xref: /linux/arch/powerpc/kvm/powerpc.c (revision 2fe05e1139a555ae91f00a812cb9520e7d3022ab)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 
43 #include "timing.h"
44 #include "irq.h"
45 #include "../mm/mmu_decl.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include "trace.h"
49 
50 struct kvmppc_ops *kvmppc_hv_ops;
51 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
52 struct kvmppc_ops *kvmppc_pr_ops;
53 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
54 
55 
56 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
57 {
58 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
59 }
60 
61 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
62 {
63 	return 1;
64 }
65 
66 /*
67  * Common checks before entering the guest world.  Call with interrupts
68  * disabled.
69  *
70  * returns:
71  *
72  * == 1 if we're ready to go into guest state
73  * <= 0 if we need to go back to the host with return value
74  */
75 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
76 {
77 	int r;
78 
79 	WARN_ON(irqs_disabled());
80 	hard_irq_disable();
81 
82 	while (true) {
83 		if (need_resched()) {
84 			local_irq_enable();
85 			cond_resched();
86 			hard_irq_disable();
87 			continue;
88 		}
89 
90 		if (signal_pending(current)) {
91 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
92 			vcpu->run->exit_reason = KVM_EXIT_INTR;
93 			r = -EINTR;
94 			break;
95 		}
96 
97 		vcpu->mode = IN_GUEST_MODE;
98 
99 		/*
100 		 * Reading vcpu->requests must happen after setting vcpu->mode,
101 		 * so we don't miss a request because the requester sees
102 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
103 		 * before next entering the guest (and thus doesn't IPI).
104 		 * This also orders the write to mode from any reads
105 		 * to the page tables done while the VCPU is running.
106 		 * Please see the comment in kvm_flush_remote_tlbs.
107 		 */
108 		smp_mb();
109 
110 		if (kvm_request_pending(vcpu)) {
111 			/* Make sure we process requests preemptable */
112 			local_irq_enable();
113 			trace_kvm_check_requests(vcpu);
114 			r = kvmppc_core_check_requests(vcpu);
115 			hard_irq_disable();
116 			if (r > 0)
117 				continue;
118 			break;
119 		}
120 
121 		if (kvmppc_core_prepare_to_enter(vcpu)) {
122 			/* interrupts got enabled in between, so we
123 			   are back at square 1 */
124 			continue;
125 		}
126 
127 		guest_enter_irqoff();
128 		return 1;
129 	}
130 
131 	/* return to host */
132 	local_irq_enable();
133 	return r;
134 }
135 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
136 
137 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
138 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
139 {
140 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
141 	int i;
142 
143 	shared->sprg0 = swab64(shared->sprg0);
144 	shared->sprg1 = swab64(shared->sprg1);
145 	shared->sprg2 = swab64(shared->sprg2);
146 	shared->sprg3 = swab64(shared->sprg3);
147 	shared->srr0 = swab64(shared->srr0);
148 	shared->srr1 = swab64(shared->srr1);
149 	shared->dar = swab64(shared->dar);
150 	shared->msr = swab64(shared->msr);
151 	shared->dsisr = swab32(shared->dsisr);
152 	shared->int_pending = swab32(shared->int_pending);
153 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
154 		shared->sr[i] = swab32(shared->sr[i]);
155 }
156 #endif
157 
158 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
159 {
160 	int nr = kvmppc_get_gpr(vcpu, 11);
161 	int r;
162 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
163 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
164 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
165 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
166 	unsigned long r2 = 0;
167 
168 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
169 		/* 32 bit mode */
170 		param1 &= 0xffffffff;
171 		param2 &= 0xffffffff;
172 		param3 &= 0xffffffff;
173 		param4 &= 0xffffffff;
174 	}
175 
176 	switch (nr) {
177 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
178 	{
179 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
180 		/* Book3S can be little endian, find it out here */
181 		int shared_big_endian = true;
182 		if (vcpu->arch.intr_msr & MSR_LE)
183 			shared_big_endian = false;
184 		if (shared_big_endian != vcpu->arch.shared_big_endian)
185 			kvmppc_swab_shared(vcpu);
186 		vcpu->arch.shared_big_endian = shared_big_endian;
187 #endif
188 
189 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
190 			/*
191 			 * Older versions of the Linux magic page code had
192 			 * a bug where they would map their trampoline code
193 			 * NX. If that's the case, remove !PR NX capability.
194 			 */
195 			vcpu->arch.disable_kernel_nx = true;
196 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
197 		}
198 
199 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
200 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
201 
202 #ifdef CONFIG_PPC_64K_PAGES
203 		/*
204 		 * Make sure our 4k magic page is in the same window of a 64k
205 		 * page within the guest and within the host's page.
