xref: /linux/fs/btrfs/extent_map.c (revision 5513dc1d8fec929006548dde4acdabdc54379beb)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/err.h>
4 #include <linux/slab.h>
5 #include <linux/spinlock.h>
6 #include "messages.h"
7 #include "ctree.h"
8 #include "extent_map.h"
9 #include "compression.h"
10 #include "btrfs_inode.h"
11 #include "disk-io.h"
12 
13 
14 static struct kmem_cache *extent_map_cache;
15 
16 int __init extent_map_init(void)
17 {
18 	extent_map_cache = kmem_cache_create("btrfs_extent_map",
19 					     sizeof(struct extent_map), 0, 0, NULL);
20 	if (!extent_map_cache)
21 		return -ENOMEM;
22 	return 0;
23 }
24 
25 void __cold extent_map_exit(void)
26 {
27 	kmem_cache_destroy(extent_map_cache);
28 }
29 
30 /*
31  * Initialize the extent tree @tree.  Should be called for each new inode or
32  * other user of the extent_map interface.
33  */
34 void extent_map_tree_init(struct extent_map_tree *tree)
35 {
36 	tree->root = RB_ROOT;
37 	INIT_LIST_HEAD(&tree->modified_extents);
38 	rwlock_init(&tree->lock);
39 }
40 
41 /*
42  * Allocate a new extent_map structure.  The new structure is returned with a
43  * reference count of one and needs to be freed using free_extent_map()
44  */
45 struct extent_map *alloc_extent_map(void)
46 {
47 	struct extent_map *em;
48 	em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS);
49 	if (!em)
50 		return NULL;
51 	RB_CLEAR_NODE(&em->rb_node);
52 	refcount_set(&em->refs, 1);
53 	INIT_LIST_HEAD(&em->list);
54 	return em;
55 }
56 
57 /*
58  * Drop the reference out on @em by one and free the structure if the reference
59  * count hits zero.
60  */
61 void free_extent_map(struct extent_map *em)
62 {
63 	if (!em)
64 		return;
65 	if (refcount_dec_and_test(&em->refs)) {
66 		WARN_ON(extent_map_in_tree(em));
67 		WARN_ON(!list_empty(&em->list));
68 		kmem_cache_free(extent_map_cache, em);
69 	}
70 }
71 
72 /* Do the math around the end of an extent, handling wrapping. */
73 static u64 range_end(u64 start, u64 len)
74 {
75 	if (start + len < start)
76 		return (u64)-1;
77 	return start + len;
78 }
79 
80 static void dec_evictable_extent_maps(struct btrfs_inode *inode)
81 {
82 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
83 
84 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root)))
85 		percpu_counter_dec(&fs_info->evictable_extent_maps);
86 }
87 
88 static int tree_insert(struct rb_root *root, struct extent_map *em)
89 {
90 	struct rb_node **p = &root->rb_node;
91 	struct rb_node *parent = NULL;
92 	struct extent_map *entry = NULL;
93 	struct rb_node *orig_parent = NULL;
94 	u64 end = range_end(em->start, em->len);
95 
96 	while (*p) {
97 		parent = *p;
98 		entry = rb_entry(parent, struct extent_map, rb_node);
99 
100 		if (em->start < entry->start)
101 			p = &(*p)->rb_left;
102 		else if (em->start >= extent_map_end(entry))
103 			p = &(*p)->rb_right;
104 		else
105 			return -EEXIST;
106 	}
107 
108 	orig_parent = parent;
109 	while (parent && em->start >= extent_map_end(entry)) {
110 		parent = rb_next(parent);
111 		entry = rb_entry(parent, struct extent_map, rb_node);
112 	}
113 	if (parent)
114 		if (end > entry->start && em->start < extent_map_end(entry))
115 			return -EEXIST;
116 
117 	parent = orig_parent;
118 	entry = rb_entry(parent, struct extent_map, rb_node);
119 	while (parent && em->start < entry->start) {
120 		parent = rb_prev(parent);
121 		entry = rb_entry(parent, struct extent_map, rb_node);
122 	}
123 	if (parent)
124 		if (end > entry->start && em->start < extent_map_end(entry))
125 			return -EEXIST;
126 
127 	rb_link_node(&em->rb_node, orig_parent, p);
128 	rb_insert_color(&em->rb_node, root);
129 	return 0;
130 }
131 
132 /*
133  * Search through the tree for an extent_map with a given offset.  If it can't
134  * be found, try to find some neighboring extents
135  */
136 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
137 				     struct rb_node **prev_or_next_ret)
138 {
139 	struct rb_node *n = root->rb_node;
140 	struct rb_node *prev = NULL;
141 	struct rb_node *orig_prev = NULL;
142 	struct extent_map *entry;
143 	struct extent_map *prev_entry = NULL;
144 
145 	ASSERT(prev_or_next_ret);
146 
147 	while (n) {
148 		entry = rb_entry(n, struct extent_map, rb_node);
149 		prev = n;
150 		prev_entry = entry;
151 
152 		if (offset < entry->start)
153 			n = n->rb_left;
154 		else if (offset >= extent_map_end(entry))
155 			n = n->rb_right;
156 		else
157 			return n;
158 	}
159 
160 	orig_prev = prev;
161 	while (prev && offset >= extent_map_end(prev_entry)) {
162 		prev = rb_next(prev);
163 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
164 	}
165 
166 	/*
167 	 * Previous extent map found, return as in this case the caller does not
168 	 * care about the next one.
