1 // SPDX-License-Identifier: GPL-2.0-only 2 /* cpu_feature_enabled() cannot be used this early */ 3 #define USE_EARLY_PGTABLE_L5 4 5 #include <linux/memblock.h> 6 #include <linux/linkage.h> 7 #include <linux/bitops.h> 8 #include <linux/kernel.h> 9 #include <linux/export.h> 10 #include <linux/percpu.h> 11 #include <linux/string.h> 12 #include <linux/ctype.h> 13 #include <linux/delay.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/clock.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/smt.h> 18 #include <linux/init.h> 19 #include <linux/kprobes.h> 20 #include <linux/kgdb.h> 21 #include <linux/mem_encrypt.h> 22 #include <linux/smp.h> 23 #include <linux/cpu.h> 24 #include <linux/io.h> 25 #include <linux/syscore_ops.h> 26 #include <linux/pgtable.h> 27 #include <linux/stackprotector.h> 28 #include <linux/utsname.h> 29 30 #include <asm/alternative.h> 31 #include <asm/cmdline.h> 32 #include <asm/perf_event.h> 33 #include <asm/mmu_context.h> 34 #include <asm/doublefault.h> 35 #include <asm/archrandom.h> 36 #include <asm/hypervisor.h> 37 #include <asm/processor.h> 38 #include <asm/tlbflush.h> 39 #include <asm/debugreg.h> 40 #include <asm/sections.h> 41 #include <asm/vsyscall.h> 42 #include <linux/topology.h> 43 #include <linux/cpumask.h> 44 #include <linux/atomic.h> 45 #include <asm/proto.h> 46 #include <asm/setup.h> 47 #include <asm/apic.h> 48 #include <asm/desc.h> 49 #include <asm/fpu/api.h> 50 #include <asm/mtrr.h> 51 #include <asm/hwcap2.h> 52 #include <linux/numa.h> 53 #include <asm/numa.h> 54 #include <asm/asm.h> 55 #include <asm/bugs.h> 56 #include <asm/cpu.h> 57 #include <asm/mce.h> 58 #include <asm/msr.h> 59 #include <asm/cacheinfo.h> 60 #include <asm/memtype.h> 61 #include <asm/microcode.h> 62 #include <asm/intel-family.h> 63 #include <asm/cpu_device_id.h> 64 #include <asm/fred.h> 65 #include <asm/uv/uv.h> 66 #include <asm/ia32.h> 67 #include <asm/set_memory.h> 68 #include <asm/traps.h> 69 #include <asm/sev.h> 70 #include <asm/tdx.h> 71 #include <asm/posted_intr.h> 72 #include <asm/runtime-const.h> 73 74 #include "cpu.h" 75 76 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 77 EXPORT_PER_CPU_SYMBOL(cpu_info); 78 79 u32 elf_hwcap2 __read_mostly; 80 81 /* Number of siblings per CPU package */ 82 unsigned int __max_threads_per_core __ro_after_init = 1; 83 EXPORT_SYMBOL(__max_threads_per_core); 84 85 unsigned int __max_dies_per_package __ro_after_init = 1; 86 EXPORT_SYMBOL(__max_dies_per_package); 87 88 unsigned int __max_logical_packages __ro_after_init = 1; 89 EXPORT_SYMBOL(__max_logical_packages); 90 91 unsigned int __num_cores_per_package __ro_after_init = 1; 92 EXPORT_SYMBOL(__num_cores_per_package); 93 94 unsigned int __num_threads_per_package __ro_after_init = 1; 95 EXPORT_SYMBOL(__num_threads_per_package); 96 97 static struct ppin_info { 98 int feature; 99 int msr_ppin_ctl; 100 int msr_ppin; 101 } ppin_info[] = { 102 [X86_VENDOR_INTEL] = { 103 .feature = X86_FEATURE_INTEL_PPIN, 104 .msr_ppin_ctl = MSR_PPIN_CTL, 105 .msr_ppin = MSR_PPIN 106 }, 107 [X86_VENDOR_AMD] = { 108 .feature = X86_FEATURE_AMD_PPIN, 109 .msr_ppin_ctl = MSR_AMD_PPIN_CTL, 110 .msr_ppin = MSR_AMD_PPIN 111 }, 112 }; 113 114 static const struct x86_cpu_id ppin_cpuids[] = { 115 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]), 116 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]), 117 118 /* Legacy models without CPUID enumeration */ 119 X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]), 120 X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]), 121 X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]), 122 X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]), 123 X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]), 124 X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]), 125 X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]), 126 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]), 127 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]), 128 X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]), 129 X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]), 130 131 {} 132 }; 133 134 static void ppin_init(struct cpuinfo_x86 *c) 135 { 136 const struct x86_cpu_id *id; 137 unsigned long long val; 138 struct ppin_info *info; 139 140 id = x86_match_cpu(ppin_cpuids); 141 if (!id) 142 return; 143 144 /* 145 * Testing the presence of the MSR is not enough. Need to check 146 * that the PPIN_CTL allows reading of the PPIN. 147 */ 148 info = (struct ppin_info *)id->driver_data; 149 150 if (rdmsrl_safe(info->msr_ppin_ctl, &val)) 151 goto clear_ppin; 152 153 if ((val & 3UL) == 1UL) { 154 /* PPIN locked in disabled mode */ 155 goto clear_ppin; 156 } 157 158 /* If PPIN is disabled, try to enable */ 159 if (!(val & 2UL)) { 160 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL); 161 rdmsrl_safe(info->msr_ppin_ctl, &val); 162 } 163 164 /* Is the enable bit set? */ 165 if (val & 2UL) { 166 c->ppin = __rdmsr(info->msr_ppin); 167 set_cpu_cap(c, info->feature); 168 return; 169 } 170 171 clear_ppin: 172 clear_cpu_cap(c, info->feature); 173 } 174 175 static void default_init(struct cpuinfo_x86 *c) 176 { 177 #ifdef CONFIG_X86_64 178 cpu_detect_cache_sizes(c); 179 #else 180 /* Not much we can do here... */ 181 /* Check if at least it has cpuid */ 182 if (c->cpuid_level == -1) { 183 /* No cpuid. It must be an ancient CPU */ 184 if (c->x86 == 4) 185 strcpy(c->x86_model_id, "486"); 186 else if (c->x86 == 3) 187 strcpy(c->x86_model_id, "386"); 188 } 189 #endif 190 } 191 192 static const struct cpu_dev default_cpu = { 193 .c_init = default_init, 194 .c_vendor = "Unknown", 195 .c_x86_vendor = X86_VENDOR_UNKNOWN, 196 }; 197 198 static const struct cpu_dev *this_cpu = &default_cpu; 199 200 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { 201 #ifdef CONFIG_X86_64 202 /* 203 * We need valid kernel segments for data and code in long mode too 204 * IRET will check the segment types kkeil 2000/10/28 205 * Also sysret mandates a special GDT layout 206 * 207 * TLS descriptors are currently at a different place compared to i386. 208 * Hopefully nobody expects them at a fixed place (Wine?) 209 */ 210 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff), 211 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff), 212 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff), 213 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff), 214 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff), 215 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff), 216 #else 217 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff), 218 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), 219 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff), 220 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff), 221 /* 222 * Segments used for calling PnP BIOS have byte granularity. 223 * They code segments and data segments have fixed 64k limits, 224 * the transfer segment sizes are set at run time. 225 */ 226 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff), 227 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff), 228 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff), 229 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0), 230 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0), 231 /* 232 * The APM segments have byte granularity and their bases 233 * are set at run time. All have 64k limits. 234 */ 235 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff), 236 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff), 237 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff), 238 239 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), 240 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), 241 #endif 242 } }; 243 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); 244 245 #ifdef CONFIG_X86_64 246 static int __init x86_nopcid_setup(char *s) 247 { 248 /* nopcid doesn't accept parameters */ 249 if (s) 250 return -EINVAL; 251 252 /* do not emit a message if the feature is not present */ 253 if (!boot_cpu_has(X86_FEATURE_PCID)) 254 return 0; 255 256 setup_clear_cpu_cap(X86_FEATURE_PCID); 257 pr_info("nopcid: PCID feature disabled\n"); 258 return 0; 259 } 260 early_param("nopcid", x86_nopcid_setup); 261 #endif 262 263 static int __init x86_noinvpcid_setup(char *s) 264 { 265 /* noinvpcid doesn't accept parameters */ 266 if (s) 267 return -EINVAL; 268 269 /* do not emit a message if the feature is not present */ 270 if (!boot_cpu_has(X86_FEATURE_INVPCID)) 271 return 0; 272 273 setup_clear_cpu_cap(X86_FEATURE_INVPCID); 274 pr_info("noinvpcid: INVPCID feature disabled\n"); 275 return 0; 276 } 277 early_param("noinvpcid", x86_noinvpcid_setup); 278 279 #ifdef CONFIG_X86_32 280 static int cachesize_override = -1; 281 static int disable_x86_serial_nr = 1; 282 283 static int __init cachesize_setup(char *str) 284 { 285 get_option(&str, &cachesize_override); 286 return 1; 287 } 288 __setup("cachesize=", cachesize_setup); 289 290 /* Standard macro to see if a specific flag is changeable */ 291 static inline int flag_is_changeable_p(u32 flag) 292 { 293 u32 f1, f2; 294 295 /* 296 * Cyrix and IDT cpus allow disabling of CPUID 297 * so the code below may return different results 298 * when it is executed before and after enabling 299 * the CPUID. Add "volatile" to not allow gcc to 300 * optimize the subsequent calls to this function. 