xref: /linux/arch/powerpc/kvm/powerpc.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/irqbypass.h>
31 #include <linux/kvm_irqfd.h>
32 #include <asm/cputable.h>
33 #include <linux/uaccess.h>
34 #include <asm/kvm_ppc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include "timing.h"
40 #include "irq.h"
41 #include "../mm/mmu_decl.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45 
46 struct kvmppc_ops *kvmppc_hv_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
48 struct kvmppc_ops *kvmppc_pr_ops;
49 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
50 
51 
52 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
53 {
54 	return !!(v->arch.pending_exceptions) ||
55 	       v->requests;
56 }
57 
58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
59 {
60 	return 1;
61 }
62 
63 /*
64  * Common checks before entering the guest world.  Call with interrupts
65  * disabled.
66  *
67  * returns:
68  *
69  * == 1 if we're ready to go into guest state
70  * <= 0 if we need to go back to the host with return value
71  */
72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
73 {
74 	int r;
75 
76 	WARN_ON(irqs_disabled());
77 	hard_irq_disable();
78 
79 	while (true) {
80 		if (need_resched()) {
81 			local_irq_enable();
82 			cond_resched();
83 			hard_irq_disable();
84 			continue;
85 		}
86 
87 		if (signal_pending(current)) {
88 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
89 			vcpu->run->exit_reason = KVM_EXIT_INTR;
90 			r = -EINTR;
91 			break;
92 		}
93 
94 		vcpu->mode = IN_GUEST_MODE;
95 
96 		/*
97 		 * Reading vcpu->requests must happen after setting vcpu->mode,
98 		 * so we don't miss a request because the requester sees
99 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
100 		 * before next entering the guest (and thus doesn't IPI).
101 		 * This also orders the write to mode from any reads
102 		 * to the page tables done while the VCPU is running.
103 		 * Please see the comment in kvm_flush_remote_tlbs.
104 		 */
105 		smp_mb();
106 
107 		if (vcpu->requests) {
108 			/* Make sure we process requests preemptable */
109 			local_irq_enable();
110 			trace_kvm_check_requests(vcpu);
111 			r = kvmppc_core_check_requests(vcpu);
112 			hard_irq_disable();
113 			if (r > 0)
114 				continue;
115 			break;
116 		}
117 
118 		if (kvmppc_core_prepare_to_enter(vcpu)) {
119 			/* interrupts got enabled in between, so we
120 			   are back at square 1 */
121 			continue;
122 		}
123 
124 		guest_enter_irqoff();
125 		return 1;
126 	}
127 
128 	/* return to host */
129 	local_irq_enable();
130 	return r;
131 }
132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
133 
134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
136 {
137 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
138 	int i;
139 
140 	shared->sprg0 = swab64(shared->sprg0);
141 	shared->sprg1 = swab64(shared->sprg1);
142 	shared->sprg2 = swab64(shared->sprg2);
143 	shared->sprg3 = swab64(shared->sprg3);
144 	shared->srr0 = swab64(shared->srr0);
145 	shared->srr1 = swab64(shared->srr1);
146 	shared->dar = swab64(shared->dar);
147 	shared->msr = swab64(shared->msr);
148 	shared->dsisr = swab32(shared->dsisr);
149 	shared->int_pending = swab32(shared->int_pending);
150 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
151 		shared->sr[i] = swab32(shared->sr[i]);
152 }
153 #endif
154 
155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
156 {
157 	int nr = kvmppc_get_gpr(vcpu, 11);
158 	int r;
159 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
160 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
161 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
162 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
163 	unsigned long r2 = 0;
164 
165 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
166 		/* 32 bit mode */
167 		param1 &= 0xffffffff;
168 		param2 &= 0xffffffff;
169 		param3 &= 0xffffffff;
170 		param4 &= 0xffffffff;
171 	}
172 
173 	switch (nr) {
174 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
175 	{
176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
177 		/* Book3S can be little endian, find it out here */
178 		int shared_big_endian = true;
179 		if (vcpu->arch.intr_msr & MSR_LE)
180 			shared_big_endian = false;
181 		if (shared_big_endian != vcpu->arch.shared_big_endian)
182 			kvmppc_swab_shared(vcpu);
183 		vcpu->arch.shared_big_endian = shared_big_endian;
184 #endif
185 
186 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
187 			/*
188 			 * Older versions of the Linux magic page code had
189 			 * a bug where they would map their trampoline code
190 			 * NX. If that's the case, remove !PR NX capability.
191 			 */
192 			vcpu->arch.disable_kernel_nx = true;
193 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
194 		}
195 
196 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
197 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
198 
199 #ifdef CONFIG_PPC_64K_PAGES
200 		/*
201 		 * Make sure our 4k magic page is in the same window of a 64k
202 		 * page within the guest and within the host's page.
