1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright IBM Corp. 2007 16 * 17 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 19 */ 20 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/kvm_host.h> 24 #include <linux/vmalloc.h> 25 #include <linux/hrtimer.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/module.h> 30 #include <asm/cputable.h> 31 #include <asm/uaccess.h> 32 #include <asm/kvm_ppc.h> 33 #include <asm/tlbflush.h> 34 #include <asm/cputhreads.h> 35 #include <asm/irqflags.h> 36 #include "timing.h" 37 #include "irq.h" 38 #include "../mm/mmu_decl.h" 39 40 #define CREATE_TRACE_POINTS 41 #include "trace.h" 42 43 struct kvmppc_ops *kvmppc_hv_ops; 44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 45 struct kvmppc_ops *kvmppc_pr_ops; 46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 47 48 49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 50 { 51 return !!(v->arch.pending_exceptions) || 52 v->requests; 53 } 54 55 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 56 { 57 return 1; 58 } 59 60 /* 61 * Common checks before entering the guest world. Call with interrupts 62 * disabled. 63 * 64 * returns: 65 * 66 * == 1 if we're ready to go into guest state 67 * <= 0 if we need to go back to the host with return value 68 */ 69 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 70 { 71 int r; 72 73 WARN_ON(irqs_disabled()); 74 hard_irq_disable(); 75 76 while (true) { 77 if (need_resched()) { 78 local_irq_enable(); 79 cond_resched(); 80 hard_irq_disable(); 81 continue; 82 } 83 84 if (signal_pending(current)) { 85 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 86 vcpu->run->exit_reason = KVM_EXIT_INTR; 87 r = -EINTR; 88 break; 89 } 90 91 vcpu->mode = IN_GUEST_MODE; 92 93 /* 94 * Reading vcpu->requests must happen after setting vcpu->mode, 95 * so we don't miss a request because the requester sees 96 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 97 * before next entering the guest (and thus doesn't IPI). 98 */ 99 smp_mb(); 100 101 if (vcpu->requests) { 102 /* Make sure we process requests preemptable */ 103 local_irq_enable(); 104 trace_kvm_check_requests(vcpu); 105 r = kvmppc_core_check_requests(vcpu); 106 hard_irq_disable(); 107 if (r > 0) 108 continue; 109 break; 110 } 111 112 if (kvmppc_core_prepare_to_enter(vcpu)) { 113 /* interrupts got enabled in between, so we 114 are back at square 1 */ 115 continue; 116 } 117 118 __kvm_guest_enter(); 119 return 1; 120 } 121 122 /* return to host */ 123 local_irq_enable(); 124 return r; 125 } 126 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 127 128 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 129 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 130 { 131 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 132 int i; 133 134 shared->sprg0 = swab64(shared->sprg0); 135 shared->sprg1 = swab64(shared->sprg1); 136 shared->sprg2 = swab64(shared->sprg2); 137 shared->sprg3 = swab64(shared->sprg3); 138 shared->srr0 = swab64(shared->srr0); 139 shared->srr1 = swab64(shared->srr1); 140 shared->dar = swab64(shared->dar); 141 shared->msr = swab64(shared->msr); 142 shared->dsisr = swab32(shared->dsisr); 143 shared->int_pending = swab32(shared->int_pending); 144 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 145 shared->sr[i] = swab32(shared->sr[i]); 146 } 147 #endif 148 149 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 150 { 151 int nr = kvmppc_get_gpr(vcpu, 11); 152 int r; 153 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 154 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 155 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 156 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 157 unsigned long r2 = 0; 158 159 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 160 /* 32 bit mode */ 161 param1 &= 0xffffffff; 162 param2 &= 0xffffffff; 163 param3 &= 0xffffffff; 164 param4 &= 0xffffffff; 165 } 166 167 switch (nr) { 168 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 169 { 170 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 171 /* Book3S can be little endian, find it out here */ 172 int shared_big_endian = true; 173 if (vcpu->arch.intr_msr & MSR_LE) 174 shared_big_endian = false; 175 if (shared_big_endian != vcpu->arch.shared_big_endian) 176 kvmppc_swab_shared(vcpu); 177 vcpu->arch.shared_big_endian = shared_big_endian; 178 #endif 179 180 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 181 /* 182 * Older versions of the Linux magic page code had 183 * a bug where they would map their trampoline code 184 * NX. If that's the case, remove !PR NX capability. 