1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/err.h>
4 #include <linux/slab.h>
5 #include <linux/spinlock.h>
6 #include "messages.h"
7 #include "ctree.h"
8 #include "extent_map.h"
9 #include "compression.h"
10 #include "btrfs_inode.h"
11 #include "disk-io.h"
12
13
14 static struct kmem_cache *extent_map_cache;
15
extent_map_init(void)16 int __init extent_map_init(void)
17 {
18 extent_map_cache = kmem_cache_create("btrfs_extent_map",
19 sizeof(struct extent_map), 0, 0, NULL);
20 if (!extent_map_cache)
21 return -ENOMEM;
22 return 0;
23 }
24
extent_map_exit(void)25 void __cold extent_map_exit(void)
26 {
27 kmem_cache_destroy(extent_map_cache);
28 }
29
30 /*
31 * Initialize the extent tree @tree. Should be called for each new inode or
32 * other user of the extent_map interface.
33 */
extent_map_tree_init(struct extent_map_tree * tree)34 void extent_map_tree_init(struct extent_map_tree *tree)
35 {
36 tree->root = RB_ROOT;
37 INIT_LIST_HEAD(&tree->modified_extents);
38 rwlock_init(&tree->lock);
39 }
40
41 /*
42 * Allocate a new extent_map structure. The new structure is returned with a
43 * reference count of one and needs to be freed using free_extent_map()
44 */
alloc_extent_map(void)45 struct extent_map *alloc_extent_map(void)
46 {
47 struct extent_map *em;
48 em = kmem_cache_zalloc(extent_map_cache, GFP_NOFS);
49 if (!em)
50 return NULL;
51 RB_CLEAR_NODE(&em->rb_node);
52 refcount_set(&em->refs, 1);
53 INIT_LIST_HEAD(&em->list);
54 return em;
55 }
56
57 /*
58 * Drop the reference out on @em by one and free the structure if the reference
59 * count hits zero.
60 */
free_extent_map(struct extent_map * em)61 void free_extent_map(struct extent_map *em)
62 {
63 if (!em)
64 return;
65 if (refcount_dec_and_test(&em->refs)) {
66 WARN_ON(extent_map_in_tree(em));
67 WARN_ON(!list_empty(&em->list));
68 kmem_cache_free(extent_map_cache, em);
69 }
70 }
71
72 /* Do the math around the end of an extent, handling wrapping. */
range_end(u64 start,u64 len)73 static u64 range_end(u64 start, u64 len)
74 {
75 if (start + len < start)
76 return (u64)-1;
77 return start + len;
78 }
79
remove_em(struct btrfs_inode * inode,struct extent_map * em)80 static void remove_em(struct btrfs_inode *inode, struct extent_map *em)
81 {
82 struct btrfs_fs_info *fs_info = inode->root->fs_info;
83
84 rb_erase(&em->rb_node, &inode->extent_tree.root);
85 RB_CLEAR_NODE(&em->rb_node);
86
87 if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(inode->root)))
88 percpu_counter_dec(&fs_info->evictable_extent_maps);
89 }
90
tree_insert(struct rb_root * root,struct extent_map * em)91 static int tree_insert(struct rb_root *root, struct extent_map *em)
92 {
93 struct rb_node **p = &root->rb_node;
94 struct rb_node *parent = NULL;
95 struct extent_map *entry = NULL;
96 struct rb_node *orig_parent = NULL;
97 u64 end = range_end(em->start, em->len);
98
99 while (*p) {
100 parent = *p;
101 entry = rb_entry(parent, struct extent_map, rb_node);
102
103 if (em->start < entry->start)
104 p = &(*p)->rb_left;
105 else if (em->start >= extent_map_end(entry))
106 p = &(*p)->rb_right;
107 else
108 return -EEXIST;
109 }
110
111 orig_parent = parent;
112 while (parent && em->start >= extent_map_end(entry)) {
113 parent = rb_next(parent);
114 entry = rb_entry(parent, struct extent_map, rb_node);
115 }
116 if (parent)
117 if (end > entry->start && em->start < extent_map_end(entry))
118 return -EEXIST;
119
120 parent = orig_parent;
121 entry = rb_entry(parent, struct extent_map, rb_node);
122 while (parent && em->start < entry->start) {
123 parent = rb_prev(parent);
124 entry = rb_entry(parent, struct extent_map, rb_node);
125 }
126 if (parent)
127 if (end > entry->start && em->start < extent_map_end(entry))
128 return -EEXIST;
129
130 rb_link_node(&em->rb_node, orig_parent, p);
131 rb_insert_color(&em->rb_node, root);
132 return 0;
133 }
134
135 /*
136 * Search through the tree for an extent_map with a given offset. If it can't
137 * be found, try to find some neighboring extents
138 */
__tree_search(struct rb_root * root,u64 offset,struct rb_node ** prev_or_next_ret)139 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
140 struct rb_node **prev_or_next_ret)
141 {
142 struct rb_node *n = root->rb_node;
143 struct rb_node *prev = NULL;
144 struct rb_node *orig_prev = NULL;
145 struct extent_map *entry;
146 struct extent_map *prev_entry = NULL;
147
148 ASSERT(prev_or_next_ret);
149
150 while (n) {
151 entry = rb_entry(n, struct extent_map, rb_node);
152 prev = n;
153 prev_entry = entry;
154
155 if (offset < entry->start)
156 n = n->rb_left;
157 else if (offset >= extent_map_end(entry))
158 n = n->rb_right;
159 else
160 return n;
161 }
162
163 orig_prev = prev;
164 while (prev && offset >= extent_map_end(prev_entry)) {
165 prev = rb_next(prev);
166 prev_entry = rb_entry(prev, struct extent_map, rb_node);
167 }
168
169 /*
170 * Previous extent map found, return as in this case the caller does not
171 * care about the next one.
