1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright IBM Corp. 2007 16 * 17 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 19 */ 20 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/kvm_host.h> 24 #include <linux/vmalloc.h> 25 #include <linux/hrtimer.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/module.h> 30 #include <linux/irqbypass.h> 31 #include <linux/kvm_irqfd.h> 32 #include <asm/cputable.h> 33 #include <linux/uaccess.h> 34 #include <asm/kvm_ppc.h> 35 #include <asm/tlbflush.h> 36 #include <asm/cputhreads.h> 37 #include <asm/irqflags.h> 38 #include <asm/iommu.h> 39 #include "timing.h" 40 #include "irq.h" 41 #include "../mm/mmu_decl.h" 42 43 #define CREATE_TRACE_POINTS 44 #include "trace.h" 45 46 struct kvmppc_ops *kvmppc_hv_ops; 47 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 48 struct kvmppc_ops *kvmppc_pr_ops; 49 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 50 51 52 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 53 { 54 return !!(v->arch.pending_exceptions) || 55 v->requests; 56 } 57 58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 59 { 60 return 1; 61 } 62 63 /* 64 * Common checks before entering the guest world. Call with interrupts 65 * disabled. 66 * 67 * returns: 68 * 69 * == 1 if we're ready to go into guest state 70 * <= 0 if we need to go back to the host with return value 71 */ 72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 73 { 74 int r; 75 76 WARN_ON(irqs_disabled()); 77 hard_irq_disable(); 78 79 while (true) { 80 if (need_resched()) { 81 local_irq_enable(); 82 cond_resched(); 83 hard_irq_disable(); 84 continue; 85 } 86 87 if (signal_pending(current)) { 88 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 89 vcpu->run->exit_reason = KVM_EXIT_INTR; 90 r = -EINTR; 91 break; 92 } 93 94 vcpu->mode = IN_GUEST_MODE; 95 96 /* 97 * Reading vcpu->requests must happen after setting vcpu->mode, 98 * so we don't miss a request because the requester sees 99 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 100 * before next entering the guest (and thus doesn't IPI). 101 * This also orders the write to mode from any reads 102 * to the page tables done while the VCPU is running. 103 * Please see the comment in kvm_flush_remote_tlbs. 104 */ 105 smp_mb(); 106 107 if (vcpu->requests) { 108 /* Make sure we process requests preemptable */ 109 local_irq_enable(); 110 trace_kvm_check_requests(vcpu); 111 r = kvmppc_core_check_requests(vcpu); 112 hard_irq_disable(); 113 if (r > 0) 114 continue; 115 break; 116 } 117 118 if (kvmppc_core_prepare_to_enter(vcpu)) { 119 /* interrupts got enabled in between, so we 120 are back at square 1 */ 121 continue; 122 } 123 124 guest_enter_irqoff(); 125 return 1; 126 } 127 128 /* return to host */ 129 local_irq_enable(); 130 return r; 131 } 132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 133 134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 136 { 137 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 138 int i; 139 140 shared->sprg0 = swab64(shared->sprg0); 141 shared->sprg1 = swab64(shared->sprg1); 142 shared->sprg2 = swab64(shared->sprg2); 143 shared->sprg3 = swab64(shared->sprg3); 144 shared->srr0 = swab64(shared->srr0); 145 shared->srr1 = swab64(shared->srr1); 146 shared->dar = swab64(shared->dar); 147 shared->msr = swab64(shared->msr); 148 shared->dsisr = swab32(shared->dsisr); 149 shared->int_pending = swab32(shared->int_pending); 150 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 151 shared->sr[i] = swab32(shared->sr[i]); 152 } 153 #endif 154 155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 156 { 157 int nr = kvmppc_get_gpr(vcpu, 11); 158 int r; 159 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 160 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 161 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 162 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 163 unsigned long r2 = 0; 164 165 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 166 /* 32 bit mode */ 167 param1 &= 0xffffffff; 168 param2 &= 0xffffffff; 169 param3 &= 0xffffffff; 170 param4 &= 0xffffffff; 171 } 172 173 switch (nr) { 174 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 175 { 176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 177 /* Book3S can be little endian, find it out here */ 178 int shared_big_endian = true; 179 if (vcpu->arch.intr_msr & MSR_LE) 180 shared_big_endian = false; 181 if (shared_big_endian != vcpu->arch.shared_big_endian) 182 kvmppc_swab_shared(vcpu); 183 vcpu->arch.shared_big_endian = shared_big_endian; 184 #endif 185 186 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 187 /* 188 * Older versions of the Linux magic page code had 189 * a bug where they would map their trampoline code 190 * NX. If that's the case, remove !PR NX capability. 