1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/err.h> 4 #include <linux/slab.h> 5 #include <linux/spinlock.h> 6 #include "messages.h" 7 #include "ctree.h" 8 #include "extent_map.h" 9 #include "compression.h" 10 #include "btrfs_inode.h" 11 #include "disk-io.h" 12 13 14 static struct kmem_cache *extent_map_cache; 15 16 int __init extent_map_init(void) 17 { 18 extent_map_cache = kmem_cache_create("btrfs_extent_map", 19 sizeof(struct extent_map), 0, 0, NULL); 20 if (!extent_map_cache) 21 return -ENOMEM; 22 return 0; 23 } 24 25 void __cold extent_map_exit(void) 26 { 27 kmem_cache_destroy(extent_map_cache); 28 } 29 30 /* 31 * Initialize the extent tree @tree. Should be called for each new inode or 32 * other user of the extent_map interface. 33 */ 34 void extent_map_tree_init(struct extent_map_tree *tree) 35 { 36 tree->root = RB_ROOT; 37 INIT_LIST_HEAD(&tree->modified_extents); 38 rwlock_init(&tree->lock); 39 } 40 41 /* 42 * Allocate a new extent_map structure. The new structure is returned with a 43 * reference count of one and needs to be freed using free_extent_map() 44 */ 45 struct extent_map *alloc_extent_map(void) 46 { 47 struct extent_map *em; 48 em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS); 49 if (!em) 50 return NULL; 51 RB_CLEAR_NODE(&em->rb_node); 52 refcount_set(&em->refs, 1); 53 INIT_LIST_HEAD(&em->list); 54 return em; 55 } 56 57 /* 58 * Drop the reference out on @em by one and free the structure if the reference 59 * count hits zero. 60 */ 61 void free_extent_map(struct extent_map *em) 62 { 63 if (!em) 64 return; 65 if (refcount_dec_and_test(&em->refs)) { 66 WARN_ON(extent_map_in_tree(em)); 67 WARN_ON(!list_empty(&em->list)); 68 kmem_cache_free(extent_map_cache, em); 69 } 70 } 71 72 /* Do the math around the end of an extent, handling wrapping. */ 73 static u64 range_end(u64 start, u64 len) 74 { 75 if (start + len < start) 76 return (u64)-1; 77 return start + len; 78 } 79 80 static void dec_evictable_extent_maps(struct btrfs_inode *inode) 81 { 82 struct btrfs_fs_info *fs_info = inode->root->fs_info; 83 84 if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root))) 85 percpu_counter_dec(&fs_info->evictable_extent_maps); 86 } 87 88 static int tree_insert(struct rb_root *root, struct extent_map *em) 89 { 90 struct rb_node **p = &root->rb_node; 91 struct rb_node *parent = NULL; 92 struct extent_map *entry = NULL; 93 struct rb_node *orig_parent = NULL; 94 u64 end = range_end(em->start, em->len); 95 96 while (*p) { 97 parent = *p; 98 entry = rb_entry(parent, struct extent_map, rb_node); 99 100 if (em->start < entry->start) 101 p = &(*p)->rb_left; 102 else if (em->start >= extent_map_end(entry)) 103 p = &(*p)->rb_right; 104 else 105 return -EEXIST; 106 } 107 108 orig_parent = parent; 109 while (parent && em->start >= extent_map_end(entry)) { 110 parent = rb_next(parent); 111 entry = rb_entry(parent, struct extent_map, rb_node); 112 } 113 if (parent) 114 if (end > entry->start && em->start < extent_map_end(entry)) 115 return -EEXIST; 116 117 parent = orig_parent; 118 entry = rb_entry(parent, struct extent_map, rb_node); 119 while (parent && em->start < entry->start) { 120 parent = rb_prev(parent); 121 entry = rb_entry(parent, struct extent_map, rb_node); 122 } 123 if (parent) 124 if (end > entry->start && em->start < extent_map_end(entry)) 125 return -EEXIST; 126 127 rb_link_node(&em->rb_node, orig_parent, p); 128 rb_insert_color(&em->rb_node, root); 129 return 0; 130 } 131 132 /* 133 * Search through the tree for an extent_map with a given offset. If it can't 134 * be found, try to find some neighboring extents 135 */ 136 static struct rb_node *__tree_search(struct rb_root *root, u64 offset, 137 struct rb_node **prev_or_next_ret) 138 { 139 struct rb_node *n = root->rb_node; 140 struct rb_node *prev = NULL; 141 struct rb_node *orig_prev = NULL; 142 struct extent_map *entry; 143 struct extent_map *prev_entry = NULL; 144 145 ASSERT(prev_or_next_ret); 146 147 while (n) { 148 entry = rb_entry(n, struct extent_map, rb_node); 149 prev = n; 150 prev_entry = entry; 151 152 if (offset < entry->start) 153 n = n->rb_left; 154 else if (offset >= extent_map_end(entry)) 155 n = n->rb_right; 156 else 157 return n; 158 } 159 160 orig_prev = prev; 161 while (prev && offset >= extent_map_end(prev_entry)) { 162 prev = rb_next(prev); 163 prev_entry = rb_entry(prev, struct extent_map, rb_node); 164 } 165 166 /* 167 * Previous extent map found, return as in this case the caller does not 168 * care about the next one. 169 */ 170 if (prev) { 171 *prev_or_next_ret = prev; 172 return NULL; 173 } 174 175 prev = orig_prev; 176 prev_entry = rb_entry(prev, struct extent_map, rb_node); 177 while (prev && offset < prev_entry->start) { 178 prev = rb_prev(prev); 179 prev_entry = rb_entry(prev, struct extent_map, rb_node); 180 } 181 *prev_or_next_ret = prev; 182 183 return NULL; 184 } 185 186 static inline u64 extent_map_block_len(const struct extent_map *em) 187 { 188 if (extent_map_is_compressed(em)) 189 return em->disk_num_bytes; 190 return em->len; 191 } 192 193 static inline u64 extent_map_block_end(const struct extent_map *em) 194 { 195 if (extent_map_block_start(em) + extent_map_block_len(em) < 196 extent_map_block_start(em)) 