xref: /linux/fs/btrfs/extent_map.c (revision 9cc8d0ecdd2aad42e377e971e3bb114339df609e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/err.h>
4 #include <linux/slab.h>
5 #include <linux/spinlock.h>
6 #include "messages.h"
7 #include "ctree.h"
8 #include "extent_map.h"
9 #include "compression.h"
10 #include "btrfs_inode.h"
11 #include "disk-io.h"
12 
13 
14 static struct kmem_cache *extent_map_cache;
15 
16 int __init extent_map_init(void)
17 {
18 	extent_map_cache = kmem_cache_create("btrfs_extent_map",
19 					     sizeof(struct extent_map), 0, 0, NULL);
20 	if (!extent_map_cache)
21 		return -ENOMEM;
22 	return 0;
23 }
24 
25 void __cold extent_map_exit(void)
26 {
27 	kmem_cache_destroy(extent_map_cache);
28 }
29 
30 /*
31  * Initialize the extent tree @tree.  Should be called for each new inode or
32  * other user of the extent_map interface.
33  */
34 void extent_map_tree_init(struct extent_map_tree *tree)
35 {
36 	tree->root = RB_ROOT;
37 	INIT_LIST_HEAD(&tree->modified_extents);
38 	rwlock_init(&tree->lock);
39 }
40 
41 /*
42  * Allocate a new extent_map structure.  The new structure is returned with a
43  * reference count of one and needs to be freed using free_extent_map()
44  */
45 struct extent_map *alloc_extent_map(void)
46 {
47 	struct extent_map *em;
48 	em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS);
49 	if (!em)
50 		return NULL;
51 	RB_CLEAR_NODE(&em->rb_node);
52 	refcount_set(&em->refs, 1);
53 	INIT_LIST_HEAD(&em->list);
54 	return em;
55 }
56 
57 /*
58  * Drop the reference out on @em by one and free the structure if the reference
59  * count hits zero.
60  */
61 void free_extent_map(struct extent_map *em)
62 {
63 	if (!em)
64 		return;
65 	if (refcount_dec_and_test(&em->refs)) {
66 		WARN_ON(extent_map_in_tree(em));
67 		WARN_ON(!list_empty(&em->list));
68 		kmem_cache_free(extent_map_cache, em);
69 	}
70 }
71 
72 /* Do the math around the end of an extent, handling wrapping. */
73 static u64 range_end(u64 start, u64 len)
74 {
75 	if (start + len < start)
76 		return (u64)-1;
77 	return start + len;
78 }
79 
80 static void remove_em(struct btrfs_inode *inode, struct extent_map *em)
81 {
82 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
83 
84 	rb_erase(&em->rb_node, &inode->extent_tree.root);
85 	RB_CLEAR_NODE(&em->rb_node);
86 
87 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root)))
88 		percpu_counter_dec(&fs_info->evictable_extent_maps);
89 }
90 
91 static int tree_insert(struct rb_root *root, struct extent_map *em)
92 {
93 	struct rb_node **p = &root->rb_node;
94 	struct rb_node *parent = NULL;
95 	struct extent_map *entry = NULL;
96 	struct rb_node *orig_parent = NULL;
97 	u64 end = range_end(em->start, em->len);
98 
99 	while (*p) {
100 		parent = *p;
101 		entry = rb_entry(parent, struct extent_map, rb_node);
102 
103 		if (em->start < entry->start)
104 			p = &(*p)->rb_left;
105 		else if (em->start >= extent_map_end(entry))
106 			p = &(*p)->rb_right;
107 		else
108 			return -EEXIST;
109 	}
110 
111 	orig_parent = parent;
112 	while (parent && em->start >= extent_map_end(entry)) {
113 		parent = rb_next(parent);
114 		entry = rb_entry(parent, struct extent_map, rb_node);
115 	}
116 	if (parent)
117 		if (end > entry->start && em->start < extent_map_end(entry))
118 			return -EEXIST;
119 
120 	parent = orig_parent;
121 	entry = rb_entry(parent, struct extent_map, rb_node);
122 	while (parent && em->start < entry->start) {
123 		parent = rb_prev(parent);
124 		entry = rb_entry(parent, struct extent_map, rb_node);
125 	}
126 	if (parent)
127 		if (end > entry->start && em->start < extent_map_end(entry))
128 			return -EEXIST;
129 
130 	rb_link_node(&em->rb_node, orig_parent, p);
131 	rb_insert_color(&em->rb_node, root);
132 	return 0;
133 }
134 
135 /*
136  * Search through the tree for an extent_map with a given offset.  If it can't
137  * be found, try to find some neighboring extents
138  */
139 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
140 				     struct rb_node **prev_or_next_ret)
141 {
142 	struct rb_node *n = root->rb_node;
143 	struct rb_node *prev = NULL;
144 	struct rb_node *orig_prev = NULL;
145 	struct extent_map *entry;
146 	struct extent_map *prev_entry = NULL;
147 
148 	ASSERT(prev_or_next_ret);
149 
150 	while (n) {
151 		entry = rb_entry(n, struct extent_map, rb_node);
152 		prev = n;
153 		prev_entry = entry;
154 
155 		if (offset < entry->start)
156 			n = n->rb_left;
157 		else if (offset >= extent_map_end(entry))
158 			n = n->rb_right;
159 		else
160 			return n;
161 	}
162 
163 	orig_prev = prev;
164 	while (prev && offset >= extent_map_end(prev_entry)) {
165 		prev = rb_next(prev);
166 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
167 	}
168 
169 	/*
170 	 * Previous extent map found, return as in this case the caller does not
171 	 * care about the next one.