169 	 */
170 	if (prev) {
171 		*prev_or_next_ret = prev;
172 		return NULL;
173 	}
174 
175 	prev = orig_prev;
176 	prev_entry = rb_entry(prev, struct extent_map, rb_node);
177 	while (prev && offset < prev_entry->start) {
178 		prev = rb_prev(prev);
179 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
180 	}
181 	*prev_or_next_ret = prev;
182 
183 	return NULL;
184 }
185 
186 static inline u64 extent_map_block_len(const struct extent_map *em)
187 {
188 	if (extent_map_is_compressed(em))
189 		return em->disk_num_bytes;
190 	return em->len;
191 }
192 
193 static inline u64 extent_map_block_end(const struct extent_map *em)
194 {
195 	const u64 block_start = extent_map_block_start(em);
196 	const u64 block_end = block_start + extent_map_block_len(em);
197 
198 	if (block_end < block_start)
199 		return (u64)-1;
200 
201 	return block_end;
202 }
203 
204 static bool can_merge_extent_map(const struct extent_map *em)
205 {
206 	if (em->flags & EXTENT_FLAG_PINNED)
207 		return false;
208 
209 	/* Don't merge compressed extents, we need to know their actual size. */
210 	if (extent_map_is_compressed(em))
211 		return false;
212 
213 	if (em->flags & EXTENT_FLAG_LOGGING)
214 		return false;
215 
216 	/*
217 	 * We don't want to merge stuff that hasn't been written to the log yet
218 	 * since it may not reflect exactly what is on disk, and that would be
219 	 * bad.
220 	 */
221 	if (!list_empty(&em->list))
222 		return false;
223 
224 	return true;
225 }
226 
227 /* Check to see if two extent_map structs are adjacent and safe to merge. */
228 static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next)
229 {
230 	if (extent_map_end(prev) != next->start)
231 		return false;
232 
233 	if (prev->flags != next->flags)
234 		return false;
235 
236 	if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1)
237 		return extent_map_block_start(next) == extent_map_block_end(prev);
238 
239 	/* HOLES and INLINE extents. */
240 	return next->disk_bytenr == prev->disk_bytenr;
241 }
242 
243 /*
244  * Handle the on-disk data extents merge for @prev and @next.
245  *
246  * @prev:    left extent to merge
247  * @next:    right extent to merge
248  * @merged:  the extent we will not discard after the merge; updated with new values
249  *
250  * After this, one of the two extents is the new merged extent and the other is
251  * removed from the tree and likely freed. Note that @merged is one of @prev/@next
252  * so there is const/non-const aliasing occurring here.
253  *
254  * Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes.
255  * For now only uncompressed regular extent can be merged.
256  */
257 static void merge_ondisk_extents(const struct extent_map *prev, const struct extent_map *next,
258 				 struct extent_map *merged)
259 {
260 	u64 new_disk_bytenr;
261 	u64 new_disk_num_bytes;
262 	u64 new_offset;
263 
264 	/* @prev and @next should not be compressed. */
265 	ASSERT(!extent_map_is_compressed(prev));
266 	ASSERT(!extent_map_is_compressed(next));
267 
268 	/*
269 	 * There are two different cases where @prev and @next can be merged.
270 	 *
271 	 * 1) They are referring to the same data extent:
272 	 *
273 	 * |<----- data extent A ----->|
274 	 *    |<- prev ->|<- next ->|
275 	 *
276 	 * 2) They are referring to different data extents but still adjacent:
277 	 *
278 	 * |<-- data extent A -->|<-- data extent B -->|
279 	 *            |<- prev ->|<- next ->|
280 	 *
281 	 * The calculation here always merges the data extents first, then updates
282 	 * @offset using the new data extents.
283 	 *
284 	 * For case 1), the merged data extent would be the same.
285 	 * For case 2), we just merge the two data extents into one.
286 	 */
287 	new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr);
288 	new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes,
289 				 next->disk_bytenr + next->disk_num_bytes) -
290 			     new_disk_bytenr;
291 	new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr;
292 
293 	merged->disk_bytenr = new_disk_bytenr;
294 	merged->disk_num_bytes = new_disk_num_bytes;
295 	merged->ram_bytes = new_disk_num_bytes;
296 	merged->offset = new_offset;
297 }
298 
299 static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix,
300 			    struct extent_map *em)
301 {
302 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
303 		return;
304 	btrfs_crit(fs_info,
305 "%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x",
306 		prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes,
307 		em->ram_bytes, em->offset, em->flags);
308 	ASSERT(0);
309 }
310 
311 /* Internal sanity checks for btrfs debug builds. */
312 static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em)
313 {
314 	if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
315 		return;
316 	if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
317 		if (em->disk_num_bytes == 0)
318 			dump_extent_map(fs_info, "zero disk_num_bytes", em);
319 		if (em->offset + em->len > em->ram_bytes)
320 			dump_extent_map(fs_info, "ram_bytes too small", em);
321 		if (em->offset + em->len > em->disk_num_bytes &&
322 		    !extent_map_is_compressed(em))
323 			dump_extent_map(fs_info, "disk_num_bytes too small", em);
324 		if (!extent_map_is_compressed(em) &&
325 		    em->ram_bytes != em->disk_num_bytes)
326 			dump_extent_map(fs_info,
327 		"ram_bytes mismatch with disk_num_bytes for non-compressed em",
328 					em);
329 	} else if (em->offset) {
330 		dump_extent_map(fs_info, "non-zero offset for hole/inline", em);
331 	}
332 }
333 
334 static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em)
335 {
336 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
337 	struct extent_map_tree *tree = &inode->extent_tree;
338 	struct extent_map *merge = NULL;
339 	struct rb_node *rb;
340 
341 	/*
342 	 * We can't modify an extent map that is in the tree and that is being
343 	 * used by another task, as it can cause that other task to see it in
344 	 * inconsistent state during the merging. We always have 1 reference for
345 	 * the tree and 1 for this task (which is unpinning the extent map or
346 	 * clearing the logging flag), so anything > 2 means it's being used by
347 	 * other tasks too.