301 */ 302 asm volatile ("pushfl \n\t" 303 "pushfl \n\t" 304 "popl %0 \n\t" 305 "movl %0, %1 \n\t" 306 "xorl %2, %0 \n\t" 307 "pushl %0 \n\t" 308 "popfl \n\t" 309 "pushfl \n\t" 310 "popl %0 \n\t" 311 "popfl \n\t" 312 313 : "=&r" (f1), "=&r" (f2) 314 : "ir" (flag)); 315 316 return ((f1^f2) & flag) != 0; 317 } 318 319 /* Probe for the CPUID instruction */ 320 int have_cpuid_p(void) 321 { 322 return flag_is_changeable_p(X86_EFLAGS_ID); 323 } 324 325 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 326 { 327 unsigned long lo, hi; 328 329 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) 330 return; 331 332 /* Disable processor serial number: */ 333 334 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 335 lo |= 0x200000; 336 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 337 338 pr_notice("CPU serial number disabled.\n"); 339 clear_cpu_cap(c, X86_FEATURE_PN); 340 341 /* Disabling the serial number may affect the cpuid level */ 342 c->cpuid_level = cpuid_eax(0); 343 } 344 345 static int __init x86_serial_nr_setup(char *s) 346 { 347 disable_x86_serial_nr = 0; 348 return 1; 349 } 350 __setup("serialnumber", x86_serial_nr_setup); 351 #else 352 static inline int flag_is_changeable_p(u32 flag) 353 { 354 return 1; 355 } 356 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 357 { 358 } 359 #endif 360 361 static __always_inline void setup_smep(struct cpuinfo_x86 *c) 362 { 363 if (cpu_has(c, X86_FEATURE_SMEP)) 364 cr4_set_bits(X86_CR4_SMEP); 365 } 366 367 static __always_inline void setup_smap(struct cpuinfo_x86 *c) 368 { 369 unsigned long eflags = native_save_fl(); 370 371 /* This should have been cleared long ago */ 372 BUG_ON(eflags & X86_EFLAGS_AC); 373 374 if (cpu_has(c, X86_FEATURE_SMAP)) 375 cr4_set_bits(X86_CR4_SMAP); 376 } 377 378 static __always_inline void setup_umip(struct cpuinfo_x86 *c) 379 { 380 /* Check the boot processor, plus build option for UMIP. */ 381 if (!cpu_feature_enabled(X86_FEATURE_UMIP)) 382 goto out; 383 384 /* Check the current processor's cpuid bits. */ 385 if (!cpu_has(c, X86_FEATURE_UMIP)) 386 goto out; 387 388 cr4_set_bits(X86_CR4_UMIP); 389 390 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n"); 391 392 return; 393 394 out: 395 /* 396 * Make sure UMIP is disabled in case it was enabled in a 397 * previous boot (e.g., via kexec). 398 */ 399 cr4_clear_bits(X86_CR4_UMIP); 400 } 401 402 /* These bits should not change their value after CPU init is finished. */ 403 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | 404 X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED; 405 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning); 406 static unsigned long cr4_pinned_bits __ro_after_init; 407 408 void native_write_cr0(unsigned long val) 409 { 410 unsigned long bits_missing = 0; 411 412 set_register: 413 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory"); 414 415 if (static_branch_likely(&cr_pinning)) { 416 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) { 417 bits_missing = X86_CR0_WP; 418 val |= bits_missing; 419 goto set_register; 420 } 421 /* Warn after we've set the missing bits. */ 422 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n"); 423 } 424 } 425 EXPORT_SYMBOL(native_write_cr0); 426 427 void __no_profile native_write_cr4(unsigned long val) 428 { 429 unsigned long bits_changed = 0; 430 431 set_register: 432 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory"); 433 434 if (static_branch_likely(&cr_pinning)) { 435 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) { 436 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits; 437 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits; 438 goto set_register; 439 } 440 /* Warn after we've corrected the changed bits. */ 441 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n", 442 bits_changed); 443 } 444 } 445 #if IS_MODULE(CONFIG_LKDTM) 446 EXPORT_SYMBOL_GPL(native_write_cr4); 447 #endif 448 449 void cr4_update_irqsoff(unsigned long set, unsigned long clear) 450 { 451 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 452 453 lockdep_assert_irqs_disabled(); 454 455 newval = (cr4 & ~clear) | set; 456 if (newval != cr4) { 457 this_cpu_write(cpu_tlbstate.cr4, newval); 458 __write_cr4(newval); 459 } 460 } 461 EXPORT_SYMBOL(cr4_update_irqsoff); 462 463 /* Read the CR4 shadow. */ 464 unsigned long cr4_read_shadow(void) 465 { 466 return this_cpu_read(cpu_tlbstate.cr4); 467 } 468 EXPORT_SYMBOL_GPL(cr4_read_shadow); 469 470 void cr4_init(void) 471 { 472 unsigned long cr4 = __read_cr4(); 473 474 if (boot_cpu_has(X86_FEATURE_PCID)) 475 cr4 |= X86_CR4_PCIDE; 476 if (static_branch_likely(&cr_pinning)) 477 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits; 478 479 __write_cr4(cr4); 480 481 /* Initialize cr4 shadow for this CPU. */ 482 this_cpu_write(cpu_tlbstate.cr4, cr4); 483 } 484 485 /* 486 * Once CPU feature detection is finished (and boot params have been 487 * parsed), record any of the sensitive CR bits that are set, and 488 * enable CR pinning. 489 */ 490 static void __init setup_cr_pinning(void) 491 { 492 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask; 493 static_key_enable(&cr_pinning.key); 494 } 495 496 static __init int x86_nofsgsbase_setup(char *arg) 497 { 498 /* Require an exact match without trailing characters. */ 499 if (strlen(arg)) 500 return 0; 501 502 /* Do not emit a message if the feature is not present. */ 503 if (!boot_cpu_has(X86_FEATURE_FSGSBASE)) 504 return 1; 505 506 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE); 507 pr_info("FSGSBASE disabled via kernel command line\n"); 508 return 1; 509 } 510 __setup("nofsgsbase", x86_nofsgsbase_setup); 511 512 /* 513 * Protection Keys are not available in 32-bit mode. 514 */ 515 static bool pku_disabled; 516 517 static __always_inline void setup_pku(struct cpuinfo_x86 *c) 518 { 519 if (c == &boot_cpu_data) { 520 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU)) 521 return; 522 /* 523 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid 524 * bit to be set. Enforce it. 525 */ 526 setup_force_cpu_cap(X86_FEATURE_OSPKE); 527 528 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) { 529 return; 530 } 531 532 cr4_set_bits(X86_CR4_PKE); 533 /* Load the default PKRU value */ 534 pkru_write_default(); 535 } 536 537 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 538 static __init int setup_disable_pku(char *arg) 539 { 540 /* 541 * Do not clear the X86_FEATURE_PKU bit. All of the 542 * runtime checks are against OSPKE so clearing the 543 * bit does nothing. 544 * 545 * This way, we will see "pku" in cpuinfo, but not 546 * "ospke", which is exactly what we want. It shows 547 * that the CPU has PKU, but the OS has not enabled it. 548 * This happens to be exactly how a system would look 549 * if we disabled the config option. 550 */ 551 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); 552 pku_disabled = true; 553 return 1; 554 } 555 __setup("nopku", setup_disable_pku); 556 #endif 557 558 #ifdef CONFIG_X86_KERNEL_IBT 559 560 __noendbr u64 ibt_save(bool disable) 561 { 562 u64 msr = 0; 563 564 if (cpu_feature_enabled(X86_FEATURE_IBT)) { 565 rdmsrl(MSR_IA32_S_CET, msr); 566 if (disable) 567 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN); 568 } 569 570 return msr; 571 } 572 573 __noendbr void ibt_restore(u64 save) 574 { 575 u64 msr; 576 577 if (cpu_feature_enabled(X86_FEATURE_IBT)) { 578 rdmsrl(MSR_IA32_S_CET, msr); 579 msr &= ~CET_ENDBR_EN; 580 msr |= (save & CET_ENDBR_EN); 581 wrmsrl(MSR_IA32_S_CET, msr); 582 } 583 } 584 585 #endif 586 587 static __always_inline void setup_cet(struct cpuinfo_x86 *c) 588 { 589 bool user_shstk, kernel_ibt; 590 591 if (!IS_ENABLED(CONFIG_X86_CET)) 592 return; 593 594 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT); 595 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) && 596 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK); 597 598 if (!kernel_ibt && !user_shstk) 599 return; 600 601 if (user_shstk) 602 set_cpu_cap(c, X86_FEATURE_USER_SHSTK); 603 604 if (kernel_ibt) 605 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN); 606 else 607 wrmsrl(MSR_IA32_S_CET, 0); 608 609 cr4_set_bits(X86_CR4_CET); 610 611 if (kernel_ibt && ibt_selftest()) { 612 pr_err("IBT selftest: Failed!\n"); 613 wrmsrl(MSR_IA32_S_CET, 0); 614 setup_clear_cpu_cap(X86_FEATURE_IBT); 615 } 616 } 617 618 __noendbr void cet_disable(void) 619 { 620 if (!(cpu_feature_enabled(X86_FEATURE_IBT) || 621 cpu_feature_enabled(X86_FEATURE_SHSTK))) 622 return; 623 624 wrmsrl(MSR_IA32_S_CET, 0); 625 wrmsrl(MSR_IA32_U_CET, 0); 626 } 627 628 /* 629 * Some CPU features depend on higher CPUID levels, which may not always 630 * be available due to CPUID level capping or broken virtualization 631 * software. Add those features to this table to auto-disable them. 632 */ 633 struct cpuid_dependent_feature { 634 u32 feature; 635 u32 level; 636 }; 637 638 static const struct cpuid_dependent_feature 639 cpuid_dependent_features[] = { 640 { X86_FEATURE_MWAIT, 0x00000005 }, 641 { X86_FEATURE_DCA, 0x00000009 }, 642 { X86_FEATURE_XSAVE, 0x0000000d }, 643 { 0, 0 } 644 }; 645 646 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) 647 { 648 const struct cpuid_dependent_feature *df; 649 650 for (df = cpuid_dependent_features; df->feature; df++) { 651 652 if (!cpu_has(c, df->feature)) 653 continue; 654 /* 655 * Note: cpuid_level is set to -1 if unavailable, but 656 * extended_extended_level is set to 0 if unavailable 657 * and the legitimate extended levels are all negative 658 * when signed; hence the weird messing around with 659 * signs here... 660 */ 661 if (!