172 */
173 if (prev) {
174 *prev_or_next_ret = prev;
175 return NULL;
176 }
177
178 prev = orig_prev;
179 prev_entry = rb_entry(prev, struct extent_map, rb_node);
180 while (prev && offset < prev_entry->start) {
181 prev = rb_prev(prev);
182 prev_entry = rb_entry(prev, struct extent_map, rb_node);
183 }
184 *prev_or_next_ret = prev;
185
186 return NULL;
187 }
188
extent_map_block_len(const struct extent_map * em)189 static inline u64 extent_map_block_len(const struct extent_map *em)
190 {
191 if (extent_map_is_compressed(em))
192 return em->disk_num_bytes;
193 return em->len;
194 }
195
extent_map_block_end(const struct extent_map * em)196 static inline u64 extent_map_block_end(const struct extent_map *em)
197 {
198 const u64 block_start = extent_map_block_start(em);
199 const u64 block_end = block_start + extent_map_block_len(em);
200
201 if (block_end < block_start)
202 return (u64)-1;
203
204 return block_end;
205 }
206
can_merge_extent_map(const struct extent_map * em)207 static bool can_merge_extent_map(const struct extent_map *em)
208 {
209 if (em->flags & EXTENT_FLAG_PINNED)
210 return false;
211
212 /* Don't merge compressed extents, we need to know their actual size. */
213 if (extent_map_is_compressed(em))
214 return false;
215
216 if (em->flags & EXTENT_FLAG_LOGGING)
217 return false;
218
219 /*
220 * We don't want to merge stuff that hasn't been written to the log yet
221 * since it may not reflect exactly what is on disk, and that would be
222 * bad.
223 */
224 if (!list_empty(&em->list))
225 return false;
226
227 return true;
228 }
229
230 /* Check to see if two extent_map structs are adjacent and safe to merge. */
mergeable_maps(const struct extent_map * prev,const struct extent_map * next)231 static bool mergeable_maps(const struct extent_map *prev, const struct extent_map *next)
232 {
233 if (extent_map_end(prev) != next->start)
234 return false;
235
236 /*
237 * The merged flag is not an on-disk flag, it just indicates we had the
238 * extent maps of 2 (or more) adjacent extents merged, so factor it out.
239 */
240 if ((prev->flags & ~EXTENT_FLAG_MERGED) !=
241 (next->flags & ~EXTENT_FLAG_MERGED))
242 return false;
243
244 if (next->disk_bytenr < EXTENT_MAP_LAST_BYTE - 1)
245 return extent_map_block_start(next) == extent_map_block_end(prev);
246
247 /* HOLES and INLINE extents. */
248 return next->disk_bytenr == prev->disk_bytenr;
249 }
250
251 /*
252 * Handle the on-disk data extents merge for @prev and @next.
253 *
254 * @prev: left extent to merge
255 * @next: right extent to merge
256 * @merged: the extent we will not discard after the merge; updated with new values
257 *
258 * After this, one of the two extents is the new merged extent and the other is
259 * removed from the tree and likely freed. Note that @merged is one of @prev/@next
260 * so there is const/non-const aliasing occurring here.
261 *
262 * Only touches disk_bytenr/disk_num_bytes/offset/ram_bytes.
263 * For now only uncompressed regular extent can be merged.
264 */
merge_ondisk_extents(const struct extent_map * prev,const struct extent_map * next,struct extent_map * merged)265 static void merge_ondisk_extents(const struct extent_map *prev, const struct extent_map *next,
266 struct extent_map *merged)
267 {
268 u64 new_disk_bytenr;
269 u64 new_disk_num_bytes;
270 u64 new_offset;
271
272 /* @prev and @next should not be compressed. */
273 ASSERT(!extent_map_is_compressed(prev));
274 ASSERT(!extent_map_is_compressed(next));
275
276 /*
277 * There are two different cases where @prev and @next can be merged.
278 *
279 * 1) They are referring to the same data extent:
280 *
281 * |<----- data extent A ----->|
282 * |<- prev ->|<- next ->|
283 *
284 * 2) They are referring to different data extents but still adjacent:
285 *
286 * |<-- data extent A -->|<-- data extent B -->|
287 * |<- prev ->|<- next ->|
288 *
289 * The calculation here always merges the data extents first, then updates
290 * @offset using the new data extents.
291 *
292 * For case 1), the merged data extent would be the same.
293 * For case 2), we just merge the two data extents into one.
294 */
295 new_disk_bytenr = min(prev->disk_bytenr, next->disk_bytenr);
296 new_disk_num_bytes = max(prev->disk_bytenr + prev->disk_num_bytes,
297 next->disk_bytenr + next->disk_num_bytes) -
298 new_disk_bytenr;
299 new_offset = prev->disk_bytenr + prev->offset - new_disk_bytenr;
300
301 merged->disk_bytenr = new_disk_bytenr;
302 merged->disk_num_bytes = new_disk_num_bytes;
303 merged->ram_bytes = new_disk_num_bytes;
304 merged->offset = new_offset;
305 }
306
dump_extent_map(struct btrfs_fs_info * fs_info,const char * prefix,struct extent_map * em)307 static void dump_extent_map(struct btrfs_fs_info *fs_info, const char *prefix,
308 struct extent_map *em)
309 {
310 if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
311 return;
312 btrfs_crit(fs_info,
313 "%s, start=%llu len=%llu disk_bytenr=%llu disk_num_bytes=%llu ram_bytes=%llu offset=%llu flags=0x%x",
314 prefix, em->start, em->len, em->disk_bytenr, em->disk_num_bytes,
315 em->ram_bytes, em->offset, em->flags);
316 ASSERT(0);
317 }
318
319 /* Internal sanity checks for btrfs debug builds. */
validate_extent_map(struct btrfs_fs_info * fs_info,struct extent_map * em)320 static void validate_extent_map(struct btrfs_fs_info *fs_info, struct extent_map *em)
321 {
322 if (!IS_ENABLED(CONFIG_BTRFS_DEBUG))
323 return;
324 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
325 if (em->disk_num_bytes == 0)
326 dump_extent_map(fs_info, "zero disk_num_bytes", em);
327 if (em->offset + em->len > em->ram_bytes)
328 dump_extent_map(fs_info, "ram_bytes too small", em);
329 if (em->offset + em->len > em->disk_num_bytes &&
330 !extent_map_is_compressed(em))
331 dump_extent_map(fs_info, "disk_num_bytes too small", em);
332 if (!extent_map_is_compressed(em) &&
333 em->ram_bytes != em->disk_num_bytes)
334 dump_extent_map(fs_info,
335 "ram_bytes mismatch with disk_num_bytes for non-compressed em",
336 em);
337 } else if (em->offset) {
338 dump_extent_map(fs_info, "non-zero offset for hole/inline", em);
339 }
340 }
341
try_merge_map(struct btrfs_inode * inode,struct extent_map * em)342 static void try_merge_map(struct btrfs_inode *inode, struct extent_map *em)
343 {
344 struct btrfs_fs_info *fs_info = inode->root->fs_info;
345 struct extent_map *merge = NULL;
346 struct rb_node *rb;
347
348 /*
349 * We can't modify an extent map that is in the tree and that is being
350 * used by another task, as it can cause that other task to see it in
351 * inconsistent state during the merging. We always have 1 reference for
352 * the tree and 1 for this task (which is unpinning the extent map or
353 * clearing the logging flag), so anything > 2 means it's being used by
354 * other tasks too.
