_mapping(struct btrfs_inode *inode,
591 				   struct extent_map *cur,
592 				   struct extent_map *new,
593 				   int modified)
594 {
595 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
596 	struct extent_map_tree *tree = &inode->extent_tree;
597 
598 	lockdep_assert_held_write(&tree->lock);
599 
600 	validate_extent_map(fs_info, new);
601 
602 	WARN_ON(cur->flags & EXTENT_FLAG_PINNED);
603 	ASSERT(extent_map_in_tree(cur));
604 	if (!(cur->flags & EXTENT_FLAG_LOGGING))
605 		list_del_init(&cur->list);
606 	rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root);
607 	RB_CLEAR_NODE(&cur->rb_node);
608 
609 	setup_extent_mapping(inode, new, modified);
610 }
611 
612 static struct extent_map *next_extent_map(const struct extent_map *em)
613 {
614 	struct rb_node *next;
615 
616 	next = rb_next(&em->rb_node);
617 	if (!next)
618 		return NULL;
619 	return container_of(next, struct extent_map, rb_node);
620 }
621 
622 static struct extent_map *prev_extent_map(struct extent_map *em)
623 {
624 	struct rb_node *prev;
625 
626 	prev = rb_prev(&em->rb_node);
627 	if (!prev)
628 		return NULL;
629 	return container_of(prev, struct extent_map, rb_node);
630 }
631 
632 /*
633  * Helper for btrfs_get_extent.  Given an existing extent in the tree,
634  * the existing extent is the nearest extent to map_start,
635  * and an extent that you want to insert, deal with overlap and insert
636  * the best fitted new extent into the tree.
637  */
638 static noinline int merge_extent_mapping(struct btrfs_inode *inode,
639 					 struct extent_map *existing,
640 					 struct extent_map *em,
641 					 u64 map_start)
642 {
643 	struct extent_map *prev;
644 	struct extent_map *next;
645 	u64 start;
646 	u64 end;
647 	u64 start_diff;
648 
649 	if (map_start < em->start || map_start >= extent_map_end(em))
650 		return -EINVAL;
651 
652 	if (existing->start > map_start) {
653 		next = existing;
654 		prev = prev_extent_map(next);
655 	} else {
656 		prev = existing;
657 		next = next_extent_map(prev);
658 	}
659 
660 	start = prev ? extent_map_end(prev) : em->start;
661 	start = max_t(u64, start, em->start);
662 	end = next ? next->start : extent_map_end(em);
663 	end = min_t(u64, end, extent_map_end(em));
664 	start_diff = start - em->start;
665 	em->start = start;
666 	em->len = end - start;
667 	if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE && !extent_map_is_compressed(em))
668 		em->offset += start_diff;
669 	return add_extent_mapping(inode, em, 0);
670 }
671 
672 /*
673  * Add extent mapping into an inode's extent map tree.
674  *
675  * @inode:    target inode
676  * @em_in:    extent we are inserting
677  * @start:    start of the logical range btrfs_get_extent() is requesting
678  * @len:      length of the logical range btrfs_get_extent() is requesting
679  *
680  * Note that @em_in's range may be different from [start, start+len),
681  * but they must be overlapped.
682  *
683  * Insert @em_in into the inode's extent map tree. In case there is an
684  * overlapping range, handle the -EEXIST by either:
685  * a) Returning the existing extent in @em_in if @start is within the
686  *    existing em.
687  * b) Merge the existing extent with @em_in passed in.
688  *
689  * Return 0 on success, otherwise -EEXIST.
690  *
691  */
692 int btrfs_add_extent_mapping(struct btrfs_inode *inode,
693 			     struct extent_map **em_in, u64 start, u64 len)
694 {
695 	int ret;
696 	struct extent_map *em = *em_in;
697 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
698 
699 	/*
700 	 * Tree-checker should have rejected any inline extent with non-zero
701 	 * file offset. Here just do a sanity check.
