// SPDX-License-Identifier: GPL-2.0-only /* cpu_feature_enabled() cannot be used this early */ #define USE_EARLY_PGTABLE_L5 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpu.h" DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); EXPORT_PER_CPU_SYMBOL(cpu_info); u32 elf_hwcap2 __read_mostly; /* Number of siblings per CPU package */ unsigned int __max_threads_per_core __ro_after_init = 1; EXPORT_SYMBOL(__max_threads_per_core); unsigned int __max_dies_per_package __ro_after_init = 1; EXPORT_SYMBOL(__max_dies_per_package); unsigned int __max_logical_packages __ro_after_init = 1; EXPORT_SYMBOL(__max_logical_packages); unsigned int __num_cores_per_package __ro_after_init = 1; EXPORT_SYMBOL(__num_cores_per_package); unsigned int __num_threads_per_package __ro_after_init = 1; EXPORT_SYMBOL(__num_threads_per_package); static struct ppin_info { int feature; int msr_ppin_ctl; int msr_ppin; } ppin_info[] = { [X86_VENDOR_INTEL] = { .feature = X86_FEATURE_INTEL_PPIN, .msr_ppin_ctl = MSR_PPIN_CTL, .msr_ppin = MSR_PPIN }, [X86_VENDOR_AMD] = { .feature = X86_FEATURE_AMD_PPIN, .msr_ppin_ctl = MSR_AMD_PPIN_CTL, .msr_ppin = MSR_AMD_PPIN }, }; static const struct x86_cpu_id ppin_cpuids[] = { X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]), X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]), /* Legacy models without CPUID enumeration */ X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]), X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]), X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]), X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]), X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]), X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]), X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]), X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]), X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]), X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]), X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]), {} }; static void ppin_init(struct cpuinfo_x86 *c) { const struct x86_cpu_id *id; unsigned long long val; struct ppin_info *info; id = x86_match_cpu(ppin_cpuids); if (!id) return; /* * Testing the presence of the MSR is not enough. Need to check * that the PPIN_CTL allows reading of the PPIN. */ info = (struct ppin_info *)id->driver_data; if (rdmsrl_safe(info->msr_ppin_ctl, &val)) goto clear_ppin; if ((val & 3UL) == 1UL) { /* PPIN locked in disabled mode */ goto clear_ppin; } /* If PPIN is disabled, try to enable */ if (!(val & 2UL)) { wrmsrl_safe(info->msr_ppin_ctl, val | 2UL); rdmsrl_safe(info->msr_ppin_ctl, &val); } /* Is the enable bit set? */ if (val & 2UL) { c->ppin = __rdmsr(info->msr_ppin); set_cpu_cap(c, info->feature); return; } clear_ppin: clear_cpu_cap(c, info->feature); } static void default_init(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_64 cpu_detect_cache_sizes(c); #else /* Not much we can do here... */ /* Check if at least it has cpuid */ if (c->cpuid_level == -1) { /* No cpuid. It must be an ancient CPU */ if (c->x86 == 4) strcpy(c->x86_model_id, "486"); else if (c->x86 == 3) strcpy(c->x86_model_id, "386"); } #endif } static const struct cpu_dev default_cpu = { .c_init = default_init, .c_vendor = "Unknown", .c_x86_vendor = X86_VENDOR_UNKNOWN, }; static const struct cpu_dev *this_cpu = &default_cpu; DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { #ifdef CONFIG_X86_64 /* * We need valid kernel segments for data and code in long mode too * IRET will check the segment types kkeil 2000/10/28 * Also sysret mandates a special GDT layout * * TLS descriptors are currently at a different place compared to i386. * Hopefully nobody expects them at a fixed place (Wine?) */ [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff), [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff), [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff), #else [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff), [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff), /* * Segments used for calling PnP BIOS have byte granularity. * They code segments and data segments have fixed 64k limits, * the transfer segment sizes are set at run time. */ [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff), [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff), [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff), [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0), [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0), /* * The APM segments have byte granularity and their bases * are set at run time. All have 64k limits. */ [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff), [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff), [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff), [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), #endif } }; EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); #ifdef CONFIG_X86_64 static int __init x86_nopcid_setup(char *s) { /* nopcid doesn't accept parameters */ if (s) return -EINVAL; /* do not emit a message if the feature is not present */ if (!boot_cpu_has(X86_FEATURE_PCID)) return 0; setup_clear_cpu_cap(X86_FEATURE_PCID); pr_info("nopcid: PCID feature disabled\n"); return 0; } early_param("nopcid", x86_nopcid_setup); #endif static int __init x86_noinvpcid_setup(char *s) { /* noinvpcid doesn't accept parameters */ if (s) return -EINVAL; /* do not emit a message if the feature is not present */ if (!boot_cpu_has(X86_FEATURE_INVPCID)) return 0; setup_clear_cpu_cap(X86_FEATURE_INVPCID); pr_info("noinvpcid: INVPCID feature disabled\n"); return 0; } early_param("noinvpcid", x86_noinvpcid_setup); #ifdef CONFIG_X86_32 static int cachesize_override = -1; static int disable_x86_serial_nr = 1; static int __init cachesize_setup(char *str) { get_option(&str, &cachesize_override); return 1; } __setup("cachesize=", cachesize_setup); /* Standard macro to see if a specific flag is changeable */ static inline int flag_is_changeable_p(u32 flag) { u32 f1, f2; /* * Cyrix and IDT cpus allow disabling of CPUID * so the code below may return different results * when it is executed before and after enabling * the CPUID. Add "volatile" to not allow gcc to * optimize the subsequent calls to this function. */ asm volatile ("pushfl \n\t" "pushfl \n\t" "popl %0 \n\t" "movl %0, %1 \n\t" "xorl %2, %0 \n\t" "pushl %0 \n\t" "popfl \n\t" "pushfl \n\t" "popl %0 \n\t" "popfl \n\t" : "=&r" (f1), "=&r" (f2) : "ir" (flag)); return ((f1^f2) & flag) != 0; } /* Probe for the CPUID instruction */ int have_cpuid_p(void) { return flag_is_changeable_p(X86_EFLAGS_ID); } static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) { unsigned long lo, hi; if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) return; /* Disable processor serial number: */ rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); lo |= 0x200000; wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); pr_notice("CPU serial number disabled.