172 	 */
173 	if (prev) {
174 		*prev_or_next_ret = prev;
175 		return NULL;
176 	}
177 
178 	prev = orig_prev;
179 	prev_entry = rb_entry(prev, struct extent_map, rb_node);
180 	while (prev && offset < prev_entry->start) {
181 		prev = rb_prev(prev);
182 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
183 	}
184 	*prev_or_next_ret = prev;
185 
186 	return NULL;
187 }
188 
189 static inline u64 extent_map_block_len(const struct extent_map *em)
190 {
191 	if (extent_map_is_compressed(em))
192 		return em->disk_num_bytes;
193 	return em->len;
194 }
195 
196 static inline u64 extent_map_block_end(const struct extent_map *em)
197 {
198 	const u64 block_start = extent_map_block_start(em);
199 	const u64 block_end = block_start + extent_map_block_len(em);
200 
201 	if (block_end < block_start)
202 		return (u64)-1;
203 
204 	return block_end;
205 }
206 
207 static bool can_merge_extent_map(const struct extent_map *em)
208 {
209 	if (em->flags & EXTENT_FLAG_PINNED)
210 		return false;
211 
212 	/* Don't merge compressed extents, we need to know their actual size. */
213 	if (extent_map_is_compressed(em))
214 		return false;
215 
216 	if (em->flags & EXTENT_FLAG_LOGGING)
217 		return false;
218 
219 	/*
220 	 * We don't want to merge stuff that hasn't been written to the log yet
221 	 * since it may not reflect exactly what is on disk, and that would be
222 	 * bad.
223 	 */
224 	if (!list_empty(&em->list))
225 		return false;
226 
227 	return true;
228 }
229 
230 /* Check to see if two extent_map structs are adjacent and safe to merge. */
231 static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next)
232 {
233 	if (extent_map_end(prev) != next->start)
234 		return false;
235 
236 	/*
237 	 * The merged flag is not an on-disk flag, it just indicates we had the
238 	 * extent maps of 2 (or more) adjacent extents merged, so factor it out.
239 	 */
240 	if ((prev->flags & ~EXTENT_FLAG_MERGED) !=
241 	    (next->flags & ~EXTENT_FLAG_MERGED))
242 		return false;
243 
244 	if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1)
245 		return extent_map_block_start(next) == extent_map_block_end(prev);
246 
247 	/* HOLES and INLINE extents. */
248 	return next->disk_bytenr == prev->disk_bytenr;
249 }
250 
251 /*
252  * Handle the on-disk data extents merge for @prev and @next.
253  *
254  * @prev:    left extent to merge
255  * @next:    right extent to merge
256  * @merged:  the extent we will not discard after the merge; updated with new values
257  *
258  * After this, one of the two extents is the new merged extent and the other is
259  * removed from the tree and likely freed. Note that @merged is one of @prev/@next
260  * so there is const/non-const aliasing occurring here.
261  *
262  * Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes.
263  * For now only uncompressed regular extent can be merged.
264  */
265 static void merge_ondisk_extents(const struct extent_map *prev, const struct extent_map *next,
266 				 struct extent_map *merged)
267 {
268 	u64 new_disk_bytenr;
269 	u64 new_disk_num_bytes;
270 	u64 new_offset;
271 
272 	/* @prev and @next should not be compressed. */
273 	ASSERT(!extent_map_is_compressed(prev));
274 	ASSERT(!extent_map_is_compressed(next));
275 
276 	/*
277 	 * There are two different cases where @prev and @next can be merged.
278 	 *
279 	 * 1) They are referring to the same data extent:
280 	 *
281 	 * |<----- data extent A ----->|
282 	 *    |<- prev ->|<- next ->|
283 	 *
284 	 * 2) They are referring to different data extents but still adjacent:
285 	 *
286 	 * |<-- data extent A -->|<-- data extent B -->|
287 	 *            |<- prev ->|<- next ->|
288 	 *
289 	 * The calculation here always merges the data extents first, then updates
290 	 * @offset using the new data extents.
291 	 *
292 	 * For case 1), the merged data extent would be the same.
293 	 * For case 2), we just merge the two data extents into one.
294 	 */
295 	new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr);
296 	new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes,
297 				 next->disk_bytenr + next->disk_num_bytes) -
298 			     new_disk_bytenr;
299 	new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr;
300 
301 	merged->disk_bytenr = new_disk_bytenr;
302 	merged->disk_num_bytes = new_disk_num_bytes;
303 	merged->ram_bytes = new_disk_num_bytes;
304 	merged->offset = new_offset;
305 }
306 
307 static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix,
308 			    struct extent_map *em)
309 {
310 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
311 		return;
312 	btrfs_crit(fs_info,
313 "%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x",
314 		prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes,
315 		em->ram_bytes, em->offset, em->flags);
316 	ASSERT(0);
317 }
318 
319 /* Internal sanity checks for btrfs debug builds. */
320 static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em)
321 {
322 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
323 		return;
324 	if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
325 		if (em->disk_num_bytes == 0)
326 			dump_extent_map(fs_info, "zero disk_num_bytes", em);
327 		if (em->offset + em->len > em->ram_bytes)
328 			dump_extent_map(fs_info, "ram_bytes too small", em);
329 		if (em->offset + em->len > em->disk_num_bytes &&
330 		    !extent_map_is_compressed(em))
331 			dump_extent_map(fs_info, "disk_num_bytes too small", em);
332 		if (!extent_map_is_compressed(em) &&
333 		    em->ram_bytes != em->disk_num_bytes)
334 			dump_extent_map(fs_info,
335 		"ram_bytes mismatch with disk_num_bytes for non-compressed em",
336 					em);
337 	} else if (em->offset) {
338 		dump_extent_map(fs_info, "non-zero offset for hole/inline", em);
339 	}
340 }
341 
342 static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em)
343 {
344 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
345 	struct extent_map *merge = NULL;
346 	struct rb_node *rb;
347 
348 	/*
349 	 * We can't modify an extent map that is in the tree and that is being
350 	 * used by another task, as it can cause that other task to see it in
351 	 * inconsistent state during the merging. We always have 1 reference for
352 	 * the tree and 1 for this task (which is unpinning the extent map or
353 	 * clearing the logging flag), so anything > 2 means it's being used by
354 	 * other tasks too.