185 */ 186 vcpu->arch.disable_kernel_nx = true; 187 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 188 } 189 190 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 191 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 192 193 #ifdef CONFIG_PPC_64K_PAGES 194 /* 195 * Make sure our 4k magic page is in the same window of a 64k 196 * page within the guest and within the host's page. 197 */ 198 if ((vcpu->arch.magic_page_pa & 0xf000) != 199 ((ulong)vcpu->arch.shared & 0xf000)) { 200 void *old_shared = vcpu->arch.shared; 201 ulong shared = (ulong)vcpu->arch.shared; 202 void *new_shared; 203 204 shared &= PAGE_MASK; 205 shared |= vcpu->arch.magic_page_pa & 0xf000; 206 new_shared = (void*)shared; 207 memcpy(new_shared, old_shared, 0x1000); 208 vcpu->arch.shared = new_shared; 209 } 210 #endif 211 212 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 213 214 r = EV_SUCCESS; 215 break; 216 } 217 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 218 r = EV_SUCCESS; 219 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 220 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 221 #endif 222 223 /* Second return value is in r4 */ 224 break; 225 case EV_HCALL_TOKEN(EV_IDLE): 226 r = EV_SUCCESS; 227 kvm_vcpu_block(vcpu); 228 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 229 break; 230 default: 231 r = EV_UNIMPLEMENTED; 232 break; 233 } 234 235 kvmppc_set_gpr(vcpu, 4, r2); 236 237 return r; 238 } 239 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 240 241 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 242 { 243 int r = false; 244 245 /* We have to know what CPU to virtualize */ 246 if (!vcpu->arch.pvr) 247 goto out; 248 249 /* PAPR only works with book3s_64 */ 250 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 251 goto out; 252 253 /* HV KVM can only do PAPR mode for now */ 254 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 255 goto out; 256 257 #ifdef CONFIG_KVM_BOOKE_HV 258 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 259 goto out; 260 #endif 261 262 r = true; 263 264 out: 265 vcpu->arch.sane = r; 266 return r ? 0 : -EINVAL; 267 } 268 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 269 270 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 271 { 272 enum emulation_result er; 273 int r; 274 275 er = kvmppc_emulate_loadstore(vcpu); 276 switch (er) { 277 case EMULATE_DONE: 278 /* Future optimization: only reload non-volatiles if they were 279 * actually modified. */ 280 r = RESUME_GUEST_NV; 281 break; 282 case EMULATE_AGAIN: 283 r = RESUME_GUEST; 284 break; 285 case EMULATE_DO_MMIO: 286 run->exit_reason = KVM_EXIT_MMIO; 287 /* We must reload nonvolatiles because "update" load/store 288 * instructions modify register state. */ 289 /* Future optimization: only reload non-volatiles if they were 290 * actually modified. */ 291 r = RESUME_HOST_NV; 292 break; 293 case EMULATE_FAIL: 294 { 295 u32 last_inst; 296 297 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 298 /* XXX Deliver Program interrupt to guest. */ 299 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 300 r = RESUME_HOST; 301 break; 302 } 303 default: 304 WARN_ON(1); 305 r = RESUME_GUEST; 306 } 307 308 return r; 309 } 310 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 311 312 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 313 bool data) 314 { 315 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 316 struct kvmppc_pte pte; 317 int r; 318 319 vcpu->stat.st++; 320 321 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 322 XLATE_WRITE, &pte); 323 if (r < 0) 324 return r; 325 326 *eaddr = pte.raddr; 327 328 if (!pte.may_write) 329 return -EPERM; 330 331 /* Magic page override */ 332 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 333 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 334 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 335 void *magic = vcpu->arch.shared; 336 magic += pte.eaddr & 0xfff; 337 memcpy(magic, ptr, size); 338 return EMULATE_DONE; 339 } 340 341 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 342 return EMULATE_DO_MMIO; 343 344 return EMULATE_DONE; 345 } 346 