191 */ 192 vcpu->arch.disable_kernel_nx = true; 193 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 194 } 195 196 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 197 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 198 199 #ifdef CONFIG_PPC_64K_PAGES 200 /* 201 * Make sure our 4k magic page is in the same window of a 64k 202 * page within the guest and within the host's page. 203 */ 204 if ((vcpu->arch.magic_page_pa & 0xf000) != 205 ((ulong)vcpu->arch.shared & 0xf000)) { 206 void *old_shared = vcpu->arch.shared; 207 ulong shared = (ulong)vcpu->arch.shared; 208 void *new_shared; 209 210 shared &= PAGE_MASK; 211 shared |= vcpu->arch.magic_page_pa & 0xf000; 212 new_shared = (void*)shared; 213 memcpy(new_shared, old_shared, 0x1000); 214 vcpu->arch.shared = new_shared; 215 } 216 #endif 217 218 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 219 220 r = EV_SUCCESS; 221 break; 222 } 223 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 224 r = EV_SUCCESS; 225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 226 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 227 #endif 228 229 /* Second return value is in r4 */ 230 break; 231 case EV_HCALL_TOKEN(EV_IDLE): 232 r = EV_SUCCESS; 233 kvm_vcpu_block(vcpu); 234 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 235 break; 236 default: 237 r = EV_UNIMPLEMENTED; 238 break; 239 } 240 241 kvmppc_set_gpr(vcpu, 4, r2); 242 243 return r; 244 } 245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 246 247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 248 { 249 int r = false; 250 251 /* We have to know what CPU to virtualize */ 252 if (!vcpu->arch.pvr) 253 goto out; 254 255 /* PAPR only works with book3s_64 */ 256 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 257 goto out; 258 259 /* HV KVM can only do PAPR mode for now */ 260 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 261 goto out; 262 263 #ifdef CONFIG_KVM_BOOKE_HV 264 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 265 goto out; 266 #endif 267 268 r = true; 269 270 out: 271 vcpu->arch.sane = r; 272 return r ? 0 : -EINVAL; 273 } 274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 275 276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 277 { 278 enum emulation_result er; 279 int r; 280 281 er = kvmppc_emulate_loadstore(vcpu); 282 switch (er) { 283 case EMULATE_DONE: 284 /* Future optimization: only reload non-volatiles if they were 285 * actually modified. */ 286 r = RESUME_GUEST_NV; 287 break; 288 case EMULATE_AGAIN: 289 r = RESUME_GUEST; 290 break; 291 case EMULATE_DO_MMIO: 292 run->exit_reason = KVM_EXIT_MMIO; 293 /* We must reload nonvolatiles because "update" load/store 294 * instructions modify register state. */ 295 /* Future optimization: only reload non-volatiles if they were 296 * actually modified. */ 297 r = RESUME_HOST_NV; 298 break; 299 case EMULATE_FAIL: 300 { 301 u32 last_inst; 302 303 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 304 /* XXX Deliver Program interrupt to guest. */ 305 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 306 r = RESUME_HOST; 307 break; 308 } 309 default: 310 WARN_ON(1); 311 r = RESUME_GUEST; 312 } 313 314 return r; 315 } 316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 317 318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 319 bool data) 320 { 321 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 322 struct kvmppc_pte pte; 323 int r; 324 325 vcpu->stat.st++; 326 327 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 328 XLATE_WRITE, &pte); 329 if (r < 0) 330 return r; 331 332 *eaddr = pte.raddr; 333 334 if (!pte.may_write) 335 return -EPERM; 336 337 /* Magic page override */ 338 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 339 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 340 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 341 void *magic = vcpu->arch.shared; 342 magic += pte.eaddr & 0xfff; 343 memcpy(magic, ptr, size); 344 return EMULATE_DONE; 345 } 346 347 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 348 return EMULATE_DO_MMIO; 349 350 return EMULATE_DONE; 351 } 352 EXPORT_SYMBOL_GPL(kvmppc_st); 353 354 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 355 bool data) 356 { 357 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 358 struct kvmppc_pte pte; 359 int rc; 360 361 vcpu->stat.ld++; 362 363 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 364 XLATE_READ, &pte); 365 if (rc) 366 return rc; 367 368 *eaddr = pte.raddr; 369 370 if (!pte.may_read) 371 return -EPERM; 372 373 if (!data && !pte.may_execute) 374 return -ENOEXEC; 375 376 /* Magic page override */ 377 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 378 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 379 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 380 void *magic = vcpu->arch.shared; 381 magic += pte.eaddr & 0xfff; 382 memcpy(ptr, magic, size); 383 return EMULATE_DONE; 384 } 385 386 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 387 return EMULATE_DO_MMIO; 388 389 return