702 	 */
703 	if (em->disk_bytenr == EXTENT_MAP_INLINE)
704 		ASSERT(em->start == 0);
705 
706 	ret = add_extent_mapping(inode, em, 0);
707 	/* it is possible that someone inserted the extent into the tree
708 	 * while we had the lock dropped.  It is also possible that
709 	 * an overlapping map exists in the tree
710 	 */
711 	if (ret == -EEXIST) {
712 		struct extent_map *existing;
713 
714 		existing = search_extent_mapping(&inode->extent_tree, start, len);
715 
716 		trace_btrfs_handle_em_exist(fs_info, existing, em, start, len);
717 
718 		/*
719 		 * existing will always be non-NULL, since there must be
720 		 * extent causing the -EEXIST.
721 		 */
722 		if (start >= existing->start &&
723 		    start < extent_map_end(existing)) {
724 			free_extent_map(em);
725 			*em_in = existing;
726 			ret = 0;
727 		} else {
728 			u64 orig_start = em->start;
729 			u64 orig_len = em->len;
730 
731 			/*
732 			 * The existing extent map is the one nearest to
733 			 * the [start, start + len) range which overlaps
734 			 */
735 			ret = merge_extent_mapping(inode, existing, em, start);
736 			if (WARN_ON(ret)) {
737 				free_extent_map(em);
738 				*em_in = NULL;
739 				btrfs_warn(fs_info,
740 "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu",
741 					   existing->start, extent_map_end(existing),
742 					   orig_start, orig_start + orig_len, start);
743 			}
744 			free_extent_map(existing);
745 		}
746 	}
747 
748 	ASSERT(ret == 0 || ret == -EEXIST);
749 	return ret;
750 }
751 
752 /*
753  * Drop all extent maps from a tree in the fastest possible way, rescheduling
754  * if needed. This avoids searching the tree, from the root down to the first
755  * extent map, before each deletion.
756  */
757 static void drop_all_extent_maps_fast(struct btrfs_inode *inode)
758 {
759 	struct extent_map_tree *tree = &inode->extent_tree;
760 	struct rb_node *node;
761 
762 	write_lock(&tree->lock);
763 	node = rb_first(&tree->root);
764 	while (node) {
765 		struct extent_map *em;
766 		struct rb_node *next = rb_next(node);
767 
768 		em = rb_entry(node, struct extent_map, rb_node);
769 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
770 		remove_extent_mapping(inode, em);
771 		free_extent_map(em);
772 
773 		if (cond_resched_rwlock_write(&tree->lock))
774 			node = rb_first(&tree->root);
775 		else
776 			node = next;
777 	}
778 	write_unlock(&tree->lock);
779 }
780 
781 /*
782  * Drop all extent maps in a given range.
783  *
784  * @inode:       The target inode.
785  * @start:       Start offset of the range.
786  * @end:         End offset of the range (inclusive value).
787  * @skip_pinned: Indicate if pinned extent maps should be ignored or not.
788  *
789  * This drops all the extent maps that intersect the given range [@start, @end].
790  * Extent maps that partially overlap the range and extend behind or beyond it,
791  * are split.
792  * The caller should have locked an appropriate file range in the inode's io
793  * tree before calling this function.
794  */
795 void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end,
796 				 bool skip_pinned)
797 {
798 	struct extent_map *split;
799 	struct extent_map *split2;
800 	struct extent_map *em;
801 	struct extent_map_tree *em_tree = &inode->extent_tree;
802 	u64 len = end - start + 1;
803 
804 	WARN_ON(end < start);
805 	if (end == (u64)-1) {
806 		if (start == 0 && !skip_pinned) {
807 			drop_all_extent_maps_fast(inode);
808 			return;
809 		}
810 		len = (u64)-1;
811 	} else {
812 		/* Make end offset exclusive for use in the loop below. */
813 		end++;
814 	}
815 
816 	/*
817 	 * It's ok if we fail to allocate the extent maps, see the comment near
818 	 * the bottom of the loop below. We only need two spare extent maps in
819 	 * the worst case, where the first extent map that intersects our range
820 	 * starts before the range and the last extent map that intersects our
821 	 * range ends after our range (and they might be the same extent map),
822 	 * because we need to split those two extent maps at the boundaries.
