1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <linux/of.h> 23 #include <asm/cputable.h> 24 #include <linux/uaccess.h> 25 #include <asm/kvm_ppc.h> 26 #include <asm/cputhreads.h> 27 #include <asm/irqflags.h> 28 #include <asm/iommu.h> 29 #include <asm/switch_to.h> 30 #include <asm/xive.h> 31 #ifdef CONFIG_PPC_PSERIES 32 #include <asm/hvcall.h> 33 #include <asm/plpar_wrappers.h> 34 #endif 35 #include <asm/ultravisor.h> 36 #include <asm/setup.h> 37 38 #include "timing.h" 39 #include "../mm/mmu_decl.h" 40 41 #define CREATE_TRACE_POINTS 42 #include "trace.h" 43 44 struct kvmppc_ops *kvmppc_hv_ops; 45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 46 struct kvmppc_ops *kvmppc_pr_ops; 47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 48 49 50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 51 { 52 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 53 } 54 55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 56 { 57 return kvm_arch_vcpu_runnable(vcpu); 58 } 59 60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 61 { 62 return false; 63 } 64 65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 66 { 67 return 1; 68 } 69 70 /* 71 * Common checks before entering the guest world. Call with interrupts 72 * disabled. 73 * 74 * returns: 75 * 76 * == 1 if we're ready to go into guest state 77 * <= 0 if we need to go back to the host with return value 78 */ 79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 80 { 81 int r; 82 83 WARN_ON(irqs_disabled()); 84 hard_irq_disable(); 85 86 while (true) { 87 if (need_resched()) { 88 local_irq_enable(); 89 cond_resched(); 90 hard_irq_disable(); 91 continue; 92 } 93 94 if (signal_pending(current)) { 95 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 96 vcpu->run->exit_reason = KVM_EXIT_INTR; 97 r = -EINTR; 98 break; 99 } 100 101 vcpu->mode = IN_GUEST_MODE; 102 103 /* 104 * Reading vcpu->requests must happen after setting vcpu->mode, 105 * so we don't miss a request because the requester sees 106 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 107 * before next entering the guest (and thus doesn't IPI). 108 * This also orders the write to mode from any reads 109 * to the page tables done while the VCPU is running. 110 * Please see the comment in kvm_flush_remote_tlbs. 111 */ 112 smp_mb(); 113 114 if (kvm_request_pending(vcpu)) { 115 /* Make sure we process requests preemptable */ 116 local_irq_enable(); 117 trace_kvm_check_requests(vcpu); 118 r = kvmppc_core_check_requests(vcpu); 119 hard_irq_disable(); 120 if (r > 0) 121 continue; 122 break; 123 } 124 125 if (kvmppc_core_prepare_to_enter(vcpu)) { 126 /* interrupts got enabled in between, so we 127 are back at square 1 */ 128 continue; 129 } 130 131 guest_enter_irqoff(); 132 return 1; 133 } 134 135 /* return to host */ 136 local_irq_enable(); 137 return r; 138 } 139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 140 141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 143 { 144 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 145 int i; 146 147 shared->sprg0 = swab64(shared->sprg0); 148 shared->sprg1 = swab64(shared->sprg1); 149 shared->sprg2 = swab64(shared->sprg2); 150 shared->sprg3 = swab64(shared->sprg3); 151 shared->srr0 = swab64(shared->srr0); 152 shared->srr1 = swab64(shared->srr1); 153 shared->dar = swab64(shared->dar); 154 shared->msr = swab64(shared->msr); 155 shared->dsisr = swab32(shared->dsisr); 156 shared->int_pending = swab32(shared->int_pending); 157 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 158 shared->sr[i] = swab32(shared->sr[i]); 159 } 160 #endif 161 162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 163 { 164 int nr = kvmppc_get_gpr(vcpu, 11); 165 int r; 166 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 167 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 168 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 169 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 170 unsigned long r2 = 0; 171 172 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 173 /* 32 bit mode */ 174 param1 &= 0xffffffff; 175 param2 &= 0xffffffff; 176 param3 &= 0xffffffff; 177 param4 &= 0xffffffff; 178 } 179 180 switch (nr) { 181 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 182 { 183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 184 /* Book3S can be little endian, find it out here */ 185 int shared_big_endian = true; 186 if (vcpu->arch.intr_msr & MSR_LE) 187 shared_big_endian = false; 188 if (shared_big_endian != vcpu->arch.shared_big_endian) 189 kvmppc_swab_shared(vcpu); 190 vcpu->arch.shared_big_endian = shared_big_endian; 191 #endif 192 193 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 194 /* 195 * Older versions of the Linux magic page code had 196 * a bug where they would map their trampoline code 197 * NX. If that's the case, remove !PR NX capability. 198 */ 199 vcpu->arch.disable_kernel_nx = true; 200 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 201 } 202 203 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 204 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 205 206 #ifdef CONFIG_PPC_64K_PAGES 207 /* 208 * Make sure our 4k magic page is in the same window of a 64k 209 * page within the guest and within the host's page. 210 */ 211 if ((vcpu->arch.magic_page_pa & 0xf000) != 212 ((ulong)vcpu->arch.shared & 0xf000)) { 213 void *old_shared = vcpu->arch.shared; 214 ulong shared = (ulong)vcpu->arch.shared; 215 void *new_shared; 216 217 shared &= PAGE_MASK; 218 shared |= vcpu->arch.magic_page_pa & 0xf000; 219 new_shared = (void*)shared; 220 memcpy(new_shared, old_shared, 0x1000); 221 vcpu->arch.shared = new_shared; 222 } 223 #endif 224 225 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 226 227 r = EV_SUCCESS; 228 break; 229 } 230 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 231 r = EV_SUCCESS; 232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 233 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 234 #endif 235 236 /* Second return value is in r4 */ 237 break; 238 case EV_HCALL_TOKEN(EV_IDLE): 239 r = EV_SUCCESS; 240 kvm_vcpu_halt(vcpu); 241 break; 242 default: 243 r = EV_UNIMPLEMENTED; 244 break; 245 } 246 247 kvmppc_set_gpr(vcpu, 4, r2); 248 249 return r; 250 } 251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 252 253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 254 { 255 int r = false; 256 257 /* We have to know what CPU to virtualize */ 258 if (!vcpu->arch.pvr) 259 goto out; 260 261 /* PAPR only works with book3s_64 */ 262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 263 goto out; 264 265 /* HV KVM can only do PAPR mode for now */ 266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 267 goto out; 268 269 #ifdef CONFIG_KVM_BOOKE_HV 270 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 271 goto out; 272 #endif 273 274 r = true; 275 276 out: 277 vcpu->arch.sane = r; 278 return r ? 0 : -EINVAL; 279 } 280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 281 282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) 283 { 284 enum emulation_result er; 285 int r; 286 287 er = kvmppc_emulate_loadstore(vcpu); 288 switch (er) { 289 case EMULATE_DONE: 290 /* Future optimization: only reload non-volatiles if they were 291 * actually modified. */ 292 r = RESUME_GUEST_NV; 293 break; 294 case EMULATE_AGAIN: 295 r = RESUME_GUEST; 296 break; 297 case EMULATE_DO_MMIO: 298 vcpu->run->exit_reason = KVM_EXIT_MMIO; 299 /* We must reload nonvolatiles because "update" load/store 300 * instructions modify register state. */ 301 /* Future optimization: only reload non-volatiles if they were 302 * actually modified. */ 303 r = RESUME_HOST_NV; 304 break; 305 case EMULATE_FAIL: 306 { 307 u32 last_inst; 308 309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 310 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n", 311 last_inst); 312 313 /* 314 * Injecting a Data Storage here is a bit more 315 * accurate since the instruction that caused the 316 * access could still be a valid one. 317 */ 318 if (!IS_ENABLED(CONFIG_BOOKE)) { 319 ulong dsisr = DSISR_BADACCESS; 320 321 if (vcpu->mmio_is_write) 322 dsisr |= DSISR_ISSTORE; 323 324 kvmppc_core_queue_data_storage(vcpu, vcpu->arch.vaddr_accessed, dsisr); 325 } else { 326 /* 327 * BookE does not send a SIGBUS on a bad 328 * fault, so use a Program interrupt instead 329 * to avoid a