xref: /linux/fs/btrfs/extent_map.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/err.h>
4 #include <linux/slab.h>
5 #include <linux/spinlock.h>
6 #include "messages.h"
7 #include "ctree.h"
8 #include "extent_map.h"
9 #include "compression.h"
10 #include "btrfs_inode.h"
11 #include "disk-io.h"
12 
13 
14 static struct kmem_cache *extent_map_cache;
15 
16 int __init extent_map_init(void)
17 {
18 	extent_map_cache = kmem_cache_create("btrfs_extent_map",
19 					     sizeof(struct extent_map), 0, 0, NULL);
20 	if (!extent_map_cache)
21 		return -ENOMEM;
22 	return 0;
23 }
24 
25 void __cold extent_map_exit(void)
26 {
27 	kmem_cache_destroy(extent_map_cache);
28 }
29 
30 /*
31  * Initialize the extent tree @tree.  Should be called for each new inode or
32  * other user of the extent_map interface.
33  */
34 void extent_map_tree_init(struct extent_map_tree *tree)
35 {
36 	tree->root = RB_ROOT;
37 	INIT_LIST_HEAD(&tree->modified_extents);
38 	rwlock_init(&tree->lock);
39 }
40 
41 /*
42  * Allocate a new extent_map structure.  The new structure is returned with a
43  * reference count of one and needs to be freed using free_extent_map()
44  */
45 struct extent_map *alloc_extent_map(void)
46 {
47 	struct extent_map *em;
48 	em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS);
49 	if (!em)
50 		return NULL;
51 	RB_CLEAR_NODE(&em->rb_node);
52 	refcount_set(&em->refs, 1);
53 	INIT_LIST_HEAD(&em->list);
54 	return em;
55 }
56 
57 /*
58  * Drop the reference out on @em by one and free the structure if the reference
59  * count hits zero.
60  */
61 void free_extent_map(struct extent_map *em)
62 {
63 	if (!em)
64 		return;
65 	if (refcount_dec_and_test(&em->refs)) {
66 		WARN_ON(extent_map_in_tree(em));
67 		WARN_ON(!list_empty(&em->list));
68 		kmem_cache_free(extent_map_cache, em);
69 	}
70 }
71 
72 /* Do the math around the end of an extent, handling wrapping. */
73 static u64 range_end(u64 start, u64 len)
74 {
75 	if (start + len < start)
76 		return (u64)-1;
77 	return start + len;
78 }
79 
80 static void dec_evictable_extent_maps(struct btrfs_inode *inode)
81 {
82 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
83 
84 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root)))
85 		percpu_counter_dec(&fs_info->evictable_extent_maps);
86 }
87 
88 static int tree_insert(struct rb_root *root, struct extent_map *em)
89 {
90 	struct rb_node **p = &root->rb_node;
91 	struct rb_node *parent = NULL;
92 	struct extent_map *entry = NULL;
93 	struct rb_node *orig_parent = NULL;
94 	u64 end = range_end(em->start, em->len);
95 
96 	while (*p) {
97 		parent = *p;
98 		entry = rb_entry(parent, struct extent_map, rb_node);
99 
100 		if (em->start < entry->start)
101 			p = &(*p)->rb_left;
102 		else if (em->start >= extent_map_end(entry))
103 			p = &(*p)->rb_right;
104 		else
105 			return -EEXIST;
106 	}
107 
108 	orig_parent = parent;
109 	while (parent && em->start >= extent_map_end(entry)) {
110 		parent = rb_next(parent);
111 		entry = rb_entry(parent, struct extent_map, rb_node);
112 	}
113 	if (parent)
114 		if (end > entry->start && em->start < extent_map_end(entry))
115 			return -EEXIST;
116 
117 	parent = orig_parent;
118 	entry = rb_entry(parent, struct extent_map, rb_node);
119 	while (parent && em->start < entry->start) {
120 		parent = rb_prev(parent);
121 		entry = rb_entry(parent, struct extent_map, rb_node);
122 	}
123 	if (parent)
124 		if (end > entry->start && em->start < extent_map_end(entry))
125 			return -EEXIST;
126 
127 	rb_link_node(&em->rb_node, orig_parent, p);
128 	rb_insert_color(&em->rb_node, root);
129 	return 0;
130 }
131 
132 /*
133  * Search through the tree for an extent_map with a given offset.  If it can't
134  * be found, try to find some neighboring extents
135  */
136 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
137 				     struct rb_node **prev_or_next_ret)
138 {
139 	struct rb_node *n = root->rb_node;
140 	struct rb_node *prev = NULL;
141 	struct rb_node *orig_prev = NULL;
142 	struct extent_map *entry;
143 	struct extent_map *prev_entry = NULL;
144 
145 	ASSERT(prev_or_next_ret);
146 
147 	while (n) {
148 		entry = rb_entry(n, struct extent_map, rb_node);
149 		prev = n;
150 		prev_entry = entry;
151 
152 		if (offset < entry->start)
153 			n = n->rb_left;
154 		else if (offset >= extent_map_end(entry))
155 			n = n->rb_right;
156 		else
157 			return n;
158 	}
159 
160 	orig_prev = prev;
161 	while (prev && offset >= extent_map_end(prev_entry)) {
162 		prev = rb_next(prev);
163 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
164 	}
165 
166 	/*
167 	 * Previous extent map found, return as in this case the caller does not
168 	 * care about the next one.