823 	 */
824 	split = alloc_extent_map();
825 	split2 = alloc_extent_map();
826 
827 	write_lock(&em_tree->lock);
828 	em = lookup_extent_mapping(em_tree, start, len);
829 
830 	while (em) {
831 		/* extent_map_end() returns exclusive value (last byte + 1). */
832 		const u64 em_end = extent_map_end(em);
833 		struct extent_map *next_em = NULL;
834 		u64 gen;
835 		unsigned long flags;
836 		bool modified;
837 
838 		if (em_end < end) {
839 			next_em = next_extent_map(em);
840 			if (next_em) {
841 				if (next_em->start < end)
842 					refcount_inc(&next_em->refs);
843 				else
844 					next_em = NULL;
845 			}
846 		}
847 
848 		if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) {
849 			start = em_end;
850 			goto next;
851 		}
852 
853 		flags = em->flags;
854 		/*
855 		 * In case we split the extent map, we want to preserve the
856 		 * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want
857 		 * it on the new extent maps.
858 		 */
859 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
860 		modified = !list_empty(&em->list);
861 
862 		/*
863 		 * The extent map does not cross our target range, so no need to
864 		 * split it, we can remove it directly.
865 		 */
866 		if (em->start >= start && em_end <= end)
867 			goto remove_em;
868 
869 		gen = em->generation;
870 
871 		if (em->start < start) {
872 			if (!split) {
873 				split = split2;
874 				split2 = NULL;
875 				if (!split)
876 					goto remove_em;
877 			}
878 			split->start = em->start;
879 			split->len = start - em->start;
880 
881 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
882 				split->disk_bytenr = em->disk_bytenr;
883 				split->disk_num_bytes = em->disk_num_bytes;
884 				split->offset = em->offset;
885 				split->ram_bytes = em->ram_bytes;
886 			} else {
887 				split->disk_bytenr = em->disk_bytenr;
888 				split->disk_num_bytes = 0;
889 				split->offset = 0;
890 				split->ram_bytes = split->len;
891 			}
892 
893 			split->generation = gen;
894 			split->flags = flags;
895 			replace_extent_mapping(inode, em, split, modified);
896 			free_extent_map(split);
897 			split = split2;
898 			split2 = NULL;
899 		}
900 		if (em_end > end) {
901 			if (!split) {
902 				split = split2;
903 				split2 = NULL;
904 				if (!split)
905 					goto remove_em;
906 			}
907 			split->start = end;
908 			split->len = em_end - end;
909 			split->disk_bytenr = em->disk_bytenr;
910 			split->flags = flags;
911 			split->generation = gen;
912 
913 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
914 				split->disk_num_bytes = em->disk_num_bytes;
915 				split->offset = em->offset + end - em->start;
916 				split->ram_bytes = em->ram_bytes;
917 			} else {
918 				split->disk_num_bytes = 0;
919 				split->offset = 0;
920 				split->ram_bytes = split->len;
921 			}
922 
923 			if (extent_map_in_tree(em)) {
924 				replace_extent_mapping(inode, em, split, modified);
925 			} else {
926 				int ret;
927 
928 				ret = add_extent_mapping(inode, split, modified);
929 				/* Logic error, shouldn't happen. */
930 				ASSERT(ret == 0);
931 				if (WARN_ON(ret != 0) && modified)
932 					btrfs_set_inode_full_sync(inode);
933 			}
934 			free_extent_map(split);
935 			split = NULL;
936 		}
937 remove_em:
938 		if (extent_map_in_tree(em)) {
939 			/*
940 			 * If the extent map is still in the tree it means that
941 			 * either of the following is true:
942 			 *
943 			 * 1) It fits entirely in our range (doesn't end beyond
944 			 *    it or starts before it);
945 			 *
946 			 * 2) It starts before our range and/or ends after our
947 			 *    range, and we were not able to allocate the extent
948 			 *    maps for split operations, @split and @split2.