fault loop. 330 */ 331 kvmppc_core_queue_program(vcpu, 0); 332 } 333 334 r = RESUME_GUEST; 335 break; 336 } 337 default: 338 WARN_ON(1); 339 r = RESUME_GUEST; 340 } 341 342 return r; 343 } 344 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 345 346 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 347 bool data) 348 { 349 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 350 struct kvmppc_pte pte; 351 int r = -EINVAL; 352 353 vcpu->stat.st++; 354 355 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 356 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 357 size); 358 359 if ((!r) || (r == -EAGAIN)) 360 return r; 361 362 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 363 XLATE_WRITE, &pte); 364 if (r < 0) 365 return r; 366 367 *eaddr = pte.raddr; 368 369 if (!pte.may_write) 370 return -EPERM; 371 372 /* Magic page override */ 373 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 374 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 375 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 376 void *magic = vcpu->arch.shared; 377 magic += pte.eaddr & 0xfff; 378 memcpy(magic, ptr, size); 379 return EMULATE_DONE; 380 } 381 382 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 383 return EMULATE_DO_MMIO; 384 385 return EMULATE_DONE; 386 } 387 EXPORT_SYMBOL_GPL(kvmppc_st); 388 389 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 390 bool data) 391 { 392 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 393 struct kvmppc_pte pte; 394 int rc = -EINVAL; 395 396 vcpu->stat.ld++; 397 398 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 399 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 400 size); 401 402 if ((!rc) || (rc == -EAGAIN)) 403 return rc; 404 405 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 406 XLATE_READ, &pte); 407 if (rc) 408 return rc; 409 410 *eaddr = pte.raddr; 411 412 if (!pte.may_read) 413 return -EPERM; 414 415 if (!data && !pte.may_execute) 416 return -ENOEXEC; 417 418 /* Magic page override */ 419 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 420 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 421 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 422 void *magic = vcpu->arch.shared; 423 magic += pte.eaddr & 0xfff; 424 memcpy(ptr, magic, size); 425 return EMULATE_DONE; 426 } 427 428 kvm_vcpu_srcu_read_lock(vcpu); 429 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); 430 kvm_vcpu_srcu_read_unlock(vcpu); 431 if (rc) 432 return EMULATE_DO_MMIO; 433 434 return EMULATE_DONE; 435 } 436 EXPORT_SYMBOL_GPL(kvmppc_ld); 437 438 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 439 { 440 struct kvmppc_ops *kvm_ops = NULL; 441 int r; 442 443 /* 444 * if we have both HV and PR enabled, default is HV 445 */ 446 if (type == 0) { 447 if (kvmppc_hv_ops) 448 kvm_ops = kvmppc_hv_ops; 449 else 450 kvm_ops = kvmppc_pr_ops; 451 if (!kvm_ops) 452 goto err_out; 453 } else if (type == KVM_VM_PPC_HV) { 454 if (!kvmppc_hv_ops) 455 goto err_out; 456 kvm_ops = kvmppc_hv_ops; 457 } else if (type == KVM_VM_PPC_PR) { 458 if (!kvmppc_pr_ops) 459 goto err_out; 460 kvm_ops = kvmppc_pr_ops; 461 } else 462 goto err_out; 463 464 if (!try_module_get(kvm_ops->owner)) 465 return -ENOENT; 466 467 kvm->arch.kvm_ops = kvm_ops; 468 r = kvmppc_core_init_vm(kvm); 469 if (r) 470 module_put(kvm_ops->owner); 471 return r; 472 err_out: 473 return -EINVAL; 474 } 475 476 void kvm_arch_destroy_vm(struct kvm *kvm) 477 { 478 #ifdef CONFIG_KVM_XICS 479 /* 480 * We call kick_all_cpus_sync() to ensure that all 481 * CPUs have executed any pending IPIs before we 482 * continue and free VCPUs structures below. 483 */ 484 if (is_kvmppc_hv_enabled(kvm)) 485 kick_all_cpus_sync(); 486 #endif 487 488 kvm_destroy_vcpus(kvm); 489 490 mutex_lock(&kvm->lock); 491 492 kvmppc_core_destroy_vm(kvm); 493 494 mutex_unlock(&kvm->lock); 495 496 /* drop the module reference */ 497 module_put(kvm->arch.kvm_ops->owner); 498 } 499 500 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 501 { 502 int r; 503 /* Assume we're using HV mode when the HV module is loaded */ 504 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 505 506 if (kvm) { 507 /* 508 * Hooray - we know which VM type we're running on. Depend on 509 * that rather than the guess above. 510 */ 511 hv_enabled = is_kvmppc_hv_enabled(kvm); 512 } 513 514 switch (ext) { 515 #ifdef CONFIG_BOOKE 516 case KVM_CAP_PPC_BOOKE_SREGS: 517 case KVM_CAP_PPC_BOOKE_WATCHDOG: 518 case KVM_CAP_PPC_EPR: 519 #else 520 case KVM_CAP_PPC_SEGSTATE: 521 case KVM_CAP_PPC_HIOR: 522 case KVM_CAP_PPC_PAPR: 523 #endif 524 case KVM_CAP_PPC_UNSET_IRQ: 525 case KVM_CAP_PPC_IRQ_LEVEL: 526 case KVM_CAP_ENABLE_CAP: 527 case KVM_CAP_ONE_REG: 528 case KVM_CAP_IOEVENTFD: 529 case KVM_CAP_DEVICE_CTRL: 530 case KVM_CAP_IMMEDIATE_EXIT: 531 case KVM_CAP_SET_GUEST_DEBUG: 532 r = 1; 533 break; 534 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 535 case KVM_CAP_PPC_PAIRED_SINGLES: 536 case KVM_CAP_PPC_OSI: 537 case KVM_CAP_PPC_GET_PVINFO: 538 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 539 case KVM_CAP_SW_TLB: 540 #endif 541 /* We support this only for PR */ 542 r = !hv_enabled; 543 break; 544 #ifdef CONFIG_KVM_MPIC 545 case KVM_CAP_IRQ_MPIC: 546 r = 1; 547 break; 548 #endif 549 550 #ifdef CONFIG_PPC_BOOK3S_64 551 case KVM_CAP_SPAPR_TCE: 552 case KVM_CAP_SPAPR_TCE_64: 553 r = 1; 554 break; 555 case KVM_CAP_SPAPR_TCE_VFIO: 556 r = !!cpu_has_feature(CPU_FTR_HVMODE); 557 break; 558 case KVM_CAP_PPC_RTAS: 559 case KVM_CAP_PPC_FIXUP_HCALL: 560 case KVM_CAP_PPC_ENABLE_HCALL: 561 #ifdef CONFIG_KVM_XICS 562 case KVM_CAP_IRQ_XICS: 563 #endif 564 case KVM_CAP_PPC_GET_CPU_CHAR: 565 r = 1; 566 break; 567 #ifdef CONFIG_KVM_XIVE 568 case KVM_CAP_PPC_IRQ_XIVE: 569 /* 570 * We need XIVE to be enabled on the platform (implies 571 * a POWER9 processor) and the PowerNV platform, as 572 * nested is not yet supported. 573 */ 574 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 575 kvmppc_xive_native_supported(); 576 break; 577 #endif 578 579 #ifdef CONFIG_HAVE_KVM_IRQFD 580 case KVM_CAP_IRQFD_RESAMPLE: 581 r = !xive_enabled(); 582 break; 583 #endif 584 585 case KVM_CAP_PPC_ALLOC_HTAB: 586 r = hv_enabled; 587 break; 588 #endif /* CONFIG_PPC_BOOK3S_64 */ 589 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 590 case KVM_CAP_PPC_SMT: 591 r = 0; 592 if (kvm) { 593 if (kvm->arch.emul_smt_mode > 1) 594 r = kvm->arch.emul_smt_mode; 595 else 596 r = kvm->arch.smt_mode; 597 } else if (hv_enabled) { 598 if (cpu_has_feature(CPU_FTR_ARCH_300)) 599 r = 1; 600 else 601 r = threads_per_subcore; 602 } 603 break; 604 case KVM_CAP_PPC_SMT_POSSIBLE: 605 r = 1; 606 if (hv_enabled) { 607 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 608 r = ((threads_per_subcore << 1) - 1); 609 else 610 /* P9 can emulate dbells, so allow any mode */ 611 r = 8 | 4 | 2 | 1; 612 } 613 break; 614 case KVM_CAP_PPC_RMA: 615 r = 0; 616 break; 617 case KVM_CAP_PPC_HWRNG: 618 r = kvmppc_hwrng_present(); 619 break; 620 case KVM_CAP_PPC_MMU_RADIX: 621 r = !!(hv_enabled && radix_enabled()); 622 break; 623 case KVM_CAP_PPC_MMU_HASH_V3: 624 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible && 625 kvmppc_hv_ops->hash_v3_possible()); 626 break; 627 case KVM_CAP_PPC_NESTED_HV: 628 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 629 !kvmppc_hv_ops->enable_nested(NULL)); 630 break; 631 #endif 632 case KVM_CAP_SYNC_MMU: 633 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 634 r = hv_enabled; 635 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 636 r = 1; 637 #else 638 r = 0; 639 #endif 640 break; 641 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 642 case KVM_CAP_PPC_HTAB_FD: 643 r = hv_enabled; 644 break; 645 #endif 646 case KVM_CAP_NR_VCPUS: 647 /* 648 * Recommending a number of CPUs is somewhat arbitrary; we 649 * return the number of present CPUs for -HV (since a host 650 * will have secondary threads "offline"), and for other KVM 651 * implementations just count online CPUs. 652 */ 653 if (hv_enabled) 654 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS); 655 else 656 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 657 break; 658 case KVM_CAP_MAX_VCPUS: 659 r = KVM_MAX_VCPUS; 660 break; 661 case KVM_CAP_MAX_VCPU_ID: 662 r = KVM_MAX_VCPU_IDS; 663 break; 664 #ifdef CONFIG_PPC_BOOK3S_64 665 case KVM_CAP_PPC_GET_SMMU_INFO: 666 r = 1; 