206 		 */
207 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
208 		    ((ulong)vcpu->arch.shared & 0xf000)) {
209 			void *old_shared = vcpu->arch.shared;
210 			ulong shared = (ulong)vcpu->arch.shared;
211 			void *new_shared;
212 
213 			shared &= PAGE_MASK;
214 			shared |= vcpu->arch.magic_page_pa & 0xf000;
215 			new_shared = (void*)shared;
216 			memcpy(new_shared, old_shared, 0x1000);
217 			vcpu->arch.shared = new_shared;
218 		}
219 #endif
220 
221 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
222 
223 		r = EV_SUCCESS;
224 		break;
225 	}
226 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
227 		r = EV_SUCCESS;
228 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
229 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
230 #endif
231 
232 		/* Second return value is in r4 */
233 		break;
234 	case EV_HCALL_TOKEN(EV_IDLE):
235 		r = EV_SUCCESS;
236 		kvm_vcpu_block(vcpu);
237 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
238 		break;
239 	default:
240 		r = EV_UNIMPLEMENTED;
241 		break;
242 	}
243 
244 	kvmppc_set_gpr(vcpu, 4, r2);
245 
246 	return r;
247 }
248 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
249 
250 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
251 {
252 	int r = false;
253 
254 	/* We have to know what CPU to virtualize */
255 	if (!vcpu->arch.pvr)
256 		goto out;
257 
258 	/* PAPR only works with book3s_64 */
259 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
260 		goto out;
261 
262 	/* HV KVM can only do PAPR mode for now */
263 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
264 		goto out;
265 
266 #ifdef CONFIG_KVM_BOOKE_HV
267 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
268 		goto out;
269 #endif
270 
271 	r = true;
272 
273 out:
274 	vcpu->arch.sane = r;
275 	return r ? 0 : -EINVAL;
276 }
277 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
278 
279 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
280 {
281 	enum emulation_result er;
282 	int r;
283 
284 	er = kvmppc_emulate_loadstore(vcpu);
285 	switch (er) {
286 	case EMULATE_DONE:
287 		/* Future optimization: only reload non-volatiles if they were
288 		 * actually modified. */
289 		r = RESUME_GUEST_NV;
290 		break;
291 	case EMULATE_AGAIN:
292 		r = RESUME_GUEST;
293 		break;
294 	case EMULATE_DO_MMIO:
295 		run->exit_reason = KVM_EXIT_MMIO;
296 		/* We must reload nonvolatiles because "update" load/store
297 		 * instructions modify register state. */
298 		/* Future optimization: only reload non-volatiles if they were
299 		 * actually modified. */
300 		r = RESUME_HOST_NV;
301 		break;
302 	case EMULATE_FAIL:
303 	{
304 		u32 last_inst;
305 
306 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
307 		/* XXX Deliver Program interrupt to guest. */
308 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
309 		r = RESUME_HOST;
310 		break;
311 	}
312 	default:
313 		WARN_ON(1);
314 		r = RESUME_GUEST;
315 	}
316 
317 	return r;
318 }
319 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
320 
321 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
322 	      bool data)
323 {
324 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
325 	struct kvmppc_pte pte;
326 	int r;
327 
328 	vcpu->stat.st++;
329 
330 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
331 			 XLATE_WRITE, &pte);
332 	if (r < 0)
333 		return r;
334 
335 	*eaddr = pte.raddr;
336 
337 	if (!pte.may_write)
338 		return -EPERM;
339 
340 	/* Magic page override */
341 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
342 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
343 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
344 		void *magic = vcpu->arch.shared;
345 		magic += pte.eaddr & 0xfff;
346 		memcpy(magic, ptr, size);
347 		return EMULATE_DONE;
348 	}
349 
350 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
351 		return EMULATE_DO_MMIO;
352 
353 	return EMULATE_DONE;
354 }
355 EXPORT_SYMBOL_GPL(kvmppc_st);
356 
357 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
358 		      bool data)
359 {
360 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
361 	struct kvmppc_pte pte;
362 	int rc;
363 
364 	vcpu->stat.ld++;
365 
366 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
367 			  XLATE_READ, &pte);
368 	if (rc)
369 		return rc;
370 
371 	*eaddr = pte.raddr;
372 
373 	if (!pte.may_read)
374 		return -EPERM;
375 
376 	if (!data && !pte.may_execute)
377 		return -ENOEXEC;
378 
379 	/* Magic page override */
380 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
381 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
382 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
383 		void *magic = vcpu->arch.shared;
384 		magic += pte.eaddr & 0xfff;
385 		memcpy(ptr, magic, size);
386 		return EMULATE_DONE;
387 	}
388 
389 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
390 		return EMULATE_DO_MMIO;
391 
392 	return EMULATE_DONE;
393 }
394 EXPORT_SYMBOL_GPL(kvmppc_ld);
395 
396 int kvm_arch_hardware_enable(void)
397 {
398 	return 0;
399 }
400 
401 int kvm_arch_hardware_setup(void)
402 {
403 	return 0;
404 }
405 
406 void kvm_arch_check_processor_compat(void *rtn)
407 {
408 	*(int *)rtn = kvmppc_core_check_processor_compat();
409 }
410 
411 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
412 {
413 	struct kvmppc_ops *kvm_ops = NULL;
414 	/*
415 	 * if we have both HV and PR enabled, default is HV
416 	 */
417 	if (type == 0) {
418 		if (kvmppc_hv_ops)
419 			kvm_ops = kvmppc_hv_ops;
420 		else
421 			kvm_ops = kvmppc_pr_ops;
422 		if (!kvm_ops)
423 			goto err_out;
424 	} else	if (type == KVM_VM_PPC_HV) {
425 		if (!kvmppc_hv_ops)
426 			goto err_out;
427 		kvm_ops = kvmppc_hv_ops;
428 	} else if (type == KVM_VM_PPC_PR) {
429 		if (!kvmppc_pr_ops)
430 			goto err_out;
431 		kvm_ops = kvmppc_pr_ops;
432 	} else
433 		goto err_out;
434 
435 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
436 		return -ENOENT;
437 
438 	kvm->arch.kvm_ops = kvm_ops;
439 	return kvmppc_core_init_vm(kvm);
440 err_out:
441 	return -EINVAL;
442 }
443 
444 bool kvm_arch_has_vcpu_debugfs(void)
445 {
446 	return false;
447 }
448 
449 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
450 {
451 	return 0;
452 }
453 
454 void kvm_arch_destroy_vm(struct kvm *kvm)
455 {
456 	unsigned int i;
457 	struct kvm_vcpu *vcpu;
458 
459 #ifdef CONFIG_KVM_XICS
460 	/*
461 	 * We call kick_all_cpus_sync() to ensure that all
462 	 * CPUs have executed any pending IPIs before we
463 	 * continue and free VCPUs structures below.
464 	 */
465 	if (is_kvmppc_hv_enabled(kvm))
466 		kick_all_cpus_sync();
467 #endif
468 
469 	kvm_for_each_vcpu(i, vcpu, kvm)
470 		kvm_arch_vcpu_free(vcpu);
471 
472 	mutex_lock(&kvm->lock);
473 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
474 		kvm->vcpus[i] = NULL;
475 
476 	atomic_set(&kvm->online_vcpus, 0);
477 
478 	kvmppc_core_destroy_vm(kvm);
479 
480 	mutex_unlock(&kvm->lock);
481 
482 	/* drop the module reference */
483 	module_put(kvm->arch.kvm_ops->owner);
484 }
485 
486 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
487 {
488 	int r;
489 	/* Assume we're using HV mode when the HV module is loaded */
490 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
491 
492 	if (kvm) {
493 		/*
494 		 * Hooray - we know which VM type we're running on. Depend on
495 		 * that rather than the guess above.
