1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <linux/of.h> 23 #include <asm/cputable.h> 24 #include <linux/uaccess.h> 25 #include <asm/kvm_ppc.h> 26 #include <asm/cputhreads.h> 27 #include <asm/irqflags.h> 28 #include <asm/iommu.h> 29 #include <asm/switch_to.h> 30 #include <asm/xive.h> 31 #ifdef CONFIG_PPC_PSERIES 32 #include <asm/hvcall.h> 33 #include <asm/plpar_wrappers.h> 34 #endif 35 #include <asm/ultravisor.h> 36 #include <asm/setup.h> 37 38 #include "timing.h" 39 #include "../mm/mmu_decl.h" 40 41 #define CREATE_TRACE_POINTS 42 #include "trace.h" 43 44 struct kvmppc_ops *kvmppc_hv_ops; 45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 46 struct kvmppc_ops *kvmppc_pr_ops; 47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 48 49 50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 51 { 52 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 53 } 54 55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 56 { 57 return kvm_arch_vcpu_runnable(vcpu); 58 } 59 60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 61 { 62 return false; 63 } 64 65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 66 { 67 return 1; 68 } 69 70 /* 71 * Common checks before entering the guest world. Call with interrupts 72 * disabled. 73 * 74 * returns: 75 * 76 * == 1 if we're ready to go into guest state 77 * <= 0 if we need to go back to the host with return value 78 */ 79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 80 { 81 int r; 82 83 WARN_ON(irqs_disabled()); 84 hard_irq_disable(); 85 86 while (true) { 87 if (need_resched()) { 88 local_irq_enable(); 89 cond_resched(); 90 hard_irq_disable(); 91 continue; 92 } 93 94 if (signal_pending(current)) { 95 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 96 vcpu->run->exit_reason = KVM_EXIT_INTR; 97 r = -EINTR; 98 break; 99 } 100 101 vcpu->mode = IN_GUEST_MODE; 102 103 /* 104 * Reading vcpu->requests must happen after setting vcpu->mode, 105 * so we don't miss a request because the requester sees 106 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 107 * before next entering the guest (and thus doesn't IPI). 108 * This also orders the write to mode from any reads 109 * to the page tables done while the VCPU is running. 110 * Please see the comment in kvm_flush_remote_tlbs. 111 */ 112 smp_mb(); 113 114 if (kvm_request_pending(vcpu)) { 115 /* Make sure we process requests preemptable */ 116 local_irq_enable(); 117 trace_kvm_check_requests(vcpu); 118 r = kvmppc_core_check_requests(vcpu); 119 hard_irq_disable(); 120 if (r > 0) 121 continue; 122 break; 123 } 124 125 if (kvmppc_core_prepare_to_enter(vcpu)) { 126 /* interrupts got enabled in between, so we 127 are back at square 1 */ 128 continue; 129 } 130 131 guest_enter_irqoff(); 132 return 1; 133 } 134 135 /* return to host */ 136 local_irq_enable(); 137 return r; 138 } 139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 140 141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 143 { 144 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 145 int i; 146 147 shared->sprg0 = swab64(shared->sprg0); 148 shared->sprg1 = swab64(shared->sprg1); 149 shared->sprg2 = swab64(shared->sprg2); 150 shared->sprg3 = swab64(shared->sprg3); 151 shared->srr0 = swab64(shared->srr0); 152 shared->srr1 = swab64(shared->srr1); 153 shared->dar = swab64(shared->dar); 154 shared->msr = swab64(shared->msr); 155 shared->dsisr = swab32(shared->dsisr); 156 shared->int_pending = swab32(shared->int_pending); 157 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 158 shared->sr[i] = swab32(shared->sr[i]); 159 } 160 #endif 161 162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 163 { 164 int nr = kvmppc_get_gpr(vcpu, 11); 165 int r; 166 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 167 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 168 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 169 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 170 unsigned long r2 = 0; 171 172 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 173 /* 32 bit mode */ 174 param1 &= 0xffffffff; 175 param2 &= 0xffffffff; 176 param3 &= 0xffffffff; 177 param4 &= 0xffffffff; 178 } 179 180 switch (nr) { 181 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 182 { 183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 184 /* Book3S can be little endian, find it out here */ 185 int shared_big_endian = true; 186 if (vcpu->arch.intr_msr & MSR_LE) 187 shared_big_endian = false; 188 if (shared_big_endian != vcpu->arch.shared_big_endian) 189 kvmppc_swab_shared(vcpu); 190 vcpu->arch.shared_big_endian = shared_big_endian; 191 #endif 192 193 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 194 /* 195 * Older versions of the Linux magic page code had 196 * a bug where they would map their trampoline code 197 * NX. If that's the case, remove !PR NX capability. 198 */ 199 vcpu->arch.disable_kernel_nx = true; 200 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 201 } 202 203 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 204 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 205 206 #ifdef CONFIG_PPC_64K_PAGES 207 /* 208 * Make sure our 4k magic page is in the same window of a 64k 209 * page within the guest and within the host's page. 210 */ 211 if ((vcpu->arch.magic_page_pa & 0xf000) != 212 ((ulong)vcpu->arch.shared & 0xf000)) { 213 void *old_shared = vcpu->arch.shared; 214 ulong shared = (ulong)vcpu->arch.shared; 215 void *new_shared; 216 217 shared &= PAGE_MASK; 218 shared |= vcpu->arch.magic_page_pa & 0xf000; 219 new_shared = (void*)shared; 220 memcpy(new_shared, old_shared, 0x1000); 221 vcpu->arch.shared = new_shared; 222 } 223 #endif 224 225 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 226 227 r = EV_SUCCESS; 228 break; 229 } 230 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 231 r = EV_SUCCESS; 232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 233 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 234 #endif 235 236 /* Second return value is in r4 */ 237 break; 238 case EV_HCALL_TOKEN(EV_IDLE): 239 r = EV_SUCCESS; 240 kvm_vcpu_halt(vcpu); 241 break; 242 default: 243 r = EV_UNIMPLEMENTED; 244 break; 245 } 246 247 kvmppc_set_gpr(vcpu, 4, r2); 248 249 return r; 250 } 251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 252 253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 254 { 255 int r = false; 256 257 /* We have to know what CPU to virtualize */ 258 if (!vcpu->arch.pvr) 259 goto out; 260 261 /* PAPR only works with book3s_64 */ 262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 263 goto out; 264 265 /* HV KVM can only do PAPR mode for now */ 266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 267 goto out; 268 269 #ifdef CONFIG_KVM_BOOKE_HV 270 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 271 goto out; 272 #endif 273 274 r = true; 275 276 out: 277 vcpu->arch.sane = r; 278 return r ? 0 : -EINVAL; 279 } 280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 281 282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) 283 { 284 enum emulation_result er; 285 int r; 286 287 er = kvmppc_emulate_loadstore(vcpu); 288 switch (er) { 289 case EMULATE_DONE: 290 /* Future optimization: only reload non-volatiles if they were 291 * actually modified. */ 292 r = RESUME_GUEST_NV; 293 break; 294 case EMULATE_AGAIN: 295 r = RESUME_GUEST; 296 break; 297 case EMULATE_DO_MMIO: 298 vcpu->run->exit_reason = KVM_EXIT_MMIO; 299 /* We must reload nonvolatiles because "update" load/store 300 * instructions modify register state. */ 301 /* Future optimization: only reload non-volatiles if they were 302 * actually modified. */ 303 r = RESUME_HOST_NV; 304 break; 305 case EMULATE_FAIL: 306 { 307 ppc_inst_t last_inst; 308 309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 310 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n", 311 ppc_inst_val(last_inst)); 312 313 /* 314 * Injecting a Data Storage here is a bit more 315 * accurate since the instruction that caused the 316 * access could still be a valid one. 317 */ 318 if (!IS_ENABLED(CONFIG_BOOKE)) { 319 ulong dsisr = DSISR_BADACCESS; 320 321 if (vcpu->mmio_is_write) 322 dsisr |= DSISR_ISSTORE; 323 324 kvmppc_core_queue_data_storage(vcpu, 325 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 326 vcpu->arch.vaddr_accessed, dsisr); 327 } else { 328 /* 329 * BookE does not