xref: /linux/fs/btrfs/extent_map.c (revision 3e7819886281e077e82006fe4804b0d6b0f5643b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/err.h>
4 #include <linux/slab.h>
5 #include <linux/spinlock.h>
6 #include "messages.h"
7 #include "ctree.h"
8 #include "extent_map.h"
9 #include "compression.h"
10 #include "btrfs_inode.h"
11 #include "disk-io.h"
12 
13 
14 static struct kmem_cache *extent_map_cache;
15 
16 int __init extent_map_init(void)
17 {
18 	extent_map_cache = kmem_cache_create("btrfs_extent_map",
19 					     sizeof(struct extent_map), 0, 0, NULL);
20 	if (!extent_map_cache)
21 		return -ENOMEM;
22 	return 0;
23 }
24 
25 void __cold extent_map_exit(void)
26 {
27 	kmem_cache_destroy(extent_map_cache);
28 }
29 
30 /*
31  * Initialize the extent tree @tree.  Should be called for each new inode or
32  * other user of the extent_map interface.
33  */
34 void extent_map_tree_init(struct extent_map_tree *tree)
35 {
36 	tree->map = RB_ROOT_CACHED;
37 	INIT_LIST_HEAD(&tree->modified_extents);
38 	rwlock_init(&tree->lock);
39 }
40 
41 /*
42  * Allocate a new extent_map structure.  The new structure is returned with a
43  * reference count of one and needs to be freed using free_extent_map()
44  */
45 struct extent_map *alloc_extent_map(void)
46 {
47 	struct extent_map *em;
48 	em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS);
49 	if (!em)
50 		return NULL;
51 	RB_CLEAR_NODE(&em->rb_node);
52 	refcount_set(&em->refs, 1);
53 	INIT_LIST_HEAD(&em->list);
54 	return em;
55 }
56 
57 /*
58  * Drop the reference out on @em by one and free the structure if the reference
59  * count hits zero.
60  */
61 void free_extent_map(struct extent_map *em)
62 {
63 	if (!em)
64 		return;
65 	if (refcount_dec_and_test(&em->refs)) {
66 		WARN_ON(extent_map_in_tree(em));
67 		WARN_ON(!list_empty(&em->list));
68 		kmem_cache_free(extent_map_cache, em);
69 	}
70 }
71 
72 /* Do the math around the end of an extent, handling wrapping. */
73 static u64 range_end(u64 start, u64 len)
74 {
75 	if (start + len < start)
76 		return (u64)-1;
77 	return start + len;
78 }
79 
80 static void dec_evictable_extent_maps(struct btrfs_inode *inode)
81 {
82 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
83 
84 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root)))
85 		percpu_counter_dec(&fs_info->evictable_extent_maps);
86 }
87 
88 static int tree_insert(struct rb_root_cached *root, struct extent_map *em)
89 {
90 	struct rb_node **p = &root->rb_root.rb_node;
91 	struct rb_node *parent = NULL;
92 	struct extent_map *entry = NULL;
93 	struct rb_node *orig_parent = NULL;
94 	u64 end = range_end(em->start, em->len);
95 	bool leftmost = true;
96 
97 	while (*p) {
98 		parent = *p;
99 		entry = rb_entry(parent, struct extent_map, rb_node);
100 
101 		if (em->start < entry->start) {
102 			p = &(*p)->rb_left;
103 		} else if (em->start >= extent_map_end(entry)) {
104 			p = &(*p)->rb_right;
105 			leftmost = false;
106 		} else {
107 			return -EEXIST;
108 		}
109 	}
110 
111 	orig_parent = parent;
112 	while (parent && em->start >= extent_map_end(entry)) {
113 		parent = rb_next(parent);
114 		entry = rb_entry(parent, struct extent_map, rb_node);
115 	}
116 	if (parent)
117 		if (end > entry->start && em->start < extent_map_end(entry))
118 			return -EEXIST;
119 
120 	parent = orig_parent;
121 	entry = rb_entry(parent, struct extent_map, rb_node);
122 	while (parent && em->start < entry->start) {
123 		parent = rb_prev(parent);
124 		entry = rb_entry(parent, struct extent_map, rb_node);
125 	}
126 	if (parent)
127 		if (end > entry->start && em->start < extent_map_end(entry))
128 			return -EEXIST;
129 
130 	rb_link_node(&em->rb_node, orig_parent, p);
131 	rb_insert_color_cached(&em->rb_node, root, leftmost);
132 	return 0;
133 }
134 
135 /*
136  * Search through the tree for an extent_map with a given offset.  If it can't
137  * be found, try to find some neighboring extents
138  */
139 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
140 				     struct rb_node **prev_or_next_ret)
141 {
142 	struct rb_node *n = root->rb_node;
143 	struct rb_node *prev = NULL;
144 	struct rb_node *orig_prev = NULL;
145 	struct extent_map *entry;
146 	struct extent_map *prev_entry = NULL;
147 
148 	ASSERT(prev_or_next_ret);
149 
150 	while (n) {
151 		entry = rb_entry(n, struct extent_map, rb_node);
152 		prev = n;
153 		prev_entry = entry;
154 
155 		if (offset < entry->start)
156 			n = n->rb_left;
157 		else if (offset >= extent_map_end(entry))
158 			n = n->rb_right;
159 		else
160 			return n;
161 	}
162 
163 	orig_prev = prev;
164 	while (prev && offset >= extent_map_end(prev_entry)) {
165 		prev = rb_next(prev);
166 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
167 	}
168 
169 	/*
170 	 * Previous extent map found, return as in this case the caller does not
171 	 * care about the next one.