355 	 */
356 	if (refcount_read(&em->refs) > 2)
357 		return;
358 
359 	if (!can_merge_extent_map(em))
360 		return;
361 
362 	if (em->start != 0) {
363 		rb = rb_prev(&em->rb_node);
364 		if (rb)
365 			merge = rb_entry(rb, struct extent_map, rb_node);
366 		if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) {
367 			em->start = merge->start;
368 			em->len += merge->len;
369 			em->generation = max(em->generation, merge->generation);
370 
371 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
372 				merge_ondisk_extents(merge, em, em);
373 			em->flags |= EXTENT_FLAG_MERGED;
374 
375 			validate_extent_map(fs_info, em);
376 			remove_em(inode, merge);
377 			free_extent_map(merge);
378 		}
379 	}
380 
381 	rb = rb_next(&em->rb_node);
382 	if (rb)
383 		merge = rb_entry(rb, struct extent_map, rb_node);
384 	if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) {
385 		em->len += merge->len;
386 		if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
387 			merge_ondisk_extents(em, merge, em);
388 		validate_extent_map(fs_info, em);
389 		em->generation = max(em->generation, merge->generation);
390 		em->flags |= EXTENT_FLAG_MERGED;
391 		remove_em(inode, merge);
392 		free_extent_map(merge);
393 	}
394 }
395 
396 /*
397  * Unpin an extent from the cache.
398  *
399  * @inode:	the inode from which we are unpinning an extent range
400  * @start:	logical offset in the file
401  * @len:	length of the extent
402  * @gen:	generation that this extent has been modified in
403  *
404  * Called after an extent has been written to disk properly.  Set the generation
405  * to the generation that actually added the file item to the inode so we know
406  * we need to sync this extent when we call fsync().
407  *
408  * Returns: 0	     on success
409  * 	    -ENOENT  when the extent is not found in the tree
410  * 	    -EUCLEAN if the found extent does not match the expected start
411  */
412 int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen)
413 {
414 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
415 	struct extent_map_tree *tree = &inode->extent_tree;
416 	int ret = 0;
417 	struct extent_map *em;
418 
419 	write_lock(&tree->lock);
420 	em = lookup_extent_mapping(tree, start, len);
421 
422 	if (WARN_ON(!em)) {
423 		btrfs_warn(fs_info,
424 "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu",
425 			   btrfs_ino(inode), btrfs_root_id(inode->root),
426 			   start, start + len, gen);
427 		ret = -ENOENT;
428 		goto out;
429 	}
430 
431 	if (WARN_ON(em->start != start)) {
432 		btrfs_warn(fs_info,
433 "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu",
434 			   btrfs_ino(inode), btrfs_root_id(inode->root),
435 			   em->start, start, start + len, gen);
436 		ret = -EUCLEAN;
437 		goto out;
438 	}
439 
440 	em->generation = gen;
441 	em->flags &= ~EXTENT_FLAG_PINNED;
442 
443 	try_merge_map(inode, em);
444 
445 out:
446 	write_unlock(&tree->lock);
447 	free_extent_map(em);
448 	return ret;
449 
450 }
451 
452 void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em)
453 {
454 	lockdep_assert_held_write(&inode->extent_tree.lock);
455 
456 	em->flags &= ~EXTENT_FLAG_LOGGING;
457 	if (extent_map_in_tree(em))
458 		try_merge_map(inode, em);
459 }
460 
461 static inline void setup_extent_mapping(struct btrfs_inode *inode,
462 					struct extent_map *em,
463 					int modified)
464 {
465 	refcount_inc(&em->refs);
466 
467 	ASSERT(list_empty(&em->list));
468 
469 	if (modified)
470 		list_add(&em->list, &inode->extent_tree.modified_extents);
471 	else
472 		try_merge_map(inode, em);
473 }
474 
475 /*
476  * Add a new extent map to an inode's extent map tree.
477  *
478  * @inode:	the target inode
479  * @em:		map to insert
480  * @modified:	indicate whether the given @em should be added to the
481  *	        modified list, which indicates the extent needs to be logged
482  *
483  * Insert @em into the @inode's extent map tree or perform a simple
484  * forward/backward merge with existing mappings.  The extent_map struct passed
485  * in will be inserted into the tree directly, with an additional reference
486  * taken, or a reference dropped if the merge attempt was successful.
487  */
488 static int add_extent_mapping(struct btrfs_inode *inode,
489 			      struct extent_map *em, int modified)
490 {
491 	struct extent_map_tree *tree = &inode->extent_tree;
492 	struct btrfs_root *root = inode->root;
493 	struct btrfs_fs_info *fs_info = root->fs_info;
494 	int ret;
495 
496 	lockdep_assert_held_write(&tree->lock);
497 
498 	validate_extent_map(fs_info, em);
499 	ret = tree_insert(&tree->root, em);
500 	if (ret)
501 		return ret;
502 
503 	setup_extent_mapping(inode, em, modified);
504 
505 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root)))
506 		percpu_counter_inc(&fs_info->evictable_extent_maps);
507 
508 	return 0;
509 }
510 
511 static struct extent_map *
512 __lookup_extent_mapping(struct extent_map_tree *tree,
513 			u64 start, u64 len, int strict)
514 {
515 	struct extent_map *em;
516 	struct rb_node *rb_node;
517 	struct rb_node *prev_or_next = NULL;
518 	u64 end = range_end(start, len);
519 
520 	rb_node = __tree_search(&tree->root, start, &prev_or_next);
521 	if (!rb_node) {
522 		if (prev_or_next)
523 			rb_node = prev_or_next;
524 		else
525 			return NULL;
526 	}
527 
528 	em = rb_entry(rb_node, struct extent_map, rb_node);
529 
530 	if (strict && !(end > em->start && start < extent_map_end(em)))
531 		return NULL;
532 
533 	refcount_inc(&em->refs);
534 	return em;
535 }
536 
537 /*
538  * Lookup extent_map that intersects @start + @len range.
