1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/err.h>
4 #include <linux/slab.h>
5 #include <linux/spinlock.h>
6 #include "messages.h"
7 #include "ctree.h"
8 #include "extent_map.h"
9 #include "compression.h"
10 #include "btrfs_inode.h"
11 #include "disk-io.h"
12
13
14 static struct kmem_cache *extent_map_cache;
15
extent_map_init(void)16 int __init extent_map_init(void)
17 {
18 extent_map_cache = kmem_cache_create("btrfs_extent_map",
19 sizeof(struct extent_map), 0, 0, NULL);
20 if (!extent_map_cache)
21 return -ENOMEM;
22 return 0;
23 }
24
extent_map_exit(void)25 void __cold extent_map_exit(void)
26 {
27 kmem_cache_destroy(extent_map_cache);
28 }
29
30 /*
31 * Initialize the extent tree @tree. Should be called for each new inode or
32 * other user of the extent_map interface.
33 */
extent_map_tree_init(struct extent_map_tree * tree)34 void extent_map_tree_init(struct extent_map_tree *tree)
35 {
36 tree->root = RB_ROOT;
37 INIT_LIST_HEAD(&tree->modified_extents);
38 rwlock_init(&tree->lock);
39 }
40
41 /*
42 * Allocate a new extent_map structure. The new structure is returned with a
43 * reference count of one and needs to be freed using free_extent_map()
44 */
alloc_extent_map(void)45 struct extent_map *alloc_extent_map(void)
46 {
47 struct extent_map *em;
48 em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS);
49 if (!em)
50 return NULL;
51 RB_CLEAR_NODE(&em->rb_node);
52 refcount_set(&em->refs, 1);
53 INIT_LIST_HEAD(&em->list);
54 return em;
55 }
56
57 /*
58 * Drop the reference out on @em by one and free the structure if the reference
59 * count hits zero.
60 */
free_extent_map(struct extent_map * em)61 void free_extent_map(struct extent_map *em)
62 {
63 if (!em)
64 return;
65 if (refcount_dec_and_test(&em->refs)) {
66 WARN_ON(extent_map_in_tree(em));
67 WARN_ON(!list_empty(&em->list));
68 kmem_cache_free(extent_map_cache, em);
69 }
70 }
71
72 /* Do the math around the end of an extent, handling wrapping. */
range_end(u64 start,u64 len)73 static u64 range_end(u64 start, u64 len)
74 {
75 if (start + len < start)
76 return (u64)-1;
77 return start + len;
78 }
79
dec_evictable_extent_maps(struct btrfs_inode * inode)80 static void dec_evictable_extent_maps(struct btrfs_inode *inode)
81 {
82 struct btrfs_fs_info *fs_info = inode->root->fs_info;
83
84 if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root)))
85 percpu_counter_dec(&fs_info->evictable_extent_maps);
86 }
87
tree_insert(struct rb_root * root,struct extent_map * em)88 static int tree_insert(struct rb_root *root, struct extent_map *em)
89 {
90 struct rb_node **p = &root->rb_node;
91 struct rb_node *parent = NULL;
92 struct extent_map *entry = NULL;
93 struct rb_node *orig_parent = NULL;
94 u64 end = range_end(em->start, em->len);
95
96 while (*p) {
97 parent = *p;
98 entry = rb_entry(parent, struct extent_map, rb_node);
99
100 if (em->start < entry->start)
101 p = &(*p)->rb_left;
102 else if (em->start >= extent_map_end(entry))
103 p = &(*p)->rb_right;
104 else
105 return -EEXIST;
106 }
107
108 orig_parent = parent;
109 while (parent && em->start >= extent_map_end(entry)) {
110 parent = rb_next(parent);
111 entry = rb_entry(parent, struct extent_map, rb_node);
112 }
113 if (parent)
114 if (end > entry->start && em->start < extent_map_end(entry))
115 return -EEXIST;
116
117 parent = orig_parent;
118 entry = rb_entry(parent, struct extent_map, rb_node);
119 while (parent && em->start < entry->start) {
120 parent = rb_prev(parent);
121 entry = rb_entry(parent, struct extent_map, rb_node);
122 }
123 if (parent)
124 if (end > entry->start && em->start < extent_map_end(entry))
125 return -EEXIST;
126
127 rb_link_node(&em->rb_node, orig_parent, p);
128 rb_insert_color(&em->rb_node, root);
129 return 0;
130 }
131
132 /*
133 * Search through the tree for an extent_map with a given offset. If it can't
134 * be found, try to find some neighboring extents
135 */
__tree_search(struct rb_root * root,u64 offset,struct rb_node ** prev_or_next_ret)136 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
137 struct rb_node **prev_or_next_ret)
138 {
139 struct rb_node *n = root->rb_node;
140 struct rb_node *prev = NULL;
141 struct rb_node *orig_prev = NULL;
142 struct extent_map *entry;
143 struct extent_map *prev_entry = NULL;
144
145 ASSERT(prev_or_next_ret);
146
147 while (n) {
148 entry = rb_entry(n, struct extent_map, rb_node);
149 prev = n;
150 prev_entry = entry;
151
152 if (offset < entry->start)
153 n = n->rb_left;
154 else if (offset >= extent_map_end(entry))
155 n = n->rb_right;
156 else
157 return n;
158 }
159
160 orig_prev = prev;
161 while (prev && offset >= extent_map_end(prev_entry)) {
162 prev = rb_next(prev);
163 prev_entry = rb_entry(prev, struct extent_map, rb_node);
164 }
165
166 /*
167 * Previous extent map found, return as in this case the caller does not
168 * care about the next one.