667 break; 668 case KVM_CAP_SPAPR_MULTITCE: 669 r = 1; 670 break; 671 case KVM_CAP_SPAPR_RESIZE_HPT: 672 r = !!hv_enabled; 673 break; 674 #endif 675 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 676 case KVM_CAP_PPC_FWNMI: 677 r = hv_enabled; 678 break; 679 #endif 680 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 681 case KVM_CAP_PPC_HTM: 682 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 683 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 684 break; 685 #endif 686 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 687 case KVM_CAP_PPC_SECURE_GUEST: 688 r = hv_enabled && kvmppc_hv_ops->enable_svm && 689 !kvmppc_hv_ops->enable_svm(NULL); 690 break; 691 case KVM_CAP_PPC_DAWR1: 692 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 && 693 !kvmppc_hv_ops->enable_dawr1(NULL)); 694 break; 695 case KVM_CAP_PPC_RPT_INVALIDATE: 696 r = 1; 697 break; 698 #endif 699 case KVM_CAP_PPC_AIL_MODE_3: 700 r = 0; 701 /* 702 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode. 703 * The POWER9s can support it if the guest runs in hash mode, 704 * but QEMU doesn't necessarily query the capability in time. 705 */ 706 if (hv_enabled) { 707 if (kvmhv_on_pseries()) { 708 if (pseries_reloc_on_exception()) 709 r = 1; 710 } else if (cpu_has_feature(CPU_FTR_ARCH_207S) && 711 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) { 712 r = 1; 713 } 714 } 715 break; 716 default: 717 r = 0; 718 break; 719 } 720 return r; 721 722 } 723 724 long kvm_arch_dev_ioctl(struct file *filp, 725 unsigned int ioctl, unsigned long arg) 726 { 727 return -EINVAL; 728 } 729 730 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 731 { 732 kvmppc_core_free_memslot(kvm, slot); 733 } 734 735 int kvm_arch_prepare_memory_region(struct kvm *kvm, 736 const struct kvm_memory_slot *old, 737 struct kvm_memory_slot *new, 738 enum kvm_mr_change change) 739 { 740 return kvmppc_core_prepare_memory_region(kvm, old, new, change); 741 } 742 743 void kvm_arch_commit_memory_region(struct kvm *kvm, 744 struct kvm_memory_slot *old, 745 const struct kvm_memory_slot *new, 746 enum kvm_mr_change change) 747 { 748 kvmppc_core_commit_memory_region(kvm, old, new, change); 749 } 750 751 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 752 struct kvm_memory_slot *slot) 753 { 754 kvmppc_core_flush_memslot(kvm, slot); 755 } 756 757 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 758 { 759 return 0; 760 } 761 762 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 763 { 764 struct kvm_vcpu *vcpu; 765 766 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 767 kvmppc_decrementer_func(vcpu); 768 769 return HRTIMER_NORESTART; 770 } 771 772 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 773 { 774 int err; 775 776 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 777 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 778 779 #ifdef CONFIG_KVM_EXIT_TIMING 780 mutex_init(&vcpu->arch.exit_timing_lock); 781 #endif 782 err = kvmppc_subarch_vcpu_init(vcpu); 783 if (err) 784 return err; 785 786 err = kvmppc_core_vcpu_create(vcpu); 787 if (err) 788 goto out_vcpu_uninit; 789 790 rcuwait_init(&vcpu->arch.wait); 791 vcpu->arch.waitp = &vcpu->arch.wait; 792 return 0; 793 794 out_vcpu_uninit: 795 kvmppc_subarch_vcpu_uninit(vcpu); 796 return err; 797 } 798 799 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 800 { 801 } 802 803 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 804 { 805 /* Make sure we're not using the vcpu anymore */ 806 hrtimer_cancel(&vcpu->arch.dec_timer); 807 808 switch (vcpu->arch.irq_type) { 809 case KVMPPC_IRQ_MPIC: 810 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 811 break; 812 case KVMPPC_IRQ_XICS: 813 if (xics_on_xive()) 814 kvmppc_xive_cleanup_vcpu(vcpu); 815 else 816 kvmppc_xics_free_icp(vcpu); 817 break; 818 case KVMPPC_IRQ_XIVE: 819 kvmppc_xive_native_cleanup_vcpu(vcpu); 820 break; 821 } 822 823 kvmppc_core_vcpu_free(vcpu); 824 825 kvmppc_subarch_vcpu_uninit(vcpu); 826 } 827 828 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 829 { 830 return kvmppc_core_pending_dec(vcpu); 831 } 832 833 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 834 { 835 #ifdef CONFIG_BOOKE 836 /* 837 * vrsave (formerly usprg0) isn't used by Linux, but may 838 * be used by the guest. 839 * 840 * On non-booke this is associated with Altivec and 841 * is handled by code in book3s.c. 842 */ 843 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 844 #endif 845 kvmppc_core_vcpu_load(vcpu, cpu); 846 } 847 848 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 849 { 850 kvmppc_core_vcpu_put(vcpu); 851 #ifdef CONFIG_BOOKE 852 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 853 #endif 854 } 855 856 /* 857 * irq_bypass_add_producer and irq_bypass_del_producer are only 858 * useful if the architecture supports PCI passthrough. 859 * irq_bypass_stop and irq_bypass_start are not needed and so 860 * kvm_ops are not defined for them. 861 */ 862 bool kvm_arch_has_irq_bypass(void) 863 { 864 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 865 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 866 } 867 868 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 869 struct irq_bypass_producer *prod) 870 { 871 struct kvm_kernel_irqfd *irqfd = 872 container_of(cons, struct kvm_kernel_irqfd, consumer); 873 struct kvm *kvm = irqfd->kvm; 874 875 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 876 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 877 878 return 0; 879 } 880 881 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 882 struct irq_bypass_producer *prod) 883 { 884 struct kvm_kernel_irqfd *irqfd = 885 container_of(cons, struct kvm_kernel_irqfd, consumer); 886 struct kvm *kvm = irqfd->kvm; 887 888 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 889 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 890 } 891 892 #ifdef CONFIG_VSX 893 static inline int kvmppc_get_vsr_dword_offset(int index) 894 { 895 int offset; 896 897 if ((index != 0) && (index != 1)) 898 return -1; 899 900 #ifdef __BIG_ENDIAN 901 offset = index; 902 #else 903 offset = 1 - index; 904 #endif 905 906 return offset; 907 } 908 909 static inline int kvmppc_get_vsr_word_offset(int index) 910 { 911 int offset; 912 913 if ((index > 3) || (index < 0)) 914 return -1; 915 916 #ifdef __BIG_ENDIAN 917 offset = index; 918 #else 919 offset = 3 - index; 920 #endif 921 return offset; 922 } 923 924 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 925 u64 gpr) 926 { 927 union kvmppc_one_reg val; 928 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 929 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 930 931 if (offset == -1) 932 return; 933 934 if (index >= 32) { 935 val.vval = VCPU_VSX_VR(vcpu, index - 32); 936 val.vsxval[offset] = gpr; 937 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 938 } else { 939 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 940 } 941 } 942 943 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 944 u64 gpr) 945 { 946 union kvmppc_one_reg val; 947 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 948 949 if (index >= 32) { 950 val.vval = VCPU_VSX_VR(vcpu, index - 32); 951 val.vsxval[0] = gpr; 952 val.vsxval[1] = gpr; 953 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 954 } else { 955 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 956 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 957 } 958 } 959 960 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 961 u32 gpr) 962 { 963 union kvmppc_one_reg val; 964 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 965 966 if (index >= 32) { 967 val.vsx32val[0] = gpr; 968 val.vsx32val[1] = gpr; 969 val.vsx32val[2] = gpr; 970 val.vsx32val[3] = gpr; 971 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 972 } else { 973 val.vsx32val[0] = gpr; 974 val.vsx32val[1] = gpr; 975 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 976 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 977 } 978 } 979 980 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 981 u32 gpr32) 982 { 983 union kvmppc_one_reg val; 984 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 985 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 986 int dword_offset, word_offset; 987 988 if (offset == -1) 989 return; 990 991 if (index >= 32) { 992 val.vval = VCPU_VSX_VR(vcpu, index - 32); 993 