355 */
356 if (refcount_read(&em->refs) > 2)
357 return;
358
359 if (!can_merge_extent_map(em))
360 return;
361
362 if (em->start != 0) {
363 rb = rb_prev(&em->rb_node);
364 if (rb)
365 merge = rb_entry(rb, struct extent_map, rb_node);
366 if (rb && can_merge_extent_map(merge) && mergeable_maps(merge, em)) {
367 em->start = merge->start;
368 em->len += merge->len;
369 em->generation = max(em->generation, merge->generation);
370
371 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
372 merge_ondisk_extents(merge, em, em);
373 em->flags |= EXTENT_FLAG_MERGED;
374
375 validate_extent_map(fs_info, em);
376 remove_em(inode, merge);
377 free_extent_map(merge);
378 }
379 }
380
381 rb = rb_next(&em->rb_node);
382 if (rb)
383 merge = rb_entry(rb, struct extent_map, rb_node);
384 if (rb && can_merge_extent_map(merge) && mergeable_maps(em, merge)) {
385 em->len += merge->len;
386 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
387 merge_ondisk_extents(em, merge, em);
388 validate_extent_map(fs_info, em);
389 em->generation = max(em->generation, merge->generation);
390 em->flags |= EXTENT_FLAG_MERGED;
391 remove_em(inode, merge);
392 free_extent_map(merge);
393 }
394 }
395
396 /*
397 * Unpin an extent from the cache.
398 *
399 * @inode: the inode from which we are unpinning an extent range
400 * @start: logical offset in the file
401 * @len: length of the extent
402 * @gen: generation that this extent has been modified in
403 *
404 * Called after an extent has been written to disk properly. Set the generation
405 * to the generation that actually added the file item to the inode so we know
406 * we need to sync this extent when we call fsync().
407 *
408 * Returns: 0 on success
409 * -ENOENT when the extent is not found in the tree
410 * -EUCLEAN if the found extent does not match the expected start
411 */
unpin_extent_cache(struct btrfs_inode * inode,u64 start,u64 len,u64 gen)412 int unpin_extent_cache(struct btrfs_inode *inode, u64 start, u64 len, u64 gen)
413 {
414 struct btrfs_fs_info *fs_info = inode->root->fs_info;
415 struct extent_map_tree *tree = &inode->extent_tree;
416 int ret = 0;
417 struct extent_map *em;
418
419 write_lock(&tree->lock);
420 em = lookup_extent_mapping(tree, start, len);
421
422 if (WARN_ON(!em)) {
423 btrfs_warn(fs_info,
424 "no extent map found for inode %llu (root %lld) when unpinning extent range [%llu, %llu), generation %llu",
425 btrfs_ino(inode), btrfs_root_id(inode->root),
426 start, start + len, gen);
427 ret = -ENOENT;
428 goto out;
429 }
430
431 if (WARN_ON(em->start != start)) {
432 btrfs_warn(fs_info,
433 "found extent map for inode %llu (root %lld) with unexpected start offset %llu when unpinning extent range [%llu, %llu), generation %llu",
434 btrfs_ino(inode), btrfs_root_id(inode->root),
435 em->start, start, start + len, gen);
436 ret = -EUCLEAN;
437 goto out;
438 }
439
440 em->generation = gen;
441 em->flags &= ~EXTENT_FLAG_PINNED;
442
443 try_merge_map(inode, em);
444
445 out:
446 write_unlock(&tree->lock);
447 free_extent_map(em);
448 return ret;
449
450 }
451
clear_em_logging(struct btrfs_inode * inode,struct extent_map * em)452 void clear_em_logging(struct btrfs_inode *inode, struct extent_map *em)
453 {
454 lockdep_assert_held_write(&inode->extent_tree.lock);
455
456 em->flags &= ~EXTENT_FLAG_LOGGING;
457 if (extent_map_in_tree(em))
458 try_merge_map(inode, em);
459 }
460
setup_extent_mapping(struct btrfs_inode * inode,struct extent_map * em,int modified)461 static inline void setup_extent_mapping(struct btrfs_inode *inode,
462 struct extent_map *em,
463 int modified)
464 {
465 refcount_inc(&em->refs);
466
467 ASSERT(list_empty(&em->list));
468
469 if (modified)
470 list_add(&em->list, &inode->extent_tree.modified_extents);
471 else
472 try_merge_map(inode, em);
473 }
474
475 /*
476 * Add a new extent map to an inode's extent map tree.
477 *
478 * @inode: the target inode
479 * @em: map to insert
480 * @modified: indicate whether the given @em should be added to the
481 * modified list, which indicates the extent needs to be logged
482 *
483 * Insert @em into the @inode's extent map tree or perform a simple
484 * forward/backward merge with existing mappings. The extent_map struct passed
485 * in will be inserted into the tree directly, with an additional reference
486 * taken, or a reference dropped if the merge attempt was successful.