172 	 */
173 	if (prev) {
174 		*prev_or_next_ret = prev;
175 		return NULL;
176 	}
177 
178 	prev = orig_prev;
179 	prev_entry = rb_entry(prev, struct extent_map, rb_node);
180 	while (prev && offset < prev_entry->start) {
181 		prev = rb_prev(prev);
182 		prev_entry = rb_entry(prev, struct extent_map, rb_node);
183 	}
184 	*prev_or_next_ret = prev;
185 
186 	return NULL;
187 }
188 
189 static inline u64 extent_map_block_end(const struct extent_map *em)
190 {
191 	if (em->block_start + em->block_len < em->block_start)
192 		return (u64)-1;
193 	return em->block_start + em->block_len;
194 }
195 
196 static bool can_merge_extent_map(const struct extent_map *em)
197 {
198 	if (em->flags & EXTENT_FLAG_PINNED)
199 		return false;
200 
201 	/* Don't merge compressed extents, we need to know their actual size. */
202 	if (extent_map_is_compressed(em))
203 		return false;
204 
205 	if (em->flags & EXTENT_FLAG_LOGGING)
206 		return false;
207 
208 	/*
209 	 * We don't want to merge stuff that hasn't been written to the log yet
210 	 * since it may not reflect exactly what is on disk, and that would be
211 	 * bad.
212 	 */
213 	if (!list_empty(&em->list))
214 		return false;
215 
216 	return true;
217 }
218 
219 /* Check to see if two extent_map structs are adjacent and safe to merge. */
220 static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next)
221 {
222 	if (extent_map_end(prev) != next->start)
223 		return false;
224 
225 	if (prev->flags != next->flags)
226 		return false;
227 
228 	if (next->block_start < EXTENT_MAP_LAST_BYTE - 1)
229 		return next->block_start == extent_map_block_end(prev);
230 
231 	/* HOLES and INLINE extents. */
232 	return next->block_start == prev->block_start;
233 }
234 
235 static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em)
236 {
237 	struct extent_map_tree *tree = &inode->extent_tree;
238 	struct extent_map *merge = NULL;
239 	struct rb_node *rb;
240 
241 	/*
242 	 * We can't modify an extent map that is in the tree and that is being
243 	 * used by another task, as it can cause that other task to see it in
244 	 * inconsistent state during the merging. We always have 1 reference for
245 	 * the tree and 1 for this task (which is unpinning the extent map or
246 	 * clearing the logging flag), so anything > 2 means it's being used by
247 	 * other tasks too.
248 	 */
249 	if (refcount_read(&em->refs) > 2)
250 		return;
251 
252 	if (!can_merge_extent_map(em))
253 		return;
254 
255 	if (em->start != 0) {
256 		rb = rb_prev(&em->rb_node);
257 		if (rb)
258 			merge = rb_entry(rb, struct extent_map, rb_node);
259 		if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) {
260 			em->start = merge->start;
261 			em->orig_start = merge->orig_start;
262 			em->len += merge->len;
263 			em->block_len += merge->block_len;
264 			em->block_start = merge->block_start;
265 			em->generation = max(em->generation, merge->generation);
266 			em->flags |= EXTENT_FLAG_MERGED;
267 
268 			rb_erase_cached(&merge->rb_node, &tree->map);
269 			RB_CLEAR_NODE(&merge->rb_node);
270 			free_extent_map(merge);
271 			dec_evictable_extent_maps(inode);
272 		}
273 	}
274 
275 	rb = rb_next(&em->rb_node);
276 	if (rb)
277 		merge = rb_entry(rb, struct extent_map, rb_node);
278 	if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) {
279 		em->len += merge->len;
280 		em->block_len += merge->block_len;
281 		rb_erase_cached(&merge->rb_node, &tree->map);
282 		RB_CLEAR_NODE(&merge->rb_node);
283 		em->generation = max(em->generation, merge->generation);
284 		em->flags |= EXTENT_FLAG_MERGED;
285 		free_extent_map(merge);
286 		dec_evictable_extent_maps(inode);
287 	}
288 }
289 
290 /*
291  * Unpin an extent from the cache.
292  *
293  * @inode:	the inode from which we are unpinning an extent range
294  * @start:	logical offset in the file
295  * @len:	length of the extent
296  * @gen:	generation that this extent has been modified in
297  *
298  * Called after an extent has been written to disk properly.  Set the generation
299  * to the generation that actually added the file item to the inode so we know
300  * we need to sync this extent when we call fsync().