169 	 */
170 	if (prev) {
171 		*prev_or_next_ret = prev;
172 		return NULL;
173 	}
174 
175 	prev = orig_prev;
176 	prev_entry = rb_entry(prev, struct extent_map, rb_node);
177 	while (prev && offset < prev_entry->start) {
178 		prev = rb_prev(prev);
179 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
180 	}
181 	*prev_or_next_ret = prev;
182 
183 	return NULL;
184 }
185 
186 static inline u64 extent_map_block_len(const struct extent_map *em)
187 {
188 	if (extent_map_is_compressed(em))
189 		return em->disk_num_bytes;
190 	return em->len;
191 }
192 
193 static inline u64 extent_map_block_end(const struct extent_map *em)
194 {
195 	const u64 block_start = extent_map_block_start(em);
196 	const u64 block_end = block_start + extent_map_block_len(em);
197 
198 	if (block_end < block_start)
199 		return (u64)-1;
200 
201 	return block_end;
202 }
203 
204 static bool can_merge_extent_map(const struct extent_map *em)
205 {
206 	if (em->flags & EXTENT_FLAG_PINNED)
207 		return false;
208 
209 	/* Don't merge compressed extents, we need to know their actual size. */
210 	if (extent_map_is_compressed(em))
211 		return false;
212 
213 	if (em->flags & EXTENT_FLAG_LOGGING)
214 		return false;
215 
216 	/*
217 	 * We don't want to merge stuff that hasn't been written to the log yet
218 	 * since it may not reflect exactly what is on disk, and that would be
219 	 * bad.
220 	 */
221 	if (!list_empty(&em->list))
222 		return false;
223 
224 	return true;
225 }
226 
227 /* Check to see if two extent_map structs are adjacent and safe to merge. */
228 static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next)
229 {
230 	if (extent_map_end(prev) != next->start)
231 		return false;
232 
233 	if (prev->flags != next->flags)
234 		return false;
235 
236 	if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1)
237 		return extent_map_block_start(next) == extent_map_block_end(prev);
238 
239 	/* HOLES and INLINE extents. */
240 	return next->disk_bytenr == prev->disk_bytenr;
241 }
242 
243 /*
244  * Handle the on-disk data extents merge for @prev and @next.
245  *
246  * Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes.
247  * For now only uncompressed regular extent can be merged.
248  *
249  * @prev and @next will be both updated to point to the new merged range.
250  * Thus one of them should be removed by the caller.
251  */
252 static void merge_ondisk_extents(struct extent_map *prev, struct extent_map *next)
253 {
254 	u64 new_disk_bytenr;
255 	u64 new_disk_num_bytes;
256 	u64 new_offset;
257 
258 	/* @prev and @next should not be compressed. */
259 	ASSERT(!extent_map_is_compressed(prev));
260 	ASSERT(!extent_map_is_compressed(next));
261 
262 	/*
263 	 * There are two different cases where @prev and @next can be merged.
264 	 *
265 	 * 1) They are referring to the same data extent:
266 	 *
267 	 * |<----- data extent A ----->|
268 	 *    |<- prev ->|<- next ->|
269 	 *
270 	 * 2) They are referring to different data extents but still adjacent:
271 	 *
272 	 * |<-- data extent A -->|<-- data extent B -->|
273 	 *            |<- prev ->|<- next ->|
274 	 *
275 	 * The calculation here always merges the data extents first, then updates
276 	 * @offset using the new data extents.
277 	 *
278 	 * For case 1), the merged data extent would be the same.
279 	 * For case 2), we just merge the two data extents into one.
280 	 */
281 	new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr);
282 	new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes,
283 				 next->disk_bytenr + next->disk_num_bytes) -
284 			     new_disk_bytenr;
285 	new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr;
286 
287 	prev->disk_bytenr = new_disk_bytenr;
288 	prev->disk_num_bytes = new_disk_num_bytes;
289 	prev->ram_bytes = new_disk_num_bytes;
290 	prev->offset = new_offset;
291 
292 	next->disk_bytenr = new_disk_bytenr;
293 	next->disk_num_bytes = new_disk_num_bytes;
294 	next->ram_bytes = new_disk_num_bytes;
295 	next->offset = new_offset;
296 }
297 
298 static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix,
299 			    struct extent_map *em)
300 {
301 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
302 		return;
303 	btrfs_crit(fs_info,
304 "%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x",
305 		prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes,
306 		em->ram_bytes, em->offset, em->flags);
307 	ASSERT(0);
308 }
309 
310 /* Internal sanity checks for btrfs debug builds. */
311 static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em)
312 {
313 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
314 		return;
315 	if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
316 		if (em->disk_num_bytes == 0)
317 			dump_extent_map(fs_info, "zero disk_num_bytes", em);
318 		if (em->offset + em->len > em->ram_bytes)
319 			dump_extent_map(fs_info, "ram_bytes too small", em);
320 		if (em->offset + em->len > em->disk_num_bytes &&
321 		    !extent_map_is_compressed(em))
322 			dump_extent_map(fs_info, "disk_num_bytes too small", em);
323 		if (!extent_map_is_compressed(em) &&
324 		    em->ram_bytes != em->disk_num_bytes)
325 			dump_extent_map(fs_info,
326 		"ram_bytes mismatch with disk_num_bytes for non-compressed em",
327 					em);
328 	} else if (em->offset) {
329 		dump_extent_map(fs_info, "non-zero offset for hole/inline", em);
330 	}
331 }
332 
333 static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em)
334 {
335 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
336 	struct extent_map_tree *tree = &inode->extent_tree;
337 	struct extent_map *merge = NULL;
338 	struct rb_node *rb;
339 
340 	/*
341 	 * We can't modify an extent map that is in the tree and that is being
342 	 * used by another task, as it can cause that other task to see it in
343 	 * inconsistent state during the merging. We always have 1 reference for
344 	 * the tree and 1 for this task (which is unpinning the extent map or
345 	 * clearing the logging flag), so anything > 2 means it's being used by
346 	 * other tasks too.
