1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright IBM Corp. 2007
5 *
6 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8 */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/of.h>
23 #include <asm/cputable.h>
24 #include <linux/uaccess.h>
25 #include <asm/kvm_ppc.h>
26 #include <asm/cputhreads.h>
27 #include <asm/irqflags.h>
28 #include <asm/iommu.h>
29 #include <asm/switch_to.h>
30 #include <asm/xive.h>
31 #ifdef CONFIG_PPC_PSERIES
32 #include <asm/hvcall.h>
33 #include <asm/plpar_wrappers.h>
34 #endif
35 #include <asm/ultravisor.h>
36 #include <asm/setup.h>
37
38 #include "timing.h"
39 #include "../mm/mmu_decl.h"
40
41 #define CREATE_TRACE_POINTS
42 #include "trace.h"
43
44 struct kvmppc_ops *kvmppc_hv_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46 struct kvmppc_ops *kvmppc_pr_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48
49
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51 {
52 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
53 }
54
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
56 {
57 return kvm_arch_vcpu_runnable(vcpu);
58 }
59
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
61 {
62 return false;
63 }
64
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
66 {
67 return 1;
68 }
69
70 /*
71 * Common checks before entering the guest world. Call with interrupts
72 * disabled.
73 *
74 * returns:
75 *
76 * == 1 if we're ready to go into guest state
77 * <= 0 if we need to go back to the host with return value
78 */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
80 {
81 int r;
82
83 WARN_ON(irqs_disabled());
84 hard_irq_disable();
85
86 while (true) {
87 if (need_resched()) {
88 local_irq_enable();
89 cond_resched();
90 hard_irq_disable();
91 continue;
92 }
93
94 if (signal_pending(current)) {
95 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
96 vcpu->run->exit_reason = KVM_EXIT_INTR;
97 r = -EINTR;
98 break;
99 }
100
101 vcpu->mode = IN_GUEST_MODE;
102
103 /*
104 * Reading vcpu->requests must happen after setting vcpu->mode,
105 * so we don't miss a request because the requester sees
106 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
107 * before next entering the guest (and thus doesn't IPI).
108 * This also orders the write to mode from any reads
109 * to the page tables done while the VCPU is running.
110 * Please see the comment in kvm_flush_remote_tlbs.
111 */
112 smp_mb();
113
114 if (kvm_request_pending(vcpu)) {
115 /* Make sure we process requests preemptable */
116 local_irq_enable();
117 trace_kvm_check_requests(vcpu);
118 r = kvmppc_core_check_requests(vcpu);
119 hard_irq_disable();
120 if (r > 0)
121 continue;
122 break;
123 }
124
125 if (kvmppc_core_prepare_to_enter(vcpu)) {
126 /* interrupts got enabled in between, so we
127 are back at square 1 */
128 continue;
129 }
130
131 guest_enter_irqoff();
132 return 1;
133 }
134
135 /* return to host */
136 local_irq_enable();
137 return r;
138 }
139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
140
141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
143 {
144 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
145 int i;
146
147 shared->sprg0 = swab64(shared->sprg0);
148 shared->sprg1 = swab64(shared->sprg1);
149 shared->sprg2 = swab64(shared->sprg2);
150 shared->sprg3 = swab64(shared->sprg3);
151 shared->srr0 = swab64(shared->srr0);
152 shared->srr1 = swab64(shared->srr1);
153 shared->dar = swab64(shared->dar);
154 shared->msr = swab64(shared->msr);
155 shared->dsisr = swab32(shared->dsisr);
156 shared->int_pending = swab32(shared->int_pending);
157 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
158 shared->sr[i] = swab32(shared->sr[i]);
159 }
160 #endif
161
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
163 {
164 int nr = kvmppc_get_gpr(vcpu, 11);
165 int r;
166 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
167 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
168 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
169 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
170 unsigned long r2 = 0;
171
172 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
173 /* 32 bit mode */
174 param1 &= 0xffffffff;
175 param2 &= 0xffffffff;
176 param3 &= 0xffffffff;
177 param4 &= 0xffffffff;
178 }
179
180 switch (nr) {
181 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
182 {
183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
184 /* Book3S can be little endian, find it out here */
185 int shared_big_endian = true;
186 if (vcpu->arch.intr_msr & MSR_LE)
187 shared_big_endian = false;
188 if (shared_big_endian != vcpu->arch.shared_big_endian)
189 kvmppc_swab_shared(vcpu);
190 vcpu->arch.shared_big_endian = shared_big_endian;
191 #endif
192
193 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
194 /*
195 * Older versions of the Linux magic page code had
196 * a bug where they would map their trampoline code
197 * NX. If that's the case, remove !PR NX capability.
198 */
199 vcpu->arch.disable_kernel_nx = true;
200 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
201 }
202
203 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
204 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
205
206 #ifdef CONFIG_PPC_64K_PAGES
207 /*
208 * Make sure our 4k magic page is in the same window of a 64k
209 * page within the guest and within the host's page.
210 */
211 if ((vcpu->arch.magic_page_pa & 0xf000) !=
212 ((ulong)vcpu->arch.shared & 0xf000)) {
213 void *old_shared = vcpu->arch.shared;
214 ulong shared = (ulong)vcpu->arch.shared;
215 void *new_shared;
216
217 shared &= PAGE_MASK;
218 shared |= vcpu->arch.magic_page_pa & 0xf000;
219 new_shared = (void*)shared;
220 memcpy(new_shared, old_shared, 0x1000);
221 vcpu->arch.shared = new_shared;
222 }
223 #endif
224
225 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
226
227 r = EV_SUCCESS;
228 break;
229 }
230 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
231 r = EV_SUCCESS;
232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
233 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
234 #endif
235
236 /* Second return value is in r4 */
237 break;
238 case EV_HCALL_TOKEN(EV_IDLE):
239 r = EV_SUCCESS;
240 kvm_vcpu_halt(vcpu);
241 break;
242 default:
243 r = EV_UNIMPLEMENTED;
244 break;
245 }
246
247 kvmppc_set_gpr(vcpu, 4, r2);
248
249 return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
kvmppc_sanity_check(struct kvm_vcpu * vcpu)253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255 int r = false;
256
257 /* We have to know what CPU to virtualize */
258 if (!vcpu->arch.pvr)
259 goto out;
260
261 /* PAPR only works with book3s_64 */
262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263 goto out;
264
265 /* HV KVM can only do PAPR mode for now */
266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270 if (!cpu_has_feature(CPU_FTR_EMB_HV))
271 goto out;
272 #endif
273
274 r = true;
275
276 out:
277 vcpu->arch.sane = r;
278 return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
kvmppc_emulate_mmio(struct kvm_vcpu * vcpu)282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284 enum emulation_result er;
285 int r;
286
287 er = kvmppc_emulate_loadstore(vcpu);
288 switch (er) {
289 case EMULATE_DONE:
290 /* Future optimization: only reload non-volatiles if they were
291 * actually modified. */
292 r = RESUME_GUEST_NV;
293 break;
294 case EMULATE_AGAIN:
295 r = RESUME_GUEST;
296 break;
297 case EMULATE_DO_MMIO:
298 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299 /* We must reload nonvolatiles because "update" load/store
300 * instructions modify register state. */
301 /* Future optimization: only reload non-volatiles if they were
302 * actually modified. */
303 r = RESUME_HOST_NV;
304 break;
305 case EMULATE_FAIL:
306 {
307 ppc_inst_t last_inst;
308
309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
311 ppc_inst_val(last_inst));
312
313 /*
314 * Injecting a Data Storage here is a bit more
315 * accurate since the instruction that caused the
316 * access could still be a valid one.
317 */
318 if (!IS_ENABLED(CONFIG_BOOKE)) {
319 ulong dsisr = DSISR_BADACCESS;
320
321 if (vcpu->mmio_is_write)
322 dsisr |= DSISR_ISSTORE;
323
324 kvmppc_core_queue_data_storage(vcpu,
325 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
326 vcpu->arch.vaddr_accessed, dsisr);
327 } else {
328 /*
329 * BookE does not send a SIGBUS on a bad
330 * fault, so use a Program interrupt instead
331 * to avoid a fault loop.
