1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <asm/cputable.h> 23 #include <linux/uaccess.h> 24 #include <asm/kvm_ppc.h> 25 #include <asm/cputhreads.h> 26 #include <asm/irqflags.h> 27 #include <asm/iommu.h> 28 #include <asm/switch_to.h> 29 #include <asm/xive.h> 30 #ifdef CONFIG_PPC_PSERIES 31 #include <asm/hvcall.h> 32 #include <asm/plpar_wrappers.h> 33 #endif 34 35 #include "timing.h" 36 #include "irq.h" 37 #include "../mm/mmu_decl.h" 38 39 #define CREATE_TRACE_POINTS 40 #include "trace.h" 41 42 struct kvmppc_ops *kvmppc_hv_ops; 43 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 44 struct kvmppc_ops *kvmppc_pr_ops; 45 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 46 47 48 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 49 { 50 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 51 } 52 53 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 54 { 55 return false; 56 } 57 58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 59 { 60 return 1; 61 } 62 63 /* 64 * Common checks before entering the guest world. Call with interrupts 65 * disabled. 66 * 67 * returns: 68 * 69 * == 1 if we're ready to go into guest state 70 * <= 0 if we need to go back to the host with return value 71 */ 72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 73 { 74 int r; 75 76 WARN_ON(irqs_disabled()); 77 hard_irq_disable(); 78 79 while (true) { 80 if (need_resched()) { 81 local_irq_enable(); 82 cond_resched(); 83 hard_irq_disable(); 84 continue; 85 } 86 87 if (signal_pending(current)) { 88 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 89 vcpu->run->exit_reason = KVM_EXIT_INTR; 90 r = -EINTR; 91 break; 92 } 93 94 vcpu->mode = IN_GUEST_MODE; 95 96 /* 97 * Reading vcpu->requests must happen after setting vcpu->mode, 98 * so we don't miss a request because the requester sees 99 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 100 * before next entering the guest (and thus doesn't IPI). 101 * This also orders the write to mode from any reads 102 * to the page tables done while the VCPU is running. 103 * Please see the comment in kvm_flush_remote_tlbs. 104 */ 105 smp_mb(); 106 107 if (kvm_request_pending(vcpu)) { 108 /* Make sure we process requests preemptable */ 109 local_irq_enable(); 110 trace_kvm_check_requests(vcpu); 111 r = kvmppc_core_check_requests(vcpu); 112 hard_irq_disable(); 113 if (r > 0) 114 continue; 115 break; 116 } 117 118 if (kvmppc_core_prepare_to_enter(vcpu)) { 119 /* interrupts got enabled in between, so we 120 are back at square 1 */ 121 continue; 122 } 123 124 guest_enter_irqoff(); 125 return 1; 126 } 127 128 /* return to host */ 129 local_irq_enable(); 130 return r; 131 } 132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 133 134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 136 { 137 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 138 int i; 139 140 shared->sprg0 = swab64(shared->sprg0); 141 shared->sprg1 = swab64(shared->sprg1); 142 shared->sprg2 = swab64(shared->sprg2); 143 shared->sprg3 = swab64(shared->sprg3); 144 shared->srr0 = swab64(shared->srr0); 145 shared->srr1 = swab64(shared->srr1); 146 shared->dar = swab64(shared->dar); 147 shared->msr = swab64(shared->msr); 148 shared->dsisr = swab32(shared->dsisr); 149 shared->int_pending = swab32(shared->int_pending); 150 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 151 shared->sr[i] = swab32(shared->sr[i]); 152 } 153 #endif 154 155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 156 { 157 int nr = kvmppc_get_gpr(vcpu, 11); 158 int r; 159 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 160 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 161 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 162 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 163 unsigned long r2 = 0; 164 165 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 166 /* 32 bit mode */ 167 param1 &= 0xffffffff; 168 param2 &= 0xffffffff; 169 param3 &= 0xffffffff; 170 param4 &= 0xffffffff; 171 } 172 173 switch (nr) { 174 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 175 { 176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 177 /* Book3S can be little endian, find it out here */ 178 int shared_big_endian = true; 179 if (vcpu->arch.intr_msr & MSR_LE) 180 shared_big_endian = false; 181 if (shared_big_endian != vcpu->arch.shared_big_endian) 182 kvmppc_swab_shared(vcpu); 183 vcpu->arch.shared_big_endian = shared_big_endian; 184 #endif 185 186 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 187 /* 188 * Older versions of the Linux magic page code had 189 * a bug where they would map their trampoline code 190 * NX. If that's the case, remove !PR NX capability. 191 */ 192 vcpu->arch.disable_kernel_nx = true; 193 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 194 } 195 196 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 197 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 198 199 #ifdef CONFIG_PPC_64K_PAGES 200 /* 201 * Make sure our 4k magic page is in the same window of a 64k 202 * page within the guest and within the host's page. 203 */ 204 if ((vcpu->arch.magic_page_pa & 0xf000) != 205 ((ulong)vcpu->arch.shared & 0xf000)) { 206 void *old_shared = vcpu->arch.shared; 207 ulong shared = (ulong)vcpu->arch.shared; 208 void *new_shared; 209 210 shared &= PAGE_MASK; 211 shared |= vcpu->arch.magic_page_pa & 0xf000; 212 new_shared = (void*)shared; 213 memcpy(new_shared, old_shared, 0x1000); 214 vcpu->arch.shared = new_shared; 215 } 216 #endif 217 218 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 219 220 r = EV_SUCCESS; 221 break; 222 } 223 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 224 r = EV_SUCCESS; 225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 226 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 227 #endif 228 229 /* Second return value is in r4 */ 230 break; 231 case EV_HCALL_TOKEN(EV_IDLE): 232 r = EV_SUCCESS; 233 kvm_vcpu_block(vcpu); 234 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 235 break; 236 default: 237 r = EV_UNIMPLEMENTED; 238 break; 239 } 240 241 kvmppc_set_gpr(vcpu, 4, r2); 242 243 return r; 244 } 245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 246 247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 248 { 249 int r = false; 250 251 /* We have to know what CPU to virtualize */ 252 if (!vcpu->arch.pvr) 253 goto out; 254 255 /* PAPR only works with book3s_64 */ 256 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 257 goto out; 258 259 /* HV KVM can only do PAPR mode for now */ 260 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 261 goto out; 262 263 #ifdef CONFIG_KVM_BOOKE_HV 264 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 265 goto out; 266 #endif 267 268 r = true; 269 270 out: 271 vcpu->arch.sane = r; 272 return r ? 0 : -EINVAL; 273 } 274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 275 276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 277 { 278 enum emulation_result er; 279 int r; 280 281 er = kvmppc_emulate_loadstore(vcpu); 282 switch (er) { 283 case EMULATE_DONE: 284 /* Future optimization: only reload non-volatiles if they were 285 * actually modified. */ 286 r = RESUME_GUEST_NV; 287 break; 288 case EMULATE_AGAIN: 289 r = RESUME_GUEST; 290 break; 291 case EMULATE_DO_MMIO: 292 run->exit_reason = KVM_EXIT_MMIO; 293 /* We must reload nonvolatiles because "update" load/store 294 * instructions modify register state. */ 295 /* Future optimization: only reload non-volatiles if they were 296 * actually modified. */ 297 r = RESUME_HOST_NV; 298 break; 299 case EMULATE_FAIL: 300 { 301 u32 last_inst; 302 303 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 304 /* XXX Deliver Program interrupt to guest. */ 305 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 306 r = RESUME_HOST; 307 break; 308 } 309 default: 310 WARN_ON(1); 311 r = RESUME_GUEST; 312 } 313 314 return r; 315 } 316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 317 318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 319 bool data) 320 { 321 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 