301  *
302  * Returns: 0	     on success
303  * 	    -ENOENT  when the extent is not found in the tree
304  * 	    -EUCLEAN if the found extent does not match the expected start
305  */
306 int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen)
307 {
308 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
309 	struct extent_map_tree *tree = &inode->extent_tree;
310 	int ret = 0;
311 	struct extent_map *em;
312 
313 	write_lock(&tree->lock);
314 	em = lookup_extent_mapping(tree, start, len);
315 
316 	if (WARN_ON(!em)) {
317 		btrfs_warn(fs_info,
318 "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu",
319 			   btrfs_ino(inode), btrfs_root_id(inode->root),
320 			   start, start + len, gen);
321 		ret = -ENOENT;
322 		goto out;
323 	}
324 
325 	if (WARN_ON(em->start != start)) {
326 		btrfs_warn(fs_info,
327 "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu",
328 			   btrfs_ino(inode), btrfs_root_id(inode->root),
329 			   em->start, start, start + len, gen);
330 		ret = -EUCLEAN;
331 		goto out;
332 	}
333 
334 	em->generation = gen;
335 	em->flags &= ~EXTENT_FLAG_PINNED;
336 
337 	try_merge_map(inode, em);
338 
339 out:
340 	write_unlock(&tree->lock);
341 	free_extent_map(em);
342 	return ret;
343 
344 }
345 
346 void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em)
347 {
348 	lockdep_assert_held_write(&inode->extent_tree.lock);
349 
350 	em->flags &= ~EXTENT_FLAG_LOGGING;
351 	if (extent_map_in_tree(em))
352 		try_merge_map(inode, em);
353 }
354 
355 static inline void setup_extent_mapping(struct btrfs_inode *inode,
356 					struct extent_map *em,
357 					int modified)
358 {
359 	refcount_inc(&em->refs);
360 
361 	ASSERT(list_empty(&em->list));
362 
363 	if (modified)
364 		list_add(&em->list, &inode->extent_tree.modified_extents);
365 	else
366 		try_merge_map(inode, em);
367 }
368 
369 /*
370  * Add a new extent map to an inode's extent map tree.
371  *
372  * @inode:	the target inode
373  * @em:		map to insert
374  * @modified:	indicate whether the given @em should be added to the
375  *	        modified list, which indicates the extent needs to be logged
376  *
377  * Insert @em into the @inode's extent map tree or perform a simple
378  * forward/backward merge with existing mappings.  The extent_map struct passed
379  * in will be inserted into the tree directly, with an additional reference
380  * taken, or a reference dropped if the merge attempt was successful.
381  */
382 static int add_extent_mapping(struct btrfs_inode *inode,
383 			      struct extent_map *em, int modified)
384 {
385 	struct extent_map_tree *tree = &inode->extent_tree;
386 	struct btrfs_root *root = inode->root;
387 	struct btrfs_fs_info *fs_info = root->fs_info;
388 	int ret;
389 
390 	lockdep_assert_held_write(&tree->lock);
391 
392 	ret = tree_insert(&tree->map, em);
393 	if (ret)
394 		return ret;
395 
396 	setup_extent_mapping(inode, em, modified);
397 
398 	if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root)))
399 		percpu_counter_inc(&fs_info->evictable_extent_maps);
400 
401 	return 0;
402 }
403 
404 static struct extent_map *
405 __lookup_extent_mapping(struct extent_map_tree *tree,
406 			u64 start, u64 len, int strict)
407 {
408 	struct extent_map *em;
409 	struct rb_node *rb_node;
410 	struct rb_node *prev_or_next = NULL;
411 	u64 end = range_end(start, len);
412 
413 	rb_node = __tree_search(&tree->map.rb_root, start, &prev_or_next);
414 	if (!rb_node) {
415 		if (prev_or_next)
416 			rb_node = prev_or_next;
417 		else
418 			return NULL;
419 	}
420 
421 	em = rb_entry(rb_node, struct extent_map, rb_node);
422 
423 	if (strict && !(end > em->start && start < extent_map_end(em)))
424 		return NULL;
425 
426 	refcount_inc(&em->refs);
427 	return em;
428 }
429 
430 /*
431  * Lookup extent_map that intersects @start + @len range.
432  *
433  * @tree:	tree to lookup in
434  * @start:	byte offset to start the search
435  * @len:	length of the lookup range
436  *
437  * Find and return the first extent_map struct in @tree that intersects the
438  * [start, len] range.  There may be additional objects in the tree that
439  * intersect, so check the object returned carefully to make sure that no
440  * additional lookups are needed.
441  */
442 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
443 					 u64 start, u64 len)
444 {
445 	return __lookup_extent_mapping(tree, start, len, 1);
446 }
447 
448 /*
449  * Find a nearby extent map intersecting @start + @len (not an exact search).
450  *
451  * @tree:	tree to lookup in
452  * @start:	byte offset to start the search
453  * @len:	length of the lookup range
454  *
455  * Find and return the first extent_map struct in @tree that intersects the
456  * [start, len] range.
457  *
458  * If one can't be found, any nearby extent may be returned
459  */
460 struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
461 					 u64 start, u64 len)
462 {
463 	return __lookup_extent_mapping(tree, start, len, 0);
464 }
465 
466 /*
467  * Remove an extent_map from its inode's extent tree.
468  *
469  * @inode:	the inode the extent map belongs to
470  * @em:		extent map being removed
471  *
472  * Remove @em from the extent tree of @inode.  No reference counts are dropped,
473  * and no checks are done to see if the range is in use.