332 */
333 kvmppc_core_queue_program(vcpu, 0);
334 }
335
336 r = RESUME_GUEST;
337 break;
338 }
339 default:
340 WARN_ON(1);
341 r = RESUME_GUEST;
342 }
343
344 return r;
345 }
346 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
347
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)348 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
349 bool data)
350 {
351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
352 struct kvmppc_pte pte;
353 int r = -EINVAL;
354
355 vcpu->stat.st++;
356
357 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
358 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
359 size);
360
361 if ((!r) || (r == -EAGAIN))
362 return r;
363
364 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
365 XLATE_WRITE, &pte);
366 if (r < 0)
367 return r;
368
369 *eaddr = pte.raddr;
370
371 if (!pte.may_write)
372 return -EPERM;
373
374 /* Magic page override */
375 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
376 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
377 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
378 void *magic = vcpu->arch.shared;
379 magic += pte.eaddr & 0xfff;
380 memcpy(magic, ptr, size);
381 return EMULATE_DONE;
382 }
383
384 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
385 return EMULATE_DO_MMIO;
386
387 return EMULATE_DONE;
388 }
389 EXPORT_SYMBOL_GPL(kvmppc_st);
390
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)391 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
392 bool data)
393 {
394 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
395 struct kvmppc_pte pte;
396 int rc = -EINVAL;
397
398 vcpu->stat.ld++;
399
400 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
401 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
402 size);
403
404 if ((!rc) || (rc == -EAGAIN))
405 return rc;
406
407 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
408 XLATE_READ, &pte);
409 if (rc)
410 return rc;
411
412 *eaddr = pte.raddr;
413
414 if (!pte.may_read)
415 return -EPERM;
416
417 if (!data && !pte.may_execute)
418 return -ENOEXEC;
419
420 /* Magic page override */
421 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
422 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
423 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
424 void *magic = vcpu->arch.shared;
425 magic += pte.eaddr & 0xfff;
426 memcpy(ptr, magic, size);
427 return EMULATE_DONE;
428 }
429
430 kvm_vcpu_srcu_read_lock(vcpu);
431 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
432 kvm_vcpu_srcu_read_unlock(vcpu);
433 if (rc)
434 return EMULATE_DO_MMIO;
435
436 return EMULATE_DONE;
437 }
438 EXPORT_SYMBOL_GPL(kvmppc_ld);
439
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)440 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
441 {
442 struct kvmppc_ops *kvm_ops = NULL;
443 int r;
444
445 /*
446 * if we have both HV and PR enabled, default is HV
447 */
448 if (type == 0) {
449 if (kvmppc_hv_ops)
450 kvm_ops = kvmppc_hv_ops;
451 else
452 kvm_ops = kvmppc_pr_ops;
453 if (!kvm_ops)
454 goto err_out;
455 } else if (type == KVM_VM_PPC_HV) {
456 if (!kvmppc_hv_ops)
457 goto err_out;
458 kvm_ops = kvmppc_hv_ops;
459 } else if (type == KVM_VM_PPC_PR) {
460 if (!kvmppc_pr_ops)
461 goto err_out;
462 kvm_ops = kvmppc_pr_ops;
463 } else
464 goto err_out;
465
466 if (!try_module_get(kvm_ops->owner))
467 return -ENOENT;
468
469 kvm->arch.kvm_ops = kvm_ops;
470 r = kvmppc_core_init_vm(kvm);
471 if (r)
472 module_put(kvm_ops->owner);
473 return r;
474 err_out:
475 return -EINVAL;
476 }
477
kvm_arch_destroy_vm(struct kvm * kvm)478 void kvm_arch_destroy_vm(struct kvm *kvm)
479 {
480 #ifdef CONFIG_KVM_XICS
481 /*
482 * We call kick_all_cpus_sync() to ensure that all
483 * CPUs have executed any pending IPIs before we
484 * continue and free VCPUs structures below.
485 */
486 if (is_kvmppc_hv_enabled(kvm))
487 kick_all_cpus_sync();
488 #endif
489
490 kvm_destroy_vcpus(kvm);
491
492 mutex_lock(&kvm->lock);
493
494 kvmppc_core_destroy_vm(kvm);
495
496 mutex_unlock(&kvm->lock);
497
498 /* drop the module reference */
499 module_put(kvm->arch.kvm_ops->owner);
500 }
501
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)502 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
503 {
504 int r;
505 /* Assume we're using HV mode when the HV module is loaded */
506 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
507
508 if (kvm) {
509 /*
510 * Hooray - we know which VM type we're running on. Depend on
511 * that rather than the guess above.
512 */
513 hv_enabled = is_kvmppc_hv_enabled(kvm);
514 }
515
516 switch (ext) {
517 #ifdef CONFIG_BOOKE
518 case KVM_CAP_PPC_BOOKE_SREGS:
519 case KVM_CAP_PPC_BOOKE_WATCHDOG:
520 case KVM_CAP_PPC_EPR:
521 #else
522 case KVM_CAP_PPC_SEGSTATE:
523 case KVM_CAP_PPC_HIOR:
524 case KVM_CAP_PPC_PAPR:
525 #endif
526 case KVM_CAP_PPC_UNSET_IRQ:
527 case KVM_CAP_PPC_IRQ_LEVEL:
528 case KVM_CAP_ENABLE_CAP:
529 case KVM_CAP_ONE_REG:
530 case KVM_CAP_IOEVENTFD:
531 case KVM_CAP_IMMEDIATE_EXIT:
532 case KVM_CAP_SET_GUEST_DEBUG:
533 r = 1;
534 break;
535 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
536 case KVM_CAP_PPC_PAIRED_SINGLES:
537 case KVM_CAP_PPC_OSI:
538 case KVM_CAP_PPC_GET_PVINFO:
539 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
540 case KVM_CAP_SW_TLB:
541 #endif
542 /* We support this only for PR */
543 r = !hv_enabled;
544 break;
545 #ifdef CONFIG_KVM_MPIC
546 case KVM_CAP_IRQ_MPIC:
547 r = 1;
548 break;
549 #endif
550
551 #ifdef CONFIG_PPC_BOOK3S_64
552 case KVM_CAP_SPAPR_TCE:
553 case KVM_CAP_SPAPR_TCE_64:
554 r = 1;
555 break;
556 case KVM_CAP_SPAPR_TCE_VFIO:
557 r = !!cpu_has_feature(CPU_FTR_HVMODE);
558 break;
559 case KVM_CAP_PPC_RTAS:
560 case KVM_CAP_PPC_FIXUP_HCALL:
561 case KVM_CAP_PPC_ENABLE_HCALL:
562 #ifdef CONFIG_KVM_XICS
563 case KVM_CAP_IRQ_XICS:
564 #endif
565 case KVM_CAP_PPC_GET_CPU_CHAR:
566 r = 1;
567 break;
568 #ifdef CONFIG_KVM_XIVE
569 case KVM_CAP_PPC_IRQ_XIVE:
570 /*
571 * We need XIVE to be enabled on the platform (implies
572 * a POWER9 processor) and the PowerNV platform, as
573 * nested is not yet supported.
574 */
575 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
576 kvmppc_xive_native_supported();
577 break;
578 #endif
579
580 #ifdef CONFIG_HAVE_KVM_IRQCHIP
581 case KVM_CAP_IRQFD_RESAMPLE:
582 r = !xive_enabled();
583 break;
584 #endif
585
586 case KVM_CAP_PPC_ALLOC_HTAB:
587 r = hv_enabled;
588 break;
589 #endif /* CONFIG_PPC_BOOK3S_64 */
590 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
591 case KVM_CAP_PPC_SMT:
592 r = 0;
593 if (kvm) {
594 if (kvm->arch.emul_smt_mode > 1)
595 r = kvm->arch.emul_smt_mode;
596 else
597 r = kvm->arch.smt_mode;
598 } else if (hv_enabled) {
599 if (cpu_has_feature(CPU_FTR_ARCH_300))
600 r = 1;
601 else
602 r = threads_per_subcore;
603 }
604 break;
605 case KVM_CAP_PPC_SMT_POSSIBLE:
606 r = 1;
607 if (hv_enabled) {
608 if (!cpu_has_feature(CPU_FTR_ARCH_300))
609 r = ((threads_per_subcore << 1) - 1);
610 else
611 /* P9 can emulate dbells, so allow any mode */
612 r = 8 | 4 | 2 | 1;
613 }
614 break;
615 case KVM_CAP_PPC_RMA:
616 r = 0;
617 break;
618 case KVM_CAP_PPC_HWRNG:
619 r = kvmppc_hwrng_present();
620 break;
621 case KVM_CAP_PPC_MMU_RADIX:
622 r = !!(hv_enabled && radix_enabled());
623 break;
624 case KVM_CAP_PPC_MMU_HASH_V3:
625 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
626 kvmppc_hv_ops->hash_v3_possible());
627 break;
628 case KVM_CAP_PPC_NESTED_HV:
629 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
630 !kvmppc_hv_ops->enable_nested(NULL));
631 break;
632 #endif
633 case KVM_CAP_SYNC_MMU:
634 BUILD_BUG_ON(!IS_ENABLED(CONFIG_KVM_GENERIC_MMU_NOTIFIER));
635 r = 1;
636 break;
637 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
638 case KVM_CAP_PPC_HTAB_FD:
639 r = hv_enabled;
640 break;
641 #endif
642 case KVM_CAP_NR_VCPUS:
643 /*
644 * Recommending a number of CPUs is somewhat arbitrary; we
645 * return the number of present CPUs for -HV (since a host
646 * will have secondary threads "offline"), and for other KVM
647 * implementations just count online CPUs.