\n"); clear_cpu_cap(c, X86_FEATURE_PN); /* Disabling the serial number may affect the cpuid level */ c->cpuid_level = cpuid_eax(0); } static int __init x86_serial_nr_setup(char *s) { disable_x86_serial_nr = 0; return 1; } __setup("serialnumber", x86_serial_nr_setup); #else static inline int flag_is_changeable_p(u32 flag) { return 1; } static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) { } #endif static __always_inline void setup_smep(struct cpuinfo_x86 *c) { if (cpu_has(c, X86_FEATURE_SMEP)) cr4_set_bits(X86_CR4_SMEP); } static __always_inline void setup_smap(struct cpuinfo_x86 *c) { unsigned long eflags = native_save_fl(); /* This should have been cleared long ago */ BUG_ON(eflags & X86_EFLAGS_AC); if (cpu_has(c, X86_FEATURE_SMAP)) cr4_set_bits(X86_CR4_SMAP); } static __always_inline void setup_umip(struct cpuinfo_x86 *c) { /* Check the boot processor, plus build option for UMIP. */ if (!cpu_feature_enabled(X86_FEATURE_UMIP)) goto out; /* Check the current processor's cpuid bits. */ if (!cpu_has(c, X86_FEATURE_UMIP)) goto out; cr4_set_bits(X86_CR4_UMIP); pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n"); return; out: /* * Make sure UMIP is disabled in case it was enabled in a * previous boot (e.g., via kexec). */ cr4_clear_bits(X86_CR4_UMIP); } /* These bits should not change their value after CPU init is finished. */ static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED; static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning); static unsigned long cr4_pinned_bits __ro_after_init; void native_write_cr0(unsigned long val) { unsigned long bits_missing = 0; set_register: asm volatile("mov %0,%%cr0": "+r" (val) : : "memory"); if (static_branch_likely(&cr_pinning)) { if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) { bits_missing = X86_CR0_WP; val |= bits_missing; goto set_register; } /* Warn after we've set the missing bits. */ WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n"); } } EXPORT_SYMBOL(native_write_cr0); void __no_profile native_write_cr4(unsigned long val) { unsigned long bits_changed = 0; set_register: asm volatile("mov %0,%%cr4": "+r" (val) : : "memory"); if (static_branch_likely(&cr_pinning)) { if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) { bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits; val = (val & ~cr4_pinned_mask) | cr4_pinned_bits; goto set_register; } /* Warn after we've corrected the changed bits. */ WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n", bits_changed); } } #if IS_MODULE(CONFIG_LKDTM) EXPORT_SYMBOL_GPL(native_write_cr4); #endif void cr4_update_irqsoff(unsigned long set, unsigned long clear) { unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); lockdep_assert_irqs_disabled(); newval = (cr4 & ~clear) | set; if (newval != cr4) { this_cpu_write(cpu_tlbstate.cr4, newval); __write_cr4(newval); } } EXPORT_SYMBOL(cr4_update_irqsoff); /* Read the CR4 shadow. */ unsigned long cr4_read_shadow(void) { return this_cpu_read(cpu_tlbstate.cr4); } EXPORT_SYMBOL_GPL(cr4_read_shadow); void cr4_init(void) { unsigned long cr4 = __read_cr4(); if (boot_cpu_has(X86_FEATURE_PCID)) cr4 |= X86_CR4_PCIDE; if (static_branch_likely(&cr_pinning)) cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits; __write_cr4(cr4); /* Initialize cr4 shadow for this CPU. */ this_cpu_write(cpu_tlbstate.cr4, cr4); } /* * Once CPU feature detection is finished (and boot params have been * parsed), record any of the sensitive CR bits that are set, and * enable CR pinning. */ static void __init setup_cr_pinning(void) { cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask; static_key_enable(&cr_pinning.key); } static __init int x86_nofsgsbase_setup(char *arg) { /* Require an exact match without trailing characters. */ if (strlen(arg)) return 0; /* Do not emit a message if the feature is not present. */ if (!boot_cpu_has(X86_FEATURE_FSGSBASE)) return 1; setup_clear_cpu_cap(X86_FEATURE_FSGSBASE); pr_info("FSGSBASE disabled via kernel command line\n"); return 1; } __setup("nofsgsbase", x86_nofsgsbase_setup); /* * Protection Keys are not available in 32-bit mode. */ static bool pku_disabled; static __always_inline void setup_pku(struct cpuinfo_x86 *c) { if (c == &boot_cpu_data) { if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU)) return; /* * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid * bit to be set. Enforce it. */ setup_force_cpu_cap(X86_FEATURE_OSPKE); } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) { return; } cr4_set_bits(X86_CR4_PKE); /* Load the default PKRU value */ pkru_write_default(); } #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS static __init int setup_disable_pku(char *arg) { /* * Do not clear the X86_FEATURE_PKU bit. All of the * runtime checks are against OSPKE so clearing the * bit does nothing. * * This way, we will see "pku" in cpuinfo, but not * "ospke", which is exactly what we want. It shows * that the CPU has PKU, but the OS has not enabled it. * This happens to be exactly how a system would look * if we disabled the config option. */ pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); pku_disabled = true; return 1; } __setup("nopku", setup_disable_pku); #endif #ifdef CONFIG_X86_KERNEL_IBT __noendbr u64 ibt_save(bool disable) { u64 msr = 0; if (cpu_feature_enabled(X86_FEATURE_IBT)) { rdmsrl(MSR_IA32_S_CET, msr); if (disable) wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN); } return msr; } __noendbr void ibt_restore(u64 save) { u64 msr; if (cpu_feature_enabled(X86_FEATURE_IBT)) { rdmsrl(MSR_IA32_S_CET, msr); msr &= ~CET_ENDBR_EN; msr |= (save & CET_ENDBR_EN); wrmsrl(MSR_IA32_S_CET, msr); } } #endif static __always_inline void setup_cet(struct cpuinfo_x86 *c) { bool user_shstk, kernel_ibt; if (!IS_ENABLED(CONFIG_X86_CET)) return; kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT); user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) && IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK); if (!kernel_ibt && !user_shstk) return; if (user_shstk) set_cpu_cap(c, X86_FEATURE_USER_SHSTK); if (kernel_ibt) wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN); else wrmsrl(MSR_IA32_S_CET, 0); cr4_set_bits(X86_CR4_CET); if (kernel_ibt && ibt_selftest()) { pr_err("IBT selftest: Failed!\n"); wrmsrl(MSR_IA32_S_CET, 0); setup_clear_cpu_cap(X86_FEATURE_IBT); } } __noendbr void cet_disable(void) { if (!(cpu_feature_enabled(X86_FEATURE_IBT) || cpu_feature_enabled(X86_FEATURE_SHSTK))) return; wrmsrl(MSR_IA32_S_CET, 0); wrmsrl(MSR_IA32_U_CET, 0); } /* * Some CPU features depend on higher CPUID levels, which may not always * be available due to CPUID level capping or broken virtualization * software. Add those features to this table to auto-disable them. */ struct cpuid_dependent_feature { u32 feature; u32 level; }; static const struct cpuid_dependent_feature cpuid_dependent_features[] = { { X86_FEATURE_MWAIT, 0x00000005 }, { X86_FEATURE_DCA, 0x00000009 }, { X86_FEATURE_XSAVE, 0x0000000d }, { 0, 0 } }; static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) { const struct cpuid_dependent_feature *df; for (df = cpuid_dependent_features; df->feature; df++) { if (!cpu_has(c, df->feature)) continue; /* * Note: cpuid_level is set to -1 if unavailable, but * extended_extended_level is set to 0 if unavailable * and the legitimate extended levels are all negative * when signed; hence the weird messing around with * signs here... */ if (!