348 	 */
349 	if (refcount_read(&em->refs) > 2)
350 		return;
351 
352 	if (!can_merge_extent_map(em))
353 		return;
354 
355 	if (em->start != 0) {
356 		rb = rb_prev(&em->rb_node);
357 		if (rb)
358 			merge = rb_entry(rb, struct extent_map, rb_node);
359 		if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) {
360 			em->start = merge->start;
361 			em->len += merge->len;
362 			em->generation = max(em->generation, merge->generation);
363 
364 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
365 				merge_ondisk_extents(merge, em, em);
366 			em->flags |= EXTENT_FLAG_MERGED;
367 
368 			validate_extent_map(fs_info, em);
369 			rb_erase(&merge->rb_node, &tree->root);
370 			RB_CLEAR_NODE(&merge->rb_node);
371 			free_extent_map(merge);
372 			dec_evictable_extent_maps(inode);
373 		}
374 	}
375 
376 	rb = rb_next(&em->rb_node);
377 	if (rb)
378 		merge = rb_entry(rb, struct extent_map, rb_node);
379 	if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) {
380 		em->len += merge->len;
381 		if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
382 			merge_ondisk_extents(em, merge, em);
383 		validate_extent_map(fs_info, em);
384 		rb_erase(&merge->rb_node, &tree->root);
385 		RB_CLEAR_NODE(&merge->rb_node);
386 		em->generation = max(em->generation, merge->generation);
387 		em->flags |= EXTENT_FLAG_MERGED;
388 		free_extent_map(merge);
389 		dec_evictable_extent_maps(inode);
390 	}
391 }
392 
393 /*
394  * Unpin an extent from the cache.
395  *
396  * @inode:	the inode from which we are unpinning an extent range
397  * @start:	logical offset in the file
398  * @len:	length of the extent
399  * @gen:	generation that this extent has been modified in
400  *
401  * Called after an extent has been written to disk properly.  Set the generation
402  * to the generation that actually added the file item to the inode so we know
403  * we need to sync this extent when we call fsync().
404  *
405  * Returns: 0	     on success
406  * 	    -ENOENT  when the extent is not found in the tree
407  * 	    -EUCLEAN if the found extent does not match the expected start
408  */
409 int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen)
410 {
411 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
412 	struct extent_map_tree *tree = &inode->extent_tree;
413 	int ret = 0;
414 	struct extent_map *em;
415 
416 	write_lock(&tree->lock);
417 	em = lookup_extent_mapping(tree, start, len);
418 
419 	if (WARN_ON(!em)) {
420 		btrfs_warn(fs_info,
421 "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu",
422 			   btrfs_ino(inode), btrfs_root_id(inode->root),
423 			   start, start + len, gen);
424 		ret = -ENOENT;
425 		goto out;
426 	}
427 
428 	if (WARN_ON(em->start != start)) {
429 		btrfs_warn(fs_info,
430 "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu",
431 			   btrfs_ino(inode), btrfs_root_id(inode->root),
432 			   em->start, start, start + len, gen);
433 		ret = -EUCLEAN;
434 		goto out;
435 	}
436 
437 	em->generation = gen;
438 	em->flags &= ~EXTENT_FLAG_PINNED;
439 
440 	try_merge_map(inode, em);
441 
442 out:
443 	write_unlock(&tree->lock);
444 	free_extent_map(em);
445 	return ret;
446 
447 }
448 
449 void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em)
450 {
451 	lockdep_assert_held_write(&inode->extent_tree.lock);
452 
453 	em->flags &= ~EXTENT_FLAG_LOGGING;
454 	if (extent_map_in_tree(em))
455 		try_merge_map(inode, em);
456 }
457 
458 static inline void setup_extent_mapping(struct btrfs_inode *inode,
459 					struct extent_map *em,
460 					int modified)
461 {
462 	refcount_inc(&em->refs);
463 
464 	ASSERT(list_empty(&em->list));
465 
466 	if (modified)
467 		list_add(&em->list, &inode->extent_tree.modified_extents);
468 	else
469 		try_merge_map(inode, em);
470 }
471 
472 /*
473  * Add a new extent map to an inode's extent map tree.
474  *
475  * @inode:	the target inode
476  * @em:		map to insert
477  * @modified:	indicate whether the given @em should be added to the
478  *	        modified list, which indicates the extent needs to be logged
479  *
480  * Insert @em into the @inode's extent map tree or perform a simple
481  * forward/backward merge with existing mappings.  The extent_map struct passed
482  * in will be inserted into the tree directly, with an additional reference
483  * taken, or a reference dropped if the merge attempt was successful.
484  */
485 static int add_extent_mapping(struct btrfs_inode *inode,
486 			      struct extent_map *em, int modified)
487 {
488 	struct extent_map_tree *tree = &inode->extent_tree;
489 	struct btrfs_root *root = inode->root;
490 	struct btrfs_fs_info *fs_info = root->fs_info;
491 	int ret;
492 
493 	lockdep_assert_held_write(&tree->lock);
494 
495 	validate_extent_map(fs_info, em);
496 	ret = tree_insert(&tree->root, em);
497 	if (ret)
498 		return ret;
499 
500 	setup_extent_mapping(inode, em, modified);
501 
502 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root)))
503 		percpu_counter_inc(&fs_info->evictable_extent_maps);
504 
505 	return 0;
506 }
507 
508 static struct extent_map *
509 __lookup_extent_mapping(struct extent_map_tree *tree,
510 			u64 start, u64 len, int strict)
511 {
512 	struct extent_map *em;
513 	struct rb_node *rb_node;
514 	struct rb_node *prev_or_next = NULL;
515 	u64 end = range_end(start, len);
516 
517 	rb_node = __tree_search(&tree->root, start, &prev_or_next);
518 	if (!rb_node) {
519 		if (prev_or_next)
520 			rb_node = prev_or_next;
521 		else
522 			return NULL;
523 	}
524 
525 	em = rb_entry(rb_node, struct extent_map, rb_node);
526 
527 	if (strict && !(end > em->start && start < extent_map_end(em)))
528 		return NULL;
529 
530 	refcount_inc(&em->refs);
531 	return em;
532 }
533 
534 /*
535  * Lookup extent_map that intersects @start + @len range.