169 */
170 if (prev) {
171 *prev_or_next_ret = prev;
172 return NULL;
173 }
174
175 prev = orig_prev;
176 prev_entry = rb_entry(prev, struct extent_map, rb_node);
177 while (prev && offset < prev_entry->start) {
178 prev = rb_prev(prev);
179 prev_entry = rb_entry(prev, struct extent_map, rb_node);
180 }
181 *prev_or_next_ret = prev;
182
183 return NULL;
184 }
185
extent_map_block_len(const struct extent_map * em)186 static inline u64 extent_map_block_len(const struct extent_map *em)
187 {
188 if (extent_map_is_compressed(em))
189 return em->disk_num_bytes;
190 return em->len;
191 }
192
extent_map_block_end(const struct extent_map * em)193 static inline u64 extent_map_block_end(const struct extent_map *em)
194 {
195 const u64 block_start = extent_map_block_start(em);
196 const u64 block_end = block_start + extent_map_block_len(em);
197
198 if (block_end < block_start)
199 return (u64)-1;
200
201 return block_end;
202 }
203
can_merge_extent_map(const struct extent_map * em)204 static bool can_merge_extent_map(const struct extent_map *em)
205 {
206 if (em->flags & EXTENT_FLAG_PINNED)
207 return false;
208
209 /* Don't merge compressed extents, we need to know their actual size. */
210 if (extent_map_is_compressed(em))
211 return false;
212
213 if (em->flags & EXTENT_FLAG_LOGGING)
214 return false;
215
216 /*
217 * We don't want to merge stuff that hasn't been written to the log yet
218 * since it may not reflect exactly what is on disk, and that would be
219 * bad.
220 */
221 if (!list_empty(&em->list))
222 return false;
223
224 return true;
225 }
226
227 /* Check to see if two extent_map structs are adjacent and safe to merge. */
mergeable_maps(const struct extent_map * prev,const struct extent_map * next)228 static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next)
229 {
230 if (extent_map_end(prev) != next->start)
231 return false;
232
233 /*
234 * The merged flag is not an on-disk flag, it just indicates we had the
235 * extent maps of 2 (or more) adjacent extents merged, so factor it out.
236 */
237 if ((prev->flags & ~EXTENT_FLAG_MERGED) !=
238 (next->flags & ~EXTENT_FLAG_MERGED))
239 return false;
240
241 if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1)
242 return extent_map_block_start(next) == extent_map_block_end(prev);
243
244 /* HOLES and INLINE extents. */
245 return next->disk_bytenr == prev->disk_bytenr;
246 }
247
248 /*
249 * Handle the on-disk data extents merge for @prev and @next.
250 *
251 * @prev: left extent to merge
252 * @next: right extent to merge
253 * @merged: the extent we will not discard after the merge; updated with new values
254 *
255 * After this, one of the two extents is the new merged extent and the other is
256 * removed from the tree and likely freed. Note that @merged is one of @prev/@next
257 * so there is const/non-const aliasing occurring here.
258 *
259 * Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes.
260 * For now only uncompressed regular extent can be merged.
261 */
merge_ondisk_extents(const struct extent_map * prev,const struct extent_map * next,struct extent_map * merged)262 static void merge_ondisk_extents(const struct extent_map *prev, const struct extent_map *next,
263 struct extent_map *merged)
264 {
265 u64 new_disk_bytenr;
266 u64 new_disk_num_bytes;
267 u64 new_offset;
268
269 /* @prev and @next should not be compressed. */
270 ASSERT(!extent_map_is_compressed(prev));
271 ASSERT(!extent_map_is_compressed(next));
272
273 /*
274 * There are two different cases where @prev and @next can be merged.
275 *
276 * 1) They are referring to the same data extent:
277 *
278 * |<----- data extent A ----->|
279 * |<- prev ->|<- next ->|
280 *
281 * 2) They are referring to different data extents but still adjacent:
282 *
283 * |<-- data extent A -->|<-- data extent B -->|
284 * |<- prev ->|<- next ->|
285 *
286 * The calculation here always merges the data extents first, then updates
287 * @offset using the new data extents.
288 *
289 * For case 1), the merged data extent would be the same.
290 * For case 2), we just merge the two data extents into one.
291 */
292 new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr);
293 new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes,
294 next->disk_bytenr + next->disk_num_bytes) -
295 new_disk_bytenr;
296 new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr;
297
298 merged->disk_bytenr = new_disk_bytenr;
299 merged->disk_num_bytes = new_disk_num_bytes;
300 merged->ram_bytes = new_disk_num_bytes;
301 merged->offset = new_offset;
302 }
303
dump_extent_map(struct btrfs_fs_info * fs_info,const char * prefix,struct extent_map * em)304 static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix,
305 struct extent_map *em)
306 {
307 if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
308 return;
309 btrfs_crit(fs_info,
310 "%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x",
311 prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes,
312 em->ram_bytes, em->offset, em->flags);
313 ASSERT(0);
314 }
315
316 /* Internal sanity checks for btrfs debug builds. */
validate_extent_map(struct btrfs_fs_info * fs_info,struct extent_map * em)317 static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em)
318 {
319 if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
320 return;
321 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
322 if (em->disk_num_bytes == 0)
323 dump_extent_map(fs_info, "zero disk_num_bytes", em);
324 if (em->offset + em->len > em->ram_bytes)
325 dump_extent_map(fs_info, "ram_bytes too small", em);
326 if (em->offset + em->len > em->disk_num_bytes &&
327 !extent_map_is_compressed(em))
328 dump_extent_map(fs_info, "disk_num_bytes too small", em);
329 if (!extent_map_is_compressed(em) &&
330 em->ram_bytes != em->disk_num_bytes)
331 dump_extent_map(fs_info,
332 "ram_bytes mismatch with disk_num_bytes for non-compressed em",
333 em);
334 } else if (em->offset) {
335 dump_extent_map(fs_info, "non-zero offset for hole/inline", em);
336 }
337 }
338
try_merge_map(struct btrfs_inode * inode,struct extent_map * em)339 static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em)
340 {
341 struct btrfs_fs_info *fs_info = inode->root->fs_info;
342 struct extent_map_tree *tree = &inode->extent_tree;
343 struct extent_map *merge = NULL;
344 struct rb_node *rb;
345
346 /*
347 * We can't modify an extent map that is in the tree and that is being
348 * used by another task, as it can cause that other task to see it in
349 * inconsistent state during the merging. We always have 1 reference for
350 * the tree and 1 for this task (which is unpinning the extent map or
351 * clearing the logging flag), so anything > 2 means it's being used by
352 * other tasks too.
