xref: /linux/arch/powerpc/kvm/powerpc.c (revision 336b78c655c84ce9ce47219185171b3912109c0a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9 
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/of.h>
23 #include <asm/cputable.h>
24 #include <linux/uaccess.h>
25 #include <asm/kvm_ppc.h>
26 #include <asm/cputhreads.h>
27 #include <asm/irqflags.h>
28 #include <asm/iommu.h>
29 #include <asm/switch_to.h>
30 #include <asm/xive.h>
31 #ifdef CONFIG_PPC_PSERIES
32 #include <asm/hvcall.h>
33 #include <asm/plpar_wrappers.h>
34 #endif
35 #include <asm/ultravisor.h>
36 #include <asm/setup.h>
37 
38 #include "timing.h"
39 #include "../mm/mmu_decl.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include "trace.h"
43 
44 struct kvmppc_ops *kvmppc_hv_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46 struct kvmppc_ops *kvmppc_pr_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48 
49 
50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51 {
52 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
53 }
54 
55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
56 {
57 	return kvm_arch_vcpu_runnable(vcpu);
58 }
59 
60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
61 {
62 	return false;
63 }
64 
65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
66 {
67 	return 1;
68 }
69 
70 /*
71  * Common checks before entering the guest world.  Call with interrupts
72  * disabled.
73  *
74  * returns:
75  *
76  * == 1 if we're ready to go into guest state
77  * <= 0 if we need to go back to the host with return value
78  */
79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
80 {
81 	int r;
82 
83 	WARN_ON(irqs_disabled());
84 	hard_irq_disable();
85 
86 	while (true) {
87 		if (need_resched()) {
88 			local_irq_enable();
89 			cond_resched();
90 			hard_irq_disable();
91 			continue;
92 		}
93 
94 		if (signal_pending(current)) {
95 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
96 			vcpu->run->exit_reason = KVM_EXIT_INTR;
97 			r = -EINTR;
98 			break;
99 		}
100 
101 		vcpu->mode = IN_GUEST_MODE;
102 
103 		/*
104 		 * Reading vcpu->requests must happen after setting vcpu->mode,
105 		 * so we don't miss a request because the requester sees
106 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
107 		 * before next entering the guest (and thus doesn't IPI).
108 		 * This also orders the write to mode from any reads
109 		 * to the page tables done while the VCPU is running.
110 		 * Please see the comment in kvm_flush_remote_tlbs.
111 		 */
112 		smp_mb();
113 
114 		if (kvm_request_pending(vcpu)) {
115 			/* Make sure we process requests preemptable */
116 			local_irq_enable();
117 			trace_kvm_check_requests(vcpu);
118 			r = kvmppc_core_check_requests(vcpu);
119 			hard_irq_disable();
120 			if (r > 0)
121 				continue;
122 			break;
123 		}
124 
125 		if (kvmppc_core_prepare_to_enter(vcpu)) {
126 			/* interrupts got enabled in between, so we
127 			   are back at square 1 */
128 			continue;
129 		}
130 
131 		guest_enter_irqoff();
132 		return 1;
133 	}
134 
135 	/* return to host */
136 	local_irq_enable();
137 	return r;
138 }
139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
140 
141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
143 {
144 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
145 	int i;
146 
147 	shared->sprg0 = swab64(shared->sprg0);
148 	shared->sprg1 = swab64(shared->sprg1);
149 	shared->sprg2 = swab64(shared->sprg2);
150 	shared->sprg3 = swab64(shared->sprg3);
151 	shared->srr0 = swab64(shared->srr0);
152 	shared->srr1 = swab64(shared->srr1);
153 	shared->dar = swab64(shared->dar);
154 	shared->msr = swab64(shared->msr);
155 	shared->dsisr = swab32(shared->dsisr);
156 	shared->int_pending = swab32(shared->int_pending);
157 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
158 		shared->sr[i] = swab32(shared->sr[i]);
159 }
160 #endif
161 
162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
163 {
164 	int nr = kvmppc_get_gpr(vcpu, 11);
165 	int r;
166 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
167 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
168 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
169 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
170 	unsigned long r2 = 0;
171 
172 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
173 		/* 32 bit mode */
174 		param1 &= 0xffffffff;
175 		param2 &= 0xffffffff;
176 		param3 &= 0xffffffff;
177 		param4 &= 0xffffffff;
178 	}
179 
180 	switch (nr) {
181 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
182 	{
183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
184 		/* Book3S can be little endian, find it out here */
185 		int shared_big_endian = true;
186 		if (vcpu->arch.intr_msr & MSR_LE)
187 			shared_big_endian = false;
188 		if (shared_big_endian != vcpu->arch.shared_big_endian)
189 			kvmppc_swab_shared(vcpu);
190 		vcpu->arch.shared_big_endian = shared_big_endian;
191 #endif
192 
193 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
194 			/*
195 			 * Older versions of the Linux magic page code had
196 			 * a bug where they would map their trampoline code
197 			 * NX. If that's the case, remove !PR NX capability.
198 			 */
199 			vcpu->arch.disable_kernel_nx = true;
200 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
201 		}
202 
203 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
204 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
205 
206 #ifdef CONFIG_PPC_64K_PAGES
207 		/*
208 		 * Make sure our 4k magic page is in the same window of a 64k
209 		 * page within the guest and within the host's page.
210 		 */
211 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
212 		    ((ulong)vcpu->arch.shared & 0xf000)) {
213 			void *old_shared = vcpu->arch.shared;
214 			ulong shared = (ulong)vcpu->arch.shared;
215 			void *new_shared;
216 
217 			shared &= PAGE_MASK;
218 			shared |= vcpu->arch.magic_page_pa & 0xf000;
219 			new_shared = (void*)shared;
220 			memcpy(new_shared, old_shared, 0x1000);
221 			vcpu->arch.shared = new_shared;
222 		}
223 #endif
224 
225 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
226 
227 		r = EV_SUCCESS;
228 		break;
229 	}
230 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
231 		r = EV_SUCCESS;
232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
233 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
234 #endif
235 
236 		/* Second return value is in r4 */
237 		break;
238 	case EV_HCALL_TOKEN(EV_IDLE):
239 		r = EV_SUCCESS;
240 		kvm_vcpu_halt(vcpu);
241 		break;
242 	default:
243 		r = EV_UNIMPLEMENTED;
244 		break;
245 	}
246 
247 	kvmppc_set_gpr(vcpu, 4, r2);
248 
249 	return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252 
253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255 	int r = false;
256 
257 	/* We have to know what CPU to virtualize */
258 	if (!vcpu->arch.pvr)
259 		goto out;
260 
261 	/* PAPR only works with book3s_64 */
262 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263 		goto out;
264 
265 	/* HV KVM can only do PAPR mode for now */
266 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267 		goto out;
268 
269 #ifdef CONFIG_KVM_BOOKE_HV
270 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
271 		goto out;
272 #endif
273 
274 	r = true;
275 
276 out:
277 	vcpu->arch.sane = r;
278 	return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281 
282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284 	enum emulation_result er;
285 	int r;
286 
287 	er = kvmppc_emulate_loadstore(vcpu);
288 	switch (er) {
289 	case EMULATE_DONE:
290 		/* Future optimization: only reload non-volatiles if they were
291 		 * actually modified. */
292 		r = RESUME_GUEST_NV;
293 		break;
294 	case EMULATE_AGAIN:
295 		r = RESUME_GUEST;
296 		break;
297 	case EMULATE_DO_MMIO:
298 		vcpu->run->exit_reason = KVM_EXIT_MMIO;
299 		/* We must reload nonvolatiles because "update" load/store
300 		 * instructions modify register state. */
301 		/* Future optimization: only reload non-volatiles if they were
302 		 * actually modified. */
303 		r = RESUME_HOST_NV;
304 		break;
305 	case EMULATE_FAIL:
306 	{
307 		u32 last_inst;
308 
309 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310 		kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
311 				      last_inst);
312 
313 		/*
314 		 * Injecting a Data Storage here is a bit more
315 		 * accurate since the instruction that caused the
316 		 * access could still be a valid one.
317 		 */
318 		if (!IS_ENABLED(CONFIG_BOOKE)) {
319 			ulong dsisr = DSISR_BADACCESS;
320 
321 			if (vcpu->mmio_is_write)
322 				dsisr |= DSISR_ISSTORE;
323 
324 			kvmppc_core_queue_data_storage(vcpu, vcpu->arch.vaddr_accessed, dsisr);
325 		} else {
326 			/*
327 			 * BookE does not send a SIGBUS on a bad
328 			 * fault, so use a Program interrupt instead
329 			 * to avoid a fault loop.