send a SIGBUS on a bad 330 * fault, so use a Program interrupt instead 331 * to avoid a fault loop. 332 */ 333 kvmppc_core_queue_program(vcpu, 0); 334 } 335 336 r = RESUME_GUEST; 337 break; 338 } 339 default: 340 WARN_ON(1); 341 r = RESUME_GUEST; 342 } 343 344 return r; 345 } 346 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 347 348 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 349 bool data) 350 { 351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 352 struct kvmppc_pte pte; 353 int r = -EINVAL; 354 355 vcpu->stat.st++; 356 357 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 358 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 359 size); 360 361 if ((!r) || (r == -EAGAIN)) 362 return r; 363 364 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 365 XLATE_WRITE, &pte); 366 if (r < 0) 367 return r; 368 369 *eaddr = pte.raddr; 370 371 if (!pte.may_write) 372 return -EPERM; 373 374 /* Magic page override */ 375 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 376 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 377 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 378 void *magic = vcpu->arch.shared; 379 magic += pte.eaddr & 0xfff; 380 memcpy(magic, ptr, size); 381 return EMULATE_DONE; 382 } 383 384 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 385 return EMULATE_DO_MMIO; 386 387 return EMULATE_DONE; 388 } 389 EXPORT_SYMBOL_GPL(kvmppc_st); 390 391 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 392 bool data) 393 { 394 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 395 struct kvmppc_pte pte; 396 int rc = -EINVAL; 397 398 vcpu->stat.ld++; 399 400 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 401 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 402 size); 403 404 if ((!rc) || (rc == -EAGAIN)) 405 return rc; 406 407 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 408 XLATE_READ, &pte); 409 if (rc) 410 return rc; 411 412 *eaddr = pte.raddr; 413 414 if (!pte.may_read) 415 return -EPERM; 416 417 if (!data && !pte.may_execute) 418 return -ENOEXEC; 419 420 /* Magic page override */ 421 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 422 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 423 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 424 void *magic = vcpu->arch.shared; 425 magic += pte.eaddr & 0xfff; 426 memcpy(ptr, magic, size); 427 return EMULATE_DONE; 428 } 429 430 kvm_vcpu_srcu_read_lock(vcpu); 431 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); 432 kvm_vcpu_srcu_read_unlock(vcpu); 433 if (rc) 434 return EMULATE_DO_MMIO; 435 436 return EMULATE_DONE; 437 } 438 EXPORT_SYMBOL_GPL(kvmppc_ld); 439 440 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 441 { 442 struct kvmppc_ops *kvm_ops = NULL; 443 int r; 444 445 /* 446 * if we have both HV and PR enabled, default is HV 447 */ 448 if (type == 0) { 449 if (kvmppc_hv_ops) 450 kvm_ops = kvmppc_hv_ops; 451 else 452 kvm_ops = kvmppc_pr_ops; 453 if (!kvm_ops) 454 goto err_out; 455 } else if (type == KVM_VM_PPC_HV) { 456 if (!kvmppc_hv_ops) 457 goto err_out; 458 kvm_ops = kvmppc_hv_ops; 459 } else if (type == KVM_VM_PPC_PR) { 460 if (!kvmppc_pr_ops) 461 goto err_out; 462 kvm_ops = kvmppc_pr_ops; 463 } else 464 goto err_out; 465 466 if (!try_module_get(kvm_ops->owner)) 467 return -ENOENT; 468 469 kvm->arch.kvm_ops = kvm_ops; 470 r = kvmppc_core_init_vm(kvm); 471 if (r) 472 module_put(kvm_ops->owner); 473 return r; 474 err_out: 475 return -EINVAL; 476 } 477 478 void kvm_arch_destroy_vm(struct kvm *kvm) 479 { 480 #ifdef CONFIG_KVM_XICS 481 /* 482 * We call kick_all_cpus_sync() to ensure that all 483 * CPUs have executed any pending IPIs before we 484 * continue and free VCPUs structures below. 485 */ 486 if (is_kvmppc_hv_enabled(kvm)) 487 kick_all_cpus_sync(); 488 #endif 489 490 kvm_destroy_vcpus(kvm); 491 492 mutex_lock(&kvm->lock); 493 494 kvmppc_core_destroy_vm(kvm); 495 496 mutex_unlock(&kvm->lock); 497 498 /* drop the module reference */ 499 module_put(kvm->arch.kvm_ops->owner); 500 } 501 502 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 503 { 504 int r; 505 /* Assume we're using HV mode when the HV module is loaded */ 506 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 507 508 if (kvm) { 509 /* 510 * Hooray - we know which VM type we're running on. Depend on 511 * that rather than the guess above. 512 */ 513 hv_enabled = is_kvmppc_hv_enabled(kvm); 514 } 515 516 switch (ext) { 517 #ifdef CONFIG_BOOKE 518 case KVM_CAP_PPC_BOOKE_SREGS: 519 case KVM_CAP_PPC_BOOKE_WATCHDOG: 520 case KVM_CAP_PPC_EPR: 521 #else 522 case KVM_CAP_PPC_SEGSTATE: 523 case KVM_CAP_PPC_HIOR: 524 case KVM_CAP_PPC_PAPR: 525 #endif 526 case KVM_CAP_PPC_UNSET_IRQ: 527 case KVM_CAP_PPC_IRQ_LEVEL: 528 case KVM_CAP_ENABLE_CAP: 529 case KVM_CAP_ONE_REG: 530 case KVM_CAP_IOEVENTFD: 531 case KVM_CAP_IMMEDIATE_EXIT: 532 case KVM_CAP_SET_GUEST_DEBUG: 533 r = 1; 534 break; 535 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 536 case KVM_CAP_PPC_PAIRED_SINGLES: 537 case KVM_CAP_PPC_OSI: 538 case KVM_CAP_PPC_GET_PVINFO: 539 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 540 case KVM_CAP_SW_TLB: 541 #endif 542 /* We support this only for PR */ 543 r = !hv_enabled; 544 break; 545 #ifdef CONFIG_KVM_MPIC 546 case KVM_CAP_IRQ_MPIC: 547 r = 1; 548 break; 549 #endif 550 551 #ifdef CONFIG_PPC_BOOK3S_64 552 case KVM_CAP_SPAPR_TCE: 553 case KVM_CAP_SPAPR_TCE_64: 554 r = 1; 555 break; 556 case KVM_CAP_SPAPR_TCE_VFIO: 557 r = !!cpu_has_feature(CPU_FTR_HVMODE); 558 break; 559 case KVM_CAP_PPC_RTAS: 560 case KVM_CAP_PPC_FIXUP_HCALL: 561 case KVM_CAP_PPC_ENABLE_HCALL: 562 #ifdef CONFIG_KVM_XICS 563 case KVM_CAP_IRQ_XICS: 564 #endif 565 case KVM_CAP_PPC_GET_CPU_CHAR: 566 r = 1; 567 break; 568 #ifdef CONFIG_KVM_XIVE 569 case KVM_CAP_PPC_IRQ_XIVE: 570 /* 571 * We need XIVE to be enabled on the platform (implies 572 * a POWER9 processor) and the PowerNV platform, as 573 * nested is not yet supported. 574 */ 575 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 576 kvmppc_xive_native_supported(); 577 break; 578 #endif 579 580 #ifdef CONFIG_HAVE_KVM_IRQCHIP 581 case KVM_CAP_IRQFD_RESAMPLE: 582 r = !xive_enabled(); 583 break; 584 #endif 585 586 case KVM_CAP_PPC_ALLOC_HTAB: 587 r = hv_enabled; 588 break; 589 #endif /* CONFIG_PPC_BOOK3S_64 */ 590 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 591 case KVM_CAP_PPC_SMT: 592 r = 0; 593 if (kvm) { 594 if (kvm->arch.emul_smt_mode > 1) 595 r = kvm->arch.emul_smt_mode; 596 else 597 r = kvm->arch.smt_mode; 598 } else if (hv_enabled) { 599 if (cpu_has_feature(CPU_FTR_ARCH_300)) 600 r = 1; 601 else 602 r = threads_per_subcore; 603 } 604 break; 605 case KVM_CAP_PPC_SMT_POSSIBLE: 606 r = 1; 607 if (hv_enabled) { 608 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 609 r = ((threads_per_subcore << 1) - 1); 610 else 611 /* P9 can emulate dbells, so allow any mode */ 612 r = 8 | 4 | 2 | 1; 613 } 614 break; 615 case KVM_CAP_PPC_HWRNG: 616 r = kvmppc_hwrng_present(); 617 break; 618 case KVM_CAP_PPC_MMU_RADIX: 619 r = !!(hv_enabled && radix_enabled()); 620 break; 621 case KVM_CAP_PPC_MMU_HASH_V3: 622 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible && 623 kvmppc_hv_ops->hash_v3_possible()); 624 break; 625 case KVM_CAP_PPC_NESTED_HV: 626 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 627 !kvmppc_hv_ops->enable_nested(NULL)); 628 break; 629 #endif 630 case KVM_CAP_SYNC_MMU: 631 BUILD_BUG_ON(!IS_ENABLED(CONFIG_KVM_GENERIC_MMU_NOTIFIER)); 632 r = 1; 633 break; 634 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 635 case KVM_CAP_PPC_HTAB_FD: 636 r = hv_enabled; 637 break; 638 #endif 639 case KVM_CAP_NR_VCPUS: 640 /* 641 * Recommending a number of CPUs is somewhat arbitrary; we 642 * return the number of present CPUs for -HV (since a host 643 * will have secondary threads "offline"), and for other KVM 644 * implementations just count online CPUs. 645 */ 646 if (hv_enabled) 647 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS); 648 else 649 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 650 break; 651 case KVM_CAP_MAX_VCPUS: 652 r = KVM_MAX_VCPUS; 653 break; 654 case KVM_CAP_MAX_VCPU_ID: 655 r = KVM_MAX_VCPU_IDS; 656 break; 657 #ifdef CONFIG_PPC_BOOK3S_64 658 case KVM_CAP_PPC_GET_SMMU_INFO: 659 r = 1; 660 break; 661 case KVM_CAP_SPAPR_MULTITCE: 662 r = 1; 663 break; 664 case KVM_CAP_SPAPR_RESIZE_HPT: 