648 */
649 if (hv_enabled)
650 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
651 else
652 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
653 break;
654 case KVM_CAP_MAX_VCPUS:
655 r = KVM_MAX_VCPUS;
656 break;
657 case KVM_CAP_MAX_VCPU_ID:
658 r = KVM_MAX_VCPU_IDS;
659 break;
660 #ifdef CONFIG_PPC_BOOK3S_64
661 case KVM_CAP_PPC_GET_SMMU_INFO:
662 r = 1;
663 break;
664 case KVM_CAP_SPAPR_MULTITCE:
665 r = 1;
666 break;
667 case KVM_CAP_SPAPR_RESIZE_HPT:
668 r = !!hv_enabled;
669 break;
670 #endif
671 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
672 case KVM_CAP_PPC_FWNMI:
673 r = hv_enabled;
674 break;
675 #endif
676 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
677 case KVM_CAP_PPC_HTM:
678 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
679 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
680 break;
681 #endif
682 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
683 case KVM_CAP_PPC_SECURE_GUEST:
684 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
685 !kvmppc_hv_ops->enable_svm(NULL);
686 break;
687 case KVM_CAP_PPC_DAWR1:
688 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
689 !kvmppc_hv_ops->enable_dawr1(NULL));
690 break;
691 case KVM_CAP_PPC_RPT_INVALIDATE:
692 r = 1;
693 break;
694 #endif
695 case KVM_CAP_PPC_AIL_MODE_3:
696 r = 0;
697 /*
698 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
699 * The POWER9s can support it if the guest runs in hash mode,
700 * but QEMU doesn't necessarily query the capability in time.
701 */
702 if (hv_enabled) {
703 if (kvmhv_on_pseries()) {
704 if (pseries_reloc_on_exception())
705 r = 1;
706 } else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
707 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
708 r = 1;
709 }
710 }
711 break;
712 default:
713 r = 0;
714 break;
715 }
716 return r;
717
718 }
719
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)720 long kvm_arch_dev_ioctl(struct file *filp,
721 unsigned int ioctl, unsigned long arg)
722 {
723 return -EINVAL;
724 }
725
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)726 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
727 {
728 kvmppc_core_free_memslot(kvm, slot);
729 }
730
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)731 int kvm_arch_prepare_memory_region(struct kvm *kvm,
732 const struct kvm_memory_slot *old,
733 struct kvm_memory_slot *new,
734 enum kvm_mr_change change)
735 {
736 return kvmppc_core_prepare_memory_region(kvm, old, new, change);
737 }
738
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)739 void kvm_arch_commit_memory_region(struct kvm *kvm,
740 struct kvm_memory_slot *old,
741 const struct kvm_memory_slot *new,
742 enum kvm_mr_change change)
743 {
744 kvmppc_core_commit_memory_region(kvm, old, new, change);
745 }
746
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)747 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
748 struct kvm_memory_slot *slot)
749 {
750 kvmppc_core_flush_memslot(kvm, slot);
751 }
752
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)753 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
754 {
755 return 0;
756 }
757
kvmppc_decrementer_wakeup(struct hrtimer * timer)758 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
759 {
760 struct kvm_vcpu *vcpu;
761
762 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
763 kvmppc_decrementer_func(vcpu);
764
765 return HRTIMER_NORESTART;
766 }
767
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)768 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
769 {
770 int err;
771
772 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
773 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
774
775 #ifdef CONFIG_KVM_EXIT_TIMING
776 mutex_init(&vcpu->arch.exit_timing_lock);
777 #endif
778 err = kvmppc_subarch_vcpu_init(vcpu);
779 if (err)
780 return err;
781
782 err = kvmppc_core_vcpu_create(vcpu);
783 if (err)
784 goto out_vcpu_uninit;
785
786 rcuwait_init(&vcpu->arch.wait);
787 vcpu->arch.waitp = &vcpu->arch.wait;
788 return 0;
789
790 out_vcpu_uninit:
791 kvmppc_subarch_vcpu_uninit(vcpu);
792 return err;
793 }
794
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)795 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
796 {
797 }
798
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)799 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
800 {
801 /* Make sure we're not using the vcpu anymore */
802 hrtimer_cancel(&vcpu->arch.dec_timer);
803
804 switch (vcpu->arch.irq_type) {
805 case KVMPPC_IRQ_MPIC:
806 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
807 break;
808 case KVMPPC_IRQ_XICS:
809 if (xics_on_xive())
810 kvmppc_xive_cleanup_vcpu(vcpu);
811 else
812 kvmppc_xics_free_icp(vcpu);
813 break;
814 case KVMPPC_IRQ_XIVE:
815 kvmppc_xive_native_cleanup_vcpu(vcpu);
816 break;
817 }
818
819 kvmppc_core_vcpu_free(vcpu);
820
821 kvmppc_subarch_vcpu_uninit(vcpu);
822 }
823
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)824 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
825 {
826 return kvmppc_core_pending_dec(vcpu);
827 }
828
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)829 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
830 {
831 #ifdef CONFIG_BOOKE
832 /*
833 * vrsave (formerly usprg0) isn't used by Linux, but may
834 * be used by the guest.
835 *
836 * On non-booke this is associated with Altivec and
837 * is handled by code in book3s.c.
838 */
839 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
840 #endif
841 kvmppc_core_vcpu_load(vcpu, cpu);
842 }
843
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)844 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
845 {
846 kvmppc_core_vcpu_put(vcpu);
847 #ifdef CONFIG_BOOKE
848 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
849 #endif
850 }
851
852 /*
853 * irq_bypass_add_producer and irq_bypass_del_producer are only
854 * useful if the architecture supports PCI passthrough.
855 * irq_bypass_stop and irq_bypass_start are not needed and so
856 * kvm_ops are not defined for them.
857 */
kvm_arch_has_irq_bypass(void)858 bool kvm_arch_has_irq_bypass(void)
859 {
860 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
861 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
862 }
863
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)864 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
865 struct irq_bypass_producer *prod)
866 {
867 struct kvm_kernel_irqfd *irqfd =
868 container_of(cons, struct kvm_kernel_irqfd, consumer);
869 struct kvm *kvm = irqfd->kvm;
870
871 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
872 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
873
874 return 0;
875 }
876
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)877 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
878 struct irq_bypass_producer *prod)
879 {
880 struct kvm_kernel_irqfd *irqfd =
881 container_of(cons, struct kvm_kernel_irqfd, consumer);
882 struct kvm *kvm = irqfd->kvm;
883
884 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
885 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
886 }
887
888 #ifdef CONFIG_VSX
kvmppc_get_vsr_dword_offset(int index)889 static inline int kvmppc_get_vsr_dword_offset(int index)
890 {
891 int offset;
892
893 if ((index != 0) && (index != 1))
894 return -1;
895
896 #ifdef __BIG_ENDIAN
897 offset = index;
898 #else
899 offset = 1 - index;
900 #endif
901
902 return offset;
903 }
904
kvmppc_get_vsr_word_offset(int index)905 static inline int kvmppc_get_vsr_word_offset(int index)
906 {
907 int offset;
908
909 if ((index > 3) || (index < 0))
910 return -1;
911
912 #ifdef __BIG_ENDIAN
913 offset = index;
914 #else
915 offset = 3 - index;
916 #endif
917 return offset;
918 }
919
kvmppc_set_vsr_dword(struct kvm_vcpu * vcpu,u64 gpr)920 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
921 u64 gpr)
922 {
923 union kvmppc_one_reg val;
924 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
925 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
926
927 if (offset == -1)
928 return;
929
930 if (index >= 32) {
931 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
932 val.vsxval[offset] = gpr;
933 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
934 } else {
935 kvmppc_set_vsx_fpr(vcpu, index, offset, gpr);
936 }
937 }
938
kvmppc_set_vsr_dword_dump(struct kvm_vcpu * vcpu,u64 gpr)939 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
940 u64 gpr)
941 {
942 union kvmppc_one_reg val;
943 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
944
945 if (index >= 32) {
946 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
947 val.vsxval[0] = gpr;
948 val.vsxval[1] = gpr;
949 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
950 } else {
951 kvmppc_set_vsx_fpr(vcpu, index, 0, gpr);
952 kvmppc_set_vsx_fpr(vcpu, index, 1, gpr);