val.vsx32val[offset] = gpr32; 994 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 995 } else { 996 dword_offset = offset / 2; 997 word_offset = offset % 2; 998 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 999 val.vsx32val[word_offset] = gpr32; 1000 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 1001 } 1002 } 1003 #endif /* CONFIG_VSX */ 1004 1005 #ifdef CONFIG_ALTIVEC 1006 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 1007 int index, int element_size) 1008 { 1009 int offset; 1010 int elts = sizeof(vector128)/element_size; 1011 1012 if ((index < 0) || (index >= elts)) 1013 return -1; 1014 1015 if (kvmppc_need_byteswap(vcpu)) 1016 offset = elts - index - 1; 1017 else 1018 offset = index; 1019 1020 return offset; 1021 } 1022 1023 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 1024 int index) 1025 { 1026 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 1027 } 1028 1029 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 1030 int index) 1031 { 1032 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1033 } 1034 1035 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1036 int index) 1037 { 1038 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1039 } 1040 1041 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1042 int index) 1043 { 1044 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1045 } 1046 1047 1048 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1049 u64 gpr) 1050 { 1051 union kvmppc_one_reg val; 1052 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1053 vcpu->arch.mmio_vmx_offset); 1054 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1055 1056 if (offset == -1) 1057 return; 1058 1059 val.vval = VCPU_VSX_VR(vcpu, index); 1060 val.vsxval[offset] = gpr; 1061 VCPU_VSX_VR(vcpu, index) = val.vval; 1062 } 1063 1064 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1065 u32 gpr32) 1066 { 1067 union kvmppc_one_reg val; 1068 int offset = kvmppc_get_vmx_word_offset(vcpu, 1069 vcpu->arch.mmio_vmx_offset); 1070 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1071 1072 if (offset == -1) 1073 return; 1074 1075 val.vval = VCPU_VSX_VR(vcpu, index); 1076 val.vsx32val[offset] = gpr32; 1077 VCPU_VSX_VR(vcpu, index) = val.vval; 1078 } 1079 1080 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1081 u16 gpr16) 1082 { 1083 union kvmppc_one_reg val; 1084 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1085 vcpu->arch.mmio_vmx_offset); 1086 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1087 1088 if (offset == -1) 1089 return; 1090 1091 val.vval = VCPU_VSX_VR(vcpu, index); 1092 val.vsx16val[offset] = gpr16; 1093 VCPU_VSX_VR(vcpu, index) = val.vval; 1094 } 1095 1096 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1097 u8 gpr8) 1098 { 1099 union kvmppc_one_reg val; 1100 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1101 vcpu->arch.mmio_vmx_offset); 1102 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1103 1104 if (offset == -1) 1105 return; 1106 1107 val.vval = VCPU_VSX_VR(vcpu, index); 1108 val.vsx8val[offset] = gpr8; 1109 VCPU_VSX_VR(vcpu, index) = val.vval; 1110 } 1111 #endif /* CONFIG_ALTIVEC */ 1112 1113 #ifdef CONFIG_PPC_FPU 1114 static inline u64 sp_to_dp(u32 fprs) 1115 { 1116 u64 fprd; 1117 1118 preempt_disable(); 1119 enable_kernel_fp(); 1120 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs) 1121 : "fr0"); 1122 preempt_enable(); 1123 return fprd; 1124 } 1125 1126 static inline u32 dp_to_sp(u64 fprd) 1127 { 1128 u32 fprs; 1129 1130 preempt_disable(); 1131 enable_kernel_fp(); 1132 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd) 1133 : "fr0"); 1134 preempt_enable(); 1135 return fprs; 1136 } 1137 1138 #else 1139 #define sp_to_dp(x) (x) 1140 #define dp_to_sp(x) (x) 1141 #endif /* CONFIG_PPC_FPU */ 1142 1143 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) 1144 { 1145 struct kvm_run *run = vcpu->run; 1146 u64 gpr; 1147 1148 if (run->mmio.len > sizeof(gpr)) 1149 return; 1150 1151 if (!vcpu->arch.mmio_host_swabbed) { 1152 switch (run->mmio.len) { 1153 case 8: gpr = *(u64 *)run->mmio.data; break; 1154 case 4: gpr = *(u32 *)run->mmio.data; break; 1155 case 2: gpr = *(u16 *)run->mmio.data; break; 1156 case 1: gpr = *(u8 *)run->mmio.data; break; 1157 } 1158 } else { 1159 switch (run->mmio.len) { 1160 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1161 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1162 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1163 case 1: gpr = *(u8 *)run->mmio.data; break; 1164 } 1165 } 1166 1167 /* conversion between single and double precision */ 1168 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1169 gpr = sp_to_dp(gpr); 1170 1171 if (vcpu->arch.mmio_sign_extend) { 1172 switch (run->mmio.len) { 1173 #ifdef CONFIG_PPC64 1174 case 4: 1175 gpr = (s64)(s32)gpr; 1176 break; 1177 #endif 1178 case 2: 1179 gpr = (s64)(s16)gpr; 1180 break; 1181 case 1: 1182 gpr = (s64)(s8)gpr; 1183 break; 1184 } 1185 } 1186 1187 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1188 case KVM_MMIO_REG_GPR: 1189 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1190 break; 1191 case KVM_MMIO_REG_FPR: 1192 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1193 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1194 1195 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1196 break; 1197 #ifdef CONFIG_PPC_BOOK3S 1198 case KVM_MMIO_REG_QPR: 1199 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1200 break; 1201 case KVM_MMIO_REG_FQPR: 1202 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1203 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1204 break; 1205 #endif 1206 #ifdef CONFIG_VSX 1207 case KVM_MMIO_REG_VSX: 1208 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1209 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1210 1211 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1212 kvmppc_set_vsr_dword(vcpu, gpr); 1213 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1214 kvmppc_set_vsr_word(vcpu, gpr); 1215 else if (vcpu->arch.mmio_copy_type == 1216 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1217 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1218 else if (vcpu->arch.mmio_copy_type == 1219 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1220 kvmppc_set_vsr_word_dump(vcpu, gpr); 1221 break; 1222 #endif 1223 #ifdef CONFIG_ALTIVEC 1224 case KVM_MMIO_REG_VMX: 1225 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1226 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1227 1228 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1229 kvmppc_set_vmx_dword(vcpu, gpr); 1230 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1231 kvmppc_set_vmx_word(vcpu, gpr); 1232 else if (vcpu->arch.mmio_copy_type == 1233 KVMPPC_VMX_COPY_HWORD) 1234 kvmppc_set_vmx_hword(vcpu, gpr); 1235 else if (vcpu->arch.mmio_copy_type == 1236 KVMPPC_VMX_COPY_BYTE) 1237 kvmppc_set_vmx_byte(vcpu, gpr); 1238 break; 1239 #endif 1240 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1241 case KVM_MMIO_REG_NESTED_GPR: 1242 if (kvmppc_need_byteswap(vcpu)) 1243 gpr = swab64(gpr); 1244 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1245 sizeof(gpr)); 1246 break; 1247 #endif 1248 default: 1249 BUG(); 1250 } 1251 } 1252 1253 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, 1254 unsigned int rt, unsigned int bytes, 1255 int is_default_endian, int sign_extend) 1256 { 1257 struct kvm_run *run = vcpu->run; 1258 int idx, ret; 1259 bool host_swabbed; 1260 1261 /* Pity C doesn't have a logical XOR operator */ 1262 if (kvmppc_need_byteswap(vcpu)) { 1263 host_swabbed = is_default_endian; 1264 } else { 1265 host_swabbed = !is_default_endian; 1266 } 1267 1268 if (bytes > sizeof(run->mmio.data)) 1269 return EMULATE_FAIL; 1270 1271 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1272 run->mmio.len = bytes; 1273 run->mmio.is_write = 0; 1274 1275 vcpu->arch.io_gpr = rt; 1276 vcpu->arch.mmio_host_swabbed = host_swabbed; 1277 vcpu->mmio_needed = 1; 1278 vcpu->mmio_is_write = 0; 1279 vcpu->arch.mmio_sign_extend = sign_extend; 1280 1281 idx = srcu_read_lock(&vcpu->kvm->srcu); 1282 1283 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1284 bytes, &run->mmio.data); 1285 1286 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1287 1288 if (!ret) { 1289 kvmppc_complete_mmio_load(vcpu); 1290 vcpu->mmio_needed = 0; 1291 return EMULATE_DONE; 