203 		 */
204 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
205 		    ((ulong)vcpu->arch.shared & 0xf000)) {
206 			void *old_shared = vcpu->arch.shared;
207 			ulong shared = (ulong)vcpu->arch.shared;
208 			void *new_shared;
209 
210 			shared &= PAGE_MASK;
211 			shared |= vcpu->arch.magic_page_pa & 0xf000;
212 			new_shared = (void*)shared;
213 			memcpy(new_shared, old_shared, 0x1000);
214 			vcpu->arch.shared = new_shared;
215 		}
216 #endif
217 
218 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
219 
220 		r = EV_SUCCESS;
221 		break;
222 	}
223 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
224 		r = EV_SUCCESS;
225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
226 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
227 #endif
228 
229 		/* Second return value is in r4 */
230 		break;
231 	case EV_HCALL_TOKEN(EV_IDLE):
232 		r = EV_SUCCESS;
233 		kvm_vcpu_block(vcpu);
234 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
235 		break;
236 	default:
237 		r = EV_UNIMPLEMENTED;
238 		break;
239 	}
240 
241 	kvmppc_set_gpr(vcpu, 4, r2);
242 
243 	return r;
244 }
245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
246 
247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
248 {
249 	int r = false;
250 
251 	/* We have to know what CPU to virtualize */
252 	if (!vcpu->arch.pvr)
253 		goto out;
254 
255 	/* PAPR only works with book3s_64 */
256 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
257 		goto out;
258 
259 	/* HV KVM can only do PAPR mode for now */
260 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
261 		goto out;
262 
263 #ifdef CONFIG_KVM_BOOKE_HV
264 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
265 		goto out;
266 #endif
267 
268 	r = true;
269 
270 out:
271 	vcpu->arch.sane = r;
272 	return r ? 0 : -EINVAL;
273 }
274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
275 
276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
277 {
278 	enum emulation_result er;
279 	int r;
280 
281 	er = kvmppc_emulate_loadstore(vcpu);
282 	switch (er) {
283 	case EMULATE_DONE:
284 		/* Future optimization: only reload non-volatiles if they were
285 		 * actually modified. */
286 		r = RESUME_GUEST_NV;
287 		break;
288 	case EMULATE_AGAIN:
289 		r = RESUME_GUEST;
290 		break;
291 	case EMULATE_DO_MMIO:
292 		run->exit_reason = KVM_EXIT_MMIO;
293 		/* We must reload nonvolatiles because "update" load/store
294 		 * instructions modify register state. */
295 		/* Future optimization: only reload non-volatiles if they were
296 		 * actually modified. */
297 		r = RESUME_HOST_NV;
298 		break;
299 	case EMULATE_FAIL:
300 	{
301 		u32 last_inst;
302 
303 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
304 		/* XXX Deliver Program interrupt to guest. */
305 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
306 		r = RESUME_HOST;
307 		break;
308 	}
309 	default:
310 		WARN_ON(1);
311 		r = RESUME_GUEST;
312 	}
313 
314 	return r;
315 }
316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
317 
318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
319 	      bool data)
320 {
321 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
322 	struct kvmppc_pte pte;
323 	int r;
324 
325 	vcpu->stat.st++;
326 
327 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
328 			 XLATE_WRITE, &pte);
329 	if (r < 0)
330 		return r;
331 
332 	*eaddr = pte.raddr;
333 
334 	if (!pte.may_write)
335 		return -EPERM;
336 
337 	/* Magic page override */
338 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
339 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
340 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
341 		void *magic = vcpu->arch.shared;
342 		magic += pte.eaddr & 0xfff;
343 		memcpy(magic, ptr, size);
344 		return EMULATE_DONE;
345 	}
346 
347 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
348 		return EMULATE_DO_MMIO;
349 
350 	return EMULATE_DONE;
351 }
352 EXPORT_SYMBOL_GPL(kvmppc_st);
353 
354 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
355 		      bool data)
356 {
357 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
358 	struct kvmppc_pte pte;
359 	int rc;
360 
361 	vcpu->stat.ld++;
362 
363 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
364 			  XLATE_READ, &pte);
365 	if (rc)
366 		return rc;
367 
368 	*eaddr = pte.raddr;
369 
370 	if (!pte.may_read)
371 		return -EPERM;
372 
373 	if (!data && !pte.may_execute)
374 		return -ENOEXEC;
375 
376 	/* Magic page override */
377 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
378 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
379 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
380 		void *magic = vcpu->arch.shared;
381 		magic += pte.eaddr & 0xfff;
382 		memcpy(ptr, magic, size);
383 		return EMULATE_DONE;
384 	}
385 
386 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
387 		return EMULATE_DO_MMIO;
388 
389 	return EMULATE_DONE;
390 }
391 EXPORT_SYMBOL_GPL(kvmppc_ld);
392 
393 int kvm_arch_hardware_enable(void)
394 {
395 	return 0;
396 }
397 
398 int kvm_arch_hardware_setup(void)
399 {
400 	return 0;
401 }
402 
403 void kvm_arch_check_processor_compat(void *rtn)
404 {
405 	*(int *)rtn = kvmppc_core_check_processor_compat();
406 }
407 
408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
409 {
410 	struct kvmppc_ops *kvm_ops = NULL;
411 	/*
412 	 * if we have both HV and PR enabled, default is HV
413 	 */
414 	if (type == 0) {
415 		if (kvmppc_hv_ops)
416 			kvm_ops = kvmppc_hv_ops;
417 		else
418 			kvm_ops = kvmppc_pr_ops;
419 		if (!kvm_ops)
420 			goto err_out;
421 	} else	if (type == KVM_VM_PPC_HV) {
422 		if (!kvmppc_hv_ops)
423 			goto err_out;
424 		kvm_ops = kvmppc_hv_ops;
425 	} else if (type == KVM_VM_PPC_PR) {
426 		if (!kvmppc_pr_ops)
427 			goto err_out;
428 		kvm_ops = kvmppc_pr_ops;
429 	} else
430 		goto err_out;
431 
432 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
433 		return -ENOENT;
434 
435 	kvm->arch.kvm_ops = kvm_ops;
436 	return kvmppc_core_init_vm(kvm);
437 err_out:
438 	return -EINVAL;
439 }
440 
441 bool kvm_arch_has_vcpu_debugfs(void)
442 {
443 	return false;
444 }
445 
446 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
447 {
448 	return 0;
449 }
450 
451 void kvm_arch_destroy_vm(struct kvm *kvm)
452 {
453 	unsigned int i;
454 	struct kvm_vcpu *vcpu;
455 
456 #ifdef CONFIG_KVM_XICS
457 	/*
458 	 * We call kick_all_cpus_sync() to ensure that all
459 	 * CPUs have executed any pending IPIs before we
460 	 * continue and free VCPUs structures below.