347 	 */
348 	if (refcount_read(&em->refs) > 2)
349 		return;
350 
351 	if (!can_merge_extent_map(em))
352 		return;
353 
354 	if (em->start != 0) {
355 		rb = rb_prev(&em->rb_node);
356 		if (rb)
357 			merge = rb_entry(rb, struct extent_map, rb_node);
358 		if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) {
359 			em->start = merge->start;
360 			em->len += merge->len;
361 			em->generation = max(em->generation, merge->generation);
362 
363 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
364 				merge_ondisk_extents(merge, em);
365 			em->flags |= EXTENT_FLAG_MERGED;
366 
367 			validate_extent_map(fs_info, em);
368 			rb_erase(&merge->rb_node, &tree->root);
369 			RB_CLEAR_NODE(&merge->rb_node);
370 			free_extent_map(merge);
371 			dec_evictable_extent_maps(inode);
372 		}
373 	}
374 
375 	rb = rb_next(&em->rb_node);
376 	if (rb)
377 		merge = rb_entry(rb, struct extent_map, rb_node);
378 	if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) {
379 		em->len += merge->len;
380 		if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
381 			merge_ondisk_extents(em, merge);
382 		validate_extent_map(fs_info, em);
383 		rb_erase(&merge->rb_node, &tree->root);
384 		RB_CLEAR_NODE(&merge->rb_node);
385 		em->generation = max(em->generation, merge->generation);
386 		em->flags |= EXTENT_FLAG_MERGED;
387 		free_extent_map(merge);
388 		dec_evictable_extent_maps(inode);
389 	}
390 }
391 
392 /*
393  * Unpin an extent from the cache.
394  *
395  * @inode:	the inode from which we are unpinning an extent range
396  * @start:	logical offset in the file
397  * @len:	length of the extent
398  * @gen:	generation that this extent has been modified in
399  *
400  * Called after an extent has been written to disk properly.  Set the generation
401  * to the generation that actually added the file item to the inode so we know
402  * we need to sync this extent when we call fsync().
403  *
404  * Returns: 0	     on success
405  * 	    -ENOENT  when the extent is not found in the tree
406  * 	    -EUCLEAN if the found extent does not match the expected start
407  */
408 int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen)
409 {
410 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
411 	struct extent_map_tree *tree = &inode->extent_tree;
412 	int ret = 0;
413 	struct extent_map *em;
414 
415 	write_lock(&tree->lock);
416 	em = lookup_extent_mapping(tree, start, len);
417 
418 	if (WARN_ON(!em)) {
419 		btrfs_warn(fs_info,
420 "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu",
421 			   btrfs_ino(inode), btrfs_root_id(inode->root),
422 			   start, start + len, gen);
423 		ret = -ENOENT;
424 		goto out;
425 	}
426 
427 	if (WARN_ON(em->start != start)) {
428 		btrfs_warn(fs_info,
429 "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu",
430 			   btrfs_ino(inode), btrfs_root_id(inode->root),
431 			   em->start, start, start + len, gen);
432 		ret = -EUCLEAN;
433 		goto out;
434 	}
435 
436 	em->generation = gen;
437 	em->flags &= ~EXTENT_FLAG_PINNED;
438 
439 	try_merge_map(inode, em);
440 
441 out:
442 	write_unlock(&tree->lock);
443 	free_extent_map(em);
444 	return ret;
445 
446 }
447 
448 void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em)
449 {
450 	lockdep_assert_held_write(&inode->extent_tree.lock);
451 
452 	em->flags &= ~EXTENT_FLAG_LOGGING;
453 	if (extent_map_in_tree(em))
454 		try_merge_map(inode, em);
455 }
456 
457 static inline void setup_extent_mapping(struct btrfs_inode *inode,
458 					struct extent_map *em,
459 					int modified)
460 {
461 	refcount_inc(&em->refs);
462 
463 	ASSERT(list_empty(&em->list));
464 
465 	if (modified)
466 		list_add(&em->list, &inode->extent_tree.modified_extents);
467 	else
468 		try_merge_map(inode, em);
469 }
470 
471 /*
472  * Add a new extent map to an inode's extent map tree.
473  *
474  * @inode:	the target inode
475  * @em:		map to insert
476  * @modified:	indicate whether the given @em should be added to the
477  *	        modified list, which indicates the extent needs to be logged
478  *
479  * Insert @em into the @inode's extent map tree or perform a simple
480  * forward/backward merge with existing mappings.  The extent_map struct passed
481  * in will be inserted into the tree directly, with an additional reference
482  * taken, or a reference dropped if the merge attempt was successful.
483  */
484 static int add_extent_mapping(struct btrfs_inode *inode,
485 			      struct extent_map *em, int modified)
486 {
487 	struct extent_map_tree *tree = &inode->extent_tree;
488 	struct btrfs_root *root = inode->root;
489 	struct btrfs_fs_info *fs_info = root->fs_info;
490 	int ret;
491 
492 	lockdep_assert_held_write(&tree->lock);
493 
494 	validate_extent_map(fs_info, em);
495 	ret = tree_insert(&tree->root, em);
496 	if (ret)
497 		return ret;
498 
499 	setup_extent_mapping(inode, em, modified);
500 
501 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root)))
502 		percpu_counter_inc(&fs_info->evictable_extent_maps);
503 
504 	return 0;
505 }
506 
507 static struct extent_map *
508 __lookup_extent_mapping(struct extent_map_tree *tree,
509 			u64 start, u64 len, int strict)
510 {
511 	struct extent_map *em;
512 	struct rb_node *rb_node;
513 	struct rb_node *prev_or_next = NULL;
514 	u64 end = range_end(start, len);
515 
516 	rb_node = __tree_search(&tree->root, start, &prev_or_next);
517 	if (!rb_node) {
518 		if (prev_or_next)
519 			rb_node = prev_or_next;
520 		else
521 			return NULL;
522 	}
523 
524 	em = rb_entry(rb_node, struct extent_map, rb_node);
525 
526 	if (strict && !(end > em->start && start < extent_map_end(em)))
527 		return NULL;
528 
529 	refcount_inc(&em->refs);
530 	return em;
531 }
532 
533 /*
534  * Lookup extent_map that intersects @start + @len range.