322 struct kvmppc_pte pte; 323 int r = -EINVAL; 324 325 vcpu->stat.st++; 326 327 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 328 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 329 size); 330 331 if ((!r) || (r == -EAGAIN)) 332 return r; 333 334 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 335 XLATE_WRITE, &pte); 336 if (r < 0) 337 return r; 338 339 *eaddr = pte.raddr; 340 341 if (!pte.may_write) 342 return -EPERM; 343 344 /* Magic page override */ 345 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 346 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 347 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 348 void *magic = vcpu->arch.shared; 349 magic += pte.eaddr & 0xfff; 350 memcpy(magic, ptr, size); 351 return EMULATE_DONE; 352 } 353 354 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 355 return EMULATE_DO_MMIO; 356 357 return EMULATE_DONE; 358 } 359 EXPORT_SYMBOL_GPL(kvmppc_st); 360 361 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 362 bool data) 363 { 364 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 365 struct kvmppc_pte pte; 366 int rc = -EINVAL; 367 368 vcpu->stat.ld++; 369 370 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 371 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 372 size); 373 374 if ((!rc) || (rc == -EAGAIN)) 375 return rc; 376 377 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 378 XLATE_READ, &pte); 379 if (rc) 380 return rc; 381 382 *eaddr = pte.raddr; 383 384 if (!pte.may_read) 385 return -EPERM; 386 387 if (!data && !pte.may_execute) 388 return -ENOEXEC; 389 390 /* Magic page override */ 391 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 392 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 393 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 394 void *magic = vcpu->arch.shared; 395 magic += pte.eaddr & 0xfff; 396 memcpy(ptr, magic, size); 397 return EMULATE_DONE; 398 } 399 400 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 401 return EMULATE_DO_MMIO; 402 403 return EMULATE_DONE; 404 } 405 EXPORT_SYMBOL_GPL(kvmppc_ld); 406 407 int kvm_arch_hardware_enable(void) 408 { 409 return 0; 410 } 411 412 int kvm_arch_hardware_setup(void) 413 { 414 return 0; 415 } 416 417 void kvm_arch_check_processor_compat(void *rtn) 418 { 419 *(int *)rtn = kvmppc_core_check_processor_compat(); 420 } 421 422 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 423 { 424 struct kvmppc_ops *kvm_ops = NULL; 425 /* 426 * if we have both HV and PR enabled, default is HV 427 */ 428 if (type == 0) { 429 if (kvmppc_hv_ops) 430 kvm_ops = kvmppc_hv_ops; 431 else 432 kvm_ops = kvmppc_pr_ops; 433 if (!kvm_ops) 434 goto err_out; 435 } else if (type == KVM_VM_PPC_HV) { 436 if (!kvmppc_hv_ops) 437 goto err_out; 438 kvm_ops = kvmppc_hv_ops; 439 } else if (type == KVM_VM_PPC_PR) { 440 if (!kvmppc_pr_ops) 441 goto err_out; 442 kvm_ops = kvmppc_pr_ops; 443 } else 444 goto err_out; 445 446 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 447 return -ENOENT; 448 449 kvm->arch.kvm_ops = kvm_ops; 450 return kvmppc_core_init_vm(kvm); 451 err_out: 452 return -EINVAL; 453 } 454 455 bool kvm_arch_has_vcpu_debugfs(void) 456 { 457 return false; 458 } 459 460 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 461 { 462 return 0; 463 } 464 465 void kvm_arch_destroy_vm(struct kvm *kvm) 466 { 467 unsigned int i; 468 struct kvm_vcpu *vcpu; 469 470 #ifdef CONFIG_KVM_XICS 471 /* 472 * We call kick_all_cpus_sync() to ensure that all 473 * CPUs have executed any pending IPIs before we 474 * continue and free VCPUs structures below. 475 */ 476 if (is_kvmppc_hv_enabled(kvm)) 477 kick_all_cpus_sync(); 478 #endif 479 480 kvm_for_each_vcpu(i, vcpu, kvm) 481 kvm_arch_vcpu_free(vcpu); 482 483 mutex_lock(&kvm->lock); 484 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 485 kvm->vcpus[i] = NULL; 486 487 atomic_set(&kvm->online_vcpus, 0); 488 489 kvmppc_core_destroy_vm(kvm); 490 491 mutex_unlock(&kvm->lock); 492 493 /* drop the module reference */ 494 module_put(kvm->arch.kvm_ops->owner); 495 } 496 497 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 498 { 499 int r; 500 /* Assume we're using HV mode when the HV module is loaded */ 501 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 502 503 if (kvm) { 504 /* 505 * Hooray - we know which VM type we're running on. Depend on 506 * that rather than the guess above. 507 */ 508 hv_enabled = is_kvmppc_hv_enabled(kvm); 509 } 510 511 switch (ext) { 512 #ifdef CONFIG_BOOKE 513 case KVM_CAP_PPC_BOOKE_SREGS: 514 case KVM_CAP_PPC_BOOKE_WATCHDOG: 515 case KVM_CAP_PPC_EPR: 516 #else 517 case KVM_CAP_PPC_SEGSTATE: 518 case KVM_CAP_PPC_HIOR: 519 case KVM_CAP_PPC_PAPR: 520 #endif 521 case KVM_CAP_PPC_UNSET_IRQ: 522 case KVM_CAP_PPC_IRQ_LEVEL: 523 case KVM_CAP_ENABLE_CAP: 524 case KVM_CAP_ONE_REG: 525 case KVM_CAP_IOEVENTFD: 526 case KVM_CAP_DEVICE_CTRL: 527 case KVM_CAP_IMMEDIATE_EXIT: 528 r = 1; 529 break; 530 case KVM_CAP_PPC_PAIRED_SINGLES: 531 case KVM_CAP_PPC_OSI: 532 case KVM_CAP_PPC_GET_PVINFO: 533 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 534 case KVM_CAP_SW_TLB: 535 #endif 536 /* We support this only for PR */ 537 r = !hv_enabled; 538 break; 539 #ifdef CONFIG_KVM_MPIC 540 case KVM_CAP_IRQ_MPIC: 541 r = 1; 542 break; 543 #endif 544 545 #ifdef CONFIG_PPC_BOOK3S_64 546 case KVM_CAP_SPAPR_TCE: 547 case KVM_CAP_SPAPR_TCE_64: 548 r = 1; 549 break; 550 case KVM_CAP_SPAPR_TCE_VFIO: 551 r = !!cpu_has_feature(CPU_FTR_HVMODE); 552 break; 553 case KVM_CAP_PPC_RTAS: 554 case KVM_CAP_PPC_FIXUP_HCALL: 555 case KVM_CAP_PPC_ENABLE_HCALL: 556 #ifdef CONFIG_KVM_XICS 557 case KVM_CAP_IRQ_XICS: 558 #endif 559 case KVM_CAP_PPC_GET_CPU_CHAR: 560 r = 1; 561 break; 562 #ifdef CONFIG_KVM_XIVE 563 case KVM_CAP_PPC_IRQ_XIVE: 564 /* 565 * We need XIVE to be enabled on the platform (implies 566 * a POWER9 processor) and the PowerNV platform, as 567 * nested is not yet supported. 568 */ 569 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE); 570 break; 571 #endif 572 573 case KVM_CAP_PPC_ALLOC_HTAB: 574 r = hv_enabled; 575 break; 576 #endif /* CONFIG_PPC_BOOK3S_64 */ 577 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 578 case KVM_CAP_PPC_SMT: 579 r = 0; 580 if (kvm) { 581 if (kvm->arch.emul_smt_mode > 1) 582 r = kvm->arch.emul_smt_mode; 583 else 584 r = kvm->arch.smt_mode; 585 } else if (hv_enabled) { 586 if (cpu_has_feature(CPU_FTR_ARCH_300)) 587 r = 1; 588 else 589 r = threads_per_subcore; 590 } 591 break; 592 case KVM_CAP_PPC_SMT_POSSIBLE: 593 r = 1; 594 if (hv_enabled) { 595 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 596 r = ((threads_per_subcore << 1) - 1); 597 else 598 /* P9 can emulate dbells, so allow any mode */ 599 r = 8 | 4 | 2 | 1; 600 } 601 break; 602 case KVM_CAP_PPC_RMA: 603 r = 0; 604 break; 605 case KVM_CAP_PPC_HWRNG: 606 r = kvmppc_hwrng_present(); 607 break; 608 case KVM_CAP_PPC_MMU_RADIX: 609 r = !!