1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright IBM Corp. 2007 16 * 17 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 19 */ 20 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/kvm_host.h> 24 #include <linux/vmalloc.h> 25 #include <linux/hrtimer.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/module.h> 30 #include <asm/cputable.h> 31 #include <asm/uaccess.h> 32 #include <asm/kvm_ppc.h> 33 #include <asm/tlbflush.h> 34 #include <asm/cputhreads.h> 35 #include <asm/irqflags.h> 36 #include "timing.h" 37 #include "irq.h" 38 #include "../mm/mmu_decl.h" 39 40 #define CREATE_TRACE_POINTS 41 #include "trace.h" 42 43 struct kvmppc_ops *kvmppc_hv_ops; 44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 45 struct kvmppc_ops *kvmppc_pr_ops; 46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 47 48 49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 50 { 51 return !!(v->arch.pending_exceptions) || 52 v->requests; 53 } 54 55 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 56 { 57 return 1; 58 } 59 60 /* 61 * Common checks before entering the guest world. Call with interrupts 62 * disabled. 63 * 64 * returns: 65 * 66 * == 1 if we're ready to go into guest state 67 * <= 0 if we need to go back to the host with return value 68 */ 69 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 70 { 71 int r; 72 73 WARN_ON(irqs_disabled()); 74 hard_irq_disable(); 75 76 while (true) { 77 if (need_resched()) { 78 local_irq_enable(); 79 cond_resched(); 80 hard_irq_disable(); 81 continue; 82 } 83 84 if (signal_pending(current)) { 85 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 86 vcpu->run->exit_reason = KVM_EXIT_INTR; 87 r = -EINTR; 88 break; 89 } 90 91 vcpu->mode = IN_GUEST_MODE; 92 93 /* 94 * Reading vcpu->requests must happen after setting vcpu->mode, 95 * so we don't miss a request because the requester sees 96 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 97 * before next entering the guest (and thus doesn't IPI). 98 */ 99 smp_mb(); 100 101 if (vcpu->requests) { 102 /* Make sure we process requests preemptable */ 103 local_irq_enable(); 104 trace_kvm_check_requests(vcpu); 105 r = kvmppc_core_check_requests(vcpu); 106 hard_irq_disable(); 107 if (r > 0) 108 continue; 109 break; 110 } 111 112 if (kvmppc_core_prepare_to_enter(vcpu)) { 113 /* interrupts got enabled in between, so we 114 are back at square 1 */ 115 continue; 116 } 117 118 kvm_guest_enter(); 119 return 1; 120 } 121 122 /* return to host */ 123 local_irq_enable(); 124 return r; 125 } 126 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 127 128 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 129 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 130 { 131 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 132 int i; 133 134 shared->sprg0 = swab64(shared->sprg0); 135 shared->sprg1 = swab64(shared->sprg1); 136 shared->sprg2 = swab64(shared->sprg2); 137 shared->sprg3 = swab64(shared->sprg3); 138 shared->srr0 = swab64(shared->srr0); 139 shared->srr1 = swab64(shared->srr1); 140 shared->dar = swab64(shared->dar); 141 shared->msr = swab64(shared->msr); 142 shared->dsisr = swab32(shared->dsisr); 143 shared->int_pending = swab32(shared->int_pending); 144 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 145 shared->sr[i] = swab32(shared->sr[i]); 146 } 147 #endif 148 149 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 150 { 151 int nr = kvmppc_get_gpr(vcpu, 11); 152 int r; 153 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 154 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 155 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 156 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 157 unsigned long r2 = 0; 158 159 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 160 /* 32 bit mode */ 161 param1 &= 0xffffffff; 162 param2 &= 0xffffffff; 163 param3 &= 0xffffffff; 164 param4 &= 0xffffffff; 165 } 166 167 switch (nr) { 168 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 169 { 170 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 171 /* Book3S can be little endian, find it out here */ 172 int shared_big_endian = true; 173 if (vcpu->arch.intr_msr & MSR_LE) 174 shared_big_endian = false; 175 if (shared_big_endian != vcpu->arch.shared_big_endian) 176 kvmppc_swab_shared(vcpu); 177 vcpu->arch.shared_big_endian = shared_big_endian; 178 #endif 179 180 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 181 /* 182 * Older versions of the Linux magic page code had 183 * a bug where they would map their trampoline code 184 * NX. If that's the case, remove !PR NX capability. 