EMULATE_DONE; 390 } 391 EXPORT_SYMBOL_GPL(kvmppc_ld); 392 393 int kvm_arch_hardware_enable(void) 394 { 395 return 0; 396 } 397 398 int kvm_arch_hardware_setup(void) 399 { 400 return 0; 401 } 402 403 void kvm_arch_check_processor_compat(void *rtn) 404 { 405 *(int *)rtn = kvmppc_core_check_processor_compat(); 406 } 407 408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 409 { 410 struct kvmppc_ops *kvm_ops = NULL; 411 /* 412 * if we have both HV and PR enabled, default is HV 413 */ 414 if (type == 0) { 415 if (kvmppc_hv_ops) 416 kvm_ops = kvmppc_hv_ops; 417 else 418 kvm_ops = kvmppc_pr_ops; 419 if (!kvm_ops) 420 goto err_out; 421 } else if (type == KVM_VM_PPC_HV) { 422 if (!kvmppc_hv_ops) 423 goto err_out; 424 kvm_ops = kvmppc_hv_ops; 425 } else if (type == KVM_VM_PPC_PR) { 426 if (!kvmppc_pr_ops) 427 goto err_out; 428 kvm_ops = kvmppc_pr_ops; 429 } else 430 goto err_out; 431 432 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 433 return -ENOENT; 434 435 kvm->arch.kvm_ops = kvm_ops; 436 return kvmppc_core_init_vm(kvm); 437 err_out: 438 return -EINVAL; 439 } 440 441 bool kvm_arch_has_vcpu_debugfs(void) 442 { 443 return false; 444 } 445 446 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 447 { 448 return 0; 449 } 450 451 void kvm_arch_destroy_vm(struct kvm *kvm) 452 { 453 unsigned int i; 454 struct kvm_vcpu *vcpu; 455 456 #ifdef CONFIG_KVM_XICS 457 /* 458 * We call kick_all_cpus_sync() to ensure that all 459 * CPUs have executed any pending IPIs before we 460 * continue and free VCPUs structures below. 461 */ 462 if (is_kvmppc_hv_enabled(kvm)) 463 kick_all_cpus_sync(); 464 #endif 465 466 kvm_for_each_vcpu(i, vcpu, kvm) 467 kvm_arch_vcpu_free(vcpu); 468 469 mutex_lock(&kvm->lock); 470 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 471 kvm->vcpus[i] = NULL; 472 473 atomic_set(&kvm->online_vcpus, 0); 474 475 kvmppc_core_destroy_vm(kvm); 476 477 mutex_unlock(&kvm->lock); 478 479 /* drop the module reference */ 480 module_put(kvm->arch.kvm_ops->owner); 481 } 482 483 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 484 { 485 int r; 486 /* Assume we're using HV mode when the HV module is loaded */ 487 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 488 489 if (kvm) { 490 /* 491 * Hooray - we know which VM type we're running on. Depend on 492 * that rather than the guess above. 493 */ 494 hv_enabled = is_kvmppc_hv_enabled(kvm); 495 } 496 497 switch (ext) { 498 #ifdef CONFIG_BOOKE 499 case KVM_CAP_PPC_BOOKE_SREGS: 500 case KVM_CAP_PPC_BOOKE_WATCHDOG: 501 case KVM_CAP_PPC_EPR: 502 #else 503 case KVM_CAP_PPC_SEGSTATE: 504 case KVM_CAP_PPC_HIOR: 505 case KVM_CAP_PPC_PAPR: 506 #endif 507 case KVM_CAP_PPC_UNSET_IRQ: 508 case KVM_CAP_PPC_IRQ_LEVEL: 509 case KVM_CAP_ENABLE_CAP: 510 case KVM_CAP_ENABLE_CAP_VM: 511 case KVM_CAP_ONE_REG: 512 case KVM_CAP_IOEVENTFD: 513 case KVM_CAP_DEVICE_CTRL: 514 case KVM_CAP_IMMEDIATE_EXIT: 515 r = 1; 516 break; 517 case KVM_CAP_PPC_PAIRED_SINGLES: 518 case KVM_CAP_PPC_OSI: 519 case KVM_CAP_PPC_GET_PVINFO: 520 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 521 case KVM_CAP_SW_TLB: 522 #endif 523 /* We support this only for PR */ 524 r = !hv_enabled; 525 break; 526 #ifdef CONFIG_KVM_MMIO 527 case KVM_CAP_COALESCED_MMIO: 528 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 529 break; 530 #endif 531 #ifdef CONFIG_KVM_MPIC 532 case KVM_CAP_IRQ_MPIC: 533 r = 1; 534 break; 535 #endif 536 537 #ifdef CONFIG_PPC_BOOK3S_64 538 case KVM_CAP_SPAPR_TCE: 539 case KVM_CAP_SPAPR_TCE_64: 540 case KVM_CAP_PPC_RTAS: 541 case KVM_CAP_PPC_FIXUP_HCALL: 542 case KVM_CAP_PPC_ENABLE_HCALL: 543 #ifdef CONFIG_KVM_XICS 544 case KVM_CAP_IRQ_XICS: 545 #endif 546 r = 1; 547 break; 548 549 case KVM_CAP_PPC_ALLOC_HTAB: 550 r = hv_enabled; 551 break; 552 #endif /* CONFIG_PPC_BOOK3S_64 */ 553 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 554 case KVM_CAP_PPC_SMT: 555 r = 0; 556 if (hv_enabled) { 557 if (cpu_has_feature(CPU_FTR_ARCH_300)) 558 r = 1; 559 else 560 r = threads_per_subcore; 561 } 562 break; 563 case KVM_CAP_PPC_RMA: 564 r = 0; 565 break; 566 case KVM_CAP_PPC_HWRNG: 567 r = kvmppc_hwrng_present(); 568 break; 569 case KVM_CAP_PPC_MMU_RADIX: 570 r = !!(hv_enabled && radix_enabled()); 571 break; 572 case KVM_CAP_PPC_MMU_HASH_V3: 573 r = !!