353 */
354 if (refcount_read(&em->refs) > 2)
355 return;
356
357 if (!can_merge_extent_map(em))
358 return;
359
360 if (em->start != 0) {
361 rb = rb_prev(&em->rb_node);
362 if (rb)
363 merge = rb_entry(rb, struct extent_map, rb_node);
364 if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) {
365 em->start = merge->start;
366 em->len += merge->len;
367 em->generation = max(em->generation, merge->generation);
368
369 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
370 merge_ondisk_extents(merge, em, em);
371 em->flags |= EXTENT_FLAG_MERGED;
372
373 validate_extent_map(fs_info, em);
374 rb_erase(&merge->rb_node, &tree->root);
375 RB_CLEAR_NODE(&merge->rb_node);
376 free_extent_map(merge);
377 dec_evictable_extent_maps(inode);
378 }
379 }
380
381 rb = rb_next(&em->rb_node);
382 if (rb)
383 merge = rb_entry(rb, struct extent_map, rb_node);
384 if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) {
385 em->len += merge->len;
386 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
387 merge_ondisk_extents(em, merge, em);
388 validate_extent_map(fs_info, em);
389 rb_erase(&merge->rb_node, &tree->root);
390 RB_CLEAR_NODE(&merge->rb_node);
391 em->generation = max(em->generation, merge->generation);
392 em->flags |= EXTENT_FLAG_MERGED;
393 free_extent_map(merge);
394 dec_evictable_extent_maps(inode);
395 }
396 }
397
398 /*
399 * Unpin an extent from the cache.
400 *
401 * @inode: the inode from which we are unpinning an extent range
402 * @start: logical offset in the file
403 * @len: length of the extent
404 * @gen: generation that this extent has been modified in
405 *
406 * Called after an extent has been written to disk properly. Set the generation
407 * to the generation that actually added the file item to the inode so we know
408 * we need to sync this extent when we call fsync().
409 *
410 * Returns: 0 on success
411 * -ENOENT when the extent is not found in the tree
412 * -EUCLEAN if the found extent does not match the expected start
413 */
unpin_extent_cache(struct btrfs_inode * inode,u64 start,u64 len,u64 gen)414 int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen)
415 {
416 struct btrfs_fs_info *fs_info = inode->root->fs_info;
417 struct extent_map_tree *tree = &inode->extent_tree;
418 int ret = 0;
419 struct extent_map *em;
420
421 write_lock(&tree->lock);
422 em = lookup_extent_mapping(tree, start, len);
423
424 if (WARN_ON(!em)) {
425 btrfs_warn(fs_info,
426 "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu",
427 btrfs_ino(inode), btrfs_root_id(inode->root),
428 start, start + len, gen);
429 ret = -ENOENT;
430 goto out;
431 }
432
433 if (WARN_ON(em->start != start)) {
434 btrfs_warn(fs_info,
435 "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu",
436 btrfs_ino(inode), btrfs_root_id(inode->root),
437 em->start, start, start + len, gen);
438 ret = -EUCLEAN;
439 goto out;
440 }
441
442 em->generation = gen;
443 em->flags &= ~EXTENT_FLAG_PINNED;
444
445 try_merge_map(inode, em);
446
447 out:
448 write_unlock(&tree->lock);
449 free_extent_map(em);
450 return ret;
451
452 }
453
clear_em_logging(struct btrfs_inode * inode,struct extent_map * em)454 void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em)
455 {
456 lockdep_assert_held_write(&inode->extent_tree.lock);
457
458 em->flags &= ~EXTENT_FLAG_LOGGING;
459 if (extent_map_in_tree(em))
460 try_merge_map(inode, em);
461 }
462
setup_extent_mapping(struct btrfs_inode * inode,struct extent_map * em,int modified)463 static inline void setup_extent_mapping(struct btrfs_inode *inode,
464 struct extent_map *em,
465 int modified)
466 {
467 refcount_inc(&em->refs);
468
469 ASSERT(list_empty(&em->list));
470
471 if (modified)
472 list_add(&em->list, &inode->extent_tree.modified_extents);
473 else
474 try_merge_map(inode, em);
475 }
476
477 /*
478 * Add a new extent map to an inode's extent map tree.
479 *
480 * @inode: the target inode
481 * @em: map to insert
482 * @modified: indicate whether the given @em should be added to the
483 * modified list, which indicates the extent needs to be logged
484 *
485 * Insert @em into the @inode's extent map tree or perform a simple
486 * forward/backward merge with existing mappings. The extent_map struct passed
487 * in will be inserted into the tree directly, with an additional reference
488 * taken, or a reference dropped if the merge attempt was successful.