536  *
537  * @tree:	tree to lookup in
538  * @start:	byte offset to start the search
539  * @len:	length of the lookup range
540  *
541  * Find and return the first extent_map struct in @tree that intersects the
542  * [start, len] range.  There may be additional objects in the tree that
543  * intersect, so check the object returned carefully to make sure that no
544  * additional lookups are needed.
545  */
546 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
547 					 u64 start, u64 len)
548 {
549 	return __lookup_extent_mapping(tree, start, len, 1);
550 }
551 
552 /*
553  * Find a nearby extent map intersecting @start + @len (not an exact search).
554  *
555  * @tree:	tree to lookup in
556  * @start:	byte offset to start the search
557  * @len:	length of the lookup range
558  *
559  * Find and return the first extent_map struct in @tree that intersects the
560  * [start, len] range.
561  *
562  * If one can't be found, any nearby extent may be returned
563  */
564 struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
565 					 u64 start, u64 len)
566 {
567 	return __lookup_extent_mapping(tree, start, len, 0);
568 }
569 
570 /*
571  * Remove an extent_map from its inode's extent tree.
572  *
573  * @inode:	the inode the extent map belongs to
574  * @em:		extent map being removed
575  *
576  * Remove @em from the extent tree of @inode.  No reference counts are dropped,
577  * and no checks are done to see if the range is in use.
578  */
579 void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em)
580 {
581 	struct extent_map_tree *tree = &inode->extent_tree;
582 
583 	lockdep_assert_held_write(&tree->lock);
584 
585 	WARN_ON(em->flags & EXTENT_FLAG_PINNED);
586 	rb_erase(&em->rb_node, &tree->root);
587 	if (!(em->flags & EXTENT_FLAG_LOGGING))
588 		list_del_init(&em->list);
589 	RB_CLEAR_NODE(&em->rb_node);
590 
591 	dec_evictable_extent_maps(inode);
592 }
593 
594 static void replace_extent_mapping(struct btrfs_inode *inode,
595 				   struct extent_map *cur,
596 				   struct extent_map *new,
597 				   int modified)
598 {
599 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
600 	struct extent_map_tree *tree = &inode->extent_tree;
601 
602 	lockdep_assert_held_write(&tree->lock);
603 
604 	validate_extent_map(fs_info, new);
605 
606 	WARN_ON(cur->flags & EXTENT_FLAG_PINNED);
607 	ASSERT(extent_map_in_tree(cur));
608 	if (!(cur->flags & EXTENT_FLAG_LOGGING))
609 		list_del_init(&cur->list);
610 	rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root);
611 	RB_CLEAR_NODE(&cur->rb_node);
612 
613 	setup_extent_mapping(inode, new, modified);
614 }
615 
616 static struct extent_map *next_extent_map(const struct extent_map *em)
617 {
618 	struct rb_node *next;
619 
620 	next = rb_next(&em->rb_node);
621 	if (!next)
622 		return NULL;
623 	return container_of(next, struct extent_map, rb_node);
624 }
625 
626 static struct extent_map *prev_extent_map(struct extent_map *em)
627 {
628 	struct rb_node *prev;
629 
630 	prev = rb_prev(&em->rb_node);
631 	if (!prev)
632 		return NULL;
633 	return container_of(prev, struct extent_map, rb_node);
634 }
635 
636 /*
637  * Helper for btrfs_get_extent.  Given an existing extent in the tree,
638  * the existing extent is the nearest extent to map_start,
639  * and an extent that you want to insert, deal with overlap and insert
640  * the best fitted new extent into the tree.
641  */
642 static noinline int merge_extent_mapping(struct btrfs_inode *inode,
643 					 struct extent_map *existing,
644 					 struct extent_map *em,
645 					 u64 map_start)
646 {
647 	struct extent_map *prev;
648 	struct extent_map *next;
649 	u64 start;
650 	u64 end;
651 	u64 start_diff;
652 
653 	if (map_start < em->start || map_start >= extent_map_end(em))
654 		return -EINVAL;
655 
656 	if (existing->start > map_start) {
657 		next = existing;
658 		prev = prev_extent_map(next);
659 	} else {
660 		prev = existing;
661 		next = next_extent_map(prev);
662 	}
663 
664 	start = prev ? extent_map_end(prev) : em->start;
665 	start = max_t(u64, start, em->start);
666 	end = next ? next->start : extent_map_end(em);
667 	end = min_t(u64, end, extent_map_end(em));
668 	start_diff = start - em->start;
669 	em->start = start;
670 	em->len = end - start;
671 	if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
672 		em->offset += start_diff;
673 	return add_extent_mapping(inode, em, 0);
674 }
675 
676 /*
677  * Add extent mapping into an inode's extent map tree.
678  *
679  * @inode:    target inode
680  * @em_in:    extent we are inserting
681  * @start:    start of the logical range btrfs_get_extent() is requesting
682  * @len:      length of the logical range btrfs_get_extent() is requesting
683  *
684  * Note that @em_in's range may be different from [start, start+len),
685  * but they must be overlapped.
686  *
687  * Insert @em_in into the inode's extent map tree. In case there is an
688  * overlapping range, handle the -EEXIST by either:
689  * a) Returning the existing extent in @em_in if @start is within the
690  *    existing em.
691  * b) Merge the existing extent with @em_in passed in.
692  *
693  * Return 0 on success, otherwise -EEXIST.
694  *
695  */
696 int btrfs_add_extent_mapping(struct btrfs_inode *inode,
697 			     struct extent_map **em_in, u64 start, u64 len)
698 {
699 	int ret;
700 	struct extent_map *em = *em_in;
701 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
702 
703 	/*
704 	 * Tree-checker should have rejected any inline extent with non-zero
705 	 * file offset. Here just do a sanity check.