539  *
540  * @tree:	tree to lookup in
541  * @start:	byte offset to start the search
542  * @len:	length of the lookup range
543  *
544  * Find and return the first extent_map struct in @tree that intersects the
545  * [start, len] range.  There may be additional objects in the tree that
546  * intersect, so check the object returned carefully to make sure that no
547  * additional lookups are needed.
548  */
549 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
550 					 u64 start, u64 len)
551 {
552 	return __lookup_extent_mapping(tree, start, len, 1);
553 }
554 
555 /*
556  * Find a nearby extent map intersecting @start + @len (not an exact search).
557  *
558  * @tree:	tree to lookup in
559  * @start:	byte offset to start the search
560  * @len:	length of the lookup range
561  *
562  * Find and return the first extent_map struct in @tree that intersects the
563  * [start, len] range.
564  *
565  * If one can't be found, any nearby extent may be returned
566  */
567 struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
568 					 u64 start, u64 len)
569 {
570 	return __lookup_extent_mapping(tree, start, len, 0);
571 }
572 
573 /*
574  * Remove an extent_map from its inode's extent tree.
575  *
576  * @inode:	the inode the extent map belongs to
577  * @em:		extent map being removed
578  *
579  * Remove @em from the extent tree of @inode.  No reference counts are dropped,
580  * and no checks are done to see if the range is in use.
581  */
582 void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em)
583 {
584 	struct extent_map_tree *tree = &inode->extent_tree;
585 
586 	lockdep_assert_held_write(&tree->lock);
587 
588 	WARN_ON(em->flags & EXTENT_FLAG_PINNED);
589 	if (!(em->flags & EXTENT_FLAG_LOGGING))
590 		list_del_init(&em->list);
591 
592 	remove_em(inode, em);
593 }
594 
595 static void replace_extent_mapping(struct btrfs_inode *inode,
596 				   struct extent_map *cur,
597 				   struct extent_map *new,
598 				   int modified)
599 {
600 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
601 	struct extent_map_tree *tree = &inode->extent_tree;
602 
603 	lockdep_assert_held_write(&tree->lock);
604 
605 	validate_extent_map(fs_info, new);
606 
607 	WARN_ON(cur->flags & EXTENT_FLAG_PINNED);
608 	ASSERT(extent_map_in_tree(cur));
609 	if (!(cur->flags & EXTENT_FLAG_LOGGING))
610 		list_del_init(&cur->list);
611 	rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root);
612 	RB_CLEAR_NODE(&cur->rb_node);
613 
614 	setup_extent_mapping(inode, new, modified);
615 }
616 
617 static struct extent_map *next_extent_map(const struct extent_map *em)
618 {
619 	struct rb_node *next;
620 
621 	next = rb_next(&em->rb_node);
622 	if (!next)
623 		return NULL;
624 	return container_of(next, struct extent_map, rb_node);
625 }
626 
627 static struct extent_map *prev_extent_map(struct extent_map *em)
628 {
629 	struct rb_node *prev;
630 
631 	prev = rb_prev(&em->rb_node);
632 	if (!prev)
633 		return NULL;
634 	return container_of(prev, struct extent_map, rb_node);
635 }
636 
637 /*
638  * Helper for btrfs_get_extent.  Given an existing extent in the tree,
639  * the existing extent is the nearest extent to map_start,
640  * and an extent that you want to insert, deal with overlap and insert
641  * the best fitted new extent into the tree.
642  */
643 static noinline int merge_extent_mapping(struct btrfs_inode *inode,
644 					 struct extent_map *existing,
645 					 struct extent_map *em,
646 					 u64 map_start)
647 {
648 	struct extent_map *prev;
649 	struct extent_map *next;
650 	u64 start;
651 	u64 end;
652 	u64 start_diff;
653 
654 	if (map_start < em->start || map_start >= extent_map_end(em))
655 		return -EINVAL;
656 
657 	if (existing->start > map_start) {
658 		next = existing;
659 		prev = prev_extent_map(next);
660 	} else {
661 		prev = existing;
662 		next = next_extent_map(prev);
663 	}
664 
665 	start = prev ? extent_map_end(prev) : em->start;
666 	start = max_t(u64, start, em->start);
667 	end = next ? next->start : extent_map_end(em);
668 	end = min_t(u64, end, extent_map_end(em));
669 	start_diff = start - em->start;
670 	em->start = start;
671 	em->len = end - start;
672 	if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
673 		em->offset += start_diff;
674 	return add_extent_mapping(inode, em, 0);
675 }
676 
677 /*
678  * Add extent mapping into an inode's extent map tree.
679  *
680  * @inode:    target inode
681  * @em_in:    extent we are inserting
682  * @start:    start of the logical range btrfs_get_extent() is requesting
683  * @len:      length of the logical range btrfs_get_extent() is requesting
684  *
685  * Note that @em_in's range may be different from [start, start+len),
686  * but they must be overlapped.
687  *
688  * Insert @em_in into the inode's extent map tree. In case there is an
689  * overlapping range, handle the -EEXIST by either:
690  * a) Returning the existing extent in @em_in if @start is within the
691  *    existing em.
692  * b) Merge the existing extent with @em_in passed in.
693  *
694  * Return 0 on success, otherwise -EEXIST.
695  *
696  */
697 int btrfs_add_extent_mapping(struct btrfs_inode *inode,
698 			     struct extent_map **em_in, u64 start, u64 len)
699 {
700 	int ret;
701 	struct extent_map *em = *em_in;
702 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
703 
704 	/*
705 	 * Tree-checker should have rejected any inline extent with non-zero
706 	 * file offset. Here just do a sanity check.