487 */
add_extent_mapping(struct btrfs_inode * inode,struct extent_map * em,int modified)488 static int add_extent_mapping(struct btrfs_inode *inode,
489 struct extent_map *em, int modified)
490 {
491 struct extent_map_tree *tree = &inode->extent_tree;
492 struct btrfs_root *root = inode->root;
493 struct btrfs_fs_info *fs_info = root->fs_info;
494 int ret;
495
496 lockdep_assert_held_write(&tree->lock);
497
498 validate_extent_map(fs_info, em);
499 ret = tree_insert(&tree->root, em);
500 if (ret)
501 return ret;
502
503 setup_extent_mapping(inode, em, modified);
504
505 if (!btrfs_is_testing(fs_info) && is_fstree(btrfs_root_id(root)))
506 percpu_counter_inc(&fs_info->evictable_extent_maps);
507
508 return 0;
509 }
510
511 static struct extent_map *
__lookup_extent_mapping(struct extent_map_tree * tree,u64 start,u64 len,int strict)512 __lookup_extent_mapping(struct extent_map_tree *tree,
513 u64 start, u64 len, int strict)
514 {
515 struct extent_map *em;
516 struct rb_node *rb_node;
517 struct rb_node *prev_or_next = NULL;
518 u64 end = range_end(start, len);
519
520 rb_node = __tree_search(&tree->root, start, &prev_or_next);
521 if (!rb_node) {
522 if (prev_or_next)
523 rb_node = prev_or_next;
524 else
525 return NULL;
526 }
527
528 em = rb_entry(rb_node, struct extent_map, rb_node);
529
530 if (strict && !(end > em->start && start < extent_map_end(em)))
531 return NULL;
532
533 refcount_inc(&em->refs);
534 return em;
535 }
536
537 /*
538 * Lookup extent_map that intersects @start + @len range.
539 *
540 * @tree: tree to lookup in
541 * @start: byte offset to start the search
542 * @len: length of the lookup range
543 *
544 * Find and return the first extent_map struct in @tree that intersects the
545 * [start, len] range. There may be additional objects in the tree that
546 * intersect, so check the object returned carefully to make sure that no
547 * additional lookups are needed.
548 */
lookup_extent_mapping(struct extent_map_tree * tree,u64 start,u64 len)549 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
550 u64 start, u64 len)
551 {
552 return __lookup_extent_mapping(tree, start, len, 1);
553 }
554
555 /*
556 * Find a nearby extent map intersecting @start + @len (not an exact search).
557 *
558 * @tree: tree to lookup in
559 * @start: byte offset to start the search
560 * @len: length of the lookup range
561 *
562 * Find and return the first extent_map struct in @tree that intersects the
563 * [start, len] range.
564 *
565 * If one can't be found, any nearby extent may be returned
566 */
search_extent_mapping(struct extent_map_tree * tree,u64 start,u64 len)567 struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
568 u64 start, u64 len)
569 {
570 return __lookup_extent_mapping(tree, start, len, 0);
571 }
572
573 /*
574 * Remove an extent_map from its inode's extent tree.
575 *
576 * @inode: the inode the extent map belongs to
577 * @em: extent map being removed
578 *
579 * Remove @em from the extent tree of @inode. No reference counts are dropped,
580 * and no checks are done to see if the range is in use.
581 */
remove_extent_mapping(struct btrfs_inode * inode,struct extent_map * em)582 void remove_extent_mapping(struct btrfs_inode *inode, struct extent_map *em)
583 {
584 struct extent_map_tree *tree = &inode->extent_tree;
585
586 lockdep_assert_held_write(&tree->lock);
587
588 WARN_ON(em->flags & EXTENT_FLAG_PINNED);
589 if (!(em->flags & EXTENT_FLAG_LOGGING))
590 list_del_init(&em->list);
591
592 remove_em(inode, em);
593 }
594
replace_extent_mapping(struct btrfs_inode * inode,struct extent_map * cur,struct extent_map * new,int modified)595 static void replace_extent_mapping(struct btrfs_inode *inode,
596 struct extent_map *cur,
597 struct extent_map *new,
598 int modified)
599 {
600 struct btrfs_fs_info *fs_info = inode->root->fs_info;
601 struct extent_map_tree *tree = &inode->extent_tree;
602
603 lockdep_assert_held_write(&tree->lock);
604
605 validate_extent_map(fs_info, new);
606
607 WARN_ON(cur->flags & EXTENT_FLAG_PINNED);
608 ASSERT(extent_map_in_tree(cur));
609 if (!(cur->flags & EXTENT_FLAG_LOGGING))
610 list_del_init(&cur->list);
611 rb_replace_node(&cur->rb_node, &new->rb_node, &tree->root);
612 RB_CLEAR_NODE(&cur->rb_node);
613
614 setup_extent_mapping(inode, new, modified);
615 }
616
next_extent_map(const struct extent_map * em)617 static struct extent_map *next_extent_map(const struct extent_map *em)
618 {
619 struct rb_node *next;
620
621 next = rb_next(&em->rb_node);
622 if (!next)
623 return NULL;
624 return container_of(next, struct extent_map, rb_node);
625 }
626
prev_extent_map(struct extent_map * em)627 static struct extent_map *prev_extent_map(struct extent_map *em)
628 {
629 struct rb_node *prev;
630
631 prev = rb_prev(&em->rb_node);
632 if (!prev)
633 return NULL;
634 return container_of(prev, struct extent_map, rb_node);
635 }
636
637 /*
638 * Helper for btrfs_get_extent. Given an existing extent in the tree,
639 * the existing extent is the nearest extent to map_start,
640 * and an extent that you want to insert, deal with overlap and insert
641 * the best fitted new extent into the tree.
642 */
merge_extent_mapping(struct btrfs_inode * inode,struct extent_map * existing,struct extent_map * em,u64 map_start)643 static noinline int merge_extent_mapping(struct btrfs_inode *inode,
644 struct extent_map *existing,
645 struct extent_map *em,
646 u64 map_start)
647 {
648 struct extent_map *prev;
649 struct extent_map *next;
650 u64 start;
651 u64 end;
652 u64 start_diff;
653
654 if (map_start < em->start || map_start >= extent_map_end(em))
655 return -EINVAL;
656
657 if (existing->start > map_start) {
658 next = existing;
659 prev = prev_extent_map(next);
660 } else {
661 prev = existing;
662 next = next_extent_map(prev);
663 }
664
665 start = prev ? extent_map_end(prev) : em->start;
666 start = max_t(u64, start, em->start);
667 end = next ? next->start : extent_map_end(em);
668 end = min_t(u64, end, extent_map_end(em));
669 start_diff = start - em->start;
670 em->start = start;
671 em->len = end - start;
672 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
673 em->offset += start_diff;
674 return add_extent_mapping(inode, em, 0);
675 }
676
677 /*
678 * Add extent mapping into an inode's extent map tree.