496 		 */
497 		hv_enabled = is_kvmppc_hv_enabled(kvm);
498 	}
499 
500 	switch (ext) {
501 #ifdef CONFIG_BOOKE
502 	case KVM_CAP_PPC_BOOKE_SREGS:
503 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
504 	case KVM_CAP_PPC_EPR:
505 #else
506 	case KVM_CAP_PPC_SEGSTATE:
507 	case KVM_CAP_PPC_HIOR:
508 	case KVM_CAP_PPC_PAPR:
509 #endif
510 	case KVM_CAP_PPC_UNSET_IRQ:
511 	case KVM_CAP_PPC_IRQ_LEVEL:
512 	case KVM_CAP_ENABLE_CAP:
513 	case KVM_CAP_ENABLE_CAP_VM:
514 	case KVM_CAP_ONE_REG:
515 	case KVM_CAP_IOEVENTFD:
516 	case KVM_CAP_DEVICE_CTRL:
517 	case KVM_CAP_IMMEDIATE_EXIT:
518 		r = 1;
519 		break;
520 	case KVM_CAP_PPC_PAIRED_SINGLES:
521 	case KVM_CAP_PPC_OSI:
522 	case KVM_CAP_PPC_GET_PVINFO:
523 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
524 	case KVM_CAP_SW_TLB:
525 #endif
526 		/* We support this only for PR */
527 		r = !hv_enabled;
528 		break;
529 #ifdef CONFIG_KVM_MPIC
530 	case KVM_CAP_IRQ_MPIC:
531 		r = 1;
532 		break;
533 #endif
534 
535 #ifdef CONFIG_PPC_BOOK3S_64
536 	case KVM_CAP_SPAPR_TCE:
537 	case KVM_CAP_SPAPR_TCE_64:
538 		/* fallthrough */
539 	case KVM_CAP_SPAPR_TCE_VFIO:
540 	case KVM_CAP_PPC_RTAS:
541 	case KVM_CAP_PPC_FIXUP_HCALL:
542 	case KVM_CAP_PPC_ENABLE_HCALL:
543 #ifdef CONFIG_KVM_XICS
544 	case KVM_CAP_IRQ_XICS:
545 #endif
546 		r = 1;
547 		break;
548 
549 	case KVM_CAP_PPC_ALLOC_HTAB:
550 		r = hv_enabled;
551 		break;
552 #endif /* CONFIG_PPC_BOOK3S_64 */
553 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
554 	case KVM_CAP_PPC_SMT:
555 		r = 0;
556 		if (kvm) {
557 			if (kvm->arch.emul_smt_mode > 1)
558 				r = kvm->arch.emul_smt_mode;
559 			else
560 				r = kvm->arch.smt_mode;
561 		} else if (hv_enabled) {
562 			if (cpu_has_feature(CPU_FTR_ARCH_300))
563 				r = 1;
564 			else
565 				r = threads_per_subcore;
566 		}
567 		break;
568 	case KVM_CAP_PPC_SMT_POSSIBLE:
569 		r = 1;
570 		if (hv_enabled) {
571 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
572 				r = ((threads_per_subcore << 1) - 1);
573 			else
574 				/* P9 can emulate dbells, so allow any mode */
575 				r = 8 | 4 | 2 | 1;
576 		}
577 		break;
578 	case KVM_CAP_PPC_RMA:
579 		r = 0;
580 		break;
581 	case KVM_CAP_PPC_HWRNG:
582 		r = kvmppc_hwrng_present();
583 		break;
584 	case KVM_CAP_PPC_MMU_RADIX:
585 		r = !!(hv_enabled && radix_enabled());
586 		break;
587 	case KVM_CAP_PPC_MMU_HASH_V3:
588 		r = !!(hv_enabled && !radix_enabled() &&
589 		       cpu_has_feature(CPU_FTR_ARCH_300));
590 		break;
591 #endif
592 	case KVM_CAP_SYNC_MMU:
593 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
594 		r = hv_enabled;
595 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
596 		r = 1;
597 #else
598 		r = 0;
599 #endif
600 		break;
601 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
602 	case KVM_CAP_PPC_HTAB_FD:
603 		r = hv_enabled;
604 		break;
605 #endif
606 	case KVM_CAP_NR_VCPUS:
607 		/*
608 		 * Recommending a number of CPUs is somewhat arbitrary; we
609 		 * return the number of present CPUs for -HV (since a host
610 		 * will have secondary threads "offline"), and for other KVM
611 		 * implementations just count online CPUs.
612 		 */
613 		if (hv_enabled)
614 			r = num_present_cpus();
615 		else
616 			r = num_online_cpus();
617 		break;
618 	case KVM_CAP_NR_MEMSLOTS:
619 		r = KVM_USER_MEM_SLOTS;
620 		break;
621 	case KVM_CAP_MAX_VCPUS:
622 		r = KVM_MAX_VCPUS;
623 		break;
624 #ifdef CONFIG_PPC_BOOK3S_64
625 	case KVM_CAP_PPC_GET_SMMU_INFO:
626 		r = 1;
627 		break;
628 	case KVM_CAP_SPAPR_MULTITCE:
629 		r = 1;
630 		break;
631 	case KVM_CAP_SPAPR_RESIZE_HPT:
632 		/* Disable this on POWER9 until code handles new HPTE format */
633 		r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
634 		break;
635 #endif
636 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
637 	case KVM_CAP_PPC_FWNMI:
638 		r = hv_enabled;
639 		break;
640 #endif
641 	case KVM_CAP_PPC_HTM:
642 		r = cpu_has_feature(CPU_FTR_TM_COMP) &&
643 		    is_kvmppc_hv_enabled(kvm);
644 		break;
645 	default:
646 		r = 0;
647 		break;
648 	}
649 	return r;
650 
651 }
652 
653 long kvm_arch_dev_ioctl(struct file *filp,
654                         unsigned int ioctl, unsigned long arg)
655 {
656 	return -EINVAL;
657 }
658 
659 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
660 			   struct kvm_memory_slot *dont)
661 {
662 	kvmppc_core_free_memslot(kvm, free, dont);
663 }
664 
665 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
666 			    unsigned long npages)
667 {
668 	return kvmppc_core_create_memslot(kvm, slot, npages);
669 }
670 
671 int kvm_arch_prepare_memory_region(struct kvm *kvm,
672 				   struct kvm_memory_slot *memslot,
673 				   const struct kvm_userspace_memory_region *mem,
674 				   enum kvm_mr_change change)
675 {
676 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
677 }
678 
679 void kvm_arch_commit_memory_region(struct kvm *kvm,
680 				   const struct kvm_userspace_memory_region *mem,
681 				   const struct kvm_memory_slot *old,
682 				   const struct kvm_memory_slot *new,
683 				   enum kvm_mr_change change)
684 {
685 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
686 }
687 
688 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
689 				   struct kvm_memory_slot *slot)
690 {
691 	kvmppc_core_flush_memslot(kvm, slot);
692 }
693 
694 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
695 {
696 	struct kvm_vcpu *vcpu;
697 	vcpu = kvmppc_core_vcpu_create(kvm, id);
698 	if (!IS_ERR(vcpu)) {
699 		vcpu->arch.wqp = &vcpu->wq;
700 		kvmppc_create_vcpu_debugfs(vcpu, id);
701 	}
702 	return vcpu;
703 }
704 
705 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
706 {
707 }
708 
709 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
710 {
711 	/* Make sure we're not using the vcpu anymore */
712 	hrtimer_cancel(&vcpu->arch.dec_timer);
713 
714 	kvmppc_remove_vcpu_debugfs(vcpu);
715 
716 	switch (vcpu->arch.irq_type) {
717 	case KVMPPC_IRQ_MPIC:
718 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
719 		break;
720 	case KVMPPC_IRQ_XICS:
721 		if (xive_enabled())
722 			kvmppc_xive_cleanup_vcpu(vcpu);
723 		else
724 			kvmppc_xics_free_icp(vcpu);
725 		break;
726 	}
727 
728 	kvmppc_core_vcpu_free(vcpu);
729 }
730 
731 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
732 {
733 	kvm_arch_vcpu_free(vcpu);
734 }
735 
736 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
737 {
738 	return kvmppc_core_pending_dec(vcpu);
739 }
740 
741 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
742 {
743 	struct kvm_vcpu *vcpu;
744 
745 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
746 	kvmppc_decrementer_func(vcpu);
747 
748 	return HRTIMER_NORESTART;
749 }
750 
751 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
752 {
753 	int ret;
754 
755 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
756 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
757 	vcpu->arch.dec_expires = ~(u64)0;
758 
759 #ifdef CONFIG_KVM_EXIT_TIMING
760 	mutex_init(&vcpu->arch.exit_timing_lock);
761 #endif
762 	ret = kvmppc_subarch_vcpu_init(vcpu);
763 	return ret;
764 }
765 
766 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
767 {
768 	kvmppc_mmu_destroy(vcpu);
769 	kvmppc_subarch_vcpu_uninit(vcpu);
770 }
771 
772 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
773 {
774 #ifdef CONFIG_BOOKE
775 	/*
776 	 * vrsave (formerly usprg0) isn't used by Linux, but may
777 	 * be used by the guest.