1292 } 1293 1294 return EMULATE_DO_MMIO; 1295 } 1296 1297 int kvmppc_handle_load(struct kvm_vcpu *vcpu, 1298 unsigned int rt, unsigned int bytes, 1299 int is_default_endian) 1300 { 1301 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); 1302 } 1303 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1304 1305 /* Same as above, but sign extends */ 1306 int kvmppc_handle_loads(struct kvm_vcpu *vcpu, 1307 unsigned int rt, unsigned int bytes, 1308 int is_default_endian) 1309 { 1310 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); 1311 } 1312 1313 #ifdef CONFIG_VSX 1314 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, 1315 unsigned int rt, unsigned int bytes, 1316 int is_default_endian, int mmio_sign_extend) 1317 { 1318 enum emulation_result emulated = EMULATE_DONE; 1319 1320 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1321 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1322 return EMULATE_FAIL; 1323 1324 while (vcpu->arch.mmio_vsx_copy_nums) { 1325 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1326 is_default_endian, mmio_sign_extend); 1327 1328 if (emulated != EMULATE_DONE) 1329 break; 1330 1331 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1332 1333 vcpu->arch.mmio_vsx_copy_nums--; 1334 vcpu->arch.mmio_vsx_offset++; 1335 } 1336 return emulated; 1337 } 1338 #endif /* CONFIG_VSX */ 1339 1340 int kvmppc_handle_store(struct kvm_vcpu *vcpu, 1341 u64 val, unsigned int bytes, int is_default_endian) 1342 { 1343 struct kvm_run *run = vcpu->run; 1344 void *data = run->mmio.data; 1345 int idx, ret; 1346 bool host_swabbed; 1347 1348 /* Pity C doesn't have a logical XOR operator */ 1349 if (kvmppc_need_byteswap(vcpu)) { 1350 host_swabbed = is_default_endian; 1351 } else { 1352 host_swabbed = !is_default_endian; 1353 } 1354 1355 if (bytes > sizeof(run->mmio.data)) 1356 return EMULATE_FAIL; 1357 1358 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1359 run->mmio.len = bytes; 1360 run->mmio.is_write = 1; 1361 vcpu->mmio_needed = 1; 1362 vcpu->mmio_is_write = 1; 1363 1364 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1365 val = dp_to_sp(val); 1366 1367 /* Store the value at the lowest bytes in 'data'. */ 1368 if (!host_swabbed) { 1369 switch (bytes) { 1370 case 8: *(u64 *)data = val; break; 1371 case 4: *(u32 *)data = val; break; 1372 case 2: *(u16 *)data = val; break; 1373 case 1: *(u8 *)data = val; break; 1374 } 1375 } else { 1376 switch (bytes) { 1377 case 8: *(u64 *)data = swab64(val); break; 1378 case 4: *(u32 *)data = swab32(val); break; 1379 case 2: *(u16 *)data = swab16(val); break; 1380 case 1: *(u8 *)data = val; break; 1381 } 1382 } 1383 1384 idx = srcu_read_lock(&vcpu->kvm->srcu); 1385 1386 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1387 bytes, &run->mmio.data); 1388 1389 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1390 1391 if (!ret) { 1392 vcpu->mmio_needed = 0; 1393 return EMULATE_DONE; 1394 } 1395 1396 return EMULATE_DO_MMIO; 1397 } 1398 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1399 1400 #ifdef CONFIG_VSX 1401 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1402 { 1403 u32 dword_offset, word_offset; 1404 union kvmppc_one_reg reg; 1405 int vsx_offset = 0; 1406 int copy_type = vcpu->arch.mmio_copy_type; 1407 int result = 0; 1408 1409 switch (copy_type) { 1410 case KVMPPC_VSX_COPY_DWORD: 1411 vsx_offset = 1412 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1413 1414 if (vsx_offset == -1) { 1415 result = -1; 1416 break; 1417 } 1418 1419 if (rs < 32) { 1420 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1421 } else { 1422 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1423 *val = reg.vsxval[vsx_offset]; 1424 } 1425 break; 1426 1427 case KVMPPC_VSX_COPY_WORD: 1428 vsx_offset = 1429 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1430 1431 if (vsx_offset == -1) { 1432 result = -1; 1433 break; 1434 } 1435 1436 if (rs < 32) { 1437 dword_offset = vsx_offset / 2; 1438 word_offset = vsx_offset % 2; 1439 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1440 *val = reg.vsx32val[word_offset]; 1441 } else { 1442 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1443 *val = reg.vsx32val[vsx_offset]; 1444 } 1445 break; 1446 1447 default: 1448 result = -1; 1449 break; 1450 } 1451 1452 return result; 1453 } 1454 1455 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, 1456 int rs, unsigned int bytes, int is_default_endian) 1457 { 1458 u64 val; 1459 enum emulation_result emulated = EMULATE_DONE; 1460 1461 vcpu->arch.io_gpr = rs; 1462 1463 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1464 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1465 return EMULATE_FAIL; 1466 1467 while (vcpu->arch.mmio_vsx_copy_nums) { 1468 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1469 return EMULATE_FAIL; 1470 1471 emulated = kvmppc_handle_store(vcpu, 1472 val, bytes, is_default_endian); 1473 1474 if (emulated != EMULATE_DONE) 1475 break; 1476 1477 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1478 1479 vcpu->arch.mmio_vsx_copy_nums--; 1480 vcpu->arch.mmio_vsx_offset++; 1481 } 1482 1483 return emulated; 1484 } 1485 1486 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) 1487 { 1488 struct kvm_run *run = vcpu->run; 1489 enum emulation_result emulated = EMULATE_FAIL; 1490 int r; 1491 1492 vcpu->arch.paddr_accessed += run->mmio.len; 1493 1494 if (!vcpu->mmio_is_write) { 1495 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, 1496 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1497 } else { 1498 emulated = kvmppc_handle_vsx_store(vcpu, 1499 vcpu->arch.io_gpr, run->mmio.len, 1); 1500 } 1501 1502 switch (emulated) { 1503 case EMULATE_DO_MMIO: 1504 run->exit_reason = KVM_EXIT_MMIO; 1505 r = RESUME_HOST; 1506 break; 1507 case EMULATE_FAIL: 1508 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1509 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1510 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1511 r = RESUME_HOST; 1512 break; 1513 default: 1514 r = RESUME_GUEST; 1515 break; 1516 } 1517 return r; 1518 } 1519 #endif /* CONFIG_VSX */ 1520 1521 #ifdef CONFIG_ALTIVEC 1522 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, 1523 unsigned int rt, unsigned int bytes, int is_default_endian) 1524 { 1525 enum emulation_result emulated = EMULATE_DONE; 1526 1527 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1528 return EMULATE_FAIL; 1529 1530 while (vcpu->arch.mmio_vmx_copy_nums) { 1531 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1532 is_default_endian, 0); 1533 1534 if (emulated != EMULATE_DONE) 1535 break; 1536 1537 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1538 vcpu->arch.mmio_vmx_copy_nums--; 1539 vcpu->arch.mmio_vmx_offset++; 1540 } 1541 1542 return emulated; 1543 } 1544 1545 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1546 { 1547 union kvmppc_one_reg reg; 1548 int vmx_offset = 0; 1549 int result = 0; 1550 1551 vmx_offset = 1552 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1553 1554 if (vmx_offset == -1) 1555 return -1; 1556 1557 reg.vval = VCPU_VSX_VR(vcpu, index); 1558 *val = reg.vsxval[vmx_offset]; 1559 1560 return result; 1561 } 1562 1563 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1564 { 1565 union kvmppc_one_reg reg; 1566 int vmx_offset = 0; 1567 int result = 0; 1568 1569 vmx_offset = 1570 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1571 1572 if (vmx_offset == -1) 1573 return -1; 1574 1575 reg.vval = VCPU_VSX_VR(vcpu, index); 1576 *val = reg.vsx32val[vmx_offset]; 1577 1578 return result; 1579 } 1580 1581 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1582 { 1583 union kvmppc_one_reg reg; 1584 int vmx_offset = 0; 1585 int result = 0; 1586 1587 vmx_offset = 1588 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1589 1590 if (vmx_offset == -1) 1591 return -1; 1592 1593 reg.vval = VCPU_VSX_VR(vcpu, index); 1594 *val = reg.vsx16val[vmx_offset]; 1595 1596 return result; 1597 } 1598 1599 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1600 { 1601 union kvmppc_one_reg reg; 1602 int vmx_offset = 0; 1603 int result = 0; 1604 1605 vmx_offset = 1606 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1607 1608 if (vmx_offset == -1) 1609 return -1; 1610 1611 reg.vval = VCPU_VSX_VR(vcpu, index); 1612 *val = reg.vsx8val[vmx_offset]; 1613 1614 return result; 1615 } 1616 1617 