xref: /linux/fs/btrfs/extent_map.c (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/err.h>
4 #include <linux/slab.h>
5 #include <linux/spinlock.h>
6 #include "messages.h"
7 #include "ctree.h"
8 #include "extent_map.h"
9 #include "compression.h"
10 #include "btrfs_inode.h"
11 #include "disk-io.h"
12 
13 
14 static struct kmem_cache *extent_map_cache;
15 
16 int __init extent_map_init(void)
17 {
18 	extent_map_cache = kmem_cache_create("btrfs_extent_map",
19 					     sizeof(struct extent_map), 0, 0, NULL);
20 	if (!extent_map_cache)
21 		return -ENOMEM;
22 	return 0;
23 }
24 
25 void __cold extent_map_exit(void)
26 {
27 	kmem_cache_destroy(extent_map_cache);
28 }
29 
30 /*
31  * Initialize the extent tree @tree.  Should be called for each new inode or
32  * other user of the extent_map interface.
33  */
34 void extent_map_tree_init(struct extent_map_tree *tree)
35 {
36 	tree->root = RB_ROOT;
37 	INIT_LIST_HEAD(&tree->modified_extents);
38 	rwlock_init(&tree->lock);
39 }
40 
41 /*
42  * Allocate a new extent_map structure.  The new structure is returned with a
43  * reference count of one and needs to be freed using free_extent_map()
44  */
45 struct extent_map *alloc_extent_map(void)
46 {
47 	struct extent_map *em;
48 	em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS);
49 	if (!em)
50 		return NULL;
51 	RB_CLEAR_NODE(&em->rb_node);
52 	refcount_set(&em->refs, 1);
53 	INIT_LIST_HEAD(&em->list);
54 	return em;
55 }
56 
57 /*
58  * Drop the reference out on @em by one and free the structure if the reference
59  * count hits zero.
60  */
61 void free_extent_map(struct extent_map *em)
62 {
63 	if (!em)
64 		return;
65 	if (refcount_dec_and_test(&em->refs)) {
66 		WARN_ON(extent_map_in_tree(em));
67 		WARN_ON(!list_empty(&em->list));
68 		kmem_cache_free(extent_map_cache, em);
69 	}
70 }
71 
72 /* Do the math around the end of an extent, handling wrapping. */
73 static u64 range_end(u64 start, u64 len)
74 {
75 	if (start + len < start)
76 		return (u64)-1;
77 	return start + len;
78 }
79 
80 static void dec_evictable_extent_maps(struct btrfs_inode *inode)
81 {
82 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
83 
84 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root)))
85 		percpu_counter_dec(&fs_info->evictable_extent_maps);
86 }
87 
88 static int tree_insert(struct rb_root *root, struct extent_map *em)
89 {
90 	struct rb_node **p = &root->rb_node;
91 	struct rb_node *parent = NULL;
92 	struct extent_map *entry = NULL;
93 	struct rb_node *orig_parent = NULL;
94 	u64 end = range_end(em->start, em->len);
95 
96 	while (*p) {
97 		parent = *p;
98 		entry = rb_entry(parent, struct extent_map, rb_node);
99 
100 		if (em->start < entry->start)
101 			p = &(*p)->rb_left;
102 		else if (em->start >= extent_map_end(entry))
103 			p = &(*p)->rb_right;
104 		else
105 			return -EEXIST;
106 	}
107 
108 	orig_parent = parent;
109 	while (parent && em->start >= extent_map_end(entry)) {
110 		parent = rb_next(parent);
111 		entry = rb_entry(parent, struct extent_map, rb_node);
112 	}
113 	if (parent)
114 		if (end > entry->start && em->start < extent_map_end(entry))
115 			return -EEXIST;
116 
117 	parent = orig_parent;
118 	entry = rb_entry(parent, struct extent_map, rb_node);
119 	while (parent && em->start < entry->start) {
120 		parent = rb_prev(parent);
121 		entry = rb_entry(parent, struct extent_map, rb_node);
122 	}
123 	if (parent)
124 		if (end > entry->start && em->start < extent_map_end(entry))
125 			return -EEXIST;
126 
127 	rb_link_node(&em->rb_node, orig_parent, p);
128 	rb_insert_color(&em->rb_node, root);
129 	return 0;
130 }
131 
132 /*
133  * Search through the tree for an extent_map with a given offset.  If it can't
134  * be found, try to find some neighboring extents
135  */
136 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
137 				     struct rb_node **prev_or_next_ret)
138 {
139 	struct rb_node *n = root->rb_node;
140 	struct rb_node *prev = NULL;
141 	struct rb_node *orig_prev = NULL;
142 	struct extent_map *entry;
143 	struct extent_map *prev_entry = NULL;
144 
145 	ASSERT(prev_or_next_ret);
146 
147 	while (n) {
148 		entry = rb_entry(n, struct extent_map, rb_node);
149 		prev = n;
150 		prev_entry = entry;
151 
152 		if (offset < entry->start)
153 			n = n->rb_left;
154 		else if (offset >= extent_map_end(entry))
155 			n = n->rb_right;
156 		else
157 			return n;
158 	}
159 
160 	orig_prev = prev;
161 	while (prev && offset >= extent_map_end(prev_entry)) {
162 		prev = rb_next(prev);
163 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
164 	}
165 
166 	/*
167 	 * Previous extent map found, return as in this case the caller does not
168 	 * care about the next one.