EXPORT_SYMBOL_GPL(kvmppc_st); 347 348 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 349 bool data) 350 { 351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 352 struct kvmppc_pte pte; 353 int rc; 354 355 vcpu->stat.ld++; 356 357 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 358 XLATE_READ, &pte); 359 if (rc) 360 return rc; 361 362 *eaddr = pte.raddr; 363 364 if (!pte.may_read) 365 return -EPERM; 366 367 if (!data && !pte.may_execute) 368 return -ENOEXEC; 369 370 /* Magic page override */ 371 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 372 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 373 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 374 void *magic = vcpu->arch.shared; 375 magic += pte.eaddr & 0xfff; 376 memcpy(ptr, magic, size); 377 return EMULATE_DONE; 378 } 379 380 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 381 return EMULATE_DO_MMIO; 382 383 return EMULATE_DONE; 384 } 385 EXPORT_SYMBOL_GPL(kvmppc_ld); 386 387 int kvm_arch_hardware_enable(void) 388 { 389 return 0; 390 } 391 392 int kvm_arch_hardware_setup(void) 393 { 394 return 0; 395 } 396 397 void kvm_arch_check_processor_compat(void *rtn) 398 { 399 *(int *)rtn = kvmppc_core_check_processor_compat(); 400 } 401 402 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 403 { 404 struct kvmppc_ops *kvm_ops = NULL; 405 /* 406 * if we have both HV and PR enabled, default is HV 407 */ 408 if (type == 0) { 409 if (kvmppc_hv_ops) 410 kvm_ops = kvmppc_hv_ops; 411 else 412 kvm_ops = kvmppc_pr_ops; 413 if (!kvm_ops) 414 goto err_out; 415 } else if (type == KVM_VM_PPC_HV) { 416 if (!kvmppc_hv_ops) 417 goto err_out; 418 kvm_ops = kvmppc_hv_ops; 419 } else if (type == KVM_VM_PPC_PR) { 420 if (!kvmppc_pr_ops) 421 goto err_out; 422 kvm_ops = kvmppc_pr_ops; 423 } else 424 goto err_out; 425 426 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 427 return -ENOENT; 428 429 kvm->arch.kvm_ops = kvm_ops; 430 return kvmppc_core_init_vm(kvm); 431 err_out: 432 return -EINVAL; 433 } 434 435 void kvm_arch_destroy_vm(struct kvm *kvm) 436 { 437 unsigned int i; 438 struct kvm_vcpu *vcpu; 439 440 kvm_for_each_vcpu(i, vcpu, kvm) 441 kvm_arch_vcpu_free(vcpu); 442 443 mutex_lock(&kvm->lock); 444 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 445 kvm->vcpus[i] = NULL; 446 447 atomic_set(&kvm->online_vcpus, 0); 448 449 kvmppc_core_destroy_vm(kvm); 450 451 mutex_unlock(&kvm->lock); 452 453 /* drop the module reference */ 454 module_put(kvm->arch.kvm_ops->owner); 455 } 456 457 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 458 { 459 int r; 460 /* Assume we're using HV mode when the HV module is loaded */ 461 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 462 463 if (kvm) { 464 /* 465 * Hooray - we know which VM type we're running on. Depend on 466 * that rather than the guess above. 467 */ 468 hv_enabled = is_kvmppc_hv_enabled(kvm); 469 } 470 471 switch (ext) { 472 #ifdef CONFIG_BOOKE 473 case KVM_CAP_PPC_BOOKE_SREGS: 474 case KVM_CAP_PPC_BOOKE_WATCHDOG: 475 case KVM_CAP_PPC_EPR: 476 #else 477 case KVM_CAP_PPC_SEGSTATE: 478 case KVM_CAP_PPC_HIOR: 479 case KVM_CAP_PPC_PAPR: 480 #endif 481 case KVM_CAP_PPC_UNSET_IRQ: 482 case KVM_CAP_PPC_IRQ_LEVEL: 483 case KVM_CAP_ENABLE_CAP: 484 case KVM_CAP_ENABLE_CAP_VM: 485 case KVM_CAP_ONE_REG: 486 case KVM_CAP_IOEVENTFD: 487 case KVM_CAP_DEVICE_CTRL: 488 r = 1; 489 break; 490 case KVM_CAP_PPC_PAIRED_SINGLES: 491 case KVM_CAP_PPC_OSI: 492 case KVM_CAP_PPC_GET_PVINFO: 493 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 494 case KVM_CAP_SW_TLB: 495 #endif 496 /* We support this only for PR */ 497 r = !hv_enabled; 498 break; 499 #ifdef CONFIG_KVM_MMIO 500 case KVM_CAP_COALESCED_MMIO: 501 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 502 break; 503 #endif 504 #ifdef CONFIG_KVM_MPIC 505 case KVM_CAP_IRQ_MPIC: 506 r = 1; 507 break; 508 #endif 509 510 #ifdef CONFIG_PPC_BOOK3S_64 511 case KVM_CAP_SPAPR_TCE: 512 case KVM_CAP_PPC_ALLOC_HTAB: 513 case KVM_CAP_PPC_RTAS: 514 case KVM_CAP_PPC_FIXUP_HCALL: 515 case KVM_CAP_PPC_ENABLE_HCALL: 516 #ifdef CONFIG_KVM_XICS 517 case KVM_CAP_IRQ_XICS: 518 #endif 519 r = 1; 520 break; 521 #endif /* CONFIG_PPC_BOOK3S_64 */ 522 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 523 case KVM_CAP_PPC_SMT: 524 if (hv_enabled) 525 r = threads_per_subcore; 526 else 527 r = 0; 528 break; 529 case KVM_CAP_PPC_RMA: 530 r = 0; 531 break; 532 case KVM_CAP_PPC_HWRNG: 533 r = kvmppc_hwrng_present(); 534 break; 535 #endif 536 case KVM_CAP_SYNC_MMU: 537 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 538 r = hv_enabled; 539 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 540 r = 1; 541 #else 542 r = 0; 543 #endif 544 break; 545 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 546 case KVM_CAP_PPC_HTAB_FD: 547 r = hv_enabled; 548 break; 549 #endif 550 case KVM_CAP_NR_VCPUS: 551 /* 552 * Recommending a number of CPUs is somewhat arbitrary; we 553 * return the number of present CPUs for -HV (since a host 554 * will have secondary threads "offline"), and for other KVM 555 * implementations just count online CPUs. 556 */ 557 if (hv_enabled) 558 r = num_present_cpus(); 559 else 560 r = num_online_cpus(); 561 break; 562 case KVM_CAP_MAX_VCPUS: 563 r = KVM_MAX_VCPUS; 564 break; 565 #ifdef CONFIG_PPC_BOOK3S_64 566 case KVM_CAP_PPC_GET_SMMU_INFO: 567 r = 1; 568 break; 569 #endif 570 default: 571 r = 0; 572 break; 573 } 574 return r; 575 576 } 577 578 long kvm_arch_dev_ioctl(struct file *filp, 579 unsigned int ioctl, unsigned long arg) 580 { 581 return -EINVAL; 582 } 583 584 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 585 struct kvm_memory_slot *dont) 586 { 587 kvmppc_core_free_memslot(kvm, free, dont); 588 } 589 590 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 591 unsigned long npages) 592 { 593 return kvmppc_core_create_memslot(kvm, slot, npages); 594 } 595 596 int kvm_arch_prepare_memory_region(struct kvm *kvm, 597 struct kvm_memory_slot *memslot, 598 const struct kvm_userspace_memory_region *mem, 599 enum kvm_mr_change change) 600 { 601 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 602 } 603 604 void kvm_arch_commit_memory_region(struct kvm *kvm, 605 const struct kvm_userspace_memory_region *mem, 606 const struct kvm_memory_slot *old, 607 const struct kvm_memory_slot *new, 608 enum kvm_mr_change change) 609 { 610 kvmppc_core_commit_memory_region(kvm, mem, old, new); 611 } 612 613 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 614 struct kvm_memory_slot *slot) 615 { 616 kvmppc_core_flush_memslot(kvm, slot); 617 } 618 619 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 620 { 621 struct kvm_vcpu *vcpu; 622 vcpu = kvmppc_core_vcpu_create(kvm, id); 623 if (!IS_ERR(vcpu)) { 624 vcpu->arch.wqp = &vcpu->wq; 625 kvmppc_create_vcpu_debugfs(vcpu, id); 626 } 627 return vcpu; 628 } 629 630 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 631 { 632 } 633 634 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 635 { 636 /* Make sure we're not using the vcpu anymore */ 637 hrtimer_cancel(&vcpu->arch.dec_timer); 638 639 kvmppc_remove_vcpu_debugfs(vcpu); 640 641 switch (vcpu->arch.irq_type) { 642 case KVMPPC_IRQ_MPIC: 643 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 644 break; 645 case KVMPPC_IRQ_XICS: 646 kvmppc_xics_free_icp(vcpu); 647 break; 648 } 649 650 kvmppc_core_vcpu_free(vcpu); 651 } 652 653 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 654 { 655 kvm_arch_vcpu_free(vcpu); 656 } 657 658 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 659 { 660 return kvmppc_core_pending_dec(vcpu); 661 } 662 663 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 664 { 665 struct kvm_vcpu *vcpu; 666 667 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 668 kvmppc_decrementer_func(vcpu); 669 670 return HRTIMER_NORESTART; 671 } 672 673 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 674 { 675 int ret; 676 677 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 678 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 679 vcpu->arch.dec_expires = ~(u64)0; 680 681 #ifdef CONFIG_KVM_EXIT_TIMING 682 mutex_init(&vcpu->arch.exit_timing_lock); 683 #endif 684 ret = kvmppc_subarch_vcpu_init(vcpu); 685 return ret; 686 } 687 688 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 689 { 690 kvmppc_mmu_destroy(vcpu); 691 kvmppc_subarch_vcpu_uninit(vcpu); 692 } 693 694 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 695 { 696 #ifdef CONFIG_BOOKE 697 /* 698 * vrsave (formerly usprg0) isn't used by Linux, but may 699 * be used by the guest. 