1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <asm/cputable.h> 23 #include <linux/uaccess.h> 24 #include <asm/kvm_ppc.h> 25 #include <asm/cputhreads.h> 26 #include <asm/irqflags.h> 27 #include <asm/iommu.h> 28 #include <asm/switch_to.h> 29 #include <asm/xive.h> 30 #ifdef CONFIG_PPC_PSERIES 31 #include <asm/hvcall.h> 32 #include <asm/plpar_wrappers.h> 33 #endif 34 #include <asm/ultravisor.h> 35 36 #include "timing.h" 37 #include "irq.h" 38 #include "../mm/mmu_decl.h" 39 40 #define CREATE_TRACE_POINTS 41 #include "trace.h" 42 43 struct kvmppc_ops *kvmppc_hv_ops; 44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 45 struct kvmppc_ops *kvmppc_pr_ops; 46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 47 48 49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 50 { 51 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 52 } 53 54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 55 { 56 return kvm_arch_vcpu_runnable(vcpu); 57 } 58 59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 60 { 61 return false; 62 } 63 64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 65 { 66 return 1; 67 } 68 69 /* 70 * Common checks before entering the guest world. Call with interrupts 71 * disabled. 72 * 73 * returns: 74 * 75 * == 1 if we're ready to go into guest state 76 * <= 0 if we need to go back to the host with return value 77 */ 78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 79 { 80 int r; 81 82 WARN_ON(irqs_disabled()); 83 hard_irq_disable(); 84 85 while (true) { 86 if (need_resched()) { 87 local_irq_enable(); 88 cond_resched(); 89 hard_irq_disable(); 90 continue; 91 } 92 93 if (signal_pending(current)) { 94 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 95 vcpu->run->exit_reason = KVM_EXIT_INTR; 96 r = -EINTR; 97 break; 98 } 99 100 vcpu->mode = IN_GUEST_MODE; 101 102 /* 103 * Reading vcpu->requests must happen after setting vcpu->mode, 104 * so we don't miss a request because the requester sees 105 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 106 * before next entering the guest (and thus doesn't IPI). 107 * This also orders the write to mode from any reads 108 * to the page tables done while the VCPU is running. 109 * Please see the comment in kvm_flush_remote_tlbs. 110 */ 111 smp_mb(); 112 113 if (kvm_request_pending(vcpu)) { 114 /* Make sure we process requests preemptable */ 115 local_irq_enable(); 116 trace_kvm_check_requests(vcpu); 117 r = kvmppc_core_check_requests(vcpu); 118 hard_irq_disable(); 119 if (r > 0) 120 continue; 121 break; 122 } 123 124 if (kvmppc_core_prepare_to_enter(vcpu)) { 125 /* interrupts got enabled in between, so we 126 are back at square 1 */ 127 continue; 128 } 129 130 guest_enter_irqoff(); 131 return 1; 132 } 133 134 /* return to host */ 135 local_irq_enable(); 136 return r; 137 } 138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 139 140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 142 { 143 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 144 int i; 145 146 shared->sprg0 = swab64(shared->sprg0); 147 shared->sprg1 = swab64(shared->sprg1); 148 shared->sprg2 = swab64(shared->sprg2); 149 shared->sprg3 = swab64(shared->sprg3); 150 shared->srr0 = swab64(shared->srr0); 151 shared->srr1 = swab64(shared->srr1); 152 shared->dar = swab64(shared->dar); 153 shared->msr = swab64(shared->msr); 154 shared->dsisr = swab32(shared->dsisr); 155 shared->int_pending = swab32(shared->int_pending); 156 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 157 shared->sr[i] = swab32(shared->sr[i]); 158 } 159 #endif 160 161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 162 { 163 int nr = kvmppc_get_gpr(vcpu, 11); 164 int r; 165 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 166 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 167 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 168 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 169 unsigned long r2 = 0; 170 171 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 172 /* 32 bit mode */ 173 param1 &= 0xffffffff; 174 param2 &= 0xffffffff; 175 param3 &= 0xffffffff; 176 param4 &= 0xffffffff; 177 } 178 179 switch (nr) { 180 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 181 { 182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 183 /* Book3S can be little endian, find it out here */ 184 int shared_big_endian = true; 185 if (vcpu->arch.intr_msr & MSR_LE) 186 shared_big_endian = false; 187 if (shared_big_endian != vcpu->arch.shared_big_endian) 188 kvmppc_swab_shared(vcpu); 189 vcpu->arch.shared_big_endian = shared_big_endian; 190 #endif 191 192 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 193 /* 194 * Older versions of the Linux magic page code had 195 * a bug where they would map their trampoline code 196 * NX. If that's the case, remove !PR NX capability. 197 */ 198 vcpu->arch.disable_kernel_nx = true; 199 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 200 } 201 202 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 203 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 204 205 #ifdef CONFIG_PPC_64K_PAGES 206 /* 207 * Make sure our 4k magic page is in the same window of a 64k 208 * page within the guest and within the host's page. 209 */ 210 if ((vcpu->arch.magic_page_pa & 0xf000) != 211 ((ulong)vcpu->arch.shared & 0xf000)) { 212 void *old_shared = vcpu->arch.shared; 213 ulong shared = (ulong)vcpu->arch.shared; 214 void *new_shared; 215 216 shared &= PAGE_MASK; 217 shared |= vcpu->arch.magic_page_pa & 0xf000; 218 new_shared = (void*)shared; 219 memcpy(new_shared, old_shared, 0x1000); 220 vcpu->arch.shared = new_shared; 221 } 222 #endif 223 224 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 225 226 r = EV_SUCCESS; 227 break; 228 } 229 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 230 r = EV_SUCCESS; 231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 232 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 233 #endif 234 235 /* Second return value is in r4 */ 236 break; 237 case EV_HCALL_TOKEN(EV_IDLE): 238 r = EV_SUCCESS; 239 kvm_vcpu_block(vcpu); 240 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 241 break; 242 default: 243 r = EV_UNIMPLEMENTED; 244 break; 245 } 246 247 kvmppc_set_gpr(vcpu, 4, r2); 248 249 return r; 250 } 251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 252 253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 254 { 255 int r = false; 256 257 /* We have to know what CPU to virtualize */ 258 if (!vcpu->arch.pvr) 259 goto out; 260 261 /* PAPR only works with book3s_64 */ 262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 263 goto out; 264 265 /* HV KVM can only do PAPR mode for now */ 266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 267 goto out; 268 269 #ifdef CONFIG_KVM_BOOKE_HV 270 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 271 goto out; 272 #endif 273 274 r = true; 275 276 out: 277 vcpu->arch.sane = r; 278 return r ? 