197 return (u64)-1; 198 return extent_map_block_start(em) + extent_map_block_len(em); 199 } 200 201 static bool can_merge_extent_map(const struct extent_map *em) 202 { 203 if (em->flags & EXTENT_FLAG_PINNED) 204 return false; 205 206 /* Don't merge compressed extents, we need to know their actual size. */ 207 if (extent_map_is_compressed(em)) 208 return false; 209 210 if (em->flags & EXTENT_FLAG_LOGGING) 211 return false; 212 213 /* 214 * We don't want to merge stuff that hasn't been written to the log yet 215 * since it may not reflect exactly what is on disk, and that would be 216 * bad. 217 */ 218 if (!list_empty(&em->list)) 219 return false; 220 221 return true; 222 } 223 224 /* Check to see if two extent_map structs are adjacent and safe to merge. */ 225 static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next) 226 { 227 if (extent_map_end(prev) != next->start) 228 return false; 229 230 if (prev->flags != next->flags) 231 return false; 232 233 if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1) 234 return extent_map_block_start(next) == extent_map_block_end(prev); 235 236 /* HOLES and INLINE extents. */ 237 return next->disk_bytenr == prev->disk_bytenr; 238 } 239 240 /* 241 * Handle the on-disk data extents merge for @prev and @next. 242 * 243 * Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes. 244 * For now only uncompressed regular extent can be merged. 245 * 246 * @prev and @next will be both updated to point to the new merged range. 247 * Thus one of them should be removed by the caller. 248 */ 249 static void merge_ondisk_extents(struct extent_map *prev, struct extent_map *next) 250 { 251 u64 new_disk_bytenr; 252 u64 new_disk_num_bytes; 253 u64 new_offset; 254 255 /* @prev and @next should not be compressed. */ 256 ASSERT(!extent_map_is_compressed(prev)); 257 ASSERT(!extent_map_is_compressed(next)); 258 259 /* 260 * There are two different cases where @prev and @next can be merged. 261 * 262 * 1) They are referring to the same data extent: 263 * 264 * |<----- data extent A ----->| 265 * |<- prev ->|<- next ->| 266 * 267 * 2) They are referring to different data extents but still adjacent: 268 * 269 * |<-- data extent A -->|<-- data extent B -->| 270 * |<- prev ->|<- next ->| 271 * 272 * The calculation here always merges the data extents first, then updates 273 * @offset using the new data extents. 274 * 275 * For case 1), the merged data extent would be the same. 276 * For case 2), we just merge the two data extents into one. 277 */ 278 new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr); 279 new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes, 280 next->disk_bytenr + next->disk_num_bytes) - 281 new_disk_bytenr; 282 new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr; 283 284 prev->disk_bytenr = new_disk_bytenr; 285 prev->disk_num_bytes = new_disk_num_bytes; 286 prev->ram_bytes = new_disk_num_bytes; 287 prev->offset = new_offset; 288 289 next->disk_bytenr = new_disk_bytenr; 290 next->disk_num_bytes = new_disk_num_bytes; 291 next->ram_bytes = new_disk_num_bytes; 292 next->offset = new_offset; 293 } 294 295 static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix, 296 struct extent_map *em) 297 { 298 if (!IS_ENABLED(CONFIG_BTRFS_DEBUG)) 299 return; 300 btrfs_crit(fs_info, 301 "%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x", 302 prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes, 303 em->ram_bytes, em->offset, em->flags); 304 ASSERT(0); 305 } 306 307 /* Internal sanity checks for btrfs debug builds. */ 308 static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em) 309 { 310 if (!IS_ENABLED(CONFIG_BTRFS_DEBUG)) 311 return; 312 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { 313 if (em->disk_num_bytes == 0) 314 dump_extent_map(fs_info, "zero disk_num_bytes", em); 315 if (em->offset + em->len > em->ram_bytes) 316 dump_extent_map(fs_info, "ram_bytes too small", em); 317 if (em->offset + em->len > em->disk_num_bytes && 318 !extent_map_is_compressed(em)) 319 dump_extent_map(fs_info, "disk_num_bytes too small", em); 320 if (!extent_map_is_compressed(em) && 321 em->ram_bytes != em->disk_num_bytes) 322 dump_extent_map(fs_info, 323 "ram_bytes mismatch with disk_num_bytes for non-compressed em", 324 em); 325 } else if (em->offset) { 326 dump_extent_map(fs_info, "non-zero offset for hole/inline", em); 327 } 328 } 329 330 static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em) 331 { 332 struct btrfs_fs_info *fs_info = inode->root->fs_info; 333 struct extent_map_tree *tree = &inode->extent_tree; 334 struct extent_map *merge = NULL; 335 struct rb_node *rb; 336 337 /* 338 * We can't modify an extent map that is in the tree and that is being 339 * used by another task, as it can cause that other task to see it in 340 * inconsistent state during the merging. We always have 1 reference for 341 * the tree and 1 for this task (which is unpinning the extent map or 342 * clearing the logging flag), so anything > 2 means it's being used by 343 * other tasks too. 344 */ 345 if (refcount_read(&em->refs) > 2) 346 return; 347 348 if (!can_merge_extent_map(em)) 349 return; 350 351 if (em->start != 0) { 352 rb = rb_prev(&em->rb_node); 353 if (rb) 354 merge = rb_entry(rb, struct extent_map, rb_node); 355 if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) { 356 em->start = merge->start; 357 em->len += merge->len; 358 em->generation = max(em->generation, merge->generation); 359 360 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 361 merge_ondisk_extents(merge, em); 362 em->flags |= EXTENT_FLAG_MERGED; 363 364 validate_extent_map(fs_info, em); 365 rb_erase(&merge->rb_node, &tree->root); 366 RB_CLEAR_NODE(&merge->rb_node); 367 free_extent_map(merge); 368 dec_evictable_extent_maps(inode); 369 } 370 } 371 372 rb = rb_next(&em->rb_node); 373 if (rb) 374 merge = rb_entry(rb, struct extent_map, rb_node); 375 if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) { 376 em->len += merge->len; 377 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 378 merge_ondisk_extents(em, merge); 379 validate_extent_map(fs_info, em); 380 rb_erase(&merge->rb_node, &tree->root); 381 RB_CLEAR_NODE(&merge->rb_node); 382 em->generation = max(em->generation, merge->generation); 383 em->flags |= EXTENT_FLAG_MERGED; 384 free_extent_map(merge); 385 dec_evictable_extent_maps(inode); 386 } 387 } 388 389 /* 390 * Unpin an extent from the cache. 391 * 392 * @inode: the inode from which we are unpinning an extent range 393 * @start: logical offset in the file 394 * @len: length of the extent 395 * @gen: generation that this extent has been modified in 396 * 397 * Called after an extent has been written to disk properly. Set the generation 398 * to the generation that actually added the file item to the inode so we know 399 * we need to sync this extent when we call fsync(). 400 * 401 * Returns: 0 on success 402 * -ENOENT when the extent is not found in the tree 403 * -EUCLEAN if the found extent does not match the expected start 404 */ 405 int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen) 406 { 407 struct btrfs_fs_info *fs_info = inode->root->fs_info; 408 struct extent_map_tree *tree = &inode->extent_tree; 409 int ret = 0; 410 struct extent_map *em; 411 412 write_lock(&tree->lock); 413 em = lookup_extent_mapping(tree, start, len); 414 415 if (WARN_ON(!em)) { 416 btrfs_warn(fs_info, 417 "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu", 418 btrfs_ino(inode), btrfs_root_id(inode->root), 419 start, start + len, gen); 420 ret = -ENOENT; 421 goto out; 422 } 423 424 if (WARN_ON(em->start != start)) { 425 btrfs_warn(fs_info, 426 "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu", 427 btrfs_ino(inode), btrfs_root_id(inode->root), 428 em->start, start, start + len, gen); 429 ret = -EUCLEAN; 430 goto out; 431 } 432 433 em->generation = gen; 434 em->flags &= ~EXTENT_FLAG_PINNED; 435 436 try_merge_map(inode, em); 437 438 out: 439 write_unlock(&tree->lock); 440 free_extent_map(em); 441 return ret; 442 443 } 444 445 void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em) 446 { 447 lockdep_assert_held_write(&inode->extent_tree.lock); 448 449 em->flags &= ~EXTENT_FLAG_LOGGING; 450 if (extent_map_in_tree(em)) 451 try_merge_map(inode, em); 452 } 453 454 static inline void setup_extent_mapping(struct btrfs_inode *inode, 455 struct extent_map *em, 456 int modified) 457 { 458 refcount_inc(&em->refs); 459 460 ASSERT(list_empty(&em->list)); 461 462 if (modified) 463 list_add(&em->list, &inode->extent_tree.modified_extents); 464 else 465 try_merge_map(inode, em); 466 } 467 468 /* 469 * Add a new extent map to an inode's extent map tree. 470 * 471 * @inode: the target inode 472 * @em: map to insert 473 * @modified: indicate whether the given @em should be added to the 474 * modified list, which indicates the extent needs to be logged 475 * 476 * Insert @em into the @inode's extent map tree or perform a simple 477 * forward/backward merge with existing mappings. The extent_map struct passed 478 * in will be inserted into the tree directly, with an additional reference 479 * taken, or a reference dropped if the merge attempt was successful. 480 */ 481 static int add_extent_mapping(struct btrfs_inode *inode, 482 struct extent_map *em, int modified) 483 { 484 struct extent_map_tree *tree = &inode->extent_tree; 485 struct btrfs_root *root = inode->root; 486 struct btrfs_fs_info *fs_info = root->fs_info; 487 int ret; 488 489 lockdep_assert_held_write(&tree->lock); 490 491 validate_extent_map(fs_info, em); 492 ret = tree_insert(&tree->root, em); 493 if (ret) 494 return ret; 495 496 setup_extent_mapping(inode, em, modified); 497 498 if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root))) 499 percpu_counter_inc(&fs_info->evictable_extent_maps); 500 501 return 0; 502 } 503 504 static struct extent_map * 505 __lookup_extent_mapping(struct extent_map_tree *tree, 506 u64 start, u64 len, int strict) 507 { 508 struct extent_map *em; 509 struct rb_node *rb_node; 510 struct rb_node *prev_or_next = NULL; 511 u64 end = range_end(start, len); 512 513 rb_node = __tree_search(&tree->root, start, &prev_or_next); 514 if (!rb_node) { 515 if (prev_or_next) 516 rb_node = prev_or_next; 517 else 518 return NULL; 519 } 520 521 em = rb_entry(rb_node, struct extent_map, rb_node); 522 523 if (strict && !(end > em->start && start < extent_map_end(em))) 524 return NULL; 525 526 refcount_inc(&em->refs); 527 return em; 528 } 529 530 /* 531 * Lookup extent_map that intersects @start + @len range. 