706 	 */
707 	if (em->disk_bytenr == EXTENT_MAP_INLINE)
708 		ASSERT(em->start == 0);
709 
710 	ret = add_extent_mapping(inode, em, 0);
711 	/* it is possible that someone inserted the extent into the tree
712 	 * while we had the lock dropped.  It is also possible that
713 	 * an overlapping map exists in the tree
714 	 */
715 	if (ret == -EEXIST) {
716 		struct extent_map *existing;
717 
718 		existing = search_extent_mapping(&inode->extent_tree, start, len);
719 
720 		trace_btrfs_handle_em_exist(fs_info, existing, em, start, len);
721 
722 		/*
723 		 * existing will always be non-NULL, since there must be
724 		 * extent causing the -EEXIST.
725 		 */
726 		if (start >= existing->start &&
727 		    start < extent_map_end(existing)) {
728 			free_extent_map(em);
729 			*em_in = existing;
730 			ret = 0;
731 		} else {
732 			u64 orig_start = em->start;
733 			u64 orig_len = em->len;
734 
735 			/*
736 			 * The existing extent map is the one nearest to
737 			 * the [start, start + len) range which overlaps
738 			 */
739 			ret = merge_extent_mapping(inode, existing, em, start);
740 			if (WARN_ON(ret)) {
741 				free_extent_map(em);
742 				*em_in = NULL;
743 				btrfs_warn(fs_info,
744 "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu",
745 					   existing->start, extent_map_end(existing),
746 					   orig_start, orig_start + orig_len, start);
747 			}
748 			free_extent_map(existing);
749 		}
750 	}
751 
752 	ASSERT(ret == 0 || ret == -EEXIST);
753 	return ret;
754 }
755 
756 /*
757  * Drop all extent maps from a tree in the fastest possible way, rescheduling
758  * if needed. This avoids searching the tree, from the root down to the first
759  * extent map, before each deletion.
760  */
761 static void drop_all_extent_maps_fast(struct btrfs_inode *inode)
762 {
763 	struct extent_map_tree *tree = &inode->extent_tree;
764 	struct rb_node *node;
765 
766 	write_lock(&tree->lock);
767 	node = rb_first(&tree->root);
768 	while (node) {
769 		struct extent_map *em;
770 		struct rb_node *next = rb_next(node);
771 
772 		em = rb_entry(node, struct extent_map, rb_node);
773 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
774 		remove_extent_mapping(inode, em);
775 		free_extent_map(em);
776 
777 		if (cond_resched_rwlock_write(&tree->lock))
778 			node = rb_first(&tree->root);
779 		else
780 			node = next;
781 	}
782 	write_unlock(&tree->lock);
783 }
784 
785 /*
786  * Drop all extent maps in a given range.
787  *
788  * @inode:       The target inode.
789  * @start:       Start offset of the range.
790  * @end:         End offset of the range (inclusive value).
791  * @skip_pinned: Indicate if pinned extent maps should be ignored or not.
792  *
793  * This drops all the extent maps that intersect the given range [@start, @end].
794  * Extent maps that partially overlap the range and extend behind or beyond it,
795  * are split.
796  * The caller should have locked an appropriate file range in the inode's io
797  * tree before calling this function.
798  */
799 void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end,
800 				 bool skip_pinned)
801 {
802 	struct extent_map *split;
803 	struct extent_map *split2;
804 	struct extent_map *em;
805 	struct extent_map_tree *em_tree = &inode->extent_tree;
806 	u64 len = end - start + 1;
807 
808 	WARN_ON(end < start);
809 	if (end == (u64)-1) {
810 		if (start == 0 && !skip_pinned) {
811 			drop_all_extent_maps_fast(inode);
812 			return;
813 		}
814 		len = (u64)-1;
815 	} else {
816 		/* Make end offset exclusive for use in the loop below. */
817 		end++;
818 	}
819 
820 	/*
821 	 * It's ok if we fail to allocate the extent maps, see the comment near
822 	 * the bottom of the loop below. We only need two spare extent maps in
823 	 * the worst case, where the first extent map that intersects our range
824 	 * starts before the range and the last extent map that intersects our
825 	 * range ends after our range (and they might be the same extent map),
826 	 * because we need to split those two extent maps at the boundaries.
827 	 */
828 	split = alloc_extent_map();
829 	split2 = alloc_extent_map();
830 
831 	write_lock(&em_tree->lock);
832 	em = lookup_extent_mapping(em_tree, start, len);
833 
834 	while (em) {
835 		/* extent_map_end() returns exclusive value (last byte + 1). */
836 		const u64 em_end = extent_map_end(em);
837 		struct extent_map *next_em = NULL;
838 		u64 gen;
839 		unsigned long flags;
840 		bool modified;
841 
842 		if (em_end < end) {
843 			next_em = next_extent_map(em);
844 			if (next_em) {
845 				if (next_em->start < end)
846 					refcount_inc(&next_em->refs);
847 				else
848 					next_em = NULL;
849 			}
850 		}
851 
852 		if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) {
853 			start = em_end;
854 			goto next;
855 		}
856 
857 		flags = em->flags;
858 		/*
859 		 * In case we split the extent map, we want to preserve the
860 		 * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want
861 		 * it on the new extent maps.
862 		 */
863 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
864 		modified = !list_empty(&em->list);
865 
866 		/*
867 		 * The extent map does not cross our target range, so no need to
868 		 * split it, we can remove it directly.