0 : -EINVAL; 279 } 280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 281 282 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 283 { 284 enum emulation_result er; 285 int r; 286 287 er = kvmppc_emulate_loadstore(vcpu); 288 switch (er) { 289 case EMULATE_DONE: 290 /* Future optimization: only reload non-volatiles if they were 291 * actually modified. */ 292 r = RESUME_GUEST_NV; 293 break; 294 case EMULATE_AGAIN: 295 r = RESUME_GUEST; 296 break; 297 case EMULATE_DO_MMIO: 298 run->exit_reason = KVM_EXIT_MMIO; 299 /* We must reload nonvolatiles because "update" load/store 300 * instructions modify register state. */ 301 /* Future optimization: only reload non-volatiles if they were 302 * actually modified. */ 303 r = RESUME_HOST_NV; 304 break; 305 case EMULATE_FAIL: 306 { 307 u32 last_inst; 308 309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 310 /* XXX Deliver Program interrupt to guest. */ 311 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 312 r = RESUME_HOST; 313 break; 314 } 315 default: 316 WARN_ON(1); 317 r = RESUME_GUEST; 318 } 319 320 return r; 321 } 322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 323 324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 325 bool data) 326 { 327 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 328 struct kvmppc_pte pte; 329 int r = -EINVAL; 330 331 vcpu->stat.st++; 332 333 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 334 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 335 size); 336 337 if ((!r) || (r == -EAGAIN)) 338 return r; 339 340 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 341 XLATE_WRITE, &pte); 342 if (r < 0) 343 return r; 344 345 *eaddr = pte.raddr; 346 347 if (!pte.may_write) 348 return -EPERM; 349 350 /* Magic page override */ 351 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 352 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 353 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 354 void *magic = vcpu->arch.shared; 355 magic += pte.eaddr & 0xfff; 356 memcpy(magic, ptr, size); 357 return EMULATE_DONE; 358 } 359 360 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 361 return EMULATE_DO_MMIO; 362 363 return EMULATE_DONE; 364 } 365 EXPORT_SYMBOL_GPL(kvmppc_st); 366 367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 368 bool data) 369 { 370 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 371 struct kvmppc_pte pte; 372 int rc = -EINVAL; 373 374 vcpu->stat.ld++; 375 376 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 377 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 378 size); 379 380 if ((!rc) || (rc == -EAGAIN)) 381 return rc; 382 383 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 384 XLATE_READ, &pte); 385 if (rc) 386 return rc; 387 388 *eaddr = pte.raddr; 389 390 if (!pte.may_read) 391 return -EPERM; 392 393 if (!data && !pte.may_execute) 394 return -ENOEXEC; 395 396 /* Magic page override */ 397 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 398 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 399 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 400 void *magic = vcpu->arch.shared; 401 magic += pte.eaddr & 0xfff; 402 memcpy(ptr, magic, size); 403 return EMULATE_DONE; 404 } 405 406 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 407 return EMULATE_DO_MMIO; 408 409 return EMULATE_DONE; 410 } 411 EXPORT_SYMBOL_GPL(kvmppc_ld); 412 413 int kvm_arch_hardware_enable(void) 414 { 415 return 0; 416 } 417 418 int kvm_arch_hardware_setup(void *opaque) 419 { 420 return 0; 421 } 422 423 int kvm_arch_check_processor_compat(void *opaque) 424 { 425 return kvmppc_core_check_processor_compat(); 426 } 427 428 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 429 { 430 struct kvmppc_ops *kvm_ops = NULL; 431 /* 432 * if we have both HV and PR enabled, default is HV 433 */ 434 if (type == 0) { 435 if (kvmppc_hv_ops) 436 kvm_ops = kvmppc_hv_ops; 437 else 438 kvm_ops = kvmppc_pr_ops; 439 if (!kvm_ops) 440 goto err_out; 441 } else if (type == KVM_VM_PPC_HV) { 442 if (!kvmppc_hv_ops) 443 goto err_out; 444 kvm_ops = kvmppc_hv_ops; 445 } else if (type == KVM_VM_PPC_PR) { 446 if (!kvmppc_pr_ops) 447 goto err_out; 448 kvm_ops = kvmppc_pr_ops; 449 } else 450 goto err_out; 451 452 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 453 return -ENOENT; 454 455 kvm->arch.kvm_ops = kvm_ops; 456 return kvmppc_core_init_vm(kvm); 457 err_out: 458 return -EINVAL; 459 } 460 461 void kvm_arch_destroy_vm(struct kvm *kvm) 462 { 463 unsigned int i; 464 struct kvm_vcpu *vcpu; 465 466 #ifdef CONFIG_KVM_XICS 467 /* 468 * We call kick_all_cpus_sync() to ensure that all 469 * CPUs have executed any pending IPIs before we 470 * continue and free VCPUs structures below. 471 */ 472 if (is_kvmppc_hv_enabled(kvm)) 473 kick_all_cpus_sync(); 474 #endif 475 476 kvm_for_each_vcpu(i, vcpu, kvm) 477 kvm_vcpu_destroy(vcpu); 478 479 mutex_lock(&kvm->lock); 480 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 481 kvm->vcpus[i] = NULL; 482 483 atomic_set(&kvm->online_vcpus, 0); 484 485 kvmppc_core_destroy_vm(kvm); 486 487 mutex_unlock(&kvm->lock); 488 489 /* drop the module reference */ 490 module_put(kvm->arch.kvm_ops->owner); 491 } 492 493 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 494 { 495 int r; 496 /* Assume we're using HV mode when the HV module is loaded */ 497 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 498 499 if (kvm) { 500 /* 501 * Hooray - we know which VM type we're running on. Depend on 502 * that rather than the guess above. 503 */ 504 hv_enabled = is_kvmppc_hv_enabled(kvm); 505 } 506 507 switch (ext) { 508 #ifdef CONFIG_BOOKE 509 case KVM_CAP_PPC_BOOKE_SREGS: 510 case KVM_CAP_PPC_BOOKE_WATCHDOG: 511 case KVM_CAP_PPC_EPR: 512 #else 513 case KVM_CAP_PPC_SEGSTATE: 514 case KVM_CAP_PPC_HIOR: 515 case KVM_CAP_PPC_PAPR: 516 #endif 517 case KVM_CAP_PPC_UNSET_IRQ: 518 case KVM_CAP_PPC_IRQ_LEVEL: 519 case KVM_CAP_ENABLE_CAP: 520 case KVM_CAP_ONE_REG: 521 case KVM_CAP_IOEVENTFD: 522 case KVM_CAP_DEVICE_CTRL: 523 case KVM_CAP_IMMEDIATE_EXIT: 524 r = 1; 525 break; 526 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 527 case KVM_CAP_PPC_PAIRED_SINGLES: 528 case KVM_CAP_PPC_OSI: 529 case KVM_CAP_PPC_GET_PVINFO: 530 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 531 case KVM_CAP_SW_TLB: 532 #endif 533 /* We support this only for PR */ 534 r = !hv_enabled; 535 break; 536 #ifdef CONFIG_KVM_MPIC 537 case KVM_CAP_IRQ_MPIC: 538 r = 1; 539 break; 540 #endif 541 542 #ifdef CONFIG_PPC_BOOK3S_64 543 case KVM_CAP_SPAPR_TCE: 544 case KVM_CAP_SPAPR_TCE_64: 545 r = 1; 546 break; 547 case KVM_CAP_SPAPR_TCE_VFIO: 548 r = !!cpu_has_feature(CPU_FTR_HVMODE); 549 break; 550 case KVM_CAP_PPC_RTAS: 551 case KVM_CAP_PPC_FIXUP_HCALL: 552 case KVM_CAP_PPC_ENABLE_HCALL: 553 #ifdef CONFIG_KVM_XICS 554 case KVM_CAP_IRQ_XICS: 555 #endif 556 case KVM_CAP_PPC_GET_CPU_CHAR: 557 r = 1; 558 break; 559 #ifdef CONFIG_KVM_XIVE 560 case KVM_CAP_PPC_IRQ_XIVE: 561 /* 562 * We need XIVE to be enabled on the platform (implies 563 * a POWER9 processor) and the PowerNV platform, as 564 * nested is not yet supported. 565 */ 566 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 567 kvmppc_xive_native_supported(); 568 break; 569 #endif 570 571 case KVM_CAP_PPC_ALLOC_HTAB: 572 r = hv_enabled; 573 break; 574 #endif /* CONFIG_PPC_BOOK3S_64 */ 575 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 576 case KVM_CAP_PPC_SMT: 577 r = 0; 578 if (kvm) { 579 if (kvm->arch.emul_smt_mode > 1) 580 r = kvm->arch.emul_smt_mode; 581 else 582 r = kvm->arch.smt_mode; 583 } else if (hv_enabled) { 584 if (cpu_has_feature(CPU_FTR_ARCH_300)) 585 r = 1; 586 else 587 r = threads_per_subcore; 588 } 589 break; 590 case KVM_CAP_PPC_SMT_POSSIBLE: 591 r = 1; 592 if (hv_enabled) { 593 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 594 r = ((threads_per_subcore << 1) - 1); 595 else 596 /* P9 can emulate dbells, so allow any mode */ 597 r = 8 | 4 | 2 | 1; 598 } 599 break; 600 case KVM_CAP_PPC_RMA: 601 r = 0; 602 break; 603 case KVM_CAP_PPC_HWRNG: 604 r = kvmppc_hwrng_present(); 605 break; 606 case KVM_CAP_PPC_MMU_RADIX: 607 r = !!(hv_enabled && radix_enabled()); 608 break; 609 case KVM_CAP_PPC_MMU_HASH_V3: 610 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) && 611 cpu_has_feature(CPU_FTR_HVMODE)); 612 break; 613 case KVM_CAP_PPC_NESTED_HV: 614 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 615 !kvmppc_hv_ops->enable_nested(NULL)); 616 break; 617 #endif 618 case KVM_CAP_SYNC_MMU: 619 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 620 r = hv_enabled; 621 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 622 r = 1; 623 #else 624 r = 0; 625 #endif 626 break; 627 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 628 case KVM_CAP_PPC_HTAB_FD: 629 r = hv_enabled; 630 break; 631 #endif 632 case KVM_CAP_NR_VCPUS: 633 /* 634 * Recommending a number of CPUs is somewhat arbitrary; we 635 * return the number of present CPUs for -HV (since a host 636 * will have secondary threads "offline"), and for other KVM 637 * implementations just count online CPUs. 638 */ 639 if (hv_enabled) 640 r = num_present_cpus(); 641 else 642 r = num_online_cpus(); 643 break; 644 case KVM_CAP_MAX_VCPUS: 645 r = KVM_MAX_VCPUS; 646 break; 647 case KVM_CAP_MAX_VCPU_ID: 648 r = KVM_MAX_VCPU_ID; 649 break; 650 #ifdef CONFIG_PPC_BOOK3S_64 651 case