330 			 */
331 			kvmppc_core_queue_program(vcpu, 0);
332 		}
333 
334 		r = RESUME_GUEST;
335 		break;
336 	}
337 	default:
338 		WARN_ON(1);
339 		r = RESUME_GUEST;
340 	}
341 
342 	return r;
343 }
344 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
345 
346 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
347 	      bool data)
348 {
349 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
350 	struct kvmppc_pte pte;
351 	int r = -EINVAL;
352 
353 	vcpu->stat.st++;
354 
355 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
356 		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
357 							    size);
358 
359 	if ((!r) || (r == -EAGAIN))
360 		return r;
361 
362 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
363 			 XLATE_WRITE, &pte);
364 	if (r < 0)
365 		return r;
366 
367 	*eaddr = pte.raddr;
368 
369 	if (!pte.may_write)
370 		return -EPERM;
371 
372 	/* Magic page override */
373 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
374 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
375 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
376 		void *magic = vcpu->arch.shared;
377 		magic += pte.eaddr & 0xfff;
378 		memcpy(magic, ptr, size);
379 		return EMULATE_DONE;
380 	}
381 
382 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
383 		return EMULATE_DO_MMIO;
384 
385 	return EMULATE_DONE;
386 }
387 EXPORT_SYMBOL_GPL(kvmppc_st);
388 
389 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
390 		      bool data)
391 {
392 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
393 	struct kvmppc_pte pte;
394 	int rc = -EINVAL;
395 
396 	vcpu->stat.ld++;
397 
398 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
399 		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
400 							      size);
401 
402 	if ((!rc) || (rc == -EAGAIN))
403 		return rc;
404 
405 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
406 			  XLATE_READ, &pte);
407 	if (rc)
408 		return rc;
409 
410 	*eaddr = pte.raddr;
411 
412 	if (!pte.may_read)
413 		return -EPERM;
414 
415 	if (!data && !pte.may_execute)
416 		return -ENOEXEC;
417 
418 	/* Magic page override */
419 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
420 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
421 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
422 		void *magic = vcpu->arch.shared;
423 		magic += pte.eaddr & 0xfff;
424 		memcpy(ptr, magic, size);
425 		return EMULATE_DONE;
426 	}
427 
428 	kvm_vcpu_srcu_read_lock(vcpu);
429 	rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
430 	kvm_vcpu_srcu_read_unlock(vcpu);
431 	if (rc)
432 		return EMULATE_DO_MMIO;
433 
434 	return EMULATE_DONE;
435 }
436 EXPORT_SYMBOL_GPL(kvmppc_ld);
437 
438 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
439 {
440 	struct kvmppc_ops *kvm_ops = NULL;
441 	int r;
442 
443 	/*
444 	 * if we have both HV and PR enabled, default is HV
445 	 */
446 	if (type == 0) {
447 		if (kvmppc_hv_ops)
448 			kvm_ops = kvmppc_hv_ops;
449 		else
450 			kvm_ops = kvmppc_pr_ops;
451 		if (!kvm_ops)
452 			goto err_out;
453 	} else	if (type == KVM_VM_PPC_HV) {
454 		if (!kvmppc_hv_ops)
455 			goto err_out;
456 		kvm_ops = kvmppc_hv_ops;
457 	} else if (type == KVM_VM_PPC_PR) {
458 		if (!kvmppc_pr_ops)
459 			goto err_out;
460 		kvm_ops = kvmppc_pr_ops;
461 	} else
462 		goto err_out;
463 
464 	if (!try_module_get(kvm_ops->owner))
465 		return -ENOENT;
466 
467 	kvm->arch.kvm_ops = kvm_ops;
468 	r = kvmppc_core_init_vm(kvm);
469 	if (r)
470 		module_put(kvm_ops->owner);
471 	return r;
472 err_out:
473 	return -EINVAL;
474 }
475 
476 void kvm_arch_destroy_vm(struct kvm *kvm)
477 {
478 #ifdef CONFIG_KVM_XICS
479 	/*
480 	 * We call kick_all_cpus_sync() to ensure that all
481 	 * CPUs have executed any pending IPIs before we
482 	 * continue and free VCPUs structures below.
483 	 */
484 	if (is_kvmppc_hv_enabled(kvm))
485 		kick_all_cpus_sync();
486 #endif
487 
488 	kvm_destroy_vcpus(kvm);
489 
490 	mutex_lock(&kvm->lock);
491 
492 	kvmppc_core_destroy_vm(kvm);
493 
494 	mutex_unlock(&kvm->lock);
495 
496 	/* drop the module reference */
497 	module_put(kvm->arch.kvm_ops->owner);
498 }
499 
500 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
501 {
502 	int r;
503 	/* Assume we're using HV mode when the HV module is loaded */
504 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
505 
506 	if (kvm) {
507 		/*
508 		 * Hooray - we know which VM type we're running on. Depend on
509 		 * that rather than the guess above.
510 		 */
511 		hv_enabled = is_kvmppc_hv_enabled(kvm);
512 	}
513 
514 	switch (ext) {
515 #ifdef CONFIG_BOOKE
516 	case KVM_CAP_PPC_BOOKE_SREGS:
517 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
518 	case KVM_CAP_PPC_EPR:
519 #else
520 	case KVM_CAP_PPC_SEGSTATE:
521 	case KVM_CAP_PPC_HIOR:
522 	case KVM_CAP_PPC_PAPR:
523 #endif
524 	case KVM_CAP_PPC_UNSET_IRQ:
525 	case KVM_CAP_PPC_IRQ_LEVEL:
526 	case KVM_CAP_ENABLE_CAP:
527 	case KVM_CAP_ONE_REG:
528 	case KVM_CAP_IOEVENTFD:
529 	case KVM_CAP_DEVICE_CTRL:
530 	case KVM_CAP_IMMEDIATE_EXIT:
531 	case KVM_CAP_SET_GUEST_DEBUG:
532 		r = 1;
533 		break;
534 	case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
535 	case KVM_CAP_PPC_PAIRED_SINGLES:
536 	case KVM_CAP_PPC_OSI:
537 	case KVM_CAP_PPC_GET_PVINFO:
538 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
539 	case KVM_CAP_SW_TLB:
540 #endif
541 		/* We support this only for PR */
542 		r = !hv_enabled;
543 		break;
544 #ifdef CONFIG_KVM_MPIC
545 	case KVM_CAP_IRQ_MPIC:
546 		r = 1;
547 		break;
548 #endif
549 
550 #ifdef CONFIG_PPC_BOOK3S_64
551 	case KVM_CAP_SPAPR_TCE:
552 	case KVM_CAP_SPAPR_TCE_64:
553 		r = 1;
554 		break;
555 	case KVM_CAP_SPAPR_TCE_VFIO:
556 		r = !!cpu_has_feature(CPU_FTR_HVMODE);
557 		break;
558 	case KVM_CAP_PPC_RTAS:
559 	case KVM_CAP_PPC_FIXUP_HCALL:
560 	case KVM_CAP_PPC_ENABLE_HCALL:
561 #ifdef CONFIG_KVM_XICS
562 	case KVM_CAP_IRQ_XICS:
563 #endif
564 	case KVM_CAP_PPC_GET_CPU_CHAR:
565 		r = 1;
566 		break;
567 #ifdef CONFIG_KVM_XIVE
568 	case KVM_CAP_PPC_IRQ_XIVE:
569 		/*
570 		 * We need XIVE to be enabled on the platform (implies
571 		 * a POWER9 processor) and the PowerNV platform, as
572 		 * nested is not yet supported.
573 		 */
574 		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
575 			kvmppc_xive_native_supported();
576 		break;
577 #endif
578 
579 	case KVM_CAP_PPC_ALLOC_HTAB:
580 		r = hv_enabled;
581 		break;
582 #endif /* CONFIG_PPC_BOOK3S_64 */
583 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
584 	case KVM_CAP_PPC_SMT:
585 		r = 0;
586 		if (kvm) {
587 			if (kvm->arch.emul_smt_mode > 1)
588 				r = kvm->arch.emul_smt_mode;
589 			else
590 				r = kvm->arch.smt_mode;
591 		} else if (hv_enabled) {
592 			if (cpu_has_feature(CPU_FTR_ARCH_300))
593 				r = 1;
594 			else
595 				r = threads_per_subcore;
596 		}
597 		break;
598 	case KVM_CAP_PPC_SMT_POSSIBLE:
599 		r = 1;
600 		if (hv_enabled) {
601 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
602 				r = ((threads_per_subcore << 1) - 1);
603 			else
604 				/* P9 can emulate dbells, so allow any mode */
605 				r = 8 | 4 | 2 | 1;
606 		}
607 		break;
608 	case KVM_CAP_PPC_RMA:
609 		r = 0;
610 		break;
611 	case KVM_CAP_PPC_HWRNG:
612 		r = kvmppc_hwrng_present();
613 		break;
614 	case KVM_CAP_PPC_MMU_RADIX:
615 		r = !!(hv_enabled && radix_enabled());
616 		break;
617 	case KVM_CAP_PPC_MMU_HASH_V3:
618 		r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
619 		       kvmppc_hv_ops->hash_v3_possible());
620 		break;
621 	case KVM_CAP_PPC_NESTED_HV:
622 		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
623 		       !kvmppc_hv_ops->enable_nested(NULL));
624 		break;
625 #endif
626 	case KVM_CAP_SYNC_MMU:
627 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
628 		r = hv_enabled;
629 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
630 		r = 1;
631 #else
632 		r = 0;
633 #endif
634 		break;
635 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
636 	case KVM_CAP_PPC_HTAB_FD:
637 		r = hv_enabled;
638 		break;
639 #endif
640 	case KVM_CAP_NR_VCPUS:
641 		/*
642 		 * Recommending a number of CPUs is somewhat arbitrary; we
643 		 * return the number of present CPUs for -HV (since a host
644 		 * will have secondary threads "offline"), and for other KVM
645 		 * implementations just count online CPUs.