((s32)df->level < 0 ? 662 (u32)df->level > (u32)c->extended_cpuid_level : 663 (s32)df->level > (s32)c->cpuid_level)) 664 continue; 665 666 clear_cpu_cap(c, df->feature); 667 if (!warn) 668 continue; 669 670 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", 671 x86_cap_flag(df->feature), df->level); 672 } 673 } 674 675 /* 676 * Naming convention should be: <Name> [(<Codename>)] 677 * This table only is used unless init_<vendor>() below doesn't set it; 678 * in particular, if CPUID levels 0x80000002..4 are supported, this 679 * isn't used 680 */ 681 682 /* Look up CPU names by table lookup. */ 683 static const char *table_lookup_model(struct cpuinfo_x86 *c) 684 { 685 #ifdef CONFIG_X86_32 686 const struct legacy_cpu_model_info *info; 687 688 if (c->x86_model >= 16) 689 return NULL; /* Range check */ 690 691 if (!this_cpu) 692 return NULL; 693 694 info = this_cpu->legacy_models; 695 696 while (info->family) { 697 if (info->family == c->x86) 698 return info->model_names[c->x86_model]; 699 info++; 700 } 701 #endif 702 return NULL; /* Not found */ 703 } 704 705 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */ 706 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); 707 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); 708 709 #ifdef CONFIG_X86_32 710 /* The 32-bit entry code needs to find cpu_entry_area. */ 711 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area); 712 #endif 713 714 /* Load the original GDT from the per-cpu structure */ 715 void load_direct_gdt(int cpu) 716 { 717 struct desc_ptr gdt_descr; 718 719 gdt_descr.address = (long)get_cpu_gdt_rw(cpu); 720 gdt_descr.size = GDT_SIZE - 1; 721 load_gdt(&gdt_descr); 722 } 723 EXPORT_SYMBOL_GPL(load_direct_gdt); 724 725 /* Load a fixmap remapping of the per-cpu GDT */ 726 void load_fixmap_gdt(int cpu) 727 { 728 struct desc_ptr gdt_descr; 729 730 gdt_descr.address = (long)get_cpu_gdt_ro(cpu); 731 gdt_descr.size = GDT_SIZE - 1; 732 load_gdt(&gdt_descr); 733 } 734 EXPORT_SYMBOL_GPL(load_fixmap_gdt); 735 736 /** 737 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base 738 * @cpu: The CPU number for which this is invoked 739 * 740 * Invoked during early boot to switch from early GDT and early per CPU to 741 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base 742 * switch is implicit by loading the direct GDT. On 64bit this requires 743 * to update GSBASE. 744 */ 745 void __init switch_gdt_and_percpu_base(int cpu) 746 { 747 load_direct_gdt(cpu); 748 749 #ifdef CONFIG_X86_64 750 /* 751 * No need to load %gs. It is already correct. 752 * 753 * Writing %gs on 64bit would zero GSBASE which would make any per 754 * CPU operation up to the point of the wrmsrl() fault. 755 * 756 * Set GSBASE to the new offset. Until the wrmsrl() happens the 757 * early mapping is still valid. That means the GSBASE update will 758 * lose any prior per CPU data which was not copied over in 759 * setup_per_cpu_areas(). 760 * 761 * This works even with stackprotector enabled because the 762 * per CPU stack canary is 0 in both per CPU areas. 763 */ 764 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu)); 765 #else 766 /* 767 * %fs is already set to __KERNEL_PERCPU, but after switching GDT 768 * it is required to load FS again so that the 'hidden' part is 769 * updated from the new GDT. Up to this point the early per CPU 770 * translation is active. Any content of the early per CPU data 771 * which was not copied over in setup_per_cpu_areas() is lost. 772 */ 773 loadsegment(fs, __KERNEL_PERCPU); 774 #endif 775 } 776 777 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; 778 779 static void get_model_name(struct cpuinfo_x86 *c) 780 { 781 unsigned int *v; 782 char *p, *q, *s; 783 784 if (c->extended_cpuid_level < 0x80000004) 785 return; 786 787 v = (unsigned int *)c->x86_model_id; 788 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); 789 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); 790 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); 791 c->x86_model_id[48] = 0; 792 793 /* Trim whitespace */ 794 p = q = s = &c->x86_model_id[0]; 795 796 while (*p == ' ') 797 p++; 798 799 while (*p) { 800 /* Note the last non-whitespace index */ 801 if (!isspace(*p)) 802 s = q; 803 804 *q++ = *p++; 805 } 806 807 *(s + 1) = '\0'; 808 } 809 810 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) 811 { 812 unsigned int n, dummy, ebx, ecx, edx, l2size; 813 814 n = c->extended_cpuid_level; 815 816 if (n >= 0x80000005) { 817 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); 818 c->x86_cache_size = (ecx>>24) + (edx>>24); 819 #ifdef CONFIG_X86_64 820 /* On K8 L1 TLB is inclusive, so don't count it */ 821 c->x86_tlbsize = 0; 822 #endif 823 } 824 825 if (n < 0x80000006) /* Some chips just has a large L1. */ 826 return; 827 828 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); 829 l2size = ecx >> 16; 830 831 #ifdef CONFIG_X86_64 832 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); 833 #else 834 /* do processor-specific cache resizing */ 835 if (this_cpu->legacy_cache_size) 836 l2size = this_cpu->legacy_cache_size(c, l2size); 837 838 /* Allow user to override all this if necessary. */ 839 if (cachesize_override != -1) 840 l2size = cachesize_override; 841 842 if (l2size == 0) 843 return; /* Again, no L2 cache is possible */ 844 #endif 845 846 c->x86_cache_size = l2size; 847 } 848 849 u16 __read_mostly tlb_lli_4k[NR_INFO]; 850 u16 __read_mostly tlb_lli_2m[NR_INFO]; 851 u16 __read_mostly tlb_lli_4m[NR_INFO]; 852 u16 __read_mostly tlb_lld_4k[NR_INFO]; 853 u16 __read_mostly tlb_lld_2m[NR_INFO]; 854 u16 __read_mostly tlb_lld_4m[NR_INFO]; 855 u16 __read_mostly tlb_lld_1g[NR_INFO]; 856 857 static void cpu_detect_tlb(struct cpuinfo_x86 *c) 858 { 859 if (this_cpu->c_detect_tlb) 860 this_cpu->c_detect_tlb(c); 861 862 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", 863 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], 864 tlb_lli_4m[ENTRIES]); 865 866 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", 867 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], 868 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); 869 } 870 871 static void get_cpu_vendor(struct cpuinfo_x86 *c) 872 { 873 char *v = c->x86_vendor_id; 874 int i; 875 876 for (i = 0; i < X86_VENDOR_NUM; i++) { 877 if (!cpu_devs[i]) 878 break; 879 880 if (!strcmp(v, cpu_devs[i]->c_ident[0]) || 881 (cpu_devs[i]->c_ident[1] && 882 !strcmp(v, cpu_devs[i]->c_ident[1]))) { 883 884 this_cpu = cpu_devs[i]; 885 c->x86_vendor = this_cpu->c_x86_vendor; 886 return; 887 } 888 } 889 890 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ 891 "CPU: Your system may be unstable.\n", v); 892 893 c->x86_vendor = X86_VENDOR_UNKNOWN; 894 this_cpu = &default_cpu; 895 } 896 897 void cpu_detect(struct cpuinfo_x86 *c) 898 { 899 /* Get vendor name */ 900 cpuid(0x00000000, (unsigned int *)&c->cpuid_level, 901 (unsigned int *)&c->x86_vendor_id[0], 902 (unsigned int *)&c->x86_vendor_id[8], 903 (unsigned int *)&c->x86_vendor_id[4]); 904 905 c->x86 = 4; 906 /* Intel-defined flags: level 0x00000001 */ 907 if (c->cpuid_level >= 0x00000001) { 908 u32 junk, tfms, cap0, misc; 909 910 cpuid(0x00000001, &tfms, &misc, &junk, &cap0); 911 c->x86 = x86_family(tfms); 912 c->x86_model = x86_model(tfms); 913 c->x86_stepping = x86_stepping(tfms); 914 915 if (cap0 & (1<<19)) { 916 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; 917 c->x86_cache_alignment = c->x86_clflush_size; 918 } 919 } 920 } 921 922 static void apply_forced_caps(struct cpuinfo_x86 *c) 923 { 924 int i; 925 926 for (i = 0; i < NCAPINTS + NBUGINTS; i++) { 927 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 928 c->x86_capability[i] |= cpu_caps_set[i]; 929 } 930 } 931 932 static void init_speculation_control(struct cpuinfo_x86 *c) 933 { 934 /* 935 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support, 936 * and they also have a different bit for STIBP support. Also, 937 * a hypervisor might have set the individual AMD bits even on 938 * Intel CPUs, for finer-grained selection of what's available. 