953 }
954 }
955
kvmppc_set_vsr_word_dump(struct kvm_vcpu * vcpu,u32 gpr)956 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
957 u32 gpr)
958 {
959 union kvmppc_one_reg val;
960 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
961
962 if (index >= 32) {
963 val.vsx32val[0] = gpr;
964 val.vsx32val[1] = gpr;
965 val.vsx32val[2] = gpr;
966 val.vsx32val[3] = gpr;
967 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
968 } else {
969 val.vsx32val[0] = gpr;
970 val.vsx32val[1] = gpr;
971 kvmppc_set_vsx_fpr(vcpu, index, 0, val.vsxval[0]);
972 kvmppc_set_vsx_fpr(vcpu, index, 1, val.vsxval[0]);
973 }
974 }
975
kvmppc_set_vsr_word(struct kvm_vcpu * vcpu,u32 gpr32)976 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
977 u32 gpr32)
978 {
979 union kvmppc_one_reg val;
980 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
981 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
982 int dword_offset, word_offset;
983
984 if (offset == -1)
985 return;
986
987 if (index >= 32) {
988 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
989 val.vsx32val[offset] = gpr32;
990 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
991 } else {
992 dword_offset = offset / 2;
993 word_offset = offset % 2;
994 val.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, index, dword_offset);
995 val.vsx32val[word_offset] = gpr32;
996 kvmppc_set_vsx_fpr(vcpu, index, dword_offset, val.vsxval[0]);
997 }
998 }
999 #endif /* CONFIG_VSX */
1000
1001 #ifdef CONFIG_ALTIVEC
kvmppc_get_vmx_offset_generic(struct kvm_vcpu * vcpu,int index,int element_size)1002 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
1003 int index, int element_size)
1004 {
1005 int offset;
1006 int elts = sizeof(vector128)/element_size;
1007
1008 if ((index < 0) || (index >= elts))
1009 return -1;
1010
1011 if (kvmppc_need_byteswap(vcpu))
1012 offset = elts - index - 1;
1013 else
1014 offset = index;
1015
1016 return offset;
1017 }
1018
kvmppc_get_vmx_dword_offset(struct kvm_vcpu * vcpu,int index)1019 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1020 int index)
1021 {
1022 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1023 }
1024
kvmppc_get_vmx_word_offset(struct kvm_vcpu * vcpu,int index)1025 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1026 int index)
1027 {
1028 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1029 }
1030
kvmppc_get_vmx_hword_offset(struct kvm_vcpu * vcpu,int index)1031 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1032 int index)
1033 {
1034 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1035 }
1036
kvmppc_get_vmx_byte_offset(struct kvm_vcpu * vcpu,int index)1037 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1038 int index)
1039 {
1040 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1041 }
1042
1043
kvmppc_set_vmx_dword(struct kvm_vcpu * vcpu,u64 gpr)1044 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1045 u64 gpr)
1046 {
1047 union kvmppc_one_reg val;
1048 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1049 vcpu->arch.mmio_vmx_offset);
1050 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1051
1052 if (offset == -1)
1053 return;
1054
1055 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1056 val.vsxval[offset] = gpr;
1057 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1058 }
1059
kvmppc_set_vmx_word(struct kvm_vcpu * vcpu,u32 gpr32)1060 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1061 u32 gpr32)
1062 {
1063 union kvmppc_one_reg val;
1064 int offset = kvmppc_get_vmx_word_offset(vcpu,
1065 vcpu->arch.mmio_vmx_offset);
1066 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1067
1068 if (offset == -1)
1069 return;
1070
1071 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1072 val.vsx32val[offset] = gpr32;
1073 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1074 }
1075
kvmppc_set_vmx_hword(struct kvm_vcpu * vcpu,u16 gpr16)1076 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1077 u16 gpr16)
1078 {
1079 union kvmppc_one_reg val;
1080 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1081 vcpu->arch.mmio_vmx_offset);
1082 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1083
1084 if (offset == -1)
1085 return;
1086
1087 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1088 val.vsx16val[offset] = gpr16;
1089 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1090 }
1091
kvmppc_set_vmx_byte(struct kvm_vcpu * vcpu,u8 gpr8)1092 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1093 u8 gpr8)
1094 {
1095 union kvmppc_one_reg val;
1096 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1097 vcpu->arch.mmio_vmx_offset);
1098 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1099
1100 if (offset == -1)
1101 return;
1102
1103 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1104 val.vsx8val[offset] = gpr8;
1105 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1106 }
1107 #endif /* CONFIG_ALTIVEC */
1108
1109 #ifdef CONFIG_PPC_FPU
sp_to_dp(u32 fprs)1110 static inline u64 sp_to_dp(u32 fprs)
1111 {
1112 u64 fprd;
1113
1114 preempt_disable();
1115 enable_kernel_fp();
1116 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1117 : "fr0");
1118 preempt_enable();
1119 return fprd;
1120 }
1121
dp_to_sp(u64 fprd)1122 static inline u32 dp_to_sp(u64 fprd)
1123 {
1124 u32 fprs;
1125
1126 preempt_disable();
1127 enable_kernel_fp();
1128 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1129 : "fr0");
1130 preempt_enable();
1131 return fprs;
1132 }
1133
1134 #else
1135 #define sp_to_dp(x) (x)
1136 #define dp_to_sp(x) (x)
1137 #endif /* CONFIG_PPC_FPU */
1138
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu)1139 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1140 {
1141 struct kvm_run *run = vcpu->run;
1142 u64 gpr;
1143
1144 if (run->mmio.len > sizeof(gpr))
1145 return;
1146
1147 if (!vcpu->arch.mmio_host_swabbed) {
1148 switch (run->mmio.len) {
1149 case 8: gpr = *(u64 *)run->mmio.data; break;
1150 case 4: gpr = *(u32 *)run->mmio.data; break;
1151 case 2: gpr = *(u16 *)run->mmio.data; break;
1152 case 1: gpr = *(u8 *)run->mmio.data; break;
1153 }
1154 } else {
1155 switch (run->mmio.len) {
1156 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1157 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1158 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1159 case 1: gpr = *(u8 *)run->mmio.data; break;
1160 }
1161 }
1162
1163 /* conversion between single and double precision */
1164 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1165 gpr = sp_to_dp(gpr);
1166
1167 if (vcpu->arch.mmio_sign_extend) {
1168 switch (run->mmio.len) {
1169 #ifdef CONFIG_PPC64
1170 case 4:
1171 gpr = (s64)(s32)gpr;
1172 break;
1173 #endif
1174 case 2:
1175 gpr = (s64)(s16)gpr;
1176 break;
1177 case 1:
1178 gpr = (s64)(s8)gpr;
1179 break;
1180 }
1181 }
1182
1183 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1184 case KVM_MMIO_REG_GPR:
1185 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1186 break;
1187 case KVM_MMIO_REG_FPR:
1188 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1189 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1190
1191 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1192 break;
1193 #ifdef CONFIG_PPC_BOOK3S
1194 case KVM_MMIO_REG_QPR:
1195 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1196 break;
1197 case KVM_MMIO_REG_FQPR:
1198 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1199 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1200 break;
1201 #endif
1202 #ifdef CONFIG_VSX
1203 case KVM_MMIO_REG_VSX:
1204 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1205 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1206
1207 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1208 kvmppc_set_vsr_dword(vcpu, gpr);
1209 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1210 kvmppc_set_vsr_word(vcpu, gpr);
1211 else if (vcpu->arch.mmio_copy_type ==
1212 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1213 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1214 else if (vcpu->arch.mmio_copy_type ==
1215 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1216 kvmppc_set_vsr_word_dump(vcpu, gpr);
1217 break;
1218 #endif
1219 #ifdef CONFIG_ALTIVEC
1220 case KVM_MMIO_REG_VMX:
1221 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1222 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1223
1224 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1225 kvmppc_set_vmx_dword(vcpu, gpr);
1226 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1227 kvmppc_set_vmx_word(vcpu, gpr);
1228 else if (vcpu->arch.mmio_copy_type ==
1229 KVMPPC_VMX_COPY_HWORD)
1230 kvmppc_set_vmx_hword(vcpu, gpr);
1231 else if (vcpu->arch.mmio_copy_type ==
1232 KVMPPC_VMX_COPY_BYTE)
1233 kvmppc_set_vmx_byte(vcpu, gpr);
1234 break;
1235 #endif