679 *
680 * @inode: target inode
681 * @em_in: extent we are inserting
682 * @start: start of the logical range btrfs_get_extent() is requesting
683 * @len: length of the logical range btrfs_get_extent() is requesting
684 *
685 * Note that @em_in's range may be different from [start, start+len),
686 * but they must be overlapped.
687 *
688 * Insert @em_in into the inode's extent map tree. In case there is an
689 * overlapping range, handle the -EEXIST by either:
690 * a) Returning the existing extent in @em_in if @start is within the
691 * existing em.
692 * b) Merge the existing extent with @em_in passed in.
693 *
694 * Return 0 on success, otherwise -EEXIST.
695 *
696 */
btrfs_add_extent_mapping(struct btrfs_inode * inode,struct extent_map ** em_in,u64 start,u64 len)697 int btrfs_add_extent_mapping(struct btrfs_inode *inode,
698 struct extent_map **em_in, u64 start, u64 len)
699 {
700 int ret;
701 struct extent_map *em = *em_in;
702 struct btrfs_fs_info *fs_info = inode->root->fs_info;
703
704 /*
705 * Tree-checker should have rejected any inline extent with non-zero
706 * file offset. Here just do a sanity check.
707 */
708 if (em->disk_bytenr == EXTENT_MAP_INLINE)
709 ASSERT(em->start == 0);
710
711 ret = add_extent_mapping(inode, em, 0);
712 /* it is possible that someone inserted the extent into the tree
713 * while we had the lock dropped. It is also possible that
714 * an overlapping map exists in the tree
715 */
716 if (ret == -EEXIST) {
717 struct extent_map *existing;
718
719 existing = search_extent_mapping(&inode->extent_tree, start, len);
720
721 trace_btrfs_handle_em_exist(fs_info, existing, em, start, len);
722
723 /*
724 * existing will always be non-NULL, since there must be
725 * extent causing the -EEXIST.
726 */
727 if (start >= existing->start &&
728 start < extent_map_end(existing)) {
729 free_extent_map(em);
730 *em_in = existing;
731 ret = 0;
732 } else {
733 u64 orig_start = em->start;
734 u64 orig_len = em->len;
735
736 /*
737 * The existing extent map is the one nearest to
738 * the [start, start + len) range which overlaps
739 */
740 ret = merge_extent_mapping(inode, existing, em, start);
741 if (WARN_ON(ret)) {
742 free_extent_map(em);
743 *em_in = NULL;
744 btrfs_warn(fs_info,
745 "extent map merge error existing [%llu, %llu) with em [%llu, %llu) start %llu",
746 existing->start, extent_map_end(existing),
747 orig_start, orig_start + orig_len, start);
748 }
749 free_extent_map(existing);
750 }
751 }
752
753 ASSERT(ret == 0 || ret == -EEXIST);
754 return ret;
755 }
756
757 /*
758 * Drop all extent maps from a tree in the fastest possible way, rescheduling
759 * if needed. This avoids searching the tree, from the root down to the first
760 * extent map, before each deletion.
761 */
drop_all_extent_maps_fast(struct btrfs_inode * inode)762 static void drop_all_extent_maps_fast(struct btrfs_inode *inode)
763 {
764 struct extent_map_tree *tree = &inode->extent_tree;
765 struct rb_node *node;
766
767 write_lock(&tree->lock);
768 node = rb_first(&tree->root);
769 while (node) {
770 struct extent_map *em;
771 struct rb_node *next = rb_next(node);
772
773 em = rb_entry(node, struct extent_map, rb_node);
774 em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
775 remove_extent_mapping(inode, em);
776 free_extent_map(em);
777
778 if (cond_resched_rwlock_write(&tree->lock))
779 node = rb_first(&tree->root);
780 else
781 node = next;
782 }
783 write_unlock(&tree->lock);
784 }
785
786 /*
787 * Drop all extent maps in a given range.
788 *
789 * @inode: The target inode.
790 * @start: Start offset of the range.
791 * @end: End offset of the range (inclusive value).
792 * @skip_pinned: Indicate if pinned extent maps should be ignored or not.
793 *
794 * This drops all the extent maps that intersect the given range [@start, @end].
795 * Extent maps that partially overlap the range and extend behind or beyond it,
796 * are split.
797 * The caller should have locked an appropriate file range in the inode's io
798 * tree before calling this function.
799 */
btrfs_drop_extent_map_range(struct btrfs_inode * inode,u64 start,u64 end,bool skip_pinned)800 void btrfs_drop_extent_map_range(struct btrfs_inode *inode, u64 start, u64 end,
801 bool skip_pinned)
802 {
803 struct extent_map *split;
804 struct extent_map *split2;
805 struct extent_map *em;
806 struct extent_map_tree *em_tree = &inode->extent_tree;
807 u64 len = end - start + 1;
808
809 WARN_ON(end < start);
810 if (end == (u64)-1) {
811 if (start == 0 && !skip_pinned) {
812 drop_all_extent_maps_fast(inode);
813 return;
814 }
815 len = (u64)-1;
816 } else {
817 /* Make end offset exclusive for use in the loop below. */
818 end++;
819 }
820
821 /*
822 * It's ok if we fail to allocate the extent maps, see the comment near
823 * the bottom of the loop below. We only need two spare extent maps in
824 * the worst case, where the first extent map that intersects our range
825 * starts before the range and the last extent map that intersects our
826 * range ends after our range (and they might be the same extent map),
827 * because we need to split those two extent maps at the boundaries.
828 */
829 split = alloc_extent_map();
830 split2 = alloc_extent_map();
831
832 write_lock(&em_tree->lock);
833 em = lookup_extent_mapping(em_tree, start, len);
834
835 while (em) {
836 /* extent_map_end() returns exclusive value (last byte + 1). */
837 const u64 em_end = extent_map_end(em);
838 struct extent_map *next_em = NULL;
839 u64 gen;
840 unsigned long flags;
841 bool modified;
842
843 if (em_end < end) {
844 next_em = next_extent_map(em);
845 if (next_em) {
846 if (next_em->start < end)
847 refcount_inc(&next_em->refs);
848 else
849 next_em = NULL;
850 }
851 }
852
853 if (skip_pinned && (em->flags & EXTENT_FLAG_PINNED)) {
854 start = em_end;
855 goto next;
856 }
857
858 flags = em->flags;
859 /*
860 * In case we split the extent map, we want to preserve the
861 * EXTENT_FLAG_LOGGING flag on our extent map, but we don't want
862 * it on the new extent maps.
863 */
864 em->flags &= ~(EXTENT_FLAG_PINNED | EXTENT_FLAG_LOGGING);
865 modified = !list_empty(&em->list);
866
867 /*
868 * The extent map does not cross our target range, so no need to
869 * split it, we can remove it directly.
870 */
871 if (em->start >= start && em_end <= end)
872 goto remove_em;
873
874 gen = em->generation;
875
876 if (em->start < start) {
877 if (!split) {
878 split = split2;
879 split2 = NULL;
880 if (!split)
881 goto remove_em;
882 }
883 split->start = em->start;
884 split->len = start - em->start;
885
886 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
887 split->disk_bytenr = em->disk_bytenr;
888 split->disk_num_bytes = em->disk_num_bytes;
889 split->offset = em->offset;
890 split->ram_bytes = em->ram_bytes;
891 } else {
892 split->disk_bytenr = em->disk_bytenr;
893 split->disk_num_bytes = 0;
894 split->offset = 0;
895 split->ram_bytes = split->len;
896 }
897
898 split->generation = gen;
899 split->flags = flags;
900 replace_extent_mapping(inode, em, split, modified);
901 free_extent_map(split);
902 split = split2;
903 split2 = NULL;
904 }
905 if (em_end > end) {
906 if (!split) {
907 split = split2;
908 split2 = NULL;
909 if (!split)
910 goto remove_em;
911 }
912 split->start = end;
913 split->len = em_end - end;
914 split->disk_bytenr = em->disk_bytenr;
915 split->flags = flags;
916 split->generation = gen;
917
918 if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
919 split->disk_num_bytes = em->disk_num_bytes;
920 split->offset = em->offset + end - em->start;
921 split->ram_bytes = em->ram_bytes;
922 } else {
923 split->disk_num_bytes = 0;
924 split->offset = 0;
925 split->ram_bytes = split->len;
926 }
927
928 if (extent_map_in_tree(em)) {
929 replace_extent_mapping(inode, em, split, modified);
930 } else {
931 int ret;
932
933 ret = add_extent_mapping(inode, split, modified);
934 /* Logic error, shouldn't happen. */
935 ASSERT(ret == 0);
936 if (WARN_ON(ret != 0) && modified)
937 btrfs_set_inode_full_sync(inode);
938 }
939 free_extent_map(split);
940 split = NULL;
941 }
942 remove_em:
943 if (extent_map_in_tree(em)) {
944 /*
945 * If the extent map is still in the tree it means that
946 * either of the following is true:
947 *
948 * 1) It fits entirely in our range (doesn't end beyond
949 * it or starts before it);
950 *
951 * 2) It starts before our range and/or ends after our
952 * range, and we were not able to allocate the extent
953 * maps for split operations, @split and @split2.
954 *
955 * If we are at case 2) then we just remove the entire
956 * extent map - this is fine since if anyone needs it to
957 * access the subranges outside our range, will just
958 * load it again from the subvolume tree's file extent
959 * item. However if the extent map was in the list of
960 * modified extents, then we must mark the inode for a
961 * full fsync, otherwise a fast fsync will miss this
962 * extent if it's new and needs to be logged.
963 */
964 if ((em->start < start || em_end > end) && modified) {
965 ASSERT(!split);
966 btrfs_set_inode_full_sync(inode);
967 }
968 remove_extent_mapping(inode, em);
969 }
970
971 /*
972 * Once for the tree reference (we replaced or removed the
973 * extent map from the tree).
974 */
975 free_extent_map(em);
976 next:
977 /* Once for us (for our lookup reference). */
978 free_extent_map(em);
979
980 em = next_em;
981 }
982
983 write_unlock(&em_tree->lock);
984
985 free_extent_map(split);
986 free_extent_map(split2);
987 }
988
989 /*
990 * Replace a range in the inode's extent map tree with a new extent map.
991 *
992 * @inode: The target inode.
993 * @new_em: The new extent map to add to the inode's extent map tree.
994 * @modified: Indicate if the new extent map should be added to the list of
995 * modified extents (for fast fsync tracking).
996 *
997 * Drops all the extent maps in the inode's extent map tree that intersect the
998 * range of the new extent map and adds the new extent map to the tree.
999 * The caller should have locked an appropriate file range in the inode's io
1000 * tree before calling this function.
1001 */
btrfs_replace_extent_map_range(struct btrfs_inode * inode,struct extent_map * new_em,bool modified)1002 int btrfs_replace_extent_map_range(struct btrfs_inode *inode,
1003 struct extent_map *new_em,
1004 bool modified)
1005 {
1006 const u64 end = new_em->start + new_em->len - 1;
1007 struct extent_map_tree *tree = &inode->extent_tree;
1008 int ret;
1009
1010 ASSERT(!extent_map_in_tree(new_em));
1011
1012 /*
1013 * The caller has locked an appropriate file range in the inode's io
1014 * tree, but getting -EEXIST when adding the new extent map can still
1015 * happen in case there are extents that partially cover the range, and
1016 * this is due to two tasks operating on different parts of the extent.
1017 * See commit 18e83ac75bfe67 ("Btrfs: fix unexpected EEXIST from
1018 * btrfs_get_extent") for an example and details.
1019 */
1020 do {
1021 btrfs_drop_extent_map_range(inode, new_em->start, end, false);
1022 write_lock(&tree->lock);
1023 ret = add_extent_mapping(inode, new_em, modified);
1024 write_unlock(&tree->lock);
1025 } while (ret == -EEXIST);
1026
1027 return ret;
1028 }
1029
1030 /*
1031 * Split off the first pre bytes from the extent_map at [start, start + len],
1032 * and set the block_start for it to new_logical.
1033 *
1034 * This function is used when an ordered_extent needs to be split.