(hv_enabled && radix_enabled()); 610 break; 611 case KVM_CAP_PPC_MMU_HASH_V3: 612 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) && 613 cpu_has_feature(CPU_FTR_HVMODE)); 614 break; 615 case KVM_CAP_PPC_NESTED_HV: 616 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 617 !kvmppc_hv_ops->enable_nested(NULL)); 618 break; 619 #endif 620 case KVM_CAP_SYNC_MMU: 621 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 622 r = hv_enabled; 623 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 624 r = 1; 625 #else 626 r = 0; 627 #endif 628 break; 629 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 630 case KVM_CAP_PPC_HTAB_FD: 631 r = hv_enabled; 632 break; 633 #endif 634 case KVM_CAP_NR_VCPUS: 635 /* 636 * Recommending a number of CPUs is somewhat arbitrary; we 637 * return the number of present CPUs for -HV (since a host 638 * will have secondary threads "offline"), and for other KVM 639 * implementations just count online CPUs. 640 */ 641 if (hv_enabled) 642 r = num_present_cpus(); 643 else 644 r = num_online_cpus(); 645 break; 646 case KVM_CAP_MAX_VCPUS: 647 r = KVM_MAX_VCPUS; 648 break; 649 case KVM_CAP_MAX_VCPU_ID: 650 r = KVM_MAX_VCPU_ID; 651 break; 652 #ifdef CONFIG_PPC_BOOK3S_64 653 case KVM_CAP_PPC_GET_SMMU_INFO: 654 r = 1; 655 break; 656 case KVM_CAP_SPAPR_MULTITCE: 657 r = 1; 658 break; 659 case KVM_CAP_SPAPR_RESIZE_HPT: 660 r = !!hv_enabled; 661 break; 662 #endif 663 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 664 case KVM_CAP_PPC_FWNMI: 665 r = hv_enabled; 666 break; 667 #endif 668 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 669 case KVM_CAP_PPC_HTM: 670 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 671 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 672 break; 673 #endif 674 default: 675 r = 0; 676 break; 677 } 678 return r; 679 680 } 681 682 long kvm_arch_dev_ioctl(struct file *filp, 683 unsigned int ioctl, unsigned long arg) 684 { 685 return -EINVAL; 686 } 687 688 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 689 struct kvm_memory_slot *dont) 690 { 691 kvmppc_core_free_memslot(kvm, free, dont); 692 } 693 694 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 695 unsigned long npages) 696 { 697 return kvmppc_core_create_memslot(kvm, slot, npages); 698 } 699 700 int kvm_arch_prepare_memory_region(struct kvm *kvm, 701 struct kvm_memory_slot *memslot, 702 const struct kvm_userspace_memory_region *mem, 703 enum kvm_mr_change change) 704 { 705 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 706 } 707 708 void kvm_arch_commit_memory_region(struct kvm *kvm, 709 const struct kvm_userspace_memory_region *mem, 710 const struct kvm_memory_slot *old, 711 const struct kvm_memory_slot *new, 712 enum kvm_mr_change change) 713 { 714 kvmppc_core_commit_memory_region(kvm, mem, old, new, change); 715 } 716 717 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 718 struct kvm_memory_slot *slot) 719 { 720 kvmppc_core_flush_memslot(kvm, slot); 721 } 722 723 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 724 { 725 struct kvm_vcpu *vcpu; 726 vcpu = kvmppc_core_vcpu_create(kvm, id); 727 if (!IS_ERR(vcpu)) { 728 vcpu->arch.wqp = &vcpu->wq; 729 kvmppc_create_vcpu_debugfs(vcpu, id); 730 } 731 return vcpu; 732 } 733 734 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 735 { 736 } 737 738 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 739 { 740 /* Make sure we're not using the vcpu anymore */ 741 hrtimer_cancel(&vcpu->arch.dec_timer); 742 743 kvmppc_remove_vcpu_debugfs(vcpu); 744 745 switch (vcpu->arch.irq_type) { 746 case KVMPPC_IRQ_MPIC: 747 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 748 break; 749 case KVMPPC_IRQ_XICS: 750 if (xics_on_xive()) 751 kvmppc_xive_cleanup_vcpu(vcpu); 752 else 753 kvmppc_xics_free_icp(vcpu); 754 break; 755 case KVMPPC_IRQ_XIVE: 756 kvmppc_xive_native_cleanup_vcpu(vcpu); 757 break; 758 } 759 760 kvmppc_core_vcpu_free(vcpu); 761 } 762 763 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 764 { 765 kvm_arch_vcpu_free(vcpu); 766 } 767 768 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 769 { 770 return kvmppc_core_pending_dec(vcpu); 771 } 772 773 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 774 { 775 struct kvm_vcpu *vcpu; 776 777 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 778 kvmppc_decrementer_func(vcpu); 779 780 return HRTIMER_NORESTART; 781 } 782 783 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 784 { 785 int ret; 786 787 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 788 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 789 vcpu->arch.dec_expires = get_tb(); 790 791 #ifdef CONFIG_KVM_EXIT_TIMING 792 mutex_init(&vcpu->arch.exit_timing_lock); 793 #endif 794 ret = kvmppc_subarch_vcpu_init(vcpu); 795 return ret; 796 } 797 798 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 799 { 800 kvmppc_mmu_destroy(vcpu); 801 kvmppc_subarch_vcpu_uninit(vcpu); 802 } 803 804 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 805 { 806 #ifdef CONFIG_BOOKE 807 /* 808 * vrsave (formerly usprg0) isn't used by Linux, but may 809 * be used by the guest. 810 * 811 * On non-booke this is associated with Altivec and 812 * is handled by code in book3s.c. 813 */ 814 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 815 #endif 816 kvmppc_core_vcpu_load(vcpu, cpu); 817 } 818 819 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 820 { 821 kvmppc_core_vcpu_put(vcpu); 822 #ifdef CONFIG_BOOKE 823 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 824 #endif 825 } 826 827 /* 828 * irq_bypass_add_producer and irq_bypass_del_producer are only 829 * useful if the architecture supports PCI passthrough. 830 * irq_bypass_stop and irq_bypass_start are not needed and so 831 * kvm_ops are not defined for them. 832 */ 833 bool kvm_arch_has_irq_bypass(void) 834 { 835 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 836 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 837 } 838 839 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 840 struct irq_bypass_producer *prod) 841 { 842 struct kvm_kernel_irqfd *irqfd = 843 container_of(cons, struct kvm_kernel_irqfd, consumer); 844 struct kvm *kvm = irqfd->kvm; 845 846 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 847 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 848 849 return 0; 850 } 851 852 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 853 struct irq_bypass_producer *prod) 854 { 855 struct kvm_kernel_irqfd *irqfd = 856 container_of(cons, struct kvm_kernel_irqfd, consumer); 857 struct kvm *kvm = irqfd->kvm; 858 859 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 860 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 861 } 862 863 #ifdef CONFIG_VSX 864 static inline int kvmppc_get_vsr_dword_offset(int index) 865 { 866 int offset; 867 868 if ((index != 0) && (index != 1)) 869 return -1; 870 871 #ifdef __BIG_ENDIAN 872 offset = index; 873 #else 874 offset = 1 - index; 875 #endif 876 877 return offset; 878 } 879 880 static inline int kvmppc_get_vsr_word_offset(int index) 881 { 882 int offset; 883 884 if ((index > 3) || (index < 0)) 885 return -1; 886 887 #ifdef __BIG_ENDIAN 888 offset = index; 889 #else 890 offset = 3 - index; 891 #endif 892 return offset; 893 } 894 895 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 896 u64 gpr) 897 { 898 union kvmppc_one_reg val; 899 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 900 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 901 902 if (offset == -1) 903 return; 904 905 if (index >= 32) { 906 val.vval = VCPU_VSX_VR(vcpu, index - 32); 907 val.vsxval[offset] = gpr; 908 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 909 } else { 910 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 911 } 912 } 913 914 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 915 u64 gpr) 916 { 917 union kvmppc_one_reg val; 918 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 919 920 if (index >= 32) { 921 val.vval = VCPU_VSX_VR(vcpu, index - 32); 922 val.vsxval[0] = gpr; 923 val.vsxval[1] = gpr; 924 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 925 } else { 926 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 927 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 928 } 929 } 930 931 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 932 u32 gpr) 933 { 934 union kvmppc_one_reg val; 935 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 936 937 if (index >= 32) { 938 val.vsx32val[0] = gpr; 939 val.vsx32val[1] = gpr; 940 val.vsx32val[2] = gpr; 941 val.vsx32val[3] = gpr; 942 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 943 } else { 944 val.vsx32val[0] = gpr; 945 val.vsx32val[1] = gpr; 946 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 947 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 948 } 949 } 950 951 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 952 u32 gpr32) 953 { 954 union kvmppc_one_reg val; 955 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 956 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 957 int dword_offset, word_offset; 958 959 if (offset == -1) 960 return; 961 962 if (index >= 32) { 963 val.vval = VCPU_VSX_VR(vcpu, index - 32); 964 val.vsx32val[offset] = gpr32; 965 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 966 } else { 