535  *
536  * @tree:	tree to lookup in
537  * @start:	byte offset to start the search
538  * @len:	length of the lookup range
539  *
540  * Find and return the first extent_map struct in @tree that intersects the
541  * [start, len] range.  There may be additional objects in the tree that
542  * intersect, so check the object returned carefully to make sure that no
543  * additional lookups are needed.
544  */
545 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
546 					 u64 start, u64 len)
547 {
548 	return __lookup_extent_mapping(tree, start, len, 1);
549 }
550 
551 /*
552  * Find a nearby extent map intersecting @start + @len (not an exact search).
553  *
554  * @tree:	tree to lookup in
555  * @start:	byte offset to start the search
556  * @len:	length of the lookup range
557  *
558  * Find and return the first extent_map struct in @tree that intersects the
559  * [start, len] range.
560  *
561  * If one can't be found, any nearby extent may be returned
562  */
563 struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
564 					 u64 start, u64 len)
565 {
566 	return __lookup_extent_mapping(tree, start, len, 0);
567 }
568 
569 /*
570  * Remove an extent_map from its inode's extent tree.
571  *
572  * @inode:	the inode the extent map belongs to
573  * @em:		extent map being removed
574  *
575  * Remove @em from the extent tree of @inode.  No reference counts are dropped,
576  * and no checks are done to see if the range is in use.
577  */
578 void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em)
579 {
580 	struct extent_map_tree *tree = &inode->extent_tree;
581 
582 	lockdep_assert_held_write(&tree->lock);
583 
584 	WARN_ON(em->flags & EXTENT_FLAG_PINNED);
585 	rb_erase(&em->rb_node, &tree->root);
586 	if (!(em->flags & EXTENT_FLAG_LOGGING))
587 		list_del_init(&em->list);
588 	RB_CLEAR_NODE(&em->rb_node);
589 
590 	dec_evictable_extent_maps(inode);
591 }
592 
593 static void replace_extent_mapping(struct btrfs_inode *inode,
594 				   struct extent_map *cur,
595 				   struct extent_map *new,
596 				   int modified)
597 {
598 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
599 	struct extent_map_tree *tree = &inode->extent_tree;
600 
601 	lockdep_assert_held_write(&tree->lock);
602 
603 	validate_extent_map(fs_info, new);
604 
605 	WARN_ON(cur->flags & EXTENT_FLAG_PINNED);
606 	ASSERT(extent_map_in_tree(cur));
607 	if (!(cur->flags & EXTENT_FLAG_LOGGING))
608 		list_del_init(&cur->list);
609 	rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root);
610 	RB_CLEAR_NODE(&cur->rb_node);
611 
612 	setup_extent_mapping(inode, new, modified);
613 }
614 
615 static struct extent_map *next_extent_map(const struct extent_map *em)
616 {
617 	struct rb_node *next;
618 
619 	next = rb_next(&em->rb_node);
620 	if (!next)
621 		return NULL;
622 	return container_of(next, struct extent_map, rb_node);
623 }
624 
625 static struct extent_map *prev_extent_map(struct extent_map *em)
626 {
627 	struct rb_node *prev;
628 
629 	prev = rb_prev(&em->rb_node);
630 	if (!prev)
631 		return NULL;
632 	return container_of(prev, struct extent_map, rb_node);
633 }
634 
635 /*
636  * Helper for btrfs_get_extent.  Given an existing extent in the tree,
637  * the existing extent is the nearest extent to map_start,
638  * and an extent that you want to insert, deal with overlap and insert
639  * the best fitted new extent into the tree.
640  */
641 static noinline int merge_extent_mapping(struct btrfs_inode *inode,
642 					 struct extent_map *existing,
643 					 struct extent_map *em,
644 					 u64 map_start)
645 {
646 	struct extent_map *prev;
647 	struct extent_map *next;
648 	u64 start;
649 	u64 end;
650 	u64 start_diff;
651 
652 	if (map_start < em->start || map_start >= extent_map_end(em))
653 		return -EINVAL;
654 
655 	if (existing->start > map_start) {
656 		next = existing;
657 		prev = prev_extent_map(next);
658 	} else {
659 		prev = existing;
660 		next = next_extent_map(prev);
661 	}
662 
663 	start = prev ? extent_map_end(prev) : em->start;
664 	start = max_t(u64, start, em->start);
665 	end = next ? next->start : extent_map_end(em);
666 	end = min_t(u64, end, extent_map_end(em));
667 	start_diff = start - em->start;
668 	em->start = start;
669 	em->len = end - start;
670 	if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
671 		em->offset += start_diff;
672 	return add_extent_mapping(inode, em, 0);
673 }
674 
675 /*
676  * Add extent mapping into an inode's extent map tree.
677  *
678  * @inode:    target inode
679  * @em_in:    extent we are inserting
680  * @start:    start of the logical range btrfs_get_extent() is requesting
681  * @len:      length of the logical range btrfs_get_extent() is requesting
682  *
683  * Note that @em_in's range may be different from [start, start+len),
684  * but they must be overlapped.
685  *
686  * Insert @em_in into the inode's extent map tree. In case there is an
687  * overlapping range, handle the -EEXIST by either:
688  * a) Returning the existing extent in @em_in if @start is within the
689  *    existing em.
690  * b) Merge the existing extent with @em_in passed in.
691  *
692  * Return 0 on success, otherwise -EEXIST.
693  *
694  */
695 int btrfs_add_extent_mapping(struct btrfs_inode *inode,
696 			     struct extent_map **em_in, u64 start, u64 len)
697 {
698 	int ret;
699 	struct extent_map *em = *em_in;
700 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
701 
702 	/*
703 	 * Tree-checker should have rejected any inline extent with non-zero
704 	 * file offset. Here just do a sanity check.