(hv_enabled && !radix_enabled() && 574 cpu_has_feature(CPU_FTR_ARCH_300)); 575 break; 576 #endif 577 case KVM_CAP_SYNC_MMU: 578 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 579 r = hv_enabled; 580 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 581 r = 1; 582 #else 583 r = 0; 584 #endif 585 break; 586 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 587 case KVM_CAP_PPC_HTAB_FD: 588 r = hv_enabled; 589 break; 590 #endif 591 case KVM_CAP_NR_VCPUS: 592 /* 593 * Recommending a number of CPUs is somewhat arbitrary; we 594 * return the number of present CPUs for -HV (since a host 595 * will have secondary threads "offline"), and for other KVM 596 * implementations just count online CPUs. 597 */ 598 if (hv_enabled) 599 r = num_present_cpus(); 600 else 601 r = num_online_cpus(); 602 break; 603 case KVM_CAP_NR_MEMSLOTS: 604 r = KVM_USER_MEM_SLOTS; 605 break; 606 case KVM_CAP_MAX_VCPUS: 607 r = KVM_MAX_VCPUS; 608 break; 609 #ifdef CONFIG_PPC_BOOK3S_64 610 case KVM_CAP_PPC_GET_SMMU_INFO: 611 r = 1; 612 break; 613 case KVM_CAP_SPAPR_MULTITCE: 614 r = 1; 615 break; 616 case KVM_CAP_SPAPR_RESIZE_HPT: 617 /* Disable this on POWER9 until code handles new HPTE format */ 618 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300); 619 break; 620 #endif 621 case KVM_CAP_PPC_HTM: 622 r = cpu_has_feature(CPU_FTR_TM_COMP) && 623 is_kvmppc_hv_enabled(kvm); 624 break; 625 default: 626 r = 0; 627 break; 628 } 629 return r; 630 631 } 632 633 long kvm_arch_dev_ioctl(struct file *filp, 634 unsigned int ioctl, unsigned long arg) 635 { 636 return -EINVAL; 637 } 638 639 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 640 struct kvm_memory_slot *dont) 641 { 642 kvmppc_core_free_memslot(kvm, free, dont); 643 } 644 645 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 646 unsigned long npages) 647 { 648 return kvmppc_core_create_memslot(kvm, slot, npages); 649 } 650 651 int kvm_arch_prepare_memory_region(struct kvm *kvm, 652 struct kvm_memory_slot *memslot, 653 const struct kvm_userspace_memory_region *mem, 654 enum kvm_mr_change change) 655 { 656 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 657 } 658 659 void kvm_arch_commit_memory_region(struct kvm *kvm, 660 const struct kvm_userspace_memory_region *mem, 661 const struct kvm_memory_slot *old, 662 const struct kvm_memory_slot *new, 663 enum kvm_mr_change change) 664 { 665 kvmppc_core_commit_memory_region(kvm, mem, old, new); 666 } 667 668 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 669 struct kvm_memory_slot *slot) 670 { 671 kvmppc_core_flush_memslot(kvm, slot); 672 } 673 674 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 675 { 676 struct kvm_vcpu *vcpu; 677 vcpu = kvmppc_core_vcpu_create(kvm, id); 678 if (!IS_ERR(vcpu)) { 679 vcpu->arch.wqp = &vcpu->wq; 680 kvmppc_create_vcpu_debugfs(vcpu, id); 681 } 682 return vcpu; 683 } 684 685 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 686 { 687 } 688 689 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 690 { 691 /* Make sure we're not using the vcpu anymore */ 692 hrtimer_cancel(&vcpu->arch.dec_timer); 693 694 kvmppc_remove_vcpu_debugfs(vcpu); 695 696 switch (vcpu->arch.irq_type) { 697 case KVMPPC_IRQ_MPIC: 698 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 699 break; 700 case KVMPPC_IRQ_XICS: 701 kvmppc_xics_free_icp(vcpu); 702 break; 703 } 704 705 kvmppc_core_vcpu_free(vcpu); 706 } 707 708 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 709 { 710 kvm_arch_vcpu_free(vcpu); 711 } 712 713 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 714 { 715 return kvmppc_core_pending_dec(vcpu); 716 } 717 718 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 719 { 720 struct kvm_vcpu *vcpu; 721 722 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 723 kvmppc_decrementer_func(vcpu); 724 725 return HRTIMER_NORESTART; 726 } 727 728 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 729 { 730 int ret; 731 732 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 733 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 734 vcpu->arch.dec_expires = ~(u64)0; 735 736 #ifdef CONFIG_KVM_EXIT_TIMING 737 mutex_init(&vcpu->arch.exit_timing_lock); 738 #endif 739 ret = kvmppc_subarch_vcpu_init(vcpu); 740 return ret; 741 } 742 743 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 744 { 745 kvmppc_mmu_destroy(vcpu); 746 kvmppc_subarch_vcpu_uninit(vcpu); 747 } 748 749 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 750 { 751 #ifdef CONFIG_BOOKE 752 /* 753 * vrsave (formerly usprg0) isn't used by Linux, but may 754 * be used by the guest. 755 * 756 * On non-booke this is associated with Altivec and 757 * is handled by code in book3s.c. 758 */ 759 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 760 #endif 761 kvmppc_core_vcpu_load(vcpu, cpu); 762 } 763 764 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 765 { 766 kvmppc_core_vcpu_put(vcpu); 767 #ifdef CONFIG_BOOKE 768 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 769 #endif 770 } 771 772 /* 773 * irq_bypass_add_producer and irq_bypass_del_producer are only 774 * useful if the architecture supports PCI passthrough. 