169 	 */
170 	if (prev) {
171 		*prev_or_next_ret = prev;
172 		return NULL;
173 	}
174 
175 	prev = orig_prev;
176 	prev_entry = rb_entry(prev, struct extent_map, rb_node);
177 	while (prev && offset < prev_entry->start) {
178 		prev = rb_prev(prev);
179 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
180 	}
181 	*prev_or_next_ret = prev;
182 
183 	return NULL;
184 }
185 
186 static inline u64 extent_map_block_len(const struct extent_map *em)
187 {
188 	if (extent_map_is_compressed(em))
189 		return em->disk_num_bytes;
190 	return em->len;
191 }
192 
193 static inline u64 extent_map_block_end(const struct extent_map *em)
194 {
195 	const u64 block_start = extent_map_block_start(em);
196 	const u64 block_end = block_start + extent_map_block_len(em);
197 
198 	if (block_end < block_start)
199 		return (u64)-1;
200 
201 	return block_end;
202 }
203 
204 static bool can_merge_extent_map(const struct extent_map *em)
205 {
206 	if (em->flags & EXTENT_FLAG_PINNED)
207 		return false;
208 
209 	/* Don't merge compressed extents, we need to know their actual size. */
210 	if (extent_map_is_compressed(em))
211 		return false;
212 
213 	if (em->flags & EXTENT_FLAG_LOGGING)
214 		return false;
215 
216 	/*
217 	 * We don't want to merge stuff that hasn't been written to the log yet
218 	 * since it may not reflect exactly what is on disk, and that would be
219 	 * bad.
220 	 */
221 	if (!list_empty(&em->list))
222 		return false;
223 
224 	return true;
225 }
226 
227 /* Check to see if two extent_map structs are adjacent and safe to merge. */
228 static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next)
229 {
230 	if (extent_map_end(prev) != next->start)
231 		return false;
232 
233 	/*
234 	 * The merged flag is not an on-disk flag, it just indicates we had the
235 	 * extent maps of 2 (or more) adjacent extents merged, so factor it out.
236 	 */
237 	if ((prev->flags & ~EXTENT_FLAG_MERGED) !=
238 	    (next->flags & ~EXTENT_FLAG_MERGED))
239 		return false;
240 
241 	if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1)
242 		return extent_map_block_start(next) == extent_map_block_end(prev);
243 
244 	/* HOLES and INLINE extents. */
245 	return next->disk_bytenr == prev->disk_bytenr;
246 }
247 
248 /*
249  * Handle the on-disk data extents merge for @prev and @next.
250  *
251  * @prev:    left extent to merge
252  * @next:    right extent to merge
253  * @merged:  the extent we will not discard after the merge; updated with new values
254  *
255  * After this, one of the two extents is the new merged extent and the other is
256  * removed from the tree and likely freed. Note that @merged is one of @prev/@next
257  * so there is const/non-const aliasing occurring here.
258  *
259  * Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes.
260  * For now only uncompressed regular extent can be merged.
261  */
262 static void merge_ondisk_extents(const struct extent_map *prev, const struct extent_map *next,
263 				 struct extent_map *merged)
264 {
265 	u64 new_disk_bytenr;
266 	u64 new_disk_num_bytes;
267 	u64 new_offset;
268 
269 	/* @prev and @next should not be compressed. */
270 	ASSERT(!extent_map_is_compressed(prev));
271 	ASSERT(!extent_map_is_compressed(next));
272 
273 	/*
274 	 * There are two different cases where @prev and @next can be merged.
275 	 *
276 	 * 1) They are referring to the same data extent:
277 	 *
278 	 * |<----- data extent A ----->|
279 	 *    |<- prev ->|<- next ->|
280 	 *
281 	 * 2) They are referring to different data extents but still adjacent:
282 	 *
283 	 * |<-- data extent A -->|<-- data extent B -->|
284 	 *            |<- prev ->|<- next ->|
285 	 *
286 	 * The calculation here always merges the data extents first, then updates
287 	 * @offset using the new data extents.
288 	 *
289 	 * For case 1), the merged data extent would be the same.
290 	 * For case 2), we just merge the two data extents into one.
291 	 */
292 	new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr);
293 	new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes,
294 				 next->disk_bytenr + next->disk_num_bytes) -
295 			     new_disk_bytenr;
296 	new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr;
297 
298 	merged->disk_bytenr = new_disk_bytenr;
299 	merged->disk_num_bytes = new_disk_num_bytes;
300 	merged->ram_bytes = new_disk_num_bytes;
301 	merged->offset = new_offset;
302 }
303 
304 static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix,
305 			    struct extent_map *em)
306 {
307 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
308 		return;
309 	btrfs_crit(fs_info,
310 "%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x",
311 		prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes,
312 		em->ram_bytes, em->offset, em->flags);
313 	ASSERT(0);
314 }
315 
316 /* Internal sanity checks for btrfs debug builds. */
317 static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em)
318 {
319 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
320 		return;
321 	if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
322 		if (em->disk_num_bytes == 0)
323 			dump_extent_map(fs_info, "zero disk_num_bytes", em);
324 		if (em->offset + em->len > em->ram_bytes)
325 			dump_extent_map(fs_info, "ram_bytes too small", em);
326 		if (em->offset + em->len > em->disk_num_bytes &&
327 		    !extent_map_is_compressed(em))
328 			dump_extent_map(fs_info, "disk_num_bytes too small", em);
329 		if (!extent_map_is_compressed(em) &&
330 		    em->ram_bytes != em->disk_num_bytes)
331 			dump_extent_map(fs_info,
332 		"ram_bytes mismatch with disk_num_bytes for non-compressed em",
333 					em);
334 	} else if (em->offset) {
335 		dump_extent_map(fs_info, "non-zero offset for hole/inline", em);
336 	}
337 }
338 
339 static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em)
340 {
341 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
342 	struct extent_map_tree *tree = &inode->extent_tree;
343 	struct extent_map *merge = NULL;
344 	struct rb_node *rb;
345 
346 	/*
347 	 * We can't modify an extent map that is in the tree and that is being
348 	 * used by another task, as it can cause that other task to see it in
349 	 * inconsistent state during the merging. We always have 1 reference for
350 	 * the tree and 1 for this task (which is unpinning the extent map or
351 	 * clearing the logging flag), so anything > 2 means it's being used by
352 	 * other tasks too.