461 	 */
462 	if (is_kvmppc_hv_enabled(kvm))
463 		kick_all_cpus_sync();
464 #endif
465 
466 	kvm_for_each_vcpu(i, vcpu, kvm)
467 		kvm_arch_vcpu_free(vcpu);
468 
469 	mutex_lock(&kvm->lock);
470 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
471 		kvm->vcpus[i] = NULL;
472 
473 	atomic_set(&kvm->online_vcpus, 0);
474 
475 	kvmppc_core_destroy_vm(kvm);
476 
477 	mutex_unlock(&kvm->lock);
478 
479 	/* drop the module reference */
480 	module_put(kvm->arch.kvm_ops->owner);
481 }
482 
483 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
484 {
485 	int r;
486 	/* Assume we're using HV mode when the HV module is loaded */
487 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
488 
489 	if (kvm) {
490 		/*
491 		 * Hooray - we know which VM type we're running on. Depend on
492 		 * that rather than the guess above.
493 		 */
494 		hv_enabled = is_kvmppc_hv_enabled(kvm);
495 	}
496 
497 	switch (ext) {
498 #ifdef CONFIG_BOOKE
499 	case KVM_CAP_PPC_BOOKE_SREGS:
500 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
501 	case KVM_CAP_PPC_EPR:
502 #else
503 	case KVM_CAP_PPC_SEGSTATE:
504 	case KVM_CAP_PPC_HIOR:
505 	case KVM_CAP_PPC_PAPR:
506 #endif
507 	case KVM_CAP_PPC_UNSET_IRQ:
508 	case KVM_CAP_PPC_IRQ_LEVEL:
509 	case KVM_CAP_ENABLE_CAP:
510 	case KVM_CAP_ENABLE_CAP_VM:
511 	case KVM_CAP_ONE_REG:
512 	case KVM_CAP_IOEVENTFD:
513 	case KVM_CAP_DEVICE_CTRL:
514 	case KVM_CAP_IMMEDIATE_EXIT:
515 		r = 1;
516 		break;
517 	case KVM_CAP_PPC_PAIRED_SINGLES:
518 	case KVM_CAP_PPC_OSI:
519 	case KVM_CAP_PPC_GET_PVINFO:
520 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
521 	case KVM_CAP_SW_TLB:
522 #endif
523 		/* We support this only for PR */
524 		r = !hv_enabled;
525 		break;
526 #ifdef CONFIG_KVM_MMIO
527 	case KVM_CAP_COALESCED_MMIO:
528 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
529 		break;
530 #endif
531 #ifdef CONFIG_KVM_MPIC
532 	case KVM_CAP_IRQ_MPIC:
533 		r = 1;
534 		break;
535 #endif
536 
537 #ifdef CONFIG_PPC_BOOK3S_64
538 	case KVM_CAP_SPAPR_TCE:
539 	case KVM_CAP_SPAPR_TCE_64:
540 	case KVM_CAP_PPC_RTAS:
541 	case KVM_CAP_PPC_FIXUP_HCALL:
542 	case KVM_CAP_PPC_ENABLE_HCALL:
543 #ifdef CONFIG_KVM_XICS
544 	case KVM_CAP_IRQ_XICS:
545 #endif
546 		r = 1;
547 		break;
548 
549 	case KVM_CAP_PPC_ALLOC_HTAB:
550 		r = hv_enabled;
551 		break;
552 #endif /* CONFIG_PPC_BOOK3S_64 */
553 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
554 	case KVM_CAP_PPC_SMT:
555 		r = 0;
556 		if (hv_enabled) {
557 			if (cpu_has_feature(CPU_FTR_ARCH_300))
558 				r = 1;
559 			else
560 				r = threads_per_subcore;
561 		}
562 		break;
563 	case KVM_CAP_PPC_RMA:
564 		r = 0;
565 		break;
566 	case KVM_CAP_PPC_HWRNG:
567 		r = kvmppc_hwrng_present();
568 		break;
569 	case KVM_CAP_PPC_MMU_RADIX:
570 		r = !!(hv_enabled && radix_enabled());
571 		break;
572 	case KVM_CAP_PPC_MMU_HASH_V3:
573 		r = !!(hv_enabled && !radix_enabled() &&
574 		       cpu_has_feature(CPU_FTR_ARCH_300));
575 		break;
576 #endif
577 	case KVM_CAP_SYNC_MMU:
578 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
579 		r = hv_enabled;
580 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
581 		r = 1;
582 #else
583 		r = 0;
584 #endif
585 		break;
586 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
587 	case KVM_CAP_PPC_HTAB_FD:
588 		r = hv_enabled;
589 		break;
590 #endif
591 	case KVM_CAP_NR_VCPUS:
592 		/*
593 		 * Recommending a number of CPUs is somewhat arbitrary; we
594 		 * return the number of present CPUs for -HV (since a host
595 		 * will have secondary threads "offline"), and for other KVM
596 		 * implementations just count online CPUs.