((s32)df->level < 0 ? (u32)df->level > (u32)c->extended_cpuid_level : (s32)df->level > (s32)c->cpuid_level)) continue; clear_cpu_cap(c, df->feature); if (!warn) continue; pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", x86_cap_flag(df->feature), df->level); } } /* * Naming convention should be: [()] * This table only is used unless init_() below doesn't set it; * in particular, if CPUID levels 0x80000002..4 are supported, this * isn't used */ /* Look up CPU names by table lookup. */ static const char *table_lookup_model(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_32 const struct legacy_cpu_model_info *info; if (c->x86_model >= 16) return NULL; /* Range check */ if (!this_cpu) return NULL; info = this_cpu->legacy_models; while (info->family) { if (info->family == c->x86) return info->model_names[c->x86_model]; info++; } #endif return NULL; /* Not found */ } /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */ __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); #ifdef CONFIG_X86_32 /* The 32-bit entry code needs to find cpu_entry_area. */ DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area); #endif /* Load the original GDT from the per-cpu structure */ void load_direct_gdt(int cpu) { struct desc_ptr gdt_descr; gdt_descr.address = (long)get_cpu_gdt_rw(cpu); gdt_descr.size = GDT_SIZE - 1; load_gdt(&gdt_descr); } EXPORT_SYMBOL_GPL(load_direct_gdt); /* Load a fixmap remapping of the per-cpu GDT */ void load_fixmap_gdt(int cpu) { struct desc_ptr gdt_descr; gdt_descr.address = (long)get_cpu_gdt_ro(cpu); gdt_descr.size = GDT_SIZE - 1; load_gdt(&gdt_descr); } EXPORT_SYMBOL_GPL(load_fixmap_gdt); /** * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base * @cpu: The CPU number for which this is invoked * * Invoked during early boot to switch from early GDT and early per CPU to * the direct GDT and the runtime per CPU area. On 32-bit the percpu base * switch is implicit by loading the direct GDT. On 64bit this requires * to update GSBASE. */ void __init switch_gdt_and_percpu_base(int cpu) { load_direct_gdt(cpu); #ifdef CONFIG_X86_64 /* * No need to load %gs. It is already correct. * * Writing %gs on 64bit would zero GSBASE which would make any per * CPU operation up to the point of the wrmsrl() fault. * * Set GSBASE to the new offset. Until the wrmsrl() happens the * early mapping is still valid. That means the GSBASE update will * lose any prior per CPU data which was not copied over in * setup_per_cpu_areas(). * * This works even with stackprotector enabled because the * per CPU stack canary is 0 in both per CPU areas. */ wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu)); #else /* * %fs is already set to __KERNEL_PERCPU, but after switching GDT * it is required to load FS again so that the 'hidden' part is * updated from the new GDT. Up to this point the early per CPU * translation is active. Any content of the early per CPU data * which was not copied over in setup_per_cpu_areas() is lost. */ loadsegment(fs, __KERNEL_PERCPU); #endif } static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; static void get_model_name(struct cpuinfo_x86 *c) { unsigned int *v; char *p, *q, *s; if (c->extended_cpuid_level < 0x80000004) return; v = (unsigned int *)c->x86_model_id; cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); c->x86_model_id[48] = 0; /* Trim whitespace */ p = q = s = &c->x86_model_id[0]; while (*p == ' ') p++; while (*p) { /* Note the last non-whitespace index */ if (!isspace(*p)) s = q; *q++ = *p++; } *(s + 1) = '\0'; } void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) { unsigned int n, dummy, ebx, ecx, edx, l2size; n = c->extended_cpuid_level; if (n >= 0x80000005) { cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); c->x86_cache_size = (ecx>>24) + (edx>>24); #ifdef CONFIG_X86_64 /* On K8 L1 TLB is inclusive, so don't count it */ c->x86_tlbsize = 0; #endif } if (n < 0x80000006) /* Some chips just has a large L1. */ return; cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); l2size = ecx >> 16; #ifdef CONFIG_X86_64 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); #else /* do processor-specific cache resizing */ if (this_cpu->legacy_cache_size) l2size = this_cpu->legacy_cache_size(c, l2size); /* Allow user to override all this if necessary. */ if (cachesize_override != -1) l2size = cachesize_override; if (l2size == 0) return; /* Again, no L2 cache is possible */ #endif c->x86_cache_size = l2size; } u16 __read_mostly tlb_lli_4k[NR_INFO]; u16 __read_mostly tlb_lli_2m[NR_INFO]; u16 __read_mostly tlb_lli_4m[NR_INFO]; u16 __read_mostly tlb_lld_4k[NR_INFO]; u16 __read_mostly tlb_lld_2m[NR_INFO]; u16 __read_mostly tlb_lld_4m[NR_INFO]; u16 __read_mostly tlb_lld_1g[NR_INFO]; static void cpu_detect_tlb(struct cpuinfo_x86 *c) { if (this_cpu->c_detect_tlb) this_cpu->c_detect_tlb(c); pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], tlb_lli_4m[ENTRIES]); pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); } static void get_cpu_vendor(struct cpuinfo_x86 *c) { char *v = c->x86_vendor_id; int i; for (i = 0; i < X86_VENDOR_NUM; i++) { if (!cpu_devs[i]) break; if (!strcmp(v, cpu_devs[i]->c_ident[0]) || (cpu_devs[i]->c_ident[1] && !strcmp(v, cpu_devs[i]->c_ident[1]))) { this_cpu = cpu_devs[i]; c->x86_vendor = this_cpu->c_x86_vendor; return; } } pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ "CPU: Your system may be unstable.\n", v); c->x86_vendor = X86_VENDOR_UNKNOWN; this_cpu = &default_cpu; } void cpu_detect(struct cpuinfo_x86 *c) { /* Get vendor name */ cpuid(0x00000000, (unsigned int *)&c->cpuid_level, (unsigned int *)&c->x86_vendor_id[0], (unsigned int *)&c->x86_vendor_id[8], (unsigned int *)&c->x86_vendor_id[4]); c->x86 = 4; /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { u32 junk, tfms, cap0, misc; cpuid(0x00000001, &tfms, &misc, &junk, &cap0); c->x86 = x86_family(tfms); c->x86_model = x86_model(tfms); c->x86_stepping = x86_stepping(tfms); if (cap0 & (1<<19)) { c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; c->x86_cache_alignment = c->x86_clflush_size; } } } static void apply_forced_caps(struct cpuinfo_x86 *c) { int i; for (i = 0; i < NCAPINTS + NBUGINTS; i++) { c->x86_capability[i] &= ~cpu_caps_cleared[i]; c->x86_capability[i] |= cpu_caps_set[i]; } } static void init_speculation_control(struct cpuinfo_x86 *c) { /* * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support, * and they also have a different bit for STIBP support. Also, * a hypervisor might have set the individual AMD bits even on * Intel CPUs, for finer-grained selection of what's available. */ if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) { set_cpu_cap(c, X86_FEATURE_IBRS); set_cpu_cap(c, X86_FEATURE_IBPB); set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); } if (cpu_has(c, X86_FEATURE_INTEL_STIBP)) set_cpu_cap(c, X86_FEATURE_STIBP); if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) || cpu_has(c, X86_FEATURE_VIRT_SSBD)) set_cpu_cap(c, X86_FEATURE_SSBD); if (cpu_has(c, X86_FEATURE_AMD_IBRS)) { set_cpu_cap(c, X86_FEATURE_IBRS); set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); } if (cpu_has(c, X86_FEATURE_AMD_IBPB)) set_cpu_cap(c, X86_FEATURE_IBPB); if (cpu_has(c, X86_FEATURE_AMD_STIBP)) { set_cpu_cap(c, X86_FEATURE_STIBP); set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); } if (cpu_has(c, X86_FEATURE_AMD_SSBD)) { set_cpu_cap(c, X86_FEATURE_SSBD); set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD); } } void get_cpu_cap(struct cpuinfo_x86 *c) { u32 eax, ebx, ecx, edx; /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { cpuid(0x00000001, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_1_ECX] = ecx; c->x86_capability[CPUID_1_EDX] = edx; } /* Thermal and Power Management Leaf: level 0x00000006 (eax) */ if (c->cpuid_level >= 0x00000006) c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); /* Additional Intel-defined flags: level 0x00000007 */ if (c->cpuid_level >= 0x00000007) { cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_7_0_EBX] = ebx; c->x86_capability[CPUID_7_ECX] = ecx; c->x86_capability[CPUID_7_EDX] = edx; /* Check valid sub-leaf index before accessing it */ if (eax >= 1) { cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_7_1_EAX] = eax; } } /* Extended state features: level 0x0000000d */ if (c->cpuid_level >= 0x0000000d) { cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_D_1_EAX] = eax; } /* AMD-defined flags: level 0x80000001 */ eax = cpuid_eax(0x80000000); c->extended_cpuid_level = eax; if ((eax & 0xffff0000) == 0x80000000) { if (eax >= 0x80000001) { cpuid(0x80000001, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_8000_0001_ECX] = ecx; c->x86_capability[CPUID_8000_0001_EDX] = edx; } } if (c->extended_cpuid_level >= 0x80000007) { cpuid(0x80000007, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_8000_0007_EBX] = ebx; c->x86_power = edx; } if (c->extended_cpuid_level >= 0x80000008) { cpuid(0x80000008, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_8000_0008_EBX] = ebx; } if (c->extended_cpuid_level >= 0x8000000a) c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); if (c->extended_cpuid_level >= 0x8000001f) c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f); if (c->extended_cpuid_level >= 0x80000021) c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021); init_scattered_cpuid_features(c); init_speculation_control(c); /* * Clear/Set all flags overridden by options, after probe. * This needs to happen each time we re-probe, which may happen * several times during CPU initialization. */ apply_forced_caps(c); } void get_cpu_address_sizes(struct cpuinfo_x86 *c) { u32 eax, ebx, ecx, edx; if (!cpu_has(c, X86_FEATURE_CPUID) || (c->extended_cpuid_level < 0x80000008)) { if (IS_ENABLED(CONFIG_X86_64)) { c->x86_clflush_size = 64; c->x86_phys_bits = 36; c->x86_virt_bits = 48; } else { c->x86_clflush_size = 32; c->x86_virt_bits = 32; c->x86_phys_bits = 32; if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) c->x86_phys_bits = 36; } } else { cpuid(0x80000008, &eax, &ebx, &ecx, &edx); c->x86_virt_bits = (eax >> 8) & 0xff; c->x86_phys_bits = eax & 0xff; /* Provide a sane default if not enumerated: */ if (!c->x86_clflush_size) c->x86_clflush_size = 32; } c->x86_cache_bits = c->x86_phys_bits; c->x86_cache_alignment = c->x86_clflush_size; } static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_32 int i; /* * First of all, decide if this is a 486 or higher * It's a 486 if we can modify the AC flag */ if (flag_is_changeable_p(X86_EFLAGS_AC)) c->x86 = 4; else c->x86 = 3; for (i = 0; i < X86_VENDOR_NUM; i++) if (cpu_devs[i] && cpu_devs[i]->c_identify) { c->x86_vendor_id[0] = 0; cpu_devs[i]->c_identify(c); if (c->x86_vendor_id[0]) { get_cpu_vendor(c); break; } } #endif } #define NO_SPECULATION BIT(0) #define NO_MELTDOWN BIT(1) #define NO_SSB BIT(2) #define NO_L1TF BIT(3) #define NO_MDS BIT(4) #define MSBDS_ONLY BIT(5) #define NO_SWAPGS BIT(6) #define NO_ITLB_MULTIHIT BIT(7) #define NO_SPECTRE_V2 BIT(8) #define NO_MMIO BIT(9) #define NO_EIBRS_PBRSB BIT(10) #define NO_BHI BIT(11) #define VULNWL(vendor, family, model, whitelist) \ X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist) #define VULNWL_INTEL(vfm, whitelist) \ X86_MATCH_VFM(vfm, whitelist) #define VULNWL_AMD(family, whitelist) \ VULNWL(AMD, family, X86_MODEL_ANY, whitelist) #define VULNWL_HYGON(family, whitelist) \ VULNWL(HYGON, family, X86_MODEL_ANY, whitelist) static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = { VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION), VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION), VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION), VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION), VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION), VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION), /* Intel Family 6 */ VULNWL_INTEL(INTEL_TIGERLAKE, NO_MMIO), VULNWL_INTEL(INTEL_TIGERLAKE_L, NO_MMIO), VULNWL_INTEL(INTEL_ALDERLAKE, NO_MMIO), VULNWL_INTEL(INTEL_ALDERLAKE_L, NO_MMIO), VULNWL_INTEL(INTEL_ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_CORE_YONAH, NO_SSB), VULNWL_INTEL(INTEL_ATOM_AIRMONT_MID, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY), VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(INTEL_ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB), /* * Technically, swapgs isn't serializing on AMD (despite it previously * being documented as such in the APM). But according to AMD, %gs is * updated non-speculatively, and the issuing of %gs-relative memory * operands will be blocked until the %gs update completes, which is * good enough for our purposes. */ VULNWL_INTEL(INTEL_ATOM_TREMONT, NO_EIBRS_PBRSB), VULNWL_INTEL(INTEL_ATOM_TREMONT_L, NO_EIBRS_PBRSB), VULNWL_INTEL(INTEL_ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB), /* AMD Family 0xf - 0x12 */ VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */ VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI), VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI), /* Zhaoxin Family 7 */ VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI), VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI), {} }; #define VULNBL(vendor, family, model, blacklist) \ X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist) #define VULNBL_INTEL_STEPPINGS(vfm, steppings, issues) \ X86_MATCH_VFM_STEPPINGS(vfm, steppings, issues) #define VULNBL_AMD(family, blacklist) \ VULNBL(AMD, family, X86_MODEL_ANY, blacklist) #define VULNBL_HYGON(family, blacklist) \ VULNBL(HYGON, family, X86_MODEL_ANY, blacklist) #define SRBDS BIT(0) /* CPU is affected by X86_BUG_MMIO_STALE_DATA */ #define MMIO BIT(1) /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */ #define MMIO_SBDS BIT(2) /* CPU is affected by RETbleed, speculating where you would not expect it */ #define RETBLEED BIT(3) /* CPU is affected by SMT (cross-thread) return predictions */ #define SMT_RSB BIT(4) /* CPU is affected by SRSO */ #define SRSO BIT(5) /* CPU is affected by GDS */ #define GDS BIT(6) /* CPU is affected by Register File Data Sampling */ #define RFDS BIT(7) static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = { VULNBL_INTEL_STEPPINGS(INTEL_IVYBRIDGE, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(INTEL_HASWELL, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_L, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_G, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_X, X86_STEPPING_ANY, MMIO), VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPING_ANY, MMIO), VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_G, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_X, X86_STEPPING_ANY, MMIO), VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS), VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS), VULNBL_INTEL_STEPPINGS(INTEL_CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED), VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS), VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS), VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS), VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS), VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED), VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS), VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE_L, X86_STEPPING_ANY, GDS), VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE, X86_STEPPING_ANY, GDS), VULNBL_INTEL_STEPPINGS(INTEL_LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED), VULNBL_INTEL_STEPPINGS(INTEL_ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS), VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE, X86_STEPPING_ANY, RFDS), VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE_L, X86_STEPPING_ANY, RFDS), VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE, X86_STEPPING_ANY, RFDS), VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_P, X86_STEPPING_ANY, RFDS), VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_S, X86_STEPPING_ANY, RFDS), VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GRACEMONT, X86_STEPPING_ANY, RFDS), VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS), VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO | RFDS), VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS), VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT, X86_STEPPING_ANY, RFDS), VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_D, X86_STEPPING_ANY, RFDS), VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY, RFDS), VULNBL_AMD(0x15, RETBLEED), VULNBL_AMD(0x16, RETBLEED), VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO), VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO), VULNBL_AMD(0x19, SRSO), {} }; static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which) { const struct x86_cpu_id *m = x86_match_cpu(table); return m && !!