1236 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1237 case KVM_MMIO_REG_NESTED_GPR:
1238 if (kvmppc_need_byteswap(vcpu))
1239 gpr = swab64(gpr);
1240 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1241 sizeof(gpr));
1242 break;
1243 #endif
1244 default:
1245 BUG();
1246 }
1247 }
1248
__kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)1249 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1250 unsigned int rt, unsigned int bytes,
1251 int is_default_endian, int sign_extend)
1252 {
1253 struct kvm_run *run = vcpu->run;
1254 int idx, ret;
1255 bool host_swabbed;
1256
1257 /* Pity C doesn't have a logical XOR operator */
1258 if (kvmppc_need_byteswap(vcpu)) {
1259 host_swabbed = is_default_endian;
1260 } else {
1261 host_swabbed = !is_default_endian;
1262 }
1263
1264 if (bytes > sizeof(run->mmio.data))
1265 return EMULATE_FAIL;
1266
1267 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1268 run->mmio.len = bytes;
1269 run->mmio.is_write = 0;
1270
1271 vcpu->arch.io_gpr = rt;
1272 vcpu->arch.mmio_host_swabbed = host_swabbed;
1273 vcpu->mmio_needed = 1;
1274 vcpu->mmio_is_write = 0;
1275 vcpu->arch.mmio_sign_extend = sign_extend;
1276
1277 idx = srcu_read_lock(&vcpu->kvm->srcu);
1278
1279 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1280 bytes, &run->mmio.data);
1281
1282 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1283
1284 if (!ret) {
1285 kvmppc_complete_mmio_load(vcpu);
1286 vcpu->mmio_needed = 0;
1287 return EMULATE_DONE;
1288 }
1289
1290 return EMULATE_DO_MMIO;
1291 }
1292
kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1293 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1294 unsigned int rt, unsigned int bytes,
1295 int is_default_endian)
1296 {
1297 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1298 }
1299 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1300
1301 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1302 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1303 unsigned int rt, unsigned int bytes,
1304 int is_default_endian)
1305 {
1306 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1307 }
1308
1309 #ifdef CONFIG_VSX
kvmppc_handle_vsx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int mmio_sign_extend)1310 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1311 unsigned int rt, unsigned int bytes,
1312 int is_default_endian, int mmio_sign_extend)
1313 {
1314 enum emulation_result emulated = EMULATE_DONE;
1315
1316 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1317 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1318 return EMULATE_FAIL;
1319
1320 while (vcpu->arch.mmio_vsx_copy_nums) {
1321 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1322 is_default_endian, mmio_sign_extend);
1323
1324 if (emulated != EMULATE_DONE)
1325 break;
1326
1327 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1328
1329 vcpu->arch.mmio_vsx_copy_nums--;
1330 vcpu->arch.mmio_vsx_offset++;
1331 }
1332 return emulated;
1333 }
1334 #endif /* CONFIG_VSX */
1335
kvmppc_handle_store(struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)1336 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1337 u64 val, unsigned int bytes, int is_default_endian)
1338 {
1339 struct kvm_run *run = vcpu->run;
1340 void *data = run->mmio.data;
1341 int idx, ret;
1342 bool host_swabbed;
1343
1344 /* Pity C doesn't have a logical XOR operator */
1345 if (kvmppc_need_byteswap(vcpu)) {
1346 host_swabbed = is_default_endian;
1347 } else {
1348 host_swabbed = !is_default_endian;
1349 }
1350
1351 if (bytes > sizeof(run->mmio.data))
1352 return EMULATE_FAIL;
1353
1354 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1355 run->mmio.len = bytes;
1356 run->mmio.is_write = 1;
1357 vcpu->mmio_needed = 1;
1358 vcpu->mmio_is_write = 1;
1359
1360 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1361 val = dp_to_sp(val);
1362
1363 /* Store the value at the lowest bytes in 'data'. */
1364 if (!host_swabbed) {
1365 switch (bytes) {
1366 case 8: *(u64 *)data = val; break;
1367 case 4: *(u32 *)data = val; break;
1368 case 2: *(u16 *)data = val; break;
1369 case 1: *(u8 *)data = val; break;
1370 }
1371 } else {
1372 switch (bytes) {
1373 case 8: *(u64 *)data = swab64(val); break;
1374 case 4: *(u32 *)data = swab32(val); break;
1375 case 2: *(u16 *)data = swab16(val); break;
1376 case 1: *(u8 *)data = val; break;
1377 }
1378 }
1379
1380 idx = srcu_read_lock(&vcpu->kvm->srcu);
1381
1382 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1383 bytes, &run->mmio.data);
1384
1385 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1386
1387 if (!ret) {
1388 vcpu->mmio_needed = 0;
1389 return EMULATE_DONE;
1390 }
1391
1392 return EMULATE_DO_MMIO;
1393 }
1394 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1395
1396 #ifdef CONFIG_VSX
kvmppc_get_vsr_data(struct kvm_vcpu * vcpu,int rs,u64 * val)1397 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1398 {
1399 u32 dword_offset, word_offset;
1400 union kvmppc_one_reg reg;
1401 int vsx_offset = 0;
1402 int copy_type = vcpu->arch.mmio_copy_type;
1403 int result = 0;
1404
1405 switch (copy_type) {
1406 case KVMPPC_VSX_COPY_DWORD:
1407 vsx_offset =
1408 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1409
1410 if (vsx_offset == -1) {
1411 result = -1;
1412 break;
1413 }
1414
1415 if (rs < 32) {
1416 *val = kvmppc_get_vsx_fpr(vcpu, rs, vsx_offset);
1417 } else {
1418 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval);
1419 *val = reg.vsxval[vsx_offset];
1420 }
1421 break;
1422
1423 case KVMPPC_VSX_COPY_WORD:
1424 vsx_offset =
1425 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1426
1427 if (vsx_offset == -1) {
1428 result = -1;
1429 break;
1430 }
1431
1432 if (rs < 32) {
1433 dword_offset = vsx_offset / 2;
1434 word_offset = vsx_offset % 2;
1435 reg.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, rs, dword_offset);
1436 *val = reg.vsx32val[word_offset];
1437 } else {
1438 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval);
1439 *val = reg.vsx32val[vsx_offset];
1440 }
1441 break;
1442
1443 default:
1444 result = -1;
1445 break;
1446 }
1447
1448 return result;
1449 }
1450
kvmppc_handle_vsx_store(struct kvm_vcpu * vcpu,int rs,unsigned int bytes,int is_default_endian)1451 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1452 int rs, unsigned int bytes, int is_default_endian)
1453 {
1454 u64 val;
1455 enum emulation_result emulated = EMULATE_DONE;
1456
1457 vcpu->arch.io_gpr = rs;
1458
1459 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1460 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1461 return EMULATE_FAIL;
1462
1463 while (vcpu->arch.mmio_vsx_copy_nums) {
1464 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1465 return EMULATE_FAIL;
1466
1467 emulated = kvmppc_handle_store(vcpu,
1468 val, bytes, is_default_endian);
1469
1470 if (emulated != EMULATE_DONE)
1471 break;
1472
1473 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1474
1475 vcpu->arch.mmio_vsx_copy_nums--;
1476 vcpu->arch.mmio_vsx_offset++;
1477 }
1478
1479 return emulated;
1480 }
1481
kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu * vcpu)1482 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1483 {
1484 struct kvm_run *run = vcpu->run;
1485 enum emulation_result emulated = EMULATE_FAIL;
1486 int r;
1487
1488 vcpu->arch.paddr_accessed += run->mmio.len;
1489
1490 if (!vcpu->mmio_is_write) {
1491 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1492 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1493 } else {
1494 emulated = kvmppc_handle_vsx_store(vcpu,
1495 vcpu->arch.io_gpr, run->mmio.len, 1);
1496 }
1497
1498 switch (emulated) {
1499 case EMULATE_DO_MMIO:
1500 run->exit_reason = KVM_EXIT_MMIO;
1501 r = RESUME_HOST;
1502 break;
1503 case EMULATE_FAIL:
1504 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1505 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1506 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1507 r = RESUME_HOST;
1508 break;
1509 default:
1510 r = RESUME_GUEST;
1511 break;
1512 }
1513 return r;
1514 }
1515 #endif /* CONFIG_VSX */
1516
1517 #ifdef CONFIG_ALTIVEC
kvmppc_handle_vmx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1518 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1519 unsigned int rt, unsigned int bytes, int is_default_endian)
1520 {
1521 enum emulation_result emulated = EMULATE_DONE;
1522
1523 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1524 return EMULATE_FAIL;
1525
1526 while (vcpu->arch.mmio_vmx_copy_nums) {
1527 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1528 is_default_endian, 0);
1529
1530 if (emulated != EMULATE_DONE)
1531 break;
1532
1533 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1534 vcpu->arch.mmio_vmx_copy_nums--;
1535 vcpu->arch.mmio_vmx_offset++;
1536 }
1537
1538 return emulated;
