1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/err.h> 4 #include <linux/slab.h> 5 #include <linux/spinlock.h> 6 #include "messages.h" 7 #include "ctree.h" 8 #include "extent_map.h" 9 #include "compression.h" 10 #include "btrfs_inode.h" 11 #include "disk-io.h" 12 13 14 static struct kmem_cache *extent_map_cache; 15 16 int __init extent_map_init(void) 17 { 18 extent_map_cache = kmem_cache_create("btrfs_extent_map", 19 sizeof(struct extent_map), 0, 0, NULL); 20 if (!extent_map_cache) 21 return -ENOMEM; 22 return 0; 23 } 24 25 void __cold extent_map_exit(void) 26 { 27 kmem_cache_destroy(extent_map_cache); 28 } 29 30 /* 31 * Initialize the extent tree @tree. Should be called for each new inode or 32 * other user of the extent_map interface. 33 */ 34 void extent_map_tree_init(struct extent_map_tree *tree) 35 { 36 tree->map = RB_ROOT_CACHED; 37 INIT_LIST_HEAD(&tree->modified_extents); 38 rwlock_init(&tree->lock); 39 } 40 41 /* 42 * Allocate a new extent_map structure. The new structure is returned with a 43 * reference count of one and needs to be freed using free_extent_map() 44 */ 45 struct extent_map *alloc_extent_map(void) 46 { 47 struct extent_map *em; 48 em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS); 49 if (!em) 50 return NULL; 51 RB_CLEAR_NODE(&em->rb_node); 52 refcount_set(&em->refs, 1); 53 INIT_LIST_HEAD(&em->list); 54 return em; 55 } 56 57 /* 58 * Drop the reference out on @em by one and free the structure if the reference 59 * count hits zero. 60 */ 61 void free_extent_map(struct extent_map *em) 62 { 63 if (!em) 64 return; 65 if (refcount_dec_and_test(&em->refs)) { 66 WARN_ON(extent_map_in_tree(em)); 67 WARN_ON(!list_empty(&em->list)); 68 kmem_cache_free(extent_map_cache, em); 69 } 70 } 71 72 /* Do the math around the end of an extent, handling wrapping. */ 73 static u64 range_end(u64 start, u64 len) 74 { 75 if (start + len < start) 76 return (u64)-1; 77 return start + len; 78 } 79 80 static void dec_evictable_extent_maps(struct btrfs_inode *inode) 81 { 82 struct btrfs_fs_info *fs_info = inode->root->fs_info; 83 84 if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root))) 85 percpu_counter_dec(&fs_info->evictable_extent_maps); 86 } 87 88 static int tree_insert(struct rb_root_cached *root, struct extent_map *em) 89 { 90 struct rb_node **p = &root->rb_root.rb_node; 91 struct rb_node *parent = NULL; 92 struct extent_map *entry = NULL; 93 struct rb_node *orig_parent = NULL; 94 u64 end = range_end(em->start, em->len); 95 bool leftmost = true; 96 97 while (*p) { 98 parent = *p; 99 entry = rb_entry(parent, struct extent_map, rb_node); 100 101 if (em->start < entry->start) { 102 p = &(*p)->rb_left; 103 } else if (em->start >= extent_map_end(entry)) { 104 p = &(*p)->rb_right; 105 leftmost = false; 106 } else { 107 return -EEXIST; 108 } 109 } 110 111 orig_parent = parent; 112 while (parent && em->start >= extent_map_end(entry)) { 113 parent = rb_next(parent); 114 entry = rb_entry(parent, struct extent_map, rb_node); 115 } 116 if (parent) 117 if (end > entry->start && em->start < extent_map_end(entry)) 118 return -EEXIST; 119 120 parent = orig_parent; 121 entry = rb_entry(parent, struct extent_map, rb_node); 122 while (parent && em->start < entry->start) { 123 parent = rb_prev(parent); 124 entry = rb_entry(parent, struct extent_map, rb_node); 125 } 126 if (parent) 127 if (end > entry->start && em->start < extent_map_end(entry)) 128 return -EEXIST; 129 130 rb_link_node(&em->rb_node, orig_parent, p); 131 rb_insert_color_cached(&em->rb_node, root, leftmost); 132 return 0; 133 } 134 135 /* 136 * Search through the tree for an extent_map with a given offset. If it can't 137 * be found, try to find some neighboring extents 138 */ 139 static struct rb_node *__tree_search(struct rb_root *root, u64 offset, 140 struct rb_node **prev_or_next_ret) 141 { 142 struct rb_node *n = root->rb_node; 143 struct rb_node *prev = NULL; 144 struct rb_node *orig_prev = NULL; 145 struct extent_map *entry; 146 struct extent_map *prev_entry = NULL; 147 148 ASSERT(prev_or_next_ret); 149 150 while (n) { 151 entry = rb_entry(n, struct extent_map, rb_node); 152 prev = n; 153 prev_entry = entry; 154 155 if (offset < entry->start) 156 n = n->rb_left; 157 else if (offset >= extent_map_end(entry)) 158 n = n->rb_right; 159 else 160 return n; 161 } 162 163 orig_prev = prev; 164 while (prev && offset >= extent_map_end(prev_entry)) { 165 prev = rb_next(prev); 166 prev_entry = rb_entry(prev, struct extent_map, rb_node); 167 } 168 169 /* 170 * Previous extent map found, return as in this case the caller does not 171 * care about the next one. 172 */ 173 if (prev) { 174 *prev_or_next_ret = prev; 175 return NULL; 176 } 177 178 prev = orig_prev; 179 prev_entry = rb_entry(prev, struct extent_map, rb_node); 180 while (prev && offset < prev_entry->start) { 181 prev = rb_prev(prev); 