474  */
475 void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em)
476 {
477 	struct extent_map_tree *tree = &inode->extent_tree;
478 
479 	lockdep_assert_held_write(&tree->lock);
480 
481 	WARN_ON(em->flags & EXTENT_FLAG_PINNED);
482 	rb_erase_cached(&em->rb_node, &tree->map);
483 	if (!(em->flags & EXTENT_FLAG_LOGGING))
484 		list_del_init(&em->list);
485 	RB_CLEAR_NODE(&em->rb_node);
486 
487 	dec_evictable_extent_maps(inode);
488 }
489 
490 static void replace_extent_mapping(struct btrfs_inode *inode,
491 				   struct extent_map *cur,
492 				   struct extent_map *new,
493 				   int modified)
494 {
495 	struct extent_map_tree *tree = &inode->extent_tree;
496 
497 	lockdep_assert_held_write(&tree->lock);
498 
499 	WARN_ON(cur->flags & EXTENT_FLAG_PINNED);
500 	ASSERT(extent_map_in_tree(cur));
501 	if (!(cur->flags & EXTENT_FLAG_LOGGING))
502 		list_del_init(&cur->list);
503 	rb_replace_node_cached(&cur->rb_node, &new->rb_node, &tree->map);
504 	RB_CLEAR_NODE(&cur->rb_node);
505 
506 	setup_extent_mapping(inode, new, modified);
507 }
508 
509 static struct extent_map *next_extent_map(const struct extent_map *em)
510 {
511 	struct rb_node *next;
512 
513 	next = rb_next(&em->rb_node);
514 	if (!next)
515 		return NULL;
516 	return container_of(next, struct extent_map, rb_node);
517 }
518 
519 static struct extent_map *prev_extent_map(struct extent_map *em)
520 {
521 	struct rb_node *prev;
522 
523 	prev = rb_prev(&em->rb_node);
524 	if (!prev)
525 		return NULL;
526 	return container_of(prev, struct extent_map, rb_node);
527 }
528 
529 /*
530  * Helper for btrfs_get_extent.  Given an existing extent in the tree,
531  * the existing extent is the nearest extent to map_start,
532  * and an extent that you want to insert, deal with overlap and insert
533  * the best fitted new extent into the tree.
534  */
535 static noinline int merge_extent_mapping(struct btrfs_inode *inode,
536 					 struct extent_map *existing,
537 					 struct extent_map *em,
538 					 u64 map_start)
539 {
540 	struct extent_map *prev;
541 	struct extent_map *next;
542 	u64 start;
543 	u64 end;
544 	u64 start_diff;
545 
546 	if (map_start < em->start || map_start >= extent_map_end(em))
547 		return -EINVAL;
548 
549 	if (existing->start > map_start) {
550 		next = existing;
551 		prev = prev_extent_map(next);
552 	} else {
553 		prev = existing;
554 		next = next_extent_map(prev);
555 	}
556 
557 	start = prev ? extent_map_end(prev) : em->start;
558 	start = max_t(u64, start, em->start);
559 	end = next ? next->start : extent_map_end(em);
560 	end = min_t(u64, end, extent_map_end(em));
561 	start_diff = start - em->start;
562 	em->start = start;
563 	em->len = end - start;
564 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
565 	    !extent_map_is_compressed(em)) {
566 		em->block_start += start_diff;
567 		em->block_len = em->len;
568 	}
569 	return add_extent_mapping(inode, em, 0);
570 }
571 
572 /*
573  * Add extent mapping into an inode's extent map tree.
574  *
575  * @inode:    target inode
576  * @em_in:    extent we are inserting
577  * @start:    start of the logical range btrfs_get_extent() is requesting
578  * @len:      length of the logical range btrfs_get_extent() is requesting
579  *
580  * Note that @em_in's range may be different from [start, start+len),
581  * but they must be overlapped.
582  *
583  * Insert @em_in into the inode's extent map tree. In case there is an
584  * overlapping range, handle the -EEXIST by either:
585  * a) Returning the existing extent in @em_in if @start is within the
586  *    existing em.
587  * b) Merge the existing extent with @em_in passed in.
588  *
589  * Return 0 on success, otherwise -EEXIST.
590  *
591  */
592 int btrfs_add_extent_mapping(struct btrfs_inode *inode,
593 			     struct extent_map **em_in, u64 start, u64 len)
594 {
595 	int ret;
596 	struct extent_map *em = *em_in;
597 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
598 
599 	/*
600 	 * Tree-checker should have rejected any inline extent with non-zero
601 	 * file offset. Here just do a sanity check.
602 	 */
603 	if (em->block_start == EXTENT_MAP_INLINE)
604 		ASSERT(em->start == 0);
605 
606 	ret = add_extent_mapping(inode, em, 0);
607 	/* it is possible that someone inserted the extent into the tree
608 	 * while we had the lock dropped.  It is also possible that
609 	 * an overlapping map exists in the tree
610 	 */
611 	if (ret == -EEXIST) {
612 		struct extent_map *existing;
613 
614 		existing = search_extent_mapping(&inode->extent_tree, start, len);
615 
616 		trace_btrfs_handle_em_exist(fs_info, existing, em, start, len);
617 
618 		/*
619 		 * existing will always be non-NULL, since there must be
620 		 * extent causing the -EEXIST.
621 		 */
622 		if (start >= existing->start &&
623 		    start < extent_map_end(existing)) {
624 			free_extent_map(em);
625 			*em_in = existing;
626 			ret = 0;
627 		} else {
628 			u64 orig_start = em->start;
629 			u64 orig_len = em->len;
630 
631 			/*
632 			 * The existing extent map is the one nearest to
633 			 * the [start, start + len) range which overlaps
634 			 */
635 			ret = merge_extent_mapping(inode, existing, em, start);
636 			if (WARN_ON(ret)) {
637 				free_extent_map(em);
638 				*em_in = NULL;
639 				btrfs_warn(fs_info,
640 "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu",
641 					   existing->start, extent_map_end(existing),
642 					   orig_start, orig_start + orig_len, start);
643 			}
644 			free_extent_map(existing);
645 		}
646 	}
647 
648 	ASSERT(ret == 0 || ret == -EEXIST);
649 	return ret;
650 }
651 
652 /*
653  * Drop all extent maps from a tree in the fastest possible way, rescheduling
654  * if needed. This avoids searching the tree, from the root down to the first
655  * extent map, before each deletion.