1539 }
1540
kvmppc_get_vmx_dword(struct kvm_vcpu * vcpu,int index,u64 * val)1541 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1542 {
1543 union kvmppc_one_reg reg;
1544 int vmx_offset = 0;
1545 int result = 0;
1546
1547 vmx_offset =
1548 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1549
1550 if (vmx_offset == -1)
1551 return -1;
1552
1553 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1554 *val = reg.vsxval[vmx_offset];
1555
1556 return result;
1557 }
1558
kvmppc_get_vmx_word(struct kvm_vcpu * vcpu,int index,u64 * val)1559 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1560 {
1561 union kvmppc_one_reg reg;
1562 int vmx_offset = 0;
1563 int result = 0;
1564
1565 vmx_offset =
1566 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1567
1568 if (vmx_offset == -1)
1569 return -1;
1570
1571 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1572 *val = reg.vsx32val[vmx_offset];
1573
1574 return result;
1575 }
1576
kvmppc_get_vmx_hword(struct kvm_vcpu * vcpu,int index,u64 * val)1577 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1578 {
1579 union kvmppc_one_reg reg;
1580 int vmx_offset = 0;
1581 int result = 0;
1582
1583 vmx_offset =
1584 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1585
1586 if (vmx_offset == -1)
1587 return -1;
1588
1589 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1590 *val = reg.vsx16val[vmx_offset];
1591
1592 return result;
1593 }
1594
kvmppc_get_vmx_byte(struct kvm_vcpu * vcpu,int index,u64 * val)1595 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1596 {
1597 union kvmppc_one_reg reg;
1598 int vmx_offset = 0;
1599 int result = 0;
1600
1601 vmx_offset =
1602 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1603
1604 if (vmx_offset == -1)
1605 return -1;
1606
1607 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1608 *val = reg.vsx8val[vmx_offset];
1609
1610 return result;
1611 }
1612
kvmppc_handle_vmx_store(struct kvm_vcpu * vcpu,unsigned int rs,unsigned int bytes,int is_default_endian)1613 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1614 unsigned int rs, unsigned int bytes, int is_default_endian)
1615 {
1616 u64 val = 0;
1617 unsigned int index = rs & KVM_MMIO_REG_MASK;
1618 enum emulation_result emulated = EMULATE_DONE;
1619
1620 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1621 return EMULATE_FAIL;
1622
1623 vcpu->arch.io_gpr = rs;
1624
1625 while (vcpu->arch.mmio_vmx_copy_nums) {
1626 switch (vcpu->arch.mmio_copy_type) {
1627 case KVMPPC_VMX_COPY_DWORD:
1628 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1629 return EMULATE_FAIL;
1630
1631 break;
1632 case KVMPPC_VMX_COPY_WORD:
1633 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1634 return EMULATE_FAIL;
1635 break;
1636 case KVMPPC_VMX_COPY_HWORD:
1637 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1638 return EMULATE_FAIL;
1639 break;
1640 case KVMPPC_VMX_COPY_BYTE:
1641 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1642 return EMULATE_FAIL;
1643 break;
1644 default:
1645 return EMULATE_FAIL;
1646 }
1647
1648 emulated = kvmppc_handle_store(vcpu, val, bytes,
1649 is_default_endian);
1650 if (emulated != EMULATE_DONE)
1651 break;
1652
1653 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1654 vcpu->arch.mmio_vmx_copy_nums--;
1655 vcpu->arch.mmio_vmx_offset++;
1656 }
1657
1658 return emulated;
1659 }
1660
kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu * vcpu)1661 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1662 {
1663 struct kvm_run *run = vcpu->run;
1664 enum emulation_result emulated = EMULATE_FAIL;
1665 int r;
1666
1667 vcpu->arch.paddr_accessed += run->mmio.len;
1668
1669 if (!vcpu->mmio_is_write) {
1670 emulated = kvmppc_handle_vmx_load(vcpu,
1671 vcpu->arch.io_gpr, run->mmio.len, 1);
1672 } else {
1673 emulated = kvmppc_handle_vmx_store(vcpu,
1674 vcpu->arch.io_gpr, run->mmio.len, 1);
1675 }
1676
1677 switch (emulated) {
1678 case EMULATE_DO_MMIO:
1679 run->exit_reason = KVM_EXIT_MMIO;
1680 r = RESUME_HOST;
1681 break;
1682 case EMULATE_FAIL:
1683 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1684 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1685 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1686 r = RESUME_HOST;
1687 break;
1688 default:
1689 r = RESUME_GUEST;
1690 break;
1691 }
1692 return r;
1693 }
1694 #endif /* CONFIG_ALTIVEC */
1695
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1696 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1697 {
1698 int r = 0;
1699 union kvmppc_one_reg val;
1700 int size;
1701
1702 size = one_reg_size(reg->id);
1703 if (size > sizeof(val))
1704 return -EINVAL;
1705
1706 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1707 if (r == -EINVAL) {
1708 r = 0;
1709 switch (reg->id) {
1710 #ifdef CONFIG_ALTIVEC
1711 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1712 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1713 r = -ENXIO;
1714 break;
1715 }
1716 kvmppc_get_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1717 break;
1718 case KVM_REG_PPC_VSCR:
1719 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1720 r = -ENXIO;
1721 break;
1722 }
1723 val = get_reg_val(reg->id, kvmppc_get_vscr(vcpu));
1724 break;
1725 case KVM_REG_PPC_VRSAVE:
1726 val = get_reg_val(reg->id, kvmppc_get_vrsave(vcpu));
1727 break;
1728 #endif /* CONFIG_ALTIVEC */
1729 default:
1730 r = -EINVAL;
1731 break;
1732 }
1733 }
1734
1735 if (r)
1736 return r;
1737
1738 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1739 r = -EFAULT;
1740
1741 return r;
1742 }
1743
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1744 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1745 {
1746 int r;
1747 union kvmppc_one_reg val;
1748 int size;
1749
1750 size = one_reg_size(reg->id);
1751 if (size > sizeof(val))
1752 return -EINVAL;
1753
1754 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1755 return -EFAULT;
1756
1757 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1758 if (r == -EINVAL) {
1759 r = 0;
1760 switch (reg->id) {
1761 #ifdef CONFIG_ALTIVEC
1762 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1763 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1764 r = -ENXIO;
1765 break;
1766 }
1767 kvmppc_set_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1768 break;
1769 case KVM_REG_PPC_VSCR:
1770 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1771 r = -ENXIO;
1772 break;
1773 }
1774 kvmppc_set_vscr(vcpu, set_reg_val(reg->id, val));
1775 break;
1776 case KVM_REG_PPC_VRSAVE:
1777 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1778 r = -ENXIO;
1779 break;
1780 }
1781 kvmppc_set_vrsave(vcpu, set_reg_val(reg->id, val));
1782 break;
1783 #endif /* CONFIG_ALTIVEC */
1784 default:
1785 r = -EINVAL;
1786 break;
1787 }
1788 }
1789
1790 return r;
1791 }
1792
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1793 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1794 {
1795 struct kvm_run *run = vcpu->run;
1796 int r;
1797
1798 vcpu_load(vcpu);
1799
1800 if (vcpu->mmio_needed) {
1801 vcpu->mmio_needed = 0;
1802 if (!vcpu->mmio_is_write)
1803 kvmppc_complete_mmio_load(vcpu);
1804 #ifdef CONFIG_VSX
1805 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1806 vcpu->arch.mmio_vsx_copy_nums--;
1807 vcpu->arch.mmio_vsx_offset++;
1808 }
1809
1810 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1811 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1812 if (r == RESUME_HOST) {
1813 vcpu->mmio_needed = 1;
1814 goto out;
1815 }
1816 }
1817 #endif
1818 #ifdef CONFIG_ALTIVEC
1819 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1820 vcpu->arch.mmio_vmx_copy_nums--;
1821 vcpu->arch.mmio_vmx_offset++;
1822 }
1823
1824 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1825 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1826 if (r == RESUME_HOST) {
1827 vcpu->mmio_needed = 1;
1828 goto out;
1829 }
1830 }
1831 #endif
1832 } else if (vcpu->arch.osi_needed) {
1833 u64 *gprs = run->osi.gprs;
1834 int i;
1835
1836 for (i = 0; i < 32; i++)
1837 kvmppc_set_gpr(vcpu, i, gprs[i]);
1838 vcpu->arch.osi_needed = 0;
1839 } else if (vcpu->arch.hcall_needed) {
1840 int i;
1841
1842 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1843 for (i = 0; i < 9; ++i)
1844 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1845 vcpu->arch.hcall_needed = 0;
1846 #ifdef CONFIG_BOOKE
1847 } else if (vcpu->arch.epr_needed) {
1848 kvmppc_set_epr(vcpu, run->epr.epr);
1849 vcpu->arch.epr_needed = 0;
1850 #endif
1851 }
1852
1853 kvm_sigset_activate(vcpu);
1854
1855 if (!vcpu->wants_to_run)
1856 r = -EINTR;
1857 else
1858 r = kvmppc_vcpu_run(vcpu);
1859
1860 kvm_sigset_deactivate(vcpu);
1861
1862 #ifdef CONFIG_ALTIVEC
1863 out:
1864 #endif
1865
1866 /*
1867 * We're already returning to userspace, don't pass the
1868 * RESUME_HOST flags along.