949 			 *
950 			 * If we are at case 2) then we just remove the entire
951 			 * extent map - this is fine since if anyone needs it to
952 			 * access the subranges outside our range, will just
953 			 * load it again from the subvolume tree's file extent
954 			 * item. However if the extent map was in the list of
955 			 * modified extents, then we must mark the inode for a
956 			 * full fsync, otherwise a fast fsync will miss this
957 			 * extent if it's new and needs to be logged.
958 			 */
959 			if ((em->start < start || em_end > end) && modified) {
960 				ASSERT(!split);
961 				btrfs_set_inode_full_sync(inode);
962 			}
963 			remove_extent_mapping(inode, em);
964 		}
965 
966 		/*
967 		 * Once for the tree reference (we replaced or removed the
968 		 * extent map from the tree).
969 		 */
970 		free_extent_map(em);
971 next:
972 		/* Once for us (for our lookup reference). */
973 		free_extent_map(em);
974 
975 		em = next_em;
976 	}
977 
978 	write_unlock(&em_tree->lock);
979 
980 	free_extent_map(split);
981 	free_extent_map(split2);
982 }
983 
984 /*
985  * Replace a range in the inode's extent map tree with a new extent map.
986  *
987  * @inode:      The target inode.
988  * @new_em:     The new extent map to add to the inode's extent map tree.
989  * @modified:   Indicate if the new extent map should be added to the list of
990  *              modified extents (for fast fsync tracking).
991  *
992  * Drops all the extent maps in the inode's extent map tree that intersect the
993  * range of the new extent map and adds the new extent map to the tree.
994  * The caller should have locked an appropriate file range in the inode's io
995  * tree before calling this function.
996  */
997 int btrfs_replace_extent_map_range(struct btrfs_inode *inode,
998 				   struct extent_map *new_em,
999 				   bool modified)
1000 {
1001 	const u64 end = new_em->start + new_em->len - 1;
1002 	struct extent_map_tree *tree = &inode->extent_tree;
1003 	int ret;
1004 
1005 	ASSERT(!extent_map_in_tree(new_em));
1006 
1007 	/*
1008 	 * The caller has locked an appropriate file range in the inode's io
1009 	 * tree, but getting -EEXIST when adding the new extent map can still
1010 	 * happen in case there are extents that partially cover the range, and
1011 	 * this is due to two tasks operating on different parts of the extent.
1012 	 * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from
1013 	 * btrfs_get_extent") for an example and details.
1014 	 */
1015 	do {
1016 		btrfs_drop_extent_map_range(inode, new_em->start, end, false);
1017 		write_lock(&tree->lock);
1018 		ret = add_extent_mapping(inode, new_em, modified);
1019 		write_unlock(&tree->lock);
1020 	} while (ret == -EEXIST);
1021 
1022 	return ret;
1023 }
1024 
1025 /*
1026  * Split off the first pre bytes from the extent_map at [start, start + len],
1027  * and set the block_start for it to new_logical.
1028  *
1029  * This function is used when an ordered_extent needs to be split.