939 */ 940 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) { 941 set_cpu_cap(c, X86_FEATURE_IBRS); 942 set_cpu_cap(c, X86_FEATURE_IBPB); 943 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 944 } 945 946 if (cpu_has(c, X86_FEATURE_INTEL_STIBP)) 947 set_cpu_cap(c, X86_FEATURE_STIBP); 948 949 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) || 950 cpu_has(c, X86_FEATURE_VIRT_SSBD)) 951 set_cpu_cap(c, X86_FEATURE_SSBD); 952 953 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) { 954 set_cpu_cap(c, X86_FEATURE_IBRS); 955 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 956 } 957 958 if (cpu_has(c, X86_FEATURE_AMD_IBPB)) 959 set_cpu_cap(c, X86_FEATURE_IBPB); 960 961 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) { 962 set_cpu_cap(c, X86_FEATURE_STIBP); 963 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 964 } 965 966 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) { 967 set_cpu_cap(c, X86_FEATURE_SSBD); 968 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 969 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD); 970 } 971 } 972 973 void get_cpu_cap(struct cpuinfo_x86 *c) 974 { 975 u32 eax, ebx, ecx, edx; 976 977 /* Intel-defined flags: level 0x00000001 */ 978 if (c->cpuid_level >= 0x00000001) { 979 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 980 981 c->x86_capability[CPUID_1_ECX] = ecx; 982 c->x86_capability[CPUID_1_EDX] = edx; 983 } 984 985 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */ 986 if (c->cpuid_level >= 0x00000006) 987 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); 988 989 /* Additional Intel-defined flags: level 0x00000007 */ 990 if (c->cpuid_level >= 0x00000007) { 991 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); 992 c->x86_capability[CPUID_7_0_EBX] = ebx; 993 c->x86_capability[CPUID_7_ECX] = ecx; 994 c->x86_capability[CPUID_7_EDX] = edx; 995 996 /* Check valid sub-leaf index before accessing it */ 997 if (eax >= 1) { 998 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx); 999 c->x86_capability[CPUID_7_1_EAX] = eax; 1000 } 1001 } 1002 1003 /* Extended state features: level 0x0000000d */ 1004 if (c->cpuid_level >= 0x0000000d) { 1005 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); 1006 1007 c->x86_capability[CPUID_D_1_EAX] = eax; 1008 } 1009 1010 /* AMD-defined flags: level 0x80000001 */ 1011 eax = cpuid_eax(0x80000000); 1012 c->extended_cpuid_level = eax; 1013 1014 if ((eax & 0xffff0000) == 0x80000000) { 1015 if (eax >= 0x80000001) { 1016 cpuid(0x80000001, &eax, &ebx, &ecx, &edx); 1017 1018 c->x86_capability[CPUID_8000_0001_ECX] = ecx; 1019 c->x86_capability[CPUID_8000_0001_EDX] = edx; 1020 } 1021 } 1022 1023 if (c->extended_cpuid_level >= 0x80000007) { 1024 cpuid(0x80000007, &eax, &ebx, &ecx, &edx); 1025 1026 c->x86_capability[CPUID_8000_0007_EBX] = ebx; 1027 c->x86_power = edx; 1028 } 1029 1030 if (c->extended_cpuid_level >= 0x80000008) { 1031 cpuid(0x80000008, &eax, &ebx, &ecx, &edx); 1032 c->x86_capability[CPUID_8000_0008_EBX] = ebx; 1033 } 1034 1035 if (c->extended_cpuid_level >= 0x8000000a) 1036 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); 1037 1038 if (c->extended_cpuid_level >= 0x8000001f) 1039 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f); 1040 1041 if (c->extended_cpuid_level >= 0x80000021) 1042 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021); 1043 1044 init_scattered_cpuid_features(c); 1045 init_speculation_control(c); 1046 1047 /* 1048 * Clear/Set all flags overridden by options, after probe. 1049 * This needs to happen each time we re-probe, which may happen 1050 * several times during CPU initialization. 1051 */ 1052 apply_forced_caps(c); 1053 } 1054 1055 void get_cpu_address_sizes(struct cpuinfo_x86 *c) 1056 { 1057 u32 eax, ebx, ecx, edx; 1058 1059 if (!cpu_has(c, X86_FEATURE_CPUID) || 1060 (c->extended_cpuid_level < 0x80000008)) { 1061 if (IS_ENABLED(CONFIG_X86_64)) { 1062 c->x86_clflush_size = 64; 1063 c->x86_phys_bits = 36; 1064 c->x86_virt_bits = 48; 1065 } else { 1066 c->x86_clflush_size = 32; 1067 c->x86_virt_bits = 32; 1068 c->x86_phys_bits = 32; 1069 1070 if (cpu_has(c, X86_FEATURE_PAE) || 1071 cpu_has(c, X86_FEATURE_PSE36)) 1072 c->x86_phys_bits = 36; 1073 } 1074 } else { 1075 cpuid(0x80000008, &eax, &ebx, &ecx, &edx); 1076 1077 c->x86_virt_bits = (eax >> 8) & 0xff; 1078 c->x86_phys_bits = eax & 0xff; 1079 1080 /* Provide a sane default if not enumerated: */ 1081 if (!c->x86_clflush_size) 1082 c->x86_clflush_size = 32; 1083 } 1084 1085 c->x86_cache_bits = c->x86_phys_bits; 1086 c->x86_cache_alignment = c->x86_clflush_size; 1087 } 1088 1089 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) 1090 { 1091 #ifdef CONFIG_X86_32 1092 int i; 1093 1094 /* 1095 * First of all, decide if this is a 486 or higher 1096 * It's a 486 if we can modify the AC flag 1097 */ 1098 if (flag_is_changeable_p(X86_EFLAGS_AC)) 1099 c->x86 = 4; 1100 else 1101 c->x86 = 3; 1102 1103 for (i = 0; i < X86_VENDOR_NUM; i++) 1104 if (cpu_devs[i] && cpu_devs[i]->c_identify) { 1105 c->x86_vendor_id[0] = 0; 1106 cpu_devs[i]->c_identify(c); 1107 if (c->x86_vendor_id[0]) { 1108 get_cpu_vendor(c); 1109 break; 1110 } 1111 } 1112 #endif 1113 } 1114 1115 #define NO_SPECULATION BIT(0) 1116 #define NO_MELTDOWN BIT(1) 1117 #define NO_SSB BIT(2) 1118 #define NO_L1TF BIT(3) 1119 #define NO_MDS BIT(4) 1120 #define MSBDS_ONLY BIT(5) 1121 #define NO_SWAPGS BIT(6) 1122 #define NO_ITLB_MULTIHIT BIT(7) 1123 #define NO_SPECTRE_V2 BIT(8) 1124 #define NO_MMIO BIT(9) 1125 #define NO_EIBRS_PBRSB BIT(10) 1126 #define NO_BHI BIT(11) 1127 1128 #define VULNWL(vendor, family, model, whitelist) \ 1129 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist) 1130 1131 #define VULNWL_INTEL(vfm, whitelist) \ 1132 X86_MATCH_VFM(vfm, whitelist) 1133 1134 #define VULNWL_AMD(family, whitelist) \ 1135 VULNWL(AMD, family, X86_MODEL_ANY, whitelist) 1136 1137 #define VULNWL_HYGON(family, whitelist) \ 1138 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist) 1139 1140 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = { 1141 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION), 1142 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION), 1143 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION), 1144 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION), 1145 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION), 1146 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION), 1147 1148 /* Intel Family 6 */ 1149 VULNWL_INTEL(INTEL_TIGERLAKE, NO_MMIO), 1150 VULNWL_INTEL(INTEL_TIGERLAKE_L, NO_MMIO), 1151 VULNWL_INTEL(INTEL_ALDERLAKE, NO_MMIO), 1152 VULNWL_INTEL(INTEL_ALDERLAKE_L, NO_MMIO), 1153 1154 VULNWL_INTEL(INTEL_ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT), 1155 VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT), 1156 VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), 1157 VULNWL_INTEL(INTEL_ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT), 1158 VULNWL_INTEL(INTEL_ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), 1159 1160 VULNWL_INTEL(INTEL_ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1161 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1162 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1163 VULNWL_INTEL(INTEL_ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1164 VULNWL_INTEL(INTEL_XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1165 VULNWL_INTEL(INTEL_XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1166 1167 VULNWL_INTEL(INTEL_CORE_YONAH, NO_SSB), 1168 1169 VULNWL_INTEL(INTEL_ATOM_AIRMONT_MID, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY), 1170 VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), 1171 1172 VULNWL_INTEL(INTEL_ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), 1173 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), 1174 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB), 1175 1176 /* 1177 * Technically, swapgs isn't serializing on AMD (despite it previously 1178 * being documented as such in the APM). But according to AMD, %gs is 1179 * updated non-speculatively, and the issuing of %gs-relative memory 1180 * operands will be blocked until the %gs update completes, which is 1181 * good enough for our purposes. 1182 */ 1183 1184 VULNWL_INTEL(INTEL_ATOM_TREMONT, NO_EIBRS_PBRSB), 1185 VULNWL_INTEL(INTEL_ATOM_TREMONT_L, NO_EIBRS_PBRSB), 1186 VULNWL_INTEL(INTEL_ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB), 1187 1188 /* AMD Family 0xf - 0x12 */ 1189 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), 1190 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), 1191 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), 1192 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), 1193 1194 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */ 1195 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI), 1196 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI), 1197 1198 /* Zhaoxin Family 7 */ 1199 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI), 1200 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI), 1201 {} 1202 }; 1203 1204 #define VULNBL(vendor, family, model, blacklist) \ 1205 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist) 1206 1207 #define VULNBL_INTEL_STEPPINGS(vfm, steppings, issues) \ 1208 X86_MATCH_VFM_STEPPINGS(vfm, steppings, issues) 1209 1210 #define VULNBL_AMD(family, blacklist) \ 1211 VULNBL(AMD, family, X86_MODEL_ANY, blacklist) 1212 1213 #define VULNBL_HYGON(family, blacklist) \ 1214 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist) 1215 1216 #define SRBDS BIT(0) 1217 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */ 1218 #define MMIO BIT(1) 1219 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */ 1220 #define MMIO_SBDS BIT(2) 1221 /* CPU is affected by RETbleed, speculating where you would not expect it */ 1222 #define RETBLEED BIT(3) 1223 /* CPU is affected by SMT (cross-thread) return predictions */ 1224 #define SMT_RSB BIT(4) 1225 /* CPU is affected by SRSO */ 1226 #define SRSO BIT(5) 1227 /* CPU is affected by GDS */ 1228 #define GDS BIT(6) 1229 /* CPU is affected by Register File Data Sampling */ 1230 #define RFDS BIT(7) 1231 1232 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = { 1233 VULNBL_INTEL_STEPPINGS(INTEL_IVYBRIDGE, X86_STEPPING_ANY, SRBDS), 1234 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL, X86_STEPPING_ANY, SRBDS), 1235 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_L, X86_STEPPING_ANY, SRBDS), 1236 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_G, X86_STEPPING_ANY, SRBDS), 1237 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_X, X86_STEPPING_ANY, MMIO), 1238 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPING_ANY, MMIO), 1239 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_G, X86_STEPPING_ANY, SRBDS), 1240 