489 */
add_extent_mapping(struct btrfs_inode * inode,struct extent_map * em,int modified)490 static int add_extent_mapping(struct btrfs_inode *inode,
491 struct extent_map *em, int modified)
492 {
493 struct extent_map_tree *tree = &inode->extent_tree;
494 struct btrfs_root *root = inode->root;
495 struct btrfs_fs_info *fs_info = root->fs_info;
496 int ret;
497
498 lockdep_assert_held_write(&tree->lock);
499
500 validate_extent_map(fs_info, em);
501 ret = tree_insert(&tree->root, em);
502 if (ret)
503 return ret;
504
505 setup_extent_mapping(inode, em, modified);
506
507 if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root)))
508 percpu_counter_inc(&fs_info->evictable_extent_maps);
509
510 return 0;
511 }
512
513 static struct extent_map *
__lookup_extent_mapping(struct extent_map_tree * tree,u64 start,u64 len,int strict)514 __lookup_extent_mapping(struct extent_map_tree *tree,
515 u64 start, u64 len, int strict)
516 {
517 struct extent_map *em;
518 struct rb_node *rb_node;
519 struct rb_node *prev_or_next = NULL;
520 u64 end = range_end(start, len);
521
522 rb_node = __tree_search(&tree->root, start, &prev_or_next);
523 if (!rb_node) {
524 if (prev_or_next)
525 rb_node = prev_or_next;
526 else
527 return NULL;
528 }
529
530 em = rb_entry(rb_node, struct extent_map, rb_node);
531
532 if (strict && !(end > em->start && start < extent_map_end(em)))
533 return NULL;
534
535 refcount_inc(&em->refs);
536 return em;
537 }
538
539 /*
540 * Lookup extent_map that intersects @start + @len range.
541 *
542 * @tree: tree to lookup in
543 * @start: byte offset to start the search
544 * @len: length of the lookup range
545 *
546 * Find and return the first extent_map struct in @tree that intersects the
547 * [start, len] range. There may be additional objects in the tree that
548 * intersect, so check the object returned carefully to make sure that no
549 * additional lookups are needed.
550 */
lookup_extent_mapping(struct extent_map_tree * tree,u64 start,u64 len)551 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
552 u64 start, u64 len)
553 {
554 return __lookup_extent_mapping(tree, start, len, 1);
555 }
556
557 /*
558 * Find a nearby extent map intersecting @start + @len (not an exact search).
559 *
560 * @tree: tree to lookup in
561 * @start: byte offset to start the search
562 * @len: length of the lookup range
563 *
564 * Find and return the first extent_map struct in @tree that intersects the
565 * [start, len] range.
566 *
567 * If one can't be found, any nearby extent may be returned
568 */
search_extent_mapping(struct extent_map_tree * tree,u64 start,u64 len)569 struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
570 u64 start, u64 len)
571 {
572 return __lookup_extent_mapping(tree, start, len, 0);
573 }
574
575 /*
576 * Remove an extent_map from its inode's extent tree.
577 *
578 * @inode: the inode the extent map belongs to
579 * @em: extent map being removed
580 *
581 * Remove @em from the extent tree of @inode. No reference counts are dropped,
582 * and no checks are done to see if the range is in use.
583 */
remove_extent_mapping(struct btrfs_inode * inode,struct extent_map * em)584 void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em)
585 {
586 struct extent_map_tree *tree = &inode->extent_tree;
587
588 lockdep_assert_held_write(&tree->lock);
589
590 WARN_ON(em->flags & EXTENT_FLAG_PINNED);
591 rb_erase(&em->rb_node, &tree->root);
592 if (!(em->flags & EXTENT_FLAG_LOGGING))
593 list_del_init(&em->list);
594 RB_CLEAR_NODE(&em->rb_node);
595
596 dec_evictable_extent_maps(inode);
597 }
598
replace_extent_mapping(struct btrfs_inode * inode,struct extent_map * cur,struct extent_map * new,int modified)599 static void replace_extent_mapping(struct btrfs_inode *inode,
600 struct extent_map *cur,
601 struct extent_map *new,
602 int modified)
603 {
604 struct btrfs_fs_info *fs_info = inode->root->fs_info;
605 struct extent_map_tree *tree = &inode->extent_tree;
606
607 lockdep_assert_held_write(&tree->lock);
608
609 validate_extent_map(fs_info, new);
610
611 WARN_ON(cur->flags & EXTENT_FLAG_PINNED);
612 ASSERT(extent_map_in_tree(cur));
613 if (!(cur->flags & EXTENT_FLAG_LOGGING))
614 list_del_init(&cur->list);
615 rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root);
616 RB_CLEAR_NODE(&cur->rb_node);
617
618 setup_extent_mapping(inode, new, modified);
619 }
620
next_extent_map(const struct extent_map * em)621 static struct extent_map *next_extent_map(const struct extent_map *em)
622 {
623 struct rb_node *next;
624
625 next = rb_next(&em->rb_node);
626 if (!next)
627 return NULL;
628 return container_of(next, struct extent_map, rb_node);
629 }
630
prev_extent_map(struct extent_map * em)631 static struct extent_map *prev_extent_map(struct extent_map *em)
632 {
633 struct rb_node *prev;
634
635 prev = rb_prev(&em->rb_node);
636 if (!prev)
637 return NULL;
638 return container_of(prev, struct extent_map, rb_node);
639 }
640
641 /*
642 * Helper for btrfs_get_extent. Given an existing extent in the tree,
643 * the existing extent is the nearest extent to map_start,
644 * and an extent that you want to insert, deal with overlap and insert
645 * the best fitted new extent into the tree.
646 */
merge_extent_mapping(struct btrfs_inode * inode,struct extent_map * existing,struct extent_map * em,u64 map_start)647 static noinline int merge_extent_mapping(struct btrfs_inode *inode,
648 struct extent_map *existing,
649 struct extent_map *em,
650 u64 map_start)
651 {
652 struct extent_map *prev;
653 struct extent_map *next;
654 u64 start;
655 u64 end;
656 u64 start_diff;
657
658 if (map_start < em->start || map_start >= extent_map_end(em))
659 return -EINVAL;
660
661 if (existing->start > map_start) {
662 next = existing;
663 prev = prev_extent_map(next);
664 } else {
665 prev = existing;
666 next = next_extent_map(prev);
667 }
668
669 start = prev ? extent_map_end(prev) : em->start;
670 start = max_t(u64, start, em->start);
671 end = next ? next->start : extent_map_end(em);
672 end = min_t(u64, end, extent_map_end(em));
673 start_diff = start - em->start;
674 em->start = start;
675 em->len = end - start;
676 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
677 em->offset += start_diff;
678 return add_extent_mapping(inode, em, 0);
679 }
680
681 /*
682 * Add extent mapping into an inode's extent map tree.