KVM_CAP_PPC_GET_SMMU_INFO: 652 r = 1; 653 break; 654 case KVM_CAP_SPAPR_MULTITCE: 655 r = 1; 656 break; 657 case KVM_CAP_SPAPR_RESIZE_HPT: 658 r = !!hv_enabled; 659 break; 660 #endif 661 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 662 case KVM_CAP_PPC_FWNMI: 663 r = hv_enabled; 664 break; 665 #endif 666 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 667 case KVM_CAP_PPC_HTM: 668 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 669 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 670 break; 671 #endif 672 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 673 case KVM_CAP_PPC_SECURE_GUEST: 674 r = hv_enabled && kvmppc_hv_ops->enable_svm && 675 !kvmppc_hv_ops->enable_svm(NULL); 676 break; 677 #endif 678 default: 679 r = 0; 680 break; 681 } 682 return r; 683 684 } 685 686 long kvm_arch_dev_ioctl(struct file *filp, 687 unsigned int ioctl, unsigned long arg) 688 { 689 return -EINVAL; 690 } 691 692 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 693 { 694 kvmppc_core_free_memslot(kvm, slot); 695 } 696 697 int kvm_arch_prepare_memory_region(struct kvm *kvm, 698 struct kvm_memory_slot *memslot, 699 const struct kvm_userspace_memory_region *mem, 700 enum kvm_mr_change change) 701 { 702 return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change); 703 } 704 705 void kvm_arch_commit_memory_region(struct kvm *kvm, 706 const struct kvm_userspace_memory_region *mem, 707 struct kvm_memory_slot *old, 708 const struct kvm_memory_slot *new, 709 enum kvm_mr_change change) 710 { 711 kvmppc_core_commit_memory_region(kvm, mem, old, new, change); 712 } 713 714 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 715 struct kvm_memory_slot *slot) 716 { 717 kvmppc_core_flush_memslot(kvm, slot); 718 } 719 720 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 721 { 722 return 0; 723 } 724 725 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 726 { 727 struct kvm_vcpu *vcpu; 728 729 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 730 kvmppc_decrementer_func(vcpu); 731 732 return HRTIMER_NORESTART; 733 } 734 735 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 736 { 737 int err; 738 739 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 740 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 741 vcpu->arch.dec_expires = get_tb(); 742 743 #ifdef CONFIG_KVM_EXIT_TIMING 744 mutex_init(&vcpu->arch.exit_timing_lock); 745 #endif 746 err = kvmppc_subarch_vcpu_init(vcpu); 747 if (err) 748 return err; 749 750 err = kvmppc_core_vcpu_create(vcpu); 751 if (err) 752 goto out_vcpu_uninit; 753 754 vcpu->arch.wqp = &vcpu->wq; 755 kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id); 756 return 0; 757 758 out_vcpu_uninit: 759 kvmppc_subarch_vcpu_uninit(vcpu); 760 return err; 761 } 762 763 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 764 { 765 } 766 767 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 768 { 769 /* Make sure we're not using the vcpu anymore */ 770 hrtimer_cancel(&vcpu->arch.dec_timer); 771 772 kvmppc_remove_vcpu_debugfs(vcpu); 773 774 switch (vcpu->arch.irq_type) { 775 case KVMPPC_IRQ_MPIC: 776 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 777 break; 778 case KVMPPC_IRQ_XICS: 779 if (xics_on_xive()) 780 kvmppc_xive_cleanup_vcpu(vcpu); 781 else 782 kvmppc_xics_free_icp(vcpu); 783 break; 784 case KVMPPC_IRQ_XIVE: 785 kvmppc_xive_native_cleanup_vcpu(vcpu); 786 break; 787 } 788 789 kvmppc_core_vcpu_free(vcpu); 790 791 kvmppc_subarch_vcpu_uninit(vcpu); 792 } 793 794 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 795 { 796 return kvmppc_core_pending_dec(vcpu); 797 } 798 799 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 800 { 801 #ifdef CONFIG_BOOKE 802 /* 803 * vrsave (formerly usprg0) isn't used by Linux, but may 804 * be used by the guest. 805 * 806 * On non-booke this is associated with Altivec and 807 * is handled by code in book3s.c. 808 */ 809 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 810 #endif 811 kvmppc_core_vcpu_load(vcpu, cpu); 812 } 813 814 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 815 { 816 kvmppc_core_vcpu_put(vcpu); 817 #ifdef CONFIG_BOOKE 818 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 819 #endif 820 } 821 822 /* 823 * irq_bypass_add_producer and irq_bypass_del_producer are only 824 * useful if the architecture supports PCI passthrough. 825 * irq_bypass_stop and irq_bypass_start are not needed and so 826 * kvm_ops are not defined for them. 827 */ 828 bool kvm_arch_has_irq_bypass(void) 829 { 830 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 831 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 832 } 833 834 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 835 struct irq_bypass_producer *prod) 836 { 837 struct kvm_kernel_irqfd *irqfd = 838 container_of(cons, struct kvm_kernel_irqfd, consumer); 839 struct kvm *kvm = irqfd->kvm; 840 841 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 842 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 843 844 return 0; 845 } 846 847 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 848 struct irq_bypass_producer *prod) 849 { 850 struct kvm_kernel_irqfd *irqfd = 851 container_of(cons, struct kvm_kernel_irqfd, consumer); 852 struct kvm *kvm = irqfd->kvm; 853 854 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 855 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 856 } 857 858 #ifdef CONFIG_VSX 859 static inline int kvmppc_get_vsr_dword_offset(int index) 860 { 861 int offset; 862 863 if ((index != 0) && (index != 1)) 864 return -1; 865 866 #ifdef __BIG_ENDIAN 867 offset = index; 868 #else 869 offset = 1 - index; 870 #endif 871 872 return offset; 873 } 874 875 static inline int kvmppc_get_vsr_word_offset(int index) 876 { 877 int offset; 878 879 if ((index > 3) || (index < 0)) 880 return -1; 881 882 #ifdef __BIG_ENDIAN 883 offset = index; 884 #else 885 offset = 3 - index; 886 #endif 887 return offset; 888 } 889 890 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 891 u64 gpr) 892 { 893 union kvmppc_one_reg val; 894 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 895 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 896 897 if (offset == -1) 898 return; 899 900 if (index >= 32) { 901 val.vval = VCPU_VSX_VR(vcpu, index - 32); 902 val.vsxval[offset] = gpr; 903 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 904 } else { 905 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 906 } 907 } 908 909 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 910 u64 gpr) 911 { 912 union kvmppc_one_reg val; 913 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 914 915 if (index >= 32) { 916 val.vval = VCPU_VSX_VR(vcpu, index - 32); 917 val.vsxval[0] = gpr; 918 val.vsxval[1] = gpr; 919 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 920 } else { 921 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 922 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 923 } 924 } 925 926 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 927 u32 gpr) 928 { 929 union kvmppc_one_reg val; 930 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 931 932 if (index >= 32) { 933 val.vsx32val[0] = gpr; 934 val.vsx32val[1] = gpr; 935 val.vsx32val[2] = gpr; 936 val.vsx32val[3] = gpr; 937 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 938 } else { 939 val.vsx32val[0] = gpr; 940 val.vsx32val[1] = gpr; 941 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 942 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 943 } 944 } 945 946 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 947 u32 gpr32) 948 { 949 union kvmppc_one_reg val; 950 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 951 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 952 int dword_offset, word_offset; 953 954 if (offset == -1) 955 return; 956 957 if (index >= 32) { 958 val.vval = VCPU_VSX_VR(vcpu, index - 32); 959 val.vsx32val[offset] = gpr32; 960 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 961 } else { 962 dword_offset = offset / 2; 963 word_offset = offset % 2; 964 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 965 val.vsx32val[word_offset] = gpr32; 966 