597 		 */
598 		if (hv_enabled)
599 			r = num_present_cpus();
600 		else
601 			r = num_online_cpus();
602 		break;
603 	case KVM_CAP_NR_MEMSLOTS:
604 		r = KVM_USER_MEM_SLOTS;
605 		break;
606 	case KVM_CAP_MAX_VCPUS:
607 		r = KVM_MAX_VCPUS;
608 		break;
609 #ifdef CONFIG_PPC_BOOK3S_64
610 	case KVM_CAP_PPC_GET_SMMU_INFO:
611 		r = 1;
612 		break;
613 	case KVM_CAP_SPAPR_MULTITCE:
614 		r = 1;
615 		break;
616 	case KVM_CAP_SPAPR_RESIZE_HPT:
617 		/* Disable this on POWER9 until code handles new HPTE format */
618 		r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
619 		break;
620 #endif
621 	case KVM_CAP_PPC_HTM:
622 		r = cpu_has_feature(CPU_FTR_TM_COMP) &&
623 		    is_kvmppc_hv_enabled(kvm);
624 		break;
625 	default:
626 		r = 0;
627 		break;
628 	}
629 	return r;
630 
631 }
632 
633 long kvm_arch_dev_ioctl(struct file *filp,
634                         unsigned int ioctl, unsigned long arg)
635 {
636 	return -EINVAL;
637 }
638 
639 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
640 			   struct kvm_memory_slot *dont)
641 {
642 	kvmppc_core_free_memslot(kvm, free, dont);
643 }
644 
645 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
646 			    unsigned long npages)
647 {
648 	return kvmppc_core_create_memslot(kvm, slot, npages);
649 }
650 
651 int kvm_arch_prepare_memory_region(struct kvm *kvm,
652 				   struct kvm_memory_slot *memslot,
653 				   const struct kvm_userspace_memory_region *mem,
654 				   enum kvm_mr_change change)
655 {
656 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
657 }
658 
659 void kvm_arch_commit_memory_region(struct kvm *kvm,
660 				   const struct kvm_userspace_memory_region *mem,
661 				   const struct kvm_memory_slot *old,
662 				   const struct kvm_memory_slot *new,
663 				   enum kvm_mr_change change)
664 {
665 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
666 }
667 
668 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
669 				   struct kvm_memory_slot *slot)
670 {
671 	kvmppc_core_flush_memslot(kvm, slot);
672 }
673 
674 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
675 {
676 	struct kvm_vcpu *vcpu;
677 	vcpu = kvmppc_core_vcpu_create(kvm, id);
678 	if (!IS_ERR(vcpu)) {
679 		vcpu->arch.wqp = &vcpu->wq;
680 		kvmppc_create_vcpu_debugfs(vcpu, id);
681 	}
682 	return vcpu;
683 }
684 
685 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
686 {
687 }
688 
689 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
690 {
691 	/* Make sure we're not using the vcpu anymore */
692 	hrtimer_cancel(&vcpu->arch.dec_timer);
693 
694 	kvmppc_remove_vcpu_debugfs(vcpu);
695 
696 	switch (vcpu->arch.irq_type) {
697 	case KVMPPC_IRQ_MPIC:
698 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
699 		break;
700 	case KVMPPC_IRQ_XICS:
701 		kvmppc_xics_free_icp(vcpu);
702 		break;
703 	}
704 
705 	kvmppc_core_vcpu_free(vcpu);
706 }
707 
708 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
709 {
710 	kvm_arch_vcpu_free(vcpu);
711 }
712 
713 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
714 {
715 	return kvmppc_core_pending_dec(vcpu);
716 }
717 
718 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
719 {
720 	struct kvm_vcpu *vcpu;
721 
722 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
723 	kvmppc_decrementer_func(vcpu);
724 
725 	return HRTIMER_NORESTART;
726 }
727 
728 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
729 {
730 	int ret;
731 
732 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
733 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
734 	vcpu->arch.dec_expires = ~(u64)0;
735 
736 #ifdef CONFIG_KVM_EXIT_TIMING
737 	mutex_init(&vcpu->arch.exit_timing_lock);
738 #endif
739 	ret = kvmppc_subarch_vcpu_init(vcpu);
740 	return ret;
741 }
742 
743 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
744 {
745 	kvmppc_mmu_destroy(vcpu);
746 	kvmppc_subarch_vcpu_uninit(vcpu);
747 }
748 
749 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
750 {
751 #ifdef CONFIG_BOOKE
752 	/*
753 	 * vrsave (formerly usprg0) isn't used by Linux, but may
754 	 * be used by the guest.
755 	 *
756 	 * On non-booke this is associated with Altivec and
757 	 * is handled by code in book3s.c.
758 	 */
759 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
760 #endif
761 	kvmppc_core_vcpu_load(vcpu, cpu);
762 }
763 
764 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
765 {
766 	kvmppc_core_vcpu_put(vcpu);
767 #ifdef CONFIG_BOOKE
768 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
769 #endif
770 }
771 
772 /*
773  * irq_bypass_add_producer and irq_bypass_del_producer are only
774  * useful if the architecture supports PCI passthrough.