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, 1618 unsigned int rs, unsigned int bytes, int is_default_endian) 1619 { 1620 u64 val = 0; 1621 unsigned int index = rs & KVM_MMIO_REG_MASK; 1622 enum emulation_result emulated = EMULATE_DONE; 1623 1624 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1625 return EMULATE_FAIL; 1626 1627 vcpu->arch.io_gpr = rs; 1628 1629 while (vcpu->arch.mmio_vmx_copy_nums) { 1630 switch (vcpu->arch.mmio_copy_type) { 1631 case KVMPPC_VMX_COPY_DWORD: 1632 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1633 return EMULATE_FAIL; 1634 1635 break; 1636 case KVMPPC_VMX_COPY_WORD: 1637 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1638 return EMULATE_FAIL; 1639 break; 1640 case KVMPPC_VMX_COPY_HWORD: 1641 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1642 return EMULATE_FAIL; 1643 break; 1644 case KVMPPC_VMX_COPY_BYTE: 1645 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1646 return EMULATE_FAIL; 1647 break; 1648 default: 1649 return EMULATE_FAIL; 1650 } 1651 1652 emulated = kvmppc_handle_store(vcpu, val, bytes, 1653 is_default_endian); 1654 if (emulated != EMULATE_DONE) 1655 break; 1656 1657 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1658 vcpu->arch.mmio_vmx_copy_nums--; 1659 vcpu->arch.mmio_vmx_offset++; 1660 } 1661 1662 return emulated; 1663 } 1664 1665 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) 1666 { 1667 struct kvm_run *run = vcpu->run; 1668 enum emulation_result emulated = EMULATE_FAIL; 1669 int r; 1670 1671 vcpu->arch.paddr_accessed += run->mmio.len; 1672 1673 if (!vcpu->mmio_is_write) { 1674 emulated = kvmppc_handle_vmx_load(vcpu, 1675 vcpu->arch.io_gpr, run->mmio.len, 1); 1676 } else { 1677 emulated = kvmppc_handle_vmx_store(vcpu, 1678 vcpu->arch.io_gpr, run->mmio.len, 1); 1679 } 1680 1681 switch (emulated) { 1682 case EMULATE_DO_MMIO: 1683 run->exit_reason = KVM_EXIT_MMIO; 1684 r = RESUME_HOST; 1685 break; 1686 case EMULATE_FAIL: 1687 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1688 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1689 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1690 r = RESUME_HOST; 1691 break; 1692 default: 1693 r = RESUME_GUEST; 1694 break; 1695 } 1696 return r; 1697 } 1698 #endif /* CONFIG_ALTIVEC */ 1699 1700 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1701 { 1702 int r = 0; 1703 union kvmppc_one_reg val; 1704 int size; 1705 1706 size = one_reg_size(reg->id); 1707 if (size > sizeof(val)) 1708 return -EINVAL; 1709 1710 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1711 if (r == -EINVAL) { 1712 r = 0; 1713 switch (reg->id) { 1714 #ifdef CONFIG_ALTIVEC 1715 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1716 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1717 r = -ENXIO; 1718 break; 1719 } 1720 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1721 break; 1722 case KVM_REG_PPC_VSCR: 1723 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1724 r = -ENXIO; 1725 break; 1726 } 1727 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1728 break; 1729 case KVM_REG_PPC_VRSAVE: 1730 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1731 break; 1732 #endif /* CONFIG_ALTIVEC */ 1733 default: 1734 r = -EINVAL; 1735 break; 1736 } 1737 } 1738 1739 if (r) 1740 return r; 1741 1742 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1743 r = -EFAULT; 1744 1745 return r; 1746 } 1747 1748 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1749 { 1750 int r; 1751 union kvmppc_one_reg val; 1752 int size; 1753 1754 size = one_reg_size(reg->id); 1755 if (size > sizeof(val)) 1756 return -EINVAL; 1757 1758 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1759 return -EFAULT; 1760 1761 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1762 if (r == -EINVAL) { 1763 r = 0; 1764 switch (reg->id) { 1765 #ifdef CONFIG_ALTIVEC 1766 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1767 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1768 r = -ENXIO; 1769 break; 1770 } 1771 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1772 break; 1773 case KVM_REG_PPC_VSCR: 1774 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1775 r = -ENXIO; 1776 break; 1777 } 1778 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1779 break; 1780 case KVM_REG_PPC_VRSAVE: 1781 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1782 r = -ENXIO; 1783 break; 1784 } 1785 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1786 break; 1787 #endif /* CONFIG_ALTIVEC */ 1788 default: 1789 r = -EINVAL; 1790 break; 1791 } 1792 } 1793 1794 return r; 1795 } 1796 1797 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1798 { 1799 struct kvm_run *run = vcpu->run; 1800 int r; 1801 1802 vcpu_load(vcpu); 1803 1804 if (vcpu->mmio_needed) { 1805 vcpu->mmio_needed = 0; 1806 if (!vcpu->mmio_is_write) 1807 kvmppc_complete_mmio_load(vcpu); 1808 #ifdef CONFIG_VSX 1809 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1810 vcpu->arch.mmio_vsx_copy_nums--; 1811 vcpu->arch.mmio_vsx_offset++; 1812 } 1813 1814 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1815 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); 1816 if (r == RESUME_HOST) { 1817 vcpu->mmio_needed = 1; 1818 goto out; 1819 } 1820 } 1821 #endif 1822 #ifdef CONFIG_ALTIVEC 1823 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1824 vcpu->arch.mmio_vmx_copy_nums--; 1825 vcpu->arch.mmio_vmx_offset++; 1826 } 1827 1828 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1829 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); 1830 if (r == RESUME_HOST) { 1831 vcpu->mmio_needed = 1; 1832 goto out; 1833 } 1834 } 1835 #endif 1836 } else if (vcpu->arch.osi_needed) { 1837 u64 *gprs = run->osi.gprs; 1838 int i; 1839 1840 for (i = 0; i < 32; i++) 1841 kvmppc_set_gpr(vcpu, i, gprs[i]); 1842 vcpu->arch.osi_needed = 0; 1843 } else if (vcpu->arch.hcall_needed) { 1844 int i; 1845 1846 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1847 for (i = 0; i < 9; ++i) 1848 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1849 vcpu->arch.hcall_needed = 0; 1850 #ifdef CONFIG_BOOKE 1851 } else if (vcpu->arch.epr_needed) { 1852 kvmppc_set_epr(vcpu, run->epr.epr); 1853 vcpu->arch.epr_needed = 0; 1854 #endif 1855 } 1856 1857 kvm_sigset_activate(vcpu); 1858 1859 if (run->immediate_exit) 1860 r = -EINTR; 1861 else 1862 r = kvmppc_vcpu_run(vcpu); 1863 1864 kvm_sigset_deactivate(vcpu); 1865 1866 #ifdef CONFIG_ALTIVEC 1867 out: 1868 #endif 1869 1870 /* 1871 * We're already returning to userspace, don't pass the 1872 * RESUME_HOST flags along. 1873 */ 1874 if (r > 0) 1875 r = 0; 1876 1877 vcpu_put(vcpu); 1878 return r; 1879 } 1880 1881 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1882 { 1883 if (irq->irq == KVM_INTERRUPT_UNSET) { 1884 kvmppc_core_dequeue_external(vcpu); 1885 return 0; 1886 } 1887 1888 kvmppc_core_queue_external(vcpu, irq); 1889 1890 kvm_vcpu_kick(vcpu); 1891 1892 return 0; 1893 } 1894 1895 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1896 struct kvm_enable_cap *cap) 1897 { 1898 int r; 1899 1900 if (cap->flags) 1901 return -EINVAL; 1902 1903 switch (cap->cap) { 1904 case KVM_CAP_PPC_OSI: 1905 r = 0; 1906 vcpu->arch.osi_enabled = true; 1907 break; 1908 case KVM_CAP_PPC_PAPR: 1909 r = 0; 1910 vcpu->arch.papr_enabled = true; 1911 break; 1912 case KVM_CAP_PPC_EPR: 1913 r = 0; 1914 if (cap->args[0]) 1915 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1916 else 1917 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1918 break; 1919 #ifdef CONFIG_BOOKE 1920 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1921 r = 0; 1922 vcpu->arch.watchdog_enabled = true; 1923 break; 1924 #endif 1925 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1926 case KVM_CAP_SW_TLB: { 1927 struct kvm_config_tlb cfg; 1928 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1929 1930 r = -EFAULT; 1931 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1932 break; 1933 1934 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1935 break; 1936 } 1937 #endif 1938 #ifdef CONFIG_KVM_MPIC 1939 case KVM_CAP_IRQ_MPIC: { 1940 struct fd f; 1941 struct kvm_device *dev; 1942 1943 r = -EBADF; 1944 f = fdget(cap->args[0]); 1945 if (!f.file) 1946 break; 1947 1948 r = -EPERM; 1949 dev = kvm_device_from_filp(f.file); 1950 if (dev) 1951 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1952 1953 fdput(f); 1954 break; 