353 	 */
354 	if (refcount_read(&em->refs) > 2)
355 		return;
356 
357 	if (!can_merge_extent_map(em))
358 		return;
359 
360 	if (em->start != 0) {
361 		rb = rb_prev(&em->rb_node);
362 		if (rb)
363 			merge = rb_entry(rb, struct extent_map, rb_node);
364 		if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) {
365 			em->start = merge->start;
366 			em->len += merge->len;
367 			em->generation = max(em->generation, merge->generation);
368 
369 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
370 				merge_ondisk_extents(merge, em, em);
371 			em->flags |= EXTENT_FLAG_MERGED;
372 
373 			validate_extent_map(fs_info, em);
374 			rb_erase(&merge->rb_node, &tree->root);
375 			RB_CLEAR_NODE(&merge->rb_node);
376 			free_extent_map(merge);
377 			dec_evictable_extent_maps(inode);
378 		}
379 	}
380 
381 	rb = rb_next(&em->rb_node);
382 	if (rb)
383 		merge = rb_entry(rb, struct extent_map, rb_node);
384 	if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) {
385 		em->len += merge->len;
386 		if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
387 			merge_ondisk_extents(em, merge, em);
388 		validate_extent_map(fs_info, em);
389 		rb_erase(&merge->rb_node, &tree->root);
390 		RB_CLEAR_NODE(&merge->rb_node);
391 		em->generation = max(em->generation, merge->generation);
392 		em->flags |= EXTENT_FLAG_MERGED;
393 		free_extent_map(merge);
394 		dec_evictable_extent_maps(inode);
395 	}
396 }
397 
398 /*
399  * Unpin an extent from the cache.
400  *
401  * @inode:	the inode from which we are unpinning an extent range
402  * @start:	logical offset in the file
403  * @len:	length of the extent
404  * @gen:	generation that this extent has been modified in
405  *
406  * Called after an extent has been written to disk properly.  Set the generation
407  * to the generation that actually added the file item to the inode so we know
408  * we need to sync this extent when we call fsync().
409  *
410  * Returns: 0	     on success
411  * 	    -ENOENT  when the extent is not found in the tree
412  * 	    -EUCLEAN if the found extent does not match the expected start
413  */
414 int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen)
415 {
416 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
417 	struct extent_map_tree *tree = &inode->extent_tree;
418 	int ret = 0;
419 	struct extent_map *em;
420 
421 	write_lock(&tree->lock);
422 	em = lookup_extent_mapping(tree, start, len);
423 
424 	if (WARN_ON(!em)) {
425 		btrfs_warn(fs_info,
426 "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu",
427 			   btrfs_ino(inode), btrfs_root_id(inode->root),
428 			   start, start + len, gen);
429 		ret = -ENOENT;
430 		goto out;
431 	}
432 
433 	if (WARN_ON(em->start != start)) {
434 		btrfs_warn(fs_info,
435 "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu",
436 			   btrfs_ino(inode), btrfs_root_id(inode->root),
437 			   em->start, start, start + len, gen);
438 		ret = -EUCLEAN;
439 		goto out;
440 	}
441 
442 	em->generation = gen;
443 	em->flags &= ~EXTENT_FLAG_PINNED;
444 
445 	try_merge_map(inode, em);
446 
447 out:
448 	write_unlock(&tree->lock);
449 	free_extent_map(em);
450 	return ret;
451 
452 }
453 
454 void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em)
455 {
456 	lockdep_assert_held_write(&inode->extent_tree.lock);
457 
458 	em->flags &= ~EXTENT_FLAG_LOGGING;
459 	if (extent_map_in_tree(em))
460 		try_merge_map(inode, em);
461 }
462 
463 static inline void setup_extent_mapping(struct btrfs_inode *inode,
464 					struct extent_map *em,
465 					int modified)
466 {
467 	refcount_inc(&em->refs);
468 
469 	ASSERT(list_empty(&em->list));
470 
471 	if (modified)
472 		list_add(&em->list, &inode->extent_tree.modified_extents);
473 	else
474 		try_merge_map(inode, em);
475 }
476 
477 /*
478  * Add a new extent map to an inode's extent map tree.
479  *
480  * @inode:	the target inode
481  * @em:		map to insert
482  * @modified:	indicate whether the given @em should be added to the
483  *	        modified list, which indicates the extent needs to be logged
484  *
485  * Insert @em into the @inode's extent map tree or perform a simple
486  * forward/backward merge with existing mappings.  The extent_map struct passed
487  * in will be inserted into the tree directly, with an additional reference
488  * taken, or a reference dropped if the merge attempt was successful.
489  */
490 static int add_extent_mapping(struct btrfs_inode *inode,
491 			      struct extent_map *em, int modified)
492 {
493 	struct extent_map_tree *tree = &inode->extent_tree;
494 	struct btrfs_root *root = inode->root;
495 	struct btrfs_fs_info *fs_info = root->fs_info;
496 	int ret;
497 
498 	lockdep_assert_held_write(&tree->lock);
499 
500 	validate_extent_map(fs_info, em);
501 	ret = tree_insert(&tree->root, em);
502 	if (ret)
503 		return ret;
504 
505 	setup_extent_mapping(inode, em, modified);
506 
507 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root)))
508 		percpu_counter_inc(&fs_info->evictable_extent_maps);
509 
510 	return 0;
511 }
512 
513 static struct extent_map *
514 __lookup_extent_mapping(struct extent_map_tree *tree,
515 			u64 start, u64 len, int strict)
516 {
517 	struct extent_map *em;
518 	struct rb_node *rb_node;
519 	struct rb_node *prev_or_next = NULL;
520 	u64 end = range_end(start, len);
521 
522 	rb_node = __tree_search(&tree->root, start, &prev_or_next);
523 	if (!rb_node) {
524 		if (prev_or_next)
525 			rb_node = prev_or_next;
526 		else
527 			return NULL;
528 	}
529 
530 	em = rb_entry(rb_node, struct extent_map, rb_node);
531 
532 	if (strict && !(end > em->start && start < extent_map_end(em)))
533 		return NULL;
534 
535 	refcount_inc(&em->refs);
536 	return em;
537 }
538 
539 /*
540  * Lookup extent_map that intersects @start + @len range.