683 *
684 * @inode: target inode
685 * @em_in: extent we are inserting
686 * @start: start of the logical range btrfs_get_extent() is requesting
687 * @len: length of the logical range btrfs_get_extent() is requesting
688 *
689 * Note that @em_in's range may be different from [start, start+len),
690 * but they must be overlapped.
691 *
692 * Insert @em_in into the inode's extent map tree. In case there is an
693 * overlapping range, handle the -EEXIST by either:
694 * a) Returning the existing extent in @em_in if @start is within the
695 * existing em.
696 * b) Merge the existing extent with @em_in passed in.
697 *
698 * Return 0 on success, otherwise -EEXIST.
699 *
700 */
btrfs_add_extent_mapping(struct btrfs_inode * inode,struct extent_map ** em_in,u64 start,u64 len)701 int btrfs_add_extent_mapping(struct btrfs_inode *inode,
702 struct extent_map **em_in, u64 start, u64 len)
703 {
704 int ret;
705 struct extent_map *em = *em_in;
706 struct btrfs_fs_info *fs_info = inode->root->fs_info;
707
708 /*
709 * Tree-checker should have rejected any inline extent with non-zero
710 * file offset. Here just do a sanity check.
711 */
712 if (em->disk_bytenr == EXTENT_MAP_INLINE)
713 ASSERT(em->start == 0);
714
715 ret = add_extent_mapping(inode, em, 0);
716 /* it is possible that someone inserted the extent into the tree
717 * while we had the lock dropped. It is also possible that
718 * an overlapping map exists in the tree
719 */
720 if (ret == -EEXIST) {
721 struct extent_map *existing;
722
723 existing = search_extent_mapping(&inode->extent_tree, start, len);
724
725 trace_btrfs_handle_em_exist(fs_info, existing, em, start, len);
726
727 /*
728 * existing will always be non-NULL, since there must be
729 * extent causing the -EEXIST.
730 */
731 if (start >= existing->start &&
732 start < extent_map_end(existing)) {
733 free_extent_map(em);
734 *em_in = existing;
735 ret = 0;
736 } else {
737 u64 orig_start = em->start;
738 u64 orig_len = em->len;
739
740 /*
741 * The existing extent map is the one nearest to
742 * the [start, start + len) range which overlaps
743 */
744 ret = merge_extent_mapping(inode, existing, em, start);
745 if (WARN_ON(ret)) {
746 free_extent_map(em);
747 *em_in = NULL;
748 btrfs_warn(fs_info,
749 "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu",
750 existing->start, extent_map_end(existing),
751 orig_start, orig_start + orig_len, start);
752 }
753 free_extent_map(existing);
754 }
755 }
756
757 ASSERT(ret == 0 || ret == -EEXIST);
758 return ret;
759 }
760
761 /*
762 * Drop all extent maps from a tree in the fastest possible way, rescheduling
763 * if needed. This avoids searching the tree, from the root down to the first
764 * extent map, before each deletion.
765 */
drop_all_extent_maps_fast(struct btrfs_inode * inode)766 static void drop_all_extent_maps_fast(struct btrfs_inode *inode)
767 {
768 struct extent_map_tree *tree = &inode->extent_tree;
769 struct rb_node *node;
770
771 write_lock(&tree->lock);
772 node = rb_first(&tree->root);
773 while (node) {
774 struct extent_map *em;
775 struct rb_node *next = rb_next(node);
776
777 em = rb_entry(node, struct extent_map, rb_node);
778 em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
779 remove_extent_mapping(inode, em);
780 free_extent_map(em);
781
782 if (cond_resched_rwlock_write(&tree->lock))
783 node = rb_first(&tree->root);
784 else
785 node = next;
786 }
787 write_unlock(&tree->lock);
788 }
789
790 /*
791 * Drop all extent maps in a given range.
792 *
793 * @inode: The target inode.
794 * @start: Start offset of the range.
795 * @end: End offset of the range (inclusive value).
796 * @skip_pinned: Indicate if pinned extent maps should be ignored or not.
797 *
798 * This drops all the extent maps that intersect the given range [@start, @end].
799 * Extent maps that partially overlap the range and extend behind or beyond it,
800 * are split.
801 * The caller should have locked an appropriate file range in the inode's io
802 * tree before calling this function.
803 */
btrfs_drop_extent_map_range(struct btrfs_inode * inode,u64 start,u64 end,bool skip_pinned)804 void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end,
805 bool skip_pinned)
806 {
807 struct extent_map *split;
808 struct extent_map *split2;
809 struct extent_map *em;
810 struct extent_map_tree *em_tree = &inode->extent_tree;
811 u64 len = end - start + 1;
812
813 WARN_ON(end < start);
814 if (end == (u64)-1) {
815 if (start == 0 && !skip_pinned) {
816 drop_all_extent_maps_fast(inode);
817 return;
818 }
819 len = (u64)-1;
820 } else {
821 /* Make end offset exclusive for use in the loop below. */
822 end++;
823 }
824
825 /*
826 * It's ok if we fail to allocate the extent maps, see the comment near
827 * the bottom of the loop below. We only need two spare extent maps in
828 * the worst case, where the first extent map that intersects our range
829 * starts before the range and the last extent map that intersects our
830 * range ends after our range (and they might be the same extent map),
831 * because we need to split those two extent maps at the boundaries.