646 		 */
647 		if (hv_enabled)
648 			r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
649 		else
650 			r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
651 		break;
652 	case KVM_CAP_MAX_VCPUS:
653 		r = KVM_MAX_VCPUS;
654 		break;
655 	case KVM_CAP_MAX_VCPU_ID:
656 		r = KVM_MAX_VCPU_IDS;
657 		break;
658 #ifdef CONFIG_PPC_BOOK3S_64
659 	case KVM_CAP_PPC_GET_SMMU_INFO:
660 		r = 1;
661 		break;
662 	case KVM_CAP_SPAPR_MULTITCE:
663 		r = 1;
664 		break;
665 	case KVM_CAP_SPAPR_RESIZE_HPT:
666 		r = !!hv_enabled;
667 		break;
668 #endif
669 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
670 	case KVM_CAP_PPC_FWNMI:
671 		r = hv_enabled;
672 		break;
673 #endif
674 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
675 	case KVM_CAP_PPC_HTM:
676 		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
677 		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
678 		break;
679 #endif
680 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
681 	case KVM_CAP_PPC_SECURE_GUEST:
682 		r = hv_enabled && kvmppc_hv_ops->enable_svm &&
683 			!kvmppc_hv_ops->enable_svm(NULL);
684 		break;
685 	case KVM_CAP_PPC_DAWR1:
686 		r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
687 		       !kvmppc_hv_ops->enable_dawr1(NULL));
688 		break;
689 	case KVM_CAP_PPC_RPT_INVALIDATE:
690 		r = 1;
691 		break;
692 #endif
693 	case KVM_CAP_PPC_AIL_MODE_3:
694 		r = 0;
695 		/*
696 		 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
697 		 * The POWER9s can support it if the guest runs in hash mode,
698 		 * but QEMU doesn't necessarily query the capability in time.
699 		 */
700 		if (hv_enabled) {
701 			if (kvmhv_on_pseries()) {
702 				if (pseries_reloc_on_exception())
703 					r = 1;
704 			} else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
705 				  !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
706 				r = 1;
707 			}
708 		}
709 		break;
710 	default:
711 		r = 0;
712 		break;
713 	}
714 	return r;
715 
716 }
717 
718 long kvm_arch_dev_ioctl(struct file *filp,
719                         unsigned int ioctl, unsigned long arg)
720 {
721 	return -EINVAL;
722 }
723 
724 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
725 {
726 	kvmppc_core_free_memslot(kvm, slot);
727 }
728 
729 int kvm_arch_prepare_memory_region(struct kvm *kvm,
730 				   const struct kvm_memory_slot *old,
731 				   struct kvm_memory_slot *new,
732 				   enum kvm_mr_change change)
733 {
734 	return kvmppc_core_prepare_memory_region(kvm, old, new, change);
735 }
736 
737 void kvm_arch_commit_memory_region(struct kvm *kvm,
738 				   struct kvm_memory_slot *old,
739 				   const struct kvm_memory_slot *new,
740 				   enum kvm_mr_change change)
741 {
742 	kvmppc_core_commit_memory_region(kvm, old, new, change);
743 }
744 
745 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
746 				   struct kvm_memory_slot *slot)
747 {
748 	kvmppc_core_flush_memslot(kvm, slot);
749 }
750 
751 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
752 {
753 	return 0;
754 }
755 
756 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
757 {
758 	struct kvm_vcpu *vcpu;
759 
760 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
761 	kvmppc_decrementer_func(vcpu);
762 
763 	return HRTIMER_NORESTART;
764 }
765 
766 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
767 {
768 	int err;
769 
770 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
771 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
772 
773 #ifdef CONFIG_KVM_EXIT_TIMING
774 	mutex_init(&vcpu->arch.exit_timing_lock);
775 #endif
776 	err = kvmppc_subarch_vcpu_init(vcpu);
777 	if (err)
778 		return err;
779 
780 	err = kvmppc_core_vcpu_create(vcpu);
781 	if (err)
782 		goto out_vcpu_uninit;
783 
784 	rcuwait_init(&vcpu->arch.wait);
785 	vcpu->arch.waitp = &vcpu->arch.wait;
786 	return 0;
787 
788 out_vcpu_uninit:
789 	kvmppc_subarch_vcpu_uninit(vcpu);
790 	return err;
791 }
792 
793 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
794 {
795 }
796 
797 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
798 {
799 	/* Make sure we're not using the vcpu anymore */
800 	hrtimer_cancel(&vcpu->arch.dec_timer);
801 
802 	switch (vcpu->arch.irq_type) {
803 	case KVMPPC_IRQ_MPIC:
804 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
805 		break;
806 	case KVMPPC_IRQ_XICS:
807 		if (xics_on_xive())
808 			kvmppc_xive_cleanup_vcpu(vcpu);
809 		else
810 			kvmppc_xics_free_icp(vcpu);
811 		break;
812 	case KVMPPC_IRQ_XIVE:
813 		kvmppc_xive_native_cleanup_vcpu(vcpu);
814 		break;
815 	}
816 
817 	kvmppc_core_vcpu_free(vcpu);
818 
819 	kvmppc_subarch_vcpu_uninit(vcpu);
820 }
821 
822 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
823 {
824 	return kvmppc_core_pending_dec(vcpu);
825 }
826 
827 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
828 {
829 #ifdef CONFIG_BOOKE
830 	/*
831 	 * vrsave (formerly usprg0) isn't used by Linux, but may
832 	 * be used by the guest.
833 	 *
834 	 * On non-booke this is associated with Altivec and
835 	 * is handled by code in book3s.c.
836 	 */
837 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
838 #endif
839 	kvmppc_core_vcpu_load(vcpu, cpu);
840 }
841 
842 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
843 {
844 	kvmppc_core_vcpu_put(vcpu);
845 #ifdef CONFIG_BOOKE
846 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
847 #endif
848 }
849 
850 /*
851  * irq_bypass_add_producer and irq_bypass_del_producer are only
852  * useful if the architecture supports PCI passthrough.
853  * irq_bypass_stop and irq_bypass_start are not needed and so
854  * kvm_ops are not defined for them.