778 	 *
779 	 * On non-booke this is associated with Altivec and
780 	 * is handled by code in book3s.c.
781 	 */
782 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
783 #endif
784 	kvmppc_core_vcpu_load(vcpu, cpu);
785 }
786 
787 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
788 {
789 	kvmppc_core_vcpu_put(vcpu);
790 #ifdef CONFIG_BOOKE
791 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
792 #endif
793 }
794 
795 /*
796  * irq_bypass_add_producer and irq_bypass_del_producer are only
797  * useful if the architecture supports PCI passthrough.
798  * irq_bypass_stop and irq_bypass_start are not needed and so
799  * kvm_ops are not defined for them.
800  */
801 bool kvm_arch_has_irq_bypass(void)
802 {
803 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
804 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
805 }
806 
807 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
808 				     struct irq_bypass_producer *prod)
809 {
810 	struct kvm_kernel_irqfd *irqfd =
811 		container_of(cons, struct kvm_kernel_irqfd, consumer);
812 	struct kvm *kvm = irqfd->kvm;
813 
814 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
815 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
816 
817 	return 0;
818 }
819 
820 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
821 				      struct irq_bypass_producer *prod)
822 {
823 	struct kvm_kernel_irqfd *irqfd =
824 		container_of(cons, struct kvm_kernel_irqfd, consumer);
825 	struct kvm *kvm = irqfd->kvm;
826 
827 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
828 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
829 }
830 
831 #ifdef CONFIG_VSX
832 static inline int kvmppc_get_vsr_dword_offset(int index)
833 {
834 	int offset;
835 
836 	if ((index != 0) && (index != 1))
837 		return -1;
838 
839 #ifdef __BIG_ENDIAN
840 	offset =  index;
841 #else
842 	offset = 1 - index;
843 #endif
844 
845 	return offset;
846 }
847 
848 static inline int kvmppc_get_vsr_word_offset(int index)
849 {
850 	int offset;
851 
852 	if ((index > 3) || (index < 0))
853 		return -1;
854 
855 #ifdef __BIG_ENDIAN
856 	offset = index;
857 #else
858 	offset = 3 - index;
859 #endif
860 	return offset;
861 }
862 
863 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
864 	u64 gpr)
865 {
866 	union kvmppc_one_reg val;
867 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
868 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
869 
870 	if (offset == -1)
871 		return;
872 
873 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
874 		val.vval = VCPU_VSX_VR(vcpu, index);
875 		val.vsxval[offset] = gpr;
876 		VCPU_VSX_VR(vcpu, index) = val.vval;
877 	} else {
878 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
879 	}
880 }
881 
882 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
883 	u64 gpr)
884 {
885 	union kvmppc_one_reg val;
886 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
887 
888 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
889 		val.vval = VCPU_VSX_VR(vcpu, index);
890 		val.vsxval[0] = gpr;
891 		val.vsxval[1] = gpr;
892 		VCPU_VSX_VR(vcpu, index) = val.vval;
893 	} else {
894 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
895 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
896 	}
897 }
898 
899 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
900 	u32 gpr32)
901 {
902 	union kvmppc_one_reg val;
903 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
904 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
905 	int dword_offset, word_offset;
906 
907 	if (offset == -1)
908 		return;
909 
910 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
911 		val.vval = VCPU_VSX_VR(vcpu, index);
912 		val.vsx32val[offset] = gpr32;
913 		VCPU_VSX_VR(vcpu, index) = val.vval;
914 	} else {
915 		dword_offset = offset / 2;
916 		word_offset = offset % 2;
917 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
918 		val.vsx32val[word_offset] = gpr32;
919 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
920 	}
921 }
922 #endif /* CONFIG_VSX */
923 
924 #ifdef CONFIG_PPC_FPU
925 static inline u64 sp_to_dp(u32 fprs)
926 {
927 	u64 fprd;
928 
929 	preempt_disable();
930 	enable_kernel_fp();
931 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
932 	     : "fr0");
933 	preempt_enable();
934 	return fprd;
935 }
936 
937 static inline u32 dp_to_sp(u64 fprd)
938 {
939 	u32 fprs;
940 
941 	preempt_disable();
942 	enable_kernel_fp();
943 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
944 	     : "fr0");
945 	preempt_enable();
946 	return fprs;
947 }
948 
949 #else
950 #define sp_to_dp(x)	(x)
951 #define dp_to_sp(x)	(x)
952 #endif /* CONFIG_PPC_FPU */
953 
954 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
955                                       struct kvm_run *run)
956 {
957 	u64 uninitialized_var(gpr);
958 
959 	if (run->mmio.len > sizeof(gpr)) {
960 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
961 		return;
962 	}
963 
964 	if (!vcpu->arch.mmio_host_swabbed) {
965 		switch (run->mmio.len) {
966 		case 8: gpr = *(u64 *)run->mmio.data; break;
967 		case 4: gpr = *(u32 *)run->mmio.data; break;
968 		case 2: gpr = *(u16 *)run->mmio.data; break;
969 		case 1: gpr = *(u8 *)run->mmio.data; break;
970 		}
971 	} else {
972 		switch (run->mmio.len) {
973 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
974 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
975 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
976 		case 1: gpr = *(u8 *)run->mmio.data; break;
977 		}
978 	}
979 
980 	/* conversion between single and double precision */
981 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
982 		gpr = sp_to_dp(gpr);
983 
984 	if (vcpu->arch.mmio_sign_extend) {
985 		switch (run->mmio.len) {
986 #ifdef CONFIG_PPC64
987 		case 4:
988 			gpr = (s64)(s32)gpr;
989 			break;
990 #endif
991 		case 2:
992 			gpr = (s64)(s16)gpr;
993 			break;
994 		case 1:
995 			gpr = (s64)(s8)gpr;
996 			break;
997 		}
998 	}
999 
1000 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1001 	case KVM_MMIO_REG_GPR:
1002 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1003 		break;
1004 	case KVM_MMIO_REG_FPR:
1005 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1006 		break;
1007 #ifdef CONFIG_PPC_BOOK3S