832 */
833 split = alloc_extent_map();
834 split2 = alloc_extent_map();
835
836 write_lock(&em_tree->lock);
837 em = lookup_extent_mapping(em_tree, start, len);
838
839 while (em) {
840 /* extent_map_end() returns exclusive value (last byte + 1). */
841 const u64 em_end = extent_map_end(em);
842 struct extent_map *next_em = NULL;
843 u64 gen;
844 unsigned long flags;
845 bool modified;
846
847 if (em_end < end) {
848 next_em = next_extent_map(em);
849 if (next_em) {
850 if (next_em->start < end)
851 refcount_inc(&next_em->refs);
852 else
853 next_em = NULL;
854 }
855 }
856
857 if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) {
858 start = em_end;
859 goto next;
860 }
861
862 flags = em->flags;
863 /*
864 * In case we split the extent map, we want to preserve the
865 * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want
866 * it on the new extent maps.
867 */
868 em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
869 modified = !list_empty(&em->list);
870
871 /*
872 * The extent map does not cross our target range, so no need to
873 * split it, we can remove it directly.
874 */
875 if (em->start >= start && em_end <= end)
876 goto remove_em;
877
878 gen = em->generation;
879
880 if (em->start < start) {
881 if (!split) {
882 split = split2;
883 split2 = NULL;
884 if (!split)
885 goto remove_em;
886 }
887 split->start = em->start;
888 split->len = start - em->start;
889
890 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
891 split->disk_bytenr = em->disk_bytenr;
892 split->disk_num_bytes = em->disk_num_bytes;
893 split->offset = em->offset;
894 split->ram_bytes = em->ram_bytes;
895 } else {
896 split->disk_bytenr = em->disk_bytenr;
897 split->disk_num_bytes = 0;
898 split->offset = 0;
899 split->ram_bytes = split->len;
900 }
901
902 split->generation = gen;
903 split->flags = flags;
904 replace_extent_mapping(inode, em, split, modified);
905 free_extent_map(split);
906 split = split2;
907 split2 = NULL;
908 }
909 if (em_end > end) {
910 if (!split) {
911 split = split2;
912 split2 = NULL;
913 if (!split)
914 goto remove_em;
915 }
916 split->start = end;
917 split->len = em_end - end;
918 split->disk_bytenr = em->disk_bytenr;
919 split->flags = flags;
920 split->generation = gen;
921
922 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
923 split->disk_num_bytes = em->disk_num_bytes;
924 split->offset = em->offset + end - em->start;
925 split->ram_bytes = em->ram_bytes;
926 } else {
927 split->disk_num_bytes = 0;
928 split->offset = 0;
929 split->ram_bytes = split->len;
930 }
931
932 if (extent_map_in_tree(em)) {
933 replace_extent_mapping(inode, em, split, modified);
934 } else {
935 int ret;
936
937 ret = add_extent_mapping(inode, split, modified);
938 /* Logic error, shouldn't happen. */
939 ASSERT(ret == 0);
940 if (WARN_ON(ret != 0) && modified)
941 btrfs_set_inode_full_sync(inode);
942 }
943 free_extent_map(split);
944 split = NULL;
945 }
946 remove_em:
947 if (extent_map_in_tree(em)) {
948 /*
949 * If the extent map is still in the tree it means that
950 * either of the following is true:
951 *
952 * 1) It fits entirely in our range (doesn't end beyond
953 * it or starts before it);
954 *
955 * 2) It starts before our range and/or ends after our
956 * range, and we were not able to allocate the extent
957 * maps for split operations, @split and @split2.
958 *
959 * If we are at case 2) then we just remove the entire
960 * extent map - this is fine since if anyone needs it to
961 * access the subranges outside our range, will just
962 * load it again from the subvolume tree's file extent
963 * item. However if the extent map was in the list of
964 * modified extents, then we must mark the inode for a
965 * full fsync, otherwise a fast fsync will miss this
966 * extent if it's new and needs to be logged.
967 */
968 if ((em->start < start || em_end > end) && modified) {
969 ASSERT(!split);
970 btrfs_set_inode_full_sync(inode);
971 }
972 remove_extent_mapping(inode, em);
973 }
974
975 /*
976 * Once for the tree reference (we replaced or removed the
977 * extent map from the tree).
978 */
979 free_extent_map(em);
980 next:
981 /* Once for us (for our lookup reference). */
982 free_extent_map(em);
983
984 em = next_em;
985 }
986
987 write_unlock(&em_tree->lock);
988
989 free_extent_map(split);
990 free_extent_map(split2);
991 }
992
993 /*
994 * Replace a range in the inode's extent map tree with a new extent map.
995 *
996 * @inode: The target inode.
997 * @new_em: The new extent map to add to the inode's extent map tree.
998 * @modified: Indicate if the new extent map should be added to the list of
999 * modified extents (for fast fsync tracking).
1000 *
1001 * Drops all the extent maps in the inode's extent map tree that intersect the
1002 * range of the new extent map and adds the new extent map to the tree.
1003 * The caller should have locked an appropriate file range in the inode's io
1004 * tree before calling this function.
1005 */
btrfs_replace_extent_map_range(struct btrfs_inode * inode,struct extent_map * new_em,bool modified)1006 int btrfs_replace_extent_map_range(struct btrfs_inode *inode,
1007 struct extent_map *new_em,
1008 bool modified)
1009 {
1010 const u64 end = new_em->start + new_em->len - 1;
1011 struct extent_map_tree *tree = &inode->extent_tree;
1012 int ret;
1013
1014 ASSERT(!extent_map_in_tree(new_em));
1015
1016 /*
1017 * The caller has locked an appropriate file range in the inode's io
1018 * tree, but getting -EEXIST when adding the new extent map can still
1019 * happen in case there are extents that partially cover the range, and
1020 * this is due to two tasks operating on different parts of the extent.
1021 * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from
1022 * btrfs_get_extent") for an example and details.
1023 */
1024 do {
1025 btrfs_drop_extent_map_range(inode, new_em->start, end, false);
1026 write_lock(&tree->lock);
1027 ret = add_extent_mapping(inode, new_em, modified);
1028 write_unlock(&tree->lock);
1029 } while (ret == -EEXIST);
1030
1031 return ret;
1032 }
1033
1034 /*
1035 * Split off the first pre bytes from the extent_map at [start, start + len],
1036 * and set the block_start for it to new_logical.