185 */ 186 vcpu->arch.disable_kernel_nx = true; 187 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 188 } 189 190 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 191 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 192 193 #ifdef CONFIG_PPC_64K_PAGES 194 /* 195 * Make sure our 4k magic page is in the same window of a 64k 196 * page within the guest and within the host's page. 197 */ 198 if ((vcpu->arch.magic_page_pa & 0xf000) != 199 ((ulong)vcpu->arch.shared & 0xf000)) { 200 void *old_shared = vcpu->arch.shared; 201 ulong shared = (ulong)vcpu->arch.shared; 202 void *new_shared; 203 204 shared &= PAGE_MASK; 205 shared |= vcpu->arch.magic_page_pa & 0xf000; 206 new_shared = (void*)shared; 207 memcpy(new_shared, old_shared, 0x1000); 208 vcpu->arch.shared = new_shared; 209 } 210 #endif 211 212 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 213 214 r = EV_SUCCESS; 215 break; 216 } 217 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 218 r = EV_SUCCESS; 219 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 220 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 221 #endif 222 223 /* Second return value is in r4 */ 224 break; 225 case EV_HCALL_TOKEN(EV_IDLE): 226 r = EV_SUCCESS; 227 kvm_vcpu_block(vcpu); 228 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 229 break; 230 default: 231 r = EV_UNIMPLEMENTED; 232 break; 233 } 234 235 kvmppc_set_gpr(vcpu, 4, r2); 236 237 return r; 238 } 239 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 240 241 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 242 { 243 int r = false; 244 245 /* We have to know what CPU to virtualize */ 246 if (!vcpu->arch.pvr) 247 goto out; 248 249 /* PAPR only works with book3s_64 */ 250 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 251 goto out; 252 253 /* HV KVM can only do PAPR mode for now */ 254 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 255 goto out; 256 257 #ifdef CONFIG_KVM_BOOKE_HV 258 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 259 goto out; 260 #endif 261 262 r = true; 263 264 out: 265 vcpu->arch.sane = r; 266 return r ? 0 : -EINVAL; 267 } 268 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 269 270 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 271 { 272 enum emulation_result er; 273 int r; 274 275 er = kvmppc_emulate_loadstore(vcpu); 276 switch (er) { 277 case EMULATE_DONE: 278 /* Future optimization: only reload non-volatiles if they were 279 * actually modified. */ 280 r = RESUME_GUEST_NV; 281 break; 282 case EMULATE_AGAIN: 283 r = RESUME_GUEST; 284 break; 285 case EMULATE_DO_MMIO: 286 run->exit_reason = KVM_EXIT_MMIO; 287 /* We must reload nonvolatiles because "update" load/store 288 * instructions modify register state. */ 289 /* Future optimization: only reload non-volatiles if they were 290 * actually modified. */ 291 r = RESUME_HOST_NV; 292 break; 293 case EMULATE_FAIL: 294 { 295 u32 last_inst; 296 297 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 298 /* XXX Deliver Program interrupt to guest. */ 299 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 300 r = RESUME_HOST; 301 break; 302 } 303 default: 304 WARN_ON(1); 305 r = RESUME_GUEST; 306 } 307 308 return r; 309 } 310 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 311 312 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 313 bool data) 314 { 315 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 316 struct kvmppc_pte pte; 317 int r; 318 319 vcpu->stat.st++; 320 321 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 322 XLATE_WRITE, &pte); 323 if (r < 0) 324 return r; 325 326 *eaddr = pte.raddr; 327 328 if (!pte.may_write) 329 return -EPERM; 330 331 /* Magic page override */ 332 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 333 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 334 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 335 void *magic = vcpu->arch.shared; 336 magic += pte.eaddr & 0xfff; 337 memcpy(magic, ptr, size); 338 return EMULATE_DONE; 339 } 340 341 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 342 return EMULATE_DO_MMIO; 343 344 return EMULATE_DONE; 345 } 346 