705 	 */
706 	if (em->disk_bytenr == EXTENT_MAP_INLINE)
707 		ASSERT(em->start == 0);
708 
709 	ret = add_extent_mapping(inode, em, 0);
710 	/* it is possible that someone inserted the extent into the tree
711 	 * while we had the lock dropped.  It is also possible that
712 	 * an overlapping map exists in the tree
713 	 */
714 	if (ret == -EEXIST) {
715 		struct extent_map *existing;
716 
717 		existing = search_extent_mapping(&inode->extent_tree, start, len);
718 
719 		trace_btrfs_handle_em_exist(fs_info, existing, em, start, len);
720 
721 		/*
722 		 * existing will always be non-NULL, since there must be
723 		 * extent causing the -EEXIST.
724 		 */
725 		if (start >= existing->start &&
726 		    start < extent_map_end(existing)) {
727 			free_extent_map(em);
728 			*em_in = existing;
729 			ret = 0;
730 		} else {
731 			u64 orig_start = em->start;
732 			u64 orig_len = em->len;
733 
734 			/*
735 			 * The existing extent map is the one nearest to
736 			 * the [start, start + len) range which overlaps
737 			 */
738 			ret = merge_extent_mapping(inode, existing, em, start);
739 			if (WARN_ON(ret)) {
740 				free_extent_map(em);
741 				*em_in = NULL;
742 				btrfs_warn(fs_info,
743 "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu",
744 					   existing->start, extent_map_end(existing),
745 					   orig_start, orig_start + orig_len, start);
746 			}
747 			free_extent_map(existing);
748 		}
749 	}
750 
751 	ASSERT(ret == 0 || ret == -EEXIST);
752 	return ret;
753 }
754 
755 /*
756  * Drop all extent maps from a tree in the fastest possible way, rescheduling
757  * if needed. This avoids searching the tree, from the root down to the first
758  * extent map, before each deletion.
759  */
760 static void drop_all_extent_maps_fast(struct btrfs_inode *inode)
761 {
762 	struct extent_map_tree *tree = &inode->extent_tree;
763 	struct rb_node *node;
764 
765 	write_lock(&tree->lock);
766 	node = rb_first(&tree->root);
767 	while (node) {
768 		struct extent_map *em;
769 		struct rb_node *next = rb_next(node);
770 
771 		em = rb_entry(node, struct extent_map, rb_node);
772 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
773 		remove_extent_mapping(inode, em);
774 		free_extent_map(em);
775 
776 		if (cond_resched_rwlock_write(&tree->lock))
777 			node = rb_first(&tree->root);
778 		else
779 			node = next;
780 	}
781 	write_unlock(&tree->lock);
782 }
783 
784 /*
785  * Drop all extent maps in a given range.
786  *
787  * @inode:       The target inode.
788  * @start:       Start offset of the range.
789  * @end:         End offset of the range (inclusive value).
790  * @skip_pinned: Indicate if pinned extent maps should be ignored or not.
791  *
792  * This drops all the extent maps that intersect the given range [@start, @end].
793  * Extent maps that partially overlap the range and extend behind or beyond it,
794  * are split.
795  * The caller should have locked an appropriate file range in the inode's io
796  * tree before calling this function.
797  */
798 void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end,
799 				 bool skip_pinned)
800 {
801 	struct extent_map *split;
802 	struct extent_map *split2;
803 	struct extent_map *em;
804 	struct extent_map_tree *em_tree = &inode->extent_tree;
805 	u64 len = end - start + 1;
806 
807 	WARN_ON(end < start);
808 	if (end == (u64)-1) {
809 		if (start == 0 && !skip_pinned) {
810 			drop_all_extent_maps_fast(inode);
811 			return;
812 		}
813 		len = (u64)-1;
814 	} else {
815 		/* Make end offset exclusive for use in the loop below. */
816 		end++;
817 	}
818 
819 	/*
820 	 * It's ok if we fail to allocate the extent maps, see the comment near
821 	 * the bottom of the loop below. We only need two spare extent maps in
822 	 * the worst case, where the first extent map that intersects our range
823 	 * starts before the range and the last extent map that intersects our
824 	 * range ends after our range (and they might be the same extent map),
825 	 * because we need to split those two extent maps at the boundaries.
826 	 */
827 	split = alloc_extent_map();
828 	split2 = alloc_extent_map();
829 
830 	write_lock(&em_tree->lock);
831 	em = lookup_extent_mapping(em_tree, start, len);
832 
833 	while (em) {
834 		/* extent_map_end() returns exclusive value (last byte + 1). */
835 		const u64 em_end = extent_map_end(em);
836 		struct extent_map *next_em = NULL;
837 		u64 gen;
838 		unsigned long flags;
839 		bool modified;
840 
841 		if (em_end < end) {
842 			next_em = next_extent_map(em);
843 			if (next_em) {
844 				if (next_em->start < end)
845 					refcount_inc(&next_em->refs);
846 				else
847 					next_em = NULL;
848 			}
849 		}
850 
851 		if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) {
852 			start = em_end;
853 			goto next;
854 		}
855 
856 		flags = em->flags;
857 		/*
858 		 * In case we split the extent map, we want to preserve the
859 		 * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want
860 		 * it on the new extent maps.
861 		 */
862 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
863 		modified = !list_empty(&em->list);
864 
865 		/*
866 		 * The extent map does not cross our target range, so no need to
867 		 * split it, we can remove it directly.