707 	 */
708 	if (em->disk_bytenr == EXTENT_MAP_INLINE)
709 		ASSERT(em->start == 0);
710 
711 	ret = add_extent_mapping(inode, em, 0);
712 	/* it is possible that someone inserted the extent into the tree
713 	 * while we had the lock dropped.  It is also possible that
714 	 * an overlapping map exists in the tree
715 	 */
716 	if (ret == -EEXIST) {
717 		struct extent_map *existing;
718 
719 		existing = search_extent_mapping(&inode->extent_tree, start, len);
720 
721 		trace_btrfs_handle_em_exist(fs_info, existing, em, start, len);
722 
723 		/*
724 		 * existing will always be non-NULL, since there must be
725 		 * extent causing the -EEXIST.
726 		 */
727 		if (start >= existing->start &&
728 		    start < extent_map_end(existing)) {
729 			free_extent_map(em);
730 			*em_in = existing;
731 			ret = 0;
732 		} else {
733 			u64 orig_start = em->start;
734 			u64 orig_len = em->len;
735 
736 			/*
737 			 * The existing extent map is the one nearest to
738 			 * the [start, start + len) range which overlaps
739 			 */
740 			ret = merge_extent_mapping(inode, existing, em, start);
741 			if (WARN_ON(ret)) {
742 				free_extent_map(em);
743 				*em_in = NULL;
744 				btrfs_warn(fs_info,
745 "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu",
746 					   existing->start, extent_map_end(existing),
747 					   orig_start, orig_start + orig_len, start);
748 			}
749 			free_extent_map(existing);
750 		}
751 	}
752 
753 	ASSERT(ret == 0 || ret == -EEXIST);
754 	return ret;
755 }
756 
757 /*
758  * Drop all extent maps from a tree in the fastest possible way, rescheduling
759  * if needed. This avoids searching the tree, from the root down to the first
760  * extent map, before each deletion.
761  */
762 static void drop_all_extent_maps_fast(struct btrfs_inode *inode)
763 {
764 	struct extent_map_tree *tree = &inode->extent_tree;
765 	struct rb_node *node;
766 
767 	write_lock(&tree->lock);
768 	node = rb_first(&tree->root);
769 	while (node) {
770 		struct extent_map *em;
771 		struct rb_node *next = rb_next(node);
772 
773 		em = rb_entry(node, struct extent_map, rb_node);
774 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
775 		remove_extent_mapping(inode, em);
776 		free_extent_map(em);
777 
778 		if (cond_resched_rwlock_write(&tree->lock))
779 			node = rb_first(&tree->root);
780 		else
781 			node = next;
782 	}
783 	write_unlock(&tree->lock);
784 }
785 
786 /*
787  * Drop all extent maps in a given range.
788  *
789  * @inode:       The target inode.
790  * @start:       Start offset of the range.
791  * @end:         End offset of the range (inclusive value).
792  * @skip_pinned: Indicate if pinned extent maps should be ignored or not.
793  *
794  * This drops all the extent maps that intersect the given range [@start, @end].
795  * Extent maps that partially overlap the range and extend behind or beyond it,
796  * are split.
797  * The caller should have locked an appropriate file range in the inode's io
798  * tree before calling this function.
799  */
800 void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end,
801 				 bool skip_pinned)
802 {
803 	struct extent_map *split;
804 	struct extent_map *split2;
805 	struct extent_map *em;
806 	struct extent_map_tree *em_tree = &inode->extent_tree;
807 	u64 len = end - start + 1;
808 
809 	WARN_ON(end < start);
810 	if (end == (u64)-1) {
811 		if (start == 0 && !skip_pinned) {
812 			drop_all_extent_maps_fast(inode);
813 			return;
814 		}
815 		len = (u64)-1;
816 	} else {
817 		/* Make end offset exclusive for use in the loop below. */
818 		end++;
819 	}
820 
821 	/*
822 	 * It's ok if we fail to allocate the extent maps, see the comment near
823 	 * the bottom of the loop below. We only need two spare extent maps in
824 	 * the worst case, where the first extent map that intersects our range
825 	 * starts before the range and the last extent map that intersects our
826 	 * range ends after our range (and they might be the same extent map),
827 	 * because we need to split those two extent maps at the boundaries.
828 	 */
829 	split = alloc_extent_map();
830 	split2 = alloc_extent_map();
831 
832 	write_lock(&em_tree->lock);
833 	em = lookup_extent_mapping(em_tree, start, len);
834 
835 	while (em) {
836 		/* extent_map_end() returns exclusive value (last byte + 1). */
837 		const u64 em_end = extent_map_end(em);
838 		struct extent_map *next_em = NULL;
839 		u64 gen;
840 		unsigned long flags;
841 		bool modified;
842 
843 		if (em_end < end) {
844 			next_em = next_extent_map(em);
845 			if (next_em) {
846 				if (next_em->start < end)
847 					refcount_inc(&next_em->refs);
848 				else
849 					next_em = NULL;
850 			}
851 		}
852 
853 		if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) {
854 			start = em_end;
855 			goto next;
856 		}
857 
858 		flags = em->flags;
859 		/*
860 		 * In case we split the extent map, we want to preserve the
861 		 * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want
862 		 * it on the new extent maps.
863 		 */
864 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
865 		modified = !list_empty(&em->list);
866 
867 		/*
868 		 * The extent map does not cross our target range, so no need to
869 		 * split it, we can remove it directly.