775 * irq_bypass_stop and irq_bypass_start are not needed and so 776 * kvm_ops are not defined for them. 777 */ 778 bool kvm_arch_has_irq_bypass(void) 779 { 780 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 781 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 782 } 783 784 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 785 struct irq_bypass_producer *prod) 786 { 787 struct kvm_kernel_irqfd *irqfd = 788 container_of(cons, struct kvm_kernel_irqfd, consumer); 789 struct kvm *kvm = irqfd->kvm; 790 791 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 792 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 793 794 return 0; 795 } 796 797 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 798 struct irq_bypass_producer *prod) 799 { 800 struct kvm_kernel_irqfd *irqfd = 801 container_of(cons, struct kvm_kernel_irqfd, consumer); 802 struct kvm *kvm = irqfd->kvm; 803 804 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 805 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 806 } 807 808 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 809 struct kvm_run *run) 810 { 811 u64 uninitialized_var(gpr); 812 813 if (run->mmio.len > sizeof(gpr)) { 814 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 815 return; 816 } 817 818 if (!vcpu->arch.mmio_host_swabbed) { 819 switch (run->mmio.len) { 820 case 8: gpr = *(u64 *)run->mmio.data; break; 821 case 4: gpr = *(u32 *)run->mmio.data; break; 822 case 2: gpr = *(u16 *)run->mmio.data; break; 823 case 1: gpr = *(u8 *)run->mmio.data; break; 824 } 825 } else { 826 switch (run->mmio.len) { 827 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 828 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 829 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 830 case 1: gpr = *(u8 *)run->mmio.data; break; 831 } 832 } 833 834 if (vcpu->arch.mmio_sign_extend) { 835 switch (run->mmio.len) { 836 #ifdef CONFIG_PPC64 837 case 4: 838 gpr = (s64)(s32)gpr; 839 break; 840 #endif 841 case 2: 842 gpr = (s64)(s16)gpr; 843 break; 844 case 1: 845 gpr = (s64)(s8)gpr; 846 break; 847 } 848 } 849 850 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 851 852 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 853 case KVM_MMIO_REG_GPR: 854 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 855 break; 856 case KVM_MMIO_REG_FPR: 857 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 858 break; 859 #ifdef CONFIG_PPC_BOOK3S 860 case KVM_MMIO_REG_QPR: 861 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 862 break; 863 case KVM_MMIO_REG_FQPR: 864 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 865 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 866 break; 867 #endif 868 default: 869 BUG(); 870 } 871 } 872 873 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 874 unsigned int rt, unsigned int bytes, 875 int is_default_endian, int sign_extend) 876 { 877 int idx, ret; 878 bool host_swabbed; 879 880 /* Pity C doesn't have a logical XOR operator */ 881 if (kvmppc_need_byteswap(vcpu)) { 882 host_swabbed = is_default_endian; 883 } else { 884 host_swabbed = !is_default_endian; 885 } 886 887 if (bytes > sizeof(run->mmio.data)) { 888 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 889 run->mmio.len); 890 } 891 892 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 893 run->mmio.len = bytes; 894 run->mmio.is_write = 0; 895 896 vcpu->arch.io_gpr = rt; 897 vcpu->arch.mmio_host_swabbed = host_swabbed; 898 vcpu->mmio_needed = 1; 899 vcpu->mmio_is_write = 0; 900 vcpu->arch.mmio_sign_extend = sign_extend; 901 902 idx = srcu_read_lock(&vcpu->kvm->srcu); 903 904 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 905 bytes, &run->mmio.data); 906 907 srcu_read_unlock(&vcpu->kvm->srcu, idx); 908 909 if (!ret) { 910 kvmppc_complete_mmio_load(vcpu, run); 911 vcpu->mmio_needed = 0; 912 return EMULATE_DONE; 913 } 914 915 return EMULATE_DO_MMIO; 916 } 917 918 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 919 unsigned int rt, unsigned int bytes, 920 int is_default_endian) 921 { 922 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 923 } 924 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 925 926 /* Same as above, but sign extends */ 927 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 928 unsigned int rt, unsigned int bytes, 929 int is_default_endian) 930 { 931 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 932 } 933 934 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 935 u64 val, unsigned int bytes, int is_default_endian) 936 { 937 void *data = run->mmio.data; 938 int idx, ret; 939 bool host_swabbed; 940 941 /* Pity C doesn't have a logical XOR operator */ 942 if (kvmppc_need_byteswap(vcpu)) { 943 host_swabbed = is_default_endian; 944 } else { 945 host_swabbed = !is_default_endian; 946 } 947 948 if (bytes > sizeof(run->mmio.data)) { 949 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 950 run->mmio.len); 951 } 952 953 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 954 run->mmio.len = bytes; 955 run->mmio.is_write = 1; 956 vcpu->mmio_needed = 1; 957 vcpu->mmio_is_write = 1; 958 959 /* Store the value at the lowest bytes in 'data'. */ 960 if (!host_swabbed) { 961 switch (bytes) { 962 case 8: *(u64 *)data = val; break; 963 case 4: *(u32 *)data = val; break; 964 case 2: *(u16 *)data = val; break; 965 case 1: *(u8 *)data = val; break; 966 } 967 } else { 968 switch (bytes) { 969 case 8: *(u64 *)data = swab64(val); break; 970 case 4: *(u32 *)data = swab32(val); break; 971 case 2: *(u16 *)data = swab16(val); break; 972 case 1: *(u8 *)data = val; break; 973 } 974 } 975 976 idx = srcu_read_lock(&vcpu->kvm->srcu); 977 978 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 979 bytes, &run->mmio.data); 980 981 srcu_read_unlock(&vcpu->kvm->srcu, idx); 982 983 if (!ret) { 984 vcpu->mmio_needed = 0; 985 return EMULATE_DONE; 986 } 987 988 return EMULATE_DO_MMIO; 989 } 990 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 991 992 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 993 { 994 int r = 0; 995 union kvmppc_one_reg val; 996 int size; 997 998 size = one_reg_size(reg->id); 999 if (size > sizeof(val)) 1000 return -EINVAL; 1001 1002 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1003 if (r == -EINVAL) { 1004 r = 0; 1005 switch (reg->id) { 1006 #ifdef CONFIG_ALTIVEC 1007 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1008 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1009 r = -ENXIO; 1010 break; 1011 } 1012 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1013 break; 1014 case KVM_REG_PPC_VSCR: 1015 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1016 r = -ENXIO; 1017 break; 1018 } 1019 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1020 break; 1021 case KVM_REG_PPC_VRSAVE: 1022 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1023 break; 1024 #endif /* CONFIG_ALTIVEC */ 1025 default: 1026 r = -EINVAL; 1027 break; 1028 } 1029 } 1030 1031 if (r) 1032 return r; 1033 1034 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1035 r = -EFAULT; 1036 1037 return r; 1038 } 1039 1040 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1041 { 1042 int r; 1043 union kvmppc_one_reg val; 1044 int size; 1045 1046 size = one_reg_size(reg->id); 1047 if (size > sizeof(val)) 1048 return -EINVAL; 1049 1050 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1051 return -EFAULT; 1052 1053 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1054 if (r == -EINVAL) { 1055 r = 0; 1056 switch (reg->id) { 1057 #ifdef CONFIG_ALTIVEC 1058 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1059 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1060 r = -ENXIO; 1061 break; 1062 } 1063 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1064 break; 1065 case KVM_REG_PPC_VSCR: 1066 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1067 r = -ENXIO; 1068 break; 1069 } 1070 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1071 break; 1072 case KVM_REG_PPC_VRSAVE: 1073 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1074 r = -ENXIO; 1075 break; 1076 } 1077 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1078 break; 1079 #endif /* CONFIG_ALTIVEC */ 1080 default: 1081 r = -EINVAL; 1082 break; 1083 } 1084 } 1085 1086 return r; 1087 } 1088 1089 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1090 { 1091 int r; 1092 sigset_t sigsaved; 1093 1094 if (vcpu->sigset_active) 1095 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 1096 1097 if (vcpu->mmio_needed) { 1098 if (!vcpu->mmio_is_write) 1099 kvmppc_complete_mmio_load(vcpu, run); 1100 vcpu->mmio_needed = 0; 1101 } else if (vcpu->arch.osi_needed) { 1102 u64 *gprs = run->osi.gprs; 1103 int i; 1104 1105 for (i = 0; i < 32; i++) 1106 kvmppc_set_gpr(vcpu, i, gprs[i]); 1107 vcpu->arch.osi_needed = 0; 1108 } else if (vcpu->arch.hcall_needed) { 1109 int i; 1110 1111 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1112 for (i = 0; i < 9; ++i) 1113 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1114 vcpu->arch.hcall_needed = 0; 1115 #ifdef CONFIG_BOOKE 1116 } else if (vcpu->arch.epr_needed) { 1117 kvmppc_set_epr(vcpu, run->epr.epr); 1118 vcpu->arch.epr_needed = 0; 1119 #endif 1120 } 1121 1122 if (run->immediate_exit) 1123 r = -EINTR; 1124 else 1125 r = kvmppc_vcpu_run(run, vcpu); 1126 1127 if (vcpu->sigset_active) 1128 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1129 1130 return r; 1131 } 1132 1133 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1134 { 1135 if (irq->irq == KVM_INTERRUPT_UNSET) { 1136 kvmppc_core_dequeue_external(vcpu); 1137 return 0; 1138 } 1139 1140 kvmppc_core_queue_external(vcpu, irq); 1141 1142 kvm_vcpu_kick(vcpu); 1143 1144 return 0; 1145 } 1146 1147 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1148 struct kvm_enable_cap *cap) 1149 { 1150 int r; 1151 1152 if (cap->flags) 1153 return -EINVAL; 1154 1155 switch (cap->cap) { 1156 case KVM_CAP_PPC_OSI: 1157 r = 0; 1158 vcpu->arch.osi_enabled = true; 1159 break; 1160 case KVM_CAP_PPC_PAPR: 1161 r = 0; 1162 vcpu->arch.papr_enabled = true; 1163 break; 1164 case KVM_CAP_PPC_EPR: 1165 r = 0; 1166 if (cap->args[0]) 1167 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1168 else 1169 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1170 break; 1171 #ifdef CONFIG_BOOKE 1172 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1173 r = 0; 