EXPORT_SYMBOL_GPL(kvmppc_st); 347 348 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 349 bool data) 350 { 351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 352 struct kvmppc_pte pte; 353 int rc; 354 355 vcpu->stat.ld++; 356 357 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 358 XLATE_READ, &pte); 359 if (rc) 360 return rc; 361 362 *eaddr = pte.raddr; 363 364 if (!pte.may_read) 365 return -EPERM; 366 367 if (!data && !pte.may_execute) 368 return -ENOEXEC; 369 370 /* Magic page override */ 371 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 372 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 373 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 374 void *magic = vcpu->arch.shared; 375 magic += pte.eaddr & 0xfff; 376 memcpy(ptr, magic, size); 377 return EMULATE_DONE; 378 } 379 380 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 381 return EMULATE_DO_MMIO; 382 383 return EMULATE_DONE; 384 } 385 EXPORT_SYMBOL_GPL(kvmppc_ld); 386 387 int kvm_arch_hardware_enable(void) 388 { 389 return 0; 390 } 391 392 int kvm_arch_hardware_setup(void) 393 { 394 return 0; 395 } 396 397 void kvm_arch_check_processor_compat(void *rtn) 398 { 399 *(int *)rtn = kvmppc_core_check_processor_compat(); 400 } 401 402 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 403 { 404 struct kvmppc_ops *kvm_ops = NULL; 405 /* 406 * if we have both HV and PR enabled, default is HV 407 */ 408 if (type == 0) { 409 if (kvmppc_hv_ops) 410 kvm_ops = kvmppc_hv_ops; 411 else 412 kvm_ops = kvmppc_pr_ops; 413 if (!kvm_ops) 414 goto err_out; 415 } else if (type == KVM_VM_PPC_HV) { 416 if (!kvmppc_hv_ops) 417 goto err_out; 418 kvm_ops = kvmppc_hv_ops; 419 } else if (type == KVM_VM_PPC_PR) { 420 if (!kvmppc_pr_ops) 421 goto err_out; 422 kvm_ops = kvmppc_pr_ops; 423 } else 424 goto err_out; 425 426 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 427 return -ENOENT; 428 429 kvm->arch.kvm_ops = kvm_ops; 430 return kvmppc_core_init_vm(kvm); 431 err_out: 432 return -EINVAL; 433 } 434 435 void kvm_arch_destroy_vm(struct kvm *kvm) 436 { 437 unsigned int i; 438 struct kvm_vcpu *vcpu; 439 440 kvm_for_each_vcpu(i, vcpu, kvm) 441 kvm_arch_vcpu_free(vcpu); 442 443 mutex_lock(&kvm->lock); 444 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 445 kvm->vcpus[i] = NULL; 446 447 atomic_set(&kvm->online_vcpus, 0); 448 449 kvmppc_core_destroy_vm(kvm); 450 451 mutex_unlock(&kvm->lock); 452 453 /* drop the module reference */ 454 module_put(kvm->arch.kvm_ops->owner); 455 } 456 457 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 458 { 459 int r; 460 /* Assume we're using HV mode when the HV module is loaded */ 461 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 462 463 if (kvm) { 464 /* 465 * Hooray - we know which VM type we're running on. Depend on 466 * that rather than the guess above. 467 */ 468 hv_enabled = is_kvmppc_hv_enabled(kvm); 469 } 470 471 switch (ext) { 472 #ifdef CONFIG_BOOKE 473 case KVM_CAP_PPC_BOOKE_SREGS: 474 case KVM_CAP_PPC_BOOKE_WATCHDOG: 475 case KVM_CAP_PPC_EPR: 476 #else 477 case KVM_CAP_PPC_SEGSTATE: 478 case KVM_CAP_PPC_HIOR: 479 case KVM_CAP_PPC_PAPR: 480 #endif 481 case KVM_CAP_PPC_UNSET_IRQ: 482 case KVM_CAP_PPC_IRQ_LEVEL: 483 case KVM_CAP_ENABLE_CAP: 484 case KVM_CAP_ENABLE_CAP_VM: 485 case KVM_CAP_ONE_REG: 486 case KVM_CAP_IOEVENTFD: 487 case KVM_CAP_DEVICE_CTRL: 488 r = 1; 489 break; 490 case KVM_CAP_PPC_PAIRED_SINGLES: 491 case KVM_CAP_PPC_OSI: 492 case KVM_CAP_PPC_GET_PVINFO: 493 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 494 case KVM_CAP_SW_TLB: 495 #endif 496 /* We support this only for PR */ 497 r = !hv_enabled; 498 break; 499 #ifdef CONFIG_KVM_MMIO 500 case KVM_CAP_COALESCED_MMIO: 501 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 502 break; 503 #endif 504 #ifdef CONFIG_KVM_MPIC 505 case KVM_CAP_IRQ_MPIC: 506 r = 1; 507 break; 508 #endif 509 510 #ifdef CONFIG_PPC_BOOK3S_64 511 case KVM_CAP_SPAPR_TCE: 512 case KVM_CAP_PPC_ALLOC_HTAB: 513 case KVM_CAP_PPC_RTAS: 514 case KVM_CAP_PPC_FIXUP_HCALL: 515 case KVM_CAP_PPC_ENABLE_HCALL: 516 #ifdef CONFIG_KVM_XICS 517 case KVM_CAP_IRQ_XICS: 518 #endif 519 r = 1; 520 break; 521 #endif /* CONFIG_PPC_BOOK3S_64 */ 522 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 523 case KVM_CAP_PPC_SMT: 524 if (hv_enabled) 525 r = threads_per_subcore; 526 else 527 r = 0; 528 break; 529 case KVM_CAP_PPC_RMA: 