700 * 701 * On non-booke this is associated with Altivec and 702 * is handled by code in book3s.c. 703 */ 704 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 705 #endif 706 kvmppc_core_vcpu_load(vcpu, cpu); 707 } 708 709 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 710 { 711 kvmppc_core_vcpu_put(vcpu); 712 #ifdef CONFIG_BOOKE 713 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 714 #endif 715 } 716 717 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 718 struct kvm_run *run) 719 { 720 u64 uninitialized_var(gpr); 721 722 if (run->mmio.len > sizeof(gpr)) { 723 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 724 return; 725 } 726 727 if (!vcpu->arch.mmio_host_swabbed) { 728 switch (run->mmio.len) { 729 case 8: gpr = *(u64 *)run->mmio.data; break; 730 case 4: gpr = *(u32 *)run->mmio.data; break; 731 case 2: gpr = *(u16 *)run->mmio.data; break; 732 case 1: gpr = *(u8 *)run->mmio.data; break; 733 } 734 } else { 735 switch (run->mmio.len) { 736 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 737 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 738 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 739 case 1: gpr = *(u8 *)run->mmio.data; break; 740 } 741 } 742 743 if (vcpu->arch.mmio_sign_extend) { 744 switch (run->mmio.len) { 745 #ifdef CONFIG_PPC64 746 case 4: 747 gpr = (s64)(s32)gpr; 748 break; 749 #endif 750 case 2: 751 gpr = (s64)(s16)gpr; 752 break; 753 case 1: 754 gpr = (s64)(s8)gpr; 755 break; 756 } 757 } 758 759 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 760 761 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 762 case KVM_MMIO_REG_GPR: 763 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 764 break; 765 case KVM_MMIO_REG_FPR: 766 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 767 break; 768 #ifdef CONFIG_PPC_BOOK3S 769 case KVM_MMIO_REG_QPR: 770 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 771 break; 772 case KVM_MMIO_REG_FQPR: 773 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 774 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 775 break; 776 #endif 777 default: 778 BUG(); 779 } 780 } 781 782 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 783 unsigned int rt, unsigned int bytes, 784 int is_default_endian) 785 { 786 int idx, ret; 787 bool host_swabbed; 788 789 /* Pity C doesn't have a logical XOR operator */ 790 if (kvmppc_need_byteswap(vcpu)) { 791 host_swabbed = is_default_endian; 792 } else { 793 host_swabbed = !is_default_endian; 794 } 795 796 if (bytes > sizeof(run->mmio.data)) { 797 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 798 run->mmio.len); 799 } 800 801 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 802 run->mmio.len = bytes; 803 run->mmio.is_write = 0; 804 805 vcpu->arch.io_gpr = rt; 806 vcpu->arch.mmio_host_swabbed = host_swabbed; 807 vcpu->mmio_needed = 1; 808 vcpu->mmio_is_write = 0; 809 vcpu->arch.mmio_sign_extend = 0; 810 811 idx = srcu_read_lock(&vcpu->kvm->srcu); 812 813 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 814 bytes, &run->mmio.data); 815 816 srcu_read_unlock(&vcpu->kvm->srcu, idx); 817 818 if (!ret) { 819 kvmppc_complete_mmio_load(vcpu, run); 820 vcpu->mmio_needed = 0; 821 return EMULATE_DONE; 822 } 823 824 return EMULATE_DO_MMIO; 825 } 826 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 827 828 /* Same as above, but sign extends */ 829 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 830 unsigned int rt, unsigned int bytes, 831 int is_default_endian) 832 { 833 int r; 834 835 vcpu->arch.mmio_sign_extend = 1; 836 r = kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian); 837 838 return r; 839 } 840 841 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 842 u64 val, unsigned int bytes, int is_default_endian) 843 { 844 void *data = run->mmio.data; 845 int idx, ret; 846 bool host_swabbed; 847 848 /* Pity C doesn't have a logical XOR operator */ 849 if (kvmppc_need_byteswap(vcpu)) { 850 host_swabbed = is_default_endian; 851 } else { 852 host_swabbed = !is_default_endian; 853 } 854 855 if (bytes > sizeof(run->mmio.data)) { 856 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 857 run->mmio.len); 858 } 859 860 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 861 run->mmio.len = bytes; 862 run->mmio.is_write = 1; 863 vcpu->mmio_needed = 1; 864 vcpu->mmio_is_write = 1; 865 866 /* Store the value at the lowest bytes in 'data'. */ 867 if (!host_swabbed) { 868 switch (bytes) { 869 case 8: *(u64 *)data = val; break; 870 case 4: *(u32 *)data = val; break; 871 case 2: *(u16 *)data = val; break; 872 case 1: *(u8 *)data = val; break; 873 } 874 } else { 875 switch (bytes) { 876 case 8: *(u64 *)data = swab64(val); break; 877 case 4: *(u32 *)data = swab32(val); break; 878 case 2: *(u16 *)data = swab16(val); break; 879 case 1: *(u8 *)data = val; break; 880 } 881 } 882 883 idx = srcu_read_lock(&vcpu->kvm->srcu); 884 885 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 886 bytes, &run->mmio.data); 887 888 srcu_read_unlock(&vcpu->kvm->srcu, idx); 889 890 if (!ret) { 891 vcpu->mmio_needed = 0; 892 return EMULATE_DONE; 893 } 894 895 return EMULATE_DO_MMIO; 896 } 897 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 898 899 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 900 { 901 int r = 0; 902 union kvmppc_one_reg val; 903 int size; 904 905 size = one_reg_size(reg->id); 906 if (size > sizeof(val)) 907 return -EINVAL; 908 909 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 910 if (r == -EINVAL) { 911 r = 0; 912 switch (reg->id) { 913 #ifdef CONFIG_ALTIVEC 914 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 915 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 916 r = -ENXIO; 917 break; 918 } 919 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 920 break; 921 case KVM_REG_PPC_VSCR: 922 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 923 r = -ENXIO; 924 break; 925 } 926 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 927 break; 928 case KVM_REG_PPC_VRSAVE: 929 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 930 r = -ENXIO; 931 break; 932 } 933 vcpu->arch.vrsave = set_reg_val(reg->id, val); 934 break; 935 #endif /* CONFIG_ALTIVEC */ 936 default: 937 r = -EINVAL; 938 break; 939 } 940 } 941 942 if (r) 943 return r; 944 945 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 946 r = -EFAULT; 947 948 return r; 949 } 950 951 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 952 { 953 int r; 954 union kvmppc_one_reg val; 955 int size; 956 957 size = one_reg_size(reg->id); 958 if (size > sizeof(val)) 959 return -EINVAL; 960 961 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 962 return -EFAULT; 963 964 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 965 if (r == -EINVAL) { 966 r = 0; 967 switch (reg->id) { 968 #ifdef CONFIG_ALTIVEC 969 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 970 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 971 r = -ENXIO; 972 break; 973 } 974 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 975 break; 976 case KVM_REG_PPC_VSCR: 977 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 978 r = -ENXIO; 979 break; 980 } 981 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 982 break; 983 case KVM_REG_PPC_VRSAVE: 984 val = get_reg_val(reg->id, vcpu->arch.vrsave); 985 break; 986 #endif /* CONFIG_ALTIVEC */ 987 default: 988 r = -EINVAL; 989 break; 990 } 991 } 992 993 return r; 994 } 995 996 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 997 { 998 int r; 999 sigset_t sigsaved; 1000 1001 if (vcpu->sigset_active) 1002 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 1003 1004 if (vcpu->mmio_needed) { 1005 if (!vcpu->mmio_is_write) 1006 kvmppc_complete_mmio_load(vcpu, run); 1007 vcpu->mmio_needed = 0; 1008 } else if (vcpu->arch.osi_needed) { 1009 u64 *gprs = run->osi.gprs; 1010 int i; 1011 1012 for (i = 0; i < 32; i++) 1013 kvmppc_set_gpr(vcpu, i, gprs[i]); 1014 vcpu->arch.osi_needed = 0; 1015 } else if (vcpu->arch.hcall_needed) { 1016 int i; 1017 1018 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1019 for (i = 0; i < 9; ++i) 1020 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1021 vcpu->arch.hcall_needed = 0; 1022 #ifdef CONFIG_BOOKE 1023 } else if (vcpu->arch.epr_needed) { 1024 kvmppc_set_epr(vcpu, run->epr.epr); 1025 vcpu->arch.epr_needed = 0; 1026 #endif 1027 } 1028 1029 r = kvmppc_vcpu_run(run, vcpu); 1030 1031 if (vcpu->sigset_active) 1032 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1033 1034 return r; 1035 } 1036 1037 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1038 { 1039 if (irq->irq == KVM_INTERRUPT_UNSET) { 1040 kvmppc_core_dequeue_external(vcpu); 1041 return 0; 1042 } 1043 1044 kvmppc_core_queue_external(vcpu, irq); 1045 1046 kvm_vcpu_kick(vcpu); 1047 1048 return 0; 1049 } 1050 1051 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1052 struct kvm_enable_cap *cap) 1053 { 1054 int r; 1055 1056 if (cap->flags) 1057 return -EINVAL; 1058 1059 switch (cap->cap) { 1060 case KVM_CAP_PPC_OSI: 1061 r = 0; 1062 vcpu->arch.osi_enabled = true; 1063 break; 1064 case KVM_CAP_PPC_PAPR: 1065 r = 0; 1066 vcpu->arch.papr_enabled = true; 1067 break; 1068 case KVM_CAP_PPC_EPR: 1069 r = 0; 1070 if (cap->args[0]) 1071 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1072 else 1073 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1074 break; 1075 #ifdef CONFIG_BOOKE 1076 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1077 r = 0; 1078 vcpu->arch.watchdog_enabled = true; 1079 break; 1080 #endif 1081 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1082 case KVM_CAP_SW_TLB: { 1083 struct kvm_config_tlb cfg; 1084 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1085 1086 r = -EFAULT; 1087 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1088 break; 1089 1090 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1091 break; 1092 } 1093 #endif 1094 #ifdef CONFIG_KVM_MPIC 1095 case KVM_CAP_IRQ_MPIC: { 1096 struct fd f; 1097 struct kvm_device *dev; 1098 1099 r = -EBADF; 1100 f = fdget(cap->args[0]); 1101 if (!f.file) 1102 break; 1103 1104 r = -EPERM; 1105 dev = kvm_device_from_filp(f.file); 1106 if (dev) 1107 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1108 1109 fdput(f); 1110 break; 1111 } 1112 #endif 1113 #ifdef CONFIG_KVM_XICS 1114 case KVM_CAP_IRQ_XICS: { 1115 struct fd f; 1116 struct kvm_device *dev; 1117 1118 r = -EBADF; 1119 f = fdget(cap->args[0]); 1120 if (!f.file) 1121 break; 1122 1123 r = -EPERM; 1124 dev = kvm_device_from_filp(f.file); 1125 if (dev) 1126 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1127 1128 fdput(f); 1129 break; 1130 } 1131 #endif /* CONFIG_KVM_XICS */ 1132 default: 1133 r = -EINVAL; 1134 break; 1135 } 1136 1137 if (!r) 1138 r = kvmppc_sanity_check(vcpu); 1139 1140 return r; 1141 } 1142 1143 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1144 struct kvm_mp_state *mp_state) 1145 { 1146 return -EINVAL; 1147 } 1148 1149 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1150 struct kvm_mp_state *mp_state) 1151 { 1152 return -EINVAL; 1153 } 1154 1155 long kvm_arch_vcpu_ioctl(struct file *filp, 1156 unsigned int ioctl, unsigned long arg) 1157 { 1158 struct kvm_vcpu *vcpu = filp->private_data; 1159 void __user *argp = (void __user *)arg; 1160 long r; 1161 1162 switch (ioctl) { 1163 case KVM_INTERRUPT: { 1164 struct kvm_interrupt irq; 1165 r = -EFAULT; 1166 if (copy_from_user(&irq, argp, sizeof(irq))) 1167 goto out; 1168 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 1169 goto out; 1170 } 1171 1172 case KVM_ENABLE_CAP: 1173 { 1174 struct kvm_enable_cap cap; 1175 r = -EFAULT; 1176 if (copy_from_user(&cap, argp, sizeof(cap))) 1177 goto out; 1178 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 1179 break; 1180 } 1181 1182 case KVM_SET_ONE_REG: 1183 case KVM_GET_ONE_REG: 1184 { 1185 struct kvm_one_reg reg; 1186 r = -EFAULT; 1187 if (copy_from_user(®, argp, sizeof(reg))) 1188 goto out; 1189 if (ioctl == KVM_SET_ONE_REG) 1190 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 1191 else 1192 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 1193 break; 1194 } 1195 1196 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1197 case KVM_DIRTY_TLB: { 1198 struct kvm_dirty_tlb dirty; 1199 r = -EFAULT; 1200 if (copy_from_user(&dirty, argp, sizeof(dirty))) 1201 goto out; 1202 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 1203 break; 1204 } 1205 #endif 1206 default: 1207 r = -EINVAL; 1208 } 1209 1210 out: 1211 return r; 1212 } 1213 1214 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1215 { 1216 return VM_FAULT_SIGBUS; 1217 } 1218 1219 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 1220 { 1221 u32 inst_nop = 0x60000000; 1222 #ifdef CONFIG_KVM_BOOKE_HV 1223 u32 inst_sc1 = 0x44000022; 1224 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 1225 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 1226 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 1227 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1228 #else 1229 u32 inst_lis = 0x3c000000; 1230 u32 inst_ori = 0x60000000; 1231 u32 inst_sc = 0x44000002; 1232 u32 inst_imm_mask = 0xffff; 1233 1234 /* 1235 * The hypercall to get into KVM from within guest context is as 1236 * follows: 1237 * 1238 * lis r0, r0, KVM_SC_MAGIC_R0@h 1239 * ori r0, KVM_SC_MAGIC_R0@l 1240 * sc 1241 * nop 1242 */ 1243 