182 prev_entry = rb_entry(prev, struct extent_map, rb_node); 183 } 184 *prev_or_next_ret = prev; 185 186 return NULL; 187 } 188 189 static inline u64 extent_map_block_end(const struct extent_map *em) 190 { 191 if (em->block_start + em->block_len < em->block_start) 192 return (u64)-1; 193 return em->block_start + em->block_len; 194 } 195 196 static bool can_merge_extent_map(const struct extent_map *em) 197 { 198 if (em->flags & EXTENT_FLAG_PINNED) 199 return false; 200 201 /* Don't merge compressed extents, we need to know their actual size. */ 202 if (extent_map_is_compressed(em)) 203 return false; 204 205 if (em->flags & EXTENT_FLAG_LOGGING) 206 return false; 207 208 /* 209 * We don't want to merge stuff that hasn't been written to the log yet 210 * since it may not reflect exactly what is on disk, and that would be 211 * bad. 212 */ 213 if (!list_empty(&em->list)) 214 return false; 215 216 return true; 217 } 218 219 /* Check to see if two extent_map structs are adjacent and safe to merge. */ 220 static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next) 221 { 222 if (extent_map_end(prev) != next->start) 223 return false; 224 225 if (prev->flags != next->flags) 226 return false; 227 228 if (next->block_start < EXTENT_MAP_LAST_BYTE - 1) 229 return next->block_start == extent_map_block_end(prev); 230 231 /* HOLES and INLINE extents. */ 232 return next->block_start == prev->block_start; 233 } 234 235 static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em) 236 { 237 struct extent_map_tree *tree = &inode->extent_tree; 238 struct extent_map *merge = NULL; 239 struct rb_node *rb; 240 241 /* 242 * We can't modify an extent map that is in the tree and that is being 243 * used by another task, as it can cause that other task to see it in 244 * inconsistent state during the merging. We always have 1 reference for 245 * the tree and 1 for this task (which is unpinning the extent map or 246 * clearing the logging flag), so anything > 2 means it's being used by 247 * other tasks too. 248 */ 249 if (refcount_read(&em->refs) > 2) 250 return; 251 252 if (!can_merge_extent_map(em)) 253 return; 254 255 if (em->start != 0) { 256 rb = rb_prev(&em->rb_node); 257 if (rb) 258 merge = rb_entry(rb, struct extent_map, rb_node); 259 if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) { 260 em->start = merge->start; 261 em->orig_start = merge->orig_start; 262 em->len += merge->len; 263 em->block_len += merge->block_len; 264 em->block_start = merge->block_start; 265 em->generation = max(em->generation, merge->generation); 266 em->flags |= EXTENT_FLAG_MERGED; 267 268 rb_erase_cached(&merge->rb_node, &tree->map); 269 RB_CLEAR_NODE(&merge->rb_node); 270 free_extent_map(merge); 271 dec_evictable_extent_maps(inode); 272 } 273 } 274 275 rb = rb_next(&em->rb_node); 276 if (rb) 277 merge = rb_entry(rb, struct extent_map, rb_node); 278 if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) { 279 em->len += merge->len; 280 em->block_len += merge->block_len; 281 rb_erase_cached(&merge->rb_node, &tree->map); 282 RB_CLEAR_NODE(&merge->rb_node); 283 em->generation = max(em->generation, merge->generation); 284 em->flags |= EXTENT_FLAG_MERGED; 285 free_extent_map(merge); 286 dec_evictable_extent_maps(inode); 287 } 288 } 289 290 /* 291 * Unpin an extent from the cache. 292 * 293 * @inode: the inode from which we are unpinning an extent range 294 * @start: logical offset in the file 295 * @len: length of the extent 296 * @gen: generation that this extent has been modified in 297 * 298 * Called after an extent has been written to disk properly. Set the generation 299 * to the generation that actually added the file item to the inode so we know 300 * we need to sync this extent when we call fsync(). 301 * 302 * Returns: 0 on success 303 * -ENOENT when the extent is not found in the tree 304 * -EUCLEAN if the found extent does not match the expected start 305 */ 306 int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen) 307 { 308 struct btrfs_fs_info *fs_info = inode->root->fs_info; 309 struct extent_map_tree *tree = &inode->extent_tree; 310 int ret = 0; 311 struct extent_map *em; 312 313 write_lock(&tree->lock); 314 em = lookup_extent_mapping(tree, start, len); 315 316 if (WARN_ON(!em)) { 317 btrfs_warn(fs_info, 318 "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu", 319 btrfs_ino(inode), btrfs_root_id(inode->root), 320 start, start + len, gen); 321 ret = -ENOENT; 322 goto out; 323 } 324 325 if (WARN_ON(em->start != start)) { 326 btrfs_warn(fs_info, 327 "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu", 328 btrfs_ino(inode), btrfs_root_id(inode->root), 329 em->start, start, start + len, gen); 330 ret = -EUCLEAN; 331 goto out; 332 } 333 334 em->generation = gen; 335 em->flags &= ~EXTENT_FLAG_PINNED; 336 337 try_merge_map(inode, em); 338 339 out: 340 