530 r = 0; 531 break; 532 #endif 533 case KVM_CAP_SYNC_MMU: 534 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 535 r = hv_enabled; 536 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 537 r = 1; 538 #else 539 r = 0; 540 #endif 541 break; 542 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 543 case KVM_CAP_PPC_HTAB_FD: 544 r = hv_enabled; 545 break; 546 #endif 547 case KVM_CAP_NR_VCPUS: 548 /* 549 * Recommending a number of CPUs is somewhat arbitrary; we 550 * return the number of present CPUs for -HV (since a host 551 * will have secondary threads "offline"), and for other KVM 552 * implementations just count online CPUs. 553 */ 554 if (hv_enabled) 555 r = num_present_cpus(); 556 else 557 r = num_online_cpus(); 558 break; 559 case KVM_CAP_MAX_VCPUS: 560 r = KVM_MAX_VCPUS; 561 break; 562 #ifdef CONFIG_PPC_BOOK3S_64 563 case KVM_CAP_PPC_GET_SMMU_INFO: 564 r = 1; 565 break; 566 #endif 567 default: 568 r = 0; 569 break; 570 } 571 return r; 572 573 } 574 575 long kvm_arch_dev_ioctl(struct file *filp, 576 unsigned int ioctl, unsigned long arg) 577 { 578 return -EINVAL; 579 } 580 581 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 582 struct kvm_memory_slot *dont) 583 { 584 kvmppc_core_free_memslot(kvm, free, dont); 585 } 586 587 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 588 unsigned long npages) 589 { 590 return kvmppc_core_create_memslot(kvm, slot, npages); 591 } 592 593 int kvm_arch_prepare_memory_region(struct kvm *kvm, 594 struct kvm_memory_slot *memslot, 595 struct kvm_userspace_memory_region *mem, 596 enum kvm_mr_change change) 597 { 598 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 599 } 600 601 void kvm_arch_commit_memory_region(struct kvm *kvm, 602 struct kvm_userspace_memory_region *mem, 603 const struct kvm_memory_slot *old, 604 enum kvm_mr_change change) 605 { 606 kvmppc_core_commit_memory_region(kvm, mem, old); 607 } 608 609 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 610 struct kvm_memory_slot *slot) 611 { 612 kvmppc_core_flush_memslot(kvm, slot); 613 } 614 615 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 616 { 617 struct kvm_vcpu *vcpu; 618 vcpu = kvmppc_core_vcpu_create(kvm, id); 619 if (!IS_ERR(vcpu)) { 620 vcpu->arch.wqp = &vcpu->wq; 621 kvmppc_create_vcpu_debugfs(vcpu, id); 622 } 623 return vcpu; 624 } 625 626 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 627 { 628 } 629 630 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 631 { 632 /* Make sure we're not using the vcpu anymore */ 633 hrtimer_cancel(&vcpu->arch.dec_timer); 634 635 kvmppc_remove_vcpu_debugfs(vcpu); 636 637 switch (vcpu->arch.irq_type) { 638 case KVMPPC_IRQ_MPIC: 639 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 640 break; 641 case KVMPPC_IRQ_XICS: 642 kvmppc_xics_free_icp(vcpu); 643 break; 644 } 645 646 kvmppc_core_vcpu_free(vcpu); 647 } 648 649 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 650 { 651 kvm_arch_vcpu_free(vcpu); 652 } 653 654 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 655 { 656 return kvmppc_core_pending_dec(vcpu); 657 } 658 659 enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 660 { 661 struct kvm_vcpu *vcpu; 662 663 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 664 kvmppc_decrementer_func(vcpu); 665 666 return HRTIMER_NORESTART; 667 } 668 669 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 670 { 671 int ret; 672 673 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 674 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 675 vcpu->arch.dec_expires = ~(u64)0; 676 677 #ifdef CONFIG_KVM_EXIT_TIMING 678 mutex_init(&vcpu->arch.exit_timing_lock); 679 #endif 680 ret = kvmppc_subarch_vcpu_init(vcpu); 681 return ret; 682 } 683 684 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 685 { 686 kvmppc_mmu_destroy(vcpu); 687 kvmppc_subarch_vcpu_uninit(vcpu); 688 } 689 690 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 691 { 692 #ifdef CONFIG_BOOKE 693 /* 694 * vrsave (formerly usprg0) isn't used by Linux, but may 695 * be used by the guest. 