869 		 */
870 		if (em->start >= start && em_end <= end)
871 			goto remove_em;
872 
873 		gen = em->generation;
874 
875 		if (em->start < start) {
876 			if (!split) {
877 				split = split2;
878 				split2 = NULL;
879 				if (!split)
880 					goto remove_em;
881 			}
882 			split->start = em->start;
883 			split->len = start - em->start;
884 
885 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
886 				split->disk_bytenr = em->disk_bytenr;
887 				split->disk_num_bytes = em->disk_num_bytes;
888 				split->offset = em->offset;
889 				split->ram_bytes = em->ram_bytes;
890 			} else {
891 				split->disk_bytenr = em->disk_bytenr;
892 				split->disk_num_bytes = 0;
893 				split->offset = 0;
894 				split->ram_bytes = split->len;
895 			}
896 
897 			split->generation = gen;
898 			split->flags = flags;
899 			replace_extent_mapping(inode, em, split, modified);
900 			free_extent_map(split);
901 			split = split2;
902 			split2 = NULL;
903 		}
904 		if (em_end > end) {
905 			if (!split) {
906 				split = split2;
907 				split2 = NULL;
908 				if (!split)
909 					goto remove_em;
910 			}
911 			split->start = end;
912 			split->len = em_end - end;
913 			split->disk_bytenr = em->disk_bytenr;
914 			split->flags = flags;
915 			split->generation = gen;
916 
917 			if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
918 				split->disk_num_bytes = em->disk_num_bytes;
919 				split->offset = em->offset + end - em->start;
920 				split->ram_bytes = em->ram_bytes;
921 			} else {
922 				split->disk_num_bytes = 0;
923 				split->offset = 0;
924 				split->ram_bytes = split->len;
925 			}
926 
927 			if (extent_map_in_tree(em)) {
928 				replace_extent_mapping(inode, em, split, modified);
929 			} else {
930 				int ret;
931 
932 				ret = add_extent_mapping(inode, split, modified);
933 				/* Logic error, shouldn't happen. */
934 				ASSERT(ret == 0);
935 				if (WARN_ON(ret != 0) && modified)
936 					btrfs_set_inode_full_sync(inode);
937 			}
938 			free_extent_map(split);
939 			split = NULL;
940 		}
941 remove_em:
942 		if (extent_map_in_tree(em)) {
943 			/*
944 			 * If the extent map is still in the tree it means that
945 			 * either of the following is true:
946 			 *
947 			 * 1) It fits entirely in our range (doesn't end beyond
948 			 *    it or starts before it);
949 			 *
950 			 * 2) It starts before our range and/or ends after our
951 			 *    range, and we were not able to allocate the extent
952 			 *    maps for split operations, @split and @split2.
953 			 *
954 			 * If we are at case 2) then we just remove the entire
955 			 * extent map - this is fine since if anyone needs it to
956 			 * access the subranges outside our range, will just
957 			 * load it again from the subvolume tree's file extent
958 			 * item. However if the extent map was in the list of
959 			 * modified extents, then we must mark the inode for a
960 			 * full fsync, otherwise a fast fsync will miss this
961 			 * extent if it's new and needs to be logged.
962 			 */
963 			if ((em->start < start || em_end > end) && modified) {
964 				ASSERT(!split);
965 				btrfs_set_inode_full_sync(inode);
966 			}
967 			remove_extent_mapping(inode, em);
968 		}
969 
970 		/*
971 		 * Once for the tree reference (we replaced or removed the
972 		 * extent map from the tree).
973 		 */
974 		free_extent_map(em);
975 next:
976 		/* Once for us (for our lookup reference). */
977 		free_extent_map(em);
978 
979 		em = next_em;
980 	}
981 
982 	write_unlock(&em_tree->lock);
983 
984 	free_extent_map(split);
985 	free_extent_map(split2);
986 }
987 
988 /*
989  * Replace a range in the inode's extent map tree with a new extent map.
990  *
991  * @inode:      The target inode.
992  * @new_em:     The new extent map to add to the inode's extent map tree.
993  * @modified:   Indicate if the new extent map should be added to the list of
994  *              modified extents (for fast fsync tracking).
995  *
996  * Drops all the extent maps in the inode's extent map tree that intersect the
997  * range of the new extent map and adds the new extent map to the tree.
998  * The caller should have locked an appropriate file range in the inode's io
999  * tree before calling this function.
1000  */
1001 int btrfs_replace_extent_map_range(struct btrfs_inode *inode,
1002 				   struct extent_map *new_em,
1003 				   bool modified)
1004 {
1005 	const u64 end = new_em->start + new_em->len - 1;
1006 	struct extent_map_tree *tree = &inode->extent_tree;
1007 	int ret;
1008 
1009 	ASSERT(!extent_map_in_tree(new_em));
1010 
1011 	/*
1012 	 * The caller has locked an appropriate file range in the inode's io
1013 	 * tree, but getting -EEXIST when adding the new extent map can still
1014 	 * happen in case there are extents that partially cover the range, and
1015 	 * this is due to two tasks operating on different parts of the extent.
1016 	 * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from
1017 	 * btrfs_get_extent") for an example and details.
1018 	 */
1019 	do {
1020 		btrfs_drop_extent_map_range(inode, new_em->start, end, false);
1021 		write_lock(&tree->lock);
1022 		ret = add_extent_mapping(inode, new_em, modified);
1023 		write_unlock(&tree->lock);
1024 	} while (ret == -EEXIST);
1025 
1026 	return ret;
1027 }
1028 
1029 /*
1030  * Split off the first pre bytes from the extent_map at [start, start + len],
1031  * and set the block_start for it to new_logical.
1032  *
1033  * This function is used when an ordered_extent needs to be split.