775  * irq_bypass_stop and irq_bypass_start are not needed and so
776  * kvm_ops are not defined for them.
777  */
778 bool kvm_arch_has_irq_bypass(void)
779 {
780 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
781 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
782 }
783 
784 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
785 				     struct irq_bypass_producer *prod)
786 {
787 	struct kvm_kernel_irqfd *irqfd =
788 		container_of(cons, struct kvm_kernel_irqfd, consumer);
789 	struct kvm *kvm = irqfd->kvm;
790 
791 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
792 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
793 
794 	return 0;
795 }
796 
797 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
798 				      struct irq_bypass_producer *prod)
799 {
800 	struct kvm_kernel_irqfd *irqfd =
801 		container_of(cons, struct kvm_kernel_irqfd, consumer);
802 	struct kvm *kvm = irqfd->kvm;
803 
804 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
805 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
806 }
807 
808 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
809                                       struct kvm_run *run)
810 {
811 	u64 uninitialized_var(gpr);
812 
813 	if (run->mmio.len > sizeof(gpr)) {
814 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
815 		return;
816 	}
817 
818 	if (!vcpu->arch.mmio_host_swabbed) {
819 		switch (run->mmio.len) {
820 		case 8: gpr = *(u64 *)run->mmio.data; break;
821 		case 4: gpr = *(u32 *)run->mmio.data; break;
822 		case 2: gpr = *(u16 *)run->mmio.data; break;
823 		case 1: gpr = *(u8 *)run->mmio.data; break;
824 		}
825 	} else {
826 		switch (run->mmio.len) {
827 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
828 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
829 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
830 		case 1: gpr = *(u8 *)run->mmio.data; break;
831 		}
832 	}
833 
834 	if (vcpu->arch.mmio_sign_extend) {
835 		switch (run->mmio.len) {
836 #ifdef CONFIG_PPC64
837 		case 4:
838 			gpr = (s64)(s32)gpr;
839 			break;
840 #endif
841 		case 2:
842 			gpr = (s64)(s16)gpr;
843 			break;
844 		case 1:
845 			gpr = (s64)(s8)gpr;
846 			break;
847 		}
848 	}
849 
850 	kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
851 
852 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
853 	case KVM_MMIO_REG_GPR:
854 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
855 		break;
856 	case KVM_MMIO_REG_FPR:
857 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
858 		break;
859 #ifdef CONFIG_PPC_BOOK3S
860 	case KVM_MMIO_REG_QPR:
861 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
862 		break;
863 	case KVM_MMIO_REG_FQPR:
864 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
865 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
866 		break;
867 #endif
868 	default:
869 		BUG();
870 	}
871 }
872 
873 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
874 				unsigned int rt, unsigned int bytes,
875 				int is_default_endian, int sign_extend)
876 {
877 	int idx, ret;
878 	bool host_swabbed;
879 
880 	/* Pity C doesn't have a logical XOR operator */
881 	if (kvmppc_need_byteswap(vcpu)) {
882 		host_swabbed = is_default_endian;
883 	} else {
884 		host_swabbed = !is_default_endian;
885 	}
886 
887 	if (bytes > sizeof(run->mmio.data)) {
888 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
889 		       run->mmio.len);
890 	}
891 
892 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
893 	run->mmio.len = bytes;
894 	run->mmio.is_write = 0;
895 
896 	vcpu->arch.io_gpr = rt;
897 	vcpu->arch.mmio_host_swabbed = host_swabbed;
898 	vcpu->mmio_needed = 1;
899 	vcpu->mmio_is_write = 0;
900 	vcpu->arch.mmio_sign_extend = sign_extend;
901 
902 	idx = srcu_read_lock(&vcpu->kvm->srcu);
903 
904 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
905 			      bytes, &run->mmio.data);
906 
907 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
908 
909 	if (!ret) {
910 		kvmppc_complete_mmio_load(vcpu, run);
911 		vcpu->mmio_needed = 0;
912 		return EMULATE_DONE;
913 	}
914 
915 	return EMULATE_DO_MMIO;
916 }
917 
918 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
919 		       unsigned int rt, unsigned int bytes,
920 		       int is_default_endian)
921 {
922 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
923 }
924 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
925 
926 /* Same as above, but sign extends */
927 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
928 			unsigned int rt, unsigned int bytes,
929 			int is_default_endian)
930 {
931 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
932 }
933 
934 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
935 			u64 val, unsigned int bytes, int is_default_endian)
936 {
937 	void *data = run->mmio.data;
938 	int idx, ret;
939 	bool host_swabbed;
940 
941 	/* Pity C doesn't have a logical XOR operator */
942 	if (kvmppc_need_byteswap(vcpu)) {
943 		host_swabbed = is_default_endian;
944 	} else {
945 		host_swabbed = !is_default_endian;
946 	}
947 
948 	if (bytes > sizeof(run->mmio.data)) {
949 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
950 		       run->mmio.len);
951 	}
952 
953 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
954 	run->mmio.len = bytes;
955 	run->mmio.is_write = 1;
956 	vcpu->mmio_needed = 1;