1955 } 1956 #endif 1957 #ifdef CONFIG_KVM_XICS 1958 case KVM_CAP_IRQ_XICS: { 1959 struct fd f; 1960 struct kvm_device *dev; 1961 1962 r = -EBADF; 1963 f = fdget(cap->args[0]); 1964 if (!f.file) 1965 break; 1966 1967 r = -EPERM; 1968 dev = kvm_device_from_filp(f.file); 1969 if (dev) { 1970 if (xics_on_xive()) 1971 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1972 else 1973 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1974 } 1975 1976 fdput(f); 1977 break; 1978 } 1979 #endif /* CONFIG_KVM_XICS */ 1980 #ifdef CONFIG_KVM_XIVE 1981 case KVM_CAP_PPC_IRQ_XIVE: { 1982 struct fd f; 1983 struct kvm_device *dev; 1984 1985 r = -EBADF; 1986 f = fdget(cap->args[0]); 1987 if (!f.file) 1988 break; 1989 1990 r = -ENXIO; 1991 if (!xive_enabled()) 1992 break; 1993 1994 r = -EPERM; 1995 dev = kvm_device_from_filp(f.file); 1996 if (dev) 1997 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1998 cap->args[1]); 1999 2000 fdput(f); 2001 break; 2002 } 2003 #endif /* CONFIG_KVM_XIVE */ 2004 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 2005 case KVM_CAP_PPC_FWNMI: 2006 r = -EINVAL; 2007 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 2008 break; 2009 r = 0; 2010 vcpu->kvm->arch.fwnmi_enabled = true; 2011 break; 2012 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 2013 default: 2014 r = -EINVAL; 2015 break; 2016 } 2017 2018 if (!r) 2019 r = kvmppc_sanity_check(vcpu); 2020 2021 return r; 2022 } 2023 2024 bool kvm_arch_intc_initialized(struct kvm *kvm) 2025 { 2026 #ifdef CONFIG_KVM_MPIC 2027 if (kvm->arch.mpic) 2028 return true; 2029 #endif 2030 #ifdef CONFIG_KVM_XICS 2031 if (kvm->arch.xics || kvm->arch.xive) 2032 return true; 2033 #endif 2034 return false; 2035 } 2036 2037 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2038 struct kvm_mp_state *mp_state) 2039 { 2040 return -EINVAL; 2041 } 2042 2043 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2044 struct kvm_mp_state *mp_state) 2045 { 2046 return -EINVAL; 2047 } 2048 2049 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2050 unsigned int ioctl, unsigned long arg) 2051 { 2052 struct kvm_vcpu *vcpu = filp->private_data; 2053 void __user *argp = (void __user *)arg; 2054 2055 if (ioctl == KVM_INTERRUPT) { 2056 struct kvm_interrupt irq; 2057 if (copy_from_user(&irq, argp, sizeof(irq))) 2058 return -EFAULT; 2059 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2060 } 2061 return -ENOIOCTLCMD; 2062 } 2063 2064 long kvm_arch_vcpu_ioctl(struct file *filp, 2065 unsigned int ioctl, unsigned long arg) 2066 { 2067 struct kvm_vcpu *vcpu = filp->private_data; 2068 void __user *argp = (void __user *)arg; 2069 long r; 2070 2071 switch (ioctl) { 2072 case KVM_ENABLE_CAP: 2073 { 2074 struct kvm_enable_cap cap; 2075 r = -EFAULT; 2076 if (copy_from_user(&cap, argp, sizeof(cap))) 2077 goto out; 2078 vcpu_load(vcpu); 2079 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2080 vcpu_put(vcpu); 2081 break; 2082 } 2083 2084 case KVM_SET_ONE_REG: 2085 case KVM_GET_ONE_REG: 2086 { 2087 struct kvm_one_reg reg; 2088 r = -EFAULT; 2089 if (copy_from_user(®, argp, sizeof(reg))) 2090 goto out; 2091 if (ioctl == KVM_SET_ONE_REG) 2092 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2093 else 2094 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2095 break; 2096 } 2097 2098 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2099 case KVM_DIRTY_TLB: { 2100 struct kvm_dirty_tlb dirty; 2101 r = -EFAULT; 2102 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2103 goto out; 2104 vcpu_load(vcpu); 2105 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2106 vcpu_put(vcpu); 2107 break; 2108 } 2109 #endif 2110 default: 2111 r = -EINVAL; 2112 } 2113 2114 out: 2115 return r; 2116 } 2117 2118 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2119 { 2120 return VM_FAULT_SIGBUS; 2121 } 2122 2123 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2124 { 2125 u32 inst_nop = 0x60000000; 2126 #ifdef CONFIG_KVM_BOOKE_HV 2127 u32 inst_sc1 = 0x44000022; 2128 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2129 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2130 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2131 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2132 #else 2133 u32 inst_lis = 0x3c000000; 2134 u32 inst_ori = 0x60000000; 2135 u32 inst_sc = 0x44000002; 2136 u32 inst_imm_mask = 0xffff; 2137 2138 /* 2139 * The hypercall to get into KVM from within guest context is as 2140 * follows: 2141 * 2142 * lis r0, r0, KVM_SC_MAGIC_R0@h 2143 * ori r0, KVM_SC_MAGIC_R0@l 2144 * sc 2145 * nop 2146 */ 2147 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2148 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2149 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2150 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2151 #endif 2152 2153 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2154 2155 return 0; 2156 } 2157 2158 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2159 { 2160 int ret = 0; 2161 2162 #ifdef CONFIG_KVM_MPIC 2163 ret = ret || (kvm->arch.mpic != NULL); 2164 #endif 2165 #ifdef CONFIG_KVM_XICS 2166 ret = ret || (kvm->arch.xics != NULL); 2167 ret = ret || (kvm->arch.xive != NULL); 2168 #endif 2169 smp_rmb(); 2170 return ret; 2171 } 2172 2173 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2174 bool line_status) 2175 { 2176 if (!kvm_arch_irqchip_in_kernel(kvm)) 2177 return -ENXIO; 2178 2179 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2180 irq_event->irq, irq_event->level, 2181 line_status); 2182 return 0; 2183 } 2184 2185 2186 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2187 struct kvm_enable_cap *cap) 2188 { 2189 int r; 2190 2191 if (cap->flags) 2192 return -EINVAL; 2193 2194 switch (cap->cap) { 2195 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2196 case KVM_CAP_PPC_ENABLE_HCALL: { 2197 unsigned long hcall = cap->args[0]; 2198 2199 r = -EINVAL; 2200 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2201 cap->args[1] > 1) 2202 break; 2203 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2204 break; 2205 if (cap->args[1]) 2206 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2207 else 2208 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2209 r = 0; 2210 break; 2211 } 2212 case KVM_CAP_PPC_SMT: { 2213 unsigned long mode = cap->args[0]; 2214 unsigned long flags = cap->args[1]; 2215 2216 r = -EINVAL; 2217 if (kvm->arch.kvm_ops->set_smt_mode) 2218 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2219 break; 2220 } 2221 2222 case KVM_CAP_PPC_NESTED_HV: 2223 r = -EINVAL; 2224 if (!is_kvmppc_hv_enabled(kvm) || 2225 !kvm->arch.kvm_ops->enable_nested) 2226 break; 2227 r = kvm->arch.kvm_ops->enable_nested(kvm); 2228 break; 2229 #endif 2230 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2231 case KVM_CAP_PPC_SECURE_GUEST: 2232 r = -EINVAL; 2233 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2234 break; 2235 r = kvm->arch.kvm_ops->enable_svm(kvm); 2236 break; 2237 case KVM_CAP_PPC_DAWR1: 2238 r = -EINVAL; 2239 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1) 2240 break; 2241 r = kvm->arch.kvm_ops->enable_dawr1(kvm); 2242 break; 2243 #endif 2244 default: 2245 r = -EINVAL; 2246 break; 2247 } 2248 2249 return r; 2250 } 2251 2252 #ifdef CONFIG_PPC_BOOK3S_64 2253 /* 2254 * These functions check whether the underlying hardware is safe 2255 * against attacks based on observing the effects of speculatively 2256 * executed instructions, and whether it supplies instructions for 2257 * use in workarounds. The information comes from firmware, either 2258 * via the device tree on powernv platforms or from an hcall on 2259 * pseries platforms. 