1869 */
1870 if (r > 0)
1871 r = 0;
1872
1873 vcpu_put(vcpu);
1874 return r;
1875 }
1876
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1877 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1878 {
1879 if (irq->irq == KVM_INTERRUPT_UNSET) {
1880 kvmppc_core_dequeue_external(vcpu);
1881 return 0;
1882 }
1883
1884 kvmppc_core_queue_external(vcpu, irq);
1885
1886 kvm_vcpu_kick(vcpu);
1887
1888 return 0;
1889 }
1890
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1891 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1892 struct kvm_enable_cap *cap)
1893 {
1894 int r;
1895
1896 if (cap->flags)
1897 return -EINVAL;
1898
1899 switch (cap->cap) {
1900 case KVM_CAP_PPC_OSI:
1901 r = 0;
1902 vcpu->arch.osi_enabled = true;
1903 break;
1904 case KVM_CAP_PPC_PAPR:
1905 r = 0;
1906 vcpu->arch.papr_enabled = true;
1907 break;
1908 case KVM_CAP_PPC_EPR:
1909 r = 0;
1910 if (cap->args[0])
1911 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1912 else
1913 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1914 break;
1915 #ifdef CONFIG_BOOKE
1916 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1917 r = 0;
1918 vcpu->arch.watchdog_enabled = true;
1919 break;
1920 #endif
1921 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1922 case KVM_CAP_SW_TLB: {
1923 struct kvm_config_tlb cfg;
1924 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1925
1926 r = -EFAULT;
1927 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1928 break;
1929
1930 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1931 break;
1932 }
1933 #endif
1934 #ifdef CONFIG_KVM_MPIC
1935 case KVM_CAP_IRQ_MPIC: {
1936 struct fd f;
1937 struct kvm_device *dev;
1938
1939 r = -EBADF;
1940 f = fdget(cap->args[0]);
1941 if (!fd_file(f))
1942 break;
1943
1944 r = -EPERM;
1945 dev = kvm_device_from_filp(fd_file(f));
1946 if (dev)
1947 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1948
1949 fdput(f);
1950 break;
1951 }
1952 #endif
1953 #ifdef CONFIG_KVM_XICS
1954 case KVM_CAP_IRQ_XICS: {
1955 struct fd f;
1956 struct kvm_device *dev;
1957
1958 r = -EBADF;
1959 f = fdget(cap->args[0]);
1960 if (!fd_file(f))
1961 break;
1962
1963 r = -EPERM;
1964 dev = kvm_device_from_filp(fd_file(f));
1965 if (dev) {
1966 if (xics_on_xive())
1967 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1968 else
1969 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1970 }
1971
1972 fdput(f);
1973 break;
1974 }
1975 #endif /* CONFIG_KVM_XICS */
1976 #ifdef CONFIG_KVM_XIVE
1977 case KVM_CAP_PPC_IRQ_XIVE: {
1978 struct fd f;
1979 struct kvm_device *dev;
1980
1981 r = -EBADF;
1982 f = fdget(cap->args[0]);
1983 if (!fd_file(f))
1984 break;
1985
1986 r = -ENXIO;
1987 if (!xive_enabled()) {
1988 fdput(f);
1989 break;
1990 }
1991
1992 r = -EPERM;
1993 dev = kvm_device_from_filp(fd_file(f));
1994 if (dev)
1995 r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1996 cap->args[1]);
1997
1998 fdput(f);
1999 break;
2000 }
2001 #endif /* CONFIG_KVM_XIVE */
2002 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2003 case KVM_CAP_PPC_FWNMI:
2004 r = -EINVAL;
2005 if (!is_kvmppc_hv_enabled(vcpu->kvm))
2006 break;
2007 r = 0;
2008 vcpu->kvm->arch.fwnmi_enabled = true;
2009 break;
2010 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
2011 default:
2012 r = -EINVAL;
2013 break;
2014 }
2015
2016 if (!r)
2017 r = kvmppc_sanity_check(vcpu);
2018
2019 return r;
2020 }
2021
kvm_arch_intc_initialized(struct kvm * kvm)2022 bool kvm_arch_intc_initialized(struct kvm *kvm)
2023 {
2024 #ifdef CONFIG_KVM_MPIC
2025 if (kvm->arch.mpic)
2026 return true;
2027 #endif
2028 #ifdef CONFIG_KVM_XICS
2029 if (kvm->arch.xics || kvm->arch.xive)
2030 return true;
2031 #endif
2032 return false;
2033 }
2034
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2035 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2036 struct kvm_mp_state *mp_state)
2037 {
2038 return -EINVAL;
2039 }
2040
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2041 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2042 struct kvm_mp_state *mp_state)
2043 {
2044 return -EINVAL;
2045 }
2046
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2047 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2048 unsigned int ioctl, unsigned long arg)
2049 {
2050 struct kvm_vcpu *vcpu = filp->private_data;
2051 void __user *argp = (void __user *)arg;
2052
2053 if (ioctl == KVM_INTERRUPT) {
2054 struct kvm_interrupt irq;
2055 if (copy_from_user(&irq, argp, sizeof(irq)))
2056 return -EFAULT;
2057 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2058 }
2059 return -ENOIOCTLCMD;
2060 }
2061
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2062 long kvm_arch_vcpu_ioctl(struct file *filp,
2063 unsigned int ioctl, unsigned long arg)
2064 {
2065 struct kvm_vcpu *vcpu = filp->private_data;
2066 void __user *argp = (void __user *)arg;
2067 long r;
2068
2069 switch (ioctl) {
2070 case KVM_ENABLE_CAP:
2071 {
2072 struct kvm_enable_cap cap;
2073 r = -EFAULT;
2074 if (copy_from_user(&cap, argp, sizeof(cap)))
2075 goto out;
2076 vcpu_load(vcpu);
2077 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2078 vcpu_put(vcpu);
2079 break;
2080 }
2081
2082 case KVM_SET_ONE_REG:
2083 case KVM_GET_ONE_REG:
2084 {
2085 struct kvm_one_reg reg;
2086 r = -EFAULT;
2087 if (copy_from_user(®, argp, sizeof(reg)))
2088 goto out;
2089 if (ioctl == KVM_SET_ONE_REG)
2090 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
2091 else
2092 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
2093 break;
2094 }
2095
2096 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2097 case KVM_DIRTY_TLB: {
2098 struct kvm_dirty_tlb dirty;
2099 r = -EFAULT;
2100 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2101 goto out;
2102 vcpu_load(vcpu);
2103 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2104 vcpu_put(vcpu);
2105 break;
2106 }
2107 #endif
2108 default:
2109 r = -EINVAL;
2110 }
2111
2112 out:
2113 return r;
2114 }
2115
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)2116 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2117 {
2118 return VM_FAULT_SIGBUS;
2119 }
2120
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)2121 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2122 {
2123 u32 inst_nop = 0x60000000;
2124 #ifdef CONFIG_KVM_BOOKE_HV
2125 u32 inst_sc1 = 0x44000022;
2126 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2127 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2128 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2129 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2130 #else
2131 u32 inst_lis = 0x3c000000;
2132 u32 inst_ori = 0x60000000;
2133 u32 inst_sc = 0x44000002;
2134 u32 inst_imm_mask = 0xffff;
2135
2136 /*
2137 * The hypercall to get into KVM from within guest context is as
2138 * follows:
2139 *
2140 * lis r0, r0, KVM_SC_MAGIC_R0@h
2141 * ori r0, KVM_SC_MAGIC_R0@l
2142 * sc
2143 * nop
2144 */
2145 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2146 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2147 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2148 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2149 #endif
2150
2151 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2152
2153 return 0;
2154 }
2155
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2156 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2157 {
2158 int ret = 0;
2159
2160 #ifdef CONFIG_KVM_MPIC
2161 ret = ret || (kvm->arch.mpic != NULL);
2162 #endif
2163 #ifdef CONFIG_KVM_XICS
2164 ret = ret || (kvm->arch.xics != NULL);
2165 ret = ret || (kvm->arch.xive != NULL);
2166 #endif
2167 smp_rmb();
2168 return ret;
2169 }
2170
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)2171 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2172 bool line_status)
2173 {
2174 if (!kvm_arch_irqchip_in_kernel(kvm))
2175 return -ENXIO;
2176
2177 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2178 irq_event->irq, irq_event->level,
2179 line_status);
2180 return 0;
2181 }
2182
2183
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)2184 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2185 struct kvm_enable_cap *cap)
2186 {
2187 int r;
2188
2189 if (cap->flags)
2190 return -EINVAL;
2191
2192 switch (cap->cap) {
2193 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2194 case KVM_CAP_PPC_ENABLE_HCALL: {
2195 unsigned long hcall = cap->args[0];
2196
2197 r = -EINVAL;
2198 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2199 cap->args[1] > 1)
2200 break;
2201 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2202 break;
2203 if (cap->args[1])
2204 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2205 else
2206 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2207 r = 0;
2208 break;
2209 }
2210 case KVM_CAP_PPC_SMT: {
2211 unsigned long mode = cap->args[0];
2212 unsigned long flags = cap->args[1];
2213
2214 r = -EINVAL;
2215 if (kvm->arch.kvm_ops->set_smt_mode)
2216 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2217 break;
2218 }
2219
2220 case KVM_CAP_PPC_NESTED_HV:
2221 r = -EINVAL;
2222 if (!is_kvmppc_hv_enabled(kvm) ||
2223 !kvm->arch.kvm_ops->enable_nested)
2224 break;
2225 r = kvm->arch.kvm_ops->enable_nested(kvm);
2226 break;
2227 #endif
2228 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2229 case KVM_CAP_PPC_SECURE_GUEST:
2230 r = -EINVAL;
2231 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2232 break;
2233 r = kvm->arch.kvm_ops->enable_svm(kvm);
2234 break;
2235 case KVM_CAP_PPC_DAWR1:
2236 r = -EINVAL;
2237 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2238 break;
2239 r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2240 break;
2241 #endif
2242 default:
2243 r = -EINVAL;
2244 break;
2245 }
2246
2247 return r;
2248 }
2249
2250 #ifdef CONFIG_PPC_BOOK3S_64
2251 /*
2252 * These functions check whether the underlying hardware is safe
2253 * against attacks based on observing the effects of speculatively
2254 * executed instructions, and whether it supplies instructions for
2255 * use in workarounds. The information comes from firmware, either
2256 * via the device tree on powernv platforms or from an hcall on
2257 * pseries platforms.