1037 *
1038 * This function is used when an ordered_extent needs to be split.
1039 */
split_extent_map(struct btrfs_inode * inode,u64 start,u64 len,u64 pre,u64 new_logical)1040 int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre,
1041 u64 new_logical)
1042 {
1043 struct extent_map_tree *em_tree = &inode->extent_tree;
1044 struct extent_map *em;
1045 struct extent_map *split_pre = NULL;
1046 struct extent_map *split_mid = NULL;
1047 int ret = 0;
1048 unsigned long flags;
1049
1050 ASSERT(pre != 0);
1051 ASSERT(pre < len);
1052
1053 split_pre = alloc_extent_map();
1054 if (!split_pre)
1055 return -ENOMEM;
1056 split_mid = alloc_extent_map();
1057 if (!split_mid) {
1058 ret = -ENOMEM;
1059 goto out_free_pre;
1060 }
1061
1062 lock_extent(&inode->io_tree, start, start + len - 1, NULL);
1063 write_lock(&em_tree->lock);
1064 em = lookup_extent_mapping(em_tree, start, len);
1065 if (!em) {
1066 ret = -EIO;
1067 goto out_unlock;
1068 }
1069
1070 ASSERT(em->len == len);
1071 ASSERT(!extent_map_is_compressed(em));
1072 ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE);
1073 ASSERT(em->flags & EXTENT_FLAG_PINNED);
1074 ASSERT(!(em->flags & EXTENT_FLAG_LOGGING));
1075 ASSERT(!list_empty(&em->list));
1076
1077 flags = em->flags;
1078 em->flags &= ~EXTENT_FLAG_PINNED;
1079
1080 /* First, replace the em with a new extent_map starting from * em->start */
1081 split_pre->start = em->start;
1082 split_pre->len = pre;
1083 split_pre->disk_bytenr = new_logical;
1084 split_pre->disk_num_bytes = split_pre->len;
1085 split_pre->offset = 0;
1086 split_pre->ram_bytes = split_pre->len;
1087 split_pre->flags = flags;
1088 split_pre->generation = em->generation;
1089
1090 replace_extent_mapping(inode, em, split_pre, 1);
1091
1092 /*
1093 * Now we only have an extent_map at:
1094 * [em->start, em->start + pre]
1095 */
1096
1097 /* Insert the middle extent_map. */
1098 split_mid->start = em->start + pre;
1099 split_mid->len = em->len - pre;
1100 split_mid->disk_bytenr = extent_map_block_start(em) + pre;
1101 split_mid->disk_num_bytes = split_mid->len;
1102 split_mid->offset = 0;
1103 split_mid->ram_bytes = split_mid->len;
1104 split_mid->flags = flags;
1105 split_mid->generation = em->generation;
1106 add_extent_mapping(inode, split_mid, 1);
1107
1108 /* Once for us */
1109 free_extent_map(em);
1110 /* Once for the tree */
1111 free_extent_map(em);
1112
1113 out_unlock:
1114 write_unlock(&em_tree->lock);
1115 unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
1116 free_extent_map(split_mid);
1117 out_free_pre:
1118 free_extent_map(split_pre);
1119 return ret;
1120 }
1121
1122 struct btrfs_em_shrink_ctx {
1123 long nr_to_scan;
1124 long scanned;
1125 u64 last_ino;
1126 u64 last_root;
1127 };
1128
btrfs_scan_inode(struct btrfs_inode * inode,struct btrfs_em_shrink_ctx * ctx)1129 static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx)
1130 {
1131 const u64 cur_fs_gen = btrfs_get_fs_generation(inode->root->fs_info);
1132 struct extent_map_tree *tree = &inode->extent_tree;
1133 long nr_dropped = 0;
1134 struct rb_node *node;
1135
1136 /*
1137 * Take the mmap lock so that we serialize with the inode logging phase
1138 * of fsync because we may need to set the full sync flag on the inode,
1139 * in case we have to remove extent maps in the tree's list of modified
1140 * extents. If we set the full sync flag in the inode while an fsync is
1141 * in progress, we may risk missing new extents because before the flag
1142 * is set, fsync decides to only wait for writeback to complete and then
1143 * during inode logging it sees the flag set and uses the subvolume tree
1144 * to find new extents, which may not be there yet because ordered
1145 * extents haven't completed yet.
1146 *
1147 * We also do a try lock because otherwise we could deadlock. This is
1148 * because the shrinker for this filesystem may be invoked while we are
1149 * in a path that is holding the mmap lock in write mode. For example in
1150 * a reflink operation while COWing an extent buffer, when allocating
1151 * pages for a new extent buffer and under memory pressure, the shrinker
1152 * may be invoked, and therefore we would deadlock by attempting to read
1153 * lock the mmap lock while we are holding already a write lock on it.
1154 */
1155 if (!down_read_trylock(&inode->i_mmap_lock))
1156 return 0;
1157
1158 /*
1159 * We want to be fast so if the lock is busy we don't want to spend time
1160 * waiting for it - either some task is about to do IO for the inode or
1161 * we may have another task shrinking extent maps, here in this code, so
1162 * skip this inode.
1163 */
1164 if (!write_trylock(&tree->lock)) {
1165 up_read(&inode->i_mmap_lock);
1166 return 0;
1167 }
1168
1169 node = rb_first(&tree->root);
1170 while (node) {
1171 struct rb_node *next = rb_next(node);
1172 struct extent_map *em;
1173
1174 em = rb_entry(node, struct extent_map, rb_node);
1175 ctx->scanned++;
1176
1177 if (em->flags & EXTENT_FLAG_PINNED)
1178 goto next;
1179
1180 /*
1181 * If the inode is in the list of modified extents (new) and its
1182 * generation is the same (or is greater than) the current fs
1183 * generation, it means it was not yet persisted so we have to
1184 * set the full sync flag so that the next fsync will not miss
1185 * it.