870 		 */
871 		if (em->start >= start && em_end <= end)
872 			goto remove_em;
873 
874 		gen = em->generation;
875 
876 		if (em->start < start) {
877 			if (!split) {
878 				split = split2;
879 				split2 = NULL;
880 				if (!split)
881 					goto remove_em;
882 			}
883 			split->start = em->start;
884 			split->len = start - em->start;
885 
886 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
887 				split->disk_bytenr = em->disk_bytenr;
888 				split->disk_num_bytes = em->disk_num_bytes;
889 				split->offset = em->offset;
890 				split->ram_bytes = em->ram_bytes;
891 			} else {
892 				split->disk_bytenr = em->disk_bytenr;
893 				split->disk_num_bytes = 0;
894 				split->offset = 0;
895 				split->ram_bytes = split->len;
896 			}
897 
898 			split->generation = gen;
899 			split->flags = flags;
900 			replace_extent_mapping(inode, em, split, modified);
901 			free_extent_map(split);
902 			split = split2;
903 			split2 = NULL;
904 		}
905 		if (em_end > end) {
906 			if (!split) {
907 				split = split2;
908 				split2 = NULL;
909 				if (!split)
910 					goto remove_em;
911 			}
912 			split->start = end;
913 			split->len = em_end - end;
914 			split->disk_bytenr = em->disk_bytenr;
915 			split->flags = flags;
916 			split->generation = gen;
917 
918 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
919 				split->disk_num_bytes = em->disk_num_bytes;
920 				split->offset = em->offset + end - em->start;
921 				split->ram_bytes = em->ram_bytes;
922 			} else {
923 				split->disk_num_bytes = 0;
924 				split->offset = 0;
925 				split->ram_bytes = split->len;
926 			}
927 
928 			if (extent_map_in_tree(em)) {
929 				replace_extent_mapping(inode, em, split, modified);
930 			} else {
931 				int ret;
932 
933 				ret = add_extent_mapping(inode, split, modified);
934 				/* Logic error, shouldn't happen. */
935 				ASSERT(ret == 0);
936 				if (WARN_ON(ret != 0) && modified)
937 					btrfs_set_inode_full_sync(inode);
938 			}
939 			free_extent_map(split);
940 			split = NULL;
941 		}
942 remove_em:
943 		if (extent_map_in_tree(em)) {
944 			/*
945 			 * If the extent map is still in the tree it means that
946 			 * either of the following is true:
947 			 *
948 			 * 1) It fits entirely in our range (doesn't end beyond
949 			 *    it or starts before it);
950 			 *
951 			 * 2) It starts before our range and/or ends after our
952 			 *    range, and we were not able to allocate the extent
953 			 *    maps for split operations, @split and @split2.
954 			 *
955 			 * If we are at case 2) then we just remove the entire
956 			 * extent map - this is fine since if anyone needs it to
957 			 * access the subranges outside our range, will just
958 			 * load it again from the subvolume tree's file extent
959 			 * item. However if the extent map was in the list of
960 			 * modified extents, then we must mark the inode for a
961 			 * full fsync, otherwise a fast fsync will miss this
962 			 * extent if it's new and needs to be logged.
963 			 */
964 			if ((em->start < start || em_end > end) && modified) {
965 				ASSERT(!split);
966 				btrfs_set_inode_full_sync(inode);
967 			}
968 			remove_extent_mapping(inode, em);
969 		}
970 
971 		/*
972 		 * Once for the tree reference (we replaced or removed the
973 		 * extent map from the tree).
974 		 */
975 		free_extent_map(em);
976 next:
977 		/* Once for us (for our lookup reference). */
978 		free_extent_map(em);
979 
980 		em = next_em;
981 	}
982 
983 	write_unlock(&em_tree->lock);
984 
985 	free_extent_map(split);
986 	free_extent_map(split2);
987 }
988 
989 /*
990  * Replace a range in the inode's extent map tree with a new extent map.
991  *
992  * @inode:      The target inode.
993  * @new_em:     The new extent map to add to the inode's extent map tree.
994  * @modified:   Indicate if the new extent map should be added to the list of
995  *              modified extents (for fast fsync tracking).
996  *
997  * Drops all the extent maps in the inode's extent map tree that intersect the
998  * range of the new extent map and adds the new extent map to the tree.
999  * The caller should have locked an appropriate file range in the inode's io
1000  * tree before calling this function.
1001  */
1002 int btrfs_replace_extent_map_range(struct btrfs_inode *inode,
1003 				   struct extent_map *new_em,
1004 				   bool modified)
1005 {
1006 	const u64 end = new_em->start + new_em->len - 1;
1007 	struct extent_map_tree *tree = &inode->extent_tree;
1008 	int ret;
1009 
1010 	ASSERT(!extent_map_in_tree(new_em));
1011 
1012 	/*
1013 	 * The caller has locked an appropriate file range in the inode's io
1014 	 * tree, but getting -EEXIST when adding the new extent map can still
1015 	 * happen in case there are extents that partially cover the range, and
1016 	 * this is due to two tasks operating on different parts of the extent.
1017 	 * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from
1018 	 * btrfs_get_extent") for an example and details.
1019 	 */
1020 	do {
1021 		btrfs_drop_extent_map_range(inode, new_em->start, end, false);
1022 		write_lock(&tree->lock);
1023 		ret = add_extent_mapping(inode, new_em, modified);
1024 		write_unlock(&tree->lock);
1025 	} while (ret == -EEXIST);
1026 
1027 	return ret;
1028 }
1029 
1030 /*
1031  * Split off the first pre bytes from the extent_map at [start, start + len],
1032  * and set the block_start for it to new_logical.
1033  *
1034  * This function is used when an ordered_extent needs to be split.