541  *
542  * @tree:	tree to lookup in
543  * @start:	byte offset to start the search
544  * @len:	length of the lookup range
545  *
546  * Find and return the first extent_map struct in @tree that intersects the
547  * [start, len] range.  There may be additional objects in the tree that
548  * intersect, so check the object returned carefully to make sure that no
549  * additional lookups are needed.
550  */
551 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
552 					 u64 start, u64 len)
553 {
554 	return __lookup_extent_mapping(tree, start, len, 1);
555 }
556 
557 /*
558  * Find a nearby extent map intersecting @start + @len (not an exact search).
559  *
560  * @tree:	tree to lookup in
561  * @start:	byte offset to start the search
562  * @len:	length of the lookup range
563  *
564  * Find and return the first extent_map struct in @tree that intersects the
565  * [start, len] range.
566  *
567  * If one can't be found, any nearby extent may be returned
568  */
569 struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
570 					 u64 start, u64 len)
571 {
572 	return __lookup_extent_mapping(tree, start, len, 0);
573 }
574 
575 /*
576  * Remove an extent_map from its inode's extent tree.
577  *
578  * @inode:	the inode the extent map belongs to
579  * @em:		extent map being removed
580  *
581  * Remove @em from the extent tree of @inode.  No reference counts are dropped,
582  * and no checks are done to see if the range is in use.
583  */
584 void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em)
585 {
586 	struct extent_map_tree *tree = &inode->extent_tree;
587 
588 	lockdep_assert_held_write(&tree->lock);
589 
590 	WARN_ON(em->flags & EXTENT_FLAG_PINNED);
591 	rb_erase(&em->rb_node, &tree->root);
592 	if (!(em->flags & EXTENT_FLAG_LOGGING))
593 		list_del_init(&em->list);
594 	RB_CLEAR_NODE(&em->rb_node);
595 
596 	dec_evictable_extent_maps(inode);
597 }
598 
599 static void replace_extent_mapping(struct btrfs_inode *inode,
600 				   struct extent_map *cur,
601 				   struct extent_map *new,
602 				   int modified)
603 {
604 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
605 	struct extent_map_tree *tree = &inode->extent_tree;
606 
607 	lockdep_assert_held_write(&tree->lock);
608 
609 	validate_extent_map(fs_info, new);
610 
611 	WARN_ON(cur->flags & EXTENT_FLAG_PINNED);
612 	ASSERT(extent_map_in_tree(cur));
613 	if (!(cur->flags & EXTENT_FLAG_LOGGING))
614 		list_del_init(&cur->list);
615 	rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root);
616 	RB_CLEAR_NODE(&cur->rb_node);
617 
618 	setup_extent_mapping(inode, new, modified);
619 }
620 
621 static struct extent_map *next_extent_map(const struct extent_map *em)
622 {
623 	struct rb_node *next;
624 
625 	next = rb_next(&em->rb_node);
626 	if (!next)
627 		return NULL;
628 	return container_of(next, struct extent_map, rb_node);
629 }
630 
631 static struct extent_map *prev_extent_map(struct extent_map *em)
632 {
633 	struct rb_node *prev;
634 
635 	prev = rb_prev(&em->rb_node);
636 	if (!prev)
637 		return NULL;
638 	return container_of(prev, struct extent_map, rb_node);
639 }
640 
641 /*
642  * Helper for btrfs_get_extent.  Given an existing extent in the tree,
643  * the existing extent is the nearest extent to map_start,
644  * and an extent that you want to insert, deal with overlap and insert
645  * the best fitted new extent into the tree.
646  */
647 static noinline int merge_extent_mapping(struct btrfs_inode *inode,
648 					 struct extent_map *existing,
649 					 struct extent_map *em,
650 					 u64 map_start)
651 {
652 	struct extent_map *prev;
653 	struct extent_map *next;
654 	u64 start;
655 	u64 end;
656 	u64 start_diff;
657 
658 	if (map_start < em->start || map_start >= extent_map_end(em))
659 		return -EINVAL;
660 
661 	if (existing->start > map_start) {
662 		next = existing;
663 		prev = prev_extent_map(next);
664 	} else {
665 		prev = existing;
666 		next = next_extent_map(prev);
667 	}
668 
669 	start = prev ? extent_map_end(prev) : em->start;
670 	start = max_t(u64, start, em->start);
671 	end = next ? next->start : extent_map_end(em);
672 	end = min_t(u64, end, extent_map_end(em));
673 	start_diff = start - em->start;
674 	em->start = start;
675 	em->len = end - start;
676 	if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
677 		em->offset += start_diff;
678 	return add_extent_mapping(inode, em, 0);
679 }
680 
681 /*
682  * Add extent mapping into an inode's extent map tree.
683  *
684  * @inode:    target inode
685  * @em_in:    extent we are inserting
686  * @start:    start of the logical range btrfs_get_extent() is requesting
687  * @len:      length of the logical range btrfs_get_extent() is requesting
688  *
689  * Note that @em_in's range may be different from [start, start+len),
690  * but they must be overlapped.
691  *
692  * Insert @em_in into the inode's extent map tree. In case there is an
693  * overlapping range, handle the -EEXIST by either:
694  * a) Returning the existing extent in @em_in if @start is within the
695  *    existing em.
696  * b) Merge the existing extent with @em_in passed in.
697  *
698  * Return 0 on success, otherwise -EEXIST.