855  */
856 bool kvm_arch_has_irq_bypass(void)
857 {
858 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
859 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
860 }
861 
862 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
863 				     struct irq_bypass_producer *prod)
864 {
865 	struct kvm_kernel_irqfd *irqfd =
866 		container_of(cons, struct kvm_kernel_irqfd, consumer);
867 	struct kvm *kvm = irqfd->kvm;
868 
869 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
870 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
871 
872 	return 0;
873 }
874 
875 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
876 				      struct irq_bypass_producer *prod)
877 {
878 	struct kvm_kernel_irqfd *irqfd =
879 		container_of(cons, struct kvm_kernel_irqfd, consumer);
880 	struct kvm *kvm = irqfd->kvm;
881 
882 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
883 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
884 }
885 
886 #ifdef CONFIG_VSX
887 static inline int kvmppc_get_vsr_dword_offset(int index)
888 {
889 	int offset;
890 
891 	if ((index != 0) && (index != 1))
892 		return -1;
893 
894 #ifdef __BIG_ENDIAN
895 	offset =  index;
896 #else
897 	offset = 1 - index;
898 #endif
899 
900 	return offset;
901 }
902 
903 static inline int kvmppc_get_vsr_word_offset(int index)
904 {
905 	int offset;
906 
907 	if ((index > 3) || (index < 0))
908 		return -1;
909 
910 #ifdef __BIG_ENDIAN
911 	offset = index;
912 #else
913 	offset = 3 - index;
914 #endif
915 	return offset;
916 }
917 
918 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
919 	u64 gpr)
920 {
921 	union kvmppc_one_reg val;
922 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
923 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
924 
925 	if (offset == -1)
926 		return;
927 
928 	if (index >= 32) {
929 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
930 		val.vsxval[offset] = gpr;
931 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
932 	} else {
933 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
934 	}
935 }
936 
937 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
938 	u64 gpr)
939 {
940 	union kvmppc_one_reg val;
941 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
942 
943 	if (index >= 32) {
944 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
945 		val.vsxval[0] = gpr;
946 		val.vsxval[1] = gpr;
947 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
948 	} else {
949 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
950 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
951 	}
952 }
953 
954 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
955 	u32 gpr)
956 {
957 	union kvmppc_one_reg val;
958 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
959 
960 	if (index >= 32) {
961 		val.vsx32val[0] = gpr;
962 		val.vsx32val[1] = gpr;
963 		val.vsx32val[2] = gpr;
964 		val.vsx32val[3] = gpr;
965 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
966 	} else {
967 		val.vsx32val[0] = gpr;
968 		val.vsx32val[1] = gpr;
969 		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
970 		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
971 	}
972 }
973 
974 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
975 	u32 gpr32)
976 {
977 	union kvmppc_one_reg val;
978 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
979 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
980 	int dword_offset, word_offset;
981 
982 	if (offset == -1)
983 		return;
984 
985 	if (index >= 32) {
986 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
987 		val.vsx32val[offset] = gpr32;
988 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
989 	} else {
990 		dword_offset = offset / 2;
991 		word_offset = offset % 2;
992 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
993 		val.vsx32val[word_offset] = gpr32;
994 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
995 	}
996 }
997 #endif /* CONFIG_VSX */
998 
999 #ifdef CONFIG_ALTIVEC
1000 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
1001 		int index, int element_size)
1002 {
1003 	int offset;
1004 	int elts = sizeof(vector128)/element_size;
1005 
1006 	if ((index < 0) || (index >= elts))
1007 		return -1;
1008 
1009 	if (kvmppc_need_byteswap(vcpu))
1010 		offset = elts - index - 1;
1011 	else
1012 		offset = index;
1013 
1014 	return offset;
1015 }
1016 
1017 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1018 		int index)
1019 {
1020 	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1021 }
1022 
1023 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1024 		int index)
1025 {
1026 	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1027 }
1028 
1029 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1030 		int index)
1031 {
1032 	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1033 }
1034 
1035 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1036 		int index)
1037 {
1038 	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1039 }
1040 
1041 
1042 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1043 	u64 gpr)
1044 {
1045 	union kvmppc_one_reg val;
1046 	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1047 			vcpu->arch.mmio_vmx_offset);
1048 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1049 
1050 	if (offset == -1)
1051 		return;
1052 
1053 	val.vval = VCPU_VSX_VR(vcpu, index);
1054 	val.vsxval[offset] = gpr;
1055 	VCPU_VSX_VR(vcpu, index) = val.vval;
1056 }
1057 
1058 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1059 	u32 gpr32)
1060 {
1061 	union kvmppc_one_reg val;
1062 	int offset = kvmppc_get_vmx_word_offset(vcpu,
1063 			vcpu->arch.mmio_vmx_offset);
1064 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1065 
1066 	if (offset == -1)
1067 		return;
1068 
1069 	val.vval = VCPU_VSX_VR(vcpu, index);
1070 	val.vsx32val[offset] = gpr32;
1071 	VCPU_VSX_VR(vcpu, index) = val.vval;
1072 }
1073 
1074 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1075 	u16 gpr16)
1076 {
1077 	union kvmppc_one_reg val;
1078 	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1079 			vcpu->arch.mmio_vmx_offset);
1080 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1081 
1082 	if (offset == -1)
1083 		return;
1084 
1085 	val.vval = VCPU_VSX_VR(vcpu, index);
1086 	val.vsx16val[offset] = gpr16;
1087 	VCPU_VSX_VR(vcpu, index) = val.vval;
1088 }
1089 
1090 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1091 	u8 gpr8)
1092 {
1093 	union kvmppc_one_reg val;
1094 	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1095 			vcpu->arch.mmio_vmx_offset);
1096 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1097 
1098 	if (offset == -1)
1099 		return;
1100 
1101 	val.vval = VCPU_VSX_VR(vcpu, index);
1102 	val.vsx8val[offset] = gpr8;
1103 	VCPU_VSX_VR(vcpu, index) = val.vval;
1104 }
1105 #endif /* CONFIG_ALTIVEC */
1106 
1107 #ifdef CONFIG_PPC_FPU
1108 static inline u64 sp_to_dp(u32 fprs)
1109 {
1110 	u64 fprd;
1111 
1112 	preempt_disable();
1113 	enable_kernel_fp();
1114 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1115 	     : "fr0");
1116 	preempt_enable();
1117 	return fprd;
1118 }
1119 
1120 static inline u32 dp_to_sp(u64 fprd)
1121 {
1122 	u32 fprs;
1123 
1124 	preempt_disable();
1125 	enable_kernel_fp();
1126 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1127 	     : "fr0");
1128 	preempt_enable();
1129 	return fprs;
1130 }
1131 
1132 #else
1133 #define sp_to_dp(x)	(x)
1134 #define dp_to_sp(x)	(x)
1135 #endif /* CONFIG_PPC_FPU */
1136 
1137 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1138 {
1139 	struct kvm_run *run = vcpu->run;
1140 	u64 gpr;
1141 
1142 	if (run->mmio.len > sizeof(gpr))
1143 		return;
1144 
1145 	if (!vcpu->arch.mmio_host_swabbed) {
1146 		switch (run->mmio.len) {
1147 		case 8: gpr = *(u64 *)run->mmio.data; break;
1148 		case 4: gpr = *(u32 *)run->mmio.data; break;
1149 		case 2: gpr = *(u16 *)run->mmio.data; break;
1150 		case 1: gpr = *(u8 *)run->mmio.data; break;
1151 		}
1152 	} else {
1153 		switch (run->mmio.len) {
1154 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1155 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1156 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1157 		case 1: gpr = *(u8 *)run->mmio.data; break;
1158 		}
1159 	}
1160 
1161 	/* conversion between single and double precision */
1162 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1163 		gpr = sp_to_dp(gpr);
1164 
1165 	if (vcpu->arch.mmio_sign_extend) {
1166 		switch (run->mmio.len) {
1167 #ifdef CONFIG_PPC64
1168 		case 4:
1169 			gpr = (s64)(s32)gpr;
1170 			break;
1171 #endif
1172 		case 2:
1173 			gpr = (s64)(s16)gpr;
1174 			break;
1175 		case 1:
1176 			gpr = (s64)(s8)gpr;
1177 			break;
1178 		}
1179 	}
1180 
1181 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1182 	case KVM_MMIO_REG_GPR:
1183 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1184 		break;
1185 	case KVM_MMIO_REG_FPR:
1186 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1187 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1188 
1189 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1190 		break;
1191 #ifdef CONFIG_PPC_BOOK3S
1192 	case KVM_MMIO_REG_QPR:
1193 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1194 		break;
1195 	case KVM_MMIO_REG_FQPR:
1196 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1197 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1198 		break;