868 		 */
869 		if (em->start >= start && em_end <= end)
870 			goto remove_em;
871 
872 		gen = em->generation;
873 
874 		if (em->start < start) {
875 			if (!split) {
876 				split = split2;
877 				split2 = NULL;
878 				if (!split)
879 					goto remove_em;
880 			}
881 			split->start = em->start;
882 			split->len = start - em->start;
883 
884 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
885 				split->disk_bytenr = em->disk_bytenr;
886 				split->disk_num_bytes = em->disk_num_bytes;
887 				split->offset = em->offset;
888 				split->ram_bytes = em->ram_bytes;
889 			} else {
890 				split->disk_bytenr = em->disk_bytenr;
891 				split->disk_num_bytes = 0;
892 				split->offset = 0;
893 				split->ram_bytes = split->len;
894 			}
895 
896 			split->generation = gen;
897 			split->flags = flags;
898 			replace_extent_mapping(inode, em, split, modified);
899 			free_extent_map(split);
900 			split = split2;
901 			split2 = NULL;
902 		}
903 		if (em_end > end) {
904 			if (!split) {
905 				split = split2;
906 				split2 = NULL;
907 				if (!split)
908 					goto remove_em;
909 			}
910 			split->start = end;
911 			split->len = em_end - end;
912 			split->disk_bytenr = em->disk_bytenr;
913 			split->flags = flags;
914 			split->generation = gen;
915 
916 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
917 				split->disk_num_bytes = em->disk_num_bytes;
918 				split->offset = em->offset + end - em->start;
919 				split->ram_bytes = em->ram_bytes;
920 			} else {
921 				split->disk_num_bytes = 0;
922 				split->offset = 0;
923 				split->ram_bytes = split->len;
924 			}
925 
926 			if (extent_map_in_tree(em)) {
927 				replace_extent_mapping(inode, em, split, modified);
928 			} else {
929 				int ret;
930 
931 				ret = add_extent_mapping(inode, split, modified);
932 				/* Logic error, shouldn't happen. */
933 				ASSERT(ret == 0);
934 				if (WARN_ON(ret != 0) && modified)
935 					btrfs_set_inode_full_sync(inode);
936 			}
937 			free_extent_map(split);
938 			split = NULL;
939 		}
940 remove_em:
941 		if (extent_map_in_tree(em)) {
942 			/*
943 			 * If the extent map is still in the tree it means that
944 			 * either of the following is true:
945 			 *
946 			 * 1) It fits entirely in our range (doesn't end beyond
947 			 *    it or starts before it);
948 			 *
949 			 * 2) It starts before our range and/or ends after our
950 			 *    range, and we were not able to allocate the extent
951 			 *    maps for split operations, @split and @split2.
952 			 *
953 			 * If we are at case 2) then we just remove the entire
954 			 * extent map - this is fine since if anyone needs it to
955 			 * access the subranges outside our range, will just
956 			 * load it again from the subvolume tree's file extent
957 			 * item. However if the extent map was in the list of
958 			 * modified extents, then we must mark the inode for a
959 			 * full fsync, otherwise a fast fsync will miss this
960 			 * extent if it's new and needs to be logged.
961 			 */
962 			if ((em->start < start || em_end > end) && modified) {
963 				ASSERT(!split);
964 				btrfs_set_inode_full_sync(inode);
965 			}
966 			remove_extent_mapping(inode, em);
967 		}
968 
969 		/*
970 		 * Once for the tree reference (we replaced or removed the
971 		 * extent map from the tree).
972 		 */
973 		free_extent_map(em);
974 next:
975 		/* Once for us (for our lookup reference). */
976 		free_extent_map(em);
977 
978 		em = next_em;
979 	}
980 
981 	write_unlock(&em_tree->lock);
982 
983 	free_extent_map(split);
984 	free_extent_map(split2);
985 }
986 
987 /*
988  * Replace a range in the inode's extent map tree with a new extent map.
989  *
990  * @inode:      The target inode.
991  * @new_em:     The new extent map to add to the inode's extent map tree.
992  * @modified:   Indicate if the new extent map should be added to the list of
993  *              modified extents (for fast fsync tracking).
994  *
995  * Drops all the extent maps in the inode's extent map tree that intersect the
996  * range of the new extent map and adds the new extent map to the tree.
997  * The caller should have locked an appropriate file range in the inode's io
998  * tree before calling this function.
999  */
1000 int btrfs_replace_extent_map_range(struct btrfs_inode *inode,
1001 				   struct extent_map *new_em,
1002 				   bool modified)
1003 {
1004 	const u64 end = new_em->start + new_em->len - 1;
1005 	struct extent_map_tree *tree = &inode->extent_tree;
1006 	int ret;
1007 
1008 	ASSERT(!extent_map_in_tree(new_em));
1009 
1010 	/*
1011 	 * The caller has locked an appropriate file range in the inode's io
1012 	 * tree, but getting -EEXIST when adding the new extent map can still
1013 	 * happen in case there are extents that partially cover the range, and
1014 	 * this is due to two tasks operating on different parts of the extent.
1015 	 * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from
1016 	 * btrfs_get_extent") for an example and details.
1017 	 */
1018 	do {
1019 		btrfs_drop_extent_map_range(inode, new_em->start, end, false);
1020 		write_lock(&tree->lock);
1021 		ret = add_extent_mapping(inode, new_em, modified);
1022 		write_unlock(&tree->lock);
1023 	} while (ret == -EEXIST);
1024 
1025 	return ret;
1026 }
1027 
1028 /*
1029  * Split off the first pre bytes from the extent_map at [start, start + len],
1030  * and set the block_start for it to new_logical.
1031  *
1032  * This function is used when an ordered_extent needs to be split.