532 * 533 * @tree: tree to lookup in 534 * @start: byte offset to start the search 535 * @len: length of the lookup range 536 * 537 * Find and return the first extent_map struct in @tree that intersects the 538 * [start, len] range. There may be additional objects in the tree that 539 * intersect, so check the object returned carefully to make sure that no 540 * additional lookups are needed. 541 */ 542 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree, 543 u64 start, u64 len) 544 { 545 return __lookup_extent_mapping(tree, start, len, 1); 546 } 547 548 /* 549 * Find a nearby extent map intersecting @start + @len (not an exact search). 550 * 551 * @tree: tree to lookup in 552 * @start: byte offset to start the search 553 * @len: length of the lookup range 554 * 555 * Find and return the first extent_map struct in @tree that intersects the 556 * [start, len] range. 557 * 558 * If one can't be found, any nearby extent may be returned 559 */ 560 struct extent_map *search_extent_mapping(struct extent_map_tree *tree, 561 u64 start, u64 len) 562 { 563 return __lookup_extent_mapping(tree, start, len, 0); 564 } 565 566 /* 567 * Remove an extent_map from its inode's extent tree. 568 * 569 * @inode: the inode the extent map belongs to 570 * @em: extent map being removed 571 * 572 * Remove @em from the extent tree of @inode. No reference counts are dropped, 573 * and no checks are done to see if the range is in use. 574 */ 575 void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em) 576 { 577 struct extent_map_tree *tree = &inode->extent_tree; 578 579 lockdep_assert_held_write(&tree->lock); 580 581 WARN_ON(em->flags & EXTENT_FLAG_PINNED); 582 rb_erase(&em->rb_node, &tree->root); 583 if (!(em->flags & EXTENT_FLAG_LOGGING)) 584 list_del_init(&em->list); 585 RB_CLEAR_NODE(&em->rb_node); 586 587 dec_evictable_extent_maps(inode); 588 } 589 590 static void replace_extent_mapping(struct btrfs_inode *inode, 591 struct extent_map *cur, 592 struct extent_map *new, 593 int modified) 594 { 595 struct btrfs_fs_info *fs_info = inode->root->fs_info; 596 struct extent_map_tree *tree = &inode->extent_tree; 597 598 lockdep_assert_held_write(&tree->lock); 599 600 validate_extent_map(fs_info, new); 601 602 WARN_ON(cur->flags & EXTENT_FLAG_PINNED); 603 ASSERT(extent_map_in_tree(cur)); 604 if (!(cur->flags & EXTENT_FLAG_LOGGING)) 605 list_del_init(&cur->list); 606 rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root); 607 RB_CLEAR_NODE(&cur->rb_node); 608 609 setup_extent_mapping(inode, new, modified); 610 } 611 612 static struct extent_map *next_extent_map(const struct extent_map *em) 613 { 614 struct rb_node *next; 615 616 next = rb_next(&em->rb_node); 617 if (!next) 618 return NULL; 619 return container_of(next, struct extent_map, rb_node); 620 } 621 622 static struct extent_map *prev_extent_map(struct extent_map *em) 623 { 624 struct rb_node *prev; 625 626 prev = rb_prev(&em->rb_node); 627 if (!prev) 628 return NULL; 629 return container_of(prev, struct extent_map, rb_node); 630 } 631 632 /* 633 * Helper for btrfs_get_extent. Given an existing extent in the tree, 634 * the existing extent is the nearest extent to map_start, 635 * and an extent that you want to insert, deal with overlap and insert 636 * the best fitted new extent into the tree. 637 */ 638 static noinline int merge_extent_mapping(struct btrfs_inode *inode, 639 struct extent_map *existing, 640 struct extent_map *em, 641 u64 map_start) 642 { 643 struct extent_map *prev; 644 struct extent_map *next; 645 u64 start; 646 u64 end; 647 u64 start_diff; 648 649 if (map_start < em->start || map_start >= extent_map_end(em)) 650 return -EINVAL; 651 652 if (existing->start > map_start) { 653 next = existing; 654 prev = prev_extent_map(next); 655 } else { 656 prev = existing; 657 next = next_extent_map(prev); 658 } 659 660 start = prev ? extent_map_end(prev) : em->start; 661 start = max_t(u64, start, em->start); 662 end = next ? next->start : extent_map_end(em); 663 end = min_t(u64, end, extent_map_end(em)); 664 start_diff = start - em->start; 665 em->start = start; 666 em->len = end - start; 667 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 668 em->offset += start_diff; 669 return add_extent_mapping(inode, em, 0); 670 } 671 672 /* 673 * Add extent mapping into an inode's extent map tree. 674 * 675 * @inode: target inode 676 * @em_in: extent we are inserting 677 * @start: start of the logical range btrfs_get_extent() is requesting 678 * @len: length of the logical range btrfs_get_extent() is requesting 679 * 680 * Note that @em_in's range may be different from [start, start+len), 681 * but they must be overlapped. 682 * 683 * Insert @em_in into the inode's extent map tree. In case there is an 684 * overlapping range, handle the -EEXIST by either: 685 * a) Returning the existing extent in @em_in if @start is within the 686 * existing em. 687 * b) Merge the existing extent with @em_in passed in. 688 * 689 * Return 0 on success, otherwise -EEXIST. 