957 	vcpu->mmio_is_write = 1;
958 
959 	/* Store the value at the lowest bytes in 'data'. */
960 	if (!host_swabbed) {
961 		switch (bytes) {
962 		case 8: *(u64 *)data = val; break;
963 		case 4: *(u32 *)data = val; break;
964 		case 2: *(u16 *)data = val; break;
965 		case 1: *(u8  *)data = val; break;
966 		}
967 	} else {
968 		switch (bytes) {
969 		case 8: *(u64 *)data = swab64(val); break;
970 		case 4: *(u32 *)data = swab32(val); break;
971 		case 2: *(u16 *)data = swab16(val); break;
972 		case 1: *(u8  *)data = val; break;
973 		}
974 	}
975 
976 	idx = srcu_read_lock(&vcpu->kvm->srcu);
977 
978 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
979 			       bytes, &run->mmio.data);
980 
981 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
982 
983 	if (!ret) {
984 		vcpu->mmio_needed = 0;
985 		return EMULATE_DONE;
986 	}
987 
988 	return EMULATE_DO_MMIO;
989 }
990 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
991 
992 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
993 {
994 	int r = 0;
995 	union kvmppc_one_reg val;
996 	int size;
997 
998 	size = one_reg_size(reg->id);
999 	if (size > sizeof(val))
1000 		return -EINVAL;
1001 
1002 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1003 	if (r == -EINVAL) {
1004 		r = 0;
1005 		switch (reg->id) {
1006 #ifdef CONFIG_ALTIVEC
1007 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1008 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1009 				r = -ENXIO;
1010 				break;
1011 			}
1012 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1013 			break;
1014 		case KVM_REG_PPC_VSCR:
1015 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1016 				r = -ENXIO;
1017 				break;
1018 			}
1019 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1020 			break;
1021 		case KVM_REG_PPC_VRSAVE:
1022 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1023 			break;
1024 #endif /* CONFIG_ALTIVEC */
1025 		default:
1026 			r = -EINVAL;
1027 			break;
1028 		}
1029 	}
1030 
1031 	if (r)
1032 		return r;
1033 
1034 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1035 		r = -EFAULT;
1036 
1037 	return r;
1038 }
1039 
1040 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1041 {
1042 	int r;
1043 	union kvmppc_one_reg val;
1044 	int size;
1045 
1046 	size = one_reg_size(reg->id);
1047 	if (size > sizeof(val))
1048 		return -EINVAL;
1049 
1050 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1051 		return -EFAULT;
1052 
1053 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1054 	if (r == -EINVAL) {
1055 		r = 0;
1056 		switch (reg->id) {
1057 #ifdef CONFIG_ALTIVEC
1058 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1059 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1060 				r = -ENXIO;
1061 				break;
1062 			}
1063 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1064 			break;
1065 		case KVM_REG_PPC_VSCR:
1066 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1067 				r = -ENXIO;
1068 				break;
1069 			}
1070 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1071 			break;
1072 		case KVM_REG_PPC_VRSAVE:
1073 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1074 				r = -ENXIO;
1075 				break;
1076 			}
1077 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1078 			break;
1079 #endif /* CONFIG_ALTIVEC */
1080 		default:
1081 			r = -EINVAL;
1082 			break;
1083 		}
1084 	}
1085 
1086 	return r;
1087 }
1088 
1089 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1090 {
1091 	int r;
1092 	sigset_t sigsaved;
1093 
1094 	if (vcpu->sigset_active)
1095 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1096 
1097 	if (vcpu->mmio_needed) {
1098 		if (!vcpu->mmio_is_write)
1099 			kvmppc_complete_mmio_load(vcpu, run);
1100 		vcpu->mmio_needed = 0;
1101 	} else if (vcpu->arch.osi_needed) {
1102 		u64 *gprs = run->osi.gprs;
1103 		int i;
1104 
1105 		for (i = 0; i < 32; i++)
1106 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1107 		vcpu->arch.osi_needed = 0;
1108 	} else if (vcpu->arch.hcall_needed) {
1109 		int i;
1110 
1111 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1112 		for (i = 0; i < 9; ++i)
1113 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1114 		vcpu->arch.hcall_needed = 0;
1115 #ifdef CONFIG_BOOKE
1116 	} else if (vcpu->arch.epr_needed) {
1117 		kvmppc_set_epr(vcpu, run->epr.epr);
1118 		vcpu->arch.epr_needed = 0;
1119 #endif
1120 	}
1121 
1122 	if (run->immediate_exit)
1123 		r = -EINTR;
1124 	else
1125 		r = kvmppc_vcpu_run(run, vcpu);
1126 
1127 	if (vcpu->sigset_active)
1128 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1129 
1130 	return r;
1131 }
1132 
1133 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1134 {
1135 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1136 		kvmppc_core_dequeue_external(vcpu);
1137 		return 0;
1138 	}
1139 
1140 	kvmppc_core_queue_external(vcpu, irq);
1141 
1142 	kvm_vcpu_kick(vcpu);
1143 
1144 	return 0;
1145 }
1146 
1147 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1148 				     struct kvm_enable_cap *cap)
1149 {
1150 	int r;
1151 
1152 	if (cap->flags)
1153 		return -EINVAL;
1154 
1155 	switch (cap->cap) {
1156 	case KVM_CAP_PPC_OSI:
1157 		r = 0;
1158 		vcpu->arch.osi_enabled = true;
1159 		break;
1160 	case KVM_CAP_PPC_PAPR:
1161 		r = 0;
1162 		vcpu->arch.papr_enabled = true;
1163 		break;
1164 	case KVM_CAP_PPC_EPR:
1165 		r = 0;