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 967 } 968 } 969 #endif /* CONFIG_VSX */ 970 971 #ifdef CONFIG_ALTIVEC 972 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 973 int index, int element_size) 974 { 975 int offset; 976 int elts = sizeof(vector128)/element_size; 977 978 if ((index < 0) || (index >= elts)) 979 return -1; 980 981 if (kvmppc_need_byteswap(vcpu)) 982 offset = elts - index - 1; 983 else 984 offset = index; 985 986 return offset; 987 } 988 989 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 990 int index) 991 { 992 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 993 } 994 995 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 996 int index) 997 { 998 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 999 } 1000 1001 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1002 int index) 1003 { 1004 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1005 } 1006 1007 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1008 int index) 1009 { 1010 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1011 } 1012 1013 1014 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1015 u64 gpr) 1016 { 1017 union kvmppc_one_reg val; 1018 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1019 vcpu->arch.mmio_vmx_offset); 1020 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1021 1022 if (offset == -1) 1023 return; 1024 1025 val.vval = VCPU_VSX_VR(vcpu, index); 1026 val.vsxval[offset] = gpr; 1027 VCPU_VSX_VR(vcpu, index) = val.vval; 1028 } 1029 1030 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1031 u32 gpr32) 1032 { 1033 union kvmppc_one_reg val; 1034 int offset = kvmppc_get_vmx_word_offset(vcpu, 1035 vcpu->arch.mmio_vmx_offset); 1036 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1037 1038 if (offset == -1) 1039 return; 1040 1041 val.vval = VCPU_VSX_VR(vcpu, index); 1042 val.vsx32val[offset] = gpr32; 1043 VCPU_VSX_VR(vcpu, index) = val.vval; 1044 } 1045 1046 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1047 u16 gpr16) 1048 { 1049 union kvmppc_one_reg val; 1050 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1051 vcpu->arch.mmio_vmx_offset); 1052 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1053 1054 if (offset == -1) 1055 return; 1056 1057 val.vval = VCPU_VSX_VR(vcpu, index); 1058 val.vsx16val[offset] = gpr16; 1059 VCPU_VSX_VR(vcpu, index) = val.vval; 1060 } 1061 1062 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1063 u8 gpr8) 1064 { 1065 union kvmppc_one_reg val; 1066 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1067 vcpu->arch.mmio_vmx_offset); 1068 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1069 1070 if (offset == -1) 1071 return; 1072 1073 val.vval = VCPU_VSX_VR(vcpu, index); 1074 val.vsx8val[offset] = gpr8; 1075 VCPU_VSX_VR(vcpu, index) = val.vval; 1076 } 1077 #endif /* CONFIG_ALTIVEC */ 1078 1079 #ifdef CONFIG_PPC_FPU 1080 static inline u64 sp_to_dp(u32 fprs) 1081 { 1082 u64 fprd; 1083 1084 preempt_disable(); 1085 enable_kernel_fp(); 1086 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) 1087 : "fr0"); 1088 preempt_enable(); 1089 return fprd; 1090 } 1091 1092 static inline u32 dp_to_sp(u64 fprd) 1093 { 1094 u32 fprs; 1095 1096 preempt_disable(); 1097 enable_kernel_fp(); 1098 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) 1099 : "fr0"); 1100 preempt_enable(); 1101 return fprs; 1102 } 1103 1104 #else 1105 #define sp_to_dp(x) (x) 1106 #define dp_to_sp(x) (x) 1107 #endif /* CONFIG_PPC_FPU */ 1108 1109 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 1110 struct kvm_run *run) 1111 { 1112 u64 uninitialized_var(gpr); 1113 1114 if (run->mmio.len > sizeof(gpr)) { 1115 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1116 return; 1117 } 1118 1119 if (!vcpu->arch.mmio_host_swabbed) { 1120 switch (run->mmio.len) { 1121 case 8: gpr = *(u64 *)run->mmio.data; break; 1122 case 4: gpr = *(u32 *)run->mmio.data; break; 1123 case 2: gpr = *(u16 *)run->mmio.data; break; 1124 case 1: gpr = *(u8 *)run->mmio.data; break; 1125 } 1126 } else { 1127 switch (run->mmio.len) { 1128 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1129 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1130 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1131 case 1: gpr = *(u8 *)run->mmio.data; break; 1132 } 1133 } 1134 1135 /* conversion between single and double precision */ 1136 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1137 gpr = sp_to_dp(gpr); 1138 1139 if (vcpu->arch.mmio_sign_extend) { 1140 switch (run->mmio.len) { 1141 #ifdef CONFIG_PPC64 1142 case 4: 1143 gpr = (s64)(s32)gpr; 1144 break; 1145 #endif 1146 case 2: 1147 gpr = (s64)(s16)gpr; 1148 break; 1149 case 1: 1150 gpr = (s64)(s8)gpr; 1151 break; 1152 } 1153 } 1154 1155 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1156 case KVM_MMIO_REG_GPR: 1157 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1158 break; 1159 case KVM_MMIO_REG_FPR: 1160 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1161 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1162 1163 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1164 break; 1165 #ifdef CONFIG_PPC_BOOK3S 1166 case KVM_MMIO_REG_QPR: 1167 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1168 break; 1169 case KVM_MMIO_REG_FQPR: 1170 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1171 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1172 break; 1173 #endif 1174 #ifdef CONFIG_VSX 1175 case KVM_MMIO_REG_VSX: 1176 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1177 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1178 1179 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1180 kvmppc_set_vsr_dword(vcpu, gpr); 1181 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1182 kvmppc_set_vsr_word(vcpu, gpr); 1183 else if (vcpu->arch.mmio_copy_type == 1184 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1185 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1186 else if (vcpu->arch.mmio_copy_type == 1187 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1188 kvmppc_set_vsr_word_dump(vcpu, gpr); 1189 break; 1190 #endif 1191 #ifdef CONFIG_ALTIVEC 1192 case KVM_MMIO_REG_VMX: 1193 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1194 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1195 1196 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1197 kvmppc_set_vmx_dword(vcpu, gpr); 1198 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1199 kvmppc_set_vmx_word(vcpu, gpr); 1200 else if (vcpu->arch.mmio_copy_type == 1201 KVMPPC_VMX_COPY_HWORD) 1202 kvmppc_set_vmx_hword(vcpu, gpr); 1203 else if (vcpu->arch.mmio_copy_type == 1204 KVMPPC_VMX_COPY_BYTE) 1205 kvmppc_set_vmx_byte(vcpu, gpr); 1206 break; 1207 #endif 1208 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1209 case KVM_MMIO_REG_NESTED_GPR: 1210 if (kvmppc_need_byteswap(vcpu)) 1211 gpr = swab64(gpr); 1212 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1213 sizeof(gpr)); 1214 break; 1215 #endif 1216 default: 1217 BUG(); 1218 } 1219 } 1220 1221 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1222 unsigned int rt, unsigned int bytes, 1223 int is_default_endian, int sign_extend) 1224 { 1225 int idx, ret; 1226 bool host_swabbed; 1227 1228 /* Pity C doesn't have a logical XOR operator */ 1229 if (kvmppc_need_byteswap(vcpu)) { 1230 host_swabbed = is_default_endian; 1231 } else { 1232 host_swabbed = !is_default_endian; 1233 } 1234 1235 if (bytes > sizeof(run->mmio.data)) { 1236 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1237 run->mmio.len); 1238 } 1239 1240 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1241 run->mmio.len = bytes; 1242 run->mmio.is_write = 0; 1243 1244 vcpu->arch.io_gpr = rt; 1245 vcpu->arch.mmio_host_swabbed = host_swabbed; 1246 vcpu->mmio_needed = 1; 1247 vcpu->mmio_is_write = 0; 1248 vcpu->arch.mmio_sign_extend = sign_extend; 1249 1250 idx = srcu_read_lock(&vcpu->kvm->srcu); 1251 1252 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1253 bytes, &run->mmio.data); 1254 1255 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1256 1257 if (!ret) { 1258 kvmppc_complete_mmio_load(vcpu, run); 1259 vcpu->mmio_needed = 0; 1260 return