967 dword_offset = offset / 2; 968 word_offset = offset % 2; 969 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 970 val.vsx32val[word_offset] = gpr32; 971 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 972 } 973 } 974 #endif /* CONFIG_VSX */ 975 976 #ifdef CONFIG_ALTIVEC 977 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 978 int index, int element_size) 979 { 980 int offset; 981 int elts = sizeof(vector128)/element_size; 982 983 if ((index < 0) || (index >= elts)) 984 return -1; 985 986 if (kvmppc_need_byteswap(vcpu)) 987 offset = elts - index - 1; 988 else 989 offset = index; 990 991 return offset; 992 } 993 994 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 995 int index) 996 { 997 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 998 } 999 1000 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 1001 int index) 1002 { 1003 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1004 } 1005 1006 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1007 int index) 1008 { 1009 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1010 } 1011 1012 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1013 int index) 1014 { 1015 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1016 } 1017 1018 1019 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1020 u64 gpr) 1021 { 1022 union kvmppc_one_reg val; 1023 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1024 vcpu->arch.mmio_vmx_offset); 1025 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1026 1027 if (offset == -1) 1028 return; 1029 1030 val.vval = VCPU_VSX_VR(vcpu, index); 1031 val.vsxval[offset] = gpr; 1032 VCPU_VSX_VR(vcpu, index) = val.vval; 1033 } 1034 1035 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1036 u32 gpr32) 1037 { 1038 union kvmppc_one_reg val; 1039 int offset = kvmppc_get_vmx_word_offset(vcpu, 1040 vcpu->arch.mmio_vmx_offset); 1041 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1042 1043 if (offset == -1) 1044 return; 1045 1046 val.vval = VCPU_VSX_VR(vcpu, index); 1047 val.vsx32val[offset] = gpr32; 1048 VCPU_VSX_VR(vcpu, index) = val.vval; 1049 } 1050 1051 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1052 u16 gpr16) 1053 { 1054 union kvmppc_one_reg val; 1055 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1056 vcpu->arch.mmio_vmx_offset); 1057 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1058 1059 if (offset == -1) 1060 return; 1061 1062 val.vval = VCPU_VSX_VR(vcpu, index); 1063 val.vsx16val[offset] = gpr16; 1064 VCPU_VSX_VR(vcpu, index) = val.vval; 1065 } 1066 1067 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1068 u8 gpr8) 1069 { 1070 union kvmppc_one_reg val; 1071 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1072 vcpu->arch.mmio_vmx_offset); 1073 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1074 1075 if (offset == -1) 1076 return; 1077 1078 val.vval = VCPU_VSX_VR(vcpu, index); 1079 val.vsx8val[offset] = gpr8; 1080 VCPU_VSX_VR(vcpu, index) = val.vval; 1081 } 1082 #endif /* CONFIG_ALTIVEC */ 1083 1084 #ifdef CONFIG_PPC_FPU 1085 static inline u64 sp_to_dp(u32 fprs) 1086 { 1087 u64 fprd; 1088 1089 preempt_disable(); 1090 enable_kernel_fp(); 1091 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) 1092 : "fr0"); 1093 preempt_enable(); 1094 return fprd; 1095 } 1096 1097 static inline u32 dp_to_sp(u64 fprd) 1098 { 1099 u32 fprs; 1100 1101 preempt_disable(); 1102 enable_kernel_fp(); 1103 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) 1104 : "fr0"); 1105 preempt_enable(); 1106 return fprs; 1107 } 1108 1109 #else 1110 #define sp_to_dp(x) (x) 1111 #define dp_to_sp(x) (x) 1112 #endif /* CONFIG_PPC_FPU */ 1113 1114 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 1115 struct kvm_run *run) 1116 { 1117 u64 uninitialized_var(gpr); 1118 1119 if (run->mmio.len > sizeof(gpr)) { 1120 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1121 return; 1122 } 1123 1124 if (!vcpu->arch.mmio_host_swabbed) { 1125 switch (run->mmio.len) { 1126 case 8: gpr = *(u64 *)run->mmio.data; break; 1127 case 4: gpr = *(u32 *)run->mmio.data; break; 1128 case 2: gpr = *(u16 *)run->mmio.data; break; 1129 case 1: gpr = *(u8 *)run->mmio.data; break; 1130 } 1131 } else { 1132 switch (run->mmio.len) { 1133 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1134 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1135 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1136 case 1: gpr = *(u8 *)run->mmio.data; break; 1137 } 1138 } 1139 1140 /* conversion between single and double precision */ 1141 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1142 gpr = sp_to_dp(gpr); 1143 1144 if (vcpu->arch.mmio_sign_extend) { 1145 switch (run->mmio.len) { 1146 #ifdef CONFIG_PPC64 1147 case 4: 1148 gpr = (s64)(s32)gpr; 1149 break; 1150 #endif 1151 case 2: 1152 gpr = (s64)(s16)gpr; 1153 break; 1154 case 1: 1155 gpr = (s64)(s8)gpr; 1156 break; 1157 } 1158 } 1159 1160 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1161 case KVM_MMIO_REG_GPR: 1162 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1163 break; 1164 case KVM_MMIO_REG_FPR: 1165 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1166 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1167 1168 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1169 break; 1170 #ifdef CONFIG_PPC_BOOK3S 1171 case KVM_MMIO_REG_QPR: 1172 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1173 break; 1174 case KVM_MMIO_REG_FQPR: 1175 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1176 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1177 break; 1178 #endif 1179 #ifdef CONFIG_VSX 1180 case KVM_MMIO_REG_VSX: 1181 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1182 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1183 1184 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1185 kvmppc_set_vsr_dword(vcpu, gpr); 1186 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1187 kvmppc_set_vsr_word(vcpu, gpr); 1188 else if (vcpu->arch.mmio_copy_type == 1189 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1190 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1191 else if (vcpu->arch.mmio_copy_type == 1192 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1193 kvmppc_set_vsr_word_dump(vcpu, gpr); 1194 break; 1195 #endif 1196 #ifdef CONFIG_ALTIVEC 1197 case KVM_MMIO_REG_VMX: 1198 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1199 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1200 1201 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1202 kvmppc_set_vmx_dword(vcpu, gpr); 1203 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1204 kvmppc_set_vmx_word(vcpu, gpr); 1205 else if (vcpu->arch.mmio_copy_type == 1206 KVMPPC_VMX_COPY_HWORD) 1207 kvmppc_set_vmx_hword(vcpu, gpr); 1208 else if (vcpu->arch.mmio_copy_type == 1209 KVMPPC_VMX_COPY_BYTE) 1210 kvmppc_set_vmx_byte(vcpu, gpr); 1211 break; 1212 #endif 1213 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1214 case KVM_MMIO_REG_NESTED_GPR: 1215 if (kvmppc_need_byteswap(vcpu)) 1216 gpr = swab64(gpr); 1217 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1218 sizeof(gpr)); 1219 break; 1220 #endif 1221 default: 1222 BUG(); 1223 } 1224 } 1225 1226 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1227 unsigned int rt, unsigned int bytes, 1228 int is_default_endian, int sign_extend) 1229 { 1230 int idx, ret; 1231 bool host_swabbed; 1232 1233 /* Pity C doesn't have a logical XOR operator */ 1234 if (kvmppc_need_byteswap(vcpu)) { 1235 host_swabbed = is_default_endian; 1236 } else { 1237 host_swabbed = !is_default_endian; 1238 } 1239 1240 if (bytes > sizeof(run->mmio.data)) { 1241 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1242 run->mmio.len); 1243 } 1244 1245 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1246 run->mmio.len = bytes; 1247 run->mmio.is_write = 0; 1248 1249 vcpu->arch.io_gpr = rt; 1250 vcpu->arch.mmio_host_swabbed = host_swabbed; 1251 vcpu->mmio_needed = 1; 1252 vcpu->mmio_is_write = 0; 1253 vcpu->arch.mmio_sign_extend = sign_extend; 1254 1255 idx = srcu_read_lock(&vcpu->kvm->srcu); 1256 1257 