1030  */
1031 int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre,
1032 		     u64 new_logical)
1033 {
1034 	struct extent_map_tree *em_tree = &inode->extent_tree;
1035 	struct extent_map *em;
1036 	struct extent_map *split_pre = NULL;
1037 	struct extent_map *split_mid = NULL;
1038 	int ret = 0;
1039 	unsigned long flags;
1040 
1041 	ASSERT(pre != 0);
1042 	ASSERT(pre < len);
1043 
1044 	split_pre = alloc_extent_map();
1045 	if (!split_pre)
1046 		return -ENOMEM;
1047 	split_mid = alloc_extent_map();
1048 	if (!split_mid) {
1049 		ret = -ENOMEM;
1050 		goto out_free_pre;
1051 	}
1052 
1053 	lock_extent(&inode->io_tree, start, start + len - 1, NULL);
1054 	write_lock(&em_tree->lock);
1055 	em = lookup_extent_mapping(em_tree, start, len);
1056 	if (!em) {
1057 		ret = -EIO;
1058 		goto out_unlock;
1059 	}
1060 
1061 	ASSERT(em->len == len);
1062 	ASSERT(!extent_map_is_compressed(em));
1063 	ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE);
1064 	ASSERT(em->flags & EXTENT_FLAG_PINNED);
1065 	ASSERT(!(em->flags & EXTENT_FLAG_LOGGING));
1066 	ASSERT(!list_empty(&em->list));
1067 
1068 	flags = em->flags;
1069 	em->flags &= ~EXTENT_FLAG_PINNED;
1070 
1071 	/* First, replace the em with a new extent_map starting from * em->start */
1072 	split_pre->start = em->start;
1073 	split_pre->len = pre;
1074 	split_pre->disk_bytenr = new_logical;
1075 	split_pre->disk_num_bytes = split_pre->len;
1076 	split_pre->offset = 0;
1077 	split_pre->ram_bytes = split_pre->len;
1078 	split_pre->flags = flags;
1079 	split_pre->generation = em->generation;
1080 
1081 	replace_extent_mapping(inode, em, split_pre, 1);
1082 
1083 	/*
1084 	 * Now we only have an extent_map at:
1085 	 *     [em->start, em->start + pre]
1086 	 */
1087 
1088 	/* Insert the middle extent_map. */
1089 	split_mid->start = em->start + pre;
1090 	split_mid->len = em->len - pre;
1091 	split_mid->disk_bytenr = extent_map_block_start(em) + pre;
1092 	split_mid->disk_num_bytes = split_mid->len;
1093 	split_mid->offset = 0;
1094 	split_mid->ram_bytes = split_mid->len;
1095 	split_mid->flags = flags;
1096 	split_mid->generation = em->generation;
1097 	add_extent_mapping(inode, split_mid, 1);
1098 
1099 	/* Once for us */
1100 	free_extent_map(em);
1101 	/* Once for the tree */
1102 	free_extent_map(em);
1103 
1104 out_unlock:
1105 	write_unlock(&em_tree->lock);
1106 	unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
1107 	free_extent_map(split_mid);
1108 out_free_pre:
1109 	free_extent_map(split_pre);
1110 	return ret;
1111 }
1112 
1113 struct btrfs_em_shrink_ctx {
1114 	long nr_to_scan;
1115 	long scanned;
1116 	u64 last_ino;
1117 	u64 last_root;
1118 };
1119 
1120 static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx)
1121 {
1122 	const u64 cur_fs_gen = btrfs_get_fs_generation(inode->root->fs_info);
1123 	struct extent_map_tree *tree = &inode->extent_tree;
1124 	long nr_dropped = 0;
1125 	struct rb_node *node;
1126 
1127 	/*
1128 	 * Take the mmap lock so that we serialize with the inode logging phase
1129 	 * of fsync because we may need to set the full sync flag on the inode,
1130 	 * in case we have to remove extent maps in the tree's list of modified
1131 	 * extents. If we set the full sync flag in the inode while an fsync is
1132 	 * in progress, we may risk missing new extents because before the flag
1133 	 * is set, fsync decides to only wait for writeback to complete and then
1134 	 * during inode logging it sees the flag set and uses the subvolume tree
1135 	 * to find new extents, which may not be there yet because ordered
1136 	 * extents haven't completed yet.
1137 	 *
1138 	 * We also do a try lock because otherwise we could deadlock. This is
1139 	 * because the shrinker for this filesystem may be invoked while we are
1140 	 * in a path that is holding the mmap lock in write mode. For example in
1141 	 * a reflink operation while COWing an extent buffer, when allocating
1142 	 * pages for a new extent buffer and under memory pressure, the shrinker
1143 	 * may be invoked, and therefore we would deadlock by attempting to read
1144 	 * lock the mmap lock while we are holding already a write lock on it.