690 * 691 */ 692 int btrfs_add_extent_mapping(struct btrfs_inode *inode, 693 struct extent_map **em_in, u64 start, u64 len) 694 { 695 int ret; 696 struct extent_map *em = *em_in; 697 struct btrfs_fs_info *fs_info = inode->root->fs_info; 698 699 /* 700 * Tree-checker should have rejected any inline extent with non-zero 701 * file offset. Here just do a sanity check. 702 */ 703 if (em->disk_bytenr == EXTENT_MAP_INLINE) 704 ASSERT(em->start == 0); 705 706 ret = add_extent_mapping(inode, em, 0); 707 /* it is possible that someone inserted the extent into the tree 708 * while we had the lock dropped. It is also possible that 709 * an overlapping map exists in the tree 710 */ 711 if (ret == -EEXIST) { 712 struct extent_map *existing; 713 714 existing = search_extent_mapping(&inode->extent_tree, start, len); 715 716 trace_btrfs_handle_em_exist(fs_info, existing, em, start, len); 717 718 /* 719 * existing will always be non-NULL, since there must be 720 * extent causing the -EEXIST. 721 */ 722 if (start >= existing->start && 723 start < extent_map_end(existing)) { 724 free_extent_map(em); 725 *em_in = existing; 726 ret = 0; 727 } else { 728 u64 orig_start = em->start; 729 u64 orig_len = em->len; 730 731 /* 732 * The existing extent map is the one nearest to 733 * the [start, start + len) range which overlaps 734 */ 735 ret = merge_extent_mapping(inode, existing, em, start); 736 if (WARN_ON(ret)) { 737 free_extent_map(em); 738 *em_in = NULL; 739 btrfs_warn(fs_info, 740 "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu", 741 existing->start, extent_map_end(existing), 742 orig_start, orig_start + orig_len, start); 743 } 744 free_extent_map(existing); 745 } 746 } 747 748 ASSERT(ret == 0 || ret == -EEXIST); 749 return ret; 750 } 751 752 /* 753 * Drop all extent maps from a tree in the fastest possible way, rescheduling 754 * if needed. This avoids searching the tree, from the root down to the first 755 * extent map, before each deletion. 756 */ 757 static void drop_all_extent_maps_fast(struct btrfs_inode *inode) 758 { 759 struct extent_map_tree *tree = &inode->extent_tree; 760 struct rb_node *node; 761 762 write_lock(&tree->lock); 763 node = rb_first(&tree->root); 764 while (node) { 765 struct extent_map *em; 766 struct rb_node *next = rb_next(node); 767 768 em = rb_entry(node, struct extent_map, rb_node); 769 em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING); 770 remove_extent_mapping(inode, em); 771 free_extent_map(em); 772 773 if (cond_resched_rwlock_write(&tree->lock)) 774 node = rb_first(&tree->root); 775 else 776 node = next; 777 } 778 write_unlock(&tree->lock); 779 } 780 781 /* 782 * Drop all extent maps in a given range. 783 * 784 * @inode: The target inode. 785 * @start: Start offset of the range. 786 * @end: End offset of the range (inclusive value). 787 * @skip_pinned: Indicate if pinned extent maps should be ignored or not. 788 * 789 * This drops all the extent maps that intersect the given range [@start, @end]. 790 * Extent maps that partially overlap the range and extend behind or beyond it, 791 * are split. 792 * The caller should have locked an appropriate file range in the inode's io 793 * tree before calling this function. 794 */ 795 void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end, 796 bool skip_pinned) 797 { 798 struct extent_map *split; 799 struct extent_map *split2; 800 struct extent_map *em; 801 struct extent_map_tree *em_tree = &inode->extent_tree; 802 u64 len = end - start + 1; 803 804 WARN_ON(end < start); 805 if (end == (u64)-1) { 806 if (start == 0 && !skip_pinned) { 807 drop_all_extent_maps_fast(inode); 808 return; 809 } 810 len = (u64)-1; 811 } else { 812 /* Make end offset exclusive for use in the loop below. */ 813 end++; 814 } 815 816 /* 817 * It's ok if we fail to allocate the extent maps, see the comment near 818 * the bottom of the loop below. We only need two spare extent maps in 819 * the worst case, where the first extent map that intersects our range 820 * starts before the range and the last extent map that intersects our 821 * range ends after our range (and they might be the same extent map), 822 * because we need to split those two extent maps at the boundaries. 823 */ 824 split = alloc_extent_map(); 825 split2 = alloc_extent_map(); 826 827 write_lock(&em_tree->lock); 828 em = lookup_extent_mapping(em_tree, start, len); 829 830 while (em) { 831 /* extent_map_end() returns exclusive value (last byte + 1). */ 832 const u64 em_end = extent_map_end(em); 833 struct extent_map *next_em = NULL; 834 u64 gen; 835 unsigned long flags; 836 bool modified; 837 838 if (em_end < end) { 839 next_em = next_extent_map(em); 840 if (next_em) { 841 if (next_em->start < end) 842 refcount_inc(&next_em->refs); 843 else 844 next_em = NULL; 845 } 846 } 847 848 if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) { 849 start = em_end; 850 goto next; 851 } 852 853 flags = em->flags; 854 /* 855 * In case we split the extent map, we want to preserve the 856 * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want 857 * it on the new extent maps. 858 */ 859 em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING); 860 modified = !list_empty(&em->list); 861 862 /* 863 * The extent map does not cross our target range, so no need to 864 * split it, we can remove it directly. 