EMULATE_DONE; 1261 } 1262 1263 return EMULATE_DO_MMIO; 1264 } 1265 1266 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1267 unsigned int rt, unsigned int bytes, 1268 int is_default_endian) 1269 { 1270 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 1271 } 1272 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1273 1274 /* Same as above, but sign extends */ 1275 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 1276 unsigned int rt, unsigned int bytes, 1277 int is_default_endian) 1278 { 1279 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 1280 } 1281 1282 #ifdef CONFIG_VSX 1283 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1284 unsigned int rt, unsigned int bytes, 1285 int is_default_endian, int mmio_sign_extend) 1286 { 1287 enum emulation_result emulated = EMULATE_DONE; 1288 1289 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1290 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1291 return EMULATE_FAIL; 1292 1293 while (vcpu->arch.mmio_vsx_copy_nums) { 1294 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1295 is_default_endian, mmio_sign_extend); 1296 1297 if (emulated != EMULATE_DONE) 1298 break; 1299 1300 vcpu->arch.paddr_accessed += run->mmio.len; 1301 1302 vcpu->arch.mmio_vsx_copy_nums--; 1303 vcpu->arch.mmio_vsx_offset++; 1304 } 1305 return emulated; 1306 } 1307 #endif /* CONFIG_VSX */ 1308 1309 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1310 u64 val, unsigned int bytes, int is_default_endian) 1311 { 1312 void *data = run->mmio.data; 1313 int idx, ret; 1314 bool host_swabbed; 1315 1316 /* Pity C doesn't have a logical XOR operator */ 1317 if (kvmppc_need_byteswap(vcpu)) { 1318 host_swabbed = is_default_endian; 1319 } else { 1320 host_swabbed = !is_default_endian; 1321 } 1322 1323 if (bytes > sizeof(run->mmio.data)) { 1324 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1325 run->mmio.len); 1326 } 1327 1328 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1329 run->mmio.len = bytes; 1330 run->mmio.is_write = 1; 1331 vcpu->mmio_needed = 1; 1332 vcpu->mmio_is_write = 1; 1333 1334 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1335 val = dp_to_sp(val); 1336 1337 /* Store the value at the lowest bytes in 'data'. */ 1338 if (!host_swabbed) { 1339 switch (bytes) { 1340 case 8: *(u64 *)data = val; break; 1341 case 4: *(u32 *)data = val; break; 1342 case 2: *(u16 *)data = val; break; 1343 case 1: *(u8 *)data = val; break; 1344 } 1345 } else { 1346 switch (bytes) { 1347 case 8: *(u64 *)data = swab64(val); break; 1348 case 4: *(u32 *)data = swab32(val); break; 1349 case 2: *(u16 *)data = swab16(val); break; 1350 case 1: *(u8 *)data = val; break; 1351 } 1352 } 1353 1354 idx = srcu_read_lock(&vcpu->kvm->srcu); 1355 1356 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1357 bytes, &run->mmio.data); 1358 1359 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1360 1361 if (!ret) { 1362 vcpu->mmio_needed = 0; 1363 return EMULATE_DONE; 1364 } 1365 1366 return EMULATE_DO_MMIO; 1367 } 1368 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1369 1370 #ifdef CONFIG_VSX 1371 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1372 { 1373 u32 dword_offset, word_offset; 1374 union kvmppc_one_reg reg; 1375 int vsx_offset = 0; 1376 int copy_type = vcpu->arch.mmio_copy_type; 1377 int result = 0; 1378 1379 switch (copy_type) { 1380 case KVMPPC_VSX_COPY_DWORD: 1381 vsx_offset = 1382 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1383 1384 if (vsx_offset == -1) { 1385 result = -1; 1386 break; 1387 } 1388 1389 if (rs < 32) { 1390 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1391 } else { 1392 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1393 *val = reg.vsxval[vsx_offset]; 1394 } 1395 break; 1396 1397 case KVMPPC_VSX_COPY_WORD: 1398 vsx_offset = 1399 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1400 1401 if (vsx_offset == -1) { 1402 result = -1; 1403 break; 1404 } 1405 1406 if (rs < 32) { 1407 dword_offset = vsx_offset / 2; 1408 word_offset = vsx_offset % 2; 1409 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1410 *val = reg.vsx32val[word_offset]; 1411 } else { 1412 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1413 *val = reg.vsx32val[vsx_offset]; 1414 } 1415 break; 1416 1417 default: 1418 result = -1; 1419 break; 1420 } 1421 1422 return result; 1423 } 1424 1425 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1426 int rs, unsigned int bytes, int is_default_endian) 1427 { 1428 u64 val; 1429 enum emulation_result emulated = EMULATE_DONE; 1430 1431 vcpu->arch.io_gpr = rs; 1432 1433 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1434 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1435 return EMULATE_FAIL; 1436 1437 while (vcpu->arch.mmio_vsx_copy_nums) { 1438 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1439 return EMULATE_FAIL; 1440 1441 emulated = kvmppc_handle_store(run, vcpu, 1442 val, bytes, is_default_endian); 1443 1444 if (emulated != EMULATE_DONE) 1445 break; 1446 1447 vcpu->arch.paddr_accessed += run->mmio.len; 1448 1449 vcpu->arch.mmio_vsx_copy_nums--; 1450 vcpu->arch.mmio_vsx_offset++; 1451 } 1452 1453 return emulated; 1454 } 1455 1456 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu, 1457 struct kvm_run *run) 1458 { 1459 enum emulation_result emulated = EMULATE_FAIL; 1460 int r; 1461 1462 vcpu->arch.paddr_accessed += run->mmio.len; 1463 1464 if (!vcpu->mmio_is_write) { 1465 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr, 1466 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1467 } else { 1468 emulated = kvmppc_handle_vsx_store(run, vcpu, 1469 vcpu->arch.io_gpr, run->mmio.len, 1); 1470 } 1471 1472 switch (emulated) { 1473 case EMULATE_DO_MMIO: 1474 run->exit_reason = KVM_EXIT_MMIO; 1475 r = RESUME_HOST; 1476 break; 1477 case EMULATE_FAIL: 1478 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1479 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1480 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1481 r = RESUME_HOST; 1482 break; 1483 default: 1484 r = RESUME_GUEST; 1485 break; 1486 } 1487 return r; 1488 } 1489 #endif /* CONFIG_VSX */ 1490 1491 #ifdef CONFIG_ALTIVEC 1492 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1493 unsigned int rt, unsigned int bytes, int is_default_endian) 1494 { 1495 enum emulation_result emulated = EMULATE_DONE; 1496 1497 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1498 return EMULATE_FAIL; 1499 1500 while (vcpu->arch.mmio_vmx_copy_nums) { 1501 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1502 is_default_endian, 0); 1503 1504 if (emulated != EMULATE_DONE) 1505 break; 1506 1507 vcpu->arch.paddr_accessed += run->mmio.len; 1508 vcpu->arch.mmio_vmx_copy_nums--; 1509 vcpu->arch.mmio_vmx_offset++; 1510 } 1511 1512 return emulated; 1513 } 1514 1515 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1516 { 1517 union kvmppc_one_reg reg; 1518 int vmx_offset = 0; 1519 int result = 0; 1520 1521 vmx_offset = 1522 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1523 1524 if (vmx_offset == -1) 1525 return -1; 1526 1527 reg.vval = VCPU_VSX_VR(vcpu, index); 1528 *val = reg.vsxval[vmx_offset]; 1529 1530 return result; 1531 } 1532 1533 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1534 { 1535 union kvmppc_one_reg reg; 1536 int vmx_offset = 0; 1537 int result = 0; 1538 1539 vmx_offset = 1540 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1541 1542 if (vmx_offset == -1) 1543 return -1; 1544 1545 reg.vval = VCPU_VSX_VR(vcpu, index); 1546 *val = reg.vsx32val[vmx_offset]; 1547 1548 return result; 1549 } 1550 1551 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1552 { 1553 union kvmppc_one_reg reg; 1554 int vmx_offset = 0; 1555 int result = 0; 1556 1557 vmx_offset = 1558 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1559 1560 if (vmx_offset == -1) 1561 return -1; 1562 1563 reg.vval = VCPU_VSX_VR(vcpu, index); 1564 *val = reg.vsx16val[vmx_offset]; 1565 1566 return result; 1567 } 1568 1569 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1570 { 1571 union kvmppc_one_reg reg; 1572 int vmx_offset = 0; 1573 int result = 0; 1574 1575 vmx_offset = 