write_unlock(&tree->lock); 341 free_extent_map(em); 342 return ret; 343 344 } 345 346 void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em) 347 { 348 lockdep_assert_held_write(&inode->extent_tree.lock); 349 350 em->flags &= ~EXTENT_FLAG_LOGGING; 351 if (extent_map_in_tree(em)) 352 try_merge_map(inode, em); 353 } 354 355 static inline void setup_extent_mapping(struct btrfs_inode *inode, 356 struct extent_map *em, 357 int modified) 358 { 359 refcount_inc(&em->refs); 360 361 ASSERT(list_empty(&em->list)); 362 363 if (modified) 364 list_add(&em->list, &inode->extent_tree.modified_extents); 365 else 366 try_merge_map(inode, em); 367 } 368 369 /* 370 * Add a new extent map to an inode's extent map tree. 371 * 372 * @inode: the target inode 373 * @em: map to insert 374 * @modified: indicate whether the given @em should be added to the 375 * modified list, which indicates the extent needs to be logged 376 * 377 * Insert @em into the @inode's extent map tree or perform a simple 378 * forward/backward merge with existing mappings. The extent_map struct passed 379 * in will be inserted into the tree directly, with an additional reference 380 * taken, or a reference dropped if the merge attempt was successful. 381 */ 382 static int add_extent_mapping(struct btrfs_inode *inode, 383 struct extent_map *em, int modified) 384 { 385 struct extent_map_tree *tree = &inode->extent_tree; 386 struct btrfs_root *root = inode->root; 387 struct btrfs_fs_info *fs_info = root->fs_info; 388 int ret; 389 390 lockdep_assert_held_write(&tree->lock); 391 392 ret = tree_insert(&tree->map, em); 393 if (ret) 394 return ret; 395 396 setup_extent_mapping(inode, em, modified); 397 398 if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root))) 399 percpu_counter_inc(&fs_info->evictable_extent_maps); 400 401 return 0; 402 } 403 404 static struct extent_map * 405 __lookup_extent_mapping(struct extent_map_tree *tree, 406 u64 start, u64 len, int strict) 407 { 408 struct extent_map *em; 409 struct rb_node *rb_node; 410 struct rb_node *prev_or_next = NULL; 411 u64 end = range_end(start, len); 412 413 rb_node = __tree_search(&tree->map.rb_root, start, &prev_or_next); 414 if (!rb_node) { 415 if (prev_or_next) 416 rb_node = prev_or_next; 417 else 418 return NULL; 419 } 420 421 em = rb_entry(rb_node, struct extent_map, rb_node); 422 423 if (strict && !(end > em->start && start < extent_map_end(em))) 424 return NULL; 425 426 refcount_inc(&em->refs); 427 return em; 428 } 429 430 /* 431 * Lookup extent_map that intersects @start + @len range. 432 * 433 * @tree: tree to lookup in 434 * @start: byte offset to start the search 435 * @len: length of the lookup range 436 * 437 * Find and return the first extent_map struct in @tree that intersects the 438 * [start, len] range. There may be additional objects in the tree that 439 * intersect, so check the object returned carefully to make sure that no 440 * additional lookups are needed. 441 */ 442 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree, 443 u64 start, u64 len) 444 { 445 return __lookup_extent_mapping(tree, start, len, 1); 446 } 447 448 /* 449 * Find a nearby extent map intersecting @start + @len (not an exact search). 450 * 451 * @tree: tree to lookup in 452 * @start: byte offset to start the search 453 * @len: length of the lookup range 454 * 455 * Find and return the first extent_map struct in @tree that intersects the 456 * [start, len] range. 457 * 458 * If one can't be found, any nearby extent may be returned 459 */ 460 struct extent_map *search_extent_mapping(struct extent_map_tree *tree, 461 u64 start, u64 len) 462 { 463 return __lookup_extent_mapping(tree, start, len, 0); 464 } 465 466 /* 467 * Remove an extent_map from its inode's extent tree. 468 * 469 * @inode: the inode the extent map belongs to 470 * @em: extent map being removed 471 * 472 * Remove @em from the extent tree of @inode. No reference counts are dropped, 473 * and no checks are done to see if the range is in use. 474 */ 475 void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em) 476 { 477 struct extent_map_tree *tree = &inode->extent_tree; 478 479 lockdep_assert_held_write(&tree->lock); 480 481 WARN_ON(em->flags & EXTENT_FLAG_PINNED); 482 rb_erase_cached(&em->rb_node, &tree->map); 483 if (!(em->flags & EXTENT_FLAG_LOGGING)) 484 list_del_init(&em->list); 485 RB_CLEAR_NODE(&em->rb_node); 486 487 dec_evictable_extent_maps(inode); 488 } 489 490 static void replace_extent_mapping(struct btrfs_inode *inode, 491 struct extent_map *cur, 492 struct extent_map *new, 493 int modified) 494 { 495 struct extent_map_tree *tree = &inode->extent_tree; 496 497 lockdep_assert_held_write(&tree->lock); 498 499 WARN_ON(cur->flags & EXTENT_FLAG_PINNED); 500 ASSERT(extent_map_in_tree(cur)); 501 if (!