(m->driver_data & which); } u64 x86_read_arch_cap_msr(void) { u64 x86_arch_cap_msr = 0; if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr); return x86_arch_cap_msr; } static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr) { return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO && x86_arch_cap_msr & ARCH_CAP_PSDP_NO && x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO); } static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr) { /* The "immunity" bit trumps everything else: */ if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO) return false; /* * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to * indicate that mitigation is needed because guest is running on a * vulnerable hardware or may migrate to such hardware: */ if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR) return true; /* Only consult the blacklist when there is no enumeration: */ return cpu_matches(cpu_vuln_blacklist, RFDS); } static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c) { u64 x86_arch_cap_msr = x86_read_arch_cap_msr(); /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */ if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) && !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO)) setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT); if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION)) return; setup_force_cpu_bug(X86_BUG_SPECTRE_V1); if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) setup_force_cpu_bug(X86_BUG_SPECTRE_V2); if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) && !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) && !cpu_has(c, X86_FEATURE_AMD_SSB_NO)) setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS); /* * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature * flag and protect from vendor-specific bugs via the whitelist. * * Don't use AutoIBRS when SNP is enabled because it degrades host * userspace indirect branch performance. */ if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) || (cpu_has(c, X86_FEATURE_AUTOIBRS) && !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) { setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED); if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) && !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO)) setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB); } if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) && !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) { setup_force_cpu_bug(X86_BUG_MDS); if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY)) setup_force_cpu_bug(X86_BUG_MSBDS_ONLY); } if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS)) setup_force_cpu_bug(X86_BUG_SWAPGS); /* * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when: * - TSX is supported or * - TSX_CTRL is present * * TSX_CTRL check is needed for cases when TSX could be disabled before * the kernel boot e.g. kexec. * TSX_CTRL check alone is not sufficient for cases when the microcode * update is not present or running as guest that don't get TSX_CTRL. */ if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) && (cpu_has(c, X86_FEATURE_RTM) || (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))) setup_force_cpu_bug(X86_BUG_TAA); /* * SRBDS affects CPUs which support RDRAND or RDSEED and are listed * in the vulnerability blacklist. * * Some of the implications and mitigation of Shared Buffers Data * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as * SRBDS. */ if ((cpu_has(c, X86_FEATURE_RDRAND) || cpu_has(c, X86_FEATURE_RDSEED)) && cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS)) setup_force_cpu_bug(X86_BUG_SRBDS); /* * Processor MMIO Stale Data bug enumeration * * Affected CPU list is generally enough to enumerate the vulnerability, * but for virtualization case check for ARCH_CAP MSR bits also, VMM may * not want the guest to enumerate the bug. * * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist, * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits. */ if (!arch_cap_mmio_immune(x86_arch_cap_msr)) { if (cpu_matches(cpu_vuln_blacklist, MMIO)) setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA); else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO)) setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN); } if (!cpu_has(c, X86_FEATURE_BTC_NO)) { if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA)) setup_force_cpu_bug(X86_BUG_RETBLEED); } if (cpu_matches(cpu_vuln_blacklist, SMT_RSB)) setup_force_cpu_bug(X86_BUG_SMT_RSB); if (!cpu_has(c, X86_FEATURE_SRSO_NO)) { if (cpu_matches(cpu_vuln_blacklist, SRSO)) setup_force_cpu_bug(X86_BUG_SRSO); } /* * Check if CPU is vulnerable to GDS. If running in a virtual machine on * an affected processor, the VMM may have disabled the use of GATHER by * disabling AVX2. The only way to do this in HW is to clear XCR0[2], * which means that AVX will be disabled. */ if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) && boot_cpu_has(X86_FEATURE_AVX)) setup_force_cpu_bug(X86_BUG_GDS); if (vulnerable_to_rfds(x86_arch_cap_msr)) setup_force_cpu_bug(X86_BUG_RFDS); /* When virtualized, eIBRS could be hidden, assume vulnerable */ if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) && !cpu_matches(cpu_vuln_whitelist, NO_BHI) && (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) || boot_cpu_has(X86_FEATURE_HYPERVISOR))) setup_force_cpu_bug(X86_BUG_BHI); if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET)) setup_force_cpu_bug(X86_BUG_IBPB_NO_RET); if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN)) return; /* Rogue Data Cache Load? No! */ if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO) return; setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN); if (cpu_matches(cpu_vuln_whitelist, NO_L1TF)) return; setup_force_cpu_bug(X86_BUG_L1TF); } /* * The NOPL instruction is supposed to exist on all CPUs of family >= 6; * unfortunately, that's not true in practice because of early VIA * chips and (more importantly) broken virtualizers that are not easy * to detect. In the latter case it doesn't even *fail* reliably, so * probing for it doesn't even work. Disable it completely on 32-bit * unless we can find a reliable way to detect all the broken cases. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). */ static void detect_nopl(void) { #ifdef CONFIG_X86_32 setup_clear_cpu_cap(X86_FEATURE_NOPL); #else setup_force_cpu_cap(X86_FEATURE_NOPL); #endif } /* * We parse cpu parameters early because fpu__init_system() is executed * before parse_early_param(). */ static void __init cpu_parse_early_param(void) { char arg[128]; char *argptr = arg, *opt; int arglen, taint = 0; #ifdef CONFIG_X86_32 if (cmdline_find_option_bool(boot_command_line, "no387")) #ifdef CONFIG_MATH_EMULATION setup_clear_cpu_cap(X86_FEATURE_FPU); #else pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n"); #endif if (cmdline_find_option_bool(boot_command_line, "nofxsr")) setup_clear_cpu_cap(X86_FEATURE_FXSR); #endif if (cmdline_find_option_bool(boot_command_line, "noxsave")) setup_clear_cpu_cap(X86_FEATURE_XSAVE); if (cmdline_find_option_bool(boot_command_line, "noxsaveopt")) setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); if (cmdline_find_option_bool(boot_command_line, "noxsaves")) setup_clear_cpu_cap(X86_FEATURE_XSAVES); if (cmdline_find_option_bool(boot_command_line, "nousershstk")) setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK); /* Minimize the gap between FRED is available and available but disabled. */ arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg)); if (arglen != 2 || strncmp(arg, "on", 2)) setup_clear_cpu_cap(X86_FEATURE_FRED); arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg)); if (arglen <= 0) return; pr_info("Clearing CPUID bits:"); while (argptr) { bool found __maybe_unused = false; unsigned int bit; opt = strsep(&argptr, ","); /* * Handle naked numbers first for feature flags which don't * have names. */ if (!kstrtouint(opt, 10, &bit)) { if (bit < NCAPINTS * 32) { /* empty-string, i.e., ""-defined feature flags */ if (!x86_cap_flags[bit]) pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit)); else pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit)); setup_clear_cpu_cap(bit); taint++; } /* * The assumption is that there are no feature names with only * numbers in the name thus go to the next argument. */ continue; } for (bit = 0; bit < 32 * NCAPINTS; bit++) { if (!x86_cap_flag(bit)) continue; if (strcmp(x86_cap_flag(bit), opt)) continue; pr_cont(" %s", opt); setup_clear_cpu_cap(bit); taint++; found = true; break; } if (!found) pr_cont(" (unknown: %s)", opt); } pr_cont("\n"); if (taint) add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); } /* * Do minimum CPU detection early. * Fields really needed: vendor, cpuid_level, family, model, mask, * cache alignment. * The others are not touched to avoid unwanted side effects. * * WARNING: this function is only called on the boot CPU. Don't add code * here that is supposed to run on all CPUs. */ static void __init early_identify_cpu(struct cpuinfo_x86 *c) { memset(&c->x86_capability, 0, sizeof(c->x86_capability)); c->extended_cpuid_level = 0; if (!have_cpuid_p()) identify_cpu_without_cpuid(c); /* cyrix could have cpuid enabled via c_identify()*/ if (have_cpuid_p()) { cpu_detect(c); get_cpu_vendor(c); intel_unlock_cpuid_leafs(c); get_cpu_cap(c); setup_force_cpu_cap(X86_FEATURE_CPUID); get_cpu_address_sizes(c); cpu_parse_early_param(); cpu_init_topology(c); if (this_cpu->c_early_init) this_cpu->c_early_init(c); c->cpu_index = 0; filter_cpuid_features(c, false); if (this_cpu->c_bsp_init) this_cpu->c_bsp_init(c); } else { setup_clear_cpu_cap(X86_FEATURE_CPUID); get_cpu_address_sizes(c); cpu_init_topology(c); } setup_force_cpu_cap(X86_FEATURE_ALWAYS); cpu_set_bug_bits(c); sld_setup(c); #ifdef CONFIG_X86_32 /* * Regardless of whether PCID is enumerated, the SDM says * that it can't be enabled in 32-bit mode. */ setup_clear_cpu_cap(X86_FEATURE_PCID); #endif /* * Later in the boot process pgtable_l5_enabled() relies on * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not * enabled by this point we need to clear the feature bit to avoid * false-positives at the later stage. * * pgtable_l5_enabled() can be false here for several reasons: * - 5-level paging is disabled compile-time; * - it's 32-bit kernel; * - machine doesn't support 5-level paging; * - user specified 'no5lvl' in kernel command line. */ if (!pgtable_l5_enabled()) setup_clear_cpu_cap(X86_FEATURE_LA57); detect_nopl(); } void __init early_cpu_init(void) { const struct cpu_dev *const *cdev; int count = 0; #ifdef CONFIG_PROCESSOR_SELECT pr_info("KERNEL supported cpus:\n"); #endif for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { const struct cpu_dev *cpudev = *cdev; if (count >= X86_VENDOR_NUM) break; cpu_devs[count] = cpudev; count++; #ifdef CONFIG_PROCESSOR_SELECT { unsigned int j; for (j = 0; j < 2; j++) { if (!cpudev->c_ident[j]) continue; pr_info(" %s %s\n", cpudev->c_vendor, cpudev->c_ident[j]); } } #endif } early_identify_cpu(&boot_cpu_data); } static bool detect_null_seg_behavior(void) { /* * Empirically, writing zero to a segment selector on AMD does * not clear the base, whereas writing zero to a segment * selector on Intel does clear the base. Intel's behavior * allows slightly faster context switches in the common case * where GS is unused by the prev and next threads. * * Since neither vendor documents this anywhere that I can see, * detect it directly instead of hard-coding the choice by * vendor. * * I've designated AMD's behavior as the "bug" because it's * counterintuitive and less friendly. */ unsigned long old_base, tmp; rdmsrl(MSR_FS_BASE, old_base); wrmsrl(MSR_FS_BASE, 1); loadsegment(fs, 0); rdmsrl(MSR_FS_BASE, tmp); wrmsrl(MSR_FS_BASE, old_base); return tmp == 0; } void check_null_seg_clears_base(struct cpuinfo_x86 *c) { /* BUG_NULL_SEG is only relevant with 64bit userspace */ if (!IS_ENABLED(CONFIG_X86_64)) return; if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE)) return; /* * CPUID bit above wasn't set. If this kernel is still running * as a HV guest, then the HV has decided not to advertize * that CPUID bit for whatever reason. For example, one * member of the migration pool might be vulnerable. Which * means, the bug is present: set the BUG flag and return. */ if (cpu_has(c, X86_FEATURE_HYPERVISOR)) { set_cpu_bug(c, X86_BUG_NULL_SEG); return; } /* * Zen2 CPUs also have this behaviour, but no CPUID bit. * 0x18 is the respective family for Hygon. */ if ((c->x86 == 0x17 || c->x86 == 0x18) && detect_null_seg_behavior()) return; /* All the remaining ones are affected */ set_cpu_bug(c, X86_BUG_NULL_SEG); } static void generic_identify(struct cpuinfo_x86 *c) { c->extended_cpuid_level = 0; if (!have_cpuid_p()) identify_cpu_without_cpuid(c); /* cyrix could have cpuid enabled via c_identify()*/ if (!have_cpuid_p()) return; cpu_detect(c); get_cpu_vendor(c); intel_unlock_cpuid_leafs(c); get_cpu_cap(c); get_cpu_address_sizes(c); get_model_name(c); /* Default name */ /* * ESPFIX is a strange bug. All real CPUs have it. Paravirt * systems that run Linux at CPL > 0 may or may not have the * issue, but, even if they have the issue, there's absolutely * nothing we can do about it because we can't use the real IRET * instruction. * * NB: For the time being, only 32-bit kernels support * X86_BUG_ESPFIX as such. 64-bit kernels directly choose * whether to apply espfix using paravirt hooks. If any * non-paravirt system ever shows up that does *not* have the * ESPFIX issue, we can change this. */ #ifdef CONFIG_X86_32 set_cpu_bug(c, X86_BUG_ESPFIX); #endif } /* * This does the hard work of actually picking apart the CPU stuff... */ static void identify_cpu(struct cpuinfo_x86 *c) { int i; c->loops_per_jiffy = loops_per_jiffy; c->x86_cache_size = 0; c->x86_vendor = X86_VENDOR_UNKNOWN; c->x86_model = c->x86_stepping = 0; /* So far unknown... */ c->x86_vendor_id[0] = '\0'; /* Unset */ c->x86_model_id[0] = '\0'; /* Unset */ #ifdef CONFIG_X86_64 c->x86_clflush_size = 64; c->x86_phys_bits = 36; c->x86_virt_bits = 48; #else c->cpuid_level = -1; /* CPUID not detected */ c->x86_clflush_size = 32; c->x86_phys_bits = 32; c->x86_virt_bits = 32; #endif c->x86_cache_alignment = c->x86_clflush_size; memset(&c->x86_capability, 0, sizeof(c->x86_capability)); #ifdef CONFIG_X86_VMX_FEATURE_NAMES memset(&c->vmx_capability, 0, sizeof(c->vmx_capability)); #endif generic_identify(c); cpu_parse_topology(c); if (this_cpu->c_identify) this_cpu->c_identify(c); /* Clear/Set all flags overridden by options, after probe */ apply_forced_caps(c); /* * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and * Hygon will clear it in ->c_init() below. */ set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE); /* * Vendor-specific initialization. In this section we * canonicalize the feature flags, meaning if there are * features a certain CPU supports which CPUID doesn't * tell us, CPUID claiming incorrect flags, or other bugs, * we handle them here. * * At the end of this section, c->x86_capability better * indicate the features this CPU genuinely supports! */ if (this_cpu->c_init) this_cpu->c_init(c); /* Disable the PN if appropriate */ squash_the_stupid_serial_number(c); /* Set up SMEP/SMAP/UMIP */ setup_smep(c); setup_smap(c); setup_umip(c); /* Enable FSGSBASE instructions if available. */ if (cpu_has(c, X86_FEATURE_FSGSBASE)) { cr4_set_bits(X86_CR4_FSGSBASE); elf_hwcap2 |= HWCAP2_FSGSBASE; } /* * The vendor-specific functions might have changed features. * Now we do "generic changes." */ /* Filter out anything that depends on CPUID levels we don't have */ filter_cpuid_features(c, true); /* If the model name is still unset, do table lookup. */ if (!c->x86_model_id[0]) { const char *p; p = table_lookup_model(c); if (p) strcpy(c->x86_model_id, p); else /* Last resort... */ sprintf(c->x86_model_id, "%02x/%02x", c->x86, c->x86_model); } x86_init_rdrand(c); setup_pku(c); setup_cet(c); /* * Clear/Set all flags overridden by options, need do it * before following smp all cpus cap AND. */ apply_forced_caps(c); /* * On SMP, boot_cpu_data holds the common feature set between * all CPUs; so make sure that we indicate which features are * common between the CPUs. The first time this routine gets * executed, c == &boot_cpu_data. */ if (c != &boot_cpu_data) { /* AND the already accumulated flags with these */ for (i = 0; i < NCAPINTS; i++) boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; /* OR, i.e. replicate the bug flags */ for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; } ppin_init(c); /* Init Machine Check Exception if available. */ mcheck_cpu_init(c); #ifdef CONFIG_NUMA numa_add_cpu(smp_processor_id()); #endif } /* * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions * on 32-bit kernels: */ #ifdef CONFIG_X86_32 void enable_sep_cpu(void) { struct tss_struct *tss; int cpu; if (!boot_cpu_has(X86_FEATURE_SEP)) return; cpu = get_cpu(); tss = &per_cpu(cpu_tss_rw, cpu); /* * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- * see the big comment in struct x86_hw_tss's definition. */ tss->x86_tss.ss1 = __KERNEL_CS; wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0); wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); put_cpu(); } #endif static __init void identify_boot_cpu(void) { identify_cpu(&boot_cpu_data); if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) pr_info("CET detected: Indirect Branch Tracking enabled\n"); #ifdef CONFIG_X86_32 enable_sep_cpu(); #endif cpu_detect_tlb(&boot_cpu_data); setup_cr_pinning(); tsx_init(); tdx_init(); lkgs_init(); } void identify_secondary_cpu(struct cpuinfo_x86 *c) { BUG_ON(c == &boot_cpu_data); identify_cpu(c); #ifdef CONFIG_X86_32 enable_sep_cpu(); #endif x86_spec_ctrl_setup_ap(); update_srbds_msr(); if (boot_cpu_has_bug(X86_BUG_GDS)) update_gds_msr(); tsx_ap_init(); } void print_cpu_info(struct cpuinfo_x86 *c) { const char *vendor = NULL; if (c->x86_vendor < X86_VENDOR_NUM) { vendor = this_cpu->c_vendor; } else { if (c->cpuid_level >= 0) vendor = c->x86_vendor_id; } if (vendor && !strstr(c->x86_model_id, vendor)) pr_cont("%s ", vendor); if (c->x86_model_id[0]) pr_cont("%s", c->x86_model_id); else pr_cont("%d86", c->x86); pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); if (c->x86_stepping || c->cpuid_level >= 0) pr_cont(", stepping: 0x%x)\n", c->x86_stepping); else pr_cont(")\n"); } /* * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy * function prevents it from becoming an environment variable for init. */ static __init int setup_clearcpuid(char *arg) { return 1; } __setup("clearcpuid=", setup_clearcpuid); DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = { .current_task = &init_task, .preempt_count = INIT_PREEMPT_COUNT, .top_of_stack = TOP_OF_INIT_STACK, }; EXPORT_PER_CPU_SYMBOL(pcpu_hot); EXPORT_PER_CPU_SYMBOL(const_pcpu_hot); #ifdef CONFIG_X86_64 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __aligned(PAGE_SIZE) __visible; EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data); static void wrmsrl_cstar(unsigned long val) { /* * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR * is so far ignored by the CPU, but raises a #VE trap in a TDX * guest. Avoid the pointless write on all Intel CPUs. */ if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) wrmsrl(MSR_CSTAR, val); } static inline void idt_syscall_init(void) { wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); if (ia32_enabled()) { wrmsrl_cstar((unsigned long)entry_SYSCALL_compat); /* * This only works on Intel CPUs. * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. * This does not cause SYSENTER to jump to the wrong location, because * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). */ wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1)); wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); } else { wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore); wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); } /* * Flags to clear on syscall; clear as much as possible * to minimize user space-kernel interference. */ wrmsrl(MSR_SYSCALL_MASK, X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF| X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF| X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF| X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF| X86_EFLAGS_AC|X86_EFLAGS_ID); } /* May not be marked __init: used by software suspend */ void syscall_init(void) { /* The default user and kernel segments */ wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); /* * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit * instruction to return to ring 3 (both sysexit and sysret cause * #UD when FRED is enabled). */ if (!cpu_feature_enabled(X86_FEATURE_FRED)) idt_syscall_init(); } #else /* CONFIG_X86_64 */ #ifdef CONFIG_STACKPROTECTOR DEFINE_PER_CPU(unsigned long, __stack_chk_guard); EXPORT_PER_CPU_SYMBOL(__stack_chk_guard); #endif #endif /* CONFIG_X86_64 */ /* * Clear all 6 debug registers: */ static void clear_all_debug_regs(void) { int i; for (i = 0; i < 8; i++) { /* Ignore db4, db5 */ if ((i == 4) || (i == 5)) continue; set_debugreg(0, i); } } #ifdef CONFIG_KGDB /* * Restore debug regs if using kgdbwait and you have a kernel debugger * connection established. */ static void dbg_restore_debug_regs(void) { if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) arch_kgdb_ops.correct_hw_break(); } #else /* ! CONFIG_KGDB */ #define dbg_restore_debug_regs() #endif /* ! CONFIG_KGDB */ static inline void setup_getcpu(int cpu) { unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu)); struct desc_struct d = { }; if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID)) wrmsr(MSR_TSC_AUX, cpudata, 0); /* Store CPU and node number in limit. */ d.limit0 = cpudata; d.limit1 = cpudata >> 16; d.type = 5; /* RO data, expand down, accessed */ d.dpl = 3; /* Visible to user code */ d.s = 1; /* Not a system segment */ d.p = 1; /* Present */ d.d = 1; /* 32-bit */ write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S); } #ifdef CONFIG_X86_64 static inline void tss_setup_ist(struct tss_struct *tss) { /* Set up the per-CPU TSS IST stacks */ tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF); tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI); tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB); tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE); /* Only mapped when SEV-ES is active */ tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC); } #else /* CONFIG_X86_64 */ static inline void tss_setup_ist(struct tss_struct *tss) { } #endif /* !CONFIG_X86_64 */ static inline void tss_setup_io_bitmap(struct tss_struct *tss) { tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID; #ifdef CONFIG_X86_IOPL_IOPERM tss->io_bitmap.prev_max = 0; tss->io_bitmap.prev_sequence = 0; memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap)); /* * Invalidate the extra array entry past the end of the all * permission bitmap as required by the hardware. */ tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL; #endif } /* * Setup everything needed to handle exceptions from the IDT, including the IST * exceptions which use paranoid_entry(). */ void cpu_init_exception_handling(bool boot_cpu) { struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); int cpu = raw_smp_processor_id(); /* paranoid_entry() gets the CPU number from the GDT */ setup_getcpu(cpu); /* For IDT mode, IST vectors need to be set in TSS. */ if (!cpu_feature_enabled(X86_FEATURE_FRED)) tss_setup_ist(tss); tss_setup_io_bitmap(tss); set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); load_TR_desc(); /* GHCB needs to be setup to handle #VC. */ setup_ghcb(); if (cpu_feature_enabled(X86_FEATURE_FRED)) { /* The boot CPU has enabled FRED during early boot */ if (!boot_cpu) cpu_init_fred_exceptions(); cpu_init_fred_rsps(); } else { load_current_idt(); } } void __init cpu_init_replace_early_idt(void) { if (cpu_feature_enabled(X86_FEATURE_FRED)) cpu_init_fred_exceptions(); else idt_setup_early_pf(); } /* * cpu_init() initializes state that is per-CPU. Some data is already * initialized (naturally) in the bootstrap process, such as the GDT. We * reload it nevertheless, this function acts as a 'CPU state barrier', * nothing should get across. */ void cpu_init(void) { struct task_struct *cur = current; int cpu = raw_smp_processor_id(); #ifdef CONFIG_NUMA if (this_cpu_read(numa_node) == 0 && early_cpu_to_node(cpu) != NUMA_NO_NODE) set_numa_node(early_cpu_to_node(cpu)); #endif pr_debug("Initializing CPU#%d\n", cpu); if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) || boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE)) cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); if (IS_ENABLED(CONFIG_X86_64)) { loadsegment(fs, 0); memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); syscall_init(); wrmsrl(MSR_FS_BASE, 0); wrmsrl(MSR_KERNEL_GS_BASE, 0); barrier(); x2apic_setup(); intel_posted_msi_init(); } mmgrab(&init_mm); cur->active_mm = &init_mm; BUG_ON(cur->mm); initialize_tlbstate_and_flush(); enter_lazy_tlb(&init_mm, cur); /* * sp0 points to the entry trampoline stack regardless of what task * is running. */ load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1)); load_mm_ldt(&init_mm); clear_all_debug_regs(); dbg_restore_debug_regs(); doublefault_init_cpu_tss(); if (is_uv_system()) uv_cpu_init(); load_fixmap_gdt(cpu); } #ifdef CONFIG_MICROCODE_LATE_LOADING /** * store_cpu_caps() - Store a snapshot of CPU capabilities * @curr_info: Pointer where to store it * * Returns: None */ void store_cpu_caps(struct cpuinfo_x86 *curr_info) { /* Reload CPUID max function as it might've changed. */ curr_info->cpuid_level = cpuid_eax(0); /* Copy all capability leafs and pick up the synthetic ones. */ memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability, sizeof(curr_info->x86_capability)); /* Get the hardware CPUID leafs */ get_cpu_cap(curr_info); } /** * microcode_check() - Check if any CPU capabilities changed after an update. * @prev_info: CPU capabilities stored before an update. * * The microcode loader calls this upon late microcode load to recheck features, * only when microcode has been updated. Caller holds and CPU hotplug lock. * * Return: None */ void microcode_check(struct cpuinfo_x86 *prev_info) { struct cpuinfo_x86 curr_info; perf_check_microcode(); amd_check_microcode(); store_cpu_caps(&curr_info); if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability, sizeof(prev_info->x86_capability))) return; pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n"); pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n"); } #endif /* * Invoked from core CPU hotplug code after hotplug operations */ void arch_smt_update(void) { /* Handle the speculative execution misfeatures */ cpu_bugs_smt_update(); /* Check whether IPI broadcasting can be enabled */ apic_smt_update(); } void __init arch_cpu_finalize_init(void) { struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info); identify_boot_cpu(); select_idle_routine(); /* * identify_boot_cpu() initialized SMT support information, let the * core code know. */ cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core); if (!IS_ENABLED(CONFIG_SMP)) { pr_info("CPU: "); print_cpu_info(&boot_cpu_data); } cpu_select_mitigations(); arch_smt_update(); if (IS_ENABLED(CONFIG_X86_32)) { /* * Check whether this is a real i386 which is not longer * supported and fixup the utsname. */ if (boot_cpu_data.x86 < 4) panic("Kernel requires i486+ for 'invlpg' and other features"); init_utsname()->machine[1] = '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86); } /* * Must be before alternatives because it might set or clear * feature bits. */ fpu__init_system(); fpu__init_cpu(); /* * Ensure that access to the per CPU representation has the initial * boot CPU configuration. */ *c = boot_cpu_data; c->initialized = true; alternative_instructions(); if (IS_ENABLED(CONFIG_X86_64)) { unsigned long USER_PTR_MAX = TASK_SIZE_MAX-1; /* * Enable this when LAM is gated on LASS support if (cpu_feature_enabled(X86_FEATURE_LAM)) USER_PTR_MAX = (1ul << 63) - PAGE_SIZE - 1; */ runtime_const_init(ptr, USER_PTR_MAX); /* * Make sure the first 2MB area is not mapped by huge pages * There are typically fixed size MTRRs in there and overlapping * MTRRs into large pages causes slow downs. * * Right now we don't do that with gbpages because there seems * very little benefit for that case. */ if (!direct_gbpages) set_memory_4k((unsigned long)__va(0), 1); } else { fpu__init_check_bugs(); } /* * This needs to be called before any devices perform DMA * operations that might use the SWIOTLB bounce buffers. It will * mark the bounce buffers as decrypted so that their usage will * not cause "plain-text" data to be decrypted when accessed. It * must be called after late_time_init() so that Hyper-V x86/x64 * hypercalls work when the SWIOTLB bounce buffers are decrypted. */ mem_encrypt_init(); }