1576 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1577 1578 if (vmx_offset == -1) 1579 return -1; 1580 1581 reg.vval = VCPU_VSX_VR(vcpu, index); 1582 *val = reg.vsx8val[vmx_offset]; 1583 1584 return result; 1585 } 1586 1587 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1588 unsigned int rs, unsigned int bytes, int is_default_endian) 1589 { 1590 u64 val = 0; 1591 unsigned int index = rs & KVM_MMIO_REG_MASK; 1592 enum emulation_result emulated = EMULATE_DONE; 1593 1594 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1595 return EMULATE_FAIL; 1596 1597 vcpu->arch.io_gpr = rs; 1598 1599 while (vcpu->arch.mmio_vmx_copy_nums) { 1600 switch (vcpu->arch.mmio_copy_type) { 1601 case KVMPPC_VMX_COPY_DWORD: 1602 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1603 return EMULATE_FAIL; 1604 1605 break; 1606 case KVMPPC_VMX_COPY_WORD: 1607 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1608 return EMULATE_FAIL; 1609 break; 1610 case KVMPPC_VMX_COPY_HWORD: 1611 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1612 return EMULATE_FAIL; 1613 break; 1614 case KVMPPC_VMX_COPY_BYTE: 1615 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1616 return EMULATE_FAIL; 1617 break; 1618 default: 1619 return EMULATE_FAIL; 1620 } 1621 1622 emulated = kvmppc_handle_store(run, vcpu, val, bytes, 1623 is_default_endian); 1624 if (emulated != EMULATE_DONE) 1625 break; 1626 1627 vcpu->arch.paddr_accessed += run->mmio.len; 1628 vcpu->arch.mmio_vmx_copy_nums--; 1629 vcpu->arch.mmio_vmx_offset++; 1630 } 1631 1632 return emulated; 1633 } 1634 1635 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu, 1636 struct kvm_run *run) 1637 { 1638 enum emulation_result emulated = EMULATE_FAIL; 1639 int r; 1640 1641 vcpu->arch.paddr_accessed += run->mmio.len; 1642 1643 if (!vcpu->mmio_is_write) { 1644 emulated = kvmppc_handle_vmx_load(run, vcpu, 1645 vcpu->arch.io_gpr, run->mmio.len, 1); 1646 } else { 1647 emulated = kvmppc_handle_vmx_store(run, vcpu, 1648 vcpu->arch.io_gpr, run->mmio.len, 1); 1649 } 1650 1651 switch (emulated) { 1652 case EMULATE_DO_MMIO: 1653 run->exit_reason = KVM_EXIT_MMIO; 1654 r = RESUME_HOST; 1655 break; 1656 case EMULATE_FAIL: 1657 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1658 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1659 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1660 r = RESUME_HOST; 1661 break; 1662 default: 1663 r = RESUME_GUEST; 1664 break; 1665 } 1666 return r; 1667 } 1668 #endif /* CONFIG_ALTIVEC */ 1669 1670 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1671 { 1672 int r = 0; 1673 union kvmppc_one_reg val; 1674 int size; 1675 1676 size = one_reg_size(reg->id); 1677 if (size > sizeof(val)) 1678 return -EINVAL; 1679 1680 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1681 if (r == -EINVAL) { 1682 r = 0; 1683 switch (reg->id) { 1684 #ifdef CONFIG_ALTIVEC 1685 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1686 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1687 r = -ENXIO; 1688 break; 1689 } 1690 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1691 break; 1692 case KVM_REG_PPC_VSCR: 1693 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1694 r = -ENXIO; 1695 break; 1696 } 1697 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1698 break; 1699 case KVM_REG_PPC_VRSAVE: 1700 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1701 break; 1702 #endif /* CONFIG_ALTIVEC */ 1703 default: 1704 r = -EINVAL; 1705 break; 1706 } 1707 } 1708 1709 if (r) 1710 return r; 1711 1712 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1713 r = -EFAULT; 1714 1715 return r; 1716 } 1717 1718 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1719 { 1720 int r; 1721 union kvmppc_one_reg val; 1722 int size; 1723 1724 size = one_reg_size(reg->id); 1725 if (size > sizeof(val)) 1726 return -EINVAL; 1727 1728 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1729 return -EFAULT; 1730 1731 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1732 if (r == -EINVAL) { 1733 r = 0; 1734 switch (reg->id) { 1735 #ifdef CONFIG_ALTIVEC 1736 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1737 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1738 r = -ENXIO; 1739 break; 1740 } 1741 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1742 break; 1743 case KVM_REG_PPC_VSCR: 1744 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1745 r = -ENXIO; 1746 break; 1747 } 1748 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1749 break; 1750 case KVM_REG_PPC_VRSAVE: 1751 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1752 r = -ENXIO; 1753 break; 1754 } 1755 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1756 break; 1757 #endif /* CONFIG_ALTIVEC */ 1758 default: 1759 r = -EINVAL; 1760 break; 1761 } 1762 } 1763 1764 return r; 1765 } 1766 1767 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1768 { 1769 int r; 1770 1771 vcpu_load(vcpu); 1772 1773 if (vcpu->mmio_needed) { 1774 vcpu->mmio_needed = 0; 1775 if (!vcpu->mmio_is_write) 1776 kvmppc_complete_mmio_load(vcpu, run); 1777 #ifdef CONFIG_VSX 1778 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1779 vcpu->arch.mmio_vsx_copy_nums--; 1780 vcpu->arch.mmio_vsx_offset++; 1781 } 1782 1783 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1784 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run); 1785 if (r == RESUME_HOST) { 1786 vcpu->mmio_needed = 1; 1787 goto out; 1788 } 1789 } 1790 #endif 1791 #ifdef CONFIG_ALTIVEC 1792 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1793 vcpu->arch.mmio_vmx_copy_nums--; 1794 vcpu->arch.mmio_vmx_offset++; 1795 } 1796 1797 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1798 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run); 1799 if (r == RESUME_HOST) { 1800 vcpu->mmio_needed = 1; 1801 goto out; 1802 } 1803 } 1804 #endif 1805 } else if (vcpu->arch.osi_needed) { 1806 u64 *gprs = run->osi.gprs; 1807 int i; 1808 1809 for (i = 0; i < 32; i++) 1810 kvmppc_set_gpr(vcpu, i, gprs[i]); 1811 vcpu->arch.osi_needed = 0; 1812 } else if (vcpu->arch.hcall_needed) { 1813 int i; 1814 1815 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1816 for (i = 0; i < 9; ++i) 1817 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1818 vcpu->arch.hcall_needed = 0; 1819 #ifdef CONFIG_BOOKE 1820 } else if (vcpu->arch.epr_needed) { 1821 kvmppc_set_epr(vcpu, run->epr.epr); 1822 vcpu->arch.epr_needed = 0; 1823 #endif 1824 } 1825 1826 kvm_sigset_activate(vcpu); 1827 1828 if (run->immediate_exit) 1829 r = -EINTR; 1830 else 1831 r = kvmppc_vcpu_run(run, vcpu); 1832 1833 kvm_sigset_deactivate(vcpu); 1834 1835 #ifdef CONFIG_ALTIVEC 1836 out: 1837 #endif 1838 vcpu_put(vcpu); 1839 return r; 1840 } 1841 1842 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1843 { 1844 if (irq->irq == KVM_INTERRUPT_UNSET) { 1845 kvmppc_core_dequeue_external(vcpu); 1846 return 0; 1847 } 1848 1849 kvmppc_core_queue_external(vcpu, irq); 1850 1851 kvm_vcpu_kick(vcpu); 1852 1853 return 0; 1854 } 1855 1856 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1857 struct kvm_enable_cap *cap) 1858 { 1859 int r; 1860 1861 if (cap->flags) 1862 return -EINVAL; 1863 1864 switch (cap->cap) { 1865 case KVM_CAP_PPC_OSI: 1866 r = 0; 1867 vcpu->arch.osi_enabled = true; 1868 break; 1869 case KVM_CAP_PPC_PAPR: 1870 r = 0; 1871 vcpu->arch.papr_enabled = true; 1872 break; 1873 case KVM_CAP_PPC_EPR: 1874 r = 0; 1875 if (cap->args[0]) 1876 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1877 else 1878 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1879 break; 1880 #ifdef CONFIG_BOOKE 1881 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1882 r = 0; 1883 vcpu->arch.watchdog_enabled = true; 1884 break; 1885 #endif 1886 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1887 case KVM_CAP_SW_TLB: { 1888 struct kvm_config_tlb cfg; 1889 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1890 1891 r = -EFAULT; 1892 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1893 break; 1894 1895 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1896 break; 1897 } 1898 #endif 1899 #ifdef CONFIG_KVM_MPIC 1900 case KVM_CAP_IRQ_MPIC: { 1901 