1008 	case KVM_MMIO_REG_QPR:
1009 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1010 		break;
1011 	case KVM_MMIO_REG_FQPR:
1012 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1013 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1014 		break;
1015 #endif
1016 #ifdef CONFIG_VSX
1017 	case KVM_MMIO_REG_VSX:
1018 		if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1019 			kvmppc_set_vsr_dword(vcpu, gpr);
1020 		else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1021 			kvmppc_set_vsr_word(vcpu, gpr);
1022 		else if (vcpu->arch.mmio_vsx_copy_type ==
1023 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1024 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1025 		break;
1026 #endif
1027 	default:
1028 		BUG();
1029 	}
1030 }
1031 
1032 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1033 				unsigned int rt, unsigned int bytes,
1034 				int is_default_endian, int sign_extend)
1035 {
1036 	int idx, ret;
1037 	bool host_swabbed;
1038 
1039 	/* Pity C doesn't have a logical XOR operator */
1040 	if (kvmppc_need_byteswap(vcpu)) {
1041 		host_swabbed = is_default_endian;
1042 	} else {
1043 		host_swabbed = !is_default_endian;
1044 	}
1045 
1046 	if (bytes > sizeof(run->mmio.data)) {
1047 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1048 		       run->mmio.len);
1049 	}
1050 
1051 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1052 	run->mmio.len = bytes;
1053 	run->mmio.is_write = 0;
1054 
1055 	vcpu->arch.io_gpr = rt;
1056 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1057 	vcpu->mmio_needed = 1;
1058 	vcpu->mmio_is_write = 0;
1059 	vcpu->arch.mmio_sign_extend = sign_extend;
1060 
1061 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1062 
1063 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1064 			      bytes, &run->mmio.data);
1065 
1066 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1067 
1068 	if (!ret) {
1069 		kvmppc_complete_mmio_load(vcpu, run);
1070 		vcpu->mmio_needed = 0;
1071 		return EMULATE_DONE;
1072 	}
1073 
1074 	return EMULATE_DO_MMIO;
1075 }
1076 
1077 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1078 		       unsigned int rt, unsigned int bytes,
1079 		       int is_default_endian)
1080 {
1081 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1082 }
1083 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1084 
1085 /* Same as above, but sign extends */
1086 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1087 			unsigned int rt, unsigned int bytes,
1088 			int is_default_endian)
1089 {
1090 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1091 }
1092 
1093 #ifdef CONFIG_VSX
1094 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1095 			unsigned int rt, unsigned int bytes,
1096 			int is_default_endian, int mmio_sign_extend)
1097 {
1098 	enum emulation_result emulated = EMULATE_DONE;
1099 
1100 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1101 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1102 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1103 		return EMULATE_FAIL;
1104 	}
1105 
1106 	while (vcpu->arch.mmio_vsx_copy_nums) {
1107 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1108 			is_default_endian, mmio_sign_extend);
1109 
1110 		if (emulated != EMULATE_DONE)
1111 			break;
1112 
1113 		vcpu->arch.paddr_accessed += run->mmio.len;
1114 
1115 		vcpu->arch.mmio_vsx_copy_nums--;
1116 		vcpu->arch.mmio_vsx_offset++;
1117 	}
1118 	return emulated;
1119 }
1120 #endif /* CONFIG_VSX */
1121 
1122 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1123 			u64 val, unsigned int bytes, int is_default_endian)
1124 {
1125 	void *data = run->mmio.data;
1126 	int idx, ret;
1127 	bool host_swabbed;
1128 
1129 	/* Pity C doesn't have a logical XOR operator */
1130 	if (kvmppc_need_byteswap(vcpu)) {
1131 		host_swabbed = is_default_endian;
1132 	} else {
1133 		host_swabbed = !is_default_endian;
1134 	}
1135 
1136 	if (bytes > sizeof(run->mmio.data)) {
1137 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1138 		       run->mmio.len);
1139 	}
1140 
1141 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1142 	run->mmio.len = bytes;
1143 	run->mmio.is_write = 1;
1144 	vcpu->mmio_needed = 1;
1145 	vcpu->mmio_is_write = 1;
1146 
1147 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1148 		val = dp_to_sp(val);
1149 
1150 	/* Store the value at the lowest bytes in 'data'. */
1151 	if (!host_swabbed) {
1152 		switch (bytes) {
1153 		case 8: *(u64 *)data = val; break;
1154 		case 4: *(u32 *)data = val; break;
1155 		case 2: *(u16 *)data = val; break;
1156 		case 1: *(u8  *)data = val; break;
1157 		}
1158 	} else {
1159 		switch (bytes) {
1160 		case 8: *(u64 *)data = swab64(val); break;
1161 		case 4: *(u32 *)data = swab32(val); break;
1162 		case 2: *(u16 *)data = swab16(val); break;
1163 		case 1: *(u8  *)data = val; break;
1164 		}
1165 	}
1166 
1167 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1168 
1169 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1170 			       bytes, &run->mmio.data);
1171 
1172 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1173 
1174 	if (!ret) {
1175 		vcpu->mmio_needed = 0;
1176 		return EMULATE_DONE;
1177 	}
1178 
1179 	return EMULATE_DO_MMIO;
1180 }
1181 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1182 
1183 #ifdef CONFIG_VSX
1184 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1185 {
1186 	u32 dword_offset, word_offset;
1187 	union kvmppc_one_reg reg;
1188 	int vsx_offset = 0;
1189 	int copy_type = vcpu->arch.mmio_vsx_copy_type;
1190 	int result = 0;
1191 
1192 	switch (copy_type) {
1193 	case KVMPPC_VSX_COPY_DWORD:
1194 		vsx_offset =
1195 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1196 
1197 		if (vsx_offset == -1) {
1198 			result = -1;
1199 			break;
1200 		}
1201 
1202 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1203 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1204 		} else {
1205 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1206 			*val = reg.vsxval[vsx_offset];
1207 		}
1208 		break;
1209 
1210 	case KVMPPC_VSX_COPY_WORD:
1211 		vsx_offset =
1212 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1213 
1214 		if (vsx_offset == -1) {
1215 			result = -1;
1216 			break;