865 */ 866 if (em->start >= start && em_end <= end) 867 goto remove_em; 868 869 gen = em->generation; 870 871 if (em->start < start) { 872 if (!split) { 873 split = split2; 874 split2 = NULL; 875 if (!split) 876 goto remove_em; 877 } 878 split->start = em->start; 879 split->len = start - em->start; 880 881 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { 882 split->disk_bytenr = em->disk_bytenr; 883 split->disk_num_bytes = em->disk_num_bytes; 884 split->offset = em->offset; 885 split->ram_bytes = em->ram_bytes; 886 } else { 887 split->disk_bytenr = em->disk_bytenr; 888 split->disk_num_bytes = 0; 889 split->offset = 0; 890 split->ram_bytes = split->len; 891 } 892 893 split->generation = gen; 894 split->flags = flags; 895 replace_extent_mapping(inode, em, split, modified); 896 free_extent_map(split); 897 split = split2; 898 split2 = NULL; 899 } 900 if (em_end > end) { 901 if (!split) { 902 split = split2; 903 split2 = NULL; 904 if (!split) 905 goto remove_em; 906 } 907 split->start = end; 908 split->len = em_end - end; 909 split->disk_bytenr = em->disk_bytenr; 910 split->flags = flags; 911 split->generation = gen; 912 913 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { 914 split->disk_num_bytes = em->disk_num_bytes; 915 split->offset = em->offset + end - em->start; 916 split->ram_bytes = em->ram_bytes; 917 } else { 918 split->disk_num_bytes = 0; 919 split->offset = 0; 920 split->ram_bytes = split->len; 921 } 922 923 if (extent_map_in_tree(em)) { 924 replace_extent_mapping(inode, em, split, modified); 925 } else { 926 int ret; 927 928 ret = add_extent_mapping(inode, split, modified); 929 /* Logic error, shouldn't happen. */ 930 ASSERT(ret == 0); 931 if (WARN_ON(ret != 0) && modified) 932 btrfs_set_inode_full_sync(inode); 933 } 934 free_extent_map(split); 935 split = NULL; 936 } 937 remove_em: 938 if (extent_map_in_tree(em)) { 939 /* 940 * If the extent map is still in the tree it means that 941 * either of the following is true: 942 * 943 * 1) It fits entirely in our range (doesn't end beyond 944 * it or starts before it); 945 * 946 * 2) It starts before our range and/or ends after our 947 * range, and we were not able to allocate the extent 948 * maps for split operations, @split and @split2. 949 * 950 * If we are at case 2) then we just remove the entire 951 * extent map - this is fine since if anyone needs it to 952 * access the subranges outside our range, will just 953 * load it again from the subvolume tree's file extent 954 * item. However if the extent map was in the list of 955 * modified extents, then we must mark the inode for a 956 * full fsync, otherwise a fast fsync will miss this 957 * extent if it's new and needs to be logged. 958 */ 959 if ((em->start < start || em_end > end) && modified) { 960 ASSERT(!split); 961 btrfs_set_inode_full_sync(inode); 962 } 963 remove_extent_mapping(inode, em); 964 } 965 966 /* 967 * Once for the tree reference (we replaced or removed the 968 * extent map from the tree). 969 */ 970 free_extent_map(em); 971 next: 972 /* Once for us (for our lookup reference). */ 973 free_extent_map(em); 974 975 em = next_em; 976 } 977 978 write_unlock(&em_tree->lock); 979 980 free_extent_map(split); 981 free_extent_map(split2); 982 } 983 984 /* 985 * Replace a range in the inode's extent map tree with a new extent map. 986 * 987 * @inode: The target inode. 988 * @new_em: The new extent map to add to the inode's extent map tree. 989 * @modified: Indicate if the new extent map should be added to the list of 990 * modified extents (for fast fsync tracking). 991 * 992 * Drops all the extent maps in the inode's extent map tree that intersect the 993 * range of the new extent map and adds the new extent map to the tree. 994 * The caller should have locked an appropriate file range in the inode's io 995 * tree before calling this function. 996 */ 997 int btrfs_replace_extent_map_range(struct btrfs_inode *inode, 998 struct extent_map *new_em, 999 bool modified) 1000 { 1001 const u64 end = new_em->start + new_em->len - 1; 1002 struct extent_map_tree *tree = &inode->extent_tree; 1003 int ret; 1004 1005 ASSERT(!extent_map_in_tree(new_em)); 1006 1007 /* 1008 * The caller has locked an appropriate file range in the inode's io 1009 * tree, but getting -EEXIST when adding the new extent map can still 1010 * happen in case there are extents that partially cover the range, and 1011 * this is due to two tasks operating on different parts of the extent. 1012 * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from 1013 * btrfs_get_extent") for an example and details. 1014 */ 1015 do { 1016 btrfs_drop_extent_map_range(inode, new_em->start, end, false); 1017 write_lock(&tree->lock); 1018 ret = add_extent_mapping(inode, new_em, modified); 1019 write_unlock(&tree->lock); 1020 } while (ret == -EEXIST); 1021 1022 return ret; 1023 } 1024 1025 /* 1026 * Split off the first pre bytes from the extent_map at [start, start + len], 1027 * and set the block_start for it to new_logical. 1028 * 1029 * This function is used when an ordered_extent needs to be split. 