665 r = !!hv_enabled; 666 break; 667 #endif 668 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 669 case KVM_CAP_PPC_FWNMI: 670 r = hv_enabled; 671 break; 672 #endif 673 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 674 case KVM_CAP_PPC_HTM: 675 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 676 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 677 break; 678 #endif 679 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 680 case KVM_CAP_PPC_SECURE_GUEST: 681 r = hv_enabled && kvmppc_hv_ops->enable_svm && 682 !kvmppc_hv_ops->enable_svm(NULL); 683 break; 684 case KVM_CAP_PPC_DAWR1: 685 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 && 686 !kvmppc_hv_ops->enable_dawr1(NULL)); 687 break; 688 case KVM_CAP_PPC_RPT_INVALIDATE: 689 r = 1; 690 break; 691 #endif 692 case KVM_CAP_PPC_AIL_MODE_3: 693 r = 0; 694 /* 695 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode. 696 * The POWER9s can support it if the guest runs in hash mode, 697 * but QEMU doesn't necessarily query the capability in time. 698 */ 699 if (hv_enabled) { 700 if (kvmhv_on_pseries()) { 701 if (pseries_reloc_on_exception()) 702 r = 1; 703 } else if (cpu_has_feature(CPU_FTR_ARCH_207S) && 704 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) { 705 r = 1; 706 } 707 } 708 break; 709 default: 710 r = 0; 711 break; 712 } 713 return r; 714 715 } 716 717 long kvm_arch_dev_ioctl(struct file *filp, 718 unsigned int ioctl, unsigned long arg) 719 { 720 return -EINVAL; 721 } 722 723 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 724 { 725 kvmppc_core_free_memslot(kvm, slot); 726 } 727 728 int kvm_arch_prepare_memory_region(struct kvm *kvm, 729 const struct kvm_memory_slot *old, 730 struct kvm_memory_slot *new, 731 enum kvm_mr_change change) 732 { 733 return kvmppc_core_prepare_memory_region(kvm, old, new, change); 734 } 735 736 void kvm_arch_commit_memory_region(struct kvm *kvm, 737 struct kvm_memory_slot *old, 738 const struct kvm_memory_slot *new, 739 enum kvm_mr_change change) 740 { 741 kvmppc_core_commit_memory_region(kvm, old, new, change); 742 } 743 744 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 745 struct kvm_memory_slot *slot) 746 { 747 kvmppc_core_flush_memslot(kvm, slot); 748 } 749 750 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 751 { 752 return 0; 753 } 754 755 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 756 { 757 struct kvm_vcpu *vcpu; 758 759 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 760 kvmppc_decrementer_func(vcpu); 761 762 return HRTIMER_NORESTART; 763 } 764 765 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 766 { 767 int err; 768 769 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 770 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 771 772 #ifdef CONFIG_KVM_EXIT_TIMING 773 mutex_init(&vcpu->arch.exit_timing_lock); 774 #endif 775 err = kvmppc_subarch_vcpu_init(vcpu); 776 if (err) 777 return err; 778 779 err = kvmppc_core_vcpu_create(vcpu); 780 if (err) 781 goto out_vcpu_uninit; 782 783 rcuwait_init(&vcpu->arch.wait); 784 vcpu->arch.waitp = &vcpu->arch.wait; 785 return 0; 786 787 out_vcpu_uninit: 788 kvmppc_subarch_vcpu_uninit(vcpu); 789 return err; 790 } 791 792 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 793 { 794 } 795 796 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 797 { 798 /* Make sure we're not using the vcpu anymore */ 799 hrtimer_cancel(&vcpu->arch.dec_timer); 800 801 switch (vcpu->arch.irq_type) { 802 case KVMPPC_IRQ_MPIC: 803 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 804 break; 805 case KVMPPC_IRQ_XICS: 806 if (xics_on_xive()) 807 kvmppc_xive_cleanup_vcpu(vcpu); 808 else 809 kvmppc_xics_free_icp(vcpu); 810 break; 811 case KVMPPC_IRQ_XIVE: 812 kvmppc_xive_native_cleanup_vcpu(vcpu); 813 break; 814 } 815 816 kvmppc_core_vcpu_free(vcpu); 817 818 kvmppc_subarch_vcpu_uninit(vcpu); 819 } 820 821 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 822 { 823 return kvmppc_core_pending_dec(vcpu); 824 } 825 826 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 827 { 828 #ifdef CONFIG_BOOKE 829 /* 830 * vrsave (formerly usprg0) isn't used by Linux, but may 831 * be used by the guest. 832 * 833 * On non-booke this is associated with Altivec and 834 * is handled by code in book3s.c. 835 */ 836 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 837 #endif 838 kvmppc_core_vcpu_load(vcpu, cpu); 839 } 840 841 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 842 { 843 kvmppc_core_vcpu_put(vcpu); 844 #ifdef CONFIG_BOOKE 845 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 846 #endif 847 } 848 849 /* 850 * irq_bypass_add_producer and irq_bypass_del_producer are only 851 * useful if the architecture supports PCI passthrough. 852 * irq_bypass_stop and irq_bypass_start are not needed and so 853 * kvm_ops are not defined for them. 854 */ 855 bool kvm_arch_has_irq_bypass(void) 856 { 857 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 858 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 859 } 860 861 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 862 struct irq_bypass_producer *prod) 863 { 864 struct kvm_kernel_irqfd *irqfd = 865 container_of(cons, struct kvm_kernel_irqfd, consumer); 866 struct kvm *kvm = irqfd->kvm; 867 868 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 869 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 870 871 return 0; 872 } 873 874 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 875 struct irq_bypass_producer *prod) 876 { 877 struct kvm_kernel_irqfd *irqfd = 878 container_of(cons, struct kvm_kernel_irqfd, consumer); 879 struct kvm *kvm = irqfd->kvm; 880 881 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 882 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 883 } 884 885 #ifdef CONFIG_VSX 886 static inline int kvmppc_get_vsr_dword_offset(int index) 887 { 888 int offset; 889 890 if ((index != 0) && (index != 1)) 891 return -1; 892 893 #ifdef __BIG_ENDIAN 894 offset = index; 895 #else 896 offset = 1 - index; 897 #endif 898 899 return offset; 900 } 901 902 static inline int kvmppc_get_vsr_word_offset(int index) 903 { 904 int offset; 905 906 if ((index > 3) || (index < 0)) 907 return -1; 908 909 #ifdef __BIG_ENDIAN 910 offset = index; 911 #else 912 offset = 3 - index; 913 #endif 914 return offset; 915 } 916 917 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 918 u64 gpr) 919 { 920 union kvmppc_one_reg val; 921 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 922 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 923 924 if (offset == -1) 925 return; 926 927 if (index >= 32) { 928 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval); 929 val.vsxval[offset] = gpr; 930 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval); 931 } else { 932 kvmppc_set_vsx_fpr(vcpu, index, offset, gpr); 933 } 934 } 935 936 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 937 u64 gpr) 938 { 939 union kvmppc_one_reg val; 940 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 941 942 if (index >= 32) { 943 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval); 944 val.vsxval[0] = gpr; 945 val.vsxval[1] = gpr; 946 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval); 947 } else { 948 kvmppc_set_vsx_fpr(vcpu, index, 0, gpr); 949 kvmppc_set_vsx_fpr(vcpu, index, 1, gpr); 950 } 951 } 952 953 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 954 u32 gpr) 955 { 956 union kvmppc_one_reg val; 957 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 958 959 if (index >= 32) { 960 val.vsx32val[0] = gpr; 961 val.vsx32val[1] = gpr; 962 val.vsx32val[2] = gpr; 963 val.vsx32val[3] = gpr; 964 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval); 965 } else { 966 val.vsx32val[0] = gpr; 967 val.vsx32val[1] = gpr; 968 kvmppc_set_vsx_fpr(vcpu, index, 0, val.vsxval[0]); 969 kvmppc_set_vsx_fpr(vcpu, index, 1, val.vsxval[0]); 970 } 971 } 972 973 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 974 u32 gpr32) 975 { 976 union kvmppc_one_reg val; 977 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 978 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 979 int dword_offset, word_offset; 980 981 if (offset == -1) 982 return; 983 984 if (index >= 32) { 985 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval); 986 val.vsx32val[offset] = gpr32; 987 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval); 988 } else { 989 dword_offset = offset / 2; 990 word_offset = offset % 2; 991 val.