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_X, X86_STEPPING_ANY, MMIO), 1241 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL, X86_STEPPING_ANY, SRBDS), 1242 VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS), 1243 VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), 1244 VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), 1245 VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), 1246 VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), 1247 VULNBL_INTEL_STEPPINGS(INTEL_CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED), 1248 VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS), 1249 VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS), 1250 VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS), 1251 VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS), 1252 VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED), 1253 VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS), 1254 VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE_L, X86_STEPPING_ANY, GDS), 1255 VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE, X86_STEPPING_ANY, GDS), 1256 VULNBL_INTEL_STEPPINGS(INTEL_LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED), 1257 VULNBL_INTEL_STEPPINGS(INTEL_ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS), 1258 VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE, X86_STEPPING_ANY, RFDS), 1259 VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE_L, X86_STEPPING_ANY, RFDS), 1260 VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE, X86_STEPPING_ANY, RFDS), 1261 VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_P, X86_STEPPING_ANY, RFDS), 1262 VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_S, X86_STEPPING_ANY, RFDS), 1263 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GRACEMONT, X86_STEPPING_ANY, RFDS), 1264 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS), 1265 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO | RFDS), 1266 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS), 1267 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT, X86_STEPPING_ANY, RFDS), 1268 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_D, X86_STEPPING_ANY, RFDS), 1269 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY, RFDS), 1270 1271 VULNBL_AMD(0x15, RETBLEED), 1272 VULNBL_AMD(0x16, RETBLEED), 1273 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO), 1274 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO), 1275 VULNBL_AMD(0x19, SRSO), 1276 {} 1277 }; 1278 1279 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which) 1280 { 1281 const struct x86_cpu_id *m = x86_match_cpu(table); 1282 1283 return m && !!(m->driver_data & which); 1284 } 1285 1286 u64 x86_read_arch_cap_msr(void) 1287 { 1288 u64 x86_arch_cap_msr = 0; 1289 1290 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1291 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr); 1292 1293 return x86_arch_cap_msr; 1294 } 1295 1296 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr) 1297 { 1298 return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO && 1299 x86_arch_cap_msr & ARCH_CAP_PSDP_NO && 1300 x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO); 1301 } 1302 1303 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr) 1304 { 1305 /* The "immunity" bit trumps everything else: */ 1306 if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO) 1307 return false; 1308 1309 /* 1310 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to 1311 * indicate that mitigation is needed because guest is running on a 1312 * vulnerable hardware or may migrate to such hardware: 1313 */ 1314 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR) 1315 return true; 1316 1317 /* Only consult the blacklist when there is no enumeration: */ 1318 return cpu_matches(cpu_vuln_blacklist, RFDS); 1319 } 1320 1321 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c) 1322 { 1323 u64 x86_arch_cap_msr = x86_read_arch_cap_msr(); 1324 1325 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */ 1326 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) && 1327 !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO)) 1328 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT); 1329 1330 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION)) 1331 return; 1332 1333 setup_force_cpu_bug(X86_BUG_SPECTRE_V1); 1334 1335 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) 1336 setup_force_cpu_bug(X86_BUG_SPECTRE_V2); 1337 1338 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) && 1339 !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) && 1340 !cpu_has(c, X86_FEATURE_AMD_SSB_NO)) 1341 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS); 1342 1343 /* 1344 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature 1345 * flag and protect from vendor-specific bugs via the whitelist. 1346 * 1347 * Don't use AutoIBRS when SNP is enabled because it degrades host 1348 * userspace indirect branch performance. 1349 */ 1350 if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) || 1351 (cpu_has(c, X86_FEATURE_AUTOIBRS) && 1352 !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) { 1353 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED); 1354 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) && 1355 !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO)) 1356 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB); 1357 } 1358 1359 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) && 1360 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) { 1361 setup_force_cpu_bug(X86_BUG_MDS); 1362 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY)) 1363 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY); 1364 } 1365 1366 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS)) 1367 setup_force_cpu_bug(X86_BUG_SWAPGS); 1368 1369 /* 1370 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when: 1371 * - TSX is supported or 1372 * - TSX_CTRL is present 1373 * 1374 * TSX_CTRL check is needed for cases when TSX could be disabled before 1375 * the kernel boot e.g. kexec. 1376 * TSX_CTRL check alone is not sufficient for cases when the microcode 1377 * update is not present or running as guest that don't get TSX_CTRL. 1378 */ 1379 if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) && 1380 (cpu_has(c, X86_FEATURE_RTM) || 1381 (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))) 1382 setup_force_cpu_bug(X86_BUG_TAA); 1383 1384 /* 1385 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed 1386 * in the vulnerability blacklist. 1387 * 1388 * Some of the implications and mitigation of Shared Buffers Data 1389 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as 1390 * SRBDS. 1391 */ 1392 if ((cpu_has(c, X86_FEATURE_RDRAND) || 1393 cpu_has(c, X86_FEATURE_RDSEED)) && 1394 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS)) 1395 setup_force_cpu_bug(X86_BUG_SRBDS); 1396 1397 /* 1398 * Processor MMIO Stale Data bug enumeration 1399 * 1400 * Affected CPU list is generally enough to enumerate the vulnerability, 1401 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may 1402 * not want the guest to enumerate the bug. 1403 * 1404 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist, 1405 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits. 1406 */ 1407 if (!arch_cap_mmio_immune(x86_arch_cap_msr)) { 1408 if (cpu_matches(cpu_vuln_blacklist, MMIO)) 1409 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA); 1410 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO)) 1411 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN); 1412 } 1413 1414 if (!cpu_has(c, X86_FEATURE_BTC_NO)) { 1415 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA)) 1416 setup_force_cpu_bug(X86_BUG_RETBLEED); 1417 } 1418 1419 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB)) 1420 setup_force_cpu_bug(X86_BUG_SMT_RSB); 1421 1422 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) { 1423 if (cpu_matches(cpu_vuln_blacklist, SRSO)) 1424 setup_force_cpu_bug(X86_BUG_SRSO); 1425 } 1426 1427 /* 1428 * Check if CPU is vulnerable to GDS. If running in a virtual machine on 1429 * an affected processor, the VMM may have disabled the use of GATHER by 1430 * disabling AVX2. The only way to do this in HW is to clear XCR0[2], 1431 * which means that AVX will be disabled. 1432 */ 1433 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) && 1434 boot_cpu_has(X86_FEATURE_AVX)) 1435 setup_force_cpu_bug(X86_BUG_GDS); 1436 1437 if (vulnerable_to_rfds(x86_arch_cap_msr)) 1438 setup_force_cpu_bug(X86_BUG_RFDS); 1439 1440 /* When virtualized, eIBRS could be hidden, assume vulnerable */ 1441 if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) && 1442 !cpu_matches(cpu_vuln_whitelist, NO_BHI) && 1443 (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) || 1444 boot_cpu_has(X86_FEATURE_HYPERVISOR))) 1445 setup_force_cpu_bug(X86_BUG_BHI); 1446 1447 if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET)) 1448 setup_force_cpu_bug(X86_BUG_IBPB_NO_RET); 1449 1450 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN)) 1451 return; 1452 1453 /* Rogue Data Cache Load? No! */ 1454 if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO) 1455 return; 1456 1457 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN); 1458 1459 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF)) 1460 return; 1461 1462 setup_force_cpu_bug(X86_BUG_L1TF); 1463 } 1464 1465 /* 1466 * The NOPL instruction is supposed to exist on all CPUs of family >= 6; 1467 * unfortunately, that's not true in practice because of early VIA 1468 * chips and (more importantly) broken virtualizers that are not easy 1469 * to detect. In the latter case it doesn't even *fail* reliably, so 1470 * probing for it doesn't even work. Disable it completely on 32-bit 1471 * unless we can find a reliable way to detect all the broken cases. 