1199 #endif
1200 #ifdef CONFIG_VSX
1201 	case KVM_MMIO_REG_VSX:
1202 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1203 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1204 
1205 		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1206 			kvmppc_set_vsr_dword(vcpu, gpr);
1207 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1208 			kvmppc_set_vsr_word(vcpu, gpr);
1209 		else if (vcpu->arch.mmio_copy_type ==
1210 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1211 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1212 		else if (vcpu->arch.mmio_copy_type ==
1213 				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1214 			kvmppc_set_vsr_word_dump(vcpu, gpr);
1215 		break;
1216 #endif
1217 #ifdef CONFIG_ALTIVEC
1218 	case KVM_MMIO_REG_VMX:
1219 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1220 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1221 
1222 		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1223 			kvmppc_set_vmx_dword(vcpu, gpr);
1224 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1225 			kvmppc_set_vmx_word(vcpu, gpr);
1226 		else if (vcpu->arch.mmio_copy_type ==
1227 				KVMPPC_VMX_COPY_HWORD)
1228 			kvmppc_set_vmx_hword(vcpu, gpr);
1229 		else if (vcpu->arch.mmio_copy_type ==
1230 				KVMPPC_VMX_COPY_BYTE)
1231 			kvmppc_set_vmx_byte(vcpu, gpr);
1232 		break;
1233 #endif
1234 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1235 	case KVM_MMIO_REG_NESTED_GPR:
1236 		if (kvmppc_need_byteswap(vcpu))
1237 			gpr = swab64(gpr);
1238 		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1239 				     sizeof(gpr));
1240 		break;
1241 #endif
1242 	default:
1243 		BUG();
1244 	}
1245 }
1246 
1247 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1248 				unsigned int rt, unsigned int bytes,
1249 				int is_default_endian, int sign_extend)
1250 {
1251 	struct kvm_run *run = vcpu->run;
1252 	int idx, ret;
1253 	bool host_swabbed;
1254 
1255 	/* Pity C doesn't have a logical XOR operator */
1256 	if (kvmppc_need_byteswap(vcpu)) {
1257 		host_swabbed = is_default_endian;
1258 	} else {
1259 		host_swabbed = !is_default_endian;
1260 	}
1261 
1262 	if (bytes > sizeof(run->mmio.data))
1263 		return EMULATE_FAIL;
1264 
1265 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1266 	run->mmio.len = bytes;
1267 	run->mmio.is_write = 0;
1268 
1269 	vcpu->arch.io_gpr = rt;
1270 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1271 	vcpu->mmio_needed = 1;
1272 	vcpu->mmio_is_write = 0;
1273 	vcpu->arch.mmio_sign_extend = sign_extend;
1274 
1275 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1276 
1277 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1278 			      bytes, &run->mmio.data);
1279 
1280 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1281 
1282 	if (!ret) {
1283 		kvmppc_complete_mmio_load(vcpu);
1284 		vcpu->mmio_needed = 0;
1285 		return EMULATE_DONE;
1286 	}
1287 
1288 	return EMULATE_DO_MMIO;
1289 }
1290 
1291 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1292 		       unsigned int rt, unsigned int bytes,
1293 		       int is_default_endian)
1294 {
1295 	return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1296 }
1297 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1298 
1299 /* Same as above, but sign extends */
1300 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1301 			unsigned int rt, unsigned int bytes,
1302 			int is_default_endian)
1303 {
1304 	return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1305 }
1306 
1307 #ifdef CONFIG_VSX
1308 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1309 			unsigned int rt, unsigned int bytes,
1310 			int is_default_endian, int mmio_sign_extend)
1311 {
1312 	enum emulation_result emulated = EMULATE_DONE;
1313 
1314 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1315 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1316 		return EMULATE_FAIL;
1317 
1318 	while (vcpu->arch.mmio_vsx_copy_nums) {
1319 		emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1320 			is_default_endian, mmio_sign_extend);
1321 
1322 		if (emulated != EMULATE_DONE)
1323 			break;
1324 
1325 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1326 
1327 		vcpu->arch.mmio_vsx_copy_nums--;
1328 		vcpu->arch.mmio_vsx_offset++;
1329 	}
1330 	return emulated;
1331 }
1332 #endif /* CONFIG_VSX */
1333 
1334 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1335 			u64 val, unsigned int bytes, int is_default_endian)
1336 {
1337 	struct kvm_run *run = vcpu->run;
1338 	void *data = run->mmio.data;
1339 	int idx, ret;
1340 	bool host_swabbed;
1341 
1342 	/* Pity C doesn't have a logical XOR operator */
1343 	if (kvmppc_need_byteswap(vcpu)) {
1344 		host_swabbed = is_default_endian;
1345 	} else {
1346 		host_swabbed = !is_default_endian;
1347 	}
1348 
1349 	if (bytes > sizeof(run->mmio.data))
1350 		return EMULATE_FAIL;
1351 
1352 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1353 	run->mmio.len = bytes;
1354 	run->mmio.is_write = 1;
1355 	vcpu->mmio_needed = 1;
1356 	vcpu->mmio_is_write = 1;
1357 
1358 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1359 		val = dp_to_sp(val);
1360 
1361 	/* Store the value at the lowest bytes in 'data'. */
1362 	if (!host_swabbed) {
1363 		switch (bytes) {
1364 		case 8: *(u64 *)data = val; break;
1365 		case 4: *(u32 *)data = val; break;
1366 		case 2: *(u16 *)data = val; break;
1367 		case 1: *(u8  *)data = val; break;
1368 		}
1369 	} else {
1370 		switch (bytes) {
1371 		case 8: *(u64 *)data = swab64(val); break;
1372 		case 4: *(u32 *)data = swab32(val); break;
1373 		case 2: *(u16 *)data = swab16(val); break;
1374 		case 1: *(u8  *)data = val; break;
1375 		}
1376 	}
1377 
1378 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1379 
1380 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1381 			       bytes, &run->mmio.data);
1382 
1383 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1384 
1385 	if (!ret) {
1386 		vcpu->mmio_needed = 0;
1387 		return EMULATE_DONE;
1388 	}
1389 
1390 	return EMULATE_DO_MMIO;
1391 }
1392 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1393 
1394 #ifdef CONFIG_VSX
1395 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1396 {
1397 	u32 dword_offset, word_offset;
1398 	union kvmppc_one_reg reg;
1399 	int vsx_offset = 0;
1400 	int copy_type = vcpu->arch.mmio_copy_type;
1401 	int result = 0;
1402 
1403 	switch (copy_type) {
1404 	case KVMPPC_VSX_COPY_DWORD:
1405 		vsx_offset =
1406 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1407 
1408 		if (vsx_offset == -1) {
1409 			result = -1;
1410 			break;
1411 		}
1412 
1413 		if (rs < 32) {
1414 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1415 		} else {
1416 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1417 			*val = reg.vsxval[vsx_offset];
1418 		}
1419 		break;
1420 
1421 	case KVMPPC_VSX_COPY_WORD:
1422 		vsx_offset =
1423 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1424 
1425 		if (vsx_offset == -1) {
1426 			result = -1;
1427 			break;
1428 		}
1429 
1430 		if (rs < 32) {
1431 			dword_offset = vsx_offset / 2;
1432 			word_offset = vsx_offset % 2;
1433 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1434 			*val = reg.vsx32val[word_offset];
1435 		} else {
1436 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1437 			*val = reg.vsx32val[vsx_offset];
1438 		}
1439 		break;
1440 
1441 	default:
1442 		result = -1;
1443 		break;
1444 	}
1445 
1446 	return result;
1447 }
1448 
1449 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1450 			int rs, unsigned int bytes, int is_default_endian)
1451 {
1452 	u64 val;
1453 	enum emulation_result emulated = EMULATE_DONE;
1454 
1455 	vcpu->arch.io_gpr = rs;
1456 
1457 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1458 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1459 		return EMULATE_FAIL;
1460 
1461 	while (vcpu->arch.mmio_vsx_copy_nums) {
1462 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1463 			return EMULATE_FAIL;
1464 
1465 		emulated = kvmppc_handle_store(vcpu,
1466 			 val, bytes, is_default_endian);
1467 
1468 		if (emulated != EMULATE_DONE)
1469 			break;
1470 
1471 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1472 
1473 		vcpu->arch.mmio_vsx_copy_nums--;
1474 		vcpu->arch.mmio_vsx_offset++;
1475 	}
1476 
1477 	return emulated;
1478 }
1479 
1480 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1481 {
1482 	struct kvm_run *run = vcpu->run;
1483 	enum emulation_result emulated = EMULATE_FAIL;
1484 	int r;
1485 
1486 	vcpu->arch.paddr_accessed += run->mmio.len;
1487 
1488 	if (!vcpu->mmio_is_write) {
1489 		emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1490 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1491 	} else {
1492 		emulated = kvmppc_handle_vsx_store(vcpu,
1493 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1494 	}
1495 
1496 	switch (emulated) {
1497 	case EMULATE_DO_MMIO:
1498 		run->exit_reason = KVM_EXIT_MMIO;
1499 		r = RESUME_HOST;
1500 		break;
1501 	case EMULATE_FAIL:
1502 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1503 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1504 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1505 		r = RESUME_HOST;
1506 		break;
1507 	default:
1508 		r = RESUME_GUEST;
1509 		break;
1510 	}