(cur->flags & EXTENT_FLAG_LOGGING)) 502 list_del_init(&cur->list); 503 rb_replace_node_cached(&cur->rb_node, &new->rb_node, &tree->map); 504 RB_CLEAR_NODE(&cur->rb_node); 505 506 setup_extent_mapping(inode, new, modified); 507 } 508 509 static struct extent_map *next_extent_map(const struct extent_map *em) 510 { 511 struct rb_node *next; 512 513 next = rb_next(&em->rb_node); 514 if (!next) 515 return NULL; 516 return container_of(next, struct extent_map, rb_node); 517 } 518 519 static struct extent_map *prev_extent_map(struct extent_map *em) 520 { 521 struct rb_node *prev; 522 523 prev = rb_prev(&em->rb_node); 524 if (!prev) 525 return NULL; 526 return container_of(prev, struct extent_map, rb_node); 527 } 528 529 /* 530 * Helper for btrfs_get_extent. Given an existing extent in the tree, 531 * the existing extent is the nearest extent to map_start, 532 * and an extent that you want to insert, deal with overlap and insert 533 * the best fitted new extent into the tree. 534 */ 535 static noinline int merge_extent_mapping(struct btrfs_inode *inode, 536 struct extent_map *existing, 537 struct extent_map *em, 538 u64 map_start) 539 { 540 struct extent_map *prev; 541 struct extent_map *next; 542 u64 start; 543 u64 end; 544 u64 start_diff; 545 546 if (map_start < em->start || map_start >= extent_map_end(em)) 547 return -EINVAL; 548 549 if (existing->start > map_start) { 550 next = existing; 551 prev = prev_extent_map(next); 552 } else { 553 prev = existing; 554 next = next_extent_map(prev); 555 } 556 557 start = prev ? extent_map_end(prev) : em->start; 558 start = max_t(u64, start, em->start); 559 end = next ? next->start : extent_map_end(em); 560 end = min_t(u64, end, extent_map_end(em)); 561 start_diff = start - em->start; 562 em->start = start; 563 em->len = end - start; 564 if (em->block_start < EXTENT_MAP_LAST_BYTE && 565 !extent_map_is_compressed(em)) { 566 em->block_start += start_diff; 567 em->block_len = em->len; 568 } 569 return add_extent_mapping(inode, em, 0); 570 } 571 572 /* 573 * Add extent mapping into an inode's extent map tree. 574 * 575 * @inode: target inode 576 * @em_in: extent we are inserting 577 * @start: start of the logical range btrfs_get_extent() is requesting 578 * @len: length of the logical range btrfs_get_extent() is requesting 579 * 580 * Note that @em_in's range may be different from [start, start+len), 581 * but they must be overlapped. 582 * 583 * Insert @em_in into the inode's extent map tree. In case there is an 584 * overlapping range, handle the -EEXIST by either: 585 * a) Returning the existing extent in @em_in if @start is within the 586 * existing em. 587 * b) Merge the existing extent with @em_in passed in. 588 * 589 * Return 0 on success, otherwise -EEXIST. 590 * 591 */ 592 int btrfs_add_extent_mapping(struct btrfs_inode *inode, 593 struct extent_map **em_in, u64 start, u64 len) 594 { 595 int ret; 596 struct extent_map *em = *em_in; 597 struct btrfs_fs_info *fs_info = inode->root->fs_info; 598 599 /* 600 * Tree-checker should have rejected any inline extent with non-zero 601 * file offset. Here just do a sanity check. 602 */ 603 if (em->block_start == EXTENT_MAP_INLINE) 604 ASSERT(em->start == 0); 605 606 ret = add_extent_mapping(inode, em, 0); 607 /* it is possible that someone inserted the extent into the tree 608 * while we had the lock dropped. It is also possible that 609 * an overlapping map exists in the tree 610 */ 611 if (ret == -EEXIST) { 612 struct extent_map *existing; 613 614 existing = search_extent_mapping(&inode->extent_tree, start, len); 615 616 trace_btrfs_handle_em_exist(fs_info, existing, em, start, len); 617 618 /* 619 * existing will always be non-NULL, since there must be 620 * extent causing the -EEXIST. 621 */ 622 if (start >= existing->start && 623 start < extent_map_end(existing)) { 624 free_extent_map(em); 625 *em_in = existing; 626 ret = 0; 627 } else { 628 u64 orig_start = em->start; 629 u64 orig_len = em->len; 630 631 /* 632 * The existing extent map is the one nearest to 633 * the [start, start + len) range which overlaps 634 */ 635 ret = merge_extent_mapping(inode, existing, em, start); 636 if (WARN_ON(ret)) { 637 free_extent_map(em); 638 *em_in = NULL; 639 btrfs_warn(fs_info, 640 "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu", 641 existing->start, extent_map_end(existing), 642 orig_start, orig_start + orig_len, start); 643 } 644 free_extent_map(existing); 645 } 646 } 647 648 ASSERT(ret == 0 || ret == -EEXIST); 649 return ret; 650 } 651 652 /* 653 * Drop all extent maps from a tree in the fastest possible way, rescheduling 654 * if needed. This avoids searching the tree, from the root down to the first 655 * extent map, before each deletion. 