1033  */
1034 int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre,
1035 		     u64 new_logical)
1036 {
1037 	struct extent_map_tree *em_tree = &inode->extent_tree;
1038 	struct extent_map *em;
1039 	struct extent_map *split_pre = NULL;
1040 	struct extent_map *split_mid = NULL;
1041 	int ret = 0;
1042 	unsigned long flags;
1043 
1044 	ASSERT(pre != 0);
1045 	ASSERT(pre < len);
1046 
1047 	split_pre = alloc_extent_map();
1048 	if (!split_pre)
1049 		return -ENOMEM;
1050 	split_mid = alloc_extent_map();
1051 	if (!split_mid) {
1052 		ret = -ENOMEM;
1053 		goto out_free_pre;
1054 	}
1055 
1056 	lock_extent(&inode->io_tree, start, start + len - 1, NULL);
1057 	write_lock(&em_tree->lock);
1058 	em = lookup_extent_mapping(em_tree, start, len);
1059 	if (!em) {
1060 		ret = -EIO;
1061 		goto out_unlock;
1062 	}
1063 
1064 	ASSERT(em->len == len);
1065 	ASSERT(!extent_map_is_compressed(em));
1066 	ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE);
1067 	ASSERT(em->flags & EXTENT_FLAG_PINNED);
1068 	ASSERT(!(em->flags & EXTENT_FLAG_LOGGING));
1069 	ASSERT(!list_empty(&em->list));
1070 
1071 	flags = em->flags;
1072 	em->flags &= ~EXTENT_FLAG_PINNED;
1073 
1074 	/* First, replace the em with a new extent_map starting from * em->start */
1075 	split_pre->start = em->start;
1076 	split_pre->len = pre;
1077 	split_pre->disk_bytenr = new_logical;
1078 	split_pre->disk_num_bytes = split_pre->len;
1079 	split_pre->offset = 0;
1080 	split_pre->ram_bytes = split_pre->len;
1081 	split_pre->flags = flags;
1082 	split_pre->generation = em->generation;
1083 
1084 	replace_extent_mapping(inode, em, split_pre, 1);
1085 
1086 	/*
1087 	 * Now we only have an extent_map at:
1088 	 *     [em->start, em->start + pre]
1089 	 */
1090 
1091 	/* Insert the middle extent_map. */
1092 	split_mid->start = em->start + pre;
1093 	split_mid->len = em->len - pre;
1094 	split_mid->disk_bytenr = extent_map_block_start(em) + pre;
1095 	split_mid->disk_num_bytes = split_mid->len;
1096 	split_mid->offset = 0;
1097 	split_mid->ram_bytes = split_mid->len;
1098 	split_mid->flags = flags;
1099 	split_mid->generation = em->generation;
1100 	add_extent_mapping(inode, split_mid, 1);
1101 
1102 	/* Once for us */
1103 	free_extent_map(em);
1104 	/* Once for the tree */
1105 	free_extent_map(em);
1106 
1107 out_unlock:
1108 	write_unlock(&em_tree->lock);
1109 	unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
1110 	free_extent_map(split_mid);
1111 out_free_pre:
1112 	free_extent_map(split_pre);
1113 	return ret;
1114 }
1115 
1116 struct btrfs_em_shrink_ctx {
1117 	long nr_to_scan;
1118 	long scanned;
1119 	u64 last_ino;
1120 	u64 last_root;
1121 };
1122 
1123 static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx)
1124 {
1125 	const u64 cur_fs_gen = btrfs_get_fs_generation(inode->root->fs_info);
1126 	struct extent_map_tree *tree = &inode->extent_tree;
1127 	long nr_dropped = 0;
1128 	struct rb_node *node;
1129 
1130 	/*
1131 	 * Take the mmap lock so that we serialize with the inode logging phase
1132 	 * of fsync because we may need to set the full sync flag on the inode,
1133 	 * in case we have to remove extent maps in the tree's list of modified
1134 	 * extents. If we set the full sync flag in the inode while an fsync is
1135 	 * in progress, we may risk missing new extents because before the flag
1136 	 * is set, fsync decides to only wait for writeback to complete and then
1137 	 * during inode logging it sees the flag set and uses the subvolume tree
1138 	 * to find new extents, which may not be there yet because ordered
1139 	 * extents haven't completed yet.
1140 	 *
1141 	 * We also do a try lock because otherwise we could deadlock. This is
1142 	 * because the shrinker for this filesystem may be invoked while we are
1143 	 * in a path that is holding the mmap lock in write mode. For example in
1144 	 * a reflink operation while COWing an extent buffer, when allocating
1145 	 * pages for a new extent buffer and under memory pressure, the shrinker
1146 	 * may be invoked, and therefore we would deadlock by attempting to read
1147 	 * lock the mmap lock while we are holding already a write lock on it.
1148 	 */
1149 	if (!down_read_trylock(&inode->i_mmap_lock))
1150 		return 0;
1151 
1152 	/*
1153 	 * We want to be fast so if the lock is busy we don't want to spend time
1154 	 * waiting for it - either some task is about to do IO for the inode or
1155 	 * we may have another task shrinking extent maps, here in this code, so
1156 	 * skip this inode.
1157 	 */
1158 	if (!write_trylock(&tree->lock)) {
1159 		up_read(&inode->i_mmap_lock);
1160 		return 0;
1161 	}
1162 
1163 	node = rb_first(&tree->root);
1164 	while (node) {
1165 		struct rb_node *next = rb_next(node);
1166 		struct extent_map *em;
1167 
1168 		em = rb_entry(node, struct extent_map, rb_node);
1169 		ctx->scanned++;
1170 
1171 		if (em->flags & EXTENT_FLAG_PINNED)
1172 			goto next;
1173 
1174 		/*
1175 		 * If the inode is in the list of modified extents (new) and its
1176 		 * generation is the same (or is greater than) the current fs
1177 		 * generation, it means it was not yet persisted so we have to
1178 		 * set the full sync flag so that the next fsync will not miss
1179 		 * it.