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1258 bytes, &run->mmio.data); 1259 1260 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1261 1262 if (!ret) { 1263 kvmppc_complete_mmio_load(vcpu, run); 1264 vcpu->mmio_needed = 0; 1265 return EMULATE_DONE; 1266 } 1267 1268 return EMULATE_DO_MMIO; 1269 } 1270 1271 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1272 unsigned int rt, unsigned int bytes, 1273 int is_default_endian) 1274 { 1275 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 1276 } 1277 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1278 1279 /* Same as above, but sign extends */ 1280 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 1281 unsigned int rt, unsigned int bytes, 1282 int is_default_endian) 1283 { 1284 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 1285 } 1286 1287 #ifdef CONFIG_VSX 1288 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1289 unsigned int rt, unsigned int bytes, 1290 int is_default_endian, int mmio_sign_extend) 1291 { 1292 enum emulation_result emulated = EMULATE_DONE; 1293 1294 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1295 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1296 return EMULATE_FAIL; 1297 1298 while (vcpu->arch.mmio_vsx_copy_nums) { 1299 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1300 is_default_endian, mmio_sign_extend); 1301 1302 if (emulated != EMULATE_DONE) 1303 break; 1304 1305 vcpu->arch.paddr_accessed += run->mmio.len; 1306 1307 vcpu->arch.mmio_vsx_copy_nums--; 1308 vcpu->arch.mmio_vsx_offset++; 1309 } 1310 return emulated; 1311 } 1312 #endif /* CONFIG_VSX */ 1313 1314 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1315 u64 val, unsigned int bytes, int is_default_endian) 1316 { 1317 void *data = run->mmio.data; 1318 int idx, ret; 1319 bool host_swabbed; 1320 1321 /* Pity C doesn't have a logical XOR operator */ 1322 if (kvmppc_need_byteswap(vcpu)) { 1323 host_swabbed = is_default_endian; 1324 } else { 1325 host_swabbed = !is_default_endian; 1326 } 1327 1328 if (bytes > sizeof(run->mmio.data)) { 1329 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1330 run->mmio.len); 1331 } 1332 1333 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1334 run->mmio.len = bytes; 1335 run->mmio.is_write = 1; 1336 vcpu->mmio_needed = 1; 1337 vcpu->mmio_is_write = 1; 1338 1339 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1340 val = dp_to_sp(val); 1341 1342 /* Store the value at the lowest bytes in 'data'. */ 1343 if (!host_swabbed) { 1344 switch (bytes) { 1345 case 8: *(u64 *)data = val; break; 1346 case 4: *(u32 *)data = val; break; 1347 case 2: *(u16 *)data = val; break; 1348 case 1: *(u8 *)data = val; break; 1349 } 1350 } else { 1351 switch (bytes) { 1352 case 8: *(u64 *)data = swab64(val); break; 1353 case 4: *(u32 *)data = swab32(val); break; 1354 case 2: *(u16 *)data = swab16(val); break; 1355 case 1: *(u8 *)data = val; break; 1356 } 1357 } 1358 1359 idx = srcu_read_lock(&vcpu->kvm->srcu); 1360 1361 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1362 bytes, &run->mmio.data); 1363 1364 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1365 1366 if (!ret) { 1367 vcpu->mmio_needed = 0; 1368 return EMULATE_DONE; 1369 } 1370 1371 return EMULATE_DO_MMIO; 1372 } 1373 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1374 1375 #ifdef CONFIG_VSX 1376 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1377 { 1378 u32 dword_offset, word_offset; 1379 union kvmppc_one_reg reg; 1380 int vsx_offset = 0; 1381 int copy_type = vcpu->arch.mmio_copy_type; 1382 int result = 0; 1383 1384 switch (copy_type) { 1385 case KVMPPC_VSX_COPY_DWORD: 1386 vsx_offset = 1387 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1388 1389 if (vsx_offset == -1) { 1390 result = -1; 1391 break; 1392 } 1393 1394 if (rs < 32) { 1395 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1396 } else { 1397 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1398 *val = reg.vsxval[vsx_offset]; 1399 } 1400 break; 1401 1402 case KVMPPC_VSX_COPY_WORD: 1403 vsx_offset = 1404 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1405 1406 if (vsx_offset == -1) { 1407 result = -1; 1408 break; 1409 } 1410 1411 if (rs < 32) { 1412 dword_offset = vsx_offset / 2; 1413 word_offset = vsx_offset % 2; 1414 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1415 *val = reg.vsx32val[word_offset]; 1416 } else { 1417 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1418 *val = reg.vsx32val[vsx_offset]; 1419 } 1420 break; 1421 1422 default: 1423 result = -1; 1424 break; 1425 } 1426 1427 return result; 1428 } 1429 1430 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1431 int rs, unsigned int bytes, int is_default_endian) 1432 { 1433 u64 val; 1434 enum emulation_result emulated = EMULATE_DONE; 1435 1436 vcpu->arch.io_gpr = rs; 1437 1438 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1439 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1440 return EMULATE_FAIL; 1441 1442 while (vcpu->arch.mmio_vsx_copy_nums) { 1443 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1444 return EMULATE_FAIL; 1445 1446 emulated = kvmppc_handle_store(run, vcpu, 1447 val, bytes, is_default_endian); 1448 1449 if (emulated != EMULATE_DONE) 1450 break; 1451 1452 vcpu->arch.paddr_accessed += run->mmio.len; 1453 1454 vcpu->arch.mmio_vsx_copy_nums--; 1455 vcpu->arch.mmio_vsx_offset++; 1456 } 1457 1458 return emulated; 1459 } 1460 1461 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu, 1462 struct kvm_run *run) 1463 { 1464 enum emulation_result emulated = EMULATE_FAIL; 1465 int r; 1466 1467 vcpu->arch.paddr_accessed += run->mmio.len; 1468 1469 if (!vcpu->mmio_is_write) { 1470 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr, 1471 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1472 } else { 1473 emulated = kvmppc_handle_vsx_store(run, vcpu, 1474 vcpu->arch.io_gpr, run->mmio.len, 1); 1475 } 1476 1477 switch (emulated) { 1478 case EMULATE_DO_MMIO: 1479 run->exit_reason = KVM_EXIT_MMIO; 1480 r = RESUME_HOST; 1481 break; 1482 case EMULATE_FAIL: 1483 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1484 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1485 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1486 r = RESUME_HOST; 1487 break; 1488 default: 1489 r = RESUME_GUEST; 1490 break; 1491 } 1492 return r; 1493 } 1494 #endif /* CONFIG_VSX */ 1495 1496 #ifdef CONFIG_ALTIVEC 1497 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1498 unsigned int rt, unsigned int bytes, int is_default_endian) 1499 { 1500 enum emulation_result emulated = EMULATE_DONE; 1501 1502 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1503 return EMULATE_FAIL; 1504 1505 while (vcpu->arch.mmio_vmx_copy_nums) { 1506 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1507 is_default_endian, 0); 1508 1509 if (emulated != EMULATE_DONE) 1510 break; 1511 1512 vcpu->arch.paddr_accessed += run->mmio.len; 1513 vcpu->arch.mmio_vmx_copy_nums--; 1514 vcpu->arch.mmio_vmx_offset++; 1515 } 1516 1517 return emulated; 1518 } 1519 1520 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1521 { 1522 union kvmppc_one_reg reg; 1523 int vmx_offset = 0; 1524 int result = 0; 1525 1526 vmx_offset = 1527 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1528 1529 if (vmx_offset == -1) 1530 return -1; 1531 1532 reg.vval = VCPU_VSX_VR(vcpu, index); 1533 *val = reg.vsxval[vmx_offset]; 1534 1535 return result; 1536 } 1537 1538 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1539 { 1540 union kvmppc_one_reg reg; 1541 int vmx_offset = 0; 1542 int result = 0; 1543 1544 vmx_offset = 1545 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1546 1547 if (vmx_offset == -1) 1548 return -1; 1549 1550 reg.vval = VCPU_VSX_VR(vcpu, index); 1551 *val = reg.vsx32val[vmx_offset]; 1552 1553 return result; 1554 } 1555 1556 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1557 { 1558 union kvmppc_one_reg reg; 1559 int vmx_offset = 0; 1560 int result = 0; 1561 1562 vmx_offset = 1563 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1564 1565 if (vmx_offset == -1) 1566 return -1; 1567 1568 reg.vval = VCPU_VSX_VR(vcpu, index); 1569 *val = reg.vsx16val[vmx_offset]; 1570 1571 return result; 1572 } 1573 1574 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1575 { 1576 union kvmppc_one_reg reg; 1577 int vmx_offset = 0; 1578 int result = 0; 1579 1580 vmx_offset = 1581 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1582 1583 if (vmx_offset == -1) 1584 return -1; 1585 1586 reg.vval = VCPU_VSX_VR(vcpu, index); 1587 *val = reg.vsx8val[vmx_offset]; 1588 1589 return result; 1590 } 1591 1592 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1593 unsigned int rs, unsigned int bytes, int is_default_endian) 1594 { 1595 u64 val = 0; 1596 unsigned int index = rs & KVM_MMIO_REG_MASK; 1597 enum emulation_result emulated = EMULATE_DONE; 1598 1599 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1600 return EMULATE_FAIL; 1601 1602 vcpu->arch.io_gpr = rs; 1603 1604 while (vcpu->arch.mmio_vmx_copy_nums) { 1605 switch (vcpu->arch.mmio_copy_type) { 1606 case KVMPPC_VMX_COPY_DWORD: 1607 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1608 return EMULATE_FAIL; 1609 1610 break; 1611 case KVMPPC_VMX_COPY_WORD: 1612 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1613 return EMULATE_FAIL; 1614 break; 1615 case KVMPPC_VMX_COPY_HWORD: 1616 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1617 return EMULATE_FAIL; 1618 break; 1619 case KVMPPC_VMX_COPY_BYTE: 1620 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1621 return EMULATE_FAIL; 1622 break; 1623 default: 1624 return EMULATE_FAIL; 1625 } 1626 1627 emulated = kvmppc_handle_store(run, vcpu, val, bytes, 1628 is_default_endian); 1629 if (emulated != EMULATE_DONE) 1630 break; 1631 1632 vcpu->arch.paddr_accessed += run->mmio.len; 1633 vcpu->arch.mmio_vmx_copy_nums--; 1634 vcpu->arch.mmio_vmx_offset++; 1635 } 1636 1637 return emulated; 1638 } 1639 1640 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu, 1641 struct kvm_run *run) 1642 { 1643 enum emulation_result emulated = EMULATE_FAIL; 1644 int r; 1645 1646 vcpu->arch.paddr_accessed += run->mmio.len; 1647 1648 if (!vcpu->mmio_is_write) { 1649 emulated = kvmppc_handle_vmx_load(run, vcpu, 1650 vcpu->arch.io_gpr, run->mmio.len, 1); 1651 } else { 1652 emulated = kvmppc_handle_vmx_store(run, vcpu, 1653 vcpu->arch.io_gpr, run->mmio.len, 1); 1654 } 1655 1656 switch (emulated) { 1657 case EMULATE_DO_MMIO: 1658 run->exit_reason = KVM_EXIT_MMIO; 1659 r = RESUME_HOST; 1660 break; 1661 case EMULATE_FAIL: 1662 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1663 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1664 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1665 r = RESUME_HOST; 1666 break; 1667 default: 1668 r = RESUME_GUEST; 1669 break; 1670 } 1671 return r; 1672 } 1673 #endif /* CONFIG_ALTIVEC */ 1674 1675 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1676 { 1677 int r = 0; 1678 union kvmppc_one_reg val; 1679 int size; 1680 1681 size = one_reg_size(reg->id); 1682 if (size > sizeof(val)) 1683 return -EINVAL; 1684 1685 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1686 if (r == -EINVAL) { 1687 r = 0; 1688 switch (reg->id) { 1689 #ifdef CONFIG_ALTIVEC 1690 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1691 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1692 r = -ENXIO; 1693 break; 1694 } 1695 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1696 break; 1697 case KVM_REG_PPC_VSCR: 1698 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1699 r = -ENXIO; 1700 break; 1701 } 1702 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1703 break; 1704 case KVM_REG_PPC_VRSAVE: 1705 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1706 break; 1707 #endif /* CONFIG_ALTIVEC */ 1708 default: 1709 r = -EINVAL; 1710 break; 1711 } 1712 } 1713 1714 if (r) 1715 return r; 1716 1717 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1718 r = -EFAULT; 1719 1720 return r; 1721 } 1722 1723 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1724 { 1725 int r; 1726 union kvmppc_one_reg val; 1727 int size; 1728 1729 size = one_reg_size(reg->id); 1730 if (size > sizeof(val)) 1731 return -EINVAL; 1732 1733 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1734 return -EFAULT; 1735 1736 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1737 if (r == -EINVAL) { 1738 r = 0; 1739 switch (reg->id) { 1740 #ifdef CONFIG_ALTIVEC 1741 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1742 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1743 r = -ENXIO; 1744 break; 1745 } 1746 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1747 break; 1748 case KVM_REG_PPC_VSCR: 1749 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1750 r = -ENXIO; 1751 break; 1752 } 1753 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1754 break; 1755 case KVM_REG_PPC_VRSAVE: 1756 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1757 r = -ENXIO; 1758 break; 1759 } 1760 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1761 break; 1762 #endif /* CONFIG_ALTIVEC */ 1763 default: 1764 r = -EINVAL; 1765 break; 1766 } 1767 } 1768 1769 return r; 1770 } 1771 1772 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1773 { 1774 int r; 1775 1776 vcpu_load(vcpu); 1777 1778 if (vcpu->mmio_needed) { 1779 vcpu->mmio_needed = 0; 1780 if (!vcpu->mmio_is_write) 1781 kvmppc_complete_mmio_load(vcpu, run); 1782 #ifdef CONFIG_VSX 1783 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1784 vcpu->arch.mmio_vsx_copy_nums--; 1785 vcpu->arch.mmio_vsx_offset++; 1786 } 1787 1788 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1789 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run); 1790 if (r == RESUME_HOST) { 1791 vcpu->mmio_needed = 1; 1792 goto out; 1793 } 1794 } 1795 #endif 1796 #ifdef CONFIG_ALTIVEC 1797 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1798 vcpu->arch.mmio_vmx_copy_nums--; 1799 vcpu->arch.mmio_vmx_offset++; 1800 } 1801 1802 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1803 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run); 1804 if (r == RESUME_HOST) { 1805 vcpu->mmio_needed = 1; 1806 goto out; 1807 } 1808 } 1809 #endif 1810 } else if (vcpu->arch.osi_needed) { 1811 u64 *gprs = run->osi.gprs; 1812 int i; 1813 1814 for (i = 0; i < 32; i++) 1815 kvmppc_set_gpr(vcpu, i, gprs[i]); 1816 vcpu->arch.osi_needed = 0; 1817 } else if (vcpu->arch.hcall_needed) { 1818 int i; 1819 1820 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1821 for (i = 0; i < 9; ++i) 1822 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1823 vcpu->arch.hcall_needed = 0; 1824 #ifdef CONFIG_BOOKE 1825 } else if (vcpu->arch.epr_needed) { 1826 kvmppc_set_epr(vcpu, run->epr.epr); 1827 vcpu->arch.epr_needed = 0; 1828 #endif 1829 } 1830 1831 kvm_sigset_activate(vcpu); 1832 1833 if (run->immediate_exit) 1834 r = -EINTR; 1835 else 1836 r = kvmppc_vcpu_run(run, vcpu); 1837 1838 kvm_sigset_deactivate(vcpu); 1839 1840 #ifdef CONFIG_ALTIVEC 1841 out: 1842 #endif 1843 vcpu_put(vcpu); 1844 return r; 1845 } 1846 1847 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1848 { 1849 if (irq->irq == KVM_INTERRUPT_UNSET) { 1850 kvmppc_core_dequeue_external(vcpu); 1851 return 0; 1852 } 1853 1854 kvmppc_core_queue_external(vcpu, irq); 1855 1856 kvm_vcpu_kick(vcpu); 1857 1858 return 0; 1859 } 1860 1861 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1862 struct kvm_enable_cap *cap) 1863 { 1864 int r; 1865 1866 if (cap->flags) 1867 return -EINVAL; 1868 1869 switch (cap->cap) { 1870 case KVM_CAP_PPC_OSI: 1871 r = 0; 1872 vcpu->arch.osi_enabled = true; 1873 break; 1874 case KVM_CAP_PPC_PAPR: 1875 r = 0; 1876 vcpu->arch.papr_enabled = true; 1877 break; 1878 case KVM_CAP_PPC_EPR: 1879 r = 0; 1880 if (cap->args[0]) 1881 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1882 else 1883 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1884 break; 1885 #ifdef CONFIG_BOOKE 1886 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1887 r = 0; 1888 vcpu->arch.watchdog_enabled = true; 1889 break; 1890 #endif 1891 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1892 case KVM_CAP_SW_TLB: { 1893 struct kvm_config_tlb cfg; 1894 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1895 1896 r = -EFAULT; 1897 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1898 break; 1899 1900 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1901 break; 1902 } 1903 #endif 1904 #ifdef CONFIG_KVM_MPIC 1905 case KVM_CAP_IRQ_MPIC: { 1906 struct fd f; 1907 struct kvm_device *dev; 1908 1909 r = -EBADF; 1910 f = fdget(cap->args[0]); 1911 if (!f.file) 1912 break; 1913 1914 r = -EPERM; 1915 dev = kvm_device_from_filp(f.file); 1916 if (dev) 1917 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1918 1919 fdput(f); 1920 break; 1921 } 1922 #endif 1923 #ifdef CONFIG_KVM_XICS 1924 case KVM_CAP_IRQ_XICS: { 1925 struct fd f; 1926 struct kvm_device *dev; 1927 1928 r = -EBADF; 1929 f = fdget(cap->args[0]); 1930 if (!f.file) 1931 break; 1932 1933 r = -EPERM; 1934 dev = kvm_device_from_filp(f.file); 1935 if (dev) { 1936 if (xics_on_xive()) 1937 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1938 else 1939 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1940 } 1941 1942 fdput(f); 1943 break; 1944 } 1945 #endif /* CONFIG_KVM_XICS */ 1946 #ifdef CONFIG_KVM_XIVE 1947 case KVM_CAP_PPC_IRQ_XIVE: { 1948 struct fd f; 1949 struct kvm_device *dev; 1950 1951 r = -EBADF; 1952 f = fdget(cap->args[0]); 1953 if (!f.file) 1954 break; 1955 1956 r = -ENXIO; 1957 if (!xive_enabled()) 1958 break; 1959 1960 r = -EPERM; 1961 dev = kvm_device_from_filp(f.file); 1962 if (dev) 1963 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1964 cap->args[1]); 1965 1966 fdput(f); 1967 break; 1968 } 1969 #endif /* CONFIG_KVM_XIVE */ 1970 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1971 case KVM_CAP_PPC_FWNMI: 1972 r = -EINVAL; 1973 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1974 break; 1975 r = 0; 1976 vcpu->kvm->arch.fwnmi_enabled = true; 1977 break; 1978 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1979 default: 1980 r = -EINVAL; 1981 break; 1982 } 1983 1984 if (!r) 1985 r = kvmppc_sanity_check(vcpu); 1986 1987 return r; 1988 } 1989 1990 bool kvm_arch_intc_initialized(struct kvm *kvm) 1991 { 1992 #ifdef CONFIG_KVM_MPIC 1993 if (kvm->arch.mpic) 1994 return true; 1995 #endif 1996 #ifdef CONFIG_KVM_XICS 1997 if (kvm->arch.xics || kvm->arch.xive) 1998 return true; 1999 #endif 2000 return false; 2001 } 2002 2003 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2004 struct kvm_mp_state *mp_state) 2005 { 2006 return -EINVAL; 2007 } 2008 2009 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2010 struct kvm_mp_state *mp_state) 2011 { 2012 return -EINVAL; 2013 } 2014 2015 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2016 unsigned int ioctl, unsigned long arg) 2017 { 2018 struct kvm_vcpu *vcpu = filp->private_data; 2019 void __user *argp = (void __user *)arg; 2020 2021 if (ioctl == KVM_INTERRUPT) { 2022 struct kvm_interrupt irq; 2023 if (copy_from_user(&irq, argp, sizeof(irq))) 2024 return -EFAULT; 2025 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2026 } 2027 return -ENOIOCTLCMD; 2028 } 2029 2030 long kvm_arch_vcpu_ioctl(struct file *filp, 2031 unsigned int ioctl, unsigned long arg) 2032 { 2033 struct kvm_vcpu *vcpu = filp->private_data; 2034 void __user *argp = (void __user *)arg; 2035 long r; 2036 2037 switch (ioctl) { 2038 case KVM_ENABLE_CAP: 2039 { 2040 struct kvm_enable_cap cap; 2041 r = -EFAULT; 2042 vcpu_load(vcpu); 2043 if (copy_from_user(&cap, argp, sizeof(cap))) 2044 goto out; 2045 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2046 vcpu_put(vcpu); 2047 break; 2048 } 2049 2050 case KVM_SET_ONE_REG: 2051 case KVM_GET_ONE_REG: 2052 { 2053 struct kvm_one_reg reg; 2054 r = -EFAULT; 2055 if (copy_from_user(®, argp, sizeof(reg))) 2056 goto out; 2057 if (ioctl == KVM_SET_ONE_REG) 2058 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2059 else 2060 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2061 break; 2062 } 2063 2064 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2065 case KVM_DIRTY_TLB: { 2066 struct kvm_dirty_tlb dirty; 2067 r = -EFAULT; 2068 vcpu_load(vcpu); 2069 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2070 goto out; 2071 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2072 vcpu_put(vcpu); 2073 break; 2074 } 2075 #endif 2076 default: 2077 r = -EINVAL; 2078 } 2079 2080 out: 2081 return r; 2082 } 2083 2084 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2085 { 2086 return VM_FAULT_SIGBUS; 2087 } 2088 2089 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2090 { 2091 u32 inst_nop = 0x60000000; 2092 #ifdef CONFIG_KVM_BOOKE_HV 2093 u32 inst_sc1 = 0x44000022; 2094 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2095 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2096 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2097 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2098 #else 2099 u32 inst_lis = 0x3c000000; 2100 u32 inst_ori = 0x60000000; 2101 u32 inst_sc = 0x44000002; 2102 u32 inst_imm_mask = 0xffff; 2103 2104 /* 2105 * The hypercall to get into KVM from within guest context is as 2106 * follows: 2107 * 2108 * lis r0, r0, KVM_SC_MAGIC_R0@h 2109 * ori r0, KVM_SC_MAGIC_R0@l 2110 * sc 2111 * nop 2112 */ 2113 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2114 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2115 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2116 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2117 #endif 2118 2119 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2120 2121 return 0; 2122 } 2123 2124 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2125 bool line_status) 2126 { 2127 if (!irqchip_in_kernel(kvm)) 2128 return -ENXIO; 2129 2130 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2131 irq_event->irq, irq_event->level, 2132 line_status); 2133 return 0; 2134 } 2135 2136 2137 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2138 struct kvm_enable_cap *cap) 2139 { 2140 int r; 2141 2142 if (cap->flags) 2143 return -EINVAL; 2144 2145 switch (cap->cap) { 2146 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2147 case KVM_CAP_PPC_ENABLE_HCALL: { 2148 unsigned long hcall = cap->args[0]; 2149 2150 r = -EINVAL; 2151 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2152 cap->args[1] > 1) 2153 break; 2154 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2155 break; 2156 if (cap->args[1]) 2157 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2158 else 2159 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2160 r = 0; 2161 break; 2162 } 2163 case KVM_CAP_PPC_SMT: { 2164 unsigned long mode = cap->args[0]; 2165 unsigned long flags = cap->args[1]; 2166 2167 r = -EINVAL; 2168 if (kvm->arch.kvm_ops->set_smt_mode) 2169 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2170 break; 2171 } 2172 2173 case KVM_CAP_PPC_NESTED_HV: 2174 r = -EINVAL; 2175 if (!is_kvmppc_hv_enabled(kvm) || 2176 !kvm->arch.kvm_ops->enable_nested) 2177 break; 2178 r = kvm->arch.kvm_ops->enable_nested(kvm); 2179 break; 2180 #endif 2181 default: 2182 r = -EINVAL; 2183 break; 2184 } 2185 2186 return r; 2187 } 2188 2189 #ifdef CONFIG_PPC_BOOK3S_64 2190 /* 2191 * These functions check whether the underlying hardware is safe 2192 * against attacks based on observing the effects of speculatively 2193 * executed instructions, and whether it supplies instructions for 2194 * use in workarounds. The information comes from firmware, either 2195 * via the device tree on powernv platforms or from an hcall on 2196 * pseries platforms. 