2258 */
2259 #ifdef CONFIG_PPC_PSERIES
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2260 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2261 {
2262 struct h_cpu_char_result c;
2263 unsigned long rc;
2264
2265 if (!machine_is(pseries))
2266 return -ENOTTY;
2267
2268 rc = plpar_get_cpu_characteristics(&c);
2269 if (rc == H_SUCCESS) {
2270 cp->character = c.character;
2271 cp->behaviour = c.behaviour;
2272 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2273 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2274 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2275 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2276 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2277 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2278 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2279 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2280 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2281 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2282 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2283 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2284 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2285 }
2286 return 0;
2287 }
2288 #else
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2289 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2290 {
2291 return -ENOTTY;
2292 }
2293 #endif
2294
have_fw_feat(struct device_node * fw_features,const char * state,const char * name)2295 static inline bool have_fw_feat(struct device_node *fw_features,
2296 const char *state, const char *name)
2297 {
2298 struct device_node *np;
2299 bool r = false;
2300
2301 np = of_get_child_by_name(fw_features, name);
2302 if (np) {
2303 r = of_property_read_bool(np, state);
2304 of_node_put(np);
2305 }
2306 return r;
2307 }
2308
kvmppc_get_cpu_char(struct kvm_ppc_cpu_char * cp)2309 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2310 {
2311 struct device_node *np, *fw_features;
2312 int r;
2313
2314 memset(cp, 0, sizeof(*cp));
2315 r = pseries_get_cpu_char(cp);
2316 if (r != -ENOTTY)
2317 return r;
2318
2319 np = of_find_node_by_name(NULL, "ibm,opal");
2320 if (np) {
2321 fw_features = of_get_child_by_name(np, "fw-features");
2322 of_node_put(np);
2323 if (!fw_features)
2324 return 0;
2325 if (have_fw_feat(fw_features, "enabled",
2326 "inst-spec-barrier-ori31,31,0"))
2327 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2328 if (have_fw_feat(fw_features, "enabled",
2329 "fw-bcctrl-serialized"))
2330 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2331 if (have_fw_feat(fw_features, "enabled",
2332 "inst-l1d-flush-ori30,30,0"))
2333 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2334 if (have_fw_feat(fw_features, "enabled",
2335 "inst-l1d-flush-trig2"))
2336 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2337 if (have_fw_feat(fw_features, "enabled",
2338 "fw-l1d-thread-split"))
2339 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2340 if (have_fw_feat(fw_features, "enabled",
2341 "fw-count-cache-disabled"))
2342 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2343 if (have_fw_feat(fw_features, "enabled",
2344 "fw-count-cache-flush-bcctr2,0,0"))
2345 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2346 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2347 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2348 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2349 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2350 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2351 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2352 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2353
2354 if (have_fw_feat(fw_features, "enabled",
2355 "speculation-policy-favor-security"))
2356 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2357 if (!have_fw_feat(fw_features, "disabled",
2358 "needs-l1d-flush-msr-pr-0-to-1"))
2359 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2360 if (!have_fw_feat(fw_features, "disabled",
2361 "needs-spec-barrier-for-bound-checks"))
2362 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2363 if (have_fw_feat(fw_features, "enabled",
2364 "needs-count-cache-flush-on-context-switch"))
2365 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2366 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2367 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2368 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2369 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2370
2371 of_node_put(fw_features);
2372 }
2373
2374 return 0;
2375 }
2376 #endif
2377
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2378 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2379 {
2380 struct kvm *kvm __maybe_unused = filp->private_data;
2381 void __user *argp = (void __user *)arg;
2382 int r;
2383
2384 switch (ioctl) {
2385 case KVM_PPC_GET_PVINFO: {
2386 struct kvm_ppc_pvinfo pvinfo;
2387 memset(&pvinfo, 0, sizeof(pvinfo));
2388 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2389 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2390 r = -EFAULT;
2391 goto out;
2392 }
2393
2394 break;
2395 }
2396 #ifdef CONFIG_SPAPR_TCE_IOMMU
2397 case KVM_CREATE_SPAPR_TCE_64: {
2398 struct kvm_create_spapr_tce_64 create_tce_64;
2399
2400 r = -EFAULT;
2401 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2402 goto out;
2403 if (create_tce_64.flags) {
2404 r = -EINVAL;
2405 goto out;
2406 }
2407 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2408 goto out;
2409 }
2410 case KVM_CREATE_SPAPR_TCE: {
2411 struct kvm_create_spapr_tce create_tce;
2412 struct kvm_create_spapr_tce_64 create_tce_64;
2413
2414 r = -EFAULT;
2415 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2416 goto out;
2417
2418 create_tce_64.liobn = create_tce.liobn;
2419 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2420 create_tce_64.offset = 0;
2421 create_tce_64.size = create_tce.window_size >>
2422 IOMMU_PAGE_SHIFT_4K;
2423 create_tce_64.flags = 0;
2424 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2425 goto out;
2426 }
2427 #endif
2428 #ifdef CONFIG_PPC_BOOK3S_64
2429 case KVM_PPC_GET_SMMU_INFO: {
2430 struct kvm_ppc_smmu_info info;
2431 struct kvm *kvm = filp->private_data;
2432
2433 memset(&info, 0, sizeof(info));
2434 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2435 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2436 r = -EFAULT;
2437 break;
2438 }
2439 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2440 struct kvm *kvm = filp->private_data;
2441
2442 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2443 break;
2444 }
2445 case KVM_PPC_CONFIGURE_V3_MMU: {
2446 struct kvm *kvm = filp->private_data;
2447 struct kvm_ppc_mmuv3_cfg cfg;
2448
2449 r = -EINVAL;
2450 if (!kvm->arch.kvm_ops->configure_mmu)
2451 goto out;
2452 r = -EFAULT;
2453 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2454 goto out;
2455 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2456 break;
2457 }
2458 case KVM_PPC_GET_RMMU_INFO: {
2459 struct kvm *kvm = filp->private_data;
2460 struct kvm_ppc_rmmu_info info;
2461
2462 r = -EINVAL;
2463 if (!kvm->arch.kvm_ops->get_rmmu_info)
2464 goto out;
2465 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2466 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2467 r = -EFAULT;
2468 break;
2469 }
2470 case KVM_PPC_GET_CPU_CHAR: {
2471 struct kvm_ppc_cpu_char cpuchar;
2472
2473 r = kvmppc_get_cpu_char(&cpuchar);
2474 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2475 r = -EFAULT;
2476 break;
2477 }
2478 case KVM_PPC_SVM_OFF: {
2479 struct kvm *kvm = filp->private_data;
2480
2481 r = 0;
2482 if (!kvm->arch.kvm_ops->svm_off)
2483 goto out;
2484
2485 r = kvm->arch.kvm_ops->svm_off(kvm);
2486 break;
2487 }
2488 default: {
2489 struct kvm *kvm = filp->private_data;
2490 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2491 }
2492 #else /* CONFIG_PPC_BOOK3S_64 */
2493 default:
2494 r = -ENOTTY;
2495 #endif
2496 }
2497 out:
2498 return r;
2499 }
2500
2501 static DEFINE_IDA(lpid_inuse);
2502 static unsigned long nr_lpids;
2503
kvmppc_alloc_lpid(void)2504 long kvmppc_alloc_lpid(void)
2505 {
2506 int lpid;
2507
2508 /* The host LPID must always be 0 (allocation starts at 1) */
2509 lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
2510 if (lpid < 0) {
2511 if (lpid == -ENOMEM)
2512 pr_err("%s: Out of memory\n", __func__);
2513 else
2514 pr_err("%s: No LPIDs free\n", __func__);
2515 return -ENOMEM;
2516 }
2517
2518 return lpid;
2519 }
2520 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2521
kvmppc_free_lpid(long lpid)2522 void kvmppc_free_lpid(long lpid)
2523 {
2524 ida_free(&lpid_inuse, lpid);
2525 }
2526 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2527
2528 /* nr_lpids_param includes the host LPID */
kvmppc_init_lpid(unsigned long nr_lpids_param)2529 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2530 {
2531 nr_lpids = nr_lpids_param;
2532 }
2533 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2534
2535 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2536
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2537 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2538 {
2539 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
2540 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
2541 }
2542
kvm_arch_create_vm_debugfs(struct kvm * kvm)2543 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
2544 {
2545 if (kvm->arch.kvm_ops->create_vm_debugfs)
2546 kvm->arch.kvm_ops->create_vm_debugfs(kvm);
2547 }
2548