696 * 697 * On non-booke this is associated with Altivec and 698 * is handled by code in book3s.c. 699 */ 700 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 701 #endif 702 kvmppc_core_vcpu_load(vcpu, cpu); 703 } 704 705 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 706 { 707 kvmppc_core_vcpu_put(vcpu); 708 #ifdef CONFIG_BOOKE 709 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 710 #endif 711 } 712 713 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 714 struct kvm_run *run) 715 { 716 u64 uninitialized_var(gpr); 717 718 if (run->mmio.len > sizeof(gpr)) { 719 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 720 return; 721 } 722 723 if (vcpu->arch.mmio_is_bigendian) { 724 switch (run->mmio.len) { 725 case 8: gpr = *(u64 *)run->mmio.data; break; 726 case 4: gpr = *(u32 *)run->mmio.data; break; 727 case 2: gpr = *(u16 *)run->mmio.data; break; 728 case 1: gpr = *(u8 *)run->mmio.data; break; 729 } 730 } else { 731 /* Convert BE data from userland back to LE. */ 732 switch (run->mmio.len) { 733 case 4: gpr = ld_le32((u32 *)run->mmio.data); break; 734 case 2: gpr = ld_le16((u16 *)run->mmio.data); break; 735 case 1: gpr = *(u8 *)run->mmio.data; break; 736 } 737 } 738 739 if (vcpu->arch.mmio_sign_extend) { 740 switch (run->mmio.len) { 741 #ifdef CONFIG_PPC64 742 case 4: 743 gpr = (s64)(s32)gpr; 744 break; 745 #endif 746 case 2: 747 gpr = (s64)(s16)gpr; 748 break; 749 case 1: 750 gpr = (s64)(s8)gpr; 751 break; 752 } 753 } 754 755 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 756 757 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 758 case KVM_MMIO_REG_GPR: 759 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 760 break; 761 case KVM_MMIO_REG_FPR: 762 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 763 break; 764 #ifdef CONFIG_PPC_BOOK3S 765 case KVM_MMIO_REG_QPR: 766 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 767 break; 768 case KVM_MMIO_REG_FQPR: 769 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 770 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 771 break; 772 #endif 773 default: 774 BUG(); 775 } 776 } 777 778 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 779 unsigned int rt, unsigned int bytes, 780 int is_default_endian) 781 { 782 int idx, ret; 783 int is_bigendian; 784 785 if (kvmppc_need_byteswap(vcpu)) { 786 /* Default endianness is "little endian". */ 787 is_bigendian = !is_default_endian; 788 } else { 789 /* Default endianness is "big endian". */ 790 is_bigendian = is_default_endian; 791 } 792 793 if (bytes > sizeof(run->mmio.data)) { 794 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 795 run->mmio.len); 796 } 797 798 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 799 run->mmio.len = bytes; 800 run->mmio.is_write = 0; 801 802 vcpu->arch.io_gpr = rt; 803 vcpu->arch.mmio_is_bigendian = is_bigendian; 804 vcpu->mmio_needed = 1; 805 vcpu->mmio_is_write = 0; 806 vcpu->arch.mmio_sign_extend = 0; 807 808 idx = srcu_read_lock(&vcpu->kvm->srcu); 809 810 ret = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, run->mmio.phys_addr, 811 bytes, &run->mmio.data); 812 813 srcu_read_unlock(&vcpu->kvm->srcu, idx); 814 815 if (!ret) { 816 kvmppc_complete_mmio_load(vcpu, run); 817 vcpu->mmio_needed = 0; 818 return EMULATE_DONE; 819 } 820 821 return EMULATE_DO_MMIO; 822 } 823 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 824 825 /* Same as above, but sign extends */ 826 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 827 unsigned int rt, unsigned int bytes, 828 int is_default_endian) 829 { 830 int r; 831 832 vcpu->arch.mmio_sign_extend = 1; 833 r = kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian); 834 835 return r; 836 } 837 838 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 839 u64 val, unsigned int bytes, int is_default_endian) 840 { 841 void *data = run->mmio.data; 842 int idx, ret; 843 int is_bigendian; 844 845 if (kvmppc_need_byteswap(vcpu)) { 846 /* Default endianness is "little endian". */ 847 is_bigendian = !is_default_endian; 848 } else { 849 /* Default endianness is "big endian". */ 850 is_bigendian = is_default_endian; 851 } 852 853 if (bytes > sizeof(run->mmio.data)) { 854 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 855 run->mmio.len); 856 } 857 858 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 859 run->mmio.len = bytes; 860 run->mmio.is_write = 1; 861 vcpu->mmio_needed = 1; 862 vcpu->mmio_is_write = 1; 863 864 /* Store the value at the lowest bytes in 'data'. */ 865 if (is_bigendian) { 866 switch (bytes) { 867 case 8: *(u64 *)data = val; break; 868 case 4: *(u32 *)data = val; break; 869 case 2: *(u16 *)data = val; break; 870 case 1: *(u8 *)data = val; break; 