1186 */
1187 if (!list_empty(&em->list) && em->generation >= cur_fs_gen)
1188 btrfs_set_inode_full_sync(inode);
1189
1190 remove_extent_mapping(inode, em);
1191 trace_btrfs_extent_map_shrinker_remove_em(inode, em);
1192 /* Drop the reference for the tree. */
1193 free_extent_map(em);
1194 nr_dropped++;
1195 next:
1196 if (ctx->scanned >= ctx->nr_to_scan)
1197 break;
1198
1199 /*
1200 * Stop if we need to reschedule or there's contention on the
1201 * lock. This is to avoid slowing other tasks trying to take the
1202 * lock.
1203 */
1204 if (need_resched() || rwlock_needbreak(&tree->lock))
1205 break;
1206 node = next;
1207 }
1208 write_unlock(&tree->lock);
1209 up_read(&inode->i_mmap_lock);
1210
1211 return nr_dropped;
1212 }
1213
btrfs_scan_root(struct btrfs_root * root,struct btrfs_em_shrink_ctx * ctx)1214 static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx)
1215 {
1216 struct btrfs_inode *inode;
1217 long nr_dropped = 0;
1218 u64 min_ino = ctx->last_ino + 1;
1219
1220 inode = btrfs_find_first_inode(root, min_ino);
1221 while (inode) {
1222 nr_dropped += btrfs_scan_inode(inode, ctx);
1223
1224 min_ino = btrfs_ino(inode) + 1;
1225 ctx->last_ino = btrfs_ino(inode);
1226 btrfs_add_delayed_iput(inode);
1227
1228 if (ctx->scanned >= ctx->nr_to_scan)
1229 break;
1230
1231 cond_resched();
1232
1233 inode = btrfs_find_first_inode(root, min_ino);
1234 }
1235
1236 if (inode) {
1237 /*
1238 * There are still inodes in this root or we happened to process
1239 * the last one and reached the scan limit. In either case set
1240 * the current root to this one, so we'll resume from the next
1241 * inode if there is one or we will find out this was the last
1242 * one and move to the next root.
1243 */
1244 ctx->last_root = btrfs_root_id(root);
1245 } else {
1246 /*
1247 * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so
1248 * that when processing the next root we start from its first inode.
1249 */
1250 ctx->last_ino = 0;
1251 ctx->last_root = btrfs_root_id(root) + 1;
1252 }
1253
1254 return nr_dropped;
1255 }
1256
btrfs_free_extent_maps(struct btrfs_fs_info * fs_info,long nr_to_scan)1257 long btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan)
1258 {
1259 struct btrfs_em_shrink_ctx ctx;
1260 u64 start_root_id;
1261 u64 next_root_id;
1262 bool cycled = false;
1263 long nr_dropped = 0;
1264
1265 ctx.scanned = 0;
1266 ctx.nr_to_scan = nr_to_scan;
1267
1268 /*
1269 * In case we have multiple tasks running this shrinker, make the next
1270 * one start from the next inode in case it starts before we finish.
1271 */
1272 spin_lock(&fs_info->extent_map_shrinker_lock);
1273 ctx.last_ino = fs_info->extent_map_shrinker_last_ino;
1274 fs_info->extent_map_shrinker_last_ino++;
1275 ctx.last_root = fs_info->extent_map_shrinker_last_root;
1276 spin_unlock(&fs_info->extent_map_shrinker_lock);
1277
1278 start_root_id = ctx.last_root;
1279 next_root_id = ctx.last_root;
1280
1281 if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) {
1282 s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1283
1284 trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr_to_scan,
1285 nr, ctx.last_root,
1286 ctx.last_ino);
1287 }
1288
1289 while (ctx.scanned < ctx.nr_to_scan) {
1290 struct btrfs_root *root;
1291 unsigned long count;
1292
1293 cond_resched();
1294
1295 spin_lock(&fs_info->fs_roots_radix_lock);
1296 count = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1297 (void **)&root,
1298 (unsigned long)next_root_id, 1);
1299 if (count == 0) {
1300 spin_unlock(&fs_info->fs_roots_radix_lock);
1301 if (start_root_id > 0 && !cycled) {
1302 next_root_id = 0;
1303 ctx.last_root = 0;
1304 ctx.last_ino = 0;
1305 cycled = true;
1306 continue;
1307 }
1308 break;
1309 }
1310 next_root_id = btrfs_root_id(root) + 1;
1311 root = btrfs_grab_root(root);
1312 spin_unlock(&fs_info->fs_roots_radix_lock);
1313
1314 if (!root)
1315 continue;
1316
1317 if (is_fstree(btrfs_root_id(root)))
1318 nr_dropped += btrfs_scan_root(root, &ctx);
1319
1320 btrfs_put_root(root);
1321 }
1322
1323 /*
1324 * In case of multiple tasks running this extent map shrinking code this
1325 * isn't perfect but it's simple and silences things like KCSAN. It's
1326 * not possible to know which task made more progress because we can
1327 * cycle back to the first root and first inode if it's not the first
1328 * time the shrinker ran, see the above logic. Also a task that started
1329 * later may finish ealier than another task and made less progress. So
1330 * make this simple and update to the progress of the last task that
1331 * finished, with the occasional possiblity of having two consecutive
1332 * runs of the shrinker process the same inodes.
1333 */
1334 spin_lock(&fs_info->extent_map_shrinker_lock);
1335 fs_info->extent_map_shrinker_last_ino = ctx.last_ino;
1336 fs_info->extent_map_shrinker_last_root = ctx.last_root;
1337 spin_unlock(&fs_info->extent_map_shrinker_lock);
1338
1339 if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) {
1340 s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1341
1342 trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped,
1343 nr, ctx.last_root,
1344 ctx.last_ino);
1345 }
1346
1347 return nr_dropped;
1348 }
1349