656  */
657 static void drop_all_extent_maps_fast(struct btrfs_inode *inode)
658 {
659 	struct extent_map_tree *tree = &inode->extent_tree;
660 
661 	write_lock(&tree->lock);
662 	while (!RB_EMPTY_ROOT(&tree->map.rb_root)) {
663 		struct extent_map *em;
664 		struct rb_node *node;
665 
666 		node = rb_first_cached(&tree->map);
667 		em = rb_entry(node, struct extent_map, rb_node);
668 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
669 		remove_extent_mapping(inode, em);
670 		free_extent_map(em);
671 		cond_resched_rwlock_write(&tree->lock);
672 	}
673 	write_unlock(&tree->lock);
674 }
675 
676 /*
677  * Drop all extent maps in a given range.
678  *
679  * @inode:       The target inode.
680  * @start:       Start offset of the range.
681  * @end:         End offset of the range (inclusive value).
682  * @skip_pinned: Indicate if pinned extent maps should be ignored or not.
683  *
684  * This drops all the extent maps that intersect the given range [@start, @end].
685  * Extent maps that partially overlap the range and extend behind or beyond it,
686  * are split.
687  * The caller should have locked an appropriate file range in the inode's io
688  * tree before calling this function.
689  */
690 void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end,
691 				 bool skip_pinned)
692 {
693 	struct extent_map *split;
694 	struct extent_map *split2;
695 	struct extent_map *em;
696 	struct extent_map_tree *em_tree = &inode->extent_tree;
697 	u64 len = end - start + 1;
698 
699 	WARN_ON(end < start);
700 	if (end == (u64)-1) {
701 		if (start == 0 && !skip_pinned) {
702 			drop_all_extent_maps_fast(inode);
703 			return;
704 		}
705 		len = (u64)-1;
706 	} else {
707 		/* Make end offset exclusive for use in the loop below. */
708 		end++;
709 	}
710 
711 	/*
712 	 * It's ok if we fail to allocate the extent maps, see the comment near
713 	 * the bottom of the loop below. We only need two spare extent maps in
714 	 * the worst case, where the first extent map that intersects our range
715 	 * starts before the range and the last extent map that intersects our
716 	 * range ends after our range (and they might be the same extent map),
717 	 * because we need to split those two extent maps at the boundaries.
718 	 */
719 	split = alloc_extent_map();
720 	split2 = alloc_extent_map();
721 
722 	write_lock(&em_tree->lock);
723 	em = lookup_extent_mapping(em_tree, start, len);
724 
725 	while (em) {
726 		/* extent_map_end() returns exclusive value (last byte + 1). */
727 		const u64 em_end = extent_map_end(em);
728 		struct extent_map *next_em = NULL;
729 		u64 gen;
730 		unsigned long flags;
731 		bool modified;
732 		bool compressed;
733 
734 		if (em_end < end) {
735 			next_em = next_extent_map(em);
736 			if (next_em) {
737 				if (next_em->start < end)
738 					refcount_inc(&next_em->refs);
739 				else
740 					next_em = NULL;
741 			}
742 		}
743 
744 		if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) {
745 			start = em_end;
746 			goto next;
747 		}
748 
749 		flags = em->flags;
750 		/*
751 		 * In case we split the extent map, we want to preserve the
752 		 * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want
753 		 * it on the new extent maps.
754 		 */
755 		em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
756 		modified = !list_empty(&em->list);
757 
758 		/*
759 		 * The extent map does not cross our target range, so no need to
760 		 * split it, we can remove it directly.
761 		 */
762 		if (em->start >= start && em_end <= end)
763 			goto remove_em;
764 
765 		gen = em->generation;
766 		compressed = extent_map_is_compressed(em);
767 
768 		if (em->start < start) {
769 			if (!split) {
770 				split = split2;
771 				split2 = NULL;
772 				if (!split)
773 					goto remove_em;
774 			}
775 			split->start = em->start;
776 			split->len = start - em->start;
777 
778 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
779 				split->orig_start = em->orig_start;
780 				split->block_start = em->block_start;
781 
782 				if (compressed)
783 					split->block_len = em->block_len;
784 				else
785 					split->block_len = split->len;
786 				split->orig_block_len = max(split->block_len,
787 						em->orig_block_len);
788 				split->ram_bytes = em->ram_bytes;
789 			} else {
790 				split->orig_start = split->start;
791 				split->block_len = 0;
792 				split->block_start = em->block_start;
793 				split->orig_block_len = 0;
794 				split->ram_bytes = split->len;
795 			}
796 
797 			split->generation = gen;
798 			split->flags = flags;
799 			replace_extent_mapping(inode, em, split, modified);
800 			free_extent_map(split);
801 			split = split2;
802 			split2 = NULL;
803 		}
804 		if (em_end > end) {
805 			if (!split) {
806 				split = split2;
807 				split2 = NULL;
808 				if (!split)
809 					goto remove_em;
810 			}
811 			split->start = end;
812 			split->len = em_end - end;
813 			split->block_start = em->block_start;
814 			split->flags = flags;
815 			split->generation = gen;
816 
817 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
818 				split->orig_block_len = max(em->block_len,
819 						    em->orig_block_len);
820 
821 				split->ram_bytes = em->ram_bytes;
822 				if (compressed) {
823 					split->block_len = em->block_len;
824 					split->orig_start = em->orig_start;
825 				} else {
826 					const u64 diff = end - em->start;
827 
828 					split->block_len = split->len;
829 					split->block_start += diff;
830 					split->orig_start = em->orig_start;
831 				}
832 			} else {
833 				split->ram_bytes = split->len;
834 				split->orig_start = split->start;
835 				split->block_len = 0;
836 				split->orig_block_len = 0;
837 			}
838 
839 			if (extent_map_in_tree(em)) {
840 				replace_extent_mapping(inode, em, split, modified);
841 			} else {
842 				int ret;
843 
844 				ret = add_extent_mapping(inode, split, modified);
845 				/* Logic error, shouldn't happen. */
846 				ASSERT(ret == 0);
847 				if (WARN_ON(ret != 0) && modified)
848 					btrfs_set_inode_full_sync(inode);
849 			}
850 			free_extent_map(split);
851 			split = NULL;
852 		}
853 remove_em:
854 		if (extent_map_in_tree(em)) {
855 			/*
856 			 * If the extent map is still in the tree it means that
857 			 * either of the following is true:
858 			 *
859 			 * 1) It fits entirely in our range (doesn't end beyond
860 			 *    it or starts before it);
861 			 *
862 			 * 2) It starts before our range and/or ends after our
863 			 *    range, and we were not able to allocate the extent
864 			 *    maps for split operations, @split and @split2.