1034  */
1035 int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre,
1036 		     u64 new_logical)
1037 {
1038 	struct extent_map_tree *em_tree = &inode->extent_tree;
1039 	struct extent_map *em;
1040 	struct extent_map *split_pre = NULL;
1041 	struct extent_map *split_mid = NULL;
1042 	int ret = 0;
1043 	unsigned long flags;
1044 
1045 	ASSERT(pre != 0);
1046 	ASSERT(pre < len);
1047 
1048 	split_pre = alloc_extent_map();
1049 	if (!split_pre)
1050 		return -ENOMEM;
1051 	split_mid = alloc_extent_map();
1052 	if (!split_mid) {
1053 		ret = -ENOMEM;
1054 		goto out_free_pre;
1055 	}
1056 
1057 	lock_extent(&inode->io_tree, start, start + len - 1, NULL);
1058 	write_lock(&em_tree->lock);
1059 	em = lookup_extent_mapping(em_tree, start, len);
1060 	if (!em) {
1061 		ret = -EIO;
1062 		goto out_unlock;
1063 	}
1064 
1065 	ASSERT(em->len == len);
1066 	ASSERT(!extent_map_is_compressed(em));
1067 	ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE);
1068 	ASSERT(em->flags & EXTENT_FLAG_PINNED);
1069 	ASSERT(!(em->flags & EXTENT_FLAG_LOGGING));
1070 	ASSERT(!list_empty(&em->list));
1071 
1072 	flags = em->flags;
1073 	em->flags &= ~EXTENT_FLAG_PINNED;
1074 
1075 	/* First, replace the em with a new extent_map starting from * em->start */
1076 	split_pre->start = em->start;
1077 	split_pre->len = pre;
1078 	split_pre->disk_bytenr = new_logical;
1079 	split_pre->disk_num_bytes = split_pre->len;
1080 	split_pre->offset = 0;
1081 	split_pre->ram_bytes = split_pre->len;
1082 	split_pre->flags = flags;
1083 	split_pre->generation = em->generation;
1084 
1085 	replace_extent_mapping(inode, em, split_pre, 1);
1086 
1087 	/*
1088 	 * Now we only have an extent_map at:
1089 	 *     [em->start, em->start + pre]
1090 	 */
1091 
1092 	/* Insert the middle extent_map. */
1093 	split_mid->start = em->start + pre;
1094 	split_mid->len = em->len - pre;
1095 	split_mid->disk_bytenr = extent_map_block_start(em) + pre;
1096 	split_mid->disk_num_bytes = split_mid->len;
1097 	split_mid->offset = 0;
1098 	split_mid->ram_bytes = split_mid->len;
1099 	split_mid->flags = flags;
1100 	split_mid->generation = em->generation;
1101 	add_extent_mapping(inode, split_mid, 1);
1102 
1103 	/* Once for us */
1104 	free_extent_map(em);
1105 	/* Once for the tree */
1106 	free_extent_map(em);
1107 
1108 out_unlock:
1109 	write_unlock(&em_tree->lock);
1110 	unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
1111 	free_extent_map(split_mid);
1112 out_free_pre:
1113 	free_extent_map(split_pre);
1114 	return ret;
1115 }
1116 
1117 struct btrfs_em_shrink_ctx {
1118 	long nr_to_scan;
1119 	long scanned;
1120 	u64 last_ino;
1121 	u64 last_root;
1122 };
1123 
1124 static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx)
1125 {
1126 	const u64 cur_fs_gen = btrfs_get_fs_generation(inode->root->fs_info);
1127 	struct extent_map_tree *tree = &inode->extent_tree;
1128 	long nr_dropped = 0;
1129 	struct rb_node *node;
1130 
1131 	/*
1132 	 * Take the mmap lock so that we serialize with the inode logging phase
1133 	 * of fsync because we may need to set the full sync flag on the inode,
1134 	 * in case we have to remove extent maps in the tree's list of modified
1135 	 * extents. If we set the full sync flag in the inode while an fsync is
1136 	 * in progress, we may risk missing new extents because before the flag
1137 	 * is set, fsync decides to only wait for writeback to complete and then
1138 	 * during inode logging it sees the flag set and uses the subvolume tree
1139 	 * to find new extents, which may not be there yet because ordered
1140 	 * extents haven't completed yet.
1141 	 *
1142 	 * We also do a try lock because otherwise we could deadlock. This is
1143 	 * because the shrinker for this filesystem may be invoked while we are
1144 	 * in a path that is holding the mmap lock in write mode. For example in
1145 	 * a reflink operation while COWing an extent buffer, when allocating
1146 	 * pages for a new extent buffer and under memory pressure, the shrinker
1147 	 * may be invoked, and therefore we would deadlock by attempting to read
1148 	 * lock the mmap lock while we are holding already a write lock on it.
1149 	 */
1150 	if (!down_read_trylock(&inode->i_mmap_lock))
1151 		return 0;
1152 
1153 	/*
1154 	 * We want to be fast so if the lock is busy we don't want to spend time
1155 	 * waiting for it - either some task is about to do IO for the inode or
1156 	 * we may have another task shrinking extent maps, here in this code, so
1157 	 * skip this inode.
1158 	 */
1159 	if (!write_trylock(&tree->lock)) {
1160 		up_read(&inode->i_mmap_lock);
1161 		return 0;
1162 	}
1163 
1164 	node = rb_first(&tree->root);
1165 	while (node) {
1166 		struct rb_node *next = rb_next(node);
1167 		struct extent_map *em;
1168 
1169 		em = rb_entry(node, struct extent_map, rb_node);
1170 		ctx->scanned++;
1171 
1172 		if (em->flags & EXTENT_FLAG_PINNED)
1173 			goto next;
1174 
1175 		/*
1176 		 * If the inode is in the list of modified extents (new) and its
1177 		 * generation is the same (or is greater than) the current fs
1178 		 * generation, it means it was not yet persisted so we have to
1179 		 * set the full sync flag so that the next fsync will not miss
1180 		 * it.