699  *
700  */
701 int btrfs_add_extent_mapping(struct btrfs_inode *inode,
702 			     struct extent_map **em_in, u64 start, u64 len)
703 {
704 	int ret;
705 	struct extent_map *em = *em_in;
706 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
707 
708 	/*
709 	 * Tree-checker should have rejected any inline extent with non-zero
710 	 * file offset. Here just do a sanity check.
711 	 */
712 	if (em->disk_bytenr == EXTENT_MAP_INLINE)
713 		ASSERT(em->start == 0);
714 
715 	ret = add_extent_mapping(inode, em, 0);
716 	/* it is possible that someone inserted the extent into the tree
717 	 * while we had the lock dropped.  It is also possible that
718 	 * an overlapping map exists in the tree
719 	 */
720 	if (ret == -EEXIST) {
721 		struct extent_map *existing;
722 
723 		existing = search_extent_mapping(&inode->extent_tree, start, len);
724 
725 		trace_btrfs_handle_em_exist(fs_info, existing, em, start, len);
726 
727 		/*
728 		 * existing will always be non-NULL, since there must be
729 		 * extent causing the -EEXIST.
730 		 */
731 		if (start >= existing->start &&
732 		    start < extent_map_end(existing)) {
733 			free_extent_map(em);
734 			*em_in = existing;
735 			ret = 0;
736 		} else {
737 			u64 orig_start = em->start;
738 			u64 orig_len = em->len;
739 
740 			/*
741 			 * The existing extent map is the one nearest to
742 			 * the [start, start + len) range which overlaps
743 			 */
744 			ret = merge_extent_mapping(inode, existing, em, start);
745 			if (WARN_ON(ret)) {
746 				free_extent_map(em);
747 				*em_in = NULL;
748 				btrfs_warn(fs_info,
749 "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu",
750 					   existing->start, extent_map_end(existing),
751 					   orig_start, orig_start + orig_len, start);
752 			}
753 			free_extent_map(existing);
754 		}
755 	}
756 
757 	ASSERT(ret == 0 || ret == -EEXIST);
758 	return ret;
759 }
760 
761 /*
762  * Drop all extent maps from a tree in the fastest possible way, rescheduling
763  * if needed. This avoids searching the tree, from the root down to the first
764  * extent map, before each deletion.
765  */
766 static void drop_all_extent_maps_fast(struct btrfs_inode *inode)
767 {
768 	struct extent_map_tree *tree = &inode->extent_tree;
769 	struct rb_node *node;
770 
771 	write_lock(&tree->lock);
772 	node = rb_first(&tree->root);
773 	while (node) {
774 		struct extent_map *em;
775 		struct rb_node *next = rb_next(node);
776 
777 		em = rb_entry(node, struct extent_map, rb_node);
778 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
779 		remove_extent_mapping(inode, em);
780 		free_extent_map(em);
781 
782 		if (cond_resched_rwlock_write(&tree->lock))
783 			node = rb_first(&tree->root);
784 		else
785 			node = next;
786 	}
787 	write_unlock(&tree->lock);
788 }
789 
790 /*
791  * Drop all extent maps in a given range.
792  *
793  * @inode:       The target inode.
794  * @start:       Start offset of the range.
795  * @end:         End offset of the range (inclusive value).
796  * @skip_pinned: Indicate if pinned extent maps should be ignored or not.
797  *
798  * This drops all the extent maps that intersect the given range [@start, @end].
799  * Extent maps that partially overlap the range and extend behind or beyond it,
800  * are split.
801  * The caller should have locked an appropriate file range in the inode's io
802  * tree before calling this function.
803  */
804 void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end,
805 				 bool skip_pinned)
806 {
807 	struct extent_map *split;
808 	struct extent_map *split2;
809 	struct extent_map *em;
810 	struct extent_map_tree *em_tree = &inode->extent_tree;
811 	u64 len = end - start + 1;
812 
813 	WARN_ON(end < start);
814 	if (end == (u64)-1) {
815 		if (start == 0 && !skip_pinned) {
816 			drop_all_extent_maps_fast(inode);
817 			return;
818 		}
819 		len = (u64)-1;
820 	} else {
821 		/* Make end offset exclusive for use in the loop below. */
822 		end++;
823 	}
824 
825 	/*
826 	 * It's ok if we fail to allocate the extent maps, see the comment near
827 	 * the bottom of the loop below. We only need two spare extent maps in
828 	 * the worst case, where the first extent map that intersects our range
829 	 * starts before the range and the last extent map that intersects our
830 	 * range ends after our range (and they might be the same extent map),
831 	 * because we need to split those two extent maps at the boundaries.
832 	 */
833 	split = alloc_extent_map();
834 	split2 = alloc_extent_map();
835 
836 	write_lock(&em_tree->lock);
837 	em = lookup_extent_mapping(em_tree, start, len);
838 
839 	while (em) {
840 		/* extent_map_end() returns exclusive value (last byte + 1). */
841 		const u64 em_end = extent_map_end(em);
842 		struct extent_map *next_em = NULL;
843 		u64 gen;
844 		unsigned long flags;
845 		bool modified;
846 
847 		if (em_end < end) {
848 			next_em = next_extent_map(em);
849 			if (next_em) {
850 				if (next_em->start < end)
851 					refcount_inc(&next_em->refs);
852 				else
853 					next_em = NULL;
854 			}
855 		}
856 
857 		if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) {
858 			start = em_end;
859 			goto next;
860 		}
861 
862 		flags = em->flags;
863 		/*
864 		 * In case we split the extent map, we want to preserve the
865 		 * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want
866 		 * it on the new extent maps.
867 		 */
868 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
869 		modified = !list_empty(&em->list);
870 
871 		/*
872 		 * The extent map does not cross our target range, so no need to
873 		 * split it, we can remove it directly.