1030 */ 1031 int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre, 1032 u64 new_logical) 1033 { 1034 struct extent_map_tree *em_tree = &inode->extent_tree; 1035 struct extent_map *em; 1036 struct extent_map *split_pre = NULL; 1037 struct extent_map *split_mid = NULL; 1038 int ret = 0; 1039 unsigned long flags; 1040 1041 ASSERT(pre != 0); 1042 ASSERT(pre < len); 1043 1044 split_pre = alloc_extent_map(); 1045 if (!split_pre) 1046 return -ENOMEM; 1047 split_mid = alloc_extent_map(); 1048 if (!split_mid) { 1049 ret = -ENOMEM; 1050 goto out_free_pre; 1051 } 1052 1053 lock_extent(&inode->io_tree, start, start + len - 1, NULL); 1054 write_lock(&em_tree->lock); 1055 em = lookup_extent_mapping(em_tree, start, len); 1056 if (!em) { 1057 ret = -EIO; 1058 goto out_unlock; 1059 } 1060 1061 ASSERT(em->len == len); 1062 ASSERT(!extent_map_is_compressed(em)); 1063 ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE); 1064 ASSERT(em->flags & EXTENT_FLAG_PINNED); 1065 ASSERT(!(em->flags & EXTENT_FLAG_LOGGING)); 1066 ASSERT(!list_empty(&em->list)); 1067 1068 flags = em->flags; 1069 em->flags &= ~EXTENT_FLAG_PINNED; 1070 1071 /* First, replace the em with a new extent_map starting from * em->start */ 1072 split_pre->start = em->start; 1073 split_pre->len = pre; 1074 split_pre->disk_bytenr = new_logical; 1075 split_pre->disk_num_bytes = split_pre->len; 1076 split_pre->offset = 0; 1077 split_pre->ram_bytes = split_pre->len; 1078 split_pre->flags = flags; 1079 split_pre->generation = em->generation; 1080 1081 replace_extent_mapping(inode, em, split_pre, 1); 1082 1083 /* 1084 * Now we only have an extent_map at: 1085 * [em->start, em->start + pre] 1086 */ 1087 1088 /* Insert the middle extent_map. */ 1089 split_mid->start = em->start + pre; 1090 split_mid->len = em->len - pre; 1091 split_mid->disk_bytenr = extent_map_block_start(em) + pre; 1092 split_mid->disk_num_bytes = split_mid->len; 1093 split_mid->offset = 0; 1094 split_mid->ram_bytes = split_mid->len; 1095 split_mid->flags = flags; 1096 split_mid->generation = em->generation; 1097 add_extent_mapping(inode, split_mid, 1); 1098 1099 /* Once for us */ 1100 free_extent_map(em); 1101 /* Once for the tree */ 1102 free_extent_map(em); 1103 1104 out_unlock: 1105 write_unlock(&em_tree->lock); 1106 unlock_extent(&inode->io_tree, start, start + len - 1, NULL); 1107 free_extent_map(split_mid); 1108 out_free_pre: 1109 free_extent_map(split_pre); 1110 return ret; 1111 } 1112 1113 struct btrfs_em_shrink_ctx { 1114 long nr_to_scan; 1115 long scanned; 1116 u64 last_ino; 1117 u64 last_root; 1118 }; 1119 1120 static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx) 1121 { 1122 const u64 cur_fs_gen = btrfs_get_fs_generation(inode->root->fs_info); 1123 struct extent_map_tree *tree = &inode->extent_tree; 1124 long nr_dropped = 0; 1125 struct rb_node *node; 1126 1127 /* 1128 * Take the mmap lock so that we serialize with the inode logging phase 1129 * of fsync because we may need to set the full sync flag on the inode, 1130 * in case we have to remove extent maps in the tree's list of modified 1131 * extents. If we set the full sync flag in the inode while an fsync is 1132 * in progress, we may risk missing new extents because before the flag 1133 * is set, fsync decides to only wait for writeback to complete and then 1134 * during inode logging it sees the flag set and uses the subvolume tree 1135 * to find new extents, which may not be there yet because ordered 1136 * extents haven't completed yet. 1137 * 1138 * We also do a try lock because otherwise we could deadlock. This is 1139 * because the shrinker for this filesystem may be invoked while we are 1140 * in a path that is holding the mmap lock in write mode. For example in 1141 * a reflink operation while COWing an extent buffer, when allocating 1142 * pages for a new extent buffer and under memory pressure, the shrinker 1143 * may be invoked, and therefore we would deadlock by attempting to read 1144 * lock the mmap lock while we are holding already a write lock on it. 1145 */ 1146 if (!down_read_trylock(&inode->i_mmap_lock)) 1147 return 0; 1148 1149 /* 1150 * We want to be fast because we can be called from any path trying to 1151 * allocate memory, so if the lock is busy we don't want to spend time 1152 * waiting for it - either some task is about to do IO for the inode or 1153 * we may have another task shrinking extent maps, here in this code, so 1154 * skip this inode. 1155 */ 1156 if (!write_trylock(&tree->lock)) { 1157 up_read(&inode->i_mmap_lock); 1158 return 0; 1159 } 1160 1161 node = rb_first(&tree->root); 1162 while (node) { 1163 struct rb_node *next = rb_next(node); 1164 struct extent_map *em; 1165 1166 em = rb_entry(node, struct extent_map, rb_node); 1167 ctx->scanned++; 1168 1169 if (em->flags & EXTENT_FLAG_PINNED) 1170 goto next; 1171 1172 /* 1173 * If the inode is in the list of modified extents (new) and its 1174 * generation is the same (or is greater than) the current fs 1175 * generation, it means it was not yet persisted so we have to 1176 * set the full sync flag so that the next fsync will not miss 1177 * it. 1178 */ 1179 if (!list_empty(&em->list) && em->generation >= cur_fs_gen) 1180 btrfs_set_inode_full_sync(inode); 1181 1182 remove_extent_mapping(inode, em); 1183 trace_btrfs_extent_map_shrinker_remove_em(inode, em); 1184 /* Drop the reference for the tree. */ 1185 free_extent_map(em); 1186 nr_dropped++; 1187 next: 1188 if (ctx->scanned >= ctx->nr_to_scan) 1189 break; 1190 1191 /* 1192 * Stop if we need to reschedule or there's contention on the 1193 * lock. This is to avoid slowing other tasks trying to take the 1194 * lock and because the shrinker might be called during a memory 1195 * allocation path and we want to avoid taking a very long time 1196 * and slowing down all sorts of tasks. 