871 } 872 } else { 873 /* Store LE value into 'data'. */ 874 switch (bytes) { 875 case 4: st_le32(data, val); break; 876 case 2: st_le16(data, val); break; 877 case 1: *(u8 *)data = val; break; 878 } 879 } 880 881 idx = srcu_read_lock(&vcpu->kvm->srcu); 882 883 ret = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, run->mmio.phys_addr, 884 bytes, &run->mmio.data); 885 886 srcu_read_unlock(&vcpu->kvm->srcu, idx); 887 888 if (!ret) { 889 vcpu->mmio_needed = 0; 890 return EMULATE_DONE; 891 } 892 893 return EMULATE_DO_MMIO; 894 } 895 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 896 897 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 898 { 899 int r = 0; 900 union kvmppc_one_reg val; 901 int size; 902 903 size = one_reg_size(reg->id); 904 if (size > sizeof(val)) 905 return -EINVAL; 906 907 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 908 if (r == -EINVAL) { 909 r = 0; 910 switch (reg->id) { 911 #ifdef CONFIG_ALTIVEC 912 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 913 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 914 r = -ENXIO; 915 break; 916 } 917 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 918 break; 919 case KVM_REG_PPC_VSCR: 920 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 921 r = -ENXIO; 922 break; 923 } 924 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 925 break; 926 case KVM_REG_PPC_VRSAVE: 927 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 928 r = -ENXIO; 929 break; 930 } 931 vcpu->arch.vrsave = set_reg_val(reg->id, val); 932 break; 933 #endif /* CONFIG_ALTIVEC */ 934 default: 935 r = -EINVAL; 936 break; 937 } 938 } 939 940 if (r) 941 return r; 942 943 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 944 r = -EFAULT; 945 946 return r; 947 } 948 949 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 950 { 951 int r; 952 union kvmppc_one_reg val; 953 int size; 954 955 size = one_reg_size(reg->id); 956 if (size > sizeof(val)) 957 return -EINVAL; 958 959 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 960 return -EFAULT; 961 962 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 963 if (r == -EINVAL) { 964 r = 0; 965 switch (reg->id) { 966 #ifdef CONFIG_ALTIVEC 967 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 968 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 969 r = -ENXIO; 970 break; 971 } 972 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 973 break; 974 case KVM_REG_PPC_VSCR: 975 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 976 r = -ENXIO; 977 break; 978 } 979 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 980 break; 981 case KVM_REG_PPC_VRSAVE: 982 val = get_reg_val(reg->id, vcpu->arch.vrsave); 983 break; 984 #endif /* CONFIG_ALTIVEC */ 985 default: 986 r = -EINVAL; 987 break; 988 } 989 } 990 991 return r; 992 } 993 994 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 995 { 996 int r; 997 sigset_t sigsaved; 998 999 if (vcpu->sigset_active) 1000 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 1001 1002 if (vcpu->mmio_needed) { 1003 if (!vcpu->mmio_is_write) 1004 kvmppc_complete_mmio_load(vcpu, run); 1005 vcpu->mmio_needed = 0; 1006 } else if (vcpu->arch.osi_needed) { 1007 u64 *gprs = run->osi.gprs; 1008 int i; 1009 1010 for (i = 0; i < 32; i++) 1011 kvmppc_set_gpr(vcpu, i, gprs[i]); 1012 vcpu->arch.osi_needed = 0; 1013 } else if (vcpu->arch.hcall_needed) { 1014 int i; 1015 1016 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1017 for (i = 0; i < 9; ++i) 1018 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1019 vcpu->arch.hcall_needed = 0; 1020 #ifdef CONFIG_BOOKE 1021 } else if (vcpu->arch.epr_needed) { 1022 kvmppc_set_epr(vcpu, run->epr.epr); 1023 vcpu->arch.epr_needed = 0; 1024 #endif 1025 } 1026 1027 r = kvmppc_vcpu_run(run, vcpu); 1028 1029 if (vcpu->sigset_active) 1030 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1031 1032 return r; 1033 } 1034 1035 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1036 { 1037 if (irq->irq == KVM_INTERRUPT_UNSET) { 1038 kvmppc_core_dequeue_external(vcpu); 1039 return 0; 1040 } 1041 1042 kvmppc_core_queue_external(vcpu, irq); 1043 1044 kvm_vcpu_kick(vcpu); 1045 1046 return 0; 1047 } 1048 1049 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1050 struct kvm_enable_cap *cap) 1051 { 1052 int r; 1053 1054 if (cap->flags) 1055 return -EINVAL; 1056 1057 switch (cap->cap) { 