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, index, dword_offset); 992 val.vsx32val[word_offset] = gpr32; 993 kvmppc_set_vsx_fpr(vcpu, index, dword_offset, val.vsxval[0]); 994 } 995 } 996 #endif /* CONFIG_VSX */ 997 998 #ifdef CONFIG_ALTIVEC 999 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 1000 int index, int element_size) 1001 { 1002 int offset; 1003 int elts = sizeof(vector128)/element_size; 1004 1005 if ((index < 0) || (index >= elts)) 1006 return -1; 1007 1008 if (kvmppc_need_byteswap(vcpu)) 1009 offset = elts - index - 1; 1010 else 1011 offset = index; 1012 1013 return offset; 1014 } 1015 1016 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 1017 int index) 1018 { 1019 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 1020 } 1021 1022 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 1023 int index) 1024 { 1025 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1026 } 1027 1028 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1029 int index) 1030 { 1031 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1032 } 1033 1034 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1035 int index) 1036 { 1037 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1038 } 1039 1040 1041 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1042 u64 gpr) 1043 { 1044 union kvmppc_one_reg val; 1045 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1046 vcpu->arch.mmio_vmx_offset); 1047 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1048 1049 if (offset == -1) 1050 return; 1051 1052 kvmppc_get_vsx_vr(vcpu, index, &val.vval); 1053 val.vsxval[offset] = gpr; 1054 kvmppc_set_vsx_vr(vcpu, index, &val.vval); 1055 } 1056 1057 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1058 u32 gpr32) 1059 { 1060 union kvmppc_one_reg val; 1061 int offset = kvmppc_get_vmx_word_offset(vcpu, 1062 vcpu->arch.mmio_vmx_offset); 1063 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1064 1065 if (offset == -1) 1066 return; 1067 1068 kvmppc_get_vsx_vr(vcpu, index, &val.vval); 1069 val.vsx32val[offset] = gpr32; 1070 kvmppc_set_vsx_vr(vcpu, index, &val.vval); 1071 } 1072 1073 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1074 u16 gpr16) 1075 { 1076 union kvmppc_one_reg val; 1077 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1078 vcpu->arch.mmio_vmx_offset); 1079 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1080 1081 if (offset == -1) 1082 return; 1083 1084 kvmppc_get_vsx_vr(vcpu, index, &val.vval); 1085 val.vsx16val[offset] = gpr16; 1086 kvmppc_set_vsx_vr(vcpu, index, &val.vval); 1087 } 1088 1089 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1090 u8 gpr8) 1091 { 1092 union kvmppc_one_reg val; 1093 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1094 vcpu->arch.mmio_vmx_offset); 1095 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1096 1097 if (offset == -1) 1098 return; 1099 1100 kvmppc_get_vsx_vr(vcpu, index, &val.vval); 1101 val.vsx8val[offset] = gpr8; 1102 kvmppc_set_vsx_vr(vcpu, index, &val.vval); 1103 } 1104 #endif /* CONFIG_ALTIVEC */ 1105 1106 #ifdef CONFIG_PPC_FPU 1107 static inline u64 sp_to_dp(u32 fprs) 1108 { 1109 u64 fprd; 1110 1111 preempt_disable(); 1112 enable_kernel_fp(); 1113 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs) 1114 : "fr0"); 1115 preempt_enable(); 1116 return fprd; 1117 } 1118 1119 static inline u32 dp_to_sp(u64 fprd) 1120 { 1121 u32 fprs; 1122 1123 preempt_disable(); 1124 enable_kernel_fp(); 1125 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd) 1126 : "fr0"); 1127 preempt_enable(); 1128 return fprs; 1129 } 1130 1131 #else 1132 #define sp_to_dp(x) (x) 1133 #define dp_to_sp(x) (x) 1134 #endif /* CONFIG_PPC_FPU */ 1135 1136 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) 1137 { 1138 struct kvm_run *run = vcpu->run; 1139 u64 gpr; 1140 1141 if (run->mmio.len > sizeof(gpr)) 1142 return; 1143 1144 if (!vcpu->arch.mmio_host_swabbed) { 1145 switch (run->mmio.len) { 1146 case 8: gpr = *(u64 *)run->mmio.data; break; 1147 case 4: gpr = *(u32 *)run->mmio.data; break; 1148 case 2: gpr = *(u16 *)run->mmio.data; break; 1149 case 1: gpr = *(u8 *)run->mmio.data; break; 1150 } 1151 } else { 1152 switch (run->mmio.len) { 1153 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1154 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1155 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1156 case 1: gpr = *(u8 *)run->mmio.data; break; 1157 } 1158 } 1159 1160 /* conversion between single and double precision */ 1161 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1162 gpr = sp_to_dp(gpr); 1163 1164 if (vcpu->arch.mmio_sign_extend) { 1165 switch (run->mmio.len) { 1166 #ifdef CONFIG_PPC64 1167 case 4: 1168 gpr = (s64)(s32)gpr; 1169 break; 1170 #endif 1171 case 2: 1172 gpr = (s64)(s16)gpr; 1173 break; 1174 case 1: 1175 gpr = (s64)(s8)gpr; 1176 break; 1177 } 1178 } 1179 1180 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1181 case KVM_MMIO_REG_GPR: 1182 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1183 break; 1184 case KVM_MMIO_REG_FPR: 1185 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1186 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1187 1188 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr); 1189 break; 1190 #ifdef CONFIG_PPC_BOOK3S 1191 case KVM_MMIO_REG_QPR: 1192 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1193 break; 1194 case KVM_MMIO_REG_FQPR: 1195 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr); 1196 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1197 break; 1198 #endif 1199 #ifdef CONFIG_VSX 1200 case KVM_MMIO_REG_VSX: 1201 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1202 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1203 1204 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1205 kvmppc_set_vsr_dword(vcpu, gpr); 1206 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1207 kvmppc_set_vsr_word(vcpu, gpr); 1208 else if (vcpu->arch.mmio_copy_type == 1209 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1210 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1211 else if (vcpu->arch.mmio_copy_type == 1212 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1213 kvmppc_set_vsr_word_dump(vcpu, gpr); 1214 break; 1215 #endif 1216 #ifdef CONFIG_ALTIVEC 1217 case KVM_MMIO_REG_VMX: 1218 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1219 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1220 1221 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1222 kvmppc_set_vmx_dword(vcpu, gpr); 1223 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1224 kvmppc_set_vmx_word(vcpu, gpr); 1225 else if (vcpu->arch.mmio_copy_type == 1226 KVMPPC_VMX_COPY_HWORD) 1227 kvmppc_set_vmx_hword(vcpu, gpr); 1228 else if (vcpu->arch.mmio_copy_type == 1229 KVMPPC_VMX_COPY_BYTE) 1230 kvmppc_set_vmx_byte(vcpu, gpr); 1231 break; 1232 #endif 1233 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1234 case KVM_MMIO_REG_NESTED_GPR: 1235 if (kvmppc_need_byteswap(vcpu)) 1236 gpr = swab64(gpr); 1237 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1238 sizeof(gpr)); 1239 break; 1240 #endif 1241 default: 1242 BUG(); 1243 } 1244 } 1245 1246 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, 1247 unsigned int rt, unsigned int bytes, 1248 int is_default_endian, int sign_extend) 1249 { 1250 struct kvm_run *run = vcpu->run; 1251 int idx, ret; 1252 bool host_swabbed; 1253 1254 /* Pity C doesn't have a logical XOR operator */ 1255 if (kvmppc_need_byteswap(vcpu)) { 1256 host_swabbed = is_default_endian; 1257 } else { 1258 host_swabbed = !is_default_endian; 1259 } 1260 1261 if (bytes > sizeof(run->mmio.data)) 1262 return EMULATE_FAIL; 1263 1264 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1265 run->mmio.len = bytes; 1266 run->mmio.is_write = 0; 1267 1268 vcpu->arch.io_gpr = rt; 1269 vcpu->arch.mmio_host_swabbed = host_swabbed; 1270 vcpu->mmio_needed = 1; 1271 vcpu->mmio_is_write = 0; 1272 vcpu->arch.mmio_sign_extend = sign_extend; 1273 1274 idx = srcu_read_lock(&vcpu->kvm->srcu); 1275 1276 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1277 bytes, &run->mmio.data); 1278 1279 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1280 1281 if (!ret) { 1282 kvmppc_complete_mmio_load(vcpu); 1283 vcpu->mmio_needed = 0; 1284 return EMULATE_DONE; 1285 } 1286 1287 return EMULATE_DO_MMIO; 1288 } 1289 1290 int kvmppc_handle_load(struct kvm_vcpu *vcpu, 1291 unsigned int rt, unsigned int bytes, 1292 int is_default_endian) 1293 { 1294 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); 1295 } 1296 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1297 1298 /* Same as above, but sign extends */ 1299 int kvmppc_handle_loads(struct kvm_vcpu *vcpu, 1300 unsigned int rt, unsigned int bytes, 1301 int is_default_endian) 1302 { 1303 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); 1304 } 1305 1306 #ifdef CONFIG_VSX 1307 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, 1308 unsigned int rt, unsigned int bytes, 1309 int is_default_endian, int mmio_sign_extend) 1310 { 1311 enum emulation_result emulated = EMULATE_DONE; 1312 1313 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1314 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1315 return EMULATE_FAIL; 1316 1317 while (vcpu->arch.mmio_vsx_copy_nums) { 1318 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1319 is_default_endian, mmio_sign_extend); 1320 1321 if (emulated != EMULATE_DONE) 1322 break; 1323 1324 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1325 1326 vcpu->arch.mmio_vsx_copy_nums--; 1327 vcpu->arch.mmio_vsx_offset++; 1328 } 1329 return emulated; 1330 } 1331 #endif /* CONFIG_VSX */ 1332 1333 int kvmppc_handle_store(struct kvm_vcpu *vcpu, 1334 u64 val, unsigned int bytes, int is_default_endian) 1335 { 1336 struct kvm_run *run = vcpu->run; 1337 void *data = run->mmio.data; 1338 int idx, ret; 1339 bool host_swabbed; 1340 1341 /* Pity C doesn't have a logical XOR operator */ 1342 if (kvmppc_need_byteswap(vcpu)) { 1343 host_swabbed = is_default_endian; 1344 } else { 1345 host_swabbed = !is_default_endian; 1346 } 1347 1348 if (bytes > sizeof(run->mmio.data)) 1349 return EMULATE_FAIL; 1350 1351 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1352 run->mmio.len = bytes; 1353 run->mmio.is_write = 1; 1354 vcpu->mmio_needed = 1; 1355 vcpu->mmio_is_write = 1; 1356 1357 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1358 val = dp_to_sp(val); 1359 1360 /* Store the value at the lowest bytes in 'data'. */ 1361 if (!host_swabbed) { 1362 switch (bytes) { 1363 case 8: *(u64 *)data = val; break; 1364 case 4: *(u32 *)data = val; break; 1365 case 2: *(u16 *)data = val; break; 1366 case 1: *(u8 *)data = val; break; 1367 } 1368 } else { 1369 switch (bytes) { 1370 case 8: *(u64 *)data = swab64(val); break; 1371 case 4: *(u32 *)data = swab32(val); break; 1372 case 2: *(u16 *)data = swab16(val); break; 1373 case 1: *(u8 *)data = val; break; 1374 } 1375 } 1376 1377 idx = srcu_read_lock(&vcpu->kvm->srcu); 1378 1379 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1380 bytes, &run->mmio.data); 1381 1382 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1383 1384 if (!ret) { 1385 vcpu->mmio_needed = 0; 1386 return EMULATE_DONE; 1387 } 1388 1389 return EMULATE_DO_MMIO; 1390 } 1391 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1392 1393 #ifdef CONFIG_VSX 1394 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1395 { 1396 u32 dword_offset, word_offset; 1397 union kvmppc_one_reg reg; 1398 int vsx_offset = 0; 1399 int copy_type = vcpu->arch.mmio_copy_type; 1400 int result = 0; 1401 1402 switch (copy_type) { 1403 case KVMPPC_VSX_COPY_DWORD: 1404 vsx_offset = 1405 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1406 1407 if (vsx_offset == -1) { 1408 result = -1; 1409 break; 1410 } 1411 1412 if (rs < 32) { 1413 *val = kvmppc_get_vsx_fpr(vcpu, rs, vsx_offset); 1414 } else { 1415 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval); 1416 *val = reg.vsxval[vsx_offset]; 1417 } 1418 break; 1419 1420 case KVMPPC_VSX_COPY_WORD: 1421 vsx_offset = 1422 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1423 1424 if (vsx_offset == -1) { 1425 result = -1; 1426 break; 1427 } 1428 1429 if (rs < 32) { 1430 dword_offset = vsx_offset / 2; 1431 word_offset = vsx_offset % 2; 1432 reg.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, rs, dword_offset); 1433 *val = reg.vsx32val[word_offset]; 1434 } else { 1435 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval); 1436 *val = reg.vsx32val[vsx_offset]; 1437 } 1438 break; 1439 1440 default: 1441 result = -1; 1442 break; 1443 } 1444 1445 return result; 1446 } 1447 1448 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, 1449 int rs, unsigned int bytes, int is_default_endian) 1450 { 1451 u64 val; 1452 enum emulation_result emulated = EMULATE_DONE; 1453 1454 vcpu->arch.io_gpr = rs; 1455 1456 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1457 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1458 return EMULATE_FAIL; 1459 1460 while (vcpu->arch.mmio_vsx_copy_nums) { 1461 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1462 return EMULATE_FAIL; 1463 1464 emulated = kvmppc_handle_store(vcpu, 1465 val, bytes, is_default_endian); 1466 1467 if (emulated != EMULATE_DONE) 1468 break; 1469 1470 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1471 1472 vcpu->arch.mmio_vsx_copy_nums--; 1473 vcpu->arch.mmio_vsx_offset++; 1474 } 1475 1476 return emulated; 1477 } 1478 1479 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) 1480 { 1481 struct kvm_run *run = vcpu->run; 1482 enum emulation_result emulated = EMULATE_FAIL; 1483 int r; 1484 1485 vcpu->arch.paddr_accessed += run->mmio.len; 1486 1487 if (!vcpu->mmio_is_write) { 1488 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, 1489 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1490 } else { 1491 emulated = kvmppc_handle_vsx_store(vcpu, 1492 vcpu->arch.io_gpr, run->mmio.len, 1); 1493 } 1494 1495 switch (emulated) { 1496 case EMULATE_DO_MMIO: 1497 run->exit_reason = KVM_EXIT_MMIO; 1498 r = RESUME_HOST; 1499 break; 1500 case EMULATE_FAIL: 1501 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1502 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1503 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1504 r = RESUME_HOST; 1505 break; 1506 default: 1507 r = RESUME_GUEST; 1508 break; 1509 } 1510 return r; 1511 } 1512 #endif /* CONFIG_VSX */ 1513 1514 #ifdef CONFIG_ALTIVEC 1515 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, 1516 unsigned int rt, unsigned int bytes, int is_default_endian) 1517 { 1518 enum emulation_result emulated = EMULATE_DONE; 1519 1520 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1521 return EMULATE_FAIL; 1522 1523 while (vcpu->arch.mmio_vmx_copy_nums) { 1524 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1525 is_default_endian, 0); 1526 1527 if (emulated != EMULATE_DONE) 1528 break; 1529 1530 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1531 vcpu->arch.mmio_vmx_copy_nums--; 1532 vcpu->arch.mmio_vmx_offset++; 1533 } 1534 1535 return emulated; 1536 } 1537 1538 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1539 { 1540 union kvmppc_one_reg reg; 1541 int vmx_offset = 0; 1542 int result = 0; 1543 1544 vmx_offset = 1545 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1546 1547 if (vmx_offset == -1) 1548 return -1; 1549 1550 kvmppc_get_vsx_vr(vcpu, index, ®.vval); 1551 *val = reg.vsxval[vmx_offset]; 1552 1553 return result; 1554 } 1555 1556 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1557 { 1558 union kvmppc_one_reg reg; 1559 int vmx_offset = 0; 1560 int result = 0; 1561 1562 vmx_offset = 1563 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1564 1565 if (vmx_offset == -1) 1566 return -1; 1567 1568 kvmppc_get_vsx_vr(vcpu, index, ®.vval); 1569 *val = reg.vsx32val[vmx_offset]; 1570 1571 return result; 1572 } 1573 1574 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1575 { 1576 union kvmppc_one_reg reg; 1577 int vmx_offset = 0; 1578 int result = 0; 1579 1580 vmx_offset = 1581 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1582 1583 if (vmx_offset == -1) 1584 return -1; 1585 1586 kvmppc_get_vsx_vr(vcpu, index, ®.vval); 1587 *val = reg.vsx16val[vmx_offset]; 1588 1589 return result; 1590 } 1591 1592 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1593 { 1594 union kvmppc_one_reg reg; 1595 int vmx_offset = 0; 1596 int result = 0; 1597 1598 vmx_offset = 1599 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1600 1601 if (vmx_offset == -1) 1602 return -1; 1603 1604 kvmppc_get_vsx_vr(vcpu, index, ®.vval); 1605 *val = reg.vsx8val[vmx_offset]; 1606 1607 return result; 1608 } 1609 1610 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, 1611 unsigned int rs, unsigned int bytes, int is_default_endian) 1612 { 1613 u64 val = 0; 1614 unsigned int index = rs & KVM_MMIO_REG_MASK; 1615 enum emulation_result emulated = EMULATE_DONE; 1616 1617 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1618 return EMULATE_FAIL; 1619 1620 vcpu->arch.io_gpr = rs; 1621 1622 while (vcpu->arch.mmio_vmx_copy_nums) { 1623 switch (vcpu->arch.mmio_copy_type) { 1624 case KVMPPC_VMX_COPY_DWORD: 1625 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1626 return EMULATE_FAIL; 1627 1628 break; 1629 case KVMPPC_VMX_COPY_WORD: 1630 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1631 return EMULATE_FAIL; 1632 break; 1633 case KVMPPC_VMX_COPY_HWORD: 1634 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1635 return EMULATE_FAIL; 1636 break; 1637 case KVMPPC_VMX_COPY_BYTE: 1638 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1639 return EMULATE_FAIL; 1640 break; 1641 default: 1642 return EMULATE_FAIL; 1643 } 1644 1645 emulated = kvmppc_handle_store(vcpu, val, bytes, 1646 is_default_endian); 1647 if (emulated != EMULATE_DONE) 1648 break; 1649 1650 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1651 vcpu->arch.mmio_vmx_copy_nums--; 1652 vcpu->arch.mmio_vmx_offset++; 1653 } 1654 1655 return emulated; 1656 } 1657 1658 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) 1659 { 1660 struct kvm_run *run = vcpu->run; 1661 enum emulation_result emulated = EMULATE_FAIL; 1662 int r; 1663 1664 vcpu->arch.paddr_accessed += run->mmio.len; 1665 1666 if (!vcpu->mmio_is_write) { 1667 emulated = kvmppc_handle_vmx_load(vcpu, 1668 vcpu->arch.io_gpr, run->mmio.len, 1); 1669 } else { 1670 emulated = kvmppc_handle_vmx_store(vcpu, 1671 vcpu->arch.io_gpr, run->mmio.len, 1); 1672 } 1673 1674 switch (emulated) { 1675 case EMULATE_DO_MMIO: 1676 run->exit_reason = KVM_EXIT_MMIO; 1677 r = RESUME_HOST; 1678 break; 1679 case EMULATE_FAIL: 1680 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1681 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1682 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1683 r = RESUME_HOST; 1684 break; 1685 default: 1686 r = RESUME_GUEST; 1687 break; 1688 } 1689 return r; 1690 } 1691 #endif /* CONFIG_ALTIVEC */ 1692 1693 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1694 { 1695 int r = 0; 1696 union kvmppc_one_reg val; 1697 int size; 1698 1699 size = one_reg_size(reg->id); 1700 if (size > sizeof(val)) 1701 return -EINVAL; 1702 1703 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1704 if (r == -EINVAL) { 1705 r = 0; 1706 switch (reg->id) { 1707 #ifdef CONFIG_ALTIVEC 1708 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1709 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1710 r = -ENXIO; 1711 break; 1712 } 1713 kvmppc_get_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval); 1714 break; 1715 case KVM_REG_PPC_VSCR: 1716 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1717 r = -ENXIO; 1718 break; 1719 } 1720 val = get_reg_val(reg->id, kvmppc_get_vscr(vcpu)); 1721 break; 1722 case KVM_REG_PPC_VRSAVE: 1723 val = get_reg_val(reg->id, kvmppc_get_vrsave(vcpu)); 1724 break; 1725 #endif /* CONFIG_ALTIVEC */ 1726 default: 1727 r = -EINVAL; 1728 break; 1729 } 1730 } 1731 1732 if (r) 1733 return r; 1734 1735 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1736 r = -EFAULT; 1737 1738 return r; 1739 } 1740 1741 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1742 { 1743 int r; 1744 union kvmppc_one_reg val; 1745 int size; 1746 1747 size = one_reg_size(reg->id); 1748 if (size > sizeof(val)) 1749 return -EINVAL; 1750 1751 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1752 return -EFAULT; 1753 1754 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1755 if (r == -EINVAL) { 1756 r = 0; 1757 switch (reg->id) { 1758 #ifdef CONFIG_ALTIVEC 1759 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1760 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1761 r = -ENXIO; 1762 break; 1763 } 1764 kvmppc_set_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval); 1765 break; 1766 case KVM_REG_PPC_VSCR: 1767 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1768 r = -ENXIO; 1769 break; 1770 } 1771 kvmppc_set_vscr(vcpu, set_reg_val(reg->id, val)); 1772 break; 1773 case KVM_REG_PPC_VRSAVE: 1774 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1775 r = -ENXIO; 1776 break; 1777 } 1778 kvmppc_set_vrsave(vcpu, set_reg_val(reg->id, val)); 1779 break; 1780 #endif /* CONFIG_ALTIVEC */ 1781 default: 1782 r = -EINVAL; 1783 break; 1784 } 1785 } 1786 1787 return r; 1788 } 1789 1790 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1791 { 1792 struct kvm_run *run = vcpu->run; 1793 int r; 1794 1795 vcpu_load(vcpu); 1796 1797 if (vcpu->mmio_needed) { 1798 vcpu->mmio_needed = 0; 1799 if (!vcpu->mmio_is_write) 1800 kvmppc_complete_mmio_load(vcpu); 1801 #ifdef CONFIG_VSX 1802 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1803 vcpu->arch.mmio_vsx_copy_nums--; 1804 vcpu->arch.mmio_vsx_offset++; 1805 } 1806 1807 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1808 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); 1809 if (r == RESUME_HOST) { 1810 vcpu->mmio_needed = 1; 1811 goto out; 1812 } 1813 } 1814 #endif 1815 #ifdef CONFIG_ALTIVEC 1816 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1817 vcpu->arch.mmio_vmx_copy_nums--; 1818 vcpu->arch.mmio_vmx_offset++; 1819 } 1820 1821 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1822 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); 1823 if (r == RESUME_HOST) { 1824 vcpu->mmio_needed = 1; 1825 goto out; 1826 } 1827 } 1828 #endif 1829 } else if (vcpu->arch.osi_needed) { 1830 u64 *gprs = run->osi.gprs; 1831 int i; 1832 1833 for (i = 0; i < 32; i++) 1834 kvmppc_set_gpr(vcpu, i, gprs[i]); 1835 vcpu->arch.osi_needed = 0; 1836 } else if (vcpu->arch.hcall_needed) { 1837 int i; 1838 1839 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1840 for (i = 0; i < 9; ++i) 1841 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1842 vcpu->arch.hcall_needed = 0; 1843 #ifdef CONFIG_BOOKE 1844 } else if (vcpu->arch.epr_needed) { 1845 kvmppc_set_epr(vcpu, run->epr.epr); 1846 vcpu->arch.epr_needed = 0; 1847 #endif 1848 } 1849 1850 kvm_sigset_activate(vcpu); 1851 1852 if (!vcpu->wants_to_run) 1853 r = -EINTR; 1854 else 1855 r = kvmppc_vcpu_run(vcpu); 1856 1857 kvm_sigset_deactivate(vcpu); 1858 1859 #ifdef CONFIG_ALTIVEC 1860 out: 1861 #endif 1862 1863 /* 1864 * We're already returning to userspace, don't pass the 1865 * RESUME_HOST flags along. 1866 */ 1867 if (r > 0) 1868 r = 0; 1869 1870 vcpu_put(vcpu); 1871 return r; 1872 } 1873 1874 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1875 { 1876 if (irq->irq == KVM_INTERRUPT_UNSET) { 1877 kvmppc_core_dequeue_external(vcpu); 1878 return 0; 1879 } 1880 1881 kvmppc_core_queue_external(vcpu, irq); 1882 1883 kvm_vcpu_kick(vcpu); 1884 1885 return 0; 1886 } 1887 1888 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1889 struct kvm_enable_cap *cap) 1890 { 1891 int r; 1892 1893 if (cap->flags) 1894 return -EINVAL; 1895 1896 switch (cap->cap) { 1897 case KVM_CAP_PPC_OSI: 1898 r = 0; 1899 vcpu->arch.osi_enabled = true; 1900 break; 1901 case KVM_CAP_PPC_PAPR: 1902 r = 0; 1903 vcpu->arch.papr_enabled = true; 1904 break; 1905 case KVM_CAP_PPC_EPR: 1906 r = 0; 1907 if (cap->args[0]) 1908 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1909 else 1910 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1911 break; 1912 #ifdef CONFIG_BOOKE 1913 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1914 r = 0; 1915 vcpu->arch.watchdog_enabled = true; 1916 break; 1917 #endif 1918 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1919 case KVM_CAP_SW_TLB: { 1920 struct kvm_config_tlb cfg; 1921 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1922 1923 r = -EFAULT; 1924 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1925 break; 1926 1927 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1928 break; 1929 } 1930 #endif 1931 #ifdef CONFIG_KVM_MPIC 1932 case KVM_CAP_IRQ_MPIC: { 1933 CLASS(fd, f)(cap->args[0]); 1934 struct kvm_device *dev; 1935 1936 r = -EBADF; 1937 if (fd_empty(f)) 1938 break; 1939 1940 r = -EPERM; 1941 dev = kvm_device_from_filp(fd_file(f)); 