2197 */ 2198 #ifdef CONFIG_PPC_PSERIES 2199 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2200 { 2201 struct h_cpu_char_result c; 2202 unsigned long rc; 2203 2204 if (!machine_is(pseries)) 2205 return -ENOTTY; 2206 2207 rc = plpar_get_cpu_characteristics(&c); 2208 if (rc == H_SUCCESS) { 2209 cp->character = c.character; 2210 cp->behaviour = c.behaviour; 2211 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2212 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2213 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2214 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2215 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2216 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2217 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2218 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2219 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2220 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2221 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2222 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2223 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2224 } 2225 return 0; 2226 } 2227 #else 2228 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2229 { 2230 return -ENOTTY; 2231 } 2232 #endif 2233 2234 static inline bool have_fw_feat(struct device_node *fw_features, 2235 const char *state, const char *name) 2236 { 2237 struct device_node *np; 2238 bool r = false; 2239 2240 np = of_get_child_by_name(fw_features, name); 2241 if (np) { 2242 r = of_property_read_bool(np, state); 2243 of_node_put(np); 2244 } 2245 return r; 2246 } 2247 2248 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2249 { 2250 struct device_node *np, *fw_features; 2251 int r; 2252 2253 memset(cp, 0, sizeof(*cp)); 2254 r = pseries_get_cpu_char(cp); 2255 if (r != -ENOTTY) 2256 return r; 2257 2258 np = of_find_node_by_name(NULL, "ibm,opal"); 2259 if (np) { 2260 fw_features = of_get_child_by_name(np, "fw-features"); 2261 of_node_put(np); 2262 if (!fw_features) 2263 return 0; 2264 if (have_fw_feat(fw_features, "enabled", 2265 "inst-spec-barrier-ori31,31,0")) 2266 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2267 if (have_fw_feat(fw_features, "enabled", 2268 "fw-bcctrl-serialized")) 2269 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2270 if (have_fw_feat(fw_features, "enabled", 2271 "inst-l1d-flush-ori30,30,0")) 2272 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2273 if (have_fw_feat(fw_features, "enabled", 2274 "inst-l1d-flush-trig2")) 2275 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2276 if (have_fw_feat(fw_features, "enabled", 2277 "fw-l1d-thread-split")) 2278 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2279 if (have_fw_feat(fw_features, "enabled", 2280 "fw-count-cache-disabled")) 2281 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2282 if (have_fw_feat(fw_features, "enabled", 2283 "fw-count-cache-flush-bcctr2,0,0")) 2284 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2285 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2286 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2287 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2288 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2289 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2290 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2291 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2292 2293 if (have_fw_feat(fw_features, "enabled", 2294 "speculation-policy-favor-security")) 2295 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2296 if (!have_fw_feat(fw_features, "disabled", 2297 "needs-l1d-flush-msr-pr-0-to-1")) 2298 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2299 if (!have_fw_feat(fw_features, "disabled", 2300 "needs-spec-barrier-for-bound-checks")) 2301 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2302 if (have_fw_feat(fw_features, "enabled", 2303 "needs-count-cache-flush-on-context-switch")) 2304 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2305 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2306 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2307 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2308 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2309 2310 of_node_put(fw_features); 2311 } 2312 2313 return 0; 2314 } 2315 #endif 2316 2317 long kvm_arch_vm_ioctl(struct file *filp, 2318 unsigned int ioctl, unsigned long arg) 2319 { 2320 struct kvm *kvm __maybe_unused = filp->private_data; 2321 void __user *argp = (void __user *)arg; 2322 long r; 2323 2324 switch (ioctl) { 2325 case KVM_PPC_GET_PVINFO: { 2326 struct kvm_ppc_pvinfo pvinfo; 2327 memset(&pvinfo, 0, sizeof(pvinfo)); 2328 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2329 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2330 r = -EFAULT; 2331 goto out; 2332 } 2333 2334 break; 2335 } 2336 #ifdef CONFIG_SPAPR_TCE_IOMMU 2337 case KVM_CREATE_SPAPR_TCE_64: { 2338 struct kvm_create_spapr_tce_64 create_tce_64; 2339 2340 r = -EFAULT; 2341 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2342 goto out; 2343 if (create_tce_64.flags) { 2344 r = -EINVAL; 2345 goto out; 2346 } 2347 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2348 goto out; 2349 } 2350 case KVM_CREATE_SPAPR_TCE: { 2351 struct kvm_create_spapr_tce create_tce; 2352 struct kvm_create_spapr_tce_64 create_tce_64; 2353 2354 r = -EFAULT; 2355 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2356 goto out; 2357 2358 create_tce_64.liobn = create_tce.liobn; 2359 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2360 create_tce_64.offset = 0; 2361 create_tce_64.size = create_tce.window_size >> 2362 IOMMU_PAGE_SHIFT_4K; 2363 create_tce_64.flags = 0; 2364 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2365 goto out; 2366 } 2367 #endif 2368 #ifdef CONFIG_PPC_BOOK3S_64 2369 case KVM_PPC_GET_SMMU_INFO: { 2370 struct kvm_ppc_smmu_info info; 2371 struct kvm *kvm = filp->private_data; 2372 2373 memset(&info, 0, sizeof(info)); 2374 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2375 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2376 r = -EFAULT; 2377 break; 2378 } 2379 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2380 struct kvm *kvm = filp->private_data; 2381 2382 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2383 break; 2384 } 2385 case KVM_PPC_CONFIGURE_V3_MMU: { 2386 struct kvm *kvm = filp->private_data; 2387 struct kvm_ppc_mmuv3_cfg cfg; 2388 2389 r = -EINVAL; 2390 if (!kvm->arch.kvm_ops->configure_mmu) 2391 goto out; 2392 r = -EFAULT; 2393 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2394 goto out; 2395 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2396 break; 2397 } 2398 case KVM_PPC_GET_RMMU_INFO: { 2399 struct kvm *kvm = filp->private_data; 2400 struct kvm_ppc_rmmu_info info; 2401 2402 r = -EINVAL; 2403 if (!kvm->arch.kvm_ops->get_rmmu_info) 2404 goto out; 2405 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2406 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2407 r = -EFAULT; 2408 break; 2409 } 2410 case KVM_PPC_GET_CPU_CHAR: { 2411 struct kvm_ppc_cpu_char cpuchar; 2412 2413 r = kvmppc_get_cpu_char(&cpuchar); 2414 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2415 r = -EFAULT; 2416 break; 2417 } 2418 default: { 2419 struct kvm *kvm = filp->private_data; 2420 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2421 } 2422 #else /* CONFIG_PPC_BOOK3S_64 */ 2423 default: 2424 r = -ENOTTY; 2425 #endif 2426 } 2427 out: 2428 return r; 2429 } 2430 2431 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2432 static unsigned long nr_lpids; 2433 2434 long kvmppc_alloc_lpid(void) 2435 { 2436 long lpid; 2437 2438 do { 2439 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2440 if (lpid >= nr_lpids) { 2441 pr_err("%s: No LPIDs free\n", __func__); 2442 return -ENOMEM; 2443 } 2444 } while (test_and_set_bit(lpid, lpid_inuse)); 2445 2446 return lpid; 2447 } 2448 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2449 2450 void kvmppc_claim_lpid(long lpid) 2451 { 2452 set_bit(lpid, lpid_inuse); 2453 } 2454 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2455 2456 void kvmppc_free_lpid(long lpid) 2457 { 2458 clear_bit(lpid, lpid_inuse); 2459 } 2460 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2461 2462 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2463 { 2464 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2465 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2466 } 2467 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2468 2469 int kvm_arch_init(void *opaque) 2470 { 2471 return 0; 2472 } 2473 2474 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2475