1472 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). 1473 */ 1474 static void detect_nopl(void) 1475 { 1476 #ifdef CONFIG_X86_32 1477 setup_clear_cpu_cap(X86_FEATURE_NOPL); 1478 #else 1479 setup_force_cpu_cap(X86_FEATURE_NOPL); 1480 #endif 1481 } 1482 1483 /* 1484 * We parse cpu parameters early because fpu__init_system() is executed 1485 * before parse_early_param(). 1486 */ 1487 static void __init cpu_parse_early_param(void) 1488 { 1489 char arg[128]; 1490 char *argptr = arg, *opt; 1491 int arglen, taint = 0; 1492 1493 #ifdef CONFIG_X86_32 1494 if (cmdline_find_option_bool(boot_command_line, "no387")) 1495 #ifdef CONFIG_MATH_EMULATION 1496 setup_clear_cpu_cap(X86_FEATURE_FPU); 1497 #else 1498 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n"); 1499 #endif 1500 1501 if (cmdline_find_option_bool(boot_command_line, "nofxsr")) 1502 setup_clear_cpu_cap(X86_FEATURE_FXSR); 1503 #endif 1504 1505 if (cmdline_find_option_bool(boot_command_line, "noxsave")) 1506 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 1507 1508 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt")) 1509 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); 1510 1511 if (cmdline_find_option_bool(boot_command_line, "noxsaves")) 1512 setup_clear_cpu_cap(X86_FEATURE_XSAVES); 1513 1514 if (cmdline_find_option_bool(boot_command_line, "nousershstk")) 1515 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK); 1516 1517 /* Minimize the gap between FRED is available and available but disabled. */ 1518 arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg)); 1519 if (arglen != 2 || strncmp(arg, "on", 2)) 1520 setup_clear_cpu_cap(X86_FEATURE_FRED); 1521 1522 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg)); 1523 if (arglen <= 0) 1524 return; 1525 1526 pr_info("Clearing CPUID bits:"); 1527 1528 while (argptr) { 1529 bool found __maybe_unused = false; 1530 unsigned int bit; 1531 1532 opt = strsep(&argptr, ","); 1533 1534 /* 1535 * Handle naked numbers first for feature flags which don't 1536 * have names. 1537 */ 1538 if (!kstrtouint(opt, 10, &bit)) { 1539 if (bit < NCAPINTS * 32) { 1540 1541 /* empty-string, i.e., ""-defined feature flags */ 1542 if (!x86_cap_flags[bit]) 1543 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit)); 1544 else 1545 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit)); 1546 1547 setup_clear_cpu_cap(bit); 1548 taint++; 1549 } 1550 /* 1551 * The assumption is that there are no feature names with only 1552 * numbers in the name thus go to the next argument. 1553 */ 1554 continue; 1555 } 1556 1557 for (bit = 0; bit < 32 * NCAPINTS; bit++) { 1558 if (!x86_cap_flag(bit)) 1559 continue; 1560 1561 if (strcmp(x86_cap_flag(bit), opt)) 1562 continue; 1563 1564 pr_cont(" %s", opt); 1565 setup_clear_cpu_cap(bit); 1566 taint++; 1567 found = true; 1568 break; 1569 } 1570 1571 if (!found) 1572 pr_cont(" (unknown: %s)", opt); 1573 } 1574 pr_cont("\n"); 1575 1576 if (taint) 1577 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1578 } 1579 1580 /* 1581 * Do minimum CPU detection early. 1582 * Fields really needed: vendor, cpuid_level, family, model, mask, 1583 * cache alignment. 1584 * The others are not touched to avoid unwanted side effects. 1585 * 1586 * WARNING: this function is only called on the boot CPU. Don't add code 1587 * here that is supposed to run on all CPUs. 1588 */ 1589 static void __init early_identify_cpu(struct cpuinfo_x86 *c) 1590 { 1591 memset(&c->x86_capability, 0, sizeof(c->x86_capability)); 1592 c->extended_cpuid_level = 0; 1593 1594 if (!have_cpuid_p()) 1595 identify_cpu_without_cpuid(c); 1596 1597 /* cyrix could have cpuid enabled via c_identify()*/ 1598 if (have_cpuid_p()) { 1599 cpu_detect(c); 1600 get_cpu_vendor(c); 1601 intel_unlock_cpuid_leafs(c); 1602 get_cpu_cap(c); 1603 setup_force_cpu_cap(X86_FEATURE_CPUID); 1604 get_cpu_address_sizes(c); 1605 cpu_parse_early_param(); 1606 1607 cpu_init_topology(c); 1608 1609 if (this_cpu->c_early_init) 1610 this_cpu->c_early_init(c); 1611 1612 c->cpu_index = 0; 1613 filter_cpuid_features(c, false); 1614 1615 if (this_cpu->c_bsp_init) 1616 this_cpu->c_bsp_init(c); 1617 } else { 1618 setup_clear_cpu_cap(X86_FEATURE_CPUID); 1619 get_cpu_address_sizes(c); 1620 cpu_init_topology(c); 1621 } 1622 1623 setup_force_cpu_cap(X86_FEATURE_ALWAYS); 1624 1625 cpu_set_bug_bits(c); 1626 1627 sld_setup(c); 1628 1629 #ifdef CONFIG_X86_32 1630 /* 1631 * Regardless of whether PCID is enumerated, the SDM says 1632 * that it can't be enabled in 32-bit mode. 1633 */ 1634 setup_clear_cpu_cap(X86_FEATURE_PCID); 1635 #endif 1636 1637 /* 1638 * Later in the boot process pgtable_l5_enabled() relies on 1639 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not 1640 * enabled by this point we need to clear the feature bit to avoid 1641 * false-positives at the later stage. 1642 * 1643 * pgtable_l5_enabled() can be false here for several reasons: 1644 * - 5-level paging is disabled compile-time; 1645 * - it's 32-bit kernel; 1646 * - machine doesn't support 5-level paging; 1647 * - user specified 'no5lvl' in kernel command line. 1648 */ 1649 if (!pgtable_l5_enabled()) 1650 setup_clear_cpu_cap(X86_FEATURE_LA57); 1651 1652 detect_nopl(); 1653 } 1654 1655 void __init early_cpu_init(void) 1656 { 1657 const struct cpu_dev *const *cdev; 1658 int count = 0; 1659 1660 #ifdef CONFIG_PROCESSOR_SELECT 1661 pr_info("KERNEL supported cpus:\n"); 1662 #endif 1663 1664 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { 1665 const struct cpu_dev *cpudev = *cdev; 1666 1667 if (count >= X86_VENDOR_NUM) 1668 break; 1669 cpu_devs[count] = cpudev; 1670 count++; 1671 1672 #ifdef CONFIG_PROCESSOR_SELECT 1673 { 1674 unsigned int j; 1675 1676 for (j = 0; j < 2; j++) { 1677 if (!cpudev->c_ident[j]) 1678 continue; 1679 pr_info(" %s %s\n", cpudev->c_vendor, 1680 cpudev->c_ident[j]); 1681 } 1682 } 1683 #endif 1684 } 1685 early_identify_cpu(&boot_cpu_data); 1686 } 1687 1688 static bool detect_null_seg_behavior(void) 1689 { 1690 /* 1691 * Empirically, writing zero to a segment selector on AMD does 1692 * not clear the base, whereas writing zero to a segment 1693 * selector on Intel does clear the base. Intel's behavior 1694 * allows slightly faster context switches in the common case 1695 * where GS is unused by the prev and next threads. 1696 * 1697 * Since neither vendor documents this anywhere that I can see, 1698 * detect it directly instead of hard-coding the choice by 1699 * vendor. 1700 * 1701 * I've designated AMD's behavior as the "bug" because it's 1702 * counterintuitive and less friendly. 1703 */ 1704 1705 unsigned long old_base, tmp; 1706 rdmsrl(MSR_FS_BASE, old_base); 1707 wrmsrl(MSR_FS_BASE, 1); 1708 loadsegment(fs, 0); 1709 rdmsrl(MSR_FS_BASE, tmp); 1710 wrmsrl(MSR_FS_BASE, old_base); 1711 return tmp == 0; 1712 } 1713 1714 void check_null_seg_clears_base(struct cpuinfo_x86 *c) 1715 { 1716 /* BUG_NULL_SEG is only relevant with 64bit userspace */ 1717 if (!IS_ENABLED(CONFIG_X86_64)) 1718 return; 1719 1720 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE)) 1721 return; 1722 1723 /* 1724 * CPUID bit above wasn't set. If this kernel is still running 1725 * as a HV guest, then the HV has decided not to advertize 1726 * that CPUID bit for whatever reason. For example, one 1727 * member of the migration pool might be vulnerable. Which 1728 * means, the bug is present: set the BUG flag and return. 1729 */ 1730 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) { 1731 set_cpu_bug(c, X86_BUG_NULL_SEG); 1732 return; 1733 } 1734 1735 /* 1736 * Zen2 CPUs also have this behaviour, but no CPUID bit. 1737 * 0x18 is the respective family for Hygon. 1738 */ 1739 if ((c->x86 == 0x17 || c->x86 == 0x18) && 1740 detect_null_seg_behavior()) 1741 return; 1742 1743 /* All the remaining ones are affected */ 1744 set_cpu_bug(c, X86_BUG_NULL_SEG); 1745 } 1746 1747 static void generic_identify(struct cpuinfo_x86 *c) 1748 { 1749 c->extended_cpuid_level = 0; 1750 1751 if (!have_cpuid_p()) 1752 identify_cpu_without_cpuid(c); 1753 1754 /* cyrix could have cpuid enabled via c_identify()*/ 1755 if (!have_cpuid_p()) 1756 return; 1757 1758 cpu_detect(c); 1759 1760 get_cpu_vendor(c); 1761 intel_unlock_cpuid_leafs(c); 1762 get_cpu_cap(c); 1763 1764 get_cpu_address_sizes(c); 1765 1766 get_model_name(c); /* Default name */ 1767 1768 /* 1769 * ESPFIX is a strange bug. All real CPUs have it. Paravirt 1770 * systems that run Linux at CPL > 0 may or may not have the 1771 * issue, but, even if they have the issue, there's absolutely 1772 * nothing we can do about it because we can't use the real IRET 1773 * instruction. 1774 * 1775 * NB: For the time being, only 32-bit kernels support 1776 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose 1777 * whether to apply espfix using paravirt hooks. If any 1778 * non-paravirt system ever shows up that does *not* have the 1779 * ESPFIX issue, we can change this. 1780 */ 1781 #ifdef CONFIG_X86_32 1782 set_cpu_bug(c, X86_BUG_ESPFIX); 1783 #endif 1784 } 1785 1786 /* 1787 * This does the hard work of actually picking apart the CPU stuff... 