1181 		 */
1182 		if (!list_empty(&em->list) && em->generation >= cur_fs_gen)
1183 			btrfs_set_inode_full_sync(inode);
1184 
1185 		remove_extent_mapping(inode, em);
1186 		trace_btrfs_extent_map_shrinker_remove_em(inode, em);
1187 		/* Drop the reference for the tree. */
1188 		free_extent_map(em);
1189 		nr_dropped++;
1190 next:
1191 		if (ctx->scanned >= ctx->nr_to_scan)
1192 			break;
1193 
1194 		/*
1195 		 * Stop if we need to reschedule or there's contention on the
1196 		 * lock. This is to avoid slowing other tasks trying to take the
1197 		 * lock.
1198 		 */
1199 		if (need_resched() || rwlock_needbreak(&tree->lock))
1200 			break;
1201 		node = next;
1202 	}
1203 	write_unlock(&tree->lock);
1204 	up_read(&inode->i_mmap_lock);
1205 
1206 	return nr_dropped;
1207 }
1208 
1209 static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx)
1210 {
1211 	struct btrfs_inode *inode;
1212 	long nr_dropped = 0;
1213 	u64 min_ino = ctx->last_ino + 1;
1214 
1215 	inode = btrfs_find_first_inode(root, min_ino);
1216 	while (inode) {
1217 		nr_dropped += btrfs_scan_inode(inode, ctx);
1218 
1219 		min_ino = btrfs_ino(inode) + 1;
1220 		ctx->last_ino = btrfs_ino(inode);
1221 		btrfs_add_delayed_iput(inode);
1222 
1223 		if (ctx->scanned >= ctx->nr_to_scan)
1224 			break;
1225 
1226 		cond_resched();
1227 
1228 		inode = btrfs_find_first_inode(root, min_ino);
1229 	}
1230 
1231 	if (inode) {
1232 		/*
1233 		 * There are still inodes in this root or we happened to process
1234 		 * the last one and reached the scan limit. In either case set
1235 		 * the current root to this one, so we'll resume from the next
1236 		 * inode if there is one or we will find out this was the last
1237 		 * one and move to the next root.
1238 		 */
1239 		ctx->last_root = btrfs_root_id(root);
1240 	} else {
1241 		/*
1242 		 * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so
1243 		 * that when processing the next root we start from its first inode.
1244 		 */
1245 		ctx->last_ino = 0;
1246 		ctx->last_root = btrfs_root_id(root) + 1;
1247 	}
1248 
1249 	return nr_dropped;
1250 }
1251 
1252 long btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan)
1253 {
1254 	struct btrfs_em_shrink_ctx ctx;
1255 	u64 start_root_id;
1256 	u64 next_root_id;
1257 	bool cycled = false;
1258 	long nr_dropped = 0;
1259 
1260 	ctx.scanned = 0;
1261 	ctx.nr_to_scan = nr_to_scan;
1262 
1263 	/*
1264 	 * In case we have multiple tasks running this shrinker, make the next
1265 	 * one start from the next inode in case it starts before we finish.
1266 	 */
1267 	spin_lock(&fs_info->extent_map_shrinker_lock);
1268 	ctx.last_ino = fs_info->extent_map_shrinker_last_ino;
1269 	fs_info->extent_map_shrinker_last_ino++;
1270 	ctx.last_root = fs_info->extent_map_shrinker_last_root;
1271 	spin_unlock(&fs_info->extent_map_shrinker_lock);
1272 
1273 	start_root_id = ctx.last_root;
1274 	next_root_id = ctx.last_root;
1275 
1276 	if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) {
1277 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1278 
1279 		trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr_to_scan,
1280 							   nr, ctx.last_root,
1281 							   ctx.last_ino);
1282 	}
1283 
1284 	while (ctx.scanned < ctx.nr_to_scan) {
1285 		struct btrfs_root *root;
1286 		unsigned long count;
1287 
1288 		cond_resched();
1289 
1290 		spin_lock(&fs_info->fs_roots_radix_lock);
1291 		count = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1292 					       (void **)&root,
1293 					       (unsigned long)next_root_id, 1);
1294 		if (count == 0) {
1295 			spin_unlock(&fs_info->fs_roots_radix_lock);
1296 			if (start_root_id > 0 && !cycled) {
1297 				next_root_id = 0;
1298 				ctx.last_root = 0;
1299 				ctx.last_ino = 0;
1300 				cycled = true;
1301 				continue;
1302 			}
1303 			break;
1304 		}
1305 		next_root_id = btrfs_root_id(root) + 1;
1306 		root = btrfs_grab_root(root);
1307 		spin_unlock(&fs_info->fs_roots_radix_lock);
1308 
1309 		if (!root)
1310 			continue;
1311 
1312 		if (is_fstree(btrfs_root_id(root)))
1313 			nr_dropped += btrfs_scan_root(root, &ctx);
1314 
1315 		btrfs_put_root(root);
1316 	}
1317 
1318 	/*
1319 	 * In case of multiple tasks running this extent map shrinking code this
1320 	 * isn't perfect but it's simple and silences things like KCSAN. It's
1321 	 * not possible to know which task made more progress because we can
1322 	 * cycle back to the first root and first inode if it's not the first
1323 	 * time the shrinker ran, see the above logic. Also a task that started
1324 	 * later may finish ealier than another task and made less progress. So
1325 	 * make this simple and update to the progress of the last task that
1326 	 * finished, with the occasional possiblity of having two consecutive
1327 	 * runs of the shrinker process the same inodes.
1328 	 */
1329 	spin_lock(&fs_info->extent_map_shrinker_lock);
1330 	fs_info->extent_map_shrinker_last_ino = ctx.last_ino;
1331 	fs_info->extent_map_shrinker_last_root = ctx.last_root;
1332 	spin_unlock(&fs_info->extent_map_shrinker_lock);
1333 
1334 	if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) {
1335 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1336 
1337 		trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped,
1338 							  nr, ctx.last_root,
1339 							  ctx.last_ino);
1340 	}
1341 
1342 	return nr_dropped;
1343 }
1344