1058 case KVM_CAP_PPC_OSI: 1059 r = 0; 1060 vcpu->arch.osi_enabled = true; 1061 break; 1062 case KVM_CAP_PPC_PAPR: 1063 r = 0; 1064 vcpu->arch.papr_enabled = true; 1065 break; 1066 case KVM_CAP_PPC_EPR: 1067 r = 0; 1068 if (cap->args[0]) 1069 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1070 else 1071 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1072 break; 1073 #ifdef CONFIG_BOOKE 1074 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1075 r = 0; 1076 vcpu->arch.watchdog_enabled = true; 1077 break; 1078 #endif 1079 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1080 case KVM_CAP_SW_TLB: { 1081 struct kvm_config_tlb cfg; 1082 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1083 1084 r = -EFAULT; 1085 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1086 break; 1087 1088 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1089 break; 1090 } 1091 #endif 1092 #ifdef CONFIG_KVM_MPIC 1093 case KVM_CAP_IRQ_MPIC: { 1094 struct fd f; 1095 struct kvm_device *dev; 1096 1097 r = -EBADF; 1098 f = fdget(cap->args[0]); 1099 if (!f.file) 1100 break; 1101 1102 r = -EPERM; 1103 dev = kvm_device_from_filp(f.file); 1104 if (dev) 1105 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1106 1107 fdput(f); 1108 break; 1109 } 1110 #endif 1111 #ifdef CONFIG_KVM_XICS 1112 case KVM_CAP_IRQ_XICS: { 1113 struct fd f; 1114 struct kvm_device *dev; 1115 1116 r = -EBADF; 1117 f = fdget(cap->args[0]); 1118 if (!f.file) 1119 break; 1120 1121 r = -EPERM; 1122 dev = kvm_device_from_filp(f.file); 1123 if (dev) 1124 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1125 1126 fdput(f); 1127 break; 1128 } 1129 #endif /* CONFIG_KVM_XICS */ 1130 default: 1131 r = -EINVAL; 1132 break; 1133 } 1134 1135 if (!r) 1136 r = kvmppc_sanity_check(vcpu); 1137 1138 return r; 1139 } 1140 1141 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1142 struct kvm_mp_state *mp_state) 1143 { 1144 return -EINVAL; 1145 } 1146 1147 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1148 struct kvm_mp_state *mp_state) 1149 { 1150 return -EINVAL; 1151 } 1152 1153 long kvm_arch_vcpu_ioctl(struct file *filp, 1154 unsigned int ioctl, unsigned long arg) 1155 { 1156 struct kvm_vcpu *vcpu = filp->private_data; 1157 void __user *argp = (void __user *)arg; 1158 long r; 1159 1160 switch (ioctl) { 1161 case KVM_INTERRUPT: { 1162 struct kvm_interrupt irq; 1163 r = -EFAULT; 1164 if (copy_from_user(&irq, argp, sizeof(irq))) 1165 goto out; 1166 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 1167 goto out; 1168 } 1169 1170 case KVM_ENABLE_CAP: 1171 { 1172 struct kvm_enable_cap cap; 1173 r = -EFAULT; 1174 if (copy_from_user(&cap, argp, sizeof(cap))) 1175 goto out; 1176 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 1177 break; 1178 } 1179 1180 case KVM_SET_ONE_REG: 1181 case KVM_GET_ONE_REG: 1182 { 1183 struct kvm_one_reg reg; 1184 r = -EFAULT; 1185 if (copy_from_user(®, argp, sizeof(reg))) 1186 goto out; 1187 if (ioctl == KVM_SET_ONE_REG) 1188 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 1189 else 1190 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 1191 break; 1192 } 1193 1194 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1195 case KVM_DIRTY_TLB: { 1196 struct kvm_dirty_tlb dirty; 1197 r = -EFAULT; 1198 if (copy_from_user(&dirty, argp, sizeof(dirty))) 1199 goto out; 1200 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 1201 break; 1202 } 1203 #endif 1204 default: 1205 r = -EINVAL; 1206 } 1207 1208 out: 1209 return r; 1210 } 1211 1212 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1213 { 1214 return VM_FAULT_SIGBUS; 1215 } 1216 1217 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 1218 { 1219 u32 inst_nop = 0x60000000; 1220 #ifdef CONFIG_KVM_BOOKE_HV 1221 u32 inst_sc1 = 0x44000022; 1222 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 1223 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 1224 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 1225 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1226 #else 1227 u32 inst_lis = 0x3c000000; 1228 u32 inst_ori = 0x60000000; 1229 u32 inst_sc = 0x44000002; 1230 u32 inst_imm_mask = 0xffff; 1231 1232 /* 1233 * The hypercall to get into KVM from within guest context is as 1234 * follows: 1235 * 1236 * lis r0, r0, KVM_SC_MAGIC_R0@h 1237 * ori r0, KVM_SC_MAGIC_R0@l 1238 * sc 1239 * nop 1240 */ 1241 