1035  */
1036 int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre,
1037 		     u64 new_logical)
1038 {
1039 	struct extent_map_tree *em_tree = &inode->extent_tree;
1040 	struct extent_map *em;
1041 	struct extent_map *split_pre = NULL;
1042 	struct extent_map *split_mid = NULL;
1043 	int ret = 0;
1044 	unsigned long flags;
1045 
1046 	ASSERT(pre != 0);
1047 	ASSERT(pre < len);
1048 
1049 	split_pre = alloc_extent_map();
1050 	if (!split_pre)
1051 		return -ENOMEM;
1052 	split_mid = alloc_extent_map();
1053 	if (!split_mid) {
1054 		ret = -ENOMEM;
1055 		goto out_free_pre;
1056 	}
1057 
1058 	lock_extent(&inode->io_tree, start, start + len - 1, NULL);
1059 	write_lock(&em_tree->lock);
1060 	em = lookup_extent_mapping(em_tree, start, len);
1061 	if (!em) {
1062 		ret = -EIO;
1063 		goto out_unlock;
1064 	}
1065 
1066 	ASSERT(em->len == len);
1067 	ASSERT(!extent_map_is_compressed(em));
1068 	ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE);
1069 	ASSERT(em->flags & EXTENT_FLAG_PINNED);
1070 	ASSERT(!(em->flags & EXTENT_FLAG_LOGGING));
1071 	ASSERT(!list_empty(&em->list));
1072 
1073 	flags = em->flags;
1074 	em->flags &= ~EXTENT_FLAG_PINNED;
1075 
1076 	/* First, replace the em with a new extent_map starting from * em->start */
1077 	split_pre->start = em->start;
1078 	split_pre->len = pre;
1079 	split_pre->disk_bytenr = new_logical;
1080 	split_pre->disk_num_bytes = split_pre->len;
1081 	split_pre->offset = 0;
1082 	split_pre->ram_bytes = split_pre->len;
1083 	split_pre->flags = flags;
1084 	split_pre->generation = em->generation;
1085 
1086 	replace_extent_mapping(inode, em, split_pre, 1);
1087 
1088 	/*
1089 	 * Now we only have an extent_map at:
1090 	 *     [em->start, em->start + pre]
1091 	 */
1092 
1093 	/* Insert the middle extent_map. */
1094 	split_mid->start = em->start + pre;
1095 	split_mid->len = em->len - pre;
1096 	split_mid->disk_bytenr = extent_map_block_start(em) + pre;
1097 	split_mid->disk_num_bytes = split_mid->len;
1098 	split_mid->offset = 0;
1099 	split_mid->ram_bytes = split_mid->len;
1100 	split_mid->flags = flags;
1101 	split_mid->generation = em->generation;
1102 	add_extent_mapping(inode, split_mid, 1);
1103 
1104 	/* Once for us */
1105 	free_extent_map(em);
1106 	/* Once for the tree */
1107 	free_extent_map(em);
1108 
1109 out_unlock:
1110 	write_unlock(&em_tree->lock);
1111 	unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
1112 	free_extent_map(split_mid);
1113 out_free_pre:
1114 	free_extent_map(split_pre);
1115 	return ret;
1116 }
1117 
1118 struct btrfs_em_shrink_ctx {
1119 	long nr_to_scan;
1120 	long scanned;
1121 };
1122 
1123 static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx)
1124 {
1125 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1126 	const u64 cur_fs_gen = btrfs_get_fs_generation(fs_info);
1127 	struct extent_map_tree *tree = &inode->extent_tree;
1128 	long nr_dropped = 0;
1129 	struct rb_node *node;
1130 
1131 	/*
1132 	 * Take the mmap lock so that we serialize with the inode logging phase
1133 	 * of fsync because we may need to set the full sync flag on the inode,
1134 	 * in case we have to remove extent maps in the tree's list of modified
1135 	 * extents. If we set the full sync flag in the inode while an fsync is
1136 	 * in progress, we may risk missing new extents because before the flag
1137 	 * is set, fsync decides to only wait for writeback to complete and then
1138 	 * during inode logging it sees the flag set and uses the subvolume tree
1139 	 * to find new extents, which may not be there yet because ordered
1140 	 * extents haven't completed yet.
1141 	 *
1142 	 * We also do a try lock because otherwise we could deadlock. This is
1143 	 * because the shrinker for this filesystem may be invoked while we are
1144 	 * in a path that is holding the mmap lock in write mode. For example in
1145 	 * a reflink operation while COWing an extent buffer, when allocating
1146 	 * pages for a new extent buffer and under memory pressure, the shrinker
1147 	 * may be invoked, and therefore we would deadlock by attempting to read
1148 	 * lock the mmap lock while we are holding already a write lock on it.
1149 	 */
1150 	if (!down_read_trylock(&inode->i_mmap_lock))
1151 		return 0;
1152 
1153 	/*
1154 	 * We want to be fast so if the lock is busy we don't want to spend time
1155 	 * waiting for it - either some task is about to do IO for the inode or
1156 	 * we may have another task shrinking extent maps, here in this code, so
1157 	 * skip this inode.
1158 	 */
1159 	if (!write_trylock(&tree->lock)) {
1160 		up_read(&inode->i_mmap_lock);
1161 		return 0;
1162 	}
1163 
1164 	node = rb_first(&tree->root);
1165 	while (node) {
1166 		struct rb_node *next = rb_next(node);
1167 		struct extent_map *em;
1168 
1169 		em = rb_entry(node, struct extent_map, rb_node);
1170 		ctx->scanned++;
1171 
1172 		if (em->flags & EXTENT_FLAG_PINNED)
1173 			goto next;
1174 
1175 		/*
1176 		 * If the inode is in the list of modified extents (new) and its
1177 		 * generation is the same (or is greater than) the current fs
1178 		 * generation, it means it was not yet persisted so we have to
1179 		 * set the full sync flag so that the next fsync will not miss
1180 		 * it.
1181 		 */
1182 		if (!list_empty(&em->list) && em->generation >= cur_fs_gen)
1183 			btrfs_set_inode_full_sync(inode);
1184 
1185 		remove_extent_mapping(inode, em);
1186 		trace_btrfs_extent_map_shrinker_remove_em(inode, em);
1187 		/* Drop the reference for the tree. */
1188 		free_extent_map(em);
1189 		nr_dropped++;
1190 next:
1191 		if (ctx->scanned >= ctx->nr_to_scan)
1192 			break;
1193 
1194 		/*
1195 		 * Stop if we need to reschedule or there's contention on the
1196 		 * lock. This is to avoid slowing other tasks trying to take the
1197 		 * lock.