874 		 */
875 		if (em->start >= start && em_end <= end)
876 			goto remove_em;
877 
878 		gen = em->generation;
879 
880 		if (em->start < start) {
881 			if (!split) {
882 				split = split2;
883 				split2 = NULL;
884 				if (!split)
885 					goto remove_em;
886 			}
887 			split->start = em->start;
888 			split->len = start - em->start;
889 
890 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
891 				split->disk_bytenr = em->disk_bytenr;
892 				split->disk_num_bytes = em->disk_num_bytes;
893 				split->offset = em->offset;
894 				split->ram_bytes = em->ram_bytes;
895 			} else {
896 				split->disk_bytenr = em->disk_bytenr;
897 				split->disk_num_bytes = 0;
898 				split->offset = 0;
899 				split->ram_bytes = split->len;
900 			}
901 
902 			split->generation = gen;
903 			split->flags = flags;
904 			replace_extent_mapping(inode, em, split, modified);
905 			free_extent_map(split);
906 			split = split2;
907 			split2 = NULL;
908 		}
909 		if (em_end > end) {
910 			if (!split) {
911 				split = split2;
912 				split2 = NULL;
913 				if (!split)
914 					goto remove_em;
915 			}
916 			split->start = end;
917 			split->len = em_end - end;
918 			split->disk_bytenr = em->disk_bytenr;
919 			split->flags = flags;
920 			split->generation = gen;
921 
922 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
923 				split->disk_num_bytes = em->disk_num_bytes;
924 				split->offset = em->offset + end - em->start;
925 				split->ram_bytes = em->ram_bytes;
926 			} else {
927 				split->disk_num_bytes = 0;
928 				split->offset = 0;
929 				split->ram_bytes = split->len;
930 			}
931 
932 			if (extent_map_in_tree(em)) {
933 				replace_extent_mapping(inode, em, split, modified);
934 			} else {
935 				int ret;
936 
937 				ret = add_extent_mapping(inode, split, modified);
938 				/* Logic error, shouldn't happen. */
939 				ASSERT(ret == 0);
940 				if (WARN_ON(ret != 0) && modified)
941 					btrfs_set_inode_full_sync(inode);
942 			}
943 			free_extent_map(split);
944 			split = NULL;
945 		}
946 remove_em:
947 		if (extent_map_in_tree(em)) {
948 			/*
949 			 * If the extent map is still in the tree it means that
950 			 * either of the following is true:
951 			 *
952 			 * 1) It fits entirely in our range (doesn't end beyond
953 			 *    it or starts before it);
954 			 *
955 			 * 2) It starts before our range and/or ends after our
956 			 *    range, and we were not able to allocate the extent
957 			 *    maps for split operations, @split and @split2.
958 			 *
959 			 * If we are at case 2) then we just remove the entire
960 			 * extent map - this is fine since if anyone needs it to
961 			 * access the subranges outside our range, will just
962 			 * load it again from the subvolume tree's file extent
963 			 * item. However if the extent map was in the list of
964 			 * modified extents, then we must mark the inode for a
965 			 * full fsync, otherwise a fast fsync will miss this
966 			 * extent if it's new and needs to be logged.
967 			 */
968 			if ((em->start < start || em_end > end) && modified) {
969 				ASSERT(!split);
970 				btrfs_set_inode_full_sync(inode);
971 			}
972 			remove_extent_mapping(inode, em);
973 		}
974 
975 		/*
976 		 * Once for the tree reference (we replaced or removed the
977 		 * extent map from the tree).
978 		 */
979 		free_extent_map(em);
980 next:
981 		/* Once for us (for our lookup reference). */
982 		free_extent_map(em);
983 
984 		em = next_em;
985 	}
986 
987 	write_unlock(&em_tree->lock);
988 
989 	free_extent_map(split);
990 	free_extent_map(split2);
991 }
992 
993 /*
994  * Replace a range in the inode's extent map tree with a new extent map.
995  *
996  * @inode:      The target inode.
997  * @new_em:     The new extent map to add to the inode's extent map tree.
998  * @modified:   Indicate if the new extent map should be added to the list of
999  *              modified extents (for fast fsync tracking).
1000  *
1001  * Drops all the extent maps in the inode's extent map tree that intersect the
1002  * range of the new extent map and adds the new extent map to the tree.
1003  * The caller should have locked an appropriate file range in the inode's io
1004  * tree before calling this function.
1005  */
1006 int btrfs_replace_extent_map_range(struct btrfs_inode *inode,
1007 				   struct extent_map *new_em,
1008 				   bool modified)
1009 {
1010 	const u64 end = new_em->start + new_em->len - 1;
1011 	struct extent_map_tree *tree = &inode->extent_tree;
1012 	int ret;
1013 
1014 	ASSERT(!extent_map_in_tree(new_em));
1015 
1016 	/*
1017 	 * The caller has locked an appropriate file range in the inode's io
1018 	 * tree, but getting -EEXIST when adding the new extent map can still
1019 	 * happen in case there are extents that partially cover the range, and
1020 	 * this is due to two tasks operating on different parts of the extent.
1021 	 * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from
1022 	 * btrfs_get_extent") for an example and details.
1023 	 */
1024 	do {
1025 		btrfs_drop_extent_map_range(inode, new_em->start, end, false);
1026 		write_lock(&tree->lock);
1027 		ret = add_extent_mapping(inode, new_em, modified);
1028 		write_unlock(&tree->lock);
1029 	} while (ret == -EEXIST);
1030 
1031 	return ret;
1032 }
1033 
1034 /*
1035  * Split off the first pre bytes from the extent_map at [start, start + len],
1036  * and set the block_start for it to new_logical.
1037  *
1038  * This function is used when an ordered_extent needs to be split.