865 			 *
866 			 * If we are at case 2) then we just remove the entire
867 			 * extent map - this is fine since if anyone needs it to
868 			 * access the subranges outside our range, will just
869 			 * load it again from the subvolume tree's file extent
870 			 * item. However if the extent map was in the list of
871 			 * modified extents, then we must mark the inode for a
872 			 * full fsync, otherwise a fast fsync will miss this
873 			 * extent if it's new and needs to be logged.
874 			 */
875 			if ((em->start < start || em_end > end) && modified) {
876 				ASSERT(!split);
877 				btrfs_set_inode_full_sync(inode);
878 			}
879 			remove_extent_mapping(inode, em);
880 		}
881 
882 		/*
883 		 * Once for the tree reference (we replaced or removed the
884 		 * extent map from the tree).
885 		 */
886 		free_extent_map(em);
887 next:
888 		/* Once for us (for our lookup reference). */
889 		free_extent_map(em);
890 
891 		em = next_em;
892 	}
893 
894 	write_unlock(&em_tree->lock);
895 
896 	free_extent_map(split);
897 	free_extent_map(split2);
898 }
899 
900 /*
901  * Replace a range in the inode's extent map tree with a new extent map.
902  *
903  * @inode:      The target inode.
904  * @new_em:     The new extent map to add to the inode's extent map tree.
905  * @modified:   Indicate if the new extent map should be added to the list of
906  *              modified extents (for fast fsync tracking).
907  *
908  * Drops all the extent maps in the inode's extent map tree that intersect the
909  * range of the new extent map and adds the new extent map to the tree.
910  * The caller should have locked an appropriate file range in the inode's io
911  * tree before calling this function.
912  */
913 int btrfs_replace_extent_map_range(struct btrfs_inode *inode,
914 				   struct extent_map *new_em,
915 				   bool modified)
916 {
917 	const u64 end = new_em->start + new_em->len - 1;
918 	struct extent_map_tree *tree = &inode->extent_tree;
919 	int ret;
920 
921 	ASSERT(!extent_map_in_tree(new_em));
922 
923 	/*
924 	 * The caller has locked an appropriate file range in the inode's io
925 	 * tree, but getting -EEXIST when adding the new extent map can still
926 	 * happen in case there are extents that partially cover the range, and
927 	 * this is due to two tasks operating on different parts of the extent.
928 	 * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from
929 	 * btrfs_get_extent") for an example and details.
930 	 */
931 	do {
932 		btrfs_drop_extent_map_range(inode, new_em->start, end, false);
933 		write_lock(&tree->lock);
934 		ret = add_extent_mapping(inode, new_em, modified);
935 		write_unlock(&tree->lock);
936 	} while (ret == -EEXIST);
937 
938 	return ret;
939 }
940 
941 /*
942  * Split off the first pre bytes from the extent_map at [start, start + len],
943  * and set the block_start for it to new_logical.
944  *
945  * This function is used when an ordered_extent needs to be split.