1145 	 */
1146 	if (!down_read_trylock(&inode->i_mmap_lock))
1147 		return 0;
1148 
1149 	/*
1150 	 * We want to be fast because we can be called from any path trying to
1151 	 * allocate memory, so if the lock is busy we don't want to spend time
1152 	 * waiting for it - either some task is about to do IO for the inode or
1153 	 * we may have another task shrinking extent maps, here in this code, so
1154 	 * skip this inode.
1155 	 */
1156 	if (!write_trylock(&tree->lock)) {
1157 		up_read(&inode->i_mmap_lock);
1158 		return 0;
1159 	}
1160 
1161 	node = rb_first(&tree->root);
1162 	while (node) {
1163 		struct rb_node *next = rb_next(node);
1164 		struct extent_map *em;
1165 
1166 		em = rb_entry(node, struct extent_map, rb_node);
1167 		ctx->scanned++;
1168 
1169 		if (em->flags & EXTENT_FLAG_PINNED)
1170 			goto next;
1171 
1172 		/*
1173 		 * If the inode is in the list of modified extents (new) and its
1174 		 * generation is the same (or is greater than) the current fs
1175 		 * generation, it means it was not yet persisted so we have to
1176 		 * set the full sync flag so that the next fsync will not miss
1177 		 * it.
1178 		 */
1179 		if (!list_empty(&em->list) && em->generation >= cur_fs_gen)
1180 			btrfs_set_inode_full_sync(inode);
1181 
1182 		remove_extent_mapping(inode, em);
1183 		trace_btrfs_extent_map_shrinker_remove_em(inode, em);
1184 		/* Drop the reference for the tree. */
1185 		free_extent_map(em);
1186 		nr_dropped++;
1187 next:
1188 		if (ctx->scanned >= ctx->nr_to_scan)
1189 			break;
1190 
1191 		/*
1192 		 * Stop if we need to reschedule or there's contention on the
1193 		 * lock. This is to avoid slowing other tasks trying to take the
1194 		 * lock and because the shrinker might be called during a memory
1195 		 * allocation path and we want to avoid taking a very long time
1196 		 * and slowing down all sorts of tasks.
1197 		 */
1198 		if (need_resched() || rwlock_needbreak(&tree->lock))
1199 			break;
1200 		node = next;
1201 	}
1202 	write_unlock(&tree->lock);
1203 	up_read(&inode->i_mmap_lock);
1204 
1205 	return nr_dropped;
1206 }
1207 
1208 static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx)
1209 {
1210 	struct btrfs_inode *inode;
1211 	long nr_dropped = 0;
1212 	u64 min_ino = ctx->last_ino + 1;
1213 
1214 	inode = btrfs_find_first_inode(root, min_ino);
1215 	while (inode) {
1216 		nr_dropped += btrfs_scan_inode(inode, ctx);
1217 
1218 		min_ino = btrfs_ino(inode) + 1;
1219 		ctx->last_ino = btrfs_ino(inode);
1220 		btrfs_add_delayed_iput(inode);
1221 
1222 		if (ctx->scanned >= ctx->nr_to_scan)
1223 			break;
1224 
1225 		/*
1226 		 * We may be called from memory allocation paths, so we don't
1227 		 * want to take too much time and slowdown tasks.
1228 		 */
1229 		if (need_resched())
1230 			break;
1231 
1232 		inode = btrfs_find_first_inode(root, min_ino);
1233 	}
1234 
1235 	if (inode) {
1236 		/*
1237 		 * There are still inodes in this root or we happened to process
1238 		 * the last one and reached the scan limit. In either case set
1239 		 * the current root to this one, so we'll resume from the next
1240 		 * inode if there is one or we will find out this was the last
1241 		 * one and move to the next root.
1242 		 */
1243 		ctx->last_root = btrfs_root_id(root);
1244 	} else {
1245 		/*
1246 		 * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so
1247 		 * that when processing the next root we start from its first inode.