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 1244 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 1245 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 1246 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1247 #endif 1248 1249 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 1250 1251 return 0; 1252 } 1253 1254 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 1255 bool line_status) 1256 { 1257 if (!irqchip_in_kernel(kvm)) 1258 return -ENXIO; 1259 1260 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1261 irq_event->irq, irq_event->level, 1262 line_status); 1263 return 0; 1264 } 1265 1266 1267 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1268 struct kvm_enable_cap *cap) 1269 { 1270 int r; 1271 1272 if (cap->flags) 1273 return -EINVAL; 1274 1275 switch (cap->cap) { 1276 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 1277 case KVM_CAP_PPC_ENABLE_HCALL: { 1278 unsigned long hcall = cap->args[0]; 1279 1280 r = -EINVAL; 1281 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 1282 cap->args[1] > 1) 1283 break; 1284 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 1285 break; 1286 if (cap->args[1]) 1287 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 1288 else 1289 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 1290 r = 0; 1291 break; 1292 } 1293 #endif 1294 default: 1295 r = -EINVAL; 1296 break; 1297 } 1298 1299 return r; 1300 } 1301 1302 long kvm_arch_vm_ioctl(struct file *filp, 1303 unsigned int ioctl, unsigned long arg) 1304 { 1305 struct kvm *kvm __maybe_unused = filp->private_data; 1306 void __user *argp = (void __user *)arg; 1307 long r; 1308 1309 switch (ioctl) { 1310 case KVM_PPC_GET_PVINFO: { 1311 struct kvm_ppc_pvinfo pvinfo; 1312 memset(&pvinfo, 0, sizeof(pvinfo)); 1313 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 1314 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 1315 r = -EFAULT; 1316 goto out; 1317 } 1318 1319 break; 1320 } 1321 case KVM_ENABLE_CAP: 1322 { 1323 struct kvm_enable_cap cap; 1324 r = -EFAULT; 1325 if (copy_from_user(&cap, argp, sizeof(cap))) 1326 goto out; 1327 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 1328 break; 1329 } 1330 #ifdef CONFIG_PPC_BOOK3S_64 1331 case KVM_CREATE_SPAPR_TCE: { 1332 struct kvm_create_spapr_tce create_tce; 1333 1334 r = -EFAULT; 1335 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 1336 goto out; 1337 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce); 1338 goto out; 1339 } 1340 case KVM_PPC_GET_SMMU_INFO: { 1341 struct kvm_ppc_smmu_info info; 1342 struct kvm *kvm = filp->private_data; 1343 1344 memset(&info, 0, sizeof(info)); 1345 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 1346 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 1347 r = -EFAULT; 1348 break; 1349 } 1350 case KVM_PPC_RTAS_DEFINE_TOKEN: { 1351 struct kvm *kvm = filp->private_data; 1352 1353 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 1354 break; 1355 } 1356 default: { 1357 struct kvm *kvm = filp->private_data; 1358 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 1359 } 1360 #else /* CONFIG_PPC_BOOK3S_64 */ 1361 default: 1362 r = -ENOTTY; 1363 #endif 1364 } 1365 out: 1366 return r; 1367 } 1368 1369 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 1370 static unsigned long nr_lpids; 1371 1372 long kvmppc_alloc_lpid(void) 1373 { 1374 long lpid; 1375 1376 do { 1377 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 1378 if (lpid >= nr_lpids) { 1379 pr_err("%s: No LPIDs free\n", __func__); 1380 return -ENOMEM; 1381 } 1382 } while (test_and_set_bit(lpid, lpid_inuse)); 1383 1384 return lpid; 1385 } 1386 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 1387 1388 void kvmppc_claim_lpid(long lpid) 1389 { 1390 set_bit(lpid, lpid_inuse); 1391 } 1392 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 1393 1394 void kvmppc_free_lpid(long lpid) 1395 { 1396 clear_bit(lpid, lpid_inuse); 1397 } 1398 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 1399 1400 void kvmppc_init_lpid(unsigned long nr_lpids_param) 1401 { 1402 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 1403 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 1404 } 1405 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 1406 1407 int kvm_arch_init(void *opaque) 1408 { 1409 return 0; 1410 } 1411 1412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 1413