1197 */ 1198 if (need_resched() || rwlock_needbreak(&tree->lock)) 1199 break; 1200 node = next; 1201 } 1202 write_unlock(&tree->lock); 1203 up_read(&inode->i_mmap_lock); 1204 1205 return nr_dropped; 1206 } 1207 1208 static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx) 1209 { 1210 struct btrfs_inode *inode; 1211 long nr_dropped = 0; 1212 u64 min_ino = ctx->last_ino + 1; 1213 1214 inode = btrfs_find_first_inode(root, min_ino); 1215 while (inode) { 1216 nr_dropped += btrfs_scan_inode(inode, ctx); 1217 1218 min_ino = btrfs_ino(inode) + 1; 1219 ctx->last_ino = btrfs_ino(inode); 1220 btrfs_add_delayed_iput(inode); 1221 1222 if (ctx->scanned >= ctx->nr_to_scan) 1223 break; 1224 1225 /* 1226 * We may be called from memory allocation paths, so we don't 1227 * want to take too much time and slowdown tasks. 1228 */ 1229 if (need_resched()) 1230 break; 1231 1232 inode = btrfs_find_first_inode(root, min_ino); 1233 } 1234 1235 if (inode) { 1236 /* 1237 * There are still inodes in this root or we happened to process 1238 * the last one and reached the scan limit. In either case set 1239 * the current root to this one, so we'll resume from the next 1240 * inode if there is one or we will find out this was the last 1241 * one and move to the next root. 1242 */ 1243 ctx->last_root = btrfs_root_id(root); 1244 } else { 1245 /* 1246 * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so 1247 * that when processing the next root we start from its first inode. 1248 */ 1249 ctx->last_ino = 0; 1250 ctx->last_root = btrfs_root_id(root) + 1; 1251 } 1252 1253 return nr_dropped; 1254 } 1255 1256 long btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan) 1257 { 1258 struct btrfs_em_shrink_ctx ctx; 1259 u64 start_root_id; 1260 u64 next_root_id; 1261 bool cycled = false; 1262 long nr_dropped = 0; 1263 1264 ctx.scanned = 0; 1265 ctx.nr_to_scan = nr_to_scan; 1266 1267 /* 1268 * In case we have multiple tasks running this shrinker, make the next 1269 * one start from the next inode in case it starts before we finish. 1270 */ 1271 spin_lock(&fs_info->extent_map_shrinker_lock); 1272 ctx.last_ino = fs_info->extent_map_shrinker_last_ino; 1273 fs_info->extent_map_shrinker_last_ino++; 1274 ctx.last_root = fs_info->extent_map_shrinker_last_root; 1275 spin_unlock(&fs_info->extent_map_shrinker_lock); 1276 1277 start_root_id = ctx.last_root; 1278 next_root_id = ctx.last_root; 1279 1280 if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) { 1281 s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); 1282 1283 trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr_to_scan, 1284 nr, ctx.last_root, 1285 ctx.last_ino); 1286 } 1287 1288 /* 1289 * We may be called from memory allocation paths, so we don't want to 1290 * take too much time and slowdown tasks, so stop if we need reschedule. 1291 */ 1292 while (ctx.scanned < ctx.nr_to_scan && !need_resched()) { 1293 struct btrfs_root *root; 1294 unsigned long count; 1295 1296 spin_lock(&fs_info->fs_roots_radix_lock); 1297 count = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1298 (void **)&root, 1299 (unsigned long)next_root_id, 1); 1300 if (count == 0) { 1301 spin_unlock(&fs_info->fs_roots_radix_lock); 1302 if (start_root_id > 0 && !cycled) { 1303 next_root_id = 0; 1304 ctx.last_root = 0; 1305 ctx.last_ino = 0; 1306 cycled = true; 1307 continue; 1308 } 1309 break; 1310 } 1311 next_root_id = btrfs_root_id(root) + 1; 1312 root = btrfs_grab_root(root); 1313 spin_unlock(&fs_info->fs_roots_radix_lock); 1314 1315 if (!root) 1316 continue; 1317 1318 if (is_fstree(btrfs_root_id(root))) 1319 nr_dropped += btrfs_scan_root(root, &ctx); 1320 1321 btrfs_put_root(root); 1322 } 1323 1324 /* 1325 * In case of multiple tasks running this extent map shrinking code this 1326 * isn't perfect but it's simple and silences things like KCSAN. It's 1327 * not possible to know which task made more progress because we can 1328 * cycle back to the first root and first inode if it's not the first 1329 * time the shrinker ran, see the above logic. Also a task that started 1330 * later may finish ealier than another task and made less progress. So 1331 * make this simple and update to the progress of the last task that 1332 * finished, with the occasional possiblity of having two consecutive 1333 * runs of the shrinker process the same inodes. 1334 */ 1335 spin_lock(&fs_info->extent_map_shrinker_lock); 1336 fs_info->extent_map_shrinker_last_ino = ctx.last_ino; 1337 fs_info->extent_map_shrinker_last_root = ctx.last_root; 1338 spin_unlock(&fs_info->extent_map_shrinker_lock); 1339 1340 if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) { 1341 s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); 1342 1343 trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped, 1344 nr, ctx.last_root, 1345 ctx.last_ino); 1346 } 1347 1348 return nr_dropped; 1349 } 1350