1942 if (dev) 1943 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1944 1945 break; 1946 } 1947 #endif 1948 #ifdef CONFIG_KVM_XICS 1949 case KVM_CAP_IRQ_XICS: { 1950 CLASS(fd, f)(cap->args[0]); 1951 struct kvm_device *dev; 1952 1953 r = -EBADF; 1954 if (fd_empty(f)) 1955 break; 1956 1957 r = -EPERM; 1958 dev = kvm_device_from_filp(fd_file(f)); 1959 if (dev) { 1960 if (xics_on_xive()) 1961 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1962 else 1963 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1964 } 1965 break; 1966 } 1967 #endif /* CONFIG_KVM_XICS */ 1968 #ifdef CONFIG_KVM_XIVE 1969 case KVM_CAP_PPC_IRQ_XIVE: { 1970 CLASS(fd, f)(cap->args[0]); 1971 struct kvm_device *dev; 1972 1973 r = -EBADF; 1974 if (fd_empty(f)) 1975 break; 1976 1977 r = -ENXIO; 1978 if (!xive_enabled()) 1979 break; 1980 1981 r = -EPERM; 1982 dev = kvm_device_from_filp(fd_file(f)); 1983 if (dev) 1984 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1985 cap->args[1]); 1986 break; 1987 } 1988 #endif /* CONFIG_KVM_XIVE */ 1989 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1990 case KVM_CAP_PPC_FWNMI: 1991 r = -EINVAL; 1992 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1993 break; 1994 r = 0; 1995 vcpu->kvm->arch.fwnmi_enabled = true; 1996 break; 1997 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1998 default: 1999 r = -EINVAL; 2000 break; 2001 } 2002 2003 if (!r) 2004 r = kvmppc_sanity_check(vcpu); 2005 2006 return r; 2007 } 2008 2009 bool kvm_arch_intc_initialized(struct kvm *kvm) 2010 { 2011 #ifdef CONFIG_KVM_MPIC 2012 if (kvm->arch.mpic) 2013 return true; 2014 #endif 2015 #ifdef CONFIG_KVM_XICS 2016 if (kvm->arch.xics || kvm->arch.xive) 2017 return true; 2018 #endif 2019 return false; 2020 } 2021 2022 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2023 struct kvm_mp_state *mp_state) 2024 { 2025 return -EINVAL; 2026 } 2027 2028 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2029 struct kvm_mp_state *mp_state) 2030 { 2031 return -EINVAL; 2032 } 2033 2034 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2035 unsigned int ioctl, unsigned long arg) 2036 { 2037 struct kvm_vcpu *vcpu = filp->private_data; 2038 void __user *argp = (void __user *)arg; 2039 2040 if (ioctl == KVM_INTERRUPT) { 2041 struct kvm_interrupt irq; 2042 if (copy_from_user(&irq, argp, sizeof(irq))) 2043 return -EFAULT; 2044 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2045 } 2046 return -ENOIOCTLCMD; 2047 } 2048 2049 long kvm_arch_vcpu_ioctl(struct file *filp, 2050 unsigned int ioctl, unsigned long arg) 2051 { 2052 struct kvm_vcpu *vcpu = filp->private_data; 2053 void __user *argp = (void __user *)arg; 2054 long r; 2055 2056 switch (ioctl) { 2057 case KVM_ENABLE_CAP: 2058 { 2059 struct kvm_enable_cap cap; 2060 r = -EFAULT; 2061 if (copy_from_user(&cap, argp, sizeof(cap))) 2062 goto out; 2063 vcpu_load(vcpu); 2064 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2065 vcpu_put(vcpu); 2066 break; 2067 } 2068 2069 case KVM_SET_ONE_REG: 2070 case KVM_GET_ONE_REG: 2071 { 2072 struct kvm_one_reg reg; 2073 r = -EFAULT; 2074 if (copy_from_user(®, argp, sizeof(reg))) 2075 goto out; 2076 if (ioctl == KVM_SET_ONE_REG) 2077 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2078 else 2079 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2080 break; 2081 } 2082 2083 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2084 case KVM_DIRTY_TLB: { 2085 struct kvm_dirty_tlb dirty; 2086 r = -EFAULT; 2087 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2088 goto out; 2089 vcpu_load(vcpu); 2090 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2091 vcpu_put(vcpu); 2092 break; 2093 } 2094 #endif 2095 default: 2096 r = -EINVAL; 2097 } 2098 2099 out: 2100 return r; 2101 } 2102 2103 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2104 { 2105 return VM_FAULT_SIGBUS; 2106 } 2107 2108 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2109 { 2110 u32 inst_nop = 0x60000000; 2111 #ifdef CONFIG_KVM_BOOKE_HV 2112 u32 inst_sc1 = 0x44000022; 2113 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2114 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2115 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2116 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2117 #else 2118 u32 inst_lis = 0x3c000000; 2119 u32 inst_ori = 0x60000000; 2120 u32 inst_sc = 0x44000002; 2121 u32 inst_imm_mask = 0xffff; 2122 2123 /* 2124 * The hypercall to get into KVM from within guest context is as 2125 * follows: 2126 * 2127 * lis r0, r0, KVM_SC_MAGIC_R0@h 2128 * ori r0, KVM_SC_MAGIC_R0@l 2129 * sc 2130 * nop 2131 */ 2132 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2133 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2134 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2135 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2136 #endif 2137 2138 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2139 2140 return 0; 2141 } 2142 2143 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2144 { 2145 int ret = 0; 2146 2147 #ifdef CONFIG_KVM_MPIC 2148 ret = ret || (kvm->arch.mpic != NULL); 2149 #endif 2150 #ifdef CONFIG_KVM_XICS 2151 ret = ret || (kvm->arch.xics != NULL); 2152 ret = ret || (kvm->arch.xive != NULL); 2153 #endif 2154 smp_rmb(); 2155 return ret; 2156 } 2157 2158 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2159 bool line_status) 2160 { 2161 if (!kvm_arch_irqchip_in_kernel(kvm)) 2162 return -ENXIO; 2163 2164 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2165 irq_event->irq, irq_event->level, 2166 line_status); 2167 return 0; 2168 } 2169 2170 2171 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2172 struct kvm_enable_cap *cap) 2173 { 2174 int r; 2175 2176 if (cap->flags) 2177 return -EINVAL; 2178 2179 switch (cap->cap) { 2180 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2181 case KVM_CAP_PPC_ENABLE_HCALL: { 2182 unsigned long hcall = cap->args[0]; 2183 2184 r = -EINVAL; 2185 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2186 cap->args[1] > 1) 2187 break; 2188 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2189 break; 2190 if (cap->args[1]) 2191 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2192 else 2193 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2194 r = 0; 2195 break; 2196 } 2197 case KVM_CAP_PPC_SMT: { 2198 unsigned long mode = cap->args[0]; 2199 unsigned long flags = cap->args[1]; 2200 2201 r = -EINVAL; 2202 if (kvm->arch.kvm_ops->set_smt_mode) 2203 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2204 break; 2205 } 2206 2207 case KVM_CAP_PPC_NESTED_HV: 2208 r = -EINVAL; 2209 if (!is_kvmppc_hv_enabled(kvm) || 2210 !kvm->arch.kvm_ops->enable_nested) 2211 break; 2212 r = kvm->arch.kvm_ops->enable_nested(kvm); 2213 break; 2214 #endif 2215 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2216 case KVM_CAP_PPC_SECURE_GUEST: 2217 r = -EINVAL; 2218 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2219 break; 2220 r = kvm->arch.kvm_ops->enable_svm(kvm); 2221 break; 2222 case KVM_CAP_PPC_DAWR1: 2223 r = -EINVAL; 2224 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1) 2225 break; 2226 r = kvm->arch.kvm_ops->enable_dawr1(kvm); 2227 break; 2228 #endif 2229 default: 2230 r = -EINVAL; 2231 break; 2232 } 2233 2234 return r; 2235 } 2236 2237 #ifdef CONFIG_PPC_BOOK3S_64 2238 /* 2239 * These functions check whether the underlying hardware is safe 2240 * against attacks based on observing the effects of speculatively 2241 * executed instructions, and whether it supplies instructions for 2242 * use in workarounds. The information comes from firmware, either 2243 * via the device tree on powernv platforms or from an hcall on 2244 * pseries platforms. 