1174 vcpu->arch.watchdog_enabled = true; 1175 break; 1176 #endif 1177 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1178 case KVM_CAP_SW_TLB: { 1179 struct kvm_config_tlb cfg; 1180 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1181 1182 r = -EFAULT; 1183 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1184 break; 1185 1186 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1187 break; 1188 } 1189 #endif 1190 #ifdef CONFIG_KVM_MPIC 1191 case KVM_CAP_IRQ_MPIC: { 1192 struct fd f; 1193 struct kvm_device *dev; 1194 1195 r = -EBADF; 1196 f = fdget(cap->args[0]); 1197 if (!f.file) 1198 break; 1199 1200 r = -EPERM; 1201 dev = kvm_device_from_filp(f.file); 1202 if (dev) 1203 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1204 1205 fdput(f); 1206 break; 1207 } 1208 #endif 1209 #ifdef CONFIG_KVM_XICS 1210 case KVM_CAP_IRQ_XICS: { 1211 struct fd f; 1212 struct kvm_device *dev; 1213 1214 r = -EBADF; 1215 f = fdget(cap->args[0]); 1216 if (!f.file) 1217 break; 1218 1219 r = -EPERM; 1220 dev = kvm_device_from_filp(f.file); 1221 if (dev) 1222 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1223 1224 fdput(f); 1225 break; 1226 } 1227 #endif /* CONFIG_KVM_XICS */ 1228 default: 1229 r = -EINVAL; 1230 break; 1231 } 1232 1233 if (!r) 1234 r = kvmppc_sanity_check(vcpu); 1235 1236 return r; 1237 } 1238 1239 bool kvm_arch_intc_initialized(struct kvm *kvm) 1240 { 1241 #ifdef CONFIG_KVM_MPIC 1242 if (kvm->arch.mpic) 1243 return true; 1244 #endif 1245 #ifdef CONFIG_KVM_XICS 1246 if (kvm->arch.xics) 1247 return true; 1248 #endif 1249 return false; 1250 } 1251 1252 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1253 struct kvm_mp_state *mp_state) 1254 { 1255 return -EINVAL; 1256 } 1257 1258 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1259 struct kvm_mp_state *mp_state) 1260 { 1261 return -EINVAL; 1262 } 1263 1264 long kvm_arch_vcpu_ioctl(struct file *filp, 1265 unsigned int ioctl, unsigned long arg) 1266 { 1267 struct kvm_vcpu *vcpu = filp->private_data; 1268 void __user *argp = (void __user *)arg; 1269 long r; 1270 1271 switch (ioctl) { 1272 case KVM_INTERRUPT: { 1273 struct kvm_interrupt irq; 1274 r = -EFAULT; 1275 if (copy_from_user(&irq, argp, sizeof(irq))) 1276 goto out; 1277 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 1278 goto out; 1279 } 1280 1281 case KVM_ENABLE_CAP: 1282 { 1283 struct kvm_enable_cap cap; 1284 r = -EFAULT; 1285 if (copy_from_user(&cap, argp, sizeof(cap))) 1286 goto out; 1287 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 1288 break; 1289 } 1290 1291 case KVM_SET_ONE_REG: 1292 case KVM_GET_ONE_REG: 1293 { 1294 struct kvm_one_reg reg; 1295 r = -EFAULT; 1296 if (copy_from_user(®, argp, sizeof(reg))) 1297 goto out; 1298 if (ioctl == KVM_SET_ONE_REG) 1299 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 1300 else 1301 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 1302 break; 1303 } 1304 1305 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1306 case KVM_DIRTY_TLB: { 1307 struct kvm_dirty_tlb dirty; 1308 r = -EFAULT; 1309 if (copy_from_user(&dirty, argp, sizeof(dirty))) 1310 goto out; 1311 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 1312 break; 1313 } 1314 #endif 1315 default: 1316 r = -EINVAL; 1317 } 1318 1319 out: 1320 return r; 1321 } 1322 1323 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1324 { 1325 return VM_FAULT_SIGBUS; 1326 } 1327 1328 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 1329 { 1330 u32 inst_nop = 0x60000000; 1331 #ifdef CONFIG_KVM_BOOKE_HV 1332 u32 inst_sc1 = 0x44000022; 1333 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 1334 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 1335 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 1336 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1337 #else 1338 u32 inst_lis = 0x3c000000; 1339 u32 inst_ori = 0x60000000; 1340 u32 inst_sc = 0x44000002; 1341 u32 inst_imm_mask = 0xffff; 1342 1343 /* 1344 * The hypercall to get into KVM from within guest context is as 1345 * follows: 1346 * 1347 * lis r0, r0, KVM_SC_MAGIC_R0@h 1348 * ori r0, KVM_SC_MAGIC_R0@l 1349 * sc 1350 * nop 1351 */ 1352 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 1353 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 1354 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 1355 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1356 #endif 1357 1358 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 1359 1360 return 0; 1361 } 1362 1363 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 1364 bool line_status) 1365 { 1366 if (!irqchip_in_kernel(kvm)) 1367 return -ENXIO; 1368 1369 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1370 irq_event->irq, irq_event->level, 1371 line_status); 1372 return 0; 1373 } 1374 1375 1376 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1377 struct kvm_enable_cap *cap) 1378 { 1379 int r; 1380 1381 if (cap->flags) 1382 return -EINVAL; 