656 */ 657 static void drop_all_extent_maps_fast(struct btrfs_inode *inode) 658 { 659 struct extent_map_tree *tree = &inode->extent_tree; 660 661 write_lock(&tree->lock); 662 while (!RB_EMPTY_ROOT(&tree->map.rb_root)) { 663 struct extent_map *em; 664 struct rb_node *node; 665 666 node = rb_first_cached(&tree->map); 667 em = rb_entry(node, struct extent_map, rb_node); 668 em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING); 669 remove_extent_mapping(inode, em); 670 free_extent_map(em); 671 cond_resched_rwlock_write(&tree->lock); 672 } 673 write_unlock(&tree->lock); 674 } 675 676 /* 677 * Drop all extent maps in a given range. 678 * 679 * @inode: The target inode. 680 * @start: Start offset of the range. 681 * @end: End offset of the range (inclusive value). 682 * @skip_pinned: Indicate if pinned extent maps should be ignored or not. 683 * 684 * This drops all the extent maps that intersect the given range [@start, @end]. 685 * Extent maps that partially overlap the range and extend behind or beyond it, 686 * are split. 687 * The caller should have locked an appropriate file range in the inode's io 688 * tree before calling this function. 689 */ 690 void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end, 691 bool skip_pinned) 692 { 693 struct extent_map *split; 694 struct extent_map *split2; 695 struct extent_map *em; 696 struct extent_map_tree *em_tree = &inode->extent_tree; 697 u64 len = end - start + 1; 698 699 WARN_ON(end < start); 700 if (end == (u64)-1) { 701 if (start == 0 && !skip_pinned) { 702 drop_all_extent_maps_fast(inode); 703 return; 704 } 705 len = (u64)-1; 706 } else { 707 /* Make end offset exclusive for use in the loop below. */ 708 end++; 709 } 710 711 /* 712 * It's ok if we fail to allocate the extent maps, see the comment near 713 * the bottom of the loop below. We only need two spare extent maps in 714 * the worst case, where the first extent map that intersects our range 715 * starts before the range and the last extent map that intersects our 716 * range ends after our range (and they might be the same extent map), 717 * because we need to split those two extent maps at the boundaries. 718 */ 719 split = alloc_extent_map(); 720 split2 = alloc_extent_map(); 721 722 write_lock(&em_tree->lock); 723 em = lookup_extent_mapping(em_tree, start, len); 724 725 while (em) { 726 /* extent_map_end() returns exclusive value (last byte + 1). */ 727 const u64 em_end = extent_map_end(em); 728 struct extent_map *next_em = NULL; 729 u64 gen; 730 unsigned long flags; 731 bool modified; 732 bool compressed; 733 734 if (em_end < end) { 735 next_em = next_extent_map(em); 736 if (next_em) { 737 if (next_em->start < end) 738 refcount_inc(&next_em->refs); 739 else 740 next_em = NULL; 741 } 742 } 743 744 if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) { 745 start = em_end; 746 goto next; 747 } 748 749 flags = em->flags; 750 /* 751 * In case we split the extent map, we want to preserve the 752 * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want 753 * it on the new extent maps. 754 */ 755 em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING); 756 modified = !list_empty(&em->list); 757 758 /* 759 * The extent map does not cross our target range, so no need to 760 * split it, we can remove it directly. 761 */ 762 if (em->start >= start && em_end <= end) 763 goto remove_em; 764 765 gen = em->generation; 766 compressed = extent_map_is_compressed(em); 767 768 if (em->start < start) { 769 if (!split) { 770 split = split2; 771 split2 = NULL; 772 if (!split) 773 goto remove_em; 774 } 775 split->start = em->start; 776 split->len = start - em->start; 777 778 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 779 split->orig_start = em->orig_start; 780 split->block_start = em->block_start; 781 782 if (compressed) 783 split->block_len = em->block_len; 784 else 785 split->block_len = split->len; 786 split->orig_block_len = max(split->block_len, 787 em->orig_block_len); 788 split->ram_bytes = em->ram_bytes; 789 } else { 790 split->orig_start = split->start; 791 split->block_len = 0; 792 split->block_start = em->block_start; 793 split->orig_block_len = 0; 794 split->ram_bytes = split->len; 795 } 796 797 split->generation = gen; 798 split->flags = flags; 799 replace_extent_mapping(inode, em, split, modified); 800 free_extent_map(split); 801 split = split2; 802 split2 = NULL; 803 } 804 if (em_end > end) { 805 if (!split) { 806 split = split2; 807 split2 = NULL; 808 if (!split) 809 goto remove_em; 810 } 811 split->start = end; 812 split->len = em_end - end; 813 split->block_start = em->block_start; 814 split->flags = flags; 815 split->generation = gen; 816 817 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 818 split->orig_block_len = max(em->block_len, 819 em->orig_block_len); 820 821 split->ram_bytes = em->ram_bytes; 822 if (compressed) { 823 split->block_len = em->block_len; 824 split->orig_start = em->orig_start; 825 } else { 826 const u64 diff = end - em->start; 827 828 split->block_len = split->len; 829 