946  */
947 int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre,
948 		     u64 new_logical)
949 {
950 	struct extent_map_tree *em_tree = &inode->extent_tree;
951 	struct extent_map *em;
952 	struct extent_map *split_pre = NULL;
953 	struct extent_map *split_mid = NULL;
954 	int ret = 0;
955 	unsigned long flags;
956 
957 	ASSERT(pre != 0);
958 	ASSERT(pre < len);
959 
960 	split_pre = alloc_extent_map();
961 	if (!split_pre)
962 		return -ENOMEM;
963 	split_mid = alloc_extent_map();
964 	if (!split_mid) {
965 		ret = -ENOMEM;
966 		goto out_free_pre;
967 	}
968 
969 	lock_extent(&inode->io_tree, start, start + len - 1, NULL);
970 	write_lock(&em_tree->lock);
971 	em = lookup_extent_mapping(em_tree, start, len);
972 	if (!em) {
973 		ret = -EIO;
974 		goto out_unlock;
975 	}
976 
977 	ASSERT(em->len == len);
978 	ASSERT(!extent_map_is_compressed(em));
979 	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
980 	ASSERT(em->flags & EXTENT_FLAG_PINNED);
981 	ASSERT(!(em->flags & EXTENT_FLAG_LOGGING));
982 	ASSERT(!list_empty(&em->list));
983 
984 	flags = em->flags;
985 	em->flags &= ~EXTENT_FLAG_PINNED;
986 
987 	/* First, replace the em with a new extent_map starting from * em->start */
988 	split_pre->start = em->start;
989 	split_pre->len = pre;
990 	split_pre->orig_start = split_pre->start;
991 	split_pre->block_start = new_logical;
992 	split_pre->block_len = split_pre->len;
993 	split_pre->orig_block_len = split_pre->block_len;
994 	split_pre->ram_bytes = split_pre->len;
995 	split_pre->flags = flags;
996 	split_pre->generation = em->generation;
997 
998 	replace_extent_mapping(inode, em, split_pre, 1);
999 
1000 	/*
1001 	 * Now we only have an extent_map at:
1002 	 *     [em->start, em->start + pre]
1003 	 */
1004 
1005 	/* Insert the middle extent_map. */
1006 	split_mid->start = em->start + pre;
1007 	split_mid->len = em->len - pre;
1008 	split_mid->orig_start = split_mid->start;
1009 	split_mid->block_start = em->block_start + pre;
1010 	split_mid->block_len = split_mid->len;
1011 	split_mid->orig_block_len = split_mid->block_len;
1012 	split_mid->ram_bytes = split_mid->len;
1013 	split_mid->flags = flags;
1014 	split_mid->generation = em->generation;
1015 	add_extent_mapping(inode, split_mid, 1);
1016 
1017 	/* Once for us */
1018 	free_extent_map(em);
1019 	/* Once for the tree */
1020 	free_extent_map(em);
1021 
1022 out_unlock:
1023 	write_unlock(&em_tree->lock);
1024 	unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
1025 	free_extent_map(split_mid);
1026 out_free_pre:
1027 	free_extent_map(split_pre);
1028 	return ret;
1029 }
1030 
1031 struct btrfs_em_shrink_ctx {
1032 	long nr_to_scan;
1033 	long scanned;
1034 	u64 last_ino;
1035 	u64 last_root;
1036 };
1037 
1038 static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx)
1039 {
1040 	const u64 cur_fs_gen = btrfs_get_fs_generation(inode->root->fs_info);
1041 	struct extent_map_tree *tree = &inode->extent_tree;
1042 	long nr_dropped = 0;
1043 	struct rb_node *node;
1044 
1045 	/*
1046 	 * Take the mmap lock so that we serialize with the inode logging phase
1047 	 * of fsync because we may need to set the full sync flag on the inode,
1048 	 * in case we have to remove extent maps in the tree's list of modified
1049 	 * extents. If we set the full sync flag in the inode while an fsync is
1050 	 * in progress, we may risk missing new extents because before the flag
1051 	 * is set, fsync decides to only wait for writeback to complete and then
1052 	 * during inode logging it sees the flag set and uses the subvolume tree
1053 	 * to find new extents, which may not be there yet because ordered
1054 	 * extents haven't completed yet.
1055 	 *
1056 	 * We also do a try lock because otherwise we could deadlock. This is
1057 	 * because the shrinker for this filesystem may be invoked while we are
1058 	 * in a path that is holding the mmap lock in write mode. For example in
1059 	 * a reflink operation while COWing an extent buffer, when allocating
1060 	 * pages for a new extent buffer and under memory pressure, the shrinker
1061 	 * may be invoked, and therefore we would deadlock by attempting to read
1062 	 * lock the mmap lock while we are holding already a write lock on it.
1063 	 */
1064 	if (!down_read_trylock(&inode->i_mmap_lock))
1065 		return 0;
1066 
1067 	/*
1068 	 * We want to be fast because we can be called from any path trying to
1069 	 * allocate memory, so if the lock is busy we don't want to spend time
1070 	 * waiting for it - either some task is about to do IO for the inode or
1071 	 * we may have another task shrinking extent maps, here in this code, so
1072 	 * skip this inode.
1073 	 */
1074 	if (!write_trylock(&tree->lock)) {
1075 		up_read(&inode->i_mmap_lock);
1076 		return 0;
1077 	}
1078 
1079 	node = rb_first_cached(&tree->map);
1080 	while (node) {
1081 		struct extent_map *em;
1082 
1083 		em = rb_entry(node, struct extent_map, rb_node);
1084 		node = rb_next(node);
1085 		ctx->scanned++;
1086 
1087 		if (em->flags & EXTENT_FLAG_PINNED)
1088 			goto next;
1089 
1090 		/*
1091 		 * If the inode is in the list of modified extents (new) and its
1092 		 * generation is the same (or is greater than) the current fs
1093 		 * generation, it means it was not yet persisted so we have to
1094 		 * set the full sync flag so that the next fsync will not miss
1095 		 * it.
1096 		 */
1097 		if (!list_empty(&em->list) && em->generation >= cur_fs_gen)
1098 			btrfs_set_inode_full_sync(inode);
1099 
1100 		remove_extent_mapping(inode, em);
1101 		trace_btrfs_extent_map_shrinker_remove_em(inode, em);
1102 		/* Drop the reference for the tree. */
1103 		free_extent_map(em);
1104 		nr_dropped++;
1105 next:
1106 		if (ctx->scanned >= ctx->nr_to_scan)
1107 			break;
1108 
1109 		/*
1110 		 * Stop if we need to reschedule or there's contention on the
1111 		 * lock. This is to avoid slowing other tasks trying to take the
1112 		 * lock and because the shrinker might be called during a memory
1113 		 * allocation path and we want to avoid taking a very long time
1114 		 * and slowing down all sorts of tasks.