1217 		}
1218 
1219 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1220 			dword_offset = vsx_offset / 2;
1221 			word_offset = vsx_offset % 2;
1222 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1223 			*val = reg.vsx32val[word_offset];
1224 		} else {
1225 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1226 			*val = reg.vsx32val[vsx_offset];
1227 		}
1228 		break;
1229 
1230 	default:
1231 		result = -1;
1232 		break;
1233 	}
1234 
1235 	return result;
1236 }
1237 
1238 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1239 			int rs, unsigned int bytes, int is_default_endian)
1240 {
1241 	u64 val;
1242 	enum emulation_result emulated = EMULATE_DONE;
1243 
1244 	vcpu->arch.io_gpr = rs;
1245 
1246 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1247 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1248 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1249 		return EMULATE_FAIL;
1250 	}
1251 
1252 	while (vcpu->arch.mmio_vsx_copy_nums) {
1253 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1254 			return EMULATE_FAIL;
1255 
1256 		emulated = kvmppc_handle_store(run, vcpu,
1257 			 val, bytes, is_default_endian);
1258 
1259 		if (emulated != EMULATE_DONE)
1260 			break;
1261 
1262 		vcpu->arch.paddr_accessed += run->mmio.len;
1263 
1264 		vcpu->arch.mmio_vsx_copy_nums--;
1265 		vcpu->arch.mmio_vsx_offset++;
1266 	}
1267 
1268 	return emulated;
1269 }
1270 
1271 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1272 			struct kvm_run *run)
1273 {
1274 	enum emulation_result emulated = EMULATE_FAIL;
1275 	int r;
1276 
1277 	vcpu->arch.paddr_accessed += run->mmio.len;
1278 
1279 	if (!vcpu->mmio_is_write) {
1280 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1281 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1282 	} else {
1283 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1284 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1285 	}
1286 
1287 	switch (emulated) {
1288 	case EMULATE_DO_MMIO:
1289 		run->exit_reason = KVM_EXIT_MMIO;
1290 		r = RESUME_HOST;
1291 		break;
1292 	case EMULATE_FAIL:
1293 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1294 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1295 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1296 		r = RESUME_HOST;
1297 		break;
1298 	default:
1299 		r = RESUME_GUEST;
1300 		break;
1301 	}
1302 	return r;
1303 }
1304 #endif /* CONFIG_VSX */
1305 
1306 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1307 {
1308 	int r = 0;
1309 	union kvmppc_one_reg val;
1310 	int size;
1311 
1312 	size = one_reg_size(reg->id);
1313 	if (size > sizeof(val))
1314 		return -EINVAL;
1315 
1316 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1317 	if (r == -EINVAL) {
1318 		r = 0;
1319 		switch (reg->id) {
1320 #ifdef CONFIG_ALTIVEC
1321 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1322 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1323 				r = -ENXIO;
1324 				break;
1325 			}
1326 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1327 			break;
1328 		case KVM_REG_PPC_VSCR:
1329 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1330 				r = -ENXIO;
1331 				break;
1332 			}
1333 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1334 			break;
1335 		case KVM_REG_PPC_VRSAVE:
1336 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1337 			break;
1338 #endif /* CONFIG_ALTIVEC */
1339 		default:
1340 			r = -EINVAL;
1341 			break;
1342 		}
1343 	}
1344 
1345 	if (r)
1346 		return r;
1347 
1348 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1349 		r = -EFAULT;
1350 
1351 	return r;
1352 }
1353 
1354 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1355 {
1356 	int r;
1357 	union kvmppc_one_reg val;
1358 	int size;
1359 
1360 	size = one_reg_size(reg->id);
1361 	if (size > sizeof(val))
1362 		return -EINVAL;
1363 
1364 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1365 		return -EFAULT;
1366 
1367 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1368 	if (r == -EINVAL) {
1369 		r = 0;
1370 		switch (reg->id) {
1371 #ifdef CONFIG_ALTIVEC
1372 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1373 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1374 				r = -ENXIO;
1375 				break;
1376 			}
1377 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1378 			break;
1379 		case KVM_REG_PPC_VSCR:
1380 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1381 				r = -ENXIO;
1382 				break;
1383 			}
1384 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1385 			break;
1386 		case KVM_REG_PPC_VRSAVE:
1387 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1388 				r = -ENXIO;
1389 				break;
1390 			}
1391 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1392 			break;
1393 #endif /* CONFIG_ALTIVEC */
1394 		default:
1395 			r = -EINVAL;
1396 			break;
1397 		}
1398 	}
1399 
1400 	return r;
1401 }
1402 
1403 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1404 {
1405 	int r;
1406 	sigset_t sigsaved;
1407 
1408 	if (vcpu->mmio_needed) {
1409 		vcpu->mmio_needed = 0;
1410 		if (!vcpu->mmio_is_write)
1411 			kvmppc_complete_mmio_load(vcpu, run);
1412 #ifdef CONFIG_VSX
1413 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1414 			vcpu->arch.mmio_vsx_copy_nums--;
1415 			vcpu->arch.mmio_vsx_offset++;
1416 		}
1417 
1418 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1419 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1420 			if (r == RESUME_HOST) {
1421 				vcpu->mmio_needed = 1;
1422 				return r;
1423 			}
1424 		}
1425 #endif
1426 	} else if (vcpu->arch.osi_needed) {
1427 		u64 *gprs = run->osi.gprs;
1428 		int i;
1429 
1430 		for (i = 0; i < 32; i++)
1431 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1432 		vcpu->arch.osi_needed = 0;
1433 	} else if (vcpu->arch.hcall_needed) {
1434 		int i;
1435 
1436 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1437 		for (i = 0; i < 9; ++i)
1438 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1439 		vcpu->arch.hcall_needed = 0;
1440 #ifdef CONFIG_BOOKE
1441 	} else if (vcpu->arch.epr_needed) {
1442 		kvmppc_set_epr(vcpu, run->epr.epr);
1443 		vcpu->arch.epr_needed = 0;
1444 #endif
1445 	}
1446 
1447 	if (vcpu->sigset_active)
1448 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1449 