1788 */ 1789 static void identify_cpu(struct cpuinfo_x86 *c) 1790 { 1791 int i; 1792 1793 c->loops_per_jiffy = loops_per_jiffy; 1794 c->x86_cache_size = 0; 1795 c->x86_vendor = X86_VENDOR_UNKNOWN; 1796 c->x86_model = c->x86_stepping = 0; /* So far unknown... */ 1797 c->x86_vendor_id[0] = '\0'; /* Unset */ 1798 c->x86_model_id[0] = '\0'; /* Unset */ 1799 #ifdef CONFIG_X86_64 1800 c->x86_clflush_size = 64; 1801 c->x86_phys_bits = 36; 1802 c->x86_virt_bits = 48; 1803 #else 1804 c->cpuid_level = -1; /* CPUID not detected */ 1805 c->x86_clflush_size = 32; 1806 c->x86_phys_bits = 32; 1807 c->x86_virt_bits = 32; 1808 #endif 1809 c->x86_cache_alignment = c->x86_clflush_size; 1810 memset(&c->x86_capability, 0, sizeof(c->x86_capability)); 1811 #ifdef CONFIG_X86_VMX_FEATURE_NAMES 1812 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability)); 1813 #endif 1814 1815 generic_identify(c); 1816 1817 cpu_parse_topology(c); 1818 1819 if (this_cpu->c_identify) 1820 this_cpu->c_identify(c); 1821 1822 /* Clear/Set all flags overridden by options, after probe */ 1823 apply_forced_caps(c); 1824 1825 /* 1826 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and 1827 * Hygon will clear it in ->c_init() below. 1828 */ 1829 set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE); 1830 1831 /* 1832 * Vendor-specific initialization. In this section we 1833 * canonicalize the feature flags, meaning if there are 1834 * features a certain CPU supports which CPUID doesn't 1835 * tell us, CPUID claiming incorrect flags, or other bugs, 1836 * we handle them here. 1837 * 1838 * At the end of this section, c->x86_capability better 1839 * indicate the features this CPU genuinely supports! 1840 */ 1841 if (this_cpu->c_init) 1842 this_cpu->c_init(c); 1843 1844 /* Disable the PN if appropriate */ 1845 squash_the_stupid_serial_number(c); 1846 1847 /* Set up SMEP/SMAP/UMIP */ 1848 setup_smep(c); 1849 setup_smap(c); 1850 setup_umip(c); 1851 1852 /* Enable FSGSBASE instructions if available. */ 1853 if (cpu_has(c, X86_FEATURE_FSGSBASE)) { 1854 cr4_set_bits(X86_CR4_FSGSBASE); 1855 elf_hwcap2 |= HWCAP2_FSGSBASE; 1856 } 1857 1858 /* 1859 * The vendor-specific functions might have changed features. 1860 * Now we do "generic changes." 1861 */ 1862 1863 /* Filter out anything that depends on CPUID levels we don't have */ 1864 filter_cpuid_features(c, true); 1865 1866 /* If the model name is still unset, do table lookup. */ 1867 if (!c->x86_model_id[0]) { 1868 const char *p; 1869 p = table_lookup_model(c); 1870 if (p) 1871 strcpy(c->x86_model_id, p); 1872 else 1873 /* Last resort... */ 1874 sprintf(c->x86_model_id, "%02x/%02x", 1875 c->x86, c->x86_model); 1876 } 1877 1878 x86_init_rdrand(c); 1879 setup_pku(c); 1880 setup_cet(c); 1881 1882 /* 1883 * Clear/Set all flags overridden by options, need do it 1884 * before following smp all cpus cap AND. 1885 */ 1886 apply_forced_caps(c); 1887 1888 /* 1889 * On SMP, boot_cpu_data holds the common feature set between 1890 * all CPUs; so make sure that we indicate which features are 1891 * common between the CPUs. The first time this routine gets 1892 * executed, c == &boot_cpu_data. 1893 */ 1894 if (c != &boot_cpu_data) { 1895 /* AND the already accumulated flags with these */ 1896 for (i = 0; i < NCAPINTS; i++) 1897 boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; 1898 1899 /* OR, i.e. replicate the bug flags */ 1900 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) 1901 c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; 1902 } 1903 1904 ppin_init(c); 1905 1906 /* Init Machine Check Exception if available. */ 1907 mcheck_cpu_init(c); 1908 1909 #ifdef CONFIG_NUMA 1910 numa_add_cpu(smp_processor_id()); 1911 #endif 1912 } 1913 1914 /* 1915 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions 1916 * on 32-bit kernels: 1917 */ 1918 #ifdef CONFIG_X86_32 1919 void enable_sep_cpu(void) 1920 { 1921 struct tss_struct *tss; 1922 int cpu; 1923 1924 if (!boot_cpu_has(X86_FEATURE_SEP)) 1925 return; 1926 1927 cpu = get_cpu(); 1928 tss = &per_cpu(cpu_tss_rw, cpu); 1929 1930 /* 1931 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- 1932 * see the big comment in struct x86_hw_tss's definition. 1933 */ 1934 1935 tss->x86_tss.ss1 = __KERNEL_CS; 1936 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); 1937 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0); 1938 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); 1939 1940 put_cpu(); 1941 } 1942 #endif 1943 1944 static __init void identify_boot_cpu(void) 1945 { 1946 identify_cpu(&boot_cpu_data); 1947 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) 1948 pr_info("CET detected: Indirect Branch Tracking enabled\n"); 1949 #ifdef CONFIG_X86_32 1950 enable_sep_cpu(); 1951 #endif 1952 cpu_detect_tlb(&boot_cpu_data); 1953 setup_cr_pinning(); 1954 1955 tsx_init(); 1956 tdx_init(); 1957 lkgs_init(); 1958 } 1959 1960 void identify_secondary_cpu(struct cpuinfo_x86 *c) 1961 { 1962 BUG_ON(c == &boot_cpu_data); 1963 identify_cpu(c); 1964 #ifdef CONFIG_X86_32 1965 enable_sep_cpu(); 1966 #endif 1967 x86_spec_ctrl_setup_ap(); 1968 update_srbds_msr(); 1969 if (boot_cpu_has_bug(X86_BUG_GDS)) 1970 update_gds_msr(); 1971 1972 tsx_ap_init(); 1973 } 1974 1975 void print_cpu_info(struct cpuinfo_x86 *c) 1976 { 1977 const char *vendor = NULL; 1978 1979 if (c->x86_vendor < X86_VENDOR_NUM) { 1980 vendor = this_cpu->c_vendor; 1981 } else { 1982 if (c->cpuid_level >= 0) 1983 vendor = c->x86_vendor_id; 1984 } 1985 1986 if (vendor && !strstr(c->x86_model_id, vendor)) 1987 pr_cont("%s ", vendor); 1988 1989 if (c->x86_model_id[0]) 1990 pr_cont("%s", c->x86_model_id); 1991 else 1992 pr_cont("%d86", c->x86); 1993 1994 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); 1995 1996 if (c->x86_stepping || c->cpuid_level >= 0) 1997 pr_cont(", stepping: 0x%x)\n", c->x86_stepping); 1998 else 1999 pr_cont(")\n"); 2000 } 2001 2002 /* 2003 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy 2004 * function prevents it from becoming an environment variable for init. 2005 */ 2006 static __init int setup_clearcpuid(char *arg) 2007 { 2008 return 1; 2009 } 2010 __setup("clearcpuid=", setup_clearcpuid); 2011 2012 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = { 2013 .current_task = &init_task, 2014 .preempt_count = INIT_PREEMPT_COUNT, 2015 .top_of_stack = TOP_OF_INIT_STACK, 2016 }; 2017 EXPORT_PER_CPU_SYMBOL(pcpu_hot); 2018 EXPORT_PER_CPU_SYMBOL(const_pcpu_hot); 2019 2020 #ifdef CONFIG_X86_64 2021 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data, 2022 fixed_percpu_data) __aligned(PAGE_SIZE) __visible; 2023 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data); 2024 2025 static void wrmsrl_cstar(unsigned long val) 2026 { 2027 /* 2028 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR 2029 * is so far ignored by the CPU, but raises a #VE trap in a TDX 2030 * guest. Avoid the pointless write on all Intel CPUs. 2031 */ 2032 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 2033 wrmsrl(MSR_CSTAR, val); 2034 } 2035 2036 static inline void idt_syscall_init(void) 2037 { 2038 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); 2039 2040 if (ia32_enabled()) { 2041 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat); 2042 /* 2043 * This only works on Intel CPUs. 2044 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. 2045 * This does not cause SYSENTER to jump to the wrong location, because 2046 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). 2047 */ 2048 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); 2049 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 2050 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1)); 2051 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); 2052 } else { 2053 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore); 2054 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); 2055 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 2056 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); 2057 } 2058 2059 /* 2060 * Flags to clear on syscall; clear as much as possible 2061 * to minimize user space-kernel interference. 2062 */ 2063 wrmsrl(MSR_SYSCALL_MASK, 2064 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF| 2065 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF| 2066 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF| 2067 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF| 2068 X86_EFLAGS_AC|X86_EFLAGS_ID); 2069 } 2070 2071 /* May not be marked __init: used by software suspend */ 2072 void syscall_init(void) 2073 { 2074 /* The default user and kernel segments */ 2075 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); 2076 2077 /* 2078 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and 2079 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED 2080 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit 2081 * instruction to return to ring 3 (both sysexit and sysret cause 2082 * #UD when FRED is enabled). 2083 */ 2084 if (!cpu_feature_enabled(X86_FEATURE_FRED)) 2085 idt_syscall_init(); 2086 } 2087 2088 #else /* CONFIG_X86_64 */ 2089 2090 #ifdef CONFIG_STACKPROTECTOR 2091 DEFINE_PER_CPU(unsigned long, __stack_chk_guard); 2092 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard); 2093 #endif 2094 2095 #endif /* CONFIG_X86_64 */ 2096 2097 /* 2098 * Clear all 6 debug registers: 2099 */ 2100 static void clear_all_debug_regs(void) 2101 { 2102 int i; 2103 2104 for (i = 0; i < 8; i++) { 2105 /* Ignore db4, db5 */ 2106 if ((i == 4) || (i == 5)) 2107 continue; 2108 2109 set_debugreg(0, i); 2110 } 2111 } 2112 2113 #ifdef CONFIG_KGDB 2114 /* 2115 * Restore debug regs if using kgdbwait and you have a kernel debugger 2116 * connection established. 