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 1242 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 1243 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 1244 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1245 #endif 1246 1247 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 1248 1249 return 0; 1250 } 1251 1252 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 1253 bool line_status) 1254 { 1255 if (!irqchip_in_kernel(kvm)) 1256 return -ENXIO; 1257 1258 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1259 irq_event->irq, irq_event->level, 1260 line_status); 1261 return 0; 1262 } 1263 1264 1265 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1266 struct kvm_enable_cap *cap) 1267 { 1268 int r; 1269 1270 if (cap->flags) 1271 return -EINVAL; 1272 1273 switch (cap->cap) { 1274 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 1275 case KVM_CAP_PPC_ENABLE_HCALL: { 1276 unsigned long hcall = cap->args[0]; 1277 1278 r = -EINVAL; 1279 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 1280 cap->args[1] > 1) 1281 break; 1282 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 1283 break; 1284 if (cap->args[1]) 1285 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 1286 else 1287 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 1288 r = 0; 1289 break; 1290 } 1291 #endif 1292 default: 1293 r = -EINVAL; 1294 break; 1295 } 1296 1297 return r; 1298 } 1299 1300 long kvm_arch_vm_ioctl(struct file *filp, 1301 unsigned int ioctl, unsigned long arg) 1302 { 1303 struct kvm *kvm __maybe_unused = filp->private_data; 1304 void __user *argp = (void __user *)arg; 1305 long r; 1306 1307 switch (ioctl) { 1308 case KVM_PPC_GET_PVINFO: { 1309 struct kvm_ppc_pvinfo pvinfo; 1310 memset(&pvinfo, 0, sizeof(pvinfo)); 1311 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 1312 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 1313 r = -EFAULT; 1314 goto out; 1315 } 1316 1317 break; 1318 } 1319 case KVM_ENABLE_CAP: 1320 { 1321 struct kvm_enable_cap cap; 1322 r = -EFAULT; 1323 if (copy_from_user(&cap, argp, sizeof(cap))) 1324 goto out; 1325 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 1326 break; 1327 } 1328 #ifdef CONFIG_PPC_BOOK3S_64 1329 case KVM_CREATE_SPAPR_TCE: { 1330 struct kvm_create_spapr_tce create_tce; 1331 1332 r = -EFAULT; 1333 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 1334 goto out; 1335 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce); 1336 goto out; 1337 } 1338 case KVM_PPC_GET_SMMU_INFO: { 1339 struct kvm_ppc_smmu_info info; 1340 struct kvm *kvm = filp->private_data; 1341 1342 memset(&info, 0, sizeof(info)); 1343 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 1344 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 1345 r = -EFAULT; 1346 break; 1347 } 1348 case KVM_PPC_RTAS_DEFINE_TOKEN: { 1349 struct kvm *kvm = filp->private_data; 1350 1351 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 1352 break; 1353 } 1354 default: { 1355 struct kvm *kvm = filp->private_data; 1356 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 1357 } 1358 #else /* CONFIG_PPC_BOOK3S_64 */ 1359 default: 1360 r = -ENOTTY; 1361 #endif 1362 } 1363 out: 1364 return r; 1365 } 1366 1367 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 1368 static unsigned long nr_lpids; 1369 1370 long kvmppc_alloc_lpid(void) 1371 { 1372 long lpid; 1373 1374 do { 1375 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 1376 if (lpid >= nr_lpids) { 1377 pr_err("%s: No LPIDs free\n", __func__); 1378 return -ENOMEM; 1379 } 1380 } while (test_and_set_bit(lpid, lpid_inuse)); 1381 1382 return lpid; 1383 } 1384 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 1385 1386 void kvmppc_claim_lpid(long lpid) 1387 { 1388 set_bit(lpid, lpid_inuse); 1389 } 1390 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 1391 1392 void kvmppc_free_lpid(long lpid) 1393 { 1394 clear_bit(lpid, lpid_inuse); 1395 } 1396 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 1397 1398 void kvmppc_init_lpid(unsigned long nr_lpids_param) 1399 { 1400 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 1401 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 1402 } 1403 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 1404 1405 int kvm_arch_init(void *opaque) 1406 { 1407 return 0; 1408 } 1409 1410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 1411