1450 	if (run->immediate_exit)
1451 		r = -EINTR;
1452 	else
1453 		r = kvmppc_vcpu_run(run, vcpu);
1454 
1455 	if (vcpu->sigset_active)
1456 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1457 
1458 	return r;
1459 }
1460 
1461 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1462 {
1463 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1464 		kvmppc_core_dequeue_external(vcpu);
1465 		return 0;
1466 	}
1467 
1468 	kvmppc_core_queue_external(vcpu, irq);
1469 
1470 	kvm_vcpu_kick(vcpu);
1471 
1472 	return 0;
1473 }
1474 
1475 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1476 				     struct kvm_enable_cap *cap)
1477 {
1478 	int r;
1479 
1480 	if (cap->flags)
1481 		return -EINVAL;
1482 
1483 	switch (cap->cap) {
1484 	case KVM_CAP_PPC_OSI:
1485 		r = 0;
1486 		vcpu->arch.osi_enabled = true;
1487 		break;
1488 	case KVM_CAP_PPC_PAPR:
1489 		r = 0;
1490 		vcpu->arch.papr_enabled = true;
1491 		break;
1492 	case KVM_CAP_PPC_EPR:
1493 		r = 0;
1494 		if (cap->args[0])
1495 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1496 		else
1497 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1498 		break;
1499 #ifdef CONFIG_BOOKE
1500 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1501 		r = 0;
1502 		vcpu->arch.watchdog_enabled = true;
1503 		break;
1504 #endif
1505 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1506 	case KVM_CAP_SW_TLB: {
1507 		struct kvm_config_tlb cfg;
1508 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1509 
1510 		r = -EFAULT;
1511 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1512 			break;
1513 
1514 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1515 		break;
1516 	}
1517 #endif
1518 #ifdef CONFIG_KVM_MPIC
1519 	case KVM_CAP_IRQ_MPIC: {
1520 		struct fd f;
1521 		struct kvm_device *dev;
1522 
1523 		r = -EBADF;
1524 		f = fdget(cap->args[0]);
1525 		if (!f.file)
1526 			break;
1527 
1528 		r = -EPERM;
1529 		dev = kvm_device_from_filp(f.file);
1530 		if (dev)
1531 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1532 
1533 		fdput(f);
1534 		break;
1535 	}
1536 #endif
1537 #ifdef CONFIG_KVM_XICS
1538 	case KVM_CAP_IRQ_XICS: {
1539 		struct fd f;
1540 		struct kvm_device *dev;
1541 
1542 		r = -EBADF;
1543 		f = fdget(cap->args[0]);
1544 		if (!f.file)
1545 			break;
1546 
1547 		r = -EPERM;
1548 		dev = kvm_device_from_filp(f.file);
1549 		if (dev) {
1550 			if (xive_enabled())
1551 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1552 			else
1553 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1554 		}
1555 
1556 		fdput(f);
1557 		break;
1558 	}
1559 #endif /* CONFIG_KVM_XICS */
1560 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1561 	case KVM_CAP_PPC_FWNMI:
1562 		r = -EINVAL;
1563 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1564 			break;
1565 		r = 0;
1566 		vcpu->kvm->arch.fwnmi_enabled = true;
1567 		break;
1568 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1569 	default:
1570 		r = -EINVAL;
1571 		break;
1572 	}
1573 
1574 	if (!r)
1575 		r = kvmppc_sanity_check(vcpu);
1576 
1577 	return r;
1578 }
1579 
1580 bool kvm_arch_intc_initialized(struct kvm *kvm)
1581 {
1582 #ifdef CONFIG_KVM_MPIC
1583 	if (kvm->arch.mpic)
1584 		return true;
1585 #endif
1586 #ifdef CONFIG_KVM_XICS
1587 	if (kvm->arch.xics || kvm->arch.xive)
1588 		return true;
1589 #endif
1590 	return false;
1591 }
1592 
1593 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1594                                     struct kvm_mp_state *mp_state)
1595 {
1596 	return -EINVAL;
1597 }
1598 
1599 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1600                                     struct kvm_mp_state *mp_state)
1601 {
1602 	return -EINVAL;
1603 }
1604 
1605 long kvm_arch_vcpu_ioctl(struct file *filp,
1606                          unsigned int ioctl, unsigned long arg)
1607 {
1608 	struct kvm_vcpu *vcpu = filp->private_data;
1609 	void __user *argp = (void __user *)arg;
1610 	long r;
1611 
1612 	switch (ioctl) {
1613 	case KVM_INTERRUPT: {
1614 		struct kvm_interrupt irq;
1615 		r = -EFAULT;
1616 		if (copy_from_user(&irq, argp, sizeof(irq)))
1617 			goto out;
1618 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1619 		goto out;
1620 	}
1621 
1622 	case KVM_ENABLE_CAP:
1623 	{
1624 		struct kvm_enable_cap cap;
1625 		r = -EFAULT;
1626 		if (copy_from_user(&cap, argp, sizeof(cap)))
1627 			goto out;
1628 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1629 		break;
1630 	}
1631 
1632 	case KVM_SET_ONE_REG:
1633 	case KVM_GET_ONE_REG:
1634 	{
1635 		struct kvm_one_reg reg;
1636 		r = -EFAULT;
1637 		if (copy_from_user(&reg, argp, sizeof(reg)))
1638 			goto out;
1639 		if (ioctl == KVM_SET_ONE_REG)
1640 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1641 		else
1642 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1643 		break;
1644 	}
1645 
1646 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1647 	case KVM_DIRTY_TLB: {
1648 		struct kvm_dirty_tlb dirty;
1649 		r = -EFAULT;
1650 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
1651 			goto out;
1652 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1653 		break;
1654 	}
1655 #endif
1656 	default:
1657 		r = -EINVAL;
1658 	}
1659 
1660 out:
1661 	return r;
1662 }
1663 
1664 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1665 {
1666 	return VM_FAULT_SIGBUS;
1667 }
1668 
1669 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1670 {
1671 	u32 inst_nop = 0x60000000;
1672 #ifdef CONFIG_KVM_BOOKE_HV
1673 	u32 inst_sc1 = 0x44000022;
1674 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1675 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1676 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1677 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1678 #else
1679 	u32 inst_lis = 0x3c000000;
1680 	u32 inst_ori = 0x60000000;
1681 	u32 inst_sc = 0x44000002;
1682 	u32 inst_imm_mask = 0xffff;
1683 
1684 	/*
1685 	 * The hypercall to get into KVM from within guest context is as
1686 	 * follows:
1687 	 *
1688 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
1689 	 *    ori r0, KVM_SC_MAGIC_R0@l
1690 	 *    sc
1691 	 *    nop
1692 	 */