1511 	return r;
1512 }
1513 #endif /* CONFIG_VSX */
1514 
1515 #ifdef CONFIG_ALTIVEC
1516 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1517 		unsigned int rt, unsigned int bytes, int is_default_endian)
1518 {
1519 	enum emulation_result emulated = EMULATE_DONE;
1520 
1521 	if (vcpu->arch.mmio_vmx_copy_nums > 2)
1522 		return EMULATE_FAIL;
1523 
1524 	while (vcpu->arch.mmio_vmx_copy_nums) {
1525 		emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1526 				is_default_endian, 0);
1527 
1528 		if (emulated != EMULATE_DONE)
1529 			break;
1530 
1531 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1532 		vcpu->arch.mmio_vmx_copy_nums--;
1533 		vcpu->arch.mmio_vmx_offset++;
1534 	}
1535 
1536 	return emulated;
1537 }
1538 
1539 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1540 {
1541 	union kvmppc_one_reg reg;
1542 	int vmx_offset = 0;
1543 	int result = 0;
1544 
1545 	vmx_offset =
1546 		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1547 
1548 	if (vmx_offset == -1)
1549 		return -1;
1550 
1551 	reg.vval = VCPU_VSX_VR(vcpu, index);
1552 	*val = reg.vsxval[vmx_offset];
1553 
1554 	return result;
1555 }
1556 
1557 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1558 {
1559 	union kvmppc_one_reg reg;
1560 	int vmx_offset = 0;
1561 	int result = 0;
1562 
1563 	vmx_offset =
1564 		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1565 
1566 	if (vmx_offset == -1)
1567 		return -1;
1568 
1569 	reg.vval = VCPU_VSX_VR(vcpu, index);
1570 	*val = reg.vsx32val[vmx_offset];
1571 
1572 	return result;
1573 }
1574 
1575 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1576 {
1577 	union kvmppc_one_reg reg;
1578 	int vmx_offset = 0;
1579 	int result = 0;
1580 
1581 	vmx_offset =
1582 		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1583 
1584 	if (vmx_offset == -1)
1585 		return -1;
1586 
1587 	reg.vval = VCPU_VSX_VR(vcpu, index);
1588 	*val = reg.vsx16val[vmx_offset];
1589 
1590 	return result;
1591 }
1592 
1593 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1594 {
1595 	union kvmppc_one_reg reg;
1596 	int vmx_offset = 0;
1597 	int result = 0;
1598 
1599 	vmx_offset =
1600 		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1601 
1602 	if (vmx_offset == -1)
1603 		return -1;
1604 
1605 	reg.vval = VCPU_VSX_VR(vcpu, index);
1606 	*val = reg.vsx8val[vmx_offset];
1607 
1608 	return result;
1609 }
1610 
1611 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1612 		unsigned int rs, unsigned int bytes, int is_default_endian)
1613 {
1614 	u64 val = 0;
1615 	unsigned int index = rs & KVM_MMIO_REG_MASK;
1616 	enum emulation_result emulated = EMULATE_DONE;
1617 
1618 	if (vcpu->arch.mmio_vmx_copy_nums > 2)
1619 		return EMULATE_FAIL;
1620 
1621 	vcpu->arch.io_gpr = rs;
1622 
1623 	while (vcpu->arch.mmio_vmx_copy_nums) {
1624 		switch (vcpu->arch.mmio_copy_type) {
1625 		case KVMPPC_VMX_COPY_DWORD:
1626 			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1627 				return EMULATE_FAIL;
1628 
1629 			break;
1630 		case KVMPPC_VMX_COPY_WORD:
1631 			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1632 				return EMULATE_FAIL;
1633 			break;
1634 		case KVMPPC_VMX_COPY_HWORD:
1635 			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1636 				return EMULATE_FAIL;
1637 			break;
1638 		case KVMPPC_VMX_COPY_BYTE:
1639 			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1640 				return EMULATE_FAIL;
1641 			break;
1642 		default:
1643 			return EMULATE_FAIL;
1644 		}
1645 
1646 		emulated = kvmppc_handle_store(vcpu, val, bytes,
1647 				is_default_endian);
1648 		if (emulated != EMULATE_DONE)
1649 			break;
1650 
1651 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1652 		vcpu->arch.mmio_vmx_copy_nums--;
1653 		vcpu->arch.mmio_vmx_offset++;
1654 	}
1655 
1656 	return emulated;
1657 }
1658 
1659 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1660 {
1661 	struct kvm_run *run = vcpu->run;
1662 	enum emulation_result emulated = EMULATE_FAIL;
1663 	int r;
1664 
1665 	vcpu->arch.paddr_accessed += run->mmio.len;
1666 
1667 	if (!vcpu->mmio_is_write) {
1668 		emulated = kvmppc_handle_vmx_load(vcpu,
1669 				vcpu->arch.io_gpr, run->mmio.len, 1);
1670 	} else {
1671 		emulated = kvmppc_handle_vmx_store(vcpu,
1672 				vcpu->arch.io_gpr, run->mmio.len, 1);
1673 	}
1674 
1675 	switch (emulated) {
1676 	case EMULATE_DO_MMIO:
1677 		run->exit_reason = KVM_EXIT_MMIO;
1678 		r = RESUME_HOST;
1679 		break;
1680 	case EMULATE_FAIL:
1681 		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1682 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1683 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1684 		r = RESUME_HOST;
1685 		break;
1686 	default:
1687 		r = RESUME_GUEST;
1688 		break;
1689 	}
1690 	return r;
1691 }
1692 #endif /* CONFIG_ALTIVEC */
1693 
1694 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1695 {
1696 	int r = 0;
1697 	union kvmppc_one_reg val;
1698 	int size;
1699 
1700 	size = one_reg_size(reg->id);
1701 	if (size > sizeof(val))
1702 		return -EINVAL;
1703 
1704 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1705 	if (r == -EINVAL) {
1706 		r = 0;
1707 		switch (reg->id) {
1708 #ifdef CONFIG_ALTIVEC
1709 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1710 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1711 				r = -ENXIO;
1712 				break;
1713 			}
1714 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1715 			break;
1716 		case KVM_REG_PPC_VSCR:
1717 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1718 				r = -ENXIO;
1719 				break;
1720 			}
1721 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1722 			break;
1723 		case KVM_REG_PPC_VRSAVE:
1724 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1725 			break;
1726 #endif /* CONFIG_ALTIVEC */
1727 		default:
1728 			r = -EINVAL;
1729 			break;
1730 		}
1731 	}
1732 
1733 	if (r)
1734 		return r;
1735 
1736 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1737 		r = -EFAULT;
1738 
1739 	return r;
1740 }
1741 
1742 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1743 {
1744 	int r;
1745 	union kvmppc_one_reg val;
1746 	int size;
1747 
1748 	size = one_reg_size(reg->id);
1749 	if (size > sizeof(val))
1750 		return -EINVAL;
1751 
1752 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1753 		return -EFAULT;
1754 
1755 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1756 	if (r == -EINVAL) {
1757 		r = 0;
1758 		switch (reg->id) {
1759 #ifdef CONFIG_ALTIVEC
1760 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1761 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1762 				r = -ENXIO;
1763 				break;
1764 			}
1765 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1766 			break;
1767 		case KVM_REG_PPC_VSCR:
1768 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1769 				r = -ENXIO;
1770 				break;
1771 			}
1772 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1773 			break;
1774 		case KVM_REG_PPC_VRSAVE:
1775 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1776 				r = -ENXIO;
1777 				break;
1778 			}
1779 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1780 			break;
1781 #endif /* CONFIG_ALTIVEC */
1782 		default:
1783 			r = -EINVAL;
1784 			break;
1785 		}
1786 	}
1787 
1788 	return r;
1789 }
1790 
1791 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1792 {
1793 	struct kvm_run *run = vcpu->run;
1794 	int r;
1795 
1796 	vcpu_load(vcpu);
1797 
1798 	if (vcpu->mmio_needed) {
1799 		vcpu->mmio_needed = 0;
1800 		if (!vcpu->mmio_is_write)
1801 			kvmppc_complete_mmio_load(vcpu);
1802 #ifdef CONFIG_VSX
1803 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1804 			vcpu->arch.mmio_vsx_copy_nums--;
1805 			vcpu->arch.mmio_vsx_offset++;
1806 		}
1807 
1808 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1809 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1810 			if (r == RESUME_HOST) {
1811 				vcpu->mmio_needed = 1;
1812 				goto out;
1813 			}
1814 		}
1815 #endif
1816 #ifdef CONFIG_ALTIVEC
1817 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1818 			vcpu->arch.mmio_vmx_copy_nums--;
1819 			vcpu->arch.mmio_vmx_offset++;
1820 		}
1821 
1822 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1823 			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1824 			if (r == RESUME_HOST) {
1825 				vcpu->mmio_needed = 1;
1826 				goto out;
1827 			}
1828 		}
1829 #endif
1830 	} else if (vcpu->arch.osi_needed) {
1831 		u64 *gprs = run->osi.gprs;
1832 		int i;
1833 
1834 		for (i = 0; i < 32; i++)
1835 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1836 		vcpu->arch.osi_needed = 0;
1837 	} else if (vcpu->arch.hcall_needed) {
1838 		int i;
1839 
1840 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1841 		for (i = 0; i < 9; ++i)
1842 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1843 		vcpu->arch.hcall_needed = 0;
1844 #ifdef CONFIG_BOOKE
1845 	} else if (vcpu->arch.epr_needed) {
1846 		kvmppc_set_epr(vcpu, run->epr.epr);
1847 		vcpu->arch.epr_needed = 0;
1848 #endif
1849 	}
1850 
1851 	kvm_sigset_activate(vcpu);
1852 
1853 	if (run->immediate_exit)
1854 		r = -EINTR;
1855 	else
1856 		r = kvmppc_vcpu_run(vcpu);
1857 
1858 	kvm_sigset_deactivate(vcpu);
1859 
1860 #ifdef CONFIG_ALTIVEC
1861 out:
1862 #endif
1863 
1864 	/*
1865 	 * We're already returning to userspace, don't pass the
1866 	 * RESUME_HOST flags along.