2117 */ 2118 static void dbg_restore_debug_regs(void) 2119 { 2120 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) 2121 arch_kgdb_ops.correct_hw_break(); 2122 } 2123 #else /* ! CONFIG_KGDB */ 2124 #define dbg_restore_debug_regs() 2125 #endif /* ! CONFIG_KGDB */ 2126 2127 static inline void setup_getcpu(int cpu) 2128 { 2129 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu)); 2130 struct desc_struct d = { }; 2131 2132 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID)) 2133 wrmsr(MSR_TSC_AUX, cpudata, 0); 2134 2135 /* Store CPU and node number in limit. */ 2136 d.limit0 = cpudata; 2137 d.limit1 = cpudata >> 16; 2138 2139 d.type = 5; /* RO data, expand down, accessed */ 2140 d.dpl = 3; /* Visible to user code */ 2141 d.s = 1; /* Not a system segment */ 2142 d.p = 1; /* Present */ 2143 d.d = 1; /* 32-bit */ 2144 2145 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S); 2146 } 2147 2148 #ifdef CONFIG_X86_64 2149 static inline void tss_setup_ist(struct tss_struct *tss) 2150 { 2151 /* Set up the per-CPU TSS IST stacks */ 2152 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF); 2153 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI); 2154 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB); 2155 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE); 2156 /* Only mapped when SEV-ES is active */ 2157 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC); 2158 } 2159 #else /* CONFIG_X86_64 */ 2160 static inline void tss_setup_ist(struct tss_struct *tss) { } 2161 #endif /* !CONFIG_X86_64 */ 2162 2163 static inline void tss_setup_io_bitmap(struct tss_struct *tss) 2164 { 2165 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID; 2166 2167 #ifdef CONFIG_X86_IOPL_IOPERM 2168 tss->io_bitmap.prev_max = 0; 2169 tss->io_bitmap.prev_sequence = 0; 2170 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap)); 2171 /* 2172 * Invalidate the extra array entry past the end of the all 2173 * permission bitmap as required by the hardware. 2174 */ 2175 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL; 2176 #endif 2177 } 2178 2179 /* 2180 * Setup everything needed to handle exceptions from the IDT, including the IST 2181 * exceptions which use paranoid_entry(). 2182 */ 2183 void cpu_init_exception_handling(bool boot_cpu) 2184 { 2185 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 2186 int cpu = raw_smp_processor_id(); 2187 2188 /* paranoid_entry() gets the CPU number from the GDT */ 2189 setup_getcpu(cpu); 2190 2191 /* For IDT mode, IST vectors need to be set in TSS. */ 2192 if (!cpu_feature_enabled(X86_FEATURE_FRED)) 2193 tss_setup_ist(tss); 2194 tss_setup_io_bitmap(tss); 2195 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 2196 2197 load_TR_desc(); 2198 2199 /* GHCB needs to be setup to handle #VC. */ 2200 setup_ghcb(); 2201 2202 if (cpu_feature_enabled(X86_FEATURE_FRED)) { 2203 /* The boot CPU has enabled FRED during early boot */ 2204 if (!boot_cpu) 2205 cpu_init_fred_exceptions(); 2206 2207 cpu_init_fred_rsps(); 2208 } else { 2209 load_current_idt(); 2210 } 2211 } 2212 2213 void __init cpu_init_replace_early_idt(void) 2214 { 2215 if (cpu_feature_enabled(X86_FEATURE_FRED)) 2216 cpu_init_fred_exceptions(); 2217 else 2218 idt_setup_early_pf(); 2219 } 2220 2221 /* 2222 * cpu_init() initializes state that is per-CPU. Some data is already 2223 * initialized (naturally) in the bootstrap process, such as the GDT. We 2224 * reload it nevertheless, this function acts as a 'CPU state barrier', 2225 * nothing should get across. 2226 */ 2227 void cpu_init(void) 2228 { 2229 struct task_struct *cur = current; 2230 int cpu = raw_smp_processor_id(); 2231 2232 #ifdef CONFIG_NUMA 2233 if (this_cpu_read(numa_node) == 0 && 2234 early_cpu_to_node(cpu) != NUMA_NO_NODE) 2235 set_numa_node(early_cpu_to_node(cpu)); 2236 #endif 2237 pr_debug("Initializing CPU#%d\n", cpu); 2238 2239 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) || 2240 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE)) 2241 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 2242 2243 if (IS_ENABLED(CONFIG_X86_64)) { 2244 loadsegment(fs, 0); 2245 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); 2246 syscall_init(); 2247 2248 wrmsrl(MSR_FS_BASE, 0); 2249 wrmsrl(MSR_KERNEL_GS_BASE, 0); 2250 barrier(); 2251 2252 x2apic_setup(); 2253 2254 intel_posted_msi_init(); 2255 } 2256 2257 mmgrab(&init_mm); 2258 cur->active_mm = &init_mm; 2259 BUG_ON(cur->mm); 2260 initialize_tlbstate_and_flush(); 2261 enter_lazy_tlb(&init_mm, cur); 2262 2263 /* 2264 * sp0 points to the entry trampoline stack regardless of what task 2265 * is running. 2266 */ 2267 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1)); 2268 2269 load_mm_ldt(&init_mm); 2270 2271 clear_all_debug_regs(); 2272 dbg_restore_debug_regs(); 2273 2274 doublefault_init_cpu_tss(); 2275 2276 if (is_uv_system()) 2277 uv_cpu_init(); 2278 2279 load_fixmap_gdt(cpu); 2280 } 2281 2282 #ifdef CONFIG_MICROCODE_LATE_LOADING 2283 /** 2284 * store_cpu_caps() - Store a snapshot of CPU capabilities 2285 * @curr_info: Pointer where to store it 2286 * 2287 * Returns: None 2288 */ 2289 void store_cpu_caps(struct cpuinfo_x86 *curr_info) 2290 { 2291 /* Reload CPUID max function as it might've changed. */ 2292 curr_info->cpuid_level = cpuid_eax(0); 2293 2294 /* Copy all capability leafs and pick up the synthetic ones. */ 2295 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability, 2296 sizeof(curr_info->x86_capability)); 2297 2298 /* Get the hardware CPUID leafs */ 2299 get_cpu_cap(curr_info); 2300 } 2301 2302 /** 2303 * microcode_check() - Check if any CPU capabilities changed after an update. 2304 * @prev_info: CPU capabilities stored before an update. 2305 * 2306 * The microcode loader calls this upon late microcode load to recheck features, 2307 * only when microcode has been updated. Caller holds and CPU hotplug lock. 2308 * 2309 * Return: None 2310 */ 2311 void microcode_check(struct cpuinfo_x86 *prev_info) 2312 { 2313 struct cpuinfo_x86 curr_info; 2314 2315 perf_check_microcode(); 2316 2317 amd_check_microcode(); 2318 2319 store_cpu_caps(&curr_info); 2320 2321 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability, 2322 sizeof(prev_info->x86_capability))) 2323 return; 2324 2325 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n"); 2326 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n"); 2327 } 2328 #endif 2329 2330 /* 2331 * Invoked from core CPU hotplug code after hotplug operations 2332 */ 2333 void arch_smt_update(void) 2334 { 2335 /* Handle the speculative execution misfeatures */ 2336 cpu_bugs_smt_update(); 2337 /* Check whether IPI broadcasting can be enabled */ 2338 apic_smt_update(); 2339 } 2340 2341 void __init arch_cpu_finalize_init(void) 2342 { 2343 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info); 2344 2345 identify_boot_cpu(); 2346 2347 select_idle_routine(); 2348 2349 /* 2350 * identify_boot_cpu() initialized SMT support information, let the 2351 * core code know. 2352 */ 2353 cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core); 2354 2355 if (!IS_ENABLED(CONFIG_SMP)) { 2356 pr_info("CPU: "); 2357 print_cpu_info(&boot_cpu_data); 2358 } 2359 2360 cpu_select_mitigations(); 2361 2362 arch_smt_update(); 2363 2364 if (IS_ENABLED(CONFIG_X86_32)) { 2365 /* 2366 * Check whether this is a real i386 which is not longer 2367 * supported and fixup the utsname. 2368 */ 2369 if (boot_cpu_data.x86 < 4) 2370 panic("Kernel requires i486+ for 'invlpg' and other features"); 2371 2372 init_utsname()->machine[1] = 2373 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86); 2374 } 2375 2376 /* 2377 * Must be before alternatives because it might set or clear 2378 * feature bits. 2379 */ 2380 fpu__init_system(); 2381 fpu__init_cpu(); 2382 2383 /* 2384 * Ensure that access to the per CPU representation has the initial 2385 * boot CPU configuration. 2386 */ 2387 *c = boot_cpu_data; 2388 c->initialized = true; 2389 2390 alternative_instructions(); 2391 2392 if (IS_ENABLED(CONFIG_X86_64)) { 2393 unsigned long USER_PTR_MAX = TASK_SIZE_MAX-1; 2394 2395 /* 2396 * Enable this when LAM is gated on LASS support 2397 if (cpu_feature_enabled(X86_FEATURE_LAM)) 2398 USER_PTR_MAX = (1ul << 63) - PAGE_SIZE - 1; 2399 */ 2400 runtime_const_init(ptr, USER_PTR_MAX); 2401 2402 /* 2403 * Make sure the first 2MB area is not mapped by huge pages 2404 * There are typically fixed size MTRRs in there and overlapping 2405 * MTRRs into large pages causes slow downs. 2406 * 2407 * Right now we don't do that with gbpages because there seems 2408 * very little benefit for that case. 2409 */ 2410 if (!direct_gbpages) 2411 set_memory_4k((unsigned long)__va(0), 1); 2412 } else { 2413 fpu__init_check_bugs(); 2414 } 2415 2416 /* 2417 * This needs to be called before any devices perform DMA 2418 * operations that might use the SWIOTLB bounce buffers. It will 2419 * mark the bounce buffers as decrypted so that their usage will 2420 * not cause "plain-text" data to be decrypted when accessed. It 2421 * must be called after late_time_init() so that Hyper-V x86/x64 2422 * hypercalls work when the SWIOTLB bounce buffers are decrypted. 2423 */ 2424 mem_encrypt_init(); 2425 } 2426