split->block_start += diff; 830 split->orig_start = em->orig_start; 831 } 832 } else { 833 split->ram_bytes = split->len; 834 split->orig_start = split->start; 835 split->block_len = 0; 836 split->orig_block_len = 0; 837 } 838 839 if (extent_map_in_tree(em)) { 840 replace_extent_mapping(inode, em, split, modified); 841 } else { 842 int ret; 843 844 ret = add_extent_mapping(inode, split, modified); 845 /* Logic error, shouldn't happen. */ 846 ASSERT(ret == 0); 847 if (WARN_ON(ret != 0) && modified) 848 btrfs_set_inode_full_sync(inode); 849 } 850 free_extent_map(split); 851 split = NULL; 852 } 853 remove_em: 854 if (extent_map_in_tree(em)) { 855 /* 856 * If the extent map is still in the tree it means that 857 * either of the following is true: 858 * 859 * 1) It fits entirely in our range (doesn't end beyond 860 * it or starts before it); 861 * 862 * 2) It starts before our range and/or ends after our 863 * range, and we were not able to allocate the extent 864 * maps for split operations, @split and @split2. 865 * 866 * If we are at case 2) then we just remove the entire 867 * extent map - this is fine since if anyone needs it to 868 * access the subranges outside our range, will just 869 * load it again from the subvolume tree's file extent 870 * item. However if the extent map was in the list of 871 * modified extents, then we must mark the inode for a 872 * full fsync, otherwise a fast fsync will miss this 873 * extent if it's new and needs to be logged. 874 */ 875 if ((em->start < start || em_end > end) && modified) { 876 ASSERT(!split); 877 btrfs_set_inode_full_sync(inode); 878 } 879 remove_extent_mapping(inode, em); 880 } 881 882 /* 883 * Once for the tree reference (we replaced or removed the 884 * extent map from the tree). 885 */ 886 free_extent_map(em); 887 next: 888 /* Once for us (for our lookup reference). */ 889 free_extent_map(em); 890 891 em = next_em; 892 } 893 894 write_unlock(&em_tree->lock); 895 896 free_extent_map(split); 897 free_extent_map(split2); 898 } 899 900 /* 901 * Replace a range in the inode's extent map tree with a new extent map. 902 * 903 * @inode: The target inode. 904 * @new_em: The new extent map to add to the inode's extent map tree. 905 * @modified: Indicate if the new extent map should be added to the list of 906 * modified extents (for fast fsync tracking). 907 * 908 * Drops all the extent maps in the inode's extent map tree that intersect the 909 * range of the new extent map and adds the new extent map to the tree. 910 * The caller should have locked an appropriate file range in the inode's io 911 * tree before calling this function. 912 */ 913 int btrfs_replace_extent_map_range(struct btrfs_inode *inode, 914 struct extent_map *new_em, 915 bool modified) 916 { 917 const u64 end = new_em->start + new_em->len - 1; 918 struct extent_map_tree *tree = &inode->extent_tree; 919 int ret; 920 921 ASSERT(!extent_map_in_tree(new_em)); 922 923 /* 924 * The caller has locked an appropriate file range in the inode's io 925 * tree, but getting -EEXIST when adding the new extent map can still 926 * happen in case there are extents that partially cover the range, and 927 * this is due to two tasks operating on different parts of the extent. 928 * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from 929 * btrfs_get_extent") for an example and details. 930 */ 931 do { 932 btrfs_drop_extent_map_range(inode, new_em->start, end, false); 933 write_lock(&tree->lock); 934 ret = add_extent_mapping(inode, new_em, modified); 935 write_unlock(&tree->lock); 936 } while (ret == -EEXIST); 937 938 return ret; 939 } 940 941 /* 942 * Split off the first pre bytes from the extent_map at [start, start + len], 943 * and set the block_start for it to new_logical. 944 * 945 * This function is used when an ordered_extent needs to be split. 946 */ 947 int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre, 948 u64 new_logical) 949 { 950 struct extent_map_tree *em_tree = &inode->extent_tree; 951 struct extent_map *em; 952 struct extent_map *split_pre = NULL; 953 struct extent_map *split_mid = NULL; 954 int ret = 0; 955 unsigned long flags; 956 957 ASSERT(pre != 0); 958 ASSERT(pre < len); 959 960 split_pre = alloc_extent_map(); 961 if (!split_pre) 962 return -ENOMEM; 963 split_mid = alloc_extent_map(); 964 if (!split_mid) { 965 ret = -ENOMEM; 966 goto out_free_pre; 967 } 968 969 lock_extent(&inode->io_tree, start, start + len - 1, NULL); 970 write_lock(&em_tree->lock); 971 em = lookup_extent_mapping(em_tree, start, len); 972 if (!em) { 973 ret = -EIO; 974 goto out_unlock; 975 } 976 977 ASSERT(em->len == len); 978 ASSERT(!extent_map_is_compressed(em)); 979 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); 980 ASSERT(em->flags & EXTENT_FLAG_PINNED); 981 ASSERT(!