1867 	 */
1868 	if (r > 0)
1869 		r = 0;
1870 
1871 	vcpu_put(vcpu);
1872 	return r;
1873 }
1874 
1875 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1876 {
1877 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1878 		kvmppc_core_dequeue_external(vcpu);
1879 		return 0;
1880 	}
1881 
1882 	kvmppc_core_queue_external(vcpu, irq);
1883 
1884 	kvm_vcpu_kick(vcpu);
1885 
1886 	return 0;
1887 }
1888 
1889 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1890 				     struct kvm_enable_cap *cap)
1891 {
1892 	int r;
1893 
1894 	if (cap->flags)
1895 		return -EINVAL;
1896 
1897 	switch (cap->cap) {
1898 	case KVM_CAP_PPC_OSI:
1899 		r = 0;
1900 		vcpu->arch.osi_enabled = true;
1901 		break;
1902 	case KVM_CAP_PPC_PAPR:
1903 		r = 0;
1904 		vcpu->arch.papr_enabled = true;
1905 		break;
1906 	case KVM_CAP_PPC_EPR:
1907 		r = 0;
1908 		if (cap->args[0])
1909 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1910 		else
1911 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1912 		break;
1913 #ifdef CONFIG_BOOKE
1914 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1915 		r = 0;
1916 		vcpu->arch.watchdog_enabled = true;
1917 		break;
1918 #endif
1919 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1920 	case KVM_CAP_SW_TLB: {
1921 		struct kvm_config_tlb cfg;
1922 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1923 
1924 		r = -EFAULT;
1925 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1926 			break;
1927 
1928 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1929 		break;
1930 	}
1931 #endif
1932 #ifdef CONFIG_KVM_MPIC
1933 	case KVM_CAP_IRQ_MPIC: {
1934 		struct fd f;
1935 		struct kvm_device *dev;
1936 
1937 		r = -EBADF;
1938 		f = fdget(cap->args[0]);
1939 		if (!f.file)
1940 			break;
1941 
1942 		r = -EPERM;
1943 		dev = kvm_device_from_filp(f.file);
1944 		if (dev)
1945 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1946 
1947 		fdput(f);
1948 		break;
1949 	}
1950 #endif
1951 #ifdef CONFIG_KVM_XICS
1952 	case KVM_CAP_IRQ_XICS: {
1953 		struct fd f;
1954 		struct kvm_device *dev;
1955 
1956 		r = -EBADF;
1957 		f = fdget(cap->args[0]);
1958 		if (!f.file)
1959 			break;
1960 
1961 		r = -EPERM;
1962 		dev = kvm_device_from_filp(f.file);
1963 		if (dev) {
1964 			if (xics_on_xive())
1965 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1966 			else
1967 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1968 		}
1969 
1970 		fdput(f);
1971 		break;
1972 	}
1973 #endif /* CONFIG_KVM_XICS */
1974 #ifdef CONFIG_KVM_XIVE
1975 	case KVM_CAP_PPC_IRQ_XIVE: {
1976 		struct fd f;
1977 		struct kvm_device *dev;
1978 
1979 		r = -EBADF;
1980 		f = fdget(cap->args[0]);
1981 		if (!f.file)
1982 			break;
1983 
1984 		r = -ENXIO;
1985 		if (!xive_enabled())
1986 			break;
1987 
1988 		r = -EPERM;
1989 		dev = kvm_device_from_filp(f.file);
1990 		if (dev)
1991 			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1992 							    cap->args[1]);
1993 
1994 		fdput(f);
1995 		break;
1996 	}
1997 #endif /* CONFIG_KVM_XIVE */
1998 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1999 	case KVM_CAP_PPC_FWNMI:
2000 		r = -EINVAL;
2001 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
2002 			break;
2003 		r = 0;
2004 		vcpu->kvm->arch.fwnmi_enabled = true;
2005 		break;
2006 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
2007 	default:
2008 		r = -EINVAL;
2009 		break;
2010 	}
2011 
2012 	if (!r)
2013 		r = kvmppc_sanity_check(vcpu);
2014 
2015 	return r;
2016 }
2017 
2018 bool kvm_arch_intc_initialized(struct kvm *kvm)
2019 {
2020 #ifdef CONFIG_KVM_MPIC
2021 	if (kvm->arch.mpic)
2022 		return true;
2023 #endif
2024 #ifdef CONFIG_KVM_XICS
2025 	if (kvm->arch.xics || kvm->arch.xive)
2026 		return true;
2027 #endif
2028 	return false;
2029 }
2030 
2031 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2032                                     struct kvm_mp_state *mp_state)
2033 {
2034 	return -EINVAL;
2035 }
2036 
2037 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2038                                     struct kvm_mp_state *mp_state)
2039 {
2040 	return -EINVAL;
2041 }
2042 
2043 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2044 			       unsigned int ioctl, unsigned long arg)
2045 {
2046 	struct kvm_vcpu *vcpu = filp->private_data;
2047 	void __user *argp = (void __user *)arg;
2048 
2049 	if (ioctl == KVM_INTERRUPT) {
2050 		struct kvm_interrupt irq;
2051 		if (copy_from_user(&irq, argp, sizeof(irq)))
2052 			return -EFAULT;
2053 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2054 	}
2055 	return -ENOIOCTLCMD;
2056 }
2057 
2058 long kvm_arch_vcpu_ioctl(struct file *filp,
2059                          unsigned int ioctl, unsigned long arg)
2060 {
2061 	struct kvm_vcpu *vcpu = filp->private_data;
2062 	void __user *argp = (void __user *)arg;
2063 	long r;
2064 
2065 	switch (ioctl) {
2066 	case KVM_ENABLE_CAP:
2067 	{
2068 		struct kvm_enable_cap cap;
2069 		r = -EFAULT;
2070 		if (copy_from_user(&cap, argp, sizeof(cap)))
2071 			goto out;
2072 		vcpu_load(vcpu);
2073 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2074 		vcpu_put(vcpu);
2075 		break;
2076 	}
2077 
2078 	case KVM_SET_ONE_REG:
2079 	case KVM_GET_ONE_REG:
2080 	{
2081 		struct kvm_one_reg reg;
2082 		r = -EFAULT;
2083 		if (copy_from_user(&reg, argp, sizeof(reg)))
2084 			goto out;
2085 		if (ioctl == KVM_SET_ONE_REG)
2086 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2087 		else
2088 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2089 		break;
2090 	}
2091 
2092 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2093 	case KVM_DIRTY_TLB: {
2094 		struct kvm_dirty_tlb dirty;
2095 		r = -EFAULT;
2096 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2097 			goto out;
2098 		vcpu_load(vcpu);
2099 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2100 		vcpu_put(vcpu);
2101 		break;
2102 	}
2103 #endif
2104 	default:
2105 		r = -EINVAL;
2106 	}
2107 
2108 out:
2109 	return r;
2110 }
2111 
2112 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2113 {
2114 	return VM_FAULT_SIGBUS;
2115 }
2116 
2117 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2118 {
2119 	u32 inst_nop = 0x60000000;
2120 #ifdef CONFIG_KVM_BOOKE_HV
2121 	u32 inst_sc1 = 0x44000022;
2122 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2123 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2124 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2125 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2126 #else
2127 	u32 inst_lis = 0x3c000000;
2128 	u32 inst_ori = 0x60000000;
2129 	u32 inst_sc = 0x44000002;
2130 	u32 inst_imm_mask = 0xffff;
2131 
2132 	/*
2133 	 * The hypercall to get into KVM from within guest context is as
2134 	 * follows:
2135 	 *
2136 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2137 	 *    ori r0, KVM_SC_MAGIC_R0@l
2138 	 *    sc
2139 	 *    nop
2140 	 */
2141 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2142 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2143 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2144 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2145 #endif
2146 
2147 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2148 
2149 	return 0;
2150 }
2151 
2152 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2153 {
2154 	int ret = 0;
2155 
2156 #ifdef CONFIG_KVM_MPIC
2157 	ret = ret || (kvm->arch.mpic != NULL);
2158 #endif
2159 #ifdef CONFIG_KVM_XICS
2160 	ret = ret || (kvm->arch.xics != NULL);
2161 	ret = ret || (kvm->arch.xive != NULL);
2162 #endif
2163 	smp_rmb();
2164 	return ret;
2165 }
2166 
2167 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2168 			  bool line_status)
2169 {
2170 	if (!kvm_arch_irqchip_in_kernel(kvm))
2171 		return -ENXIO;
2172 
2173 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2174 					irq_event->irq, irq_event->level,
2175 					line_status);
2176 	return 0;
2177 }
2178 
2179 
2180 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2181 			    struct kvm_enable_cap *cap)
2182 {
2183 	int r;
2184 
2185 	if (cap->flags)
2186 		return -EINVAL;
2187 
2188 	switch (cap->cap) {
2189 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2190 	case KVM_CAP_PPC_ENABLE_HCALL: {
2191 		unsigned long hcall = cap->args[0];
2192 
2193 		r = -EINVAL;
2194 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2195 		    cap->args[1] > 1)
2196 			break;
2197 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2198 			break;
2199 		if (cap->args[1])
2200 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2201 		else
2202 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2203 		r = 0;
2204 		break;
2205 	}
2206 	case KVM_CAP_PPC_SMT: {
2207 		unsigned long mode = cap->args[0];
2208 		unsigned long flags = cap->args[1];
2209 
2210 		r = -EINVAL;
2211 		if (kvm->arch.kvm_ops->set_smt_mode)
2212 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2213 		break;
2214 	}
2215 
2216 	case KVM_CAP_PPC_NESTED_HV:
2217 		r = -EINVAL;
2218 		if (!is_kvmppc_hv_enabled(kvm) ||
2219 		    !kvm->arch.kvm_ops->enable_nested)
2220 			break;
2221 		r = kvm->arch.kvm_ops->enable_nested(kvm);
2222 		break;
2223 #endif
2224 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2225 	case KVM_CAP_PPC_SECURE_GUEST:
2226 		r = -EINVAL;
2227 		if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2228 			break;
2229 		r = kvm->arch.kvm_ops->enable_svm(kvm);
2230 		break;
2231 	case KVM_CAP_PPC_DAWR1:
2232 		r = -EINVAL;
2233 		if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2234 			break;
2235 		r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2236 		break;
2237 #endif
2238 	default:
2239 		r = -EINVAL;
2240 		break;
2241 	}
2242 
2243 	return r;
2244 }
2245 
2246 #ifdef CONFIG_PPC_BOOK3S_64
2247 /*
2248  * These functions check whether the underlying hardware is safe
2249  * against attacks based on observing the effects of speculatively
2250  * executed instructions, and whether it supplies instructions for
2251  * use in workarounds.  The information comes from firmware, either
2252  * via the device tree on powernv platforms or from an hcall on
2253  * pseries platforms.