1115 		 */
1116 		if (need_resched() || rwlock_needbreak(&tree->lock))
1117 			break;
1118 	}
1119 	write_unlock(&tree->lock);
1120 	up_read(&inode->i_mmap_lock);
1121 
1122 	return nr_dropped;
1123 }
1124 
1125 static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx)
1126 {
1127 	struct btrfs_inode *inode;
1128 	long nr_dropped = 0;
1129 	u64 min_ino = ctx->last_ino + 1;
1130 
1131 	inode = btrfs_find_first_inode(root, min_ino);
1132 	while (inode) {
1133 		nr_dropped += btrfs_scan_inode(inode, ctx);
1134 
1135 		min_ino = btrfs_ino(inode) + 1;
1136 		ctx->last_ino = btrfs_ino(inode);
1137 		btrfs_add_delayed_iput(inode);
1138 
1139 		if (ctx->scanned >= ctx->nr_to_scan)
1140 			break;
1141 
1142 		/*
1143 		 * We may be called from memory allocation paths, so we don't
1144 		 * want to take too much time and slowdown tasks.
1145 		 */
1146 		if (need_resched())
1147 			break;
1148 
1149 		inode = btrfs_find_first_inode(root, min_ino);
1150 	}
1151 
1152 	if (inode) {
1153 		/*
1154 		 * There are still inodes in this root or we happened to process
1155 		 * the last one and reached the scan limit. In either case set
1156 		 * the current root to this one, so we'll resume from the next
1157 		 * inode if there is one or we will find out this was the last
1158 		 * one and move to the next root.
1159 		 */
1160 		ctx->last_root = btrfs_root_id(root);
1161 	} else {
1162 		/*
1163 		 * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so
1164 		 * that when processing the next root we start from its first inode.
1165 		 */
1166 		ctx->last_ino = 0;
1167 		ctx->last_root = btrfs_root_id(root) + 1;
1168 	}
1169 
1170 	return nr_dropped;
1171 }
1172 
1173 long btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan)
1174 {
1175 	struct btrfs_em_shrink_ctx ctx;
1176 	u64 start_root_id;
1177 	u64 next_root_id;
1178 	bool cycled = false;
1179 	long nr_dropped = 0;
1180 
1181 	ctx.scanned = 0;
1182 	ctx.nr_to_scan = nr_to_scan;
1183 
1184 	/*
1185 	 * In case we have multiple tasks running this shrinker, make the next
1186 	 * one start from the next inode in case it starts before we finish.
1187 	 */
1188 	spin_lock(&fs_info->extent_map_shrinker_lock);
1189 	ctx.last_ino = fs_info->extent_map_shrinker_last_ino;
1190 	fs_info->extent_map_shrinker_last_ino++;
1191 	ctx.last_root = fs_info->extent_map_shrinker_last_root;
1192 	spin_unlock(&fs_info->extent_map_shrinker_lock);
1193 
1194 	start_root_id = ctx.last_root;
1195 	next_root_id = ctx.last_root;
1196 
1197 	if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) {
1198 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1199 
1200 		trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr_to_scan,
1201 							   nr, ctx.last_root,
1202 							   ctx.last_ino);
1203 	}
1204 
1205 	/*
1206 	 * We may be called from memory allocation paths, so we don't want to
1207 	 * take too much time and slowdown tasks, so stop if we need reschedule.
1208 	 */
1209 	while (ctx.scanned < ctx.nr_to_scan && !need_resched()) {
1210 		struct btrfs_root *root;
1211 		unsigned long count;
1212 
1213 		spin_lock(&fs_info->fs_roots_radix_lock);
1214 		count = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1215 					       (void **)&root,
1216 					       (unsigned long)next_root_id, 1);
1217 		if (count == 0) {
1218 			spin_unlock(&fs_info->fs_roots_radix_lock);
1219 			if (start_root_id > 0 && !cycled) {
1220 				next_root_id = 0;
1221 				ctx.last_root = 0;
1222 				ctx.last_ino = 0;
1223 				cycled = true;
1224 				continue;
1225 			}
1226 			break;
1227 		}
1228 		next_root_id = btrfs_root_id(root) + 1;
1229 		root = btrfs_grab_root(root);
1230 		spin_unlock(&fs_info->fs_roots_radix_lock);
1231 
1232 		if (!root)
1233 			continue;
1234 
1235 		if (is_fstree(btrfs_root_id(root)))
1236 			nr_dropped += btrfs_scan_root(root, &ctx);
1237 
1238 		btrfs_put_root(root);
1239 	}
1240 
1241 	/*
1242 	 * In case of multiple tasks running this extent map shrinking code this
1243 	 * isn't perfect but it's simple and silences things like KCSAN. It's
1244 	 * not possible to know which task made more progress because we can
1245 	 * cycle back to the first root and first inode if it's not the first
1246 	 * time the shrinker ran, see the above logic. Also a task that started
1247 	 * later may finish ealier than another task and made less progress. So
1248 	 * make this simple and update to the progress of the last task that
1249 	 * finished, with the occasional possiblity of having two consecutive
1250 	 * runs of the shrinker process the same inodes.
1251 	 */
1252 	spin_lock(&fs_info->extent_map_shrinker_lock);
1253 	fs_info->extent_map_shrinker_last_ino = ctx.last_ino;
1254 	fs_info->extent_map_shrinker_last_root = ctx.last_root;
1255 	spin_unlock(&fs_info->extent_map_shrinker_lock);
1256 
1257 	if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) {
1258 		s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1259 
1260 		trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped,
1261 							  nr, ctx.last_root,
1262 							  ctx.last_ino);
1263 	}
1264 
1265 	return nr_dropped;
1266 }
1267