1248 		 */
1249 		ctx->last_ino = 0;
1250 		ctx->last_root = btrfs_root_id(root) + 1;
1251 	}
1252 
1253 	return nr_dropped;
1254 }
1255 
1256 long btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan)
1257 {
1258 	struct btrfs_em_shrink_ctx ctx;
1259 	u64 start_root_id;
1260 	u64 next_root_id;
1261 	bool cycled = false;
1262 	long nr_dropped = 0;
1263 
1264 	ctx.scanned = 0;
1265 	ctx.nr_to_scan = nr_to_scan;
1266 
1267 	/*
1268 	 * In case we have multiple tasks running this shrinker, make the next
1269 	 * one start from the next inode in case it starts before we finish.
1270 	 */
1271 	spin_lock(&fs_info->extent_map_shrinker_lock);
1272 	ctx.last_ino = fs_info->extent_map_shrinker_last_ino;
1273 	fs_info->extent_map_shrinker_last_ino++;
1274 	ctx.last_root = fs_info->extent_map_shrinker_last_root;
1275 	spin_unlock(&fs_info->extent_map_shrinker_lock);
1276 
1277 	start_root_id = ctx.last_root;
1278 	next_root_id = ctx.last_root;
1279 
1280 	if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) {
1281 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1282 
1283 		trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr_to_scan,
1284 							   nr, ctx.last_root,
1285 							   ctx.last_ino);
1286 	}
1287 
1288 	/*
1289 	 * We may be called from memory allocation paths, so we don't want to
1290 	 * take too much time and slowdown tasks, so stop if we need reschedule.
1291 	 */
1292 	while (ctx.scanned < ctx.nr_to_scan && !need_resched()) {
1293 		struct btrfs_root *root;
1294 		unsigned long count;
1295 
1296 		spin_lock(&fs_info->fs_roots_radix_lock);
1297 		count = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1298 					       (void **)&root,
1299 					       (unsigned long)next_root_id, 1);
1300 		if (count == 0) {
1301 			spin_unlock(&fs_info->fs_roots_radix_lock);
1302 			if (start_root_id > 0 && !cycled) {
1303 				next_root_id = 0;
1304 				ctx.last_root = 0;
1305 				ctx.last_ino = 0;
1306 				cycled = true;
1307 				continue;
1308 			}
1309 			break;
1310 		}
1311 		next_root_id = btrfs_root_id(root) + 1;
1312 		root = btrfs_grab_root(root);
1313 		spin_unlock(&fs_info->fs_roots_radix_lock);
1314 
1315 		if (!root)
1316 			continue;
1317 
1318 		if (is_fstree(btrfs_root_id(root)))
1319 			nr_dropped += btrfs_scan_root(root, &ctx);
1320 
1321 		btrfs_put_root(root);
1322 	}
1323 
1324 	/*
1325 	 * In case of multiple tasks running this extent map shrinking code this
1326 	 * isn't perfect but it's simple and silences things like KCSAN. It's
1327 	 * not possible to know which task made more progress because we can
1328 	 * cycle back to the first root and first inode if it's not the first
1329 	 * time the shrinker ran, see the above logic. Also a task that started
1330 	 * later may finish ealier than another task and made less progress. So
1331 	 * make this simple and update to the progress of the last task that
1332 	 * finished, with the occasional possiblity of having two consecutive
1333 	 * runs of the shrinker process the same inodes.
1334 	 */
1335 	spin_lock(&fs_info->extent_map_shrinker_lock);
1336 	fs_info->extent_map_shrinker_last_ino = ctx.last_ino;
1337 	fs_info->extent_map_shrinker_last_root = ctx.last_root;
1338 	spin_unlock(&fs_info->extent_map_shrinker_lock);
1339 
1340 	if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) {
1341 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1342 
1343 		trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped,
1344 							  nr, ctx.last_root,
1345 							  ctx.last_ino);
1346 	}
1347 
1348 	return nr_dropped;
1349 }
1350