1383 1384 switch (cap->cap) { 1385 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 1386 case KVM_CAP_PPC_ENABLE_HCALL: { 1387 unsigned long hcall = cap->args[0]; 1388 1389 r = -EINVAL; 1390 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 1391 cap->args[1] > 1) 1392 break; 1393 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 1394 break; 1395 if (cap->args[1]) 1396 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 1397 else 1398 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 1399 r = 0; 1400 break; 1401 } 1402 #endif 1403 default: 1404 r = -EINVAL; 1405 break; 1406 } 1407 1408 return r; 1409 } 1410 1411 long kvm_arch_vm_ioctl(struct file *filp, 1412 unsigned int ioctl, unsigned long arg) 1413 { 1414 struct kvm *kvm __maybe_unused = filp->private_data; 1415 void __user *argp = (void __user *)arg; 1416 long r; 1417 1418 switch (ioctl) { 1419 case KVM_PPC_GET_PVINFO: { 1420 struct kvm_ppc_pvinfo pvinfo; 1421 memset(&pvinfo, 0, sizeof(pvinfo)); 1422 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 1423 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 1424 r = -EFAULT; 1425 goto out; 1426 } 1427 1428 break; 1429 } 1430 case KVM_ENABLE_CAP: 1431 { 1432 struct kvm_enable_cap cap; 1433 r = -EFAULT; 1434 if (copy_from_user(&cap, argp, sizeof(cap))) 1435 goto out; 1436 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 1437 break; 1438 } 1439 #ifdef CONFIG_PPC_BOOK3S_64 1440 case KVM_CREATE_SPAPR_TCE_64: { 1441 struct kvm_create_spapr_tce_64 create_tce_64; 1442 1443 r = -EFAULT; 1444 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 1445 goto out; 1446 if (create_tce_64.flags) { 1447 r = -EINVAL; 1448 goto out; 1449 } 1450 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 1451 goto out; 1452 } 1453 case KVM_CREATE_SPAPR_TCE: { 1454 struct kvm_create_spapr_tce create_tce; 1455 struct kvm_create_spapr_tce_64 create_tce_64; 1456 1457 r = -EFAULT; 1458 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 1459 goto out; 1460 1461 create_tce_64.liobn = create_tce.liobn; 1462 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 1463 create_tce_64.offset = 0; 1464 create_tce_64.size = create_tce.window_size >> 1465 IOMMU_PAGE_SHIFT_4K; 1466 create_tce_64.flags = 0; 1467 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 1468 goto out; 1469 } 1470 case KVM_PPC_GET_SMMU_INFO: { 1471 struct kvm_ppc_smmu_info info; 1472 struct kvm *kvm = filp->private_data; 1473 1474 memset(&info, 0, sizeof(info)); 1475 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 1476 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 1477 r = -EFAULT; 1478 break; 1479 } 1480 case KVM_PPC_RTAS_DEFINE_TOKEN: { 1481 struct kvm *kvm = filp->private_data; 1482 1483 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 1484 break; 1485 } 1486 case KVM_PPC_CONFIGURE_V3_MMU: { 1487 struct kvm *kvm = filp->private_data; 1488 struct kvm_ppc_mmuv3_cfg cfg; 1489 1490 r = -EINVAL; 1491 if (!kvm->arch.kvm_ops->configure_mmu) 1492 goto out; 1493 r = -EFAULT; 1494 if (copy_from_user(&cfg, argp, sizeof(cfg))) 1495 goto out; 1496 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 1497 break; 1498 } 1499 case KVM_PPC_GET_RMMU_INFO: { 1500 struct kvm *kvm = filp->private_data; 1501 struct kvm_ppc_rmmu_info info; 1502 1503 r = -EINVAL; 1504 if (!kvm->arch.kvm_ops->get_rmmu_info) 1505 goto out; 1506 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 1507 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 1508 r = -EFAULT; 1509 break; 1510 } 1511 default: { 1512 struct kvm *kvm = filp->private_data; 1513 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 1514 } 1515 #else /* CONFIG_PPC_BOOK3S_64 */ 1516 default: 1517 r = -ENOTTY; 1518 #endif 1519 } 1520 out: 1521 return r; 1522 } 1523 1524 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 1525 static unsigned long nr_lpids; 1526 1527 long kvmppc_alloc_lpid(void) 1528 { 1529 long lpid; 1530 1531 do { 1532 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 1533 if (lpid >= nr_lpids) { 1534 pr_err("%s: No LPIDs free\n", __func__); 1535 return -ENOMEM; 1536 } 1537 } while (test_and_set_bit(lpid, lpid_inuse)); 1538 1539 return lpid; 1540 } 1541 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 1542 1543 void kvmppc_claim_lpid(long lpid) 1544 { 1545 set_bit(lpid, lpid_inuse); 1546 } 1547 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 1548 1549 void kvmppc_free_lpid(long lpid) 1550 { 1551 clear_bit(lpid, lpid_inuse); 1552 } 1553 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 1554 1555 void kvmppc_init_lpid(unsigned long nr_lpids_param) 1556 { 1557 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 1558 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 1559 } 1560 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 1561 1562 int kvm_arch_init(void *opaque) 1563 { 1564 return 0; 1565 } 1566 1567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 1568