1166 		if (cap->args[0])
1167 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1168 		else
1169 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1170 		break;
1171 #ifdef CONFIG_BOOKE
1172 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1173 		r = 0;
1174 		vcpu->arch.watchdog_enabled = true;
1175 		break;
1176 #endif
1177 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1178 	case KVM_CAP_SW_TLB: {
1179 		struct kvm_config_tlb cfg;
1180 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1181 
1182 		r = -EFAULT;
1183 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1184 			break;
1185 
1186 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1187 		break;
1188 	}
1189 #endif
1190 #ifdef CONFIG_KVM_MPIC
1191 	case KVM_CAP_IRQ_MPIC: {
1192 		struct fd f;
1193 		struct kvm_device *dev;
1194 
1195 		r = -EBADF;
1196 		f = fdget(cap->args[0]);
1197 		if (!f.file)
1198 			break;
1199 
1200 		r = -EPERM;
1201 		dev = kvm_device_from_filp(f.file);
1202 		if (dev)
1203 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1204 
1205 		fdput(f);
1206 		break;
1207 	}
1208 #endif
1209 #ifdef CONFIG_KVM_XICS
1210 	case KVM_CAP_IRQ_XICS: {
1211 		struct fd f;
1212 		struct kvm_device *dev;
1213 
1214 		r = -EBADF;
1215 		f = fdget(cap->args[0]);
1216 		if (!f.file)
1217 			break;
1218 
1219 		r = -EPERM;
1220 		dev = kvm_device_from_filp(f.file);
1221 		if (dev)
1222 			r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1223 
1224 		fdput(f);
1225 		break;
1226 	}
1227 #endif /* CONFIG_KVM_XICS */
1228 	default:
1229 		r = -EINVAL;
1230 		break;
1231 	}
1232 
1233 	if (!r)
1234 		r = kvmppc_sanity_check(vcpu);
1235 
1236 	return r;
1237 }
1238 
1239 bool kvm_arch_intc_initialized(struct kvm *kvm)
1240 {
1241 #ifdef CONFIG_KVM_MPIC
1242 	if (kvm->arch.mpic)
1243 		return true;
1244 #endif
1245 #ifdef CONFIG_KVM_XICS
1246 	if (kvm->arch.xics)
1247 		return true;
1248 #endif
1249 	return false;
1250 }
1251 
1252 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1253                                     struct kvm_mp_state *mp_state)
1254 {
1255 	return -EINVAL;
1256 }
1257 
1258 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1259                                     struct kvm_mp_state *mp_state)
1260 {
1261 	return -EINVAL;
1262 }
1263 
1264 long kvm_arch_vcpu_ioctl(struct file *filp,
1265                          unsigned int ioctl, unsigned long arg)
1266 {
1267 	struct kvm_vcpu *vcpu = filp->private_data;
1268 	void __user *argp = (void __user *)arg;
1269 	long r;
1270 
1271 	switch (ioctl) {
1272 	case KVM_INTERRUPT: {
1273 		struct kvm_interrupt irq;
1274 		r = -EFAULT;
1275 		if (copy_from_user(&irq, argp, sizeof(irq)))
1276 			goto out;
1277 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1278 		goto out;
1279 	}
1280 
1281 	case KVM_ENABLE_CAP:
1282 	{
1283 		struct kvm_enable_cap cap;
1284 		r = -EFAULT;
1285 		if (copy_from_user(&cap, argp, sizeof(cap)))
1286 			goto out;
1287 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1288 		break;
1289 	}
1290 
1291 	case KVM_SET_ONE_REG:
1292 	case KVM_GET_ONE_REG:
1293 	{
1294 		struct kvm_one_reg reg;
1295 		r = -EFAULT;
1296 		if (copy_from_user(&reg, argp, sizeof(reg)))
1297 			goto out;
1298 		if (ioctl == KVM_SET_ONE_REG)
1299 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1300 		else
1301 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1302 		break;
1303 	}
1304 
1305 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1306 	case KVM_DIRTY_TLB: {
1307 		struct kvm_dirty_tlb dirty;
1308 		r = -EFAULT;
1309 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
1310 			goto out;
1311 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1312 		break;
1313 	}
1314 #endif
1315 	default:
1316 		r = -EINVAL;
1317 	}
1318 
1319 out:
1320 	return r;
1321 }
1322 
1323 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1324 {
1325 	return VM_FAULT_SIGBUS;
1326 }
1327 
1328 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1329 {
1330 	u32 inst_nop = 0x60000000;
1331 #ifdef CONFIG_KVM_BOOKE_HV
1332 	u32 inst_sc1 = 0x44000022;
1333 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1334 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1335 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1336 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1337 #else
1338 	u32 inst_lis = 0x3c000000;
1339 	u32 inst_ori = 0x60000000;
1340 	u32 inst_sc = 0x44000002;
1341 	u32 inst_imm_mask = 0xffff;
1342 
1343 	/*
1344 	 * The hypercall to get into KVM from within guest context is as
1345 	 * follows:
1346 	 *
1347 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
1348 	 *    ori r0, KVM_SC_MAGIC_R0@l
1349 	 *    sc
1350 	 *    nop
1351 	 */
1352 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1353 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1354 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1355 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1356 #endif
1357 
1358 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1359 
1360 	return 0;
1361 }
1362 
1363 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1364 			  bool line_status)
1365 {
1366 	if (!irqchip_in_kernel(kvm))
1367 		return -ENXIO;
1368 
1369 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1370 					irq_event->irq, irq_event->level,
1371 					line_status);
1372 	return 0;