1039  */
1040 int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre,
1041 		     u64 new_logical)
1042 {
1043 	struct extent_map_tree *em_tree = &inode->extent_tree;
1044 	struct extent_map *em;
1045 	struct extent_map *split_pre = NULL;
1046 	struct extent_map *split_mid = NULL;
1047 	int ret = 0;
1048 	unsigned long flags;
1049 
1050 	ASSERT(pre != 0);
1051 	ASSERT(pre < len);
1052 
1053 	split_pre = alloc_extent_map();
1054 	if (!split_pre)
1055 		return -ENOMEM;
1056 	split_mid = alloc_extent_map();
1057 	if (!split_mid) {
1058 		ret = -ENOMEM;
1059 		goto out_free_pre;
1060 	}
1061 
1062 	lock_extent(&inode->io_tree, start, start + len - 1, NULL);
1063 	write_lock(&em_tree->lock);
1064 	em = lookup_extent_mapping(em_tree, start, len);
1065 	if (!em) {
1066 		ret = -EIO;
1067 		goto out_unlock;
1068 	}
1069 
1070 	ASSERT(em->len == len);
1071 	ASSERT(!extent_map_is_compressed(em));
1072 	ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE);
1073 	ASSERT(em->flags & EXTENT_FLAG_PINNED);
1074 	ASSERT(!(em->flags & EXTENT_FLAG_LOGGING));
1075 	ASSERT(!list_empty(&em->list));
1076 
1077 	flags = em->flags;
1078 	em->flags &= ~EXTENT_FLAG_PINNED;
1079 
1080 	/* First, replace the em with a new extent_map starting from * em->start */
1081 	split_pre->start = em->start;
1082 	split_pre->len = pre;
1083 	split_pre->disk_bytenr = new_logical;
1084 	split_pre->disk_num_bytes = split_pre->len;
1085 	split_pre->offset = 0;
1086 	split_pre->ram_bytes = split_pre->len;
1087 	split_pre->flags = flags;
1088 	split_pre->generation = em->generation;
1089 
1090 	replace_extent_mapping(inode, em, split_pre, 1);
1091 
1092 	/*
1093 	 * Now we only have an extent_map at:
1094 	 *     [em->start, em->start + pre]
1095 	 */
1096 
1097 	/* Insert the middle extent_map. */
1098 	split_mid->start = em->start + pre;
1099 	split_mid->len = em->len - pre;
1100 	split_mid->disk_bytenr = extent_map_block_start(em) + pre;
1101 	split_mid->disk_num_bytes = split_mid->len;
1102 	split_mid->offset = 0;
1103 	split_mid->ram_bytes = split_mid->len;
1104 	split_mid->flags = flags;
1105 	split_mid->generation = em->generation;
1106 	add_extent_mapping(inode, split_mid, 1);
1107 
1108 	/* Once for us */
1109 	free_extent_map(em);
1110 	/* Once for the tree */
1111 	free_extent_map(em);
1112 
1113 out_unlock:
1114 	write_unlock(&em_tree->lock);
1115 	unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
1116 	free_extent_map(split_mid);
1117 out_free_pre:
1118 	free_extent_map(split_pre);
1119 	return ret;
1120 }
1121 
1122 struct btrfs_em_shrink_ctx {
1123 	long nr_to_scan;
1124 	long scanned;
1125 	u64 last_ino;
1126 	u64 last_root;
1127 };
1128 
1129 static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx)
1130 {
1131 	const u64 cur_fs_gen = btrfs_get_fs_generation(inode->root->fs_info);
1132 	struct extent_map_tree *tree = &inode->extent_tree;
1133 	long nr_dropped = 0;
1134 	struct rb_node *node;
1135 
1136 	/*
1137 	 * Take the mmap lock so that we serialize with the inode logging phase
1138 	 * of fsync because we may need to set the full sync flag on the inode,
1139 	 * in case we have to remove extent maps in the tree's list of modified
1140 	 * extents. If we set the full sync flag in the inode while an fsync is
1141 	 * in progress, we may risk missing new extents because before the flag
1142 	 * is set, fsync decides to only wait for writeback to complete and then
1143 	 * during inode logging it sees the flag set and uses the subvolume tree
1144 	 * to find new extents, which may not be there yet because ordered
1145 	 * extents haven't completed yet.
1146 	 *
1147 	 * We also do a try lock because otherwise we could deadlock. This is
1148 	 * because the shrinker for this filesystem may be invoked while we are
1149 	 * in a path that is holding the mmap lock in write mode. For example in
1150 	 * a reflink operation while COWing an extent buffer, when allocating
1151 	 * pages for a new extent buffer and under memory pressure, the shrinker
1152 	 * may be invoked, and therefore we would deadlock by attempting to read
1153 	 * lock the mmap lock while we are holding already a write lock on it.
1154 	 */
1155 	if (!down_read_trylock(&inode->i_mmap_lock))
1156 		return 0;
1157 
1158 	/*
1159 	 * We want to be fast so if the lock is busy we don't want to spend time
1160 	 * waiting for it - either some task is about to do IO for the inode or
1161 	 * we may have another task shrinking extent maps, here in this code, so
1162 	 * skip this inode.
1163 	 */
1164 	if (!write_trylock(&tree->lock)) {
1165 		up_read(&inode->i_mmap_lock);
1166 		return 0;
1167 	}
1168 
1169 	node = rb_first(&tree->root);
1170 	while (node) {
1171 		struct rb_node *next = rb_next(node);
1172 		struct extent_map *em;
1173 
1174 		em = rb_entry(node, struct extent_map, rb_node);
1175 		ctx->scanned++;
1176 
1177 		if (em->flags & EXTENT_FLAG_PINNED)
1178 			goto next;
1179 
1180 		/*
1181 		 * If the inode is in the list of modified extents (new) and its
1182 		 * generation is the same (or is greater than) the current fs
1183 		 * generation, it means it was not yet persisted so we have to
1184 		 * set the full sync flag so that the next fsync will not miss
1185 		 * it.