1180 		 */
1181 		if (!list_empty(&em->list) && em->generation >= cur_fs_gen)
1182 			btrfs_set_inode_full_sync(inode);
1183 
1184 		remove_extent_mapping(inode, em);
1185 		trace_btrfs_extent_map_shrinker_remove_em(inode, em);
1186 		/* Drop the reference for the tree. */
1187 		free_extent_map(em);
1188 		nr_dropped++;
1189 next:
1190 		if (ctx->scanned >= ctx->nr_to_scan)
1191 			break;
1192 
1193 		/*
1194 		 * Stop if we need to reschedule or there's contention on the
1195 		 * lock. This is to avoid slowing other tasks trying to take the
1196 		 * lock.
1197 		 */
1198 		if (need_resched() || rwlock_needbreak(&tree->lock))
1199 			break;
1200 		node = next;
1201 	}
1202 	write_unlock(&tree->lock);
1203 	up_read(&inode->i_mmap_lock);
1204 
1205 	return nr_dropped;
1206 }
1207 
1208 static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx)
1209 {
1210 	struct btrfs_inode *inode;
1211 	long nr_dropped = 0;
1212 	u64 min_ino = ctx->last_ino + 1;
1213 
1214 	inode = btrfs_find_first_inode(root, min_ino);
1215 	while (inode) {
1216 		nr_dropped += btrfs_scan_inode(inode, ctx);
1217 
1218 		min_ino = btrfs_ino(inode) + 1;
1219 		ctx->last_ino = btrfs_ino(inode);
1220 		btrfs_add_delayed_iput(inode);
1221 
1222 		if (ctx->scanned >= ctx->nr_to_scan)
1223 			break;
1224 
1225 		cond_resched();
1226 
1227 		inode = btrfs_find_first_inode(root, min_ino);
1228 	}
1229 
1230 	if (inode) {
1231 		/*
1232 		 * There are still inodes in this root or we happened to process
1233 		 * the last one and reached the scan limit. In either case set
1234 		 * the current root to this one, so we'll resume from the next
1235 		 * inode if there is one or we will find out this was the last
1236 		 * one and move to the next root.
1237 		 */
1238 		ctx->last_root = btrfs_root_id(root);
1239 	} else {
1240 		/*
1241 		 * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so
1242 		 * that when processing the next root we start from its first inode.
1243 		 */
1244 		ctx->last_ino = 0;
1245 		ctx->last_root = btrfs_root_id(root) + 1;
1246 	}
1247 
1248 	return nr_dropped;
1249 }
1250 
1251 long btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan)
1252 {
1253 	struct btrfs_em_shrink_ctx ctx;
1254 	u64 start_root_id;
1255 	u64 next_root_id;
1256 	bool cycled = false;
1257 	long nr_dropped = 0;
1258 
1259 	ctx.scanned = 0;
1260 	ctx.nr_to_scan = nr_to_scan;
1261 
1262 	/*
1263 	 * In case we have multiple tasks running this shrinker, make the next
1264 	 * one start from the next inode in case it starts before we finish.
1265 	 */
1266 	spin_lock(&fs_info->extent_map_shrinker_lock);
1267 	ctx.last_ino = fs_info->extent_map_shrinker_last_ino;
1268 	fs_info->extent_map_shrinker_last_ino++;
1269 	ctx.last_root = fs_info->extent_map_shrinker_last_root;
1270 	spin_unlock(&fs_info->extent_map_shrinker_lock);
1271 
1272 	start_root_id = ctx.last_root;
1273 	next_root_id = ctx.last_root;
1274 
1275 	if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) {
1276 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1277 
1278 		trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr_to_scan,
1279 							   nr, ctx.last_root,
1280 							   ctx.last_ino);
1281 	}
1282 
1283 	while (ctx.scanned < ctx.nr_to_scan) {
1284 		struct btrfs_root *root;
1285 		unsigned long count;
1286 
1287 		cond_resched();
1288 
1289 		spin_lock(&fs_info->fs_roots_radix_lock);
1290 		count = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1291 					       (void **)&root,
1292 					       (unsigned long)next_root_id, 1);
1293 		if (count == 0) {
1294 			spin_unlock(&fs_info->fs_roots_radix_lock);
1295 			if (start_root_id > 0 && !cycled) {
1296 				next_root_id = 0;
1297 				ctx.last_root = 0;
1298 				ctx.last_ino = 0;
1299 				cycled = true;
1300 				continue;
1301 			}
1302 			break;
1303 		}
1304 		next_root_id = btrfs_root_id(root) + 1;
1305 		root = btrfs_grab_root(root);
1306 		spin_unlock(&fs_info->fs_roots_radix_lock);
1307 
1308 		if (!root)
1309 			continue;
1310 
1311 		if (is_fstree(btrfs_root_id(root)))
1312 			nr_dropped += btrfs_scan_root(root, &ctx);
1313 
1314 		btrfs_put_root(root);
1315 	}
1316 
1317 	/*
1318 	 * In case of multiple tasks running this extent map shrinking code this
1319 	 * isn't perfect but it's simple and silences things like KCSAN. It's
1320 	 * not possible to know which task made more progress because we can
1321 	 * cycle back to the first root and first inode if it's not the first
1322 	 * time the shrinker ran, see the above logic. Also a task that started
1323 	 * later may finish ealier than another task and made less progress. So
1324 	 * make this simple and update to the progress of the last task that
1325 	 * finished, with the occasional possiblity of having two consecutive
1326 	 * runs of the shrinker process the same inodes.
1327 	 */
1328 	spin_lock(&fs_info->extent_map_shrinker_lock);
1329 	fs_info->extent_map_shrinker_last_ino = ctx.last_ino;
1330 	fs_info->extent_map_shrinker_last_root = ctx.last_root;
1331 	spin_unlock(&fs_info->extent_map_shrinker_lock);
1332 
1333 	if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) {
1334 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1335 
1336 		trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped,
1337 							  nr, ctx.last_root,
1338 							  ctx.last_ino);
1339 	}
1340 
1341 	return nr_dropped;
1342 }
1343