2254  */
2255 #ifdef CONFIG_PPC_PSERIES
2256 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2257 {
2258 	struct h_cpu_char_result c;
2259 	unsigned long rc;
2260 
2261 	if (!machine_is(pseries))
2262 		return -ENOTTY;
2263 
2264 	rc = plpar_get_cpu_characteristics(&c);
2265 	if (rc == H_SUCCESS) {
2266 		cp->character = c.character;
2267 		cp->behaviour = c.behaviour;
2268 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2269 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2270 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2271 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2272 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2273 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2274 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2275 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2276 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2277 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2278 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2279 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2280 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2281 	}
2282 	return 0;
2283 }
2284 #else
2285 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2286 {
2287 	return -ENOTTY;
2288 }
2289 #endif
2290 
2291 static inline bool have_fw_feat(struct device_node *fw_features,
2292 				const char *state, const char *name)
2293 {
2294 	struct device_node *np;
2295 	bool r = false;
2296 
2297 	np = of_get_child_by_name(fw_features, name);
2298 	if (np) {
2299 		r = of_property_read_bool(np, state);
2300 		of_node_put(np);
2301 	}
2302 	return r;
2303 }
2304 
2305 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2306 {
2307 	struct device_node *np, *fw_features;
2308 	int r;
2309 
2310 	memset(cp, 0, sizeof(*cp));
2311 	r = pseries_get_cpu_char(cp);
2312 	if (r != -ENOTTY)
2313 		return r;
2314 
2315 	np = of_find_node_by_name(NULL, "ibm,opal");
2316 	if (np) {
2317 		fw_features = of_get_child_by_name(np, "fw-features");
2318 		of_node_put(np);
2319 		if (!fw_features)
2320 			return 0;
2321 		if (have_fw_feat(fw_features, "enabled",
2322 				 "inst-spec-barrier-ori31,31,0"))
2323 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2324 		if (have_fw_feat(fw_features, "enabled",
2325 				 "fw-bcctrl-serialized"))
2326 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2327 		if (have_fw_feat(fw_features, "enabled",
2328 				 "inst-l1d-flush-ori30,30,0"))
2329 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2330 		if (have_fw_feat(fw_features, "enabled",
2331 				 "inst-l1d-flush-trig2"))
2332 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2333 		if (have_fw_feat(fw_features, "enabled",
2334 				 "fw-l1d-thread-split"))
2335 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2336 		if (have_fw_feat(fw_features, "enabled",
2337 				 "fw-count-cache-disabled"))
2338 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2339 		if (have_fw_feat(fw_features, "enabled",
2340 				 "fw-count-cache-flush-bcctr2,0,0"))
2341 			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2342 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2343 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2344 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2345 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2346 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2347 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2348 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2349 
2350 		if (have_fw_feat(fw_features, "enabled",
2351 				 "speculation-policy-favor-security"))
2352 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2353 		if (!have_fw_feat(fw_features, "disabled",
2354 				  "needs-l1d-flush-msr-pr-0-to-1"))
2355 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2356 		if (!have_fw_feat(fw_features, "disabled",
2357 				  "needs-spec-barrier-for-bound-checks"))
2358 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2359 		if (have_fw_feat(fw_features, "enabled",
2360 				 "needs-count-cache-flush-on-context-switch"))
2361 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2362 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2363 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2364 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2365 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2366 
2367 		of_node_put(fw_features);
2368 	}
2369 
2370 	return 0;
2371 }
2372 #endif
2373 
2374 long kvm_arch_vm_ioctl(struct file *filp,
2375                        unsigned int ioctl, unsigned long arg)
2376 {
2377 	struct kvm *kvm __maybe_unused = filp->private_data;
2378 	void __user *argp = (void __user *)arg;
2379 	long r;
2380 
2381 	switch (ioctl) {
2382 	case KVM_PPC_GET_PVINFO: {
2383 		struct kvm_ppc_pvinfo pvinfo;
2384 		memset(&pvinfo, 0, sizeof(pvinfo));
2385 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2386 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2387 			r = -EFAULT;
2388 			goto out;
2389 		}
2390 
2391 		break;
2392 	}
2393 #ifdef CONFIG_SPAPR_TCE_IOMMU
2394 	case KVM_CREATE_SPAPR_TCE_64: {
2395 		struct kvm_create_spapr_tce_64 create_tce_64;
2396 
2397 		r = -EFAULT;
2398 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2399 			goto out;
2400 		if (create_tce_64.flags) {
2401 			r = -EINVAL;
2402 			goto out;
2403 		}
2404 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2405 		goto out;
2406 	}
2407 	case KVM_CREATE_SPAPR_TCE: {
2408 		struct kvm_create_spapr_tce create_tce;
2409 		struct kvm_create_spapr_tce_64 create_tce_64;
2410 
2411 		r = -EFAULT;
2412 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2413 			goto out;
2414 
2415 		create_tce_64.liobn = create_tce.liobn;
2416 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2417 		create_tce_64.offset = 0;
2418 		create_tce_64.size = create_tce.window_size >>
2419 				IOMMU_PAGE_SHIFT_4K;
2420 		create_tce_64.flags = 0;
2421 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2422 		goto out;
2423 	}
2424 #endif
2425 #ifdef CONFIG_PPC_BOOK3S_64
2426 	case KVM_PPC_GET_SMMU_INFO: {
2427 		struct kvm_ppc_smmu_info info;
2428 		struct kvm *kvm = filp->private_data;
2429 
2430 		memset(&info, 0, sizeof(info));
2431 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2432 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2433 			r = -EFAULT;
2434 		break;
2435 	}
2436 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2437 		struct kvm *kvm = filp->private_data;
2438 
2439 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2440 		break;
2441 	}
2442 	case KVM_PPC_CONFIGURE_V3_MMU: {
2443 		struct kvm *kvm = filp->private_data;
2444 		struct kvm_ppc_mmuv3_cfg cfg;
2445 
2446 		r = -EINVAL;
2447 		if (!kvm->arch.kvm_ops->configure_mmu)
2448 			goto out;
2449 		r = -EFAULT;
2450 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2451 			goto out;
2452 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2453 		break;
2454 	}
2455 	case KVM_PPC_GET_RMMU_INFO: {
2456 		struct kvm *kvm = filp->private_data;
2457 		struct kvm_ppc_rmmu_info info;
2458 
2459 		r = -EINVAL;
2460 		if (!kvm->arch.kvm_ops->get_rmmu_info)
2461 			goto out;
2462 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2463 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2464 			r = -EFAULT;
2465 		break;
2466 	}
2467 	case KVM_PPC_GET_CPU_CHAR: {
2468 		struct kvm_ppc_cpu_char cpuchar;
2469 
2470 		r = kvmppc_get_cpu_char(&cpuchar);
2471 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2472 			r = -EFAULT;
2473 		break;
2474 	}
2475 	case KVM_PPC_SVM_OFF: {
2476 		struct kvm *kvm = filp->private_data;
2477 
2478 		r = 0;
2479 		if (!kvm->arch.kvm_ops->svm_off)
2480 			goto out;
2481 
2482 		r = kvm->arch.kvm_ops->svm_off(kvm);
2483 		break;
2484 	}
2485 	default: {
2486 		struct kvm *kvm = filp->private_data;
2487 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2488 	}
2489 #else /* CONFIG_PPC_BOOK3S_64 */
2490 	default:
2491 		r = -ENOTTY;
2492 #endif
2493 	}
2494 out:
2495 	return r;
2496 }
2497 
2498 static DEFINE_IDA(lpid_inuse);
2499 static unsigned long nr_lpids;
2500 
2501 long kvmppc_alloc_lpid(void)
2502 {
2503 	int lpid;
2504 
2505 	/* The host LPID must always be 0 (allocation starts at 1) */
2506 	lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
2507 	if (lpid < 0) {
2508 		if (lpid == -ENOMEM)
2509 			pr_err("%s: Out of memory\n", __func__);
2510 		else
2511 			pr_err("%s: No LPIDs free\n", __func__);
2512 		return -ENOMEM;
2513 	}
2514 
2515 	return lpid;
2516 }
2517 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2518 
2519 void kvmppc_free_lpid(long lpid)
2520 {
2521 	ida_free(&lpid_inuse, lpid);
2522 }
2523 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2524 
2525 /* nr_lpids_param includes the host LPID */
2526 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2527 {
2528 	nr_lpids = nr_lpids_param;
2529 }
2530 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2531 
2532 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2533 
2534 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2535 {
2536 	if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
2537 		vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
2538 }
2539 
2540 int kvm_arch_create_vm_debugfs(struct kvm *kvm)
2541 {
2542 	if (kvm->arch.kvm_ops->create_vm_debugfs)
2543 		kvm->arch.kvm_ops->create_vm_debugfs(kvm);
2544 	return 0;
2545 }
2546