xref: /linux/drivers/clocksource/timer-nxp-pit.c (revision 70de5572a82b3d510df31d2c572c15cd53a00870)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2012-2013 Freescale Semiconductor, Inc.
4  * Copyright 2018,2021-2025 NXP
5  */
6 #include <linux/interrupt.h>
7 #include <linux/clockchips.h>
8 #include <linux/cpuhotplug.h>
9 #include <linux/clk.h>
10 #include <linux/of_address.h>
11 #include <linux/of_irq.h>
12 #include <linux/sched_clock.h>
13 #include <linux/platform_device.h>
14 
15 /*
16  * Each pit takes 0x10 Bytes register space
17  */
18 #define PIT0_OFFSET	0x100
19 #define PIT_CH(n)       (PIT0_OFFSET + 0x10 * (n))
20 
21 #define PITMCR(__base)	(__base)
22 
23 #define PITMCR_FRZ	BIT(0)
24 #define PITMCR_MDIS	BIT(1)
25 
26 #define PITLDVAL(__base)	(__base)
27 #define PITTCTRL(__base)	((__base) + 0x08)
28 
29 #define PITCVAL_OFFSET	0x04
30 #define PITCVAL(__base)	((__base) + 0x04)
31 
32 #define PITTCTRL_TEN			BIT(0)
33 #define PITTCTRL_TIE			BIT(1)
34 
35 #define PITTFLG(__base)	((__base) + 0x0c)
36 
37 #define PITTFLG_TIF			BIT(0)
38 
39 struct pit_timer {
40 	void __iomem *clksrc_base;
41 	void __iomem *clkevt_base;
42 	struct clock_event_device ced;
43 	struct clocksource cs;
44 	int rate;
45 };
46 
47 struct pit_timer_data {
48 	int max_pit_instances;
49 };
50 
51 static DEFINE_PER_CPU(struct pit_timer *, pit_timers);
52 
53 /*
54  * Global structure for multiple PITs initialization
55  */
56 static int pit_instances;
57 static int max_pit_instances = 1;
58 
59 static void __iomem *sched_clock_base;
60 
ced_to_pit(struct clock_event_device * ced)61 static inline struct pit_timer *ced_to_pit(struct clock_event_device *ced)
62 {
63 	return container_of(ced, struct pit_timer, ced);
64 }
65 
cs_to_pit(struct clocksource * cs)66 static inline struct pit_timer *cs_to_pit(struct clocksource *cs)
67 {
68 	return container_of(cs, struct pit_timer, cs);
69 }
70 
pit_module_enable(void __iomem * base)71 static inline void pit_module_enable(void __iomem *base)
72 {
73 	writel(0, PITMCR(base));
74 }
75 
pit_module_disable(void __iomem * base)76 static inline void pit_module_disable(void __iomem *base)
77 {
78 	writel(PITMCR_MDIS, PITMCR(base));
79 }
80 
pit_timer_enable(void __iomem * base,bool tie)81 static inline void pit_timer_enable(void __iomem *base, bool tie)
82 {
83 	u32 val = PITTCTRL_TEN | (tie ? PITTCTRL_TIE : 0);
84 
85 	writel(val, PITTCTRL(base));
86 }
87 
pit_timer_disable(void __iomem * base)88 static inline void pit_timer_disable(void __iomem *base)
89 {
90 	writel(0, PITTCTRL(base));
91 }
92 
pit_timer_set_counter(void __iomem * base,unsigned int cnt)93 static inline void pit_timer_set_counter(void __iomem *base, unsigned int cnt)
94 {
95 	writel(cnt, PITLDVAL(base));
96 }
97 
pit_timer_irqack(struct pit_timer * pit)98 static inline void pit_timer_irqack(struct pit_timer *pit)
99 {
100 	writel(PITTFLG_TIF, PITTFLG(pit->clkevt_base));
101 }
102 
pit_read_sched_clock(void)103 static u64 notrace pit_read_sched_clock(void)
104 {
105 	return ~readl(sched_clock_base);
106 }
107 
pit_timer_clocksource_read(struct clocksource * cs)108 static u64 pit_timer_clocksource_read(struct clocksource *cs)
109 {
110 	struct pit_timer *pit = cs_to_pit(cs);
111 
112 	return (u64)~readl(PITCVAL(pit->clksrc_base));
113 }
114 
pit_clocksource_init(struct pit_timer * pit,const char * name,void __iomem * base,unsigned long rate)115 static int pit_clocksource_init(struct pit_timer *pit, const char *name,
116 				void __iomem *base, unsigned long rate)
117 {
118 	/*
119 	 * The channels 0 and 1 can be chained to build a 64-bit
120 	 * timer. Let's use the channel 2 as a clocksource and leave
121 	 * the channels 0 and 1 unused for anyone else who needs them
122 	 */
123 	pit->clksrc_base = base + PIT_CH(2);
124 	pit->cs.name = name;
125 	pit->cs.rating = 300;
126 	pit->cs.read = pit_timer_clocksource_read;
127 	pit->cs.mask = CLOCKSOURCE_MASK(32);
128 	pit->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
129 
130 	/* set the max load value and start the clock source counter */
131 	pit_timer_disable(pit->clksrc_base);
132 	pit_timer_set_counter(pit->clksrc_base, ~0);
133 	pit_timer_enable(pit->clksrc_base, 0);
134 
135 	sched_clock_base = pit->clksrc_base + PITCVAL_OFFSET;
136 	sched_clock_register(pit_read_sched_clock, 32, rate);
137 
138 	return clocksource_register_hz(&pit->cs, rate);
139 }
140 
pit_set_next_event(unsigned long delta,struct clock_event_device * ced)141 static int pit_set_next_event(unsigned long delta, struct clock_event_device *ced)
142 {
143 	struct pit_timer *pit = ced_to_pit(ced);
144 
145 	/*
146 	 * set a new value to PITLDVAL register will not restart the timer,
147 	 * to abort the current cycle and start a timer period with the new
148 	 * value, the timer must be disabled and enabled again.