1035 */
split_extent_map(struct btrfs_inode * inode,u64 start,u64 len,u64 pre,u64 new_logical)1036 int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre,
1037 u64 new_logical)
1038 {
1039 struct extent_map_tree *em_tree = &inode->extent_tree;
1040 struct extent_map *em;
1041 struct extent_map *split_pre = NULL;
1042 struct extent_map *split_mid = NULL;
1043 int ret = 0;
1044 unsigned long flags;
1045
1046 ASSERT(pre != 0);
1047 ASSERT(pre < len);
1048
1049 split_pre = alloc_extent_map();
1050 if (!split_pre)
1051 return -ENOMEM;
1052 split_mid = alloc_extent_map();
1053 if (!split_mid) {
1054 ret = -ENOMEM;
1055 goto out_free_pre;
1056 }
1057
1058 lock_extent(&inode->io_tree, start, start + len - 1, NULL);
1059 write_lock(&em_tree->lock);
1060 em = lookup_extent_mapping(em_tree, start, len);
1061 if (!em) {
1062 ret = -EIO;
1063 goto out_unlock;
1064 }
1065
1066 ASSERT(em->len == len);
1067 ASSERT(!extent_map_is_compressed(em));
1068 ASSERT(em->disk_bytenr < EXTENT_MAP_LAST_BYTE);
1069 ASSERT(em->flags & EXTENT_FLAG_PINNED);
1070 ASSERT(!(em->flags & EXTENT_FLAG_LOGGING));
1071 ASSERT(!list_empty(&em->list));
1072
1073 flags = em->flags;
1074 em->flags &= ~EXTENT_FLAG_PINNED;
1075
1076 /* First, replace the em with a new extent_map starting from * em->start */
1077 split_pre->start = em->start;
1078 split_pre->len = pre;
1079 split_pre->disk_bytenr = new_logical;
1080 split_pre->disk_num_bytes = split_pre->len;
1081 split_pre->offset = 0;
1082 split_pre->ram_bytes = split_pre->len;
1083 split_pre->flags = flags;
1084 split_pre->generation = em->generation;
1085
1086 replace_extent_mapping(inode, em, split_pre, 1);
1087
1088 /*
1089 * Now we only have an extent_map at:
1090 * [em->start, em->start + pre]
1091 */
1092
1093 /* Insert the middle extent_map. */
1094 split_mid->start = em->start + pre;
1095 split_mid->len = em->len - pre;
1096 split_mid->disk_bytenr = extent_map_block_start(em) + pre;
1097 split_mid->disk_num_bytes = split_mid->len;
1098 split_mid->offset = 0;
1099 split_mid->ram_bytes = split_mid->len;
1100 split_mid->flags = flags;
1101 split_mid->generation = em->generation;
1102 add_extent_mapping(inode, split_mid, 1);
1103
1104 /* Once for us */
1105 free_extent_map(em);
1106 /* Once for the tree */
1107 free_extent_map(em);
1108
1109 out_unlock:
1110 write_unlock(&em_tree->lock);
1111 unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
1112 free_extent_map(split_mid);
1113 out_free_pre:
1114 free_extent_map(split_pre);
1115 return ret;
1116 }
1117
1118 struct btrfs_em_shrink_ctx {
1119 long nr_to_scan;
1120 long scanned;
1121 };
1122
btrfs_scan_inode(struct btrfs_inode * inode,struct btrfs_em_shrink_ctx * ctx)1123 static long btrfs_scan_inode(struct btrfs_inode *inode, struct btrfs_em_shrink_ctx *ctx)
1124 {
1125 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1126 const u64 cur_fs_gen = btrfs_get_fs_generation(fs_info);
1127 struct extent_map_tree *tree = &inode->extent_tree;
1128 long nr_dropped = 0;
1129 struct rb_node *node;
1130
1131 /*
1132 * Take the mmap lock so that we serialize with the inode logging phase
1133 * of fsync because we may need to set the full sync flag on the inode,
1134 * in case we have to remove extent maps in the tree's list of modified
1135 * extents. If we set the full sync flag in the inode while an fsync is
1136 * in progress, we may risk missing new extents because before the flag
1137 * is set, fsync decides to only wait for writeback to complete and then
1138 * during inode logging it sees the flag set and uses the subvolume tree
1139 * to find new extents, which may not be there yet because ordered
1140 * extents haven't completed yet.
1141 *
1142 * We also do a try lock because otherwise we could deadlock. This is
1143 * because the shrinker for this filesystem may be invoked while we are
1144 * in a path that is holding the mmap lock in write mode. For example in
1145 * a reflink operation while COWing an extent buffer, when allocating
1146 * pages for a new extent buffer and under memory pressure, the shrinker
1147 * may be invoked, and therefore we would deadlock by attempting to read
1148 * lock the mmap lock while we are holding already a write lock on it.
1149 */
1150 if (!down_read_trylock(&inode->i_mmap_lock))
1151 return 0;
1152
1153 /*
1154 * We want to be fast so if the lock is busy we don't want to spend time
1155 * waiting for it - either some task is about to do IO for the inode or
1156 * we may have another task shrinking extent maps, here in this code, so
1157 * skip this inode.
1158 */
1159 if (!write_trylock(&tree->lock)) {
1160 up_read(&inode->i_mmap_lock);
1161 return 0;
1162 }
1163
1164 node = rb_first(&tree->root);
1165 while (node) {
1166 struct rb_node *next = rb_next(node);
1167 struct extent_map *em;
1168
1169 em = rb_entry(node, struct extent_map, rb_node);
1170 ctx->scanned++;
1171
1172 if (em->flags & EXTENT_FLAG_PINNED)
1173 goto next;
1174
1175 /*
1176 * If the inode is in the list of modified extents (new) and its
1177 * generation is the same (or is greater than) the current fs
1178 * generation, it means it was not yet persisted so we have to
1179 * set the full sync flag so that the next fsync will not miss
1180 * it.
1181 */
1182 if (!list_empty(&em->list) && em->generation >= cur_fs_gen)
1183 btrfs_set_inode_full_sync(inode);
1184
1185 remove_extent_mapping(inode, em);
1186 trace_btrfs_extent_map_shrinker_remove_em(inode, em);
1187 /* Drop the reference for the tree. */
1188 free_extent_map(em);
1189 nr_dropped++;
1190 next:
1191 if (ctx->scanned >= ctx->nr_to_scan)
1192 break;
1193
1194 /*
1195 * Stop if we need to reschedule or there's contention on the
1196 * lock. This is to avoid slowing other tasks trying to take the
1197 * lock.
1198 */
1199 if (need_resched() || rwlock_needbreak(&tree->lock) ||
1200 btrfs_fs_closing(fs_info))
1201 break;
1202 node = next;
1203 }
1204 write_unlock(&tree->lock);
1205 up_read(&inode->i_mmap_lock);
1206
1207 return nr_dropped;
1208 }
1209
btrfs_scan_root(struct btrfs_root * root,struct btrfs_em_shrink_ctx * ctx)1210 static long btrfs_scan_root(struct btrfs_root *root, struct btrfs_em_shrink_ctx *ctx)
1211 {
1212 struct btrfs_fs_info *fs_info = root->fs_info;
1213 struct btrfs_inode *inode;
1214 long nr_dropped = 0;
1215 u64 min_ino = fs_info->em_shrinker_last_ino + 1;
1216
1217 inode = btrfs_find_first_inode(root, min_ino);
1218 while (inode) {
1219 nr_dropped += btrfs_scan_inode(inode, ctx);
1220
1221 min_ino = btrfs_ino(inode) + 1;
1222 fs_info->em_shrinker_last_ino = btrfs_ino(inode);
1223 btrfs_add_delayed_iput(inode);
1224
1225 if (ctx->scanned >= ctx->nr_to_scan ||
1226 btrfs_fs_closing(inode->root->fs_info))
1227 break;
1228
1229 cond_resched();
1230
1231 inode = btrfs_find_first_inode(root, min_ino);
1232 }
1233
1234 if (inode) {
1235 /*
1236 * There are still inodes in this root or we happened to process
1237 * the last one and reached the scan limit. In either case set
1238 * the current root to this one, so we'll resume from the next
1239 * inode if there is one or we will find out this was the last
1240 * one and move to the next root.
1241 */
1242 fs_info->em_shrinker_last_root = btrfs_root_id(root);
1243 } else {
1244 /*
1245 * No more inodes in this root, set extent_map_shrinker_last_ino to 0 so
1246 * that when processing the next root we start from its first inode.
1247 */
1248 fs_info->em_shrinker_last_ino = 0;
1249 fs_info->em_shrinker_last_root = btrfs_root_id(root) + 1;
1250 }
1251
1252 return nr_dropped;
1253 }
1254
btrfs_extent_map_shrinker_worker(struct work_struct * work)1255 static void btrfs_extent_map_shrinker_worker(struct work_struct *work)
1256 {
1257 struct btrfs_fs_info *fs_info;
1258 struct btrfs_em_shrink_ctx ctx;
1259 u64 start_root_id;
1260 u64 next_root_id;
1261 bool cycled = false;
1262 long nr_dropped = 0;
1263
1264 fs_info = container_of(work, struct btrfs_fs_info, em_shrinker_work);
1265
1266 ctx.scanned = 0;
1267 ctx.nr_to_scan = atomic64_read(&fs_info->em_shrinker_nr_to_scan);
1268
1269 start_root_id = fs_info->em_shrinker_last_root;
1270 next_root_id = fs_info->em_shrinker_last_root;
1271
1272 if (trace_btrfs_extent_map_shrinker_scan_enter_enabled()) {
1273 s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1274
1275 trace_btrfs_extent_map_shrinker_scan_enter(fs_info, nr);
1276 }
1277
1278 while (ctx.scanned < ctx.nr_to_scan && !btrfs_fs_closing(fs_info)) {
1279 struct btrfs_root *root;
1280 unsigned long count;
1281
1282 cond_resched();
1283
1284 spin_lock(&fs_info->fs_roots_radix_lock);
1285 count = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1286 (void **)&root,
1287 (unsigned long)next_root_id, 1);
1288 if (count == 0) {
1289 spin_unlock(&fs_info->fs_roots_radix_lock);
1290 if (start_root_id > 0 && !cycled) {
1291 next_root_id = 0;
1292 fs_info->em_shrinker_last_root = 0;
1293 fs_info->em_shrinker_last_ino = 0;
1294 cycled = true;
1295 continue;
1296 }
1297 break;
1298 }
1299 next_root_id = btrfs_root_id(root) + 1;
1300 root = btrfs_grab_root(root);
1301 spin_unlock(&fs_info->fs_roots_radix_lock);
1302
1303 if (!root)
1304 continue;
1305
1306 if (is_fstree(btrfs_root_id(root)))
1307 nr_dropped += btrfs_scan_root(root, &ctx);
1308
1309 btrfs_put_root(root);
1310 }
1311
1312 if (trace_btrfs_extent_map_shrinker_scan_exit_enabled()) {
1313 s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
1314
1315 trace_btrfs_extent_map_shrinker_scan_exit(fs_info, nr_dropped, nr);
1316 }
1317
1318 atomic64_set(&fs_info->em_shrinker_nr_to_scan, 0);
1319 }
1320
btrfs_free_extent_maps(struct btrfs_fs_info * fs_info,long nr_to_scan)1321 void btrfs_free_extent_maps(struct btrfs_fs_info *fs_info, long nr_to_scan)
1322 {
1323 /*
1324 * Do nothing if the shrinker is already running. In case of high memory
1325 * pressure we can have a lot of tasks calling us and all passing the
1326 * same nr_to_scan value, but in reality we may need only to free
1327 * nr_to_scan extent maps (or less). In case we need to free more than
1328 * that, we will be called again by the fs shrinker, so no worries about
1329 * not doing enough work to reclaim memory from extent maps.
1330 * We can also be repeatedly called with the same nr_to_scan value
1331 * simply because the shrinker runs asynchronously and multiple calls
1332 * to this function are made before the shrinker does enough progress.
1333 *
1334 * That's why we set the atomic counter to nr_to_scan only if its
1335 * current value is zero, instead of incrementing the counter by
1336 * nr_to_scan.
1337 */
1338 if (atomic64_cmpxchg(&fs_info->em_shrinker_nr_to_scan, 0, nr_to_scan) != 0)
1339 return;
1340
1341 queue_work(system_unbound_wq, &fs_info->em_shrinker_work);
1342 }
1343
btrfs_init_extent_map_shrinker_work(struct btrfs_fs_info * fs_info)1344 void btrfs_init_extent_map_shrinker_work(struct btrfs_fs_info *fs_info)
1345 {
1346 atomic64_set(&fs_info->em_shrinker_nr_to_scan, 0);
1347 INIT_WORK(&fs_info->em_shrinker_work, btrfs_extent_map_shrinker_worker);
1348 }
1349