struct fd f; 1902 struct kvm_device *dev; 1903 1904 r = -EBADF; 1905 f = fdget(cap->args[0]); 1906 if (!f.file) 1907 break; 1908 1909 r = -EPERM; 1910 dev = kvm_device_from_filp(f.file); 1911 if (dev) 1912 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1913 1914 fdput(f); 1915 break; 1916 } 1917 #endif 1918 #ifdef CONFIG_KVM_XICS 1919 case KVM_CAP_IRQ_XICS: { 1920 struct fd f; 1921 struct kvm_device *dev; 1922 1923 r = -EBADF; 1924 f = fdget(cap->args[0]); 1925 if (!f.file) 1926 break; 1927 1928 r = -EPERM; 1929 dev = kvm_device_from_filp(f.file); 1930 if (dev) { 1931 if (xics_on_xive()) 1932 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1933 else 1934 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1935 } 1936 1937 fdput(f); 1938 break; 1939 } 1940 #endif /* CONFIG_KVM_XICS */ 1941 #ifdef CONFIG_KVM_XIVE 1942 case KVM_CAP_PPC_IRQ_XIVE: { 1943 struct fd f; 1944 struct kvm_device *dev; 1945 1946 r = -EBADF; 1947 f = fdget(cap->args[0]); 1948 if (!f.file) 1949 break; 1950 1951 r = -ENXIO; 1952 if (!xive_enabled()) 1953 break; 1954 1955 r = -EPERM; 1956 dev = kvm_device_from_filp(f.file); 1957 if (dev) 1958 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1959 cap->args[1]); 1960 1961 fdput(f); 1962 break; 1963 } 1964 #endif /* CONFIG_KVM_XIVE */ 1965 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1966 case KVM_CAP_PPC_FWNMI: 1967 r = -EINVAL; 1968 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1969 break; 1970 r = 0; 1971 vcpu->kvm->arch.fwnmi_enabled = true; 1972 break; 1973 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1974 default: 1975 r = -EINVAL; 1976 break; 1977 } 1978 1979 if (!r) 1980 r = kvmppc_sanity_check(vcpu); 1981 1982 return r; 1983 } 1984 1985 bool kvm_arch_intc_initialized(struct kvm *kvm) 1986 { 1987 #ifdef CONFIG_KVM_MPIC 1988 if (kvm->arch.mpic) 1989 return true; 1990 #endif 1991 #ifdef CONFIG_KVM_XICS 1992 if (kvm->arch.xics || kvm->arch.xive) 1993 return true; 1994 #endif 1995 return false; 1996 } 1997 1998 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1999 struct kvm_mp_state *mp_state) 2000 { 2001 return -EINVAL; 2002 } 2003 2004 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2005 struct kvm_mp_state *mp_state) 2006 { 2007 return -EINVAL; 2008 } 2009 2010 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2011 unsigned int ioctl, unsigned long arg) 2012 { 2013 struct kvm_vcpu *vcpu = filp->private_data; 2014 void __user *argp = (void __user *)arg; 2015 2016 if (ioctl == KVM_INTERRUPT) { 2017 struct kvm_interrupt irq; 2018 if (copy_from_user(&irq, argp, sizeof(irq))) 2019 return -EFAULT; 2020 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2021 } 2022 return -ENOIOCTLCMD; 2023 } 2024 2025 long kvm_arch_vcpu_ioctl(struct file *filp, 2026 unsigned int ioctl, unsigned long arg) 2027 { 2028 struct kvm_vcpu *vcpu = filp->private_data; 2029 void __user *argp = (void __user *)arg; 2030 long r; 2031 2032 switch (ioctl) { 2033 case KVM_ENABLE_CAP: 2034 { 2035 struct kvm_enable_cap cap; 2036 r = -EFAULT; 2037 vcpu_load(vcpu); 2038 if (copy_from_user(&cap, argp, sizeof(cap))) 2039 goto out; 2040 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2041 vcpu_put(vcpu); 2042 break; 2043 } 2044 2045 case KVM_SET_ONE_REG: 2046 case KVM_GET_ONE_REG: 2047 { 2048 struct kvm_one_reg reg; 2049 r = -EFAULT; 2050 if (copy_from_user(®, argp, sizeof(reg))) 2051 goto out; 2052 if (ioctl == KVM_SET_ONE_REG) 2053 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2054 else 2055 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2056 break; 2057 } 2058 2059 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2060 case KVM_DIRTY_TLB: { 2061 struct kvm_dirty_tlb dirty; 2062 r = -EFAULT; 2063 vcpu_load(vcpu); 2064 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2065 goto out; 2066 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2067 vcpu_put(vcpu); 2068 break; 2069 } 2070 #endif 2071 default: 2072 r = -EINVAL; 2073 } 2074 2075 out: 2076 return r; 2077 } 2078 2079 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2080 { 2081 return VM_FAULT_SIGBUS; 2082 } 2083 2084 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2085 { 2086 u32 inst_nop = 0x60000000; 2087 #ifdef CONFIG_KVM_BOOKE_HV 2088 u32 inst_sc1 = 0x44000022; 2089 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2090 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2091 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2092 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2093 #else 2094 u32 inst_lis = 0x3c000000; 2095 u32 inst_ori = 0x60000000; 2096 u32 inst_sc = 0x44000002; 2097 u32 inst_imm_mask = 0xffff; 2098 2099 /* 2100 * The hypercall to get into KVM from within guest context is as 2101 * follows: 2102 * 2103 * lis r0, r0, KVM_SC_MAGIC_R0@h 2104 * ori r0, KVM_SC_MAGIC_R0@l 2105 * sc 2106 * nop 2107 */ 2108 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2109 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2110 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2111 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2112 #endif 2113 2114 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2115 2116 return 0; 2117 } 2118 2119 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2120 bool line_status) 2121 { 2122 if (!irqchip_in_kernel(kvm)) 2123 return -ENXIO; 2124 2125 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2126 irq_event->irq, irq_event->level, 2127 line_status); 2128 return 0; 2129 } 2130 2131 2132 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2133 struct kvm_enable_cap *cap) 2134 { 2135 int r; 2136 2137 if (cap->flags) 2138 return -EINVAL; 2139 2140 switch (cap->cap) { 2141 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2142 case KVM_CAP_PPC_ENABLE_HCALL: { 2143 unsigned long hcall = cap->args[0]; 2144 2145 r = -EINVAL; 2146 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2147 cap->args[1] > 1) 2148 break; 2149 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2150 break; 2151 if (cap->args[1]) 2152 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2153 else 2154 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2155 r = 0; 2156 break; 2157 } 2158 case KVM_CAP_PPC_SMT: { 2159 unsigned long mode = cap->args[0]; 2160 unsigned long flags = cap->args[1]; 2161 2162 r = -EINVAL; 2163 if (kvm->arch.kvm_ops->set_smt_mode) 2164 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2165 break; 2166 } 2167 2168 case KVM_CAP_PPC_NESTED_HV: 2169 r = -EINVAL; 2170 if (!is_kvmppc_hv_enabled(kvm) || 2171 !kvm->arch.kvm_ops->enable_nested) 2172 break; 2173 r = kvm->arch.kvm_ops->enable_nested(kvm); 2174 break; 2175 #endif 2176 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2177 case KVM_CAP_PPC_SECURE_GUEST: 2178 r = -EINVAL; 2179 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2180 break; 2181 r = kvm->arch.kvm_ops->enable_svm(kvm); 2182 break; 2183 #endif 2184 default: 2185 r = -EINVAL; 2186 break; 2187 } 2188 2189 return r; 2190 } 2191 2192 #ifdef CONFIG_PPC_BOOK3S_64 2193 /* 2194 * These functions check whether the underlying hardware is safe 2195 * against attacks based on observing the effects of speculatively 2196 * executed instructions, and whether it supplies instructions for 2197 * use in workarounds. The information comes from firmware, either 2198 * via the device tree on powernv platforms or from an hcall on 2199 * pseries platforms. 2200 */ 2201 #ifdef CONFIG_PPC_PSERIES 2202 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2203 { 2204 struct h_cpu_char_result c; 2205 unsigned long rc; 2206 2207 if (!machine_is(pseries)) 2208 return -ENOTTY; 2209 2210 rc = plpar_get_cpu_characteristics(&c); 2211 if (rc == H_SUCCESS) { 2212 cp->character = c.character; 2213 cp->behaviour = c.behaviour; 2214 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2215 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2216 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2217 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2218 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2219 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2220 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2221 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2222 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2223 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2224 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2225 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2226 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2227 } 2228 return 0; 2229 } 2230 #else 2231 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2232 { 2233 return -ENOTTY; 2234 } 2235 #endif 2236 2237 static inline bool have_fw_feat(struct device_node *fw_features, 2238 const char *state, const char *name) 2239 { 2240 struct device_node *np; 2241 bool r = false; 2242 2243 np = of_get_child_by_name(fw_features, name); 2244 if (np) { 2245 r = of_property_read_bool(np, state); 2246 of_node_put(np); 2247 } 2248 return r; 2249 } 2250 2251 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2252 { 2253 struct device_node *np, *fw_features; 2254 int r; 2255 2256 memset(cp, 0, sizeof(*cp)); 2257 r = pseries_get_cpu_char(cp); 2258 if (r != -ENOTTY) 2259 return r; 2260 2261 np = of_find_node_by_name(NULL, "ibm,opal"); 2262 if (np) { 2263 fw_features = of_get_child_by_name(np, "fw-features"); 2264 of_node_put(np); 2265 if (!fw_features) 2266 return 0; 2267 if (have_fw_feat(fw_features, "enabled", 2268 "inst-spec-barrier-ori31,31,0")) 2269 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2270 if (have_fw_feat(fw_features, "enabled", 2271 "fw-bcctrl-serialized")) 2272 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2273 if (have_fw_feat(fw_features, "enabled", 2274 "inst-l1d-flush-ori30,30,0")) 2275 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2276 if (have_fw_feat(fw_features, "enabled", 2277 "inst-l1d-flush-trig2")) 2278 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2279 if (have_fw_feat(fw_features, "enabled", 2280 "fw-l1d-thread-split")) 2281 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2282 if (have_fw_feat(fw_features, "enabled", 2283 "fw-count-cache-disabled")) 2284 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2285 if (have_fw_feat(fw_features, "enabled", 2286 "fw-count-cache-flush-bcctr2,0,0")) 2287 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2288 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2289 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2290 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2291 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2292 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2293 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2294 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2295 2296 if (have_fw_feat(fw_features, "enabled", 2297 "speculation-policy-favor-security")) 2298 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2299 if (!have_fw_feat(fw_features, "disabled", 2300 "needs-l1d-flush-msr-pr-0-to-1")) 2301 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2302 if (!have_fw_feat(fw_features, "disabled", 2303 "needs-spec-barrier-for-bound-checks")) 2304 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2305 if (have_fw_feat(fw_features, "enabled", 2306 "needs-count-cache-flush-on-context-switch")) 2307 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2308 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2309 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2310 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2311 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2312 2313 of_node_put(fw_features); 2314 } 2315 2316 return 0; 2317 } 2318 #endif 2319 2320 long kvm_arch_vm_ioctl(struct file *filp, 2321 unsigned int ioctl, unsigned long arg) 2322 { 2323 struct kvm *kvm __maybe_unused = filp->private_data; 2324 void __user *argp = (void __user *)arg; 2325 long r; 2326 2327 switch (ioctl) { 2328 case KVM_PPC_GET_PVINFO: { 2329 struct kvm_ppc_pvinfo pvinfo; 2330 memset(&pvinfo, 0, sizeof(pvinfo)); 2331 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2332 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2333 r = -EFAULT; 2334 goto out; 2335 } 2336 2337 break; 2338 } 2339 #ifdef CONFIG_SPAPR_TCE_IOMMU 2340 case KVM_CREATE_SPAPR_TCE_64: { 2341 struct kvm_create_spapr_tce_64 create_tce_64; 2342 2343 r = -EFAULT; 2344 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2345 goto out; 2346 if (create_tce_64.flags) { 2347 r = -EINVAL; 2348 goto out; 2349 } 2350 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2351 goto out; 2352 } 2353 case KVM_CREATE_SPAPR_TCE: { 2354 struct kvm_create_spapr_tce create_tce; 2355 struct kvm_create_spapr_tce_64 create_tce_64; 2356 2357 r = -EFAULT; 2358 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2359 goto out; 2360 2361 create_tce_64.liobn = create_tce.liobn; 2362 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2363 create_tce_64.offset = 0; 2364 create_tce_64.size = create_tce.window_size >> 2365 IOMMU_PAGE_SHIFT_4K; 2366 create_tce_64.flags = 0; 2367 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2368 goto out; 2369 } 2370 #endif 2371 #ifdef CONFIG_PPC_BOOK3S_64 2372 case KVM_PPC_GET_SMMU_INFO: { 2373 struct kvm_ppc_smmu_info info; 2374 struct kvm *kvm = filp->private_data; 2375 2376 memset(&info, 0, sizeof(info)); 2377 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2378 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2379 r = -EFAULT; 2380 break; 2381 } 2382 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2383 struct kvm *kvm = filp->private_data; 2384 2385 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2386 break; 2387 } 2388 case KVM_PPC_CONFIGURE_V3_MMU: { 2389 struct kvm *kvm = filp->private_data; 2390 struct kvm_ppc_mmuv3_cfg cfg; 2391 2392 r = -EINVAL; 2393 if (!kvm->arch.kvm_ops->configure_mmu) 2394 goto out; 2395 r = -EFAULT; 2396 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2397 goto out; 2398 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2399 break; 2400 } 2401 case KVM_PPC_GET_RMMU_INFO: { 2402 struct kvm *kvm = filp->private_data; 2403 struct kvm_ppc_rmmu_info info; 2404 2405 r = -EINVAL; 2406 if (!kvm->arch.kvm_ops->get_rmmu_info) 2407 goto out; 2408 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2409 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2410 r = -EFAULT; 2411 break; 2412 } 2413 case KVM_PPC_GET_CPU_CHAR: { 2414 struct kvm_ppc_cpu_char cpuchar; 2415 2416 r = kvmppc_get_cpu_char(&cpuchar); 2417 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2418 r = -EFAULT; 2419 break; 2420 } 2421 case KVM_PPC_SVM_OFF: { 2422 struct kvm *kvm = filp->private_data; 2423 2424 r = 0; 2425 if (!kvm->arch.kvm_ops->svm_off) 2426 goto out; 2427 2428 r = kvm->arch.kvm_ops->svm_off(kvm); 2429 break; 2430 } 2431 default: { 2432 struct kvm *kvm = filp->private_data; 2433 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2434 } 2435 #else /* CONFIG_PPC_BOOK3S_64 */ 2436 default: 2437 r = -ENOTTY; 2438 #endif 2439 } 2440 out: 2441 return r; 2442 } 2443 2444 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2445 static unsigned long nr_lpids; 2446 2447 long kvmppc_alloc_lpid(void) 2448 { 2449 long lpid; 2450 2451 do { 2452 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2453 if (lpid >= nr_lpids) { 2454 pr_err("%s: No LPIDs free\n", __func__); 2455 return -ENOMEM; 2456 } 2457 } while (test_and_set_bit(lpid, lpid_inuse)); 2458 2459 return lpid; 2460 } 2461 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2462 2463 void kvmppc_claim_lpid(long lpid) 2464 { 2465 set_bit(lpid, lpid_inuse); 2466 } 2467 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2468 2469 void kvmppc_free_lpid(long lpid) 2470 { 2471 clear_bit(lpid, lpid_inuse); 2472 } 2473 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2474 2475 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2476 { 2477 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2478 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2479 } 2480 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2481 2482 int kvm_arch_init(void *opaque) 2483 { 2484 return 0; 2485 } 2486 2487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2488