149 	 * and the PITLAVAL should be set to delta minus one according to pit
150 	 * hardware requirement.
151 	 */
152 	pit_timer_disable(pit->clkevt_base);
153 	pit_timer_set_counter(pit->clkevt_base, delta - 1);
154 	pit_timer_enable(pit->clkevt_base, true);
155 
156 	return 0;
157 }
158 
pit_shutdown(struct clock_event_device * ced)159 static int pit_shutdown(struct clock_event_device *ced)
160 {
161 	struct pit_timer *pit = ced_to_pit(ced);
162 
163 	pit_timer_disable(pit->clkevt_base);
164 
165 	return 0;
166 }
167 
pit_set_periodic(struct clock_event_device * ced)168 static int pit_set_periodic(struct clock_event_device *ced)
169 {
170 	struct pit_timer *pit = ced_to_pit(ced);
171 
172 	pit_set_next_event(pit->rate / HZ, ced);
173 
174 	return 0;
175 }
176 
pit_timer_interrupt(int irq,void * dev_id)177 static irqreturn_t pit_timer_interrupt(int irq, void *dev_id)
178 {
179 	struct clock_event_device *ced = dev_id;
180 	struct pit_timer *pit = ced_to_pit(ced);
181 
182 	pit_timer_irqack(pit);
183 
184 	/*
185 	 * pit hardware doesn't support oneshot, it will generate an interrupt
186 	 * and reload the counter value from PITLDVAL when PITCVAL reach zero,
187 	 * and start the counter again. So software need to disable the timer
188 	 * to stop the counter loop in ONESHOT mode.
189 	 */
190 	if (likely(clockevent_state_oneshot(ced)))
191 		pit_timer_disable(pit->clkevt_base);
192 
193 	ced->event_handler(ced);
194 
195 	return IRQ_HANDLED;
196 }
197 
pit_clockevent_per_cpu_init(struct pit_timer * pit,const char * name,void __iomem * base,unsigned long rate,int irq,unsigned int cpu)198 static int pit_clockevent_per_cpu_init(struct pit_timer *pit, const char *name,
199 				       void __iomem *base, unsigned long rate,
200 				       int irq, unsigned int cpu)
201 {
202 	int ret;
203 
204 	/*
205 	 * The channels 0 and 1 can be chained to build a 64-bit
206 	 * timer. Let's use the channel 3 as a clockevent and leave
207 	 * the channels 0 and 1 unused for anyone else who needs them
208 	 */
209 	pit->clkevt_base = base + PIT_CH(3);
210 	pit->rate = rate;
211 
212 	pit_timer_disable(pit->clkevt_base);
213 
214 	pit_timer_irqack(pit);
215 
216 	ret = request_irq(irq, pit_timer_interrupt, IRQF_TIMER | IRQF_NOBALANCING,
217 			  name, &pit->ced);
218 	if (ret)
219 		return ret;
220 
221 	pit->ced.cpumask = cpumask_of(cpu);
222 	pit->ced.irq = irq;
223 
224 	pit->ced.name = name;
225 	pit->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
226 	pit->ced.set_state_shutdown = pit_shutdown;
227 	pit->ced.set_state_periodic = pit_set_periodic;
228 	pit->ced.set_next_event	= pit_set_next_event;
229 	pit->ced.rating	= 300;
230 
231 	per_cpu(pit_timers, cpu) = pit;
232 
233 	return 0;
234 }
235 
pit_clockevent_per_cpu_exit(struct pit_timer * pit,unsigned int cpu)236 static void pit_clockevent_per_cpu_exit(struct pit_timer *pit, unsigned int cpu)
237 {
238 	pit_timer_disable(pit->clkevt_base);
239 	free_irq(pit->ced.irq, &pit->ced);
240 	per_cpu(pit_timers, cpu) = NULL;
241 }
242 
pit_clockevent_starting_cpu(unsigned int cpu)243 static int pit_clockevent_starting_cpu(unsigned int cpu)
244 {
245 	struct pit_timer *pit = per_cpu(pit_timers, cpu);
246 	int ret;
247 
248 	if (!pit)
249 		return 0;
250 
251 	ret = irq_force_affinity(pit->ced.irq, cpumask_of(cpu));
252 	if (ret) {
253 		pit_clockevent_per_cpu_exit(pit, cpu);
254 		return ret;
255 	}
256 
257 	/*
258 	 * The value for the LDVAL register trigger is calculated as:
259 	 * LDVAL trigger = (period / clock period) - 1
260 	 * The pit is a 32-bit down count timer, when the counter value
261 	 * reaches 0, it will generate an interrupt, thus the minimal
262 	 * LDVAL trigger value is 1. And then the min_delta is
263 	 * minimal LDVAL trigger value + 1, and the max_delta is full 32-bit.
