1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <linux/of.h> 23 #include <asm/cputable.h> 24 #include <linux/uaccess.h> 25 #include <asm/kvm_ppc.h> 26 #include <asm/cputhreads.h> 27 #include <asm/irqflags.h> 28 #include <asm/iommu.h> 29 #include <asm/switch_to.h> 30 #include <asm/xive.h> 31 #ifdef CONFIG_PPC_PSERIES 32 #include <asm/hvcall.h> 33 #include <asm/plpar_wrappers.h> 34 #endif 35 #include <asm/ultravisor.h> 36 #include <asm/setup.h> 37 38 #include "timing.h" 39 #include "../mm/mmu_decl.h" 40 41 #define CREATE_TRACE_POINTS 42 #include "trace.h" 43 44 struct kvmppc_ops *kvmppc_hv_ops; 45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 46 struct kvmppc_ops *kvmppc_pr_ops; 47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 48 49 50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 51 { 52 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 53 } 54 55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 56 { 57 return kvm_arch_vcpu_runnable(vcpu); 58 } 59 60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 61 { 62 return false; 63 } 64 65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 66 { 67 return 1; 68 } 69 70 /* 71 * Common checks before entering the guest world. Call with interrupts 72 * disabled. 73 * 74 * returns: 75 * 76 * == 1 if we're ready to go into guest state 77 * <= 0 if we need to go back to the host with return value 78 */ 79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 80 { 81 int r; 82 83 WARN_ON(irqs_disabled()); 84 hard_irq_disable(); 85 86 while (true) { 87 if (need_resched()) { 88 local_irq_enable(); 89 cond_resched(); 90 hard_irq_disable(); 91 continue; 92 } 93 94 if (signal_pending(current)) { 95 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 96 vcpu->run->exit_reason = KVM_EXIT_INTR; 97 r = -EINTR; 98 break; 99 } 100 101 vcpu->mode = IN_GUEST_MODE; 102 103 /* 104 * Reading vcpu->requests must happen after setting vcpu->mode, 105 * so we don't miss a request because the requester sees 106 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 107 * before next entering the guest (and thus doesn't IPI). 108 * This also orders the write to mode from any reads 109 * to the page tables done while the VCPU is running. 110 * Please see the comment in kvm_flush_remote_tlbs. 111 */ 112 smp_mb(); 113 114 if (kvm_request_pending(vcpu)) { 115 /* Make sure we process requests preemptable */ 116 local_irq_enable(); 117 trace_kvm_check_requests(vcpu); 118 r = kvmppc_core_check_requests(vcpu); 119 hard_irq_disable(); 120 if (r > 0) 121 continue; 122 break; 123 } 124 125 if (kvmppc_core_prepare_to_enter(vcpu)) { 126 /* interrupts got enabled in between, so we 127 are back at square 1 */ 128 continue; 129 } 130 131 guest_enter_irqoff(); 132 return 1; 133 } 134 135 /* return to host */ 136 local_irq_enable(); 137 return r; 138 } 139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 140 141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 143 { 144 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 145 int i; 146 147 shared->sprg0 = swab64(shared->sprg0); 148 shared->sprg1 = swab64(shared->sprg1); 149 shared->sprg2 = swab64(shared->sprg2); 150 shared->sprg3 = swab64(shared->sprg3); 151 shared->srr0 = swab64(shared->srr0); 152 shared->srr1 = swab64(shared->srr1); 153 shared->dar = swab64(shared->dar); 154 shared->msr = swab64(shared->msr); 155 shared->dsisr = swab32(shared->dsisr); 156 shared->int_pending = swab32(shared->int_pending); 157 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 158 shared->sr[i] = swab32(shared->sr[i]); 159 } 160 #endif 161 162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 163 { 164 int nr = kvmppc_get_gpr(vcpu, 11); 165 int r; 166 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 167 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 168 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 169 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 170 unsigned long r2 = 0; 171 172 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 173 /* 32 bit mode */ 174 param1 &= 0xffffffff; 175 param2 &= 0xffffffff; 176 param3 &= 0xffffffff; 177 param4 &= 0xffffffff; 178 } 179 180 switch (nr) { 181 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 182 { 183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 184 /* Book3S can be little endian, find it out here */ 185 int shared_big_endian = true; 186 if (vcpu->arch.intr_msr & MSR_LE) 187 shared_big_endian = false; 188 if (shared_big_endian != vcpu->arch.shared_big_endian) 189 kvmppc_swab_shared(vcpu); 190 vcpu->arch.shared_big_endian = shared_big_endian; 191 #endif 192 193 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 194 /* 195 * Older versions of the Linux magic page code had 196 * a bug where they would map their trampoline code 197 * NX. If that's the case, remove !PR NX capability. 198 */ 199 vcpu->arch.disable_kernel_nx = true; 200 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 201 } 202 203 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 204 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 205 206 #ifdef CONFIG_PPC_64K_PAGES 207 /* 208 * Make sure our 4k magic page is in the same window of a 64k 209 * page within the guest and within the host's page. 210 */ 211 if ((vcpu->arch.magic_page_pa & 0xf000) != 212 ((ulong)vcpu->arch.shared & 0xf000)) { 213 void *old_shared = vcpu->arch.shared; 214 ulong shared = (ulong)vcpu->arch.shared; 215 void *new_shared; 216 217 shared &= PAGE_MASK; 218 shared |= vcpu->arch.magic_page_pa & 0xf000; 219 new_shared = (void*)shared; 220 memcpy(new_shared, old_shared, 0x1000); 221 vcpu->arch.shared = new_shared; 222 } 223 #endif 224 225 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 226 227 r = EV_SUCCESS; 228 break; 229 } 230 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 231 r = EV_SUCCESS; 232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 233 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 234 #endif 235 236 /* Second return value is in r4 */ 237 break; 238 case EV_HCALL_TOKEN(EV_IDLE): 239 r = EV_SUCCESS; 240 kvm_vcpu_halt(vcpu); 241 break; 242 default: 243 r = EV_UNIMPLEMENTED; 244 break; 245 } 246 247 kvmppc_set_gpr(vcpu, 4, r2); 248 249 return r; 250 } 251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 252 253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 254 { 255 int r = false; 256 257 /* We have to know what CPU to virtualize */ 258 if (!vcpu->arch.pvr) 259 goto out; 260 261 /* PAPR only works with book3s_64 */ 262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 263 goto out; 264 265 /* HV KVM can only do PAPR mode for now */ 266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 267 goto out; 268 269 #ifdef CONFIG_KVM_BOOKE_HV 270 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 271 goto out; 272 #endif 273 274 r = true; 275 276 out: 277 vcpu->arch.sane = r; 278 return r ? 0 : -EINVAL; 279 } 280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 281 282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) 283 { 284 enum emulation_result er; 285 int r; 286 287 er = kvmppc_emulate_loadstore(vcpu); 288 switch (er) { 289 case EMULATE_DONE: 290 /* Future optