xref: /linux/arch/powerpc/kvm/powerpc.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9 
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/of.h>
23 #include <asm/cputable.h>
24 #include <linux/uaccess.h>
25 #include <asm/kvm_ppc.h>
26 #include <asm/cputhreads.h>
27 #include <asm/irqflags.h>
28 #include <asm/iommu.h>
29 #include <asm/switch_to.h>
30 #include <asm/xive.h>
31 #ifdef CONFIG_PPC_PSERIES
32 #include <asm/hvcall.h>
33 #include <asm/plpar_wrappers.h>
34 #endif
35 #include <asm/ultravisor.h>
36 #include <asm/setup.h>
37 
38 #include "timing.h"
39 #include "../mm/mmu_decl.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include "trace.h"
43 
44 struct kvmppc_ops *kvmppc_hv_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46 struct kvmppc_ops *kvmppc_pr_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48 
49 
50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51 {
52 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
53 }
54 
55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
56 {
57 	return kvm_arch_vcpu_runnable(vcpu);
58 }
59 
60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
61 {
62 	return false;
63 }
64 
65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
66 {
67 	return 1;
68 }
69 
70 /*
71  * Common checks before entering the guest world.  Call with interrupts
72  * disabled.
73  *
74  * returns:
75  *
76  * == 1 if we're ready to go into guest state
77  * <= 0 if we need to go back to the host with return value
78  */
79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
80 {
81 	int r;
82 
83 	WARN_ON(irqs_disabled());
84 	hard_irq_disable();
85 
86 	while (true) {
87 		if (need_resched()) {
88 			local_irq_enable();
89 			cond_resched();
90 			hard_irq_disable();
91 			continue;
92 		}
93 
94 		if (signal_pending(current)) {
95 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
96 			vcpu->run->exit_reason = KVM_EXIT_INTR;
97 			r = -EINTR;
98 			break;
99 		}
100 
101 		vcpu->mode = IN_GUEST_MODE;
102 
103 		/*
104 		 * Reading vcpu->requests must happen after setting vcpu->mode,
105 		 * so we don't miss a request because the requester sees
106 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
107 		 * before next entering the guest (and thus doesn't IPI).
108 		 * This also orders the write to mode from any reads
109 		 * to the page tables done while the VCPU is running.
110 		 * Please see the comment in kvm_flush_remote_tlbs.
111 		 */
112 		smp_mb();
113 
114 		if (kvm_request_pending(vcpu)) {
115 			/* Make sure we process requests preemptable */
116 			local_irq_enable();
117 			trace_kvm_check_requests(vcpu);
118 			r = kvmppc_core_check_requests(vcpu);
119 			hard_irq_disable();
120 			if (r > 0)
121 				continue;
122 			break;
123 		}
124 
125 		if (kvmppc_core_prepare_to_enter(vcpu)) {
126 			/* interrupts got enabled in between, so we
127 			   are back at square 1 */
128 			continue;
129 		}
130 
131 		guest_enter_irqoff();
132 		return 1;
133 	}
134 
135 	/* return to host */
136 	local_irq_enable();
137 	return r;
138 }
139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
140 
141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
143 {
144 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
145 	int i;
146 
147 	shared->sprg0 = swab64(shared->sprg0);
148 	shared->sprg1 = swab64(shared->sprg1);
149 	shared->sprg2 = swab64(shared->sprg2);
150 	shared->sprg3 = swab64(shared->sprg3);
151 	shared->srr0 = swab64(shared->srr0);
152 	shared->srr1 = swab64(shared->srr1);
153 	shared->dar = swab64(shared->dar);
154 	shared->msr = swab64(shared->msr);
155 	shared->dsisr = swab32(shared->dsisr);
156 	shared->int_pending = swab32(shared->int_pending);
157 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
158 		shared->sr[i] = swab32(shared->sr[i]);
159 }
160 #endif
161 
162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
163 {
164 	int nr = kvmppc_get_gpr(vcpu, 11);
165 	int r;
166 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
167 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
168 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
169 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
170 	unsigned long r2 = 0;
171 
172 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
173 		/* 32 bit mode */
174 		param1 &= 0xffffffff;
175 		param2 &= 0xffffffff;
176 		param3 &= 0xffffffff;
177 		param4 &= 0xffffffff;
178 	}
179 
180 	switch (nr) {
181 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
182 	{
183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
184 		/* Book3S can be little endian, find it out here */
185 		int shared_big_endian = true;
186 		if (vcpu->arch.intr_msr & MSR_LE)
187 			shared_big_endian = false;
188 		if (shared_big_endian != vcpu->arch.shared_big_endian)
189 			kvmppc_swab_shared(vcpu);
190 		vcpu->arch.shared_big_endian = shared_big_endian;
191 #endif
192 
193 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
194 			/*
195 			 * Older versions of the Linux magic page code had
196 			 * a bug where they would map their trampoline code
197 			 * NX. If that's the case, remove !PR NX capability.
198 			 */
199 			vcpu->arch.disable_kernel_nx = true;
200 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
201 		}
202 
203 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
204 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
205 
206 #ifdef CONFIG_PPC_64K_PAGES
207 		/*
208 		 * Make sure our 4k magic page is in the same window of a 64k
209 		 * page within the guest and within the host's page.
210 		 */
211 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
212 		    ((ulong)vcpu->arch.shared & 0xf000)) {
213 			void *old_shared = vcpu->arch.shared;
214 			ulong shared = (ulong)vcpu->arch.shared;
215 			void *new_shared;
216 
217 			shared &= PAGE_MASK;
218 			shared |= vcpu->arch.magic_page_pa & 0xf000;
219 			new_shared = (void*)shared;
220 			memcpy(new_shared, old_shared, 0x1000);
221 			vcpu->arch.shared = new_shared;
222 		}
223 #endif
224 
225 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
226 
227 		r = EV_SUCCESS;
228 		break;
229 	}
230 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
231 		r = EV_SUCCESS;
232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
233 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
234 #endif
235 
236 		/* Second return value is in r4 */
237 		break;
238 	case EV_HCALL_TOKEN(EV_IDLE):
239 		r = EV_SUCCESS;
240 		kvm_vcpu_halt(vcpu);
241 		break;
242 	default:
243 		r = EV_UNIMPLEMENTED;
244 		break;
245 	}
246 
247 	kvmppc_set_gpr(vcpu, 4, r2);
248 
249 	return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252 
253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255 	int r = false;
256 
257 	/* We have to know what CPU to virtualize */
258 	if (!vcpu->arch.pvr)
259 		goto out;
260 
261 	/* PAPR only works with book3s_64 */
262 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263 		goto out;
264 
265 	/* HV KVM can only do PAPR mode for now */
266 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267 		goto out;
268 
269 #ifdef CONFIG_KVM_BOOKE_HV
270 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
271 		goto out;
272 #endif
273 
274 	r = true;
275 
276 out:
277 	vcpu->arch.sane = r;
278 	return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281 
282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284 	enum emulation_result er;
285 	int r;
286 
287 	er = kvmppc_emulate_loadstore(vcpu);
288 	switch (er) {
289 	case EMULATE_DONE:
290 		/* Future optimization: only reload non-volatiles if they were
291 		 * actually modified. */
292 		r = RESUME_GUEST_NV;
293 		break;
294 	case EMULATE_AGAIN:
295 		r = RESUME_GUEST;
296 		break;
297 	case EMULATE_DO_MMIO:
298 		vcpu->run->exit_reason = KVM_EXIT_MMIO;
299 		/* We must reload nonvolatiles because "update" load/store
300 		 * instructions modify register state. */
301 		/* Future optimization: only reload non-volatiles if they were
302 		 * actually modified. */
303 		r = RESUME_HOST_NV;
304 		break;
305 	case EMULATE_FAIL:
306 	{
307 		ppc_inst_t last_inst;
308 
309 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310 		kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
311 				      ppc_inst_val(last_inst));
312 
313 		/*
314 		 * Injecting a Data Storage here is a bit more
315 		 * accurate since the instruction that caused the
316 		 * access could still be a valid one.
317 		 */
318 		if (!IS_ENABLED(CONFIG_BOOKE)) {
319 			ulong dsisr = DSISR_BADACCESS;
320 
321 			if (vcpu->mmio_is_write)
322 				dsisr |= DSISR_ISSTORE;
323 
324 			kvmppc_core_queue_data_storage(vcpu,
325 					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
326 					vcpu->arch.vaddr_accessed, dsisr);
327 		} else {
328 			/*
329 			 * BookE does not send a SIGBUS on a bad
330 			 * fault, so use a Program interrupt instead
331 			 * to avoid a fault loop.
332 			 */
333 			kvmppc_core_queue_program(vcpu, 0);
334 		}
335 
336 		r = RESUME_GUEST;
337 		break;
338 	}
339 	default:
340 		WARN_ON(1);
341 		r = RESUME_GUEST;
342 	}
343 
344 	return r;
345 }
346 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
347 
348 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
349 	      bool data)
350 {
351 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
352 	struct kvmppc_pte pte;
353 	int r = -EINVAL;
354 
355 	vcpu->stat.st++;
356 
357 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
358 		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
359 							    size);
360 
361 	if ((!r) || (r == -EAGAIN))
362 		return r;
363 
364 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
365 			 XLATE_WRITE, &pte);
366 	if (r < 0)
367 		return r;
368 
369 	*eaddr = pte.raddr;
370 
371 	if (!pte.may_write)
372 		return -EPERM;
373 
374 	/* Magic page override */
375 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
376 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
377 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
378 		void *magic = vcpu->arch.shared;
379 		magic += pte.eaddr & 0xfff;
380 		memcpy(magic, ptr, size);
381 		return EMULATE_DONE;
382 	}
383 
384 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
385 		return EMULATE_DO_MMIO;
386 
387 	return EMULATE_DONE;
388 }
389 EXPORT_SYMBOL_GPL(kvmppc_st);
390 
391 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
392 		      bool data)
393 {
394 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
395 	struct kvmppc_pte pte;
396 	int rc = -EINVAL;
397 
398 	vcpu->stat.ld++;
399 
400 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
401 		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
402 							      size);
403 
404 	if ((!rc) || (rc == -EAGAIN))
405 		return rc;
406 
407 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
408 			  XLATE_READ, &pte);
409 	if (rc)
410 		return rc;
411 
412 	*eaddr = pte.raddr;
413 
414 	if (!pte.may_read)
415 		return -EPERM;
416 
417 	if (!data && !pte.may_execute)
418 		return -ENOEXEC;
419 
420 	/* Magic page override */
421 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
422 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
423 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
424 		void *magic = vcpu->arch.shared;
425 		magic += pte.eaddr & 0xfff;
426 		memcpy(ptr, magic, size);
427 		return EMULATE_DONE;
428 	}
429 
430 	kvm_vcpu_srcu_read_lock(vcpu);
431 	rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
432 	kvm_vcpu_srcu_read_unlock(vcpu);
433 	if (rc)
434 		return EMULATE_DO_MMIO;
435 
436 	return EMULATE_DONE;
437 }
438 EXPORT_SYMBOL_GPL(kvmppc_ld);
439 
440 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
441 {
442 	struct kvmppc_ops *kvm_ops = NULL;
443 	int r;
444 
445 	/*
446 	 * if we have both HV and PR enabled, default is HV
447 	 */
448 	if (type == 0) {
449 		if (kvmppc_hv_ops)
450 			kvm_ops = kvmppc_hv_ops;
451 		else
452 			kvm_ops = kvmppc_pr_ops;
453 		if (!kvm_ops)
454 			goto err_out;
455 	} else	if (type == KVM_VM_PPC_HV) {
456 		if (!kvmppc_hv_ops)
457 			goto err_out;
458 		kvm_ops = kvmppc_hv_ops;
459 	} else if (type == KVM_VM_PPC_PR) {
460 		if (!kvmppc_pr_ops)
461 			goto err_out;
462 		kvm_ops = kvmppc_pr_ops;
463 	} else
464 		goto err_out;
465 
466 	if (!try_module_get(kvm_ops->owner))
467 		return -ENOENT;
468 
469 	kvm->arch.kvm_ops = kvm_ops;
470 	r = kvmppc_core_init_vm(kvm);
471 	if (r)
472 		module_put(kvm_ops->owner);
473 	return r;
474 err_out:
475 	return -EINVAL;
476 }
477 
478 void kvm_arch_destroy_vm(struct kvm *kvm)
479 {
480 #ifdef CONFIG_KVM_XICS
481 	/*
482 	 * We call kick_all_cpus_sync() to ensure that all
483 	 * CPUs have executed any pending IPIs before we
484 	 * continue and free VCPUs structures below.
485 	 */
486 	if (is_kvmppc_hv_enabled(kvm))
487 		kick_all_cpus_sync();
488 #endif
489 
490 	kvm_destroy_vcpus(kvm);
491 
492 	mutex_lock(&kvm->lock);
493 
494 	kvmppc_core_destroy_vm(kvm);
495 
496 	mutex_unlock(&kvm->lock);
497 
498 	/* drop the module reference */
499 	module_put(kvm->arch.kvm_ops->owner);
500 }
501 
502 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
503 {
504 	int r;
505 	/* Assume we're using HV mode when the HV module is loaded */
506 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
507 
508 	if (kvm) {
509 		/*
510 		 * Hooray - we know which VM type we're running on. Depend on
511 		 * that rather than the guess above.
512 		 */
513 		hv_enabled = is_kvmppc_hv_enabled(kvm);
514 	}
515 
516 	switch (ext) {
517 #ifdef CONFIG_BOOKE
518 	case KVM_CAP_PPC_BOOKE_SREGS:
519 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
520 	case KVM_CAP_PPC_EPR:
521 #else
522 	case KVM_CAP_PPC_SEGSTATE:
523 	case KVM_CAP_PPC_HIOR:
524 	case KVM_CAP_PPC_PAPR:
525 #endif
526 	case KVM_CAP_PPC_UNSET_IRQ:
527 	case KVM_CAP_PPC_IRQ_LEVEL:
528 	case KVM_CAP_ENABLE_CAP:
529 	case KVM_CAP_ONE_REG:
530 	case KVM_CAP_IOEVENTFD:
531 	case KVM_CAP_IMMEDIATE_EXIT:
532 	case KVM_CAP_SET_GUEST_DEBUG:
533 		r = 1;
534 		break;
535 	case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
536 	case KVM_CAP_PPC_PAIRED_SINGLES:
537 	case KVM_CAP_PPC_OSI:
538 	case KVM_CAP_PPC_GET_PVINFO:
539 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
540 	case KVM_CAP_SW_TLB:
541 #endif
542 		/* We support this only for PR */
543 		r = !hv_enabled;
544 		break;
545 #ifdef CONFIG_KVM_MPIC
546 	case KVM_CAP_IRQ_MPIC:
547 		r = 1;
548 		break;
549 #endif
550 
551 #ifdef CONFIG_PPC_BOOK3S_64
552 	case KVM_CAP_SPAPR_TCE:
553 	case KVM_CAP_SPAPR_TCE_64:
554 		r = 1;
555 		break;
556 	case KVM_CAP_SPAPR_TCE_VFIO:
557 		r = !!cpu_has_feature(CPU_FTR_HVMODE);
558 		break;
559 	case KVM_CAP_PPC_RTAS:
560 	case KVM_CAP_PPC_FIXUP_HCALL:
561 	case KVM_CAP_PPC_ENABLE_HCALL:
562 #ifdef CONFIG_KVM_XICS
563 	case KVM_CAP_IRQ_XICS:
564 #endif
565 	case KVM_CAP_PPC_GET_CPU_CHAR:
566 		r = 1;
567 		break;
568 #ifdef CONFIG_KVM_XIVE
569 	case KVM_CAP_PPC_IRQ_XIVE:
570 		/*
571 		 * We need XIVE to be enabled on the platform (implies
572 		 * a POWER9 processor) and the PowerNV platform, as
573 		 * nested is not yet supported.
574 		 */
575 		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
576 			kvmppc_xive_native_supported();
577 		break;
578 #endif
579 
580 #ifdef CONFIG_HAVE_KVM_IRQCHIP
581 	case KVM_CAP_IRQFD_RESAMPLE:
582 		r = !xive_enabled();
583 		break;
584 #endif
585 
586 	case KVM_CAP_PPC_ALLOC_HTAB:
587 		r = hv_enabled;
588 		break;
589 #endif /* CONFIG_PPC_BOOK3S_64 */
590 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
591 	case KVM_CAP_PPC_SMT:
592 		r = 0;
593 		if (kvm) {
594 			if (kvm->arch.emul_smt_mode > 1)
595 				r = kvm->arch.emul_smt_mode;
596 			else
597 				r = kvm->arch.smt_mode;
598 		} else if (hv_enabled) {
599 			if (cpu_has_feature(CPU_FTR_ARCH_300))
600 				r = 1;
601 			else
602 				r = threads_per_subcore;
603 		}
604 		break;
605 	case KVM_CAP_PPC_SMT_POSSIBLE:
606 		r = 1;
607 		if (hv_enabled) {
608 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
609 				r = ((threads_per_subcore << 1) - 1);
610 			else
611 				/* P9 can emulate dbells, so allow any mode */
612 				r = 8 | 4 | 2 | 1;
613 		}
614 		break;
615 	case KVM_CAP_PPC_RMA:
616 		r = 0;
617 		break;
618 	case KVM_CAP_PPC_HWRNG:
619 		r = kvmppc_hwrng_present();
620 		break;
621 	case KVM_CAP_PPC_MMU_RADIX:
622 		r = !!(hv_enabled && radix_enabled());
623 		break;
624 	case KVM_CAP_PPC_MMU_HASH_V3:
625 		r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
626 		       kvmppc_hv_ops->hash_v3_possible());
627 		break;
628 	case KVM_CAP_PPC_NESTED_HV:
629 		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
630 		       !kvmppc_hv_ops->enable_nested(NULL));
631 		break;
632 #endif
633 	case KVM_CAP_SYNC_MMU:
634 		BUILD_BUG_ON(!IS_ENABLED(CONFIG_KVM_GENERIC_MMU_NOTIFIER));
635 		r = 1;
636 		break;
637 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
638 	case KVM_CAP_PPC_HTAB_FD:
639 		r = hv_enabled;
640 		break;
641 #endif
642 	case KVM_CAP_NR_VCPUS:
643 		/*
644 		 * Recommending a number of CPUs is somewhat arbitrary; we
645 		 * return the number of present CPUs for -HV (since a host
646 		 * will have secondary threads "offline"), and for other KVM
647 		 * implementations just count online CPUs.
648 		 */
649 		if (hv_enabled)
650 			r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
651 		else
652 			r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
653 		break;
654 	case KVM_CAP_MAX_VCPUS:
655 		r = KVM_MAX_VCPUS;
656 		break;
657 	case KVM_CAP_MAX_VCPU_ID:
658 		r = KVM_MAX_VCPU_IDS;
659 		break;
660 #ifdef CONFIG_PPC_BOOK3S_64
661 	case KVM_CAP_PPC_GET_SMMU_INFO:
662 		r = 1;
663 		break;
664 	case KVM_CAP_SPAPR_MULTITCE:
665 		r = 1;
666 		break;
667 	case KVM_CAP_SPAPR_RESIZE_HPT:
668 		r = !!hv_enabled;
669 		break;
670 #endif
671 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
672 	case KVM_CAP_PPC_FWNMI:
673 		r = hv_enabled;
674 		break;
675 #endif
676 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
677 	case KVM_CAP_PPC_HTM:
678 		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
679 		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
680 		break;
681 #endif
682 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
683 	case KVM_CAP_PPC_SECURE_GUEST:
684 		r = hv_enabled && kvmppc_hv_ops->enable_svm &&
685 			!kvmppc_hv_ops->enable_svm(NULL);
686 		break;
687 	case KVM_CAP_PPC_DAWR1:
688 		r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
689 		       !kvmppc_hv_ops->enable_dawr1(NULL));
690 		break;
691 	case KVM_CAP_PPC_RPT_INVALIDATE:
692 		r = 1;
693 		break;
694 #endif
695 	case KVM_CAP_PPC_AIL_MODE_3:
696 		r = 0;
697 		/*
698 		 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
699 		 * The POWER9s can support it if the guest runs in hash mode,
700 		 * but QEMU doesn't necessarily query the capability in time.
701 		 */
702 		if (hv_enabled) {
703 			if (kvmhv_on_pseries()) {
704 				if (pseries_reloc_on_exception())
705 					r = 1;
706 			} else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
707 				  !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
708 				r = 1;
709 			}
710 		}
711 		break;
712 	default:
713 		r = 0;
714 		break;
715 	}
716 	return r;
717 
718 }
719 
720 long kvm_arch_dev_ioctl(struct file *filp,
721                         unsigned int ioctl, unsigned long arg)
722 {
723 	return -EINVAL;
724 }
725 
726 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
727 {
728 	kvmppc_core_free_memslot(kvm, slot);
729 }
730 
731 int kvm_arch_prepare_memory_region(struct kvm *kvm,
732 				   const struct kvm_memory_slot *old,
733 				   struct kvm_memory_slot *new,
734 				   enum kvm_mr_change change)
735 {
736 	return kvmppc_core_prepare_memory_region(kvm, old, new, change);
737 }
738 
739 void kvm_arch_commit_memory_region(struct kvm *kvm,
740 				   struct kvm_memory_slot *old,
741 				   const struct kvm_memory_slot *new,
742 				   enum kvm_mr_change change)
743 {
744 	kvmppc_core_commit_memory_region(kvm, old, new, change);
745 }
746 
747 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
748 				   struct kvm_memory_slot *slot)
749 {
750 	kvmppc_core_flush_memslot(kvm, slot);
751 }
752 
753 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
754 {
755 	return 0;
756 }
757 
758 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
759 {
760 	struct kvm_vcpu *vcpu;
761 
762 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
763 	kvmppc_decrementer_func(vcpu);
764 
765 	return HRTIMER_NORESTART;
766 }
767 
768 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
769 {
770 	int err;
771 
772 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
773 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
774 
775 #ifdef CONFIG_KVM_EXIT_TIMING
776 	mutex_init(&vcpu->arch.exit_timing_lock);
777 #endif
778 	err = kvmppc_subarch_vcpu_init(vcpu);
779 	if (err)
780 		return err;
781 
782 	err = kvmppc_core_vcpu_create(vcpu);
783 	if (err)
784 		goto out_vcpu_uninit;
785 
786 	rcuwait_init(&vcpu->arch.wait);
787 	vcpu->arch.waitp = &vcpu->arch.wait;
788 	return 0;
789 
790 out_vcpu_uninit:
791 	kvmppc_subarch_vcpu_uninit(vcpu);
792 	return err;
793 }
794 
795 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
796 {
797 }
798 
799 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
800 {
801 	/* Make sure we're not using the vcpu anymore */
802 	hrtimer_cancel(&vcpu->arch.dec_timer);
803 
804 	switch (vcpu->arch.irq_type) {
805 	case KVMPPC_IRQ_MPIC:
806 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
807 		break;
808 	case KVMPPC_IRQ_XICS:
809 		if (xics_on_xive())
810 			kvmppc_xive_cleanup_vcpu(vcpu);
811 		else
812 			kvmppc_xics_free_icp(vcpu);
813 		break;
814 	case KVMPPC_IRQ_XIVE:
815 		kvmppc_xive_native_cleanup_vcpu(vcpu);
816 		break;
817 	}
818 
819 	kvmppc_core_vcpu_free(vcpu);
820 
821 	kvmppc_subarch_vcpu_uninit(vcpu);
822 }
823 
824 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
825 {
826 	return kvmppc_core_pending_dec(vcpu);
827 }
828 
829 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
830 {
831 #ifdef CONFIG_BOOKE
832 	/*
833 	 * vrsave (formerly usprg0) isn't used by Linux, but may
834 	 * be used by the guest.
835 	 *
836 	 * On non-booke this is associated with Altivec and
837 	 * is handled by code in book3s.c.
838 	 */
839 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
840 #endif
841 	kvmppc_core_vcpu_load(vcpu, cpu);
842 }
843 
844 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
845 {
846 	kvmppc_core_vcpu_put(vcpu);
847 #ifdef CONFIG_BOOKE
848 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
849 #endif
850 }
851 
852 /*
853  * irq_bypass_add_producer and irq_bypass_del_producer are only
854  * useful if the architecture supports PCI passthrough.
855  * irq_bypass_stop and irq_bypass_start are not needed and so
856  * kvm_ops are not defined for them.
857  */
858 bool kvm_arch_has_irq_bypass(void)
859 {
860 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
861 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
862 }
863 
864 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
865 				     struct irq_bypass_producer *prod)
866 {
867 	struct kvm_kernel_irqfd *irqfd =
868 		container_of(cons, struct kvm_kernel_irqfd, consumer);
869 	struct kvm *kvm = irqfd->kvm;
870 
871 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
872 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
873 
874 	return 0;
875 }
876 
877 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
878 				      struct irq_bypass_producer *prod)
879 {
880 	struct kvm_kernel_irqfd *irqfd =
881 		container_of(cons, struct kvm_kernel_irqfd, consumer);
882 	struct kvm *kvm = irqfd->kvm;
883 
884 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
885 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
886 }
887 
888 #ifdef CONFIG_VSX
889 static inline int kvmppc_get_vsr_dword_offset(int index)
890 {
891 	int offset;
892 
893 	if ((index != 0) && (index != 1))
894 		return -1;
895 
896 #ifdef __BIG_ENDIAN
897 	offset =  index;
898 #else
899 	offset = 1 - index;
900 #endif
901 
902 	return offset;
903 }
904 
905 static inline int kvmppc_get_vsr_word_offset(int index)
906 {
907 	int offset;
908 
909 	if ((index > 3) || (index < 0))
910 		return -1;
911 
912 #ifdef __BIG_ENDIAN
913 	offset = index;
914 #else
915 	offset = 3 - index;
916 #endif
917 	return offset;
918 }
919 
920 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
921 	u64 gpr)
922 {
923 	union kvmppc_one_reg val;
924 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
925 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
926 
927 	if (offset == -1)
928 		return;
929 
930 	if (index >= 32) {
931 		kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
932 		val.vsxval[offset] = gpr;
933 		kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
934 	} else {
935 		kvmppc_set_vsx_fpr(vcpu, index, offset, gpr);
936 	}
937 }
938 
939 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
940 	u64 gpr)
941 {
942 	union kvmppc_one_reg val;
943 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
944 
945 	if (index >= 32) {
946 		kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
947 		val.vsxval[0] = gpr;
948 		val.vsxval[1] = gpr;
949 		kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
950 	} else {
951 		kvmppc_set_vsx_fpr(vcpu, index, 0, gpr);
952 		kvmppc_set_vsx_fpr(vcpu, index, 1,  gpr);
953 	}
954 }
955 
956 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
957 	u32 gpr)
958 {
959 	union kvmppc_one_reg val;
960 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
961 
962 	if (index >= 32) {
963 		val.vsx32val[0] = gpr;
964 		val.vsx32val[1] = gpr;
965 		val.vsx32val[2] = gpr;
966 		val.vsx32val[3] = gpr;
967 		kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
968 	} else {
969 		val.vsx32val[0] = gpr;
970 		val.vsx32val[1] = gpr;
971 		kvmppc_set_vsx_fpr(vcpu, index, 0, val.vsxval[0]);
972 		kvmppc_set_vsx_fpr(vcpu, index, 1, val.vsxval[0]);
973 	}
974 }
975 
976 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
977 	u32 gpr32)
978 {
979 	union kvmppc_one_reg val;
980 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
981 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
982 	int dword_offset, word_offset;
983 
984 	if (offset == -1)
985 		return;
986 
987 	if (index >= 32) {
988 		kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
989 		val.vsx32val[offset] = gpr32;
990 		kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
991 	} else {
992 		dword_offset = offset / 2;
993 		word_offset = offset % 2;
994 		val.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, index, dword_offset);
995 		val.vsx32val[word_offset] = gpr32;
996 		kvmppc_set_vsx_fpr(vcpu, index, dword_offset, val.vsxval[0]);
997 	}
998 }
999 #endif /* CONFIG_VSX */
1000 
1001 #ifdef CONFIG_ALTIVEC
1002 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
1003 		int index, int element_size)
1004 {
1005 	int offset;
1006 	int elts = sizeof(vector128)/element_size;
1007 
1008 	if ((index < 0) || (index >= elts))
1009 		return -1;
1010 
1011 	if (kvmppc_need_byteswap(vcpu))
1012 		offset = elts - index - 1;
1013 	else
1014 		offset = index;
1015 
1016 	return offset;
1017 }
1018 
1019 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1020 		int index)
1021 {
1022 	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1023 }
1024 
1025 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1026 		int index)
1027 {
1028 	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1029 }
1030 
1031 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1032 		int index)
1033 {
1034 	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1035 }
1036 
1037 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1038 		int index)
1039 {
1040 	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1041 }
1042 
1043 
1044 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1045 	u64 gpr)
1046 {
1047 	union kvmppc_one_reg val;
1048 	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1049 			vcpu->arch.mmio_vmx_offset);
1050 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1051 
1052 	if (offset == -1)
1053 		return;
1054 
1055 	kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1056 	val.vsxval[offset] = gpr;
1057 	kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1058 }
1059 
1060 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1061 	u32 gpr32)
1062 {
1063 	union kvmppc_one_reg val;
1064 	int offset = kvmppc_get_vmx_word_offset(vcpu,
1065 			vcpu->arch.mmio_vmx_offset);
1066 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1067 
1068 	if (offset == -1)
1069 		return;
1070 
1071 	kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1072 	val.vsx32val[offset] = gpr32;
1073 	kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1074 }
1075 
1076 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1077 	u16 gpr16)
1078 {
1079 	union kvmppc_one_reg val;
1080 	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1081 			vcpu->arch.mmio_vmx_offset);
1082 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1083 
1084 	if (offset == -1)
1085 		return;
1086 
1087 	kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1088 	val.vsx16val[offset] = gpr16;
1089 	kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1090 }
1091 
1092 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1093 	u8 gpr8)
1094 {
1095 	union kvmppc_one_reg val;
1096 	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1097 			vcpu->arch.mmio_vmx_offset);
1098 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1099 
1100 	if (offset == -1)
1101 		return;
1102 
1103 	kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1104 	val.vsx8val[offset] = gpr8;
1105 	kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1106 }
1107 #endif /* CONFIG_ALTIVEC */
1108 
1109 #ifdef CONFIG_PPC_FPU
1110 static inline u64 sp_to_dp(u32 fprs)
1111 {
1112 	u64 fprd;
1113 
1114 	preempt_disable();
1115 	enable_kernel_fp();
1116 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1117 	     : "fr0");
1118 	preempt_enable();
1119 	return fprd;
1120 }
1121 
1122 static inline u32 dp_to_sp(u64 fprd)
1123 {
1124 	u32 fprs;
1125 
1126 	preempt_disable();
1127 	enable_kernel_fp();
1128 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1129 	     : "fr0");
1130 	preempt_enable();
1131 	return fprs;
1132 }
1133 
1134 #else
1135 #define sp_to_dp(x)	(x)
1136 #define dp_to_sp(x)	(x)
1137 #endif /* CONFIG_PPC_FPU */
1138 
1139 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1140 {
1141 	struct kvm_run *run = vcpu->run;
1142 	u64 gpr;
1143 
1144 	if (run->mmio.len > sizeof(gpr))
1145 		return;
1146 
1147 	if (!vcpu->arch.mmio_host_swabbed) {
1148 		switch (run->mmio.len) {
1149 		case 8: gpr = *(u64 *)run->mmio.data; break;
1150 		case 4: gpr = *(u32 *)run->mmio.data; break;
1151 		case 2: gpr = *(u16 *)run->mmio.data; break;
1152 		case 1: gpr = *(u8 *)run->mmio.data; break;
1153 		}
1154 	} else {
1155 		switch (run->mmio.len) {
1156 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1157 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1158 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1159 		case 1: gpr = *(u8 *)run->mmio.data; break;
1160 		}
1161 	}
1162 
1163 	/* conversion between single and double precision */
1164 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1165 		gpr = sp_to_dp(gpr);
1166 
1167 	if (vcpu->arch.mmio_sign_extend) {
1168 		switch (run->mmio.len) {
1169 #ifdef CONFIG_PPC64
1170 		case 4:
1171 			gpr = (s64)(s32)gpr;
1172 			break;
1173 #endif
1174 		case 2:
1175 			gpr = (s64)(s16)gpr;
1176 			break;
1177 		case 1:
1178 			gpr = (s64)(s8)gpr;
1179 			break;
1180 		}
1181 	}
1182 
1183 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1184 	case KVM_MMIO_REG_GPR:
1185 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1186 		break;
1187 	case KVM_MMIO_REG_FPR:
1188 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1189 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1190 
1191 		kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1192 		break;
1193 #ifdef CONFIG_PPC_BOOK3S
1194 	case KVM_MMIO_REG_QPR:
1195 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1196 		break;
1197 	case KVM_MMIO_REG_FQPR:
1198 		kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1199 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1200 		break;
1201 #endif
1202 #ifdef CONFIG_VSX
1203 	case KVM_MMIO_REG_VSX:
1204 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1205 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1206 
1207 		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1208 			kvmppc_set_vsr_dword(vcpu, gpr);
1209 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1210 			kvmppc_set_vsr_word(vcpu, gpr);
1211 		else if (vcpu->arch.mmio_copy_type ==
1212 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1213 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1214 		else if (vcpu->arch.mmio_copy_type ==
1215 				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1216 			kvmppc_set_vsr_word_dump(vcpu, gpr);
1217 		break;
1218 #endif
1219 #ifdef CONFIG_ALTIVEC
1220 	case KVM_MMIO_REG_VMX:
1221 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1222 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1223 
1224 		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1225 			kvmppc_set_vmx_dword(vcpu, gpr);
1226 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1227 			kvmppc_set_vmx_word(vcpu, gpr);
1228 		else if (vcpu->arch.mmio_copy_type ==
1229 				KVMPPC_VMX_COPY_HWORD)
1230 			kvmppc_set_vmx_hword(vcpu, gpr);
1231 		else if (vcpu->arch.mmio_copy_type ==
1232 				KVMPPC_VMX_COPY_BYTE)
1233 			kvmppc_set_vmx_byte(vcpu, gpr);
1234 		break;
1235 #endif
1236 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1237 	case KVM_MMIO_REG_NESTED_GPR:
1238 		if (kvmppc_need_byteswap(vcpu))
1239 			gpr = swab64(gpr);
1240 		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1241 				     sizeof(gpr));
1242 		break;
1243 #endif
1244 	default:
1245 		BUG();
1246 	}
1247 }
1248 
1249 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1250 				unsigned int rt, unsigned int bytes,
1251 				int is_default_endian, int sign_extend)
1252 {
1253 	struct kvm_run *run = vcpu->run;
1254 	int idx, ret;
1255 	bool host_swabbed;
1256 
1257 	/* Pity C doesn't have a logical XOR operator */
1258 	if (kvmppc_need_byteswap(vcpu)) {
1259 		host_swabbed = is_default_endian;
1260 	} else {
1261 		host_swabbed = !is_default_endian;
1262 	}
1263 
1264 	if (bytes > sizeof(run->mmio.data))
1265 		return EMULATE_FAIL;
1266 
1267 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1268 	run->mmio.len = bytes;
1269 	run->mmio.is_write = 0;
1270 
1271 	vcpu->arch.io_gpr = rt;
1272 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1273 	vcpu->mmio_needed = 1;
1274 	vcpu->mmio_is_write = 0;
1275 	vcpu->arch.mmio_sign_extend = sign_extend;
1276 
1277 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1278 
1279 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1280 			      bytes, &run->mmio.data);
1281 
1282 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1283 
1284 	if (!ret) {
1285 		kvmppc_complete_mmio_load(vcpu);
1286 		vcpu->mmio_needed = 0;
1287 		return EMULATE_DONE;
1288 	}
1289 
1290 	return EMULATE_DO_MMIO;
1291 }
1292 
1293 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1294 		       unsigned int rt, unsigned int bytes,
1295 		       int is_default_endian)
1296 {
1297 	return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1298 }
1299 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1300 
1301 /* Same as above, but sign extends */
1302 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1303 			unsigned int rt, unsigned int bytes,
1304 			int is_default_endian)
1305 {
1306 	return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1307 }
1308 
1309 #ifdef CONFIG_VSX
1310 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1311 			unsigned int rt, unsigned int bytes,
1312 			int is_default_endian, int mmio_sign_extend)
1313 {
1314 	enum emulation_result emulated = EMULATE_DONE;
1315 
1316 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1317 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1318 		return EMULATE_FAIL;
1319 
1320 	while (vcpu->arch.mmio_vsx_copy_nums) {
1321 		emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1322 			is_default_endian, mmio_sign_extend);
1323 
1324 		if (emulated != EMULATE_DONE)
1325 			break;
1326 
1327 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1328 
1329 		vcpu->arch.mmio_vsx_copy_nums--;
1330 		vcpu->arch.mmio_vsx_offset++;
1331 	}
1332 	return emulated;
1333 }
1334 #endif /* CONFIG_VSX */
1335 
1336 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1337 			u64 val, unsigned int bytes, int is_default_endian)
1338 {
1339 	struct kvm_run *run = vcpu->run;
1340 	void *data = run->mmio.data;
1341 	int idx, ret;
1342 	bool host_swabbed;
1343 
1344 	/* Pity C doesn't have a logical XOR operator */
1345 	if (kvmppc_need_byteswap(vcpu)) {
1346 		host_swabbed = is_default_endian;
1347 	} else {
1348 		host_swabbed = !is_default_endian;
1349 	}
1350 
1351 	if (bytes > sizeof(run->mmio.data))
1352 		return EMULATE_FAIL;
1353 
1354 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1355 	run->mmio.len = bytes;
1356 	run->mmio.is_write = 1;
1357 	vcpu->mmio_needed = 1;
1358 	vcpu->mmio_is_write = 1;
1359 
1360 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1361 		val = dp_to_sp(val);
1362 
1363 	/* Store the value at the lowest bytes in 'data'. */
1364 	if (!host_swabbed) {
1365 		switch (bytes) {
1366 		case 8: *(u64 *)data = val; break;
1367 		case 4: *(u32 *)data = val; break;
1368 		case 2: *(u16 *)data = val; break;
1369 		case 1: *(u8  *)data = val; break;
1370 		}
1371 	} else {
1372 		switch (bytes) {
1373 		case 8: *(u64 *)data = swab64(val); break;
1374 		case 4: *(u32 *)data = swab32(val); break;
1375 		case 2: *(u16 *)data = swab16(val); break;
1376 		case 1: *(u8  *)data = val; break;
1377 		}
1378 	}
1379 
1380 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1381 
1382 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1383 			       bytes, &run->mmio.data);
1384 
1385 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1386 
1387 	if (!ret) {
1388 		vcpu->mmio_needed = 0;
1389 		return EMULATE_DONE;
1390 	}
1391 
1392 	return EMULATE_DO_MMIO;
1393 }
1394 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1395 
1396 #ifdef CONFIG_VSX
1397 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1398 {
1399 	u32 dword_offset, word_offset;
1400 	union kvmppc_one_reg reg;
1401 	int vsx_offset = 0;
1402 	int copy_type = vcpu->arch.mmio_copy_type;
1403 	int result = 0;
1404 
1405 	switch (copy_type) {
1406 	case KVMPPC_VSX_COPY_DWORD:
1407 		vsx_offset =
1408 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1409 
1410 		if (vsx_offset == -1) {
1411 			result = -1;
1412 			break;
1413 		}
1414 
1415 		if (rs < 32) {
1416 			*val = kvmppc_get_vsx_fpr(vcpu, rs, vsx_offset);
1417 		} else {
1418 			kvmppc_get_vsx_vr(vcpu, rs - 32, &reg.vval);
1419 			*val = reg.vsxval[vsx_offset];
1420 		}
1421 		break;
1422 
1423 	case KVMPPC_VSX_COPY_WORD:
1424 		vsx_offset =
1425 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1426 
1427 		if (vsx_offset == -1) {
1428 			result = -1;
1429 			break;
1430 		}
1431 
1432 		if (rs < 32) {
1433 			dword_offset = vsx_offset / 2;
1434 			word_offset = vsx_offset % 2;
1435 			reg.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, rs, dword_offset);
1436 			*val = reg.vsx32val[word_offset];
1437 		} else {
1438 			kvmppc_get_vsx_vr(vcpu, rs - 32, &reg.vval);
1439 			*val = reg.vsx32val[vsx_offset];
1440 		}
1441 		break;
1442 
1443 	default:
1444 		result = -1;
1445 		break;
1446 	}
1447 
1448 	return result;
1449 }
1450 
1451 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1452 			int rs, unsigned int bytes, int is_default_endian)
1453 {
1454 	u64 val;
1455 	enum emulation_result emulated = EMULATE_DONE;
1456 
1457 	vcpu->arch.io_gpr = rs;
1458 
1459 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1460 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1461 		return EMULATE_FAIL;
1462 
1463 	while (vcpu->arch.mmio_vsx_copy_nums) {
1464 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1465 			return EMULATE_FAIL;
1466 
1467 		emulated = kvmppc_handle_store(vcpu,
1468 			 val, bytes, is_default_endian);
1469 
1470 		if (emulated != EMULATE_DONE)
1471 			break;
1472 
1473 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1474 
1475 		vcpu->arch.mmio_vsx_copy_nums--;
1476 		vcpu->arch.mmio_vsx_offset++;
1477 	}
1478 
1479 	return emulated;
1480 }
1481 
1482 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1483 {
1484 	struct kvm_run *run = vcpu->run;
1485 	enum emulation_result emulated = EMULATE_FAIL;
1486 	int r;
1487 
1488 	vcpu->arch.paddr_accessed += run->mmio.len;
1489 
1490 	if (!vcpu->mmio_is_write) {
1491 		emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1492 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1493 	} else {
1494 		emulated = kvmppc_handle_vsx_store(vcpu,
1495 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1496 	}
1497 
1498 	switch (emulated) {
1499 	case EMULATE_DO_MMIO:
1500 		run->exit_reason = KVM_EXIT_MMIO;
1501 		r = RESUME_HOST;
1502 		break;
1503 	case EMULATE_FAIL:
1504 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1505 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1506 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1507 		r = RESUME_HOST;
1508 		break;
1509 	default:
1510 		r = RESUME_GUEST;
1511 		break;
1512 	}
1513 	return r;
1514 }
1515 #endif /* CONFIG_VSX */
1516 
1517 #ifdef CONFIG_ALTIVEC
1518 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1519 		unsigned int rt, unsigned int bytes, int is_default_endian)
1520 {
1521 	enum emulation_result emulated = EMULATE_DONE;
1522 
1523 	if (vcpu->arch.mmio_vmx_copy_nums > 2)
1524 		return EMULATE_FAIL;
1525 
1526 	while (vcpu->arch.mmio_vmx_copy_nums) {
1527 		emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1528 				is_default_endian, 0);
1529 
1530 		if (emulated != EMULATE_DONE)
1531 			break;
1532 
1533 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1534 		vcpu->arch.mmio_vmx_copy_nums--;
1535 		vcpu->arch.mmio_vmx_offset++;
1536 	}
1537 
1538 	return emulated;
1539 }
1540 
1541 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1542 {
1543 	union kvmppc_one_reg reg;
1544 	int vmx_offset = 0;
1545 	int result = 0;
1546 
1547 	vmx_offset =
1548 		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1549 
1550 	if (vmx_offset == -1)
1551 		return -1;
1552 
1553 	kvmppc_get_vsx_vr(vcpu, index, &reg.vval);
1554 	*val = reg.vsxval[vmx_offset];
1555 
1556 	return result;
1557 }
1558 
1559 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1560 {
1561 	union kvmppc_one_reg reg;
1562 	int vmx_offset = 0;
1563 	int result = 0;
1564 
1565 	vmx_offset =
1566 		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1567 
1568 	if (vmx_offset == -1)
1569 		return -1;
1570 
1571 	kvmppc_get_vsx_vr(vcpu, index, &reg.vval);
1572 	*val = reg.vsx32val[vmx_offset];
1573 
1574 	return result;
1575 }
1576 
1577 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1578 {
1579 	union kvmppc_one_reg reg;
1580 	int vmx_offset = 0;
1581 	int result = 0;
1582 
1583 	vmx_offset =
1584 		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1585 
1586 	if (vmx_offset == -1)
1587 		return -1;
1588 
1589 	kvmppc_get_vsx_vr(vcpu, index, &reg.vval);
1590 	*val = reg.vsx16val[vmx_offset];
1591 
1592 	return result;
1593 }
1594 
1595 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1596 {
1597 	union kvmppc_one_reg reg;
1598 	int vmx_offset = 0;
1599 	int result = 0;
1600 
1601 	vmx_offset =
1602 		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1603 
1604 	if (vmx_offset == -1)
1605 		return -1;
1606 
1607 	kvmppc_get_vsx_vr(vcpu, index, &reg.vval);
1608 	*val = reg.vsx8val[vmx_offset];
1609 
1610 	return result;
1611 }
1612 
1613 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1614 		unsigned int rs, unsigned int bytes, int is_default_endian)
1615 {
1616 	u64 val = 0;
1617 	unsigned int index = rs & KVM_MMIO_REG_MASK;
1618 	enum emulation_result emulated = EMULATE_DONE;
1619 
1620 	if (vcpu->arch.mmio_vmx_copy_nums > 2)
1621 		return EMULATE_FAIL;
1622 
1623 	vcpu->arch.io_gpr = rs;
1624 
1625 	while (vcpu->arch.mmio_vmx_copy_nums) {
1626 		switch (vcpu->arch.mmio_copy_type) {
1627 		case KVMPPC_VMX_COPY_DWORD:
1628 			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1629 				return EMULATE_FAIL;
1630 
1631 			break;
1632 		case KVMPPC_VMX_COPY_WORD:
1633 			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1634 				return EMULATE_FAIL;
1635 			break;
1636 		case KVMPPC_VMX_COPY_HWORD:
1637 			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1638 				return EMULATE_FAIL;
1639 			break;
1640 		case KVMPPC_VMX_COPY_BYTE:
1641 			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1642 				return EMULATE_FAIL;
1643 			break;
1644 		default:
1645 			return EMULATE_FAIL;
1646 		}
1647 
1648 		emulated = kvmppc_handle_store(vcpu, val, bytes,
1649 				is_default_endian);
1650 		if (emulated != EMULATE_DONE)
1651 			break;
1652 
1653 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1654 		vcpu->arch.mmio_vmx_copy_nums--;
1655 		vcpu->arch.mmio_vmx_offset++;
1656 	}
1657 
1658 	return emulated;
1659 }
1660 
1661 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1662 {
1663 	struct kvm_run *run = vcpu->run;
1664 	enum emulation_result emulated = EMULATE_FAIL;
1665 	int r;
1666 
1667 	vcpu->arch.paddr_accessed += run->mmio.len;
1668 
1669 	if (!vcpu->mmio_is_write) {
1670 		emulated = kvmppc_handle_vmx_load(vcpu,
1671 				vcpu->arch.io_gpr, run->mmio.len, 1);
1672 	} else {
1673 		emulated = kvmppc_handle_vmx_store(vcpu,
1674 				vcpu->arch.io_gpr, run->mmio.len, 1);
1675 	}
1676 
1677 	switch (emulated) {
1678 	case EMULATE_DO_MMIO:
1679 		run->exit_reason = KVM_EXIT_MMIO;
1680 		r = RESUME_HOST;
1681 		break;
1682 	case EMULATE_FAIL:
1683 		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1684 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1685 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1686 		r = RESUME_HOST;
1687 		break;
1688 	default:
1689 		r = RESUME_GUEST;
1690 		break;
1691 	}
1692 	return r;
1693 }
1694 #endif /* CONFIG_ALTIVEC */
1695 
1696 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1697 {
1698 	int r = 0;
1699 	union kvmppc_one_reg val;
1700 	int size;
1701 
1702 	size = one_reg_size(reg->id);
1703 	if (size > sizeof(val))
1704 		return -EINVAL;
1705 
1706 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1707 	if (r == -EINVAL) {
1708 		r = 0;
1709 		switch (reg->id) {
1710 #ifdef CONFIG_ALTIVEC
1711 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1712 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1713 				r = -ENXIO;
1714 				break;
1715 			}
1716 			kvmppc_get_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1717 			break;
1718 		case KVM_REG_PPC_VSCR:
1719 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1720 				r = -ENXIO;
1721 				break;
1722 			}
1723 			val = get_reg_val(reg->id, kvmppc_get_vscr(vcpu));
1724 			break;
1725 		case KVM_REG_PPC_VRSAVE:
1726 			val = get_reg_val(reg->id, kvmppc_get_vrsave(vcpu));
1727 			break;
1728 #endif /* CONFIG_ALTIVEC */
1729 		default:
1730 			r = -EINVAL;
1731 			break;
1732 		}
1733 	}
1734 
1735 	if (r)
1736 		return r;
1737 
1738 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1739 		r = -EFAULT;
1740 
1741 	return r;
1742 }
1743 
1744 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1745 {
1746 	int r;
1747 	union kvmppc_one_reg val;
1748 	int size;
1749 
1750 	size = one_reg_size(reg->id);
1751 	if (size > sizeof(val))
1752 		return -EINVAL;
1753 
1754 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1755 		return -EFAULT;
1756 
1757 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1758 	if (r == -EINVAL) {
1759 		r = 0;
1760 		switch (reg->id) {
1761 #ifdef CONFIG_ALTIVEC
1762 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1763 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1764 				r = -ENXIO;
1765 				break;
1766 			}
1767 			kvmppc_set_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1768 			break;
1769 		case KVM_REG_PPC_VSCR:
1770 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1771 				r = -ENXIO;
1772 				break;
1773 			}
1774 			kvmppc_set_vscr(vcpu, set_reg_val(reg->id, val));
1775 			break;
1776 		case KVM_REG_PPC_VRSAVE:
1777 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1778 				r = -ENXIO;
1779 				break;
1780 			}
1781 			kvmppc_set_vrsave(vcpu, set_reg_val(reg->id, val));
1782 			break;
1783 #endif /* CONFIG_ALTIVEC */
1784 		default:
1785 			r = -EINVAL;
1786 			break;
1787 		}
1788 	}
1789 
1790 	return r;
1791 }
1792 
1793 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1794 {
1795 	struct kvm_run *run = vcpu->run;
1796 	int r;
1797 
1798 	vcpu_load(vcpu);
1799 
1800 	if (vcpu->mmio_needed) {
1801 		vcpu->mmio_needed = 0;
1802 		if (!vcpu->mmio_is_write)
1803 			kvmppc_complete_mmio_load(vcpu);
1804 #ifdef CONFIG_VSX
1805 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1806 			vcpu->arch.mmio_vsx_copy_nums--;
1807 			vcpu->arch.mmio_vsx_offset++;
1808 		}
1809 
1810 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1811 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1812 			if (r == RESUME_HOST) {
1813 				vcpu->mmio_needed = 1;
1814 				goto out;
1815 			}
1816 		}
1817 #endif
1818 #ifdef CONFIG_ALTIVEC
1819 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1820 			vcpu->arch.mmio_vmx_copy_nums--;
1821 			vcpu->arch.mmio_vmx_offset++;
1822 		}
1823 
1824 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1825 			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1826 			if (r == RESUME_HOST) {
1827 				vcpu->mmio_needed = 1;
1828 				goto out;
1829 			}
1830 		}
1831 #endif
1832 	} else if (vcpu->arch.osi_needed) {
1833 		u64 *gprs = run->osi.gprs;
1834 		int i;
1835 
1836 		for (i = 0; i < 32; i++)
1837 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1838 		vcpu->arch.osi_needed = 0;
1839 	} else if (vcpu->arch.hcall_needed) {
1840 		int i;
1841 
1842 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1843 		for (i = 0; i < 9; ++i)
1844 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1845 		vcpu->arch.hcall_needed = 0;
1846 #ifdef CONFIG_BOOKE
1847 	} else if (vcpu->arch.epr_needed) {
1848 		kvmppc_set_epr(vcpu, run->epr.epr);
1849 		vcpu->arch.epr_needed = 0;
1850 #endif
1851 	}
1852 
1853 	kvm_sigset_activate(vcpu);
1854 
1855 	if (!vcpu->wants_to_run)
1856 		r = -EINTR;
1857 	else
1858 		r = kvmppc_vcpu_run(vcpu);
1859 
1860 	kvm_sigset_deactivate(vcpu);
1861 
1862 #ifdef CONFIG_ALTIVEC
1863 out:
1864 #endif
1865 
1866 	/*
1867 	 * We're already returning to userspace, don't pass the
1868 	 * RESUME_HOST flags along.
1869 	 */
1870 	if (r > 0)
1871 		r = 0;
1872 
1873 	vcpu_put(vcpu);
1874 	return r;
1875 }
1876 
1877 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1878 {
1879 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1880 		kvmppc_core_dequeue_external(vcpu);
1881 		return 0;
1882 	}
1883 
1884 	kvmppc_core_queue_external(vcpu, irq);
1885 
1886 	kvm_vcpu_kick(vcpu);
1887 
1888 	return 0;
1889 }
1890 
1891 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1892 				     struct kvm_enable_cap *cap)
1893 {
1894 	int r;
1895 
1896 	if (cap->flags)
1897 		return -EINVAL;
1898 
1899 	switch (cap->cap) {
1900 	case KVM_CAP_PPC_OSI:
1901 		r = 0;
1902 		vcpu->arch.osi_enabled = true;
1903 		break;
1904 	case KVM_CAP_PPC_PAPR:
1905 		r = 0;
1906 		vcpu->arch.papr_enabled = true;
1907 		break;
1908 	case KVM_CAP_PPC_EPR:
1909 		r = 0;
1910 		if (cap->args[0])
1911 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1912 		else
1913 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1914 		break;
1915 #ifdef CONFIG_BOOKE
1916 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1917 		r = 0;
1918 		vcpu->arch.watchdog_enabled = true;
1919 		break;
1920 #endif
1921 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1922 	case KVM_CAP_SW_TLB: {
1923 		struct kvm_config_tlb cfg;
1924 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1925 
1926 		r = -EFAULT;
1927 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1928 			break;
1929 
1930 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1931 		break;
1932 	}
1933 #endif
1934 #ifdef CONFIG_KVM_MPIC
1935 	case KVM_CAP_IRQ_MPIC: {
1936 		struct fd f;
1937 		struct kvm_device *dev;
1938 
1939 		r = -EBADF;
1940 		f = fdget(cap->args[0]);
1941 		if (!fd_file(f))
1942 			break;
1943 
1944 		r = -EPERM;
1945 		dev = kvm_device_from_filp(fd_file(f));
1946 		if (dev)
1947 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1948 
1949 		fdput(f);
1950 		break;
1951 	}
1952 #endif
1953 #ifdef CONFIG_KVM_XICS
1954 	case KVM_CAP_IRQ_XICS: {
1955 		struct fd f;
1956 		struct kvm_device *dev;
1957 
1958 		r = -EBADF;
1959 		f = fdget(cap->args[0]);
1960 		if (!fd_file(f))
1961 			break;
1962 
1963 		r = -EPERM;
1964 		dev = kvm_device_from_filp(fd_file(f));
1965 		if (dev) {
1966 			if (xics_on_xive())
1967 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1968 			else
1969 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1970 		}
1971 
1972 		fdput(f);
1973 		break;
1974 	}
1975 #endif /* CONFIG_KVM_XICS */
1976 #ifdef CONFIG_KVM_XIVE
1977 	case KVM_CAP_PPC_IRQ_XIVE: {
1978 		struct fd f;
1979 		struct kvm_device *dev;
1980 
1981 		r = -EBADF;
1982 		f = fdget(cap->args[0]);
1983 		if (!fd_file(f))
1984 			break;
1985 
1986 		r = -ENXIO;
1987 		if (!xive_enabled()) {
1988 			fdput(f);
1989 			break;
1990 		}
1991 
1992 		r = -EPERM;
1993 		dev = kvm_device_from_filp(fd_file(f));
1994 		if (dev)
1995 			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1996 							    cap->args[1]);
1997 
1998 		fdput(f);
1999 		break;
2000 	}
2001 #endif /* CONFIG_KVM_XIVE */
2002 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2003 	case KVM_CAP_PPC_FWNMI:
2004 		r = -EINVAL;
2005 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
2006 			break;
2007 		r = 0;
2008 		vcpu->kvm->arch.fwnmi_enabled = true;
2009 		break;
2010 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
2011 	default:
2012 		r = -EINVAL;
2013 		break;
2014 	}
2015 
2016 	if (!r)
2017 		r = kvmppc_sanity_check(vcpu);
2018 
2019 	return r;
2020 }
2021 
2022 bool kvm_arch_intc_initialized(struct kvm *kvm)
2023 {
2024 #ifdef CONFIG_KVM_MPIC
2025 	if (kvm->arch.mpic)
2026 		return true;
2027 #endif
2028 #ifdef CONFIG_KVM_XICS
2029 	if (kvm->arch.xics || kvm->arch.xive)
2030 		return true;
2031 #endif
2032 	return false;
2033 }
2034 
2035 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2036                                     struct kvm_mp_state *mp_state)
2037 {
2038 	return -EINVAL;
2039 }
2040 
2041 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2042                                     struct kvm_mp_state *mp_state)
2043 {
2044 	return -EINVAL;
2045 }
2046 
2047 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2048 			       unsigned int ioctl, unsigned long arg)
2049 {
2050 	struct kvm_vcpu *vcpu = filp->private_data;
2051 	void __user *argp = (void __user *)arg;
2052 
2053 	if (ioctl == KVM_INTERRUPT) {
2054 		struct kvm_interrupt irq;
2055 		if (copy_from_user(&irq, argp, sizeof(irq)))
2056 			return -EFAULT;
2057 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2058 	}
2059 	return -ENOIOCTLCMD;
2060 }
2061 
2062 long kvm_arch_vcpu_ioctl(struct file *filp,
2063                          unsigned int ioctl, unsigned long arg)
2064 {
2065 	struct kvm_vcpu *vcpu = filp->private_data;
2066 	void __user *argp = (void __user *)arg;
2067 	long r;
2068 
2069 	switch (ioctl) {
2070 	case KVM_ENABLE_CAP:
2071 	{
2072 		struct kvm_enable_cap cap;
2073 		r = -EFAULT;
2074 		if (copy_from_user(&cap, argp, sizeof(cap)))
2075 			goto out;
2076 		vcpu_load(vcpu);
2077 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2078 		vcpu_put(vcpu);
2079 		break;
2080 	}
2081 
2082 	case KVM_SET_ONE_REG:
2083 	case KVM_GET_ONE_REG:
2084 	{
2085 		struct kvm_one_reg reg;
2086 		r = -EFAULT;
2087 		if (copy_from_user(&reg, argp, sizeof(reg)))
2088 			goto out;
2089 		if (ioctl == KVM_SET_ONE_REG)
2090 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2091 		else
2092 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2093 		break;
2094 	}
2095 
2096 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2097 	case KVM_DIRTY_TLB: {
2098 		struct kvm_dirty_tlb dirty;
2099 		r = -EFAULT;
2100 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2101 			goto out;
2102 		vcpu_load(vcpu);
2103 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2104 		vcpu_put(vcpu);
2105 		break;
2106 	}
2107 #endif
2108 	default:
2109 		r = -EINVAL;
2110 	}
2111 
2112 out:
2113 	return r;
2114 }
2115 
2116 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2117 {
2118 	return VM_FAULT_SIGBUS;
2119 }
2120 
2121 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2122 {
2123 	u32 inst_nop = 0x60000000;
2124 #ifdef CONFIG_KVM_BOOKE_HV
2125 	u32 inst_sc1 = 0x44000022;
2126 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2127 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2128 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2129 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2130 #else
2131 	u32 inst_lis = 0x3c000000;
2132 	u32 inst_ori = 0x60000000;
2133 	u32 inst_sc = 0x44000002;
2134 	u32 inst_imm_mask = 0xffff;
2135 
2136 	/*
2137 	 * The hypercall to get into KVM from within guest context is as
2138 	 * follows:
2139 	 *
2140 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2141 	 *    ori r0, KVM_SC_MAGIC_R0@l
2142 	 *    sc
2143 	 *    nop
2144 	 */
2145 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2146 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2147 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2148 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2149 #endif
2150 
2151 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2152 
2153 	return 0;
2154 }
2155 
2156 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2157 {
2158 	int ret = 0;
2159 
2160 #ifdef CONFIG_KVM_MPIC
2161 	ret = ret || (kvm->arch.mpic != NULL);
2162 #endif
2163 #ifdef CONFIG_KVM_XICS
2164 	ret = ret || (kvm->arch.xics != NULL);
2165 	ret = ret || (kvm->arch.xive != NULL);
2166 #endif
2167 	smp_rmb();
2168 	return ret;
2169 }
2170 
2171 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2172 			  bool line_status)
2173 {
2174 	if (!kvm_arch_irqchip_in_kernel(kvm))
2175 		return -ENXIO;
2176 
2177 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2178 					irq_event->irq, irq_event->level,
2179 					line_status);
2180 	return 0;
2181 }
2182 
2183 
2184 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2185 			    struct kvm_enable_cap *cap)
2186 {
2187 	int r;
2188 
2189 	if (cap->flags)
2190 		return -EINVAL;
2191 
2192 	switch (cap->cap) {
2193 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2194 	case KVM_CAP_PPC_ENABLE_HCALL: {
2195 		unsigned long hcall = cap->args[0];
2196 
2197 		r = -EINVAL;
2198 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2199 		    cap->args[1] > 1)
2200 			break;
2201 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2202 			break;
2203 		if (cap->args[1])
2204 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2205 		else
2206 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2207 		r = 0;
2208 		break;
2209 	}
2210 	case KVM_CAP_PPC_SMT: {
2211 		unsigned long mode = cap->args[0];
2212 		unsigned long flags = cap->args[1];
2213 
2214 		r = -EINVAL;
2215 		if (kvm->arch.kvm_ops->set_smt_mode)
2216 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2217 		break;
2218 	}
2219 
2220 	case KVM_CAP_PPC_NESTED_HV:
2221 		r = -EINVAL;
2222 		if (!is_kvmppc_hv_enabled(kvm) ||
2223 		    !kvm->arch.kvm_ops->enable_nested)
2224 			break;
2225 		r = kvm->arch.kvm_ops->enable_nested(kvm);
2226 		break;
2227 #endif
2228 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2229 	case KVM_CAP_PPC_SECURE_GUEST:
2230 		r = -EINVAL;
2231 		if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2232 			break;
2233 		r = kvm->arch.kvm_ops->enable_svm(kvm);
2234 		break;
2235 	case KVM_CAP_PPC_DAWR1:
2236 		r = -EINVAL;
2237 		if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2238 			break;
2239 		r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2240 		break;
2241 #endif
2242 	default:
2243 		r = -EINVAL;
2244 		break;
2245 	}
2246 
2247 	return r;
2248 }
2249 
2250 #ifdef CONFIG_PPC_BOOK3S_64
2251 /*
2252  * These functions check whether the underlying hardware is safe
2253  * against attacks based on observing the effects of speculatively
2254  * executed instructions, and whether it supplies instructions for
2255  * use in workarounds.  The information comes from firmware, either
2256  * via the device tree on powernv platforms or from an hcall on
2257  * pseries platforms.
2258  */
2259 #ifdef CONFIG_PPC_PSERIES
2260 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2261 {
2262 	struct h_cpu_char_result c;
2263 	unsigned long rc;
2264 
2265 	if (!machine_is(pseries))
2266 		return -ENOTTY;
2267 
2268 	rc = plpar_get_cpu_characteristics(&c);
2269 	if (rc == H_SUCCESS) {
2270 		cp->character = c.character;
2271 		cp->behaviour = c.behaviour;
2272 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2273 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2274 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2275 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2276 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2277 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2278 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2279 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2280 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2281 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2282 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2283 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2284 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2285 	}
2286 	return 0;
2287 }
2288 #else
2289 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2290 {
2291 	return -ENOTTY;
2292 }
2293 #endif
2294 
2295 static inline bool have_fw_feat(struct device_node *fw_features,
2296 				const char *state, const char *name)
2297 {
2298 	struct device_node *np;
2299 	bool r = false;
2300 
2301 	np = of_get_child_by_name(fw_features, name);
2302 	if (np) {
2303 		r = of_property_read_bool(np, state);
2304 		of_node_put(np);
2305 	}
2306 	return r;
2307 }
2308 
2309 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2310 {
2311 	struct device_node *np, *fw_features;
2312 	int r;
2313 
2314 	memset(cp, 0, sizeof(*cp));
2315 	r = pseries_get_cpu_char(cp);
2316 	if (r != -ENOTTY)
2317 		return r;
2318 
2319 	np = of_find_node_by_name(NULL, "ibm,opal");
2320 	if (np) {
2321 		fw_features = of_get_child_by_name(np, "fw-features");
2322 		of_node_put(np);
2323 		if (!fw_features)
2324 			return 0;
2325 		if (have_fw_feat(fw_features, "enabled",
2326 				 "inst-spec-barrier-ori31,31,0"))
2327 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2328 		if (have_fw_feat(fw_features, "enabled",
2329 				 "fw-bcctrl-serialized"))
2330 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2331 		if (have_fw_feat(fw_features, "enabled",
2332 				 "inst-l1d-flush-ori30,30,0"))
2333 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2334 		if (have_fw_feat(fw_features, "enabled",
2335 				 "inst-l1d-flush-trig2"))
2336 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2337 		if (have_fw_feat(fw_features, "enabled",
2338 				 "fw-l1d-thread-split"))
2339 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2340 		if (have_fw_feat(fw_features, "enabled",
2341 				 "fw-count-cache-disabled"))
2342 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2343 		if (have_fw_feat(fw_features, "enabled",
2344 				 "fw-count-cache-flush-bcctr2,0,0"))
2345 			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2346 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2347 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2348 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2349 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2350 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2351 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2352 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2353 
2354 		if (have_fw_feat(fw_features, "enabled",
2355 				 "speculation-policy-favor-security"))
2356 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2357 		if (!have_fw_feat(fw_features, "disabled",
2358 				  "needs-l1d-flush-msr-pr-0-to-1"))
2359 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2360 		if (!have_fw_feat(fw_features, "disabled",
2361 				  "needs-spec-barrier-for-bound-checks"))
2362 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2363 		if (have_fw_feat(fw_features, "enabled",
2364 				 "needs-count-cache-flush-on-context-switch"))
2365 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2366 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2367 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2368 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2369 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2370 
2371 		of_node_put(fw_features);
2372 	}
2373 
2374 	return 0;
2375 }
2376 #endif
2377 
2378 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2379 {
2380 	struct kvm *kvm __maybe_unused = filp->private_data;
2381 	void __user *argp = (void __user *)arg;
2382 	int r;
2383 
2384 	switch (ioctl) {
2385 	case KVM_PPC_GET_PVINFO: {
2386 		struct kvm_ppc_pvinfo pvinfo;
2387 		memset(&pvinfo, 0, sizeof(pvinfo));
2388 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2389 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2390 			r = -EFAULT;
2391 			goto out;
2392 		}
2393 
2394 		break;
2395 	}
2396 #ifdef CONFIG_SPAPR_TCE_IOMMU
2397 	case KVM_CREATE_SPAPR_TCE_64: {
2398 		struct kvm_create_spapr_tce_64 create_tce_64;
2399 
2400 		r = -EFAULT;
2401 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2402 			goto out;
2403 		if (create_tce_64.flags) {
2404 			r = -EINVAL;
2405 			goto out;
2406 		}
2407 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2408 		goto out;
2409 	}
2410 	case KVM_CREATE_SPAPR_TCE: {
2411 		struct kvm_create_spapr_tce create_tce;
2412 		struct kvm_create_spapr_tce_64 create_tce_64;
2413 
2414 		r = -EFAULT;
2415 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2416 			goto out;
2417 
2418 		create_tce_64.liobn = create_tce.liobn;
2419 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2420 		create_tce_64.offset = 0;
2421 		create_tce_64.size = create_tce.window_size >>
2422 				IOMMU_PAGE_SHIFT_4K;
2423 		create_tce_64.flags = 0;
2424 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2425 		goto out;
2426 	}
2427 #endif
2428 #ifdef CONFIG_PPC_BOOK3S_64
2429 	case KVM_PPC_GET_SMMU_INFO: {
2430 		struct kvm_ppc_smmu_info info;
2431 		struct kvm *kvm = filp->private_data;
2432 
2433 		memset(&info, 0, sizeof(info));
2434 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2435 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2436 			r = -EFAULT;
2437 		break;
2438 	}
2439 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2440 		struct kvm *kvm = filp->private_data;
2441 
2442 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2443 		break;
2444 	}
2445 	case KVM_PPC_CONFIGURE_V3_MMU: {
2446 		struct kvm *kvm = filp->private_data;
2447 		struct kvm_ppc_mmuv3_cfg cfg;
2448 
2449 		r = -EINVAL;
2450 		if (!kvm->arch.kvm_ops->configure_mmu)
2451 			goto out;
2452 		r = -EFAULT;
2453 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2454 			goto out;
2455 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2456 		break;
2457 	}
2458 	case KVM_PPC_GET_RMMU_INFO: {
2459 		struct kvm *kvm = filp->private_data;
2460 		struct kvm_ppc_rmmu_info info;
2461 
2462 		r = -EINVAL;
2463 		if (!kvm->arch.kvm_ops->get_rmmu_info)
2464 			goto out;
2465 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2466 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2467 			r = -EFAULT;
2468 		break;
2469 	}
2470 	case KVM_PPC_GET_CPU_CHAR: {
2471 		struct kvm_ppc_cpu_char cpuchar;
2472 
2473 		r = kvmppc_get_cpu_char(&cpuchar);
2474 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2475 			r = -EFAULT;
2476 		break;
2477 	}
2478 	case KVM_PPC_SVM_OFF: {
2479 		struct kvm *kvm = filp->private_data;
2480 
2481 		r = 0;
2482 		if (!kvm->arch.kvm_ops->svm_off)
2483 			goto out;
2484 
2485 		r = kvm->arch.kvm_ops->svm_off(kvm);
2486 		break;
2487 	}
2488 	default: {
2489 		struct kvm *kvm = filp->private_data;
2490 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2491 	}
2492 #else /* CONFIG_PPC_BOOK3S_64 */
2493 	default:
2494 		r = -ENOTTY;
2495 #endif
2496 	}
2497 out:
2498 	return r;
2499 }
2500 
2501 static DEFINE_IDA(lpid_inuse);
2502 static unsigned long nr_lpids;
2503 
2504 long kvmppc_alloc_lpid(void)
2505 {
2506 	int lpid;
2507 
2508 	/* The host LPID must always be 0 (allocation starts at 1) */
2509 	lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
2510 	if (lpid < 0) {
2511 		if (lpid == -ENOMEM)
2512 			pr_err("%s: Out of memory\n", __func__);
2513 		else
2514 			pr_err("%s: No LPIDs free\n", __func__);
2515 		return -ENOMEM;
2516 	}
2517 
2518 	return lpid;
2519 }
2520 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2521 
2522 void kvmppc_free_lpid(long lpid)
2523 {
2524 	ida_free(&lpid_inuse, lpid);
2525 }
2526 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2527 
2528 /* nr_lpids_param includes the host LPID */
2529 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2530 {
2531 	nr_lpids = nr_lpids_param;
2532 }
2533 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2534 
2535 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2536 
2537 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2538 {
2539 	if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
2540 		vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
2541 }
2542 
2543 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
2544 {
2545 	if (kvm->arch.kvm_ops->create_vm_debugfs)
2546 		kvm->arch.kvm_ops->create_vm_debugfs(kvm);
2547 }
2548