264 	 */
265 	clockevents_config_and_register(&pit->ced, pit->rate, 2, 0xffffffff);
266 
267 	return 0;
268 }
269 
pit_timer_init(struct device_node * np)270 static int pit_timer_init(struct device_node *np)
271 {
272 	struct pit_timer *pit;
273 	struct clk *pit_clk;
274 	void __iomem *timer_base;
275 	const char *name = of_node_full_name(np);
276 	unsigned long clk_rate;
277 	int irq, ret;
278 
279 	pit = kzalloc(sizeof(*pit), GFP_KERNEL);
280 	if (!pit)
281 		return -ENOMEM;
282 
283 	ret = -ENXIO;
284 	timer_base = of_iomap(np, 0);
285 	if (!timer_base) {
286 		pr_err("Failed to iomap\n");
287 		goto out_kfree;
288 	}
289 
290 	ret = -EINVAL;
291 	irq = irq_of_parse_and_map(np, 0);
292 	if (irq <= 0) {
293 		pr_err("Failed to irq_of_parse_and_map\n");
294 		goto out_iounmap;
295 	}
296 
297 	pit_clk = of_clk_get(np, 0);
298 	if (IS_ERR(pit_clk)) {
299 		ret = PTR_ERR(pit_clk);
300 		goto out_irq_dispose_mapping;
301 	}
302 
303 	ret = clk_prepare_enable(pit_clk);
304 	if (ret)
305 		goto out_clk_put;
306 
307 	clk_rate = clk_get_rate(pit_clk);
308 
309 	pit_module_disable(timer_base);
310 
311 	ret = pit_clocksource_init(pit, name, timer_base, clk_rate);
312 	if (ret) {
313 		pr_err("Failed to initialize clocksource '%pOF'\n", np);
314 		goto out_pit_module_disable;
315 	}
316 
317 	ret = pit_clockevent_per_cpu_init(pit, name, timer_base, clk_rate, irq, pit_instances);
318 	if (ret) {
319 		pr_err("Failed to initialize clockevent '%pOF'\n", np);
320 		goto out_pit_clocksource_unregister;
321 	}
322 
323 	/* enable the pit module */
324 	pit_module_enable(timer_base);
325 
326 	pit_instances++;
327 
328 	if (pit_instances == max_pit_instances) {
329 		ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "PIT timer:starting",
330 					pit_clockevent_starting_cpu, NULL);
331 		if (ret < 0)
332 			goto out_pit_clocksource_unregister;
333 	}
334 
335 	return 0;
336 
337 out_pit_clocksource_unregister:
338 	clocksource_unregister(&pit->cs);
339 out_pit_module_disable:
340 	pit_module_disable(timer_base);
341 	clk_disable_unprepare(pit_clk);
342 out_clk_put:
343 	clk_put(pit_clk);
344 out_irq_dispose_mapping:
345 	irq_dispose_mapping(irq);
346 out_iounmap:
347 	iounmap(timer_base);
348 out_kfree:
349 	kfree(pit);
350 
351 	return ret;
352 }
353 
pit_timer_probe(struct platform_device * pdev)354 static int pit_timer_probe(struct platform_device *pdev)
355 {
356 	const struct pit_timer_data *pit_timer_data;
357 
358 	pit_timer_data = of_device_get_match_data(&pdev->dev);
359 	if (pit_timer_data)
360 		max_pit_instances = pit_timer_data->max_pit_instances;
361 
362 	return pit_timer_init(pdev->dev.of_node);
363 }
364 
365 static struct pit_timer_data s32g2_data = { .max_pit_instances = 2 };
366 
367 static const struct of_device_id pit_timer_of_match[] = {
368 	{ .compatible = "nxp,s32g2-pit", .data = &s32g2_data },
369 	{ }
370 };
371 MODULE_DEVICE_TABLE(of, pit_timer_of_match);
372 
373 static struct platform_driver nxp_pit_driver = {
374 	.driver = {
375 		.name = "nxp-pit",
376 		.of_match_table = pit_timer_of_match,
377 	},
378 	.probe = pit_timer_probe,
379 };
380 module_platform_driver(nxp_pit_driver);
381 
382 TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init);
383