2260 */ 2261 #ifdef CONFIG_PPC_PSERIES 2262 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2263 { 2264 struct h_cpu_char_result c; 2265 unsigned long rc; 2266 2267 if (!machine_is(pseries)) 2268 return -ENOTTY; 2269 2270 rc = plpar_get_cpu_characteristics(&c); 2271 if (rc == H_SUCCESS) { 2272 cp->character = c.character; 2273 cp->behaviour = c.behaviour; 2274 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2275 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2276 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2277 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2278 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2279 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2280 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2281 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2282 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2283 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2284 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2285 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2286 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2287 } 2288 return 0; 2289 } 2290 #else 2291 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2292 { 2293 return -ENOTTY; 2294 } 2295 #endif 2296 2297 static inline bool have_fw_feat(struct device_node *fw_features, 2298 const char *state, const char *name) 2299 { 2300 struct device_node *np; 2301 bool r = false; 2302 2303 np = of_get_child_by_name(fw_features, name); 2304 if (np) { 2305 r = of_property_read_bool(np, state); 2306 of_node_put(np); 2307 } 2308 return r; 2309 } 2310 2311 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2312 { 2313 struct device_node *np, *fw_features; 2314 int r; 2315 2316 memset(cp, 0, sizeof(*cp)); 2317 r = pseries_get_cpu_char(cp); 2318 if (r != -ENOTTY) 2319 return r; 2320 2321 np = of_find_node_by_name(NULL, "ibm,opal"); 2322 if (np) { 2323 fw_features = of_get_child_by_name(np, "fw-features"); 2324 of_node_put(np); 2325 if (!fw_features) 2326 return 0; 2327 if (have_fw_feat(fw_features, "enabled", 2328 "inst-spec-barrier-ori31,31,0")) 2329 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2330 if (have_fw_feat(fw_features, "enabled", 2331 "fw-bcctrl-serialized")) 2332 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2333 if (have_fw_feat(fw_features, "enabled", 2334 "inst-l1d-flush-ori30,30,0")) 2335 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2336 if (have_fw_feat(fw_features, "enabled", 2337 "inst-l1d-flush-trig2")) 2338 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2339 if (have_fw_feat(fw_features, "enabled", 2340 "fw-l1d-thread-split")) 2341 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2342 if (have_fw_feat(fw_features, "enabled", 2343 "fw-count-cache-disabled")) 2344 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2345 if (have_fw_feat(fw_features, "enabled", 2346 "fw-count-cache-flush-bcctr2,0,0")) 2347 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2348 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2349 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2350 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2351 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2352 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2353 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2354 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2355 2356 if (have_fw_feat(fw_features, "enabled", 2357 "speculation-policy-favor-security")) 2358 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2359 if (!have_fw_feat(fw_features, "disabled", 2360 "needs-l1d-flush-msr-pr-0-to-1")) 2361 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2362 if (!have_fw_feat(fw_features, "disabled", 2363 "needs-spec-barrier-for-bound-checks")) 2364 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2365 if (have_fw_feat(fw_features, "enabled", 2366 "needs-count-cache-flush-on-context-switch")) 2367 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2368 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2369 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2370 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2371 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2372 2373 of_node_put(fw_features); 2374 } 2375 2376 return 0; 2377 } 2378 #endif 2379 2380 long kvm_arch_vm_ioctl(struct file *filp, 2381 unsigned int ioctl, unsigned long arg) 2382 { 2383 struct kvm *kvm __maybe_unused = filp->private_data; 2384 void __user *argp = (void __user *)arg; 2385 long r; 2386 2387 switch (ioctl) { 2388 case KVM_PPC_GET_PVINFO: { 2389 struct kvm_ppc_pvinfo pvinfo; 2390 memset(&pvinfo, 0, sizeof(pvinfo)); 2391 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2392 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2393 r = -EFAULT; 2394 goto out; 2395 } 2396 2397 break; 2398 } 2399 #ifdef CONFIG_SPAPR_TCE_IOMMU 2400 case KVM_CREATE_SPAPR_TCE_64: { 2401 struct kvm_create_spapr_tce_64 create_tce_64; 2402 2403 r = -EFAULT; 2404 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2405 goto out; 2406 if (create_tce_64.flags) { 2407 r = -EINVAL; 2408 goto out; 2409 } 2410 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2411 goto out; 2412 } 2413 case KVM_CREATE_SPAPR_TCE: { 2414 struct kvm_create_spapr_tce create_tce; 2415 struct kvm_create_spapr_tce_64 create_tce_64; 2416 2417 r = -EFAULT; 2418 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2419 goto out; 2420 2421 create_tce_64.liobn = create_tce.liobn; 2422 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2423 create_tce_64.offset = 0; 2424 create_tce_64.size = create_tce.window_size >> 2425 IOMMU_PAGE_SHIFT_4K; 2426 create_tce_64.flags = 0; 2427 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2428 goto out; 2429 } 2430 #endif 2431 #ifdef CONFIG_PPC_BOOK3S_64 2432 case KVM_PPC_GET_SMMU_INFO: { 2433 struct kvm_ppc_smmu_info info; 2434 struct kvm *kvm = filp->private_data; 2435 2436 memset(&info, 0, sizeof(info)); 2437 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2438 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2439 r = -EFAULT; 2440 break; 2441 } 2442 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2443 struct kvm *kvm = filp->private_data; 2444 2445 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2446 break; 2447 } 2448 case KVM_PPC_CONFIGURE_V3_MMU: { 2449 struct kvm *kvm = filp->private_data; 2450 struct kvm_ppc_mmuv3_cfg cfg; 2451 2452 r = -EINVAL; 2453 if (!kvm->arch.kvm_ops->configure_mmu) 2454 goto out; 2455 r = -EFAULT; 2456 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2457 goto out; 2458 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2459 break; 2460 } 2461 case KVM_PPC_GET_RMMU_INFO: { 2462 struct kvm *kvm = filp->private_data; 2463 struct kvm_ppc_rmmu_info info; 2464 2465 r = -EINVAL; 2466 if (!kvm->arch.kvm_ops->get_rmmu_info) 2467 goto out; 2468 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2469 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2470 r = -EFAULT; 2471 break; 2472 } 2473 case KVM_PPC_GET_CPU_CHAR: { 2474 struct kvm_ppc_cpu_char cpuchar; 2475 2476 r = kvmppc_get_cpu_char(&cpuchar); 2477 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2478 r = -EFAULT; 2479 break; 2480 } 2481 case KVM_PPC_SVM_OFF: { 2482 struct kvm *kvm = filp->private_data; 2483 2484 r = 0; 2485 if (!kvm->arch.kvm_ops->svm_off) 2486 goto out; 2487 2488 r = kvm->arch.kvm_ops->svm_off(kvm); 2489 break; 2490 } 2491 default: { 2492 struct kvm *kvm = filp->private_data; 2493 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2494 } 2495 #else /* CONFIG_PPC_BOOK3S_64 */ 2496 default: 2497 r = -ENOTTY; 2498 #endif 2499 } 2500 out: 2501 return r; 2502 } 2503 2504 static DEFINE_IDA(lpid_inuse); 2505 static unsigned long nr_lpids; 2506 2507 long kvmppc_alloc_lpid(void) 2508 { 2509 int lpid; 2510 2511 /* The host LPID must always be 0 (allocation starts at 1) */ 2512 lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL); 2513 if (lpid < 0) { 2514 if (lpid == -ENOMEM) 2515 pr_err("%s: Out of memory\n", __func__); 2516 else 2517 pr_err("%s: No LPIDs free\n", __func__); 2518 return -ENOMEM; 2519 } 2520 2521 return lpid; 2522 } 2523 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2524 2525 void kvmppc_free_lpid(long lpid) 2526 { 2527 ida_free(&lpid_inuse, lpid); 2528 } 2529 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2530 2531 /* nr_lpids_param includes the host LPID */ 2532 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2533 { 2534 nr_lpids = nr_lpids_param; 2535 } 2536 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2537 2538 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2539 2540 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2541 { 2542 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs) 2543 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry); 2544 } 2545 2546 int kvm_arch_create_vm_debugfs(struct kvm *kvm) 2547 { 2548 if (kvm->arch.kvm_ops->create_vm_debugfs) 2549 kvm->arch.kvm_ops->create_vm_debugfs(kvm); 2550 return 0; 2551 } 2552