2245 */ 2246 #ifdef CONFIG_PPC_PSERIES 2247 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2248 { 2249 struct h_cpu_char_result c; 2250 unsigned long rc; 2251 2252 if (!machine_is(pseries)) 2253 return -ENOTTY; 2254 2255 rc = plpar_get_cpu_characteristics(&c); 2256 if (rc == H_SUCCESS) { 2257 cp->character = c.character; 2258 cp->behaviour = c.behaviour; 2259 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2260 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2261 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2262 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2263 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2264 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2265 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2266 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2267 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2268 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2269 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2270 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2271 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2272 } 2273 return 0; 2274 } 2275 #else 2276 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2277 { 2278 return -ENOTTY; 2279 } 2280 #endif 2281 2282 static inline bool have_fw_feat(struct device_node *fw_features, 2283 const char *state, const char *name) 2284 { 2285 struct device_node *np; 2286 bool r = false; 2287 2288 np = of_get_child_by_name(fw_features, name); 2289 if (np) { 2290 r = of_property_read_bool(np, state); 2291 of_node_put(np); 2292 } 2293 return r; 2294 } 2295 2296 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2297 { 2298 struct device_node *np, *fw_features; 2299 int r; 2300 2301 memset(cp, 0, sizeof(*cp)); 2302 r = pseries_get_cpu_char(cp); 2303 if (r != -ENOTTY) 2304 return r; 2305 2306 np = of_find_node_by_name(NULL, "ibm,opal"); 2307 if (np) { 2308 fw_features = of_get_child_by_name(np, "fw-features"); 2309 of_node_put(np); 2310 if (!fw_features) 2311 return 0; 2312 if (have_fw_feat(fw_features, "enabled", 2313 "inst-spec-barrier-ori31,31,0")) 2314 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2315 if (have_fw_feat(fw_features, "enabled", 2316 "fw-bcctrl-serialized")) 2317 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2318 if (have_fw_feat(fw_features, "enabled", 2319 "inst-l1d-flush-ori30,30,0")) 2320 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2321 if (have_fw_feat(fw_features, "enabled", 2322 "inst-l1d-flush-trig2")) 2323 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2324 if (have_fw_feat(fw_features, "enabled", 2325 "fw-l1d-thread-split")) 2326 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2327 if (have_fw_feat(fw_features, "enabled", 2328 "fw-count-cache-disabled")) 2329 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2330 if (have_fw_feat(fw_features, "enabled", 2331 "fw-count-cache-flush-bcctr2,0,0")) 2332 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2333 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2334 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2335 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2336 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2337 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2338 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2339 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2340 2341 if (have_fw_feat(fw_features, "enabled", 2342 "speculation-policy-favor-security")) 2343 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2344 if (!have_fw_feat(fw_features, "disabled", 2345 "needs-l1d-flush-msr-pr-0-to-1")) 2346 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2347 if (!have_fw_feat(fw_features, "disabled", 2348 "needs-spec-barrier-for-bound-checks")) 2349 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2350 if (have_fw_feat(fw_features, "enabled", 2351 "needs-count-cache-flush-on-context-switch")) 2352 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2353 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2354 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2355 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2356 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2357 2358 of_node_put(fw_features); 2359 } 2360 2361 return 0; 2362 } 2363 #endif 2364 2365 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 2366 { 2367 struct kvm *kvm __maybe_unused = filp->private_data; 2368 void __user *argp = (void __user *)arg; 2369 int r; 2370 2371 switch (ioctl) { 2372 case KVM_PPC_GET_PVINFO: { 2373 struct kvm_ppc_pvinfo pvinfo; 2374 memset(&pvinfo, 0, sizeof(pvinfo)); 2375 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2376 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2377 r = -EFAULT; 2378 goto out; 2379 } 2380 2381 break; 2382 } 2383 #ifdef CONFIG_SPAPR_TCE_IOMMU 2384 case KVM_CREATE_SPAPR_TCE_64: { 2385 struct kvm_create_spapr_tce_64 create_tce_64; 2386 2387 r = -EFAULT; 2388 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2389 goto out; 2390 if (create_tce_64.flags) { 2391 r = -EINVAL; 2392 goto out; 2393 } 2394 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2395 goto out; 2396 } 2397 case KVM_CREATE_SPAPR_TCE: { 2398 struct kvm_create_spapr_tce create_tce; 2399 struct kvm_create_spapr_tce_64 create_tce_64; 2400 2401 r = -EFAULT; 2402 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2403 goto out; 2404 2405 create_tce_64.liobn = create_tce.liobn; 2406 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2407 create_tce_64.offset = 0; 2408 create_tce_64.size = create_tce.window_size >> 2409 IOMMU_PAGE_SHIFT_4K; 2410 create_tce_64.flags = 0; 2411 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2412 goto out; 2413 } 2414 #endif 2415 #ifdef CONFIG_PPC_BOOK3S_64 2416 case KVM_PPC_GET_SMMU_INFO: { 2417 struct kvm_ppc_smmu_info info; 2418 struct kvm *kvm = filp->private_data; 2419 2420 memset(&info, 0, sizeof(info)); 2421 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2422 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2423 r = -EFAULT; 2424 break; 2425 } 2426 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2427 struct kvm *kvm = filp->private_data; 2428 2429 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2430 break; 2431 } 2432 case KVM_PPC_CONFIGURE_V3_MMU: { 2433 struct kvm *kvm = filp->private_data; 2434 struct kvm_ppc_mmuv3_cfg cfg; 2435 2436 r = -EINVAL; 2437 if (!kvm->arch.kvm_ops->configure_mmu) 2438 goto out; 2439 r = -EFAULT; 2440 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2441 goto out; 2442 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2443 break; 2444 } 2445 case KVM_PPC_GET_RMMU_INFO: { 2446 struct kvm *kvm = filp->private_data; 2447 struct kvm_ppc_rmmu_info info; 2448 2449 r = -EINVAL; 2450 if (!kvm->arch.kvm_ops->get_rmmu_info) 2451 goto out; 2452 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2453 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2454 r = -EFAULT; 2455 break; 2456 } 2457 case KVM_PPC_GET_CPU_CHAR: { 2458 struct kvm_ppc_cpu_char cpuchar; 2459 2460 r = kvmppc_get_cpu_char(&cpuchar); 2461 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2462 r = -EFAULT; 2463 break; 2464 } 2465 case KVM_PPC_SVM_OFF: { 2466 struct kvm *kvm = filp->private_data; 2467 2468 r = 0; 2469 if (!kvm->arch.kvm_ops->svm_off) 2470 goto out; 2471 2472 r = kvm->arch.kvm_ops->svm_off(kvm); 2473 break; 2474 } 2475 default: { 2476 struct kvm *kvm = filp->private_data; 2477 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2478 } 2479 #else /* CONFIG_PPC_BOOK3S_64 */ 2480 default: 2481 r = -ENOTTY; 2482 #endif 2483 } 2484 out: 2485 return r; 2486 } 2487 2488 static DEFINE_IDA(lpid_inuse); 2489 static unsigned long nr_lpids; 2490 2491 long kvmppc_alloc_lpid(void) 2492 { 2493 int lpid; 2494 2495 /* The host LPID must always be 0 (allocation starts at 1) */ 2496 lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL); 2497 if (lpid < 0) { 2498 if (lpid == -ENOMEM) 2499 pr_err("%s: Out of memory\n", __func__); 2500 else 2501 pr_err("%s: No LPIDs free\n", __func__); 2502 return -ENOMEM; 2503 } 2504 2505 return lpid; 2506 } 2507 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2508 2509 void kvmppc_free_lpid(long lpid) 2510 { 2511 ida_free(&lpid_inuse, lpid); 2512 } 2513 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2514 2515 /* nr_lpids_param includes the host LPID */ 2516 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2517 { 2518 nr_lpids = nr_lpids_param; 2519 } 2520 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2521 2522 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2523 2524 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2525 { 2526 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs) 2527 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry); 2528 } 2529 2530 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 2531 { 2532 if (kvm->arch.kvm_ops->create_vm_debugfs) 2533 kvm->arch.kvm_ops->create_vm_debugfs(kvm); 2534 } 2535