(em->flags & EXTENT_FLAG_LOGGING)); 982 ASSERT(!list_empty(&em->list)); 983 984 flags = em->flags; 985 em->flags &= ~EXTENT_FLAG_PINNED; 986 987 /* First, replace the em with a new extent_map starting from * em->start */ 988 split_pre->start = em->start; 989 split_pre->len = pre; 990 split_pre->orig_start = split_pre->start; 991 split_pre->block_start = new_logical; 992 split_pre->block_len = split_pre->len; 993 split_pre->orig_block_len = split_pre->block_len; 994 split_pre->ram_bytes = split_pre->len; 995 split_pre->flags = flags; 996 split_pre->generation = em->generation; 997 998 replace_extent_mapping(inode, em, split_pre, 1); 999 1000 /* 1001 * Now we only have an extent_map at: 1002 * [em->start, em->start + pre] 1003 */ 1004 1005 /* Insert the middle extent_map. */ 1006 split_mid->start = em->start + pre; 1007 split_mid->len = em->len - pre; 1008 split_mid->orig_start = split_mid->start; 1009 split_mid->block_start = em->block_start + pre; 1010 split_mid->block_len = split_mid->len; 1011 split_mid->orig_block_len = split_mid->block_len; 1012 split_mid->ram_bytes = split_mid->len; 1013 split_mid->flags = flags; 1014 split_mid->generation = em->generation; 1015 add_extent_mapping(inode, split_mid, 1); 1016 1017 /* Once for us */ 1018 free_extent_map(em); 1019 /* Once for the tree */ 1020 free_extent_map(em); 1021 1022 out_unlock: 1023 write_unlock(&em_tree->lock); 1024 unlock_extent(&inode->io_tree, start, start + len - 1, NULL); 1025 free_extent_map(split_mid); 1026 out_free_pre: 1027 free_extent_map(split_pre); 1028 return ret; 1029 } 1030 1031 struct btrfs_em_shrink_ctx { 1032 long nr_to_scan; 1033 long scanned; 1034 u64 last_ino; 1035 u64 last_root; 1036 }; 1037 1038 static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx) 1039 { 1040 const u64 cur_fs_gen = btrfs_get_fs_generation(inode->root->fs_info); 1041 struct extent_map_tree *tree = &inode->extent_tree; 1042 long nr_dropped = 0; 1043 struct rb_node *node; 1044 1045 /* 1046 * Take the mmap lock so that we serialize with the inode logging phase 1047 * of fsync because we may need to set the full sync flag on the inode, 1048 * in case we have to remove extent maps in the tree's list of modified 1049 * extents. If we set the full sync flag in the inode while an fsync is 1050 * in progress, we may risk missing new extents because before the flag 1051 * is set, fsync decides to only wait for writeback to complete and then 1052 * during inode logging it sees the flag set and uses the subvolume tree 1053 * to find new extents, which may not be there yet because ordered 1054 * extents haven't completed yet. 1055 * 1056 * We also do a try lock because otherwise we could deadlock. This is 1057 * because the shrinker for this filesystem may be invoked while we are 1058 * in a path that is holding the mmap lock in write mode. For example in 1059 * a reflink operation while COWing an extent buffer, when allocating 1060 * pages for a new extent buffer and under memory pressure, the shrinker 1061 * may be invoked, and therefore we would deadlock by attempting to read 1062 * lock the mmap lock while we are holding already a write lock on it. 1063 */ 1064 if (!down_read_trylock(&inode->i_mmap_lock)) 1065 return 0; 1066 1067 /* 1068 * We want to be fast because we can be called from any path trying to 1069 * allocate memory, so if the lock is busy we don't want to spend time 1070 * waiting for it - either some task is about to do IO for the inode or 1071 * we may have another task shrinking extent maps, here in this code, so 1072 * skip this inode. 1073 */ 1074 if (!write_trylock(&tree->lock)) { 1075 up_read(&inode->i_mmap_lock); 1076 return 0; 1077 } 1078 1079 node = rb_first_cached(&tree->map); 1080 while (node) { 1081 struct extent_map *em; 1082 1083 em = rb_entry(node, struct extent_map, rb_node); 1084 node = rb_next(node); 1085 ctx->scanned++; 1086 1087 if (em->flags & EXTENT_FLAG_PINNED) 1088 goto next; 1089 1090 /* 1091 * If the inode is in the list of modified extents (new) and its 1092 * generation is the same (or is greater than) the current fs 1093 * generation, it means it was not yet persisted so we have to 1094 * set the full sync flag so that the next fsync will not miss 1095 * it. 1096 */ 1097 if (!list_empty(&em->list) && em->generation >= cur_fs_gen) 1098 btrfs_set_inode_full_sync(inode); 1099 1100 remove_extent_mapping(inode, em); 1101 trace_btrfs_extent_map_shrinker_remove_em(inode, em); 1102 /* Drop the reference for the tree. */ 1103 free_extent_map(em); 1104 nr_dropped++; 1105 next: 1106 if (ctx->scanned >= ctx->nr_to_scan) 1107 break; 1108 1109 /* 1110 * Stop if we need to reschedule or there's contention on the 1111 * lock. This is to avoid slowing other tasks trying to take the 1112 * lock and because the shrinker might be called during a memory 1113 * allocation path and we want to avoid taking a very long time 1114 * and slowing down all sorts of tasks. 