1373 }
1374 
1375 
1376 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1377 				   struct kvm_enable_cap *cap)
1378 {
1379 	int r;
1380 
1381 	if (cap->flags)
1382 		return -EINVAL;
1383 
1384 	switch (cap->cap) {
1385 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1386 	case KVM_CAP_PPC_ENABLE_HCALL: {
1387 		unsigned long hcall = cap->args[0];
1388 
1389 		r = -EINVAL;
1390 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1391 		    cap->args[1] > 1)
1392 			break;
1393 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1394 			break;
1395 		if (cap->args[1])
1396 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1397 		else
1398 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1399 		r = 0;
1400 		break;
1401 	}
1402 #endif
1403 	default:
1404 		r = -EINVAL;
1405 		break;
1406 	}
1407 
1408 	return r;
1409 }
1410 
1411 long kvm_arch_vm_ioctl(struct file *filp,
1412                        unsigned int ioctl, unsigned long arg)
1413 {
1414 	struct kvm *kvm __maybe_unused = filp->private_data;
1415 	void __user *argp = (void __user *)arg;
1416 	long r;
1417 
1418 	switch (ioctl) {
1419 	case KVM_PPC_GET_PVINFO: {
1420 		struct kvm_ppc_pvinfo pvinfo;
1421 		memset(&pvinfo, 0, sizeof(pvinfo));
1422 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1423 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1424 			r = -EFAULT;
1425 			goto out;
1426 		}
1427 
1428 		break;
1429 	}
1430 	case KVM_ENABLE_CAP:
1431 	{
1432 		struct kvm_enable_cap cap;
1433 		r = -EFAULT;
1434 		if (copy_from_user(&cap, argp, sizeof(cap)))
1435 			goto out;
1436 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1437 		break;
1438 	}
1439 #ifdef CONFIG_PPC_BOOK3S_64
1440 	case KVM_CREATE_SPAPR_TCE_64: {
1441 		struct kvm_create_spapr_tce_64 create_tce_64;
1442 
1443 		r = -EFAULT;
1444 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1445 			goto out;
1446 		if (create_tce_64.flags) {
1447 			r = -EINVAL;
1448 			goto out;
1449 		}
1450 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1451 		goto out;
1452 	}
1453 	case KVM_CREATE_SPAPR_TCE: {
1454 		struct kvm_create_spapr_tce create_tce;
1455 		struct kvm_create_spapr_tce_64 create_tce_64;
1456 
1457 		r = -EFAULT;
1458 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1459 			goto out;
1460 
1461 		create_tce_64.liobn = create_tce.liobn;
1462 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1463 		create_tce_64.offset = 0;
1464 		create_tce_64.size = create_tce.window_size >>
1465 				IOMMU_PAGE_SHIFT_4K;
1466 		create_tce_64.flags = 0;
1467 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1468 		goto out;
1469 	}
1470 	case KVM_PPC_GET_SMMU_INFO: {
1471 		struct kvm_ppc_smmu_info info;
1472 		struct kvm *kvm = filp->private_data;
1473 
1474 		memset(&info, 0, sizeof(info));
1475 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1476 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1477 			r = -EFAULT;
1478 		break;
1479 	}
1480 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
1481 		struct kvm *kvm = filp->private_data;
1482 
1483 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1484 		break;
1485 	}
1486 	case KVM_PPC_CONFIGURE_V3_MMU: {
1487 		struct kvm *kvm = filp->private_data;
1488 		struct kvm_ppc_mmuv3_cfg cfg;
1489 
1490 		r = -EINVAL;
1491 		if (!kvm->arch.kvm_ops->configure_mmu)
1492 			goto out;
1493 		r = -EFAULT;
1494 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
1495 			goto out;
1496 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1497 		break;
1498 	}
1499 	case KVM_PPC_GET_RMMU_INFO: {
1500 		struct kvm *kvm = filp->private_data;
1501 		struct kvm_ppc_rmmu_info info;
1502 
1503 		r = -EINVAL;
1504 		if (!kvm->arch.kvm_ops->get_rmmu_info)
1505 			goto out;
1506 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1507 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1508 			r = -EFAULT;
1509 		break;
1510 	}
1511 	default: {
1512 		struct kvm *kvm = filp->private_data;
1513 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1514 	}
1515 #else /* CONFIG_PPC_BOOK3S_64 */
1516 	default:
1517 		r = -ENOTTY;
1518 #endif
1519 	}
1520 out:
1521 	return r;
1522 }
1523 
1524 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1525 static unsigned long nr_lpids;
1526 
1527 long kvmppc_alloc_lpid(void)
1528 {
1529 	long lpid;
1530 
1531 	do {
1532 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1533 		if (lpid >= nr_lpids) {
1534 			pr_err("%s: No LPIDs free\n", __func__);
1535 			return -ENOMEM;
1536 		}
1537 	} while (test_and_set_bit(lpid, lpid_inuse));
1538 
1539 	return lpid;
1540 }
1541 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1542 
1543 void kvmppc_claim_lpid(long lpid)
1544 {
1545 	set_bit(lpid, lpid_inuse);
1546 }
1547 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1548 
1549 void kvmppc_free_lpid(long lpid)
1550 {
1551 	clear_bit(lpid, lpid_inuse);
1552 }
1553 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1554 
1555 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1556 {
1557 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1558 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
1559 }
1560 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1561 
1562 int kvm_arch_init(void *opaque)
1563 {
1564 	return 0;
1565 }
1566 
1567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
1568