1198 		 */
1199 		if (need_resched() || rwlock_needbreak(&tree->lock) ||
1200 		    btrfs_fs_closing(fs_info))
1201 			break;
1202 		node = next;
1203 	}
1204 	write_unlock(&tree->lock);
1205 	up_read(&inode->i_mmap_lock);
1206 
1207 	return nr_dropped;
1208 }
1209 
1210 static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx)
1211 {
1212 	struct btrfs_fs_info *fs_info = root->fs_info;
1213 	struct btrfs_inode *inode;
1214 	long nr_dropped = 0;
1215 	u64 min_ino = fs_info->em_shrinker_last_ino + 1;
1216 
1217 	inode = btrfs_find_first_inode(root, min_ino);
1218 	while (inode) {
1219 		nr_dropped += btrfs_scan_inode(inode, ctx);
1220 
1221 		min_ino = btrfs_ino(inode) + 1;
1222 		fs_info->em_shrinker_last_ino = btrfs_ino(inode);
1223 		btrfs_add_delayed_iput(inode);
1224 
1225 		if (ctx->scanned >= ctx->nr_to_scan ||
1226 		    btrfs_fs_closing(inode->root->fs_info))
1227 			break;
1228 
1229 		cond_resched();
1230 
1231 		inode = btrfs_find_first_inode(root, min_ino);
1232 	}
1233 
1234 	if (inode) {
1235 		/*
1236 		 * There are still inodes in this root or we happened to process
1237 		 * the last one and reached the scan limit. In either case set
1238 		 * the current root to this one, so we'll resume from the next
1239 		 * inode if there is one or we will find out this was the last
1240 		 * one and move to the next root.
1241 		 */
1242 		fs_info->em_shrinker_last_root = btrfs_root_id(root);
1243 	} else {
1244 		/*
1245 		 * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so
1246 		 * that when processing the next root we start from its first inode.
1247 		 */
1248 		fs_info->em_shrinker_last_ino = 0;
1249 		fs_info->em_shrinker_last_root = btrfs_root_id(root) + 1;
1250 	}
1251 
1252 	return nr_dropped;
1253 }
1254 
1255 static void btrfs_extent_map_shrinker_worker(struct work_struct *work)
1256 {
1257 	struct btrfs_fs_info *fs_info;
1258 	struct btrfs_em_shrink_ctx ctx;
1259 	u64 start_root_id;
1260 	u64 next_root_id;
1261 	bool cycled = false;
1262 	long nr_dropped = 0;
1263 
1264 	fs_info = container_of(work, struct btrfs_fs_info, em_shrinker_work);
1265 
1266 	ctx.scanned = 0;
1267 	ctx.nr_to_scan = atomic64_read(&fs_info->em_shrinker_nr_to_scan);
1268 
1269 	start_root_id = fs_info->em_shrinker_last_root;
1270 	next_root_id = fs_info->em_shrinker_last_root;
1271 
1272 	if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) {
1273 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1274 
1275 		trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr);
1276 	}
1277 
1278 	while (ctx.scanned < ctx.nr_to_scan && !btrfs_fs_closing(fs_info)) {
1279 		struct btrfs_root *root;
1280 		unsigned long count;
1281 
1282 		cond_resched();
1283 
1284 		spin_lock(&fs_info->fs_roots_radix_lock);
1285 		count = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1286 					       (void **)&root,
1287 					       (unsigned long)next_root_id, 1);
1288 		if (count == 0) {
1289 			spin_unlock(&fs_info->fs_roots_radix_lock);
1290 			if (start_root_id > 0 && !cycled) {
1291 				next_root_id = 0;
1292 				fs_info->em_shrinker_last_root = 0;
1293 				fs_info->em_shrinker_last_ino = 0;
1294 				cycled = true;
1295 				continue;
1296 			}
1297 			break;
1298 		}
1299 		next_root_id = btrfs_root_id(root) + 1;
1300 		root = btrfs_grab_root(root);
1301 		spin_unlock(&fs_info->fs_roots_radix_lock);
1302 
1303 		if (!root)
1304 			continue;
1305 
1306 		if (is_fstree(btrfs_root_id(root)))
1307 			nr_dropped += btrfs_scan_root(root, &ctx);
1308 
1309 		btrfs_put_root(root);
1310 	}
1311 
1312 	if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) {
1313 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1314 
1315 		trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped, nr);
1316 	}
1317 
1318 	atomic64_set(&fs_info->em_shrinker_nr_to_scan, 0);
1319 }
1320 
1321 void btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan)
1322 {
1323 	/*
1324 	 * Do nothing if the shrinker is already running. In case of high memory
1325 	 * pressure we can have a lot of tasks calling us and all passing the
1326 	 * same nr_to_scan value, but in reality we may need only to free
1327 	 * nr_to_scan extent maps (or less). In case we need to free more than
1328 	 * that, we will be called again by the fs shrinker, so no worries about
1329 	 * not doing enough work to reclaim memory from extent maps.
1330 	 * We can also be repeatedly called with the same nr_to_scan value
1331 	 * simply because the shrinker runs asynchronously and multiple calls
1332 	 * to this function are made before the shrinker does enough progress.
1333 	 *
1334 	 * That's why we set the atomic counter to nr_to_scan only if its
1335 	 * current value is zero, instead of incrementing the counter by
1336 	 * nr_to_scan.
1337 	 */
1338 	if (atomic64_cmpxchg(&fs_info->em_shrinker_nr_to_scan, 0, nr_to_scan) != 0)
1339 		return;
1340 
1341 	queue_work(system_unbound_wq, &fs_info->em_shrinker_work);
1342 }
1343 
1344 void btrfs_init_extent_map_shrinker_work(struct btrfs_fs_info *fs_info)
1345 {
1346 	atomic64_set(&fs_info->em_shrinker_nr_to_scan, 0);
1347 	INIT_WORK(&fs_info->em_shrinker_work, btrfs_extent_map_shrinker_worker);
1348 }
1349