1115 */ 1116 if (need_resched() || rwlock_needbreak(&tree->lock)) 1117 break; 1118 } 1119 write_unlock(&tree->lock); 1120 up_read(&inode->i_mmap_lock); 1121 1122 return nr_dropped; 1123 } 1124 1125 static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx) 1126 { 1127 struct btrfs_inode *inode; 1128 long nr_dropped = 0; 1129 u64 min_ino = ctx->last_ino + 1; 1130 1131 inode = btrfs_find_first_inode(root, min_ino); 1132 while (inode) { 1133 nr_dropped += btrfs_scan_inode(inode, ctx); 1134 1135 min_ino = btrfs_ino(inode) + 1; 1136 ctx->last_ino = btrfs_ino(inode); 1137 btrfs_add_delayed_iput(inode); 1138 1139 if (ctx->scanned >= ctx->nr_to_scan) 1140 break; 1141 1142 /* 1143 * We may be called from memory allocation paths, so we don't 1144 * want to take too much time and slowdown tasks. 1145 */ 1146 if (need_resched()) 1147 break; 1148 1149 inode = btrfs_find_first_inode(root, min_ino); 1150 } 1151 1152 if (inode) { 1153 /* 1154 * There are still inodes in this root or we happened to process 1155 * the last one and reached the scan limit. In either case set 1156 * the current root to this one, so we'll resume from the next 1157 * inode if there is one or we will find out this was the last 1158 * one and move to the next root. 1159 */ 1160 ctx->last_root = btrfs_root_id(root); 1161 } else { 1162 /* 1163 * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so 1164 * that when processing the next root we start from its first inode. 1165 */ 1166 ctx->last_ino = 0; 1167 ctx->last_root = btrfs_root_id(root) + 1; 1168 } 1169 1170 return nr_dropped; 1171 } 1172 1173 long btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan) 1174 { 1175 struct btrfs_em_shrink_ctx ctx; 1176 u64 start_root_id; 1177 u64 next_root_id; 1178 bool cycled = false; 1179 long nr_dropped = 0; 1180 1181 ctx.scanned = 0; 1182 ctx.nr_to_scan = nr_to_scan; 1183 1184 /* 1185 * In case we have multiple tasks running this shrinker, make the next 1186 * one start from the next inode in case it starts before we finish. 1187 */ 1188 spin_lock(&fs_info->extent_map_shrinker_lock); 1189 ctx.last_ino = fs_info->extent_map_shrinker_last_ino; 1190 fs_info->extent_map_shrinker_last_ino++; 1191 ctx.last_root = fs_info->extent_map_shrinker_last_root; 1192 spin_unlock(&fs_info->extent_map_shrinker_lock); 1193 1194 start_root_id = ctx.last_root; 1195 next_root_id = ctx.last_root; 1196 1197 if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) { 1198 s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); 1199 1200 trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr_to_scan, 1201 nr, ctx.last_root, 1202 ctx.last_ino); 1203 } 1204 1205 /* 1206 * We may be called from memory allocation paths, so we don't want to 1207 * take too much time and slowdown tasks, so stop if we need reschedule. 1208 */ 1209 while (ctx.scanned < ctx.nr_to_scan && !need_resched()) { 1210 struct btrfs_root *root; 1211 unsigned long count; 1212 1213 spin_lock(&fs_info->fs_roots_radix_lock); 1214 count = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1215 (void **)&root, 1216 (unsigned long)next_root_id, 1); 1217 if (count == 0) { 1218 spin_unlock(&fs_info->fs_roots_radix_lock); 1219 if (start_root_id > 0 && !cycled) { 1220 next_root_id = 0; 1221 ctx.last_root = 0; 1222 ctx.last_ino = 0; 1223 cycled = true; 1224 continue; 1225 } 1226 break; 1227 } 1228 next_root_id = btrfs_root_id(root) + 1; 1229 root = btrfs_grab_root(root); 1230 spin_unlock(&fs_info->fs_roots_radix_lock); 1231 1232 if (!root) 1233 continue; 1234 1235 if (is_fstree(btrfs_root_id(root))) 1236 nr_dropped += btrfs_scan_root(root, &ctx); 1237 1238 btrfs_put_root(root); 1239 } 1240 1241 /* 1242 * In case of multiple tasks running this extent map shrinking code this 1243 * isn't perfect but it's simple and silences things like KCSAN. It's 1244 * not possible to know which task made more progress because we can 1245 * cycle back to the first root and first inode if it's not the first 1246 * time the shrinker ran, see the above logic. Also a task that started 1247 * later may finish ealier than another task and made less progress. So 1248 * make this simple and update to the progress of the last task that 1249 * finished, with the occasional possiblity of having two consecutive 1250 * runs of the shrinker process the same inodes. 1251 */ 1252 spin_lock(&fs_info->extent_map_shrinker_lock); 1253 fs_info->extent_map_shrinker_last_ino = ctx.last_ino; 1254 fs_info->extent_map_shrinker_last_root = ctx.last_root; 1255 spin_unlock(&fs_info->extent_map_shrinker_lock); 1256 1257 if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) { 1258 s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); 1259 1260 trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped, 1261 nr, ctx.last_root, 1262 ctx.last_ino); 1263 } 1264 1265 return nr_dropped; 1266 } 1267