1693 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1694 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1695 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1696 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1697 #endif
1698 
1699 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1700 
1701 	return 0;
1702 }
1703 
1704 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1705 			  bool line_status)
1706 {
1707 	if (!irqchip_in_kernel(kvm))
1708 		return -ENXIO;
1709 
1710 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1711 					irq_event->irq, irq_event->level,
1712 					line_status);
1713 	return 0;
1714 }
1715 
1716 
1717 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1718 				   struct kvm_enable_cap *cap)
1719 {
1720 	int r;
1721 
1722 	if (cap->flags)
1723 		return -EINVAL;
1724 
1725 	switch (cap->cap) {
1726 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1727 	case KVM_CAP_PPC_ENABLE_HCALL: {
1728 		unsigned long hcall = cap->args[0];
1729 
1730 		r = -EINVAL;
1731 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1732 		    cap->args[1] > 1)
1733 			break;
1734 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1735 			break;
1736 		if (cap->args[1])
1737 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1738 		else
1739 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1740 		r = 0;
1741 		break;
1742 	}
1743 	case KVM_CAP_PPC_SMT: {
1744 		unsigned long mode = cap->args[0];
1745 		unsigned long flags = cap->args[1];
1746 
1747 		r = -EINVAL;
1748 		if (kvm->arch.kvm_ops->set_smt_mode)
1749 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1750 		break;
1751 	}
1752 #endif
1753 	default:
1754 		r = -EINVAL;
1755 		break;
1756 	}
1757 
1758 	return r;
1759 }
1760 
1761 long kvm_arch_vm_ioctl(struct file *filp,
1762                        unsigned int ioctl, unsigned long arg)
1763 {
1764 	struct kvm *kvm __maybe_unused = filp->private_data;
1765 	void __user *argp = (void __user *)arg;
1766 	long r;
1767 
1768 	switch (ioctl) {
1769 	case KVM_PPC_GET_PVINFO: {
1770 		struct kvm_ppc_pvinfo pvinfo;
1771 		memset(&pvinfo, 0, sizeof(pvinfo));
1772 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1773 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1774 			r = -EFAULT;
1775 			goto out;
1776 		}
1777 
1778 		break;
1779 	}
1780 	case KVM_ENABLE_CAP:
1781 	{
1782 		struct kvm_enable_cap cap;
1783 		r = -EFAULT;
1784 		if (copy_from_user(&cap, argp, sizeof(cap)))
1785 			goto out;
1786 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1787 		break;
1788 	}
1789 #ifdef CONFIG_SPAPR_TCE_IOMMU
1790 	case KVM_CREATE_SPAPR_TCE_64: {
1791 		struct kvm_create_spapr_tce_64 create_tce_64;
1792 
1793 		r = -EFAULT;
1794 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1795 			goto out;
1796 		if (create_tce_64.flags) {
1797 			r = -EINVAL;
1798 			goto out;
1799 		}
1800 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1801 		goto out;
1802 	}
1803 	case KVM_CREATE_SPAPR_TCE: {
1804 		struct kvm_create_spapr_tce create_tce;
1805 		struct kvm_create_spapr_tce_64 create_tce_64;
1806 
1807 		r = -EFAULT;
1808 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1809 			goto out;
1810 
1811 		create_tce_64.liobn = create_tce.liobn;
1812 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1813 		create_tce_64.offset = 0;
1814 		create_tce_64.size = create_tce.window_size >>
1815 				IOMMU_PAGE_SHIFT_4K;
1816 		create_tce_64.flags = 0;
1817 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1818 		goto out;
1819 	}
1820 #endif
1821 #ifdef CONFIG_PPC_BOOK3S_64
1822 	case KVM_PPC_GET_SMMU_INFO: {
1823 		struct kvm_ppc_smmu_info info;
1824 		struct kvm *kvm = filp->private_data;
1825 
1826 		memset(&info, 0, sizeof(info));
1827 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1828 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1829 			r = -EFAULT;
1830 		break;
1831 	}
1832 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
1833 		struct kvm *kvm = filp->private_data;
1834 
1835 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1836 		break;
1837 	}
1838 	case KVM_PPC_CONFIGURE_V3_MMU: {
1839 		struct kvm *kvm = filp->private_data;
1840 		struct kvm_ppc_mmuv3_cfg cfg;
1841 
1842 		r = -EINVAL;
1843 		if (!kvm->arch.kvm_ops->configure_mmu)
1844 			goto out;
1845 		r = -EFAULT;
1846 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
1847 			goto out;
1848 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1849 		break;
1850 	}
1851 	case KVM_PPC_GET_RMMU_INFO: {
1852 		struct kvm *kvm = filp->private_data;
1853 		struct kvm_ppc_rmmu_info info;
1854 
1855 		r = -EINVAL;
1856 		if (!kvm->arch.kvm_ops->get_rmmu_info)
1857 			goto out;
1858 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1859 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1860 			r = -EFAULT;
1861 		break;
1862 	}
1863 	default: {
1864 		struct kvm *kvm = filp->private_data;
1865 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1866 	}
1867 #else /* CONFIG_PPC_BOOK3S_64 */
1868 	default:
1869 		r = -ENOTTY;
1870 #endif
1871 	}
1872 out:
1873 	return r;
1874 }
1875 
1876 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1877 static unsigned long nr_lpids;
1878 
1879 long kvmppc_alloc_lpid(void)
1880 {
1881 	long lpid;
1882 
1883 	do {
1884 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1885 		if (lpid >= nr_lpids) {
1886 			pr_err("%s: No LPIDs free\n", __func__);
1887 			return -ENOMEM;
1888 		}
1889 	} while (test_and_set_bit(lpid, lpid_inuse));
1890 
1891 	return lpid;
1892 }
1893 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1894 
1895 void kvmppc_claim_lpid(long lpid)
1896 {
1897 	set_bit(lpid, lpid_inuse);
1898 }
1899 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1900 
1901 void kvmppc_free_lpid(long lpid)
1902 {
1903 	clear_bit(lpid, lpid_inuse);
1904 }
1905 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1906 
1907 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1908 {
1909 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1910 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
1911 }
1912 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1913 
1914 int kvm_arch_init(void *opaque)
1915 {
1916 	return 0;
1917 }
1918 
1919 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
1920