1186 		 */
1187 		if (!list_empty(&em->list) && em->generation >= cur_fs_gen)
1188 			btrfs_set_inode_full_sync(inode);
1189 
1190 		remove_extent_mapping(inode, em);
1191 		trace_btrfs_extent_map_shrinker_remove_em(inode, em);
1192 		/* Drop the reference for the tree. */
1193 		free_extent_map(em);
1194 		nr_dropped++;
1195 next:
1196 		if (ctx->scanned >= ctx->nr_to_scan)
1197 			break;
1198 
1199 		/*
1200 		 * Stop if we need to reschedule or there's contention on the
1201 		 * lock. This is to avoid slowing other tasks trying to take the
1202 		 * lock.
1203 		 */
1204 		if (need_resched() || rwlock_needbreak(&tree->lock))
1205 			break;
1206 		node = next;
1207 	}
1208 	write_unlock(&tree->lock);
1209 	up_read(&inode->i_mmap_lock);
1210 
1211 	return nr_dropped;
1212 }
1213 
1214 static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx)
1215 {
1216 	struct btrfs_inode *inode;
1217 	long nr_dropped = 0;
1218 	u64 min_ino = ctx->last_ino + 1;
1219 
1220 	inode = btrfs_find_first_inode(root, min_ino);
1221 	while (inode) {
1222 		nr_dropped += btrfs_scan_inode(inode, ctx);
1223 
1224 		min_ino = btrfs_ino(inode) + 1;
1225 		ctx->last_ino = btrfs_ino(inode);
1226 		btrfs_add_delayed_iput(inode);
1227 
1228 		if (ctx->scanned >= ctx->nr_to_scan)
1229 			break;
1230 
1231 		cond_resched();
1232 
1233 		inode = btrfs_find_first_inode(root, min_ino);
1234 	}
1235 
1236 	if (inode) {
1237 		/*
1238 		 * There are still inodes in this root or we happened to process
1239 		 * the last one and reached the scan limit. In either case set
1240 		 * the current root to this one, so we'll resume from the next
1241 		 * inode if there is one or we will find out this was the last
1242 		 * one and move to the next root.
1243 		 */
1244 		ctx->last_root = btrfs_root_id(root);
1245 	} else {
1246 		/*
1247 		 * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so
1248 		 * that when processing the next root we start from its first inode.
1249 		 */
1250 		ctx->last_ino = 0;
1251 		ctx->last_root = btrfs_root_id(root) + 1;
1252 	}
1253 
1254 	return nr_dropped;
1255 }
1256 
1257 long btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan)
1258 {
1259 	struct btrfs_em_shrink_ctx ctx;
1260 	u64 start_root_id;
1261 	u64 next_root_id;
1262 	bool cycled = false;
1263 	long nr_dropped = 0;
1264 
1265 	ctx.scanned = 0;
1266 	ctx.nr_to_scan = nr_to_scan;
1267 
1268 	/*
1269 	 * In case we have multiple tasks running this shrinker, make the next
1270 	 * one start from the next inode in case it starts before we finish.
1271 	 */
1272 	spin_lock(&fs_info->extent_map_shrinker_lock);
1273 	ctx.last_ino = fs_info->extent_map_shrinker_last_ino;
1274 	fs_info->extent_map_shrinker_last_ino++;
1275 	ctx.last_root = fs_info->extent_map_shrinker_last_root;
1276 	spin_unlock(&fs_info->extent_map_shrinker_lock);
1277 
1278 	start_root_id = ctx.last_root;
1279 	next_root_id = ctx.last_root;
1280 
1281 	if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) {
1282 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1283 
1284 		trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr_to_scan,
1285 							   nr, ctx.last_root,
1286 							   ctx.last_ino);
1287 	}
1288 
1289 	while (ctx.scanned < ctx.nr_to_scan) {
1290 		struct btrfs_root *root;
1291 		unsigned long count;
1292 
1293 		cond_resched();
1294 
1295 		spin_lock(&fs_info->fs_roots_radix_lock);
1296 		count = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1297 					       (void **)&root,
1298 					       (unsigned long)next_root_id, 1);
1299 		if (count == 0) {
1300 			spin_unlock(&fs_info->fs_roots_radix_lock);
1301 			if (start_root_id > 0 && !cycled) {
1302 				next_root_id = 0;
1303 				ctx.last_root = 0;
1304 				ctx.last_ino = 0;
1305 				cycled = true;
1306 				continue;
1307 			}
1308 			break;
1309 		}
1310 		next_root_id = btrfs_root_id(root) + 1;
1311 		root = btrfs_grab_root(root);
1312 		spin_unlock(&fs_info->fs_roots_radix_lock);
1313 
1314 		if (!root)
1315 			continue;
1316 
1317 		if (is_fstree(btrfs_root_id(root)))
1318 			nr_dropped += btrfs_scan_root(root, &ctx);
1319 
1320 		btrfs_put_root(root);
1321 	}
1322 
1323 	/*
1324 	 * In case of multiple tasks running this extent map shrinking code this
1325 	 * isn't perfect but it's simple and silences things like KCSAN. It's
1326 	 * not possible to know which task made more progress because we can
1327 	 * cycle back to the first root and first inode if it's not the first
1328 	 * time the shrinker ran, see the above logic. Also a task that started
1329 	 * later may finish ealier than another task and made less progress. So
1330 	 * make this simple and update to the progress of the last task that
1331 	 * finished, with the occasional possiblity of having two consecutive
1332 	 * runs of the shrinker process the same inodes.
1333 	 */
1334 	spin_lock(&fs_info->extent_map_shrinker_lock);
1335 	fs_info->extent_map_shrinker_last_ino = ctx.last_ino;
1336 	fs_info->extent_map_shrinker_last_root = ctx.last_root;
1337 	spin_unlock(&fs_info->extent_map_shrinker_lock);
1338 
1339 	if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) {
1340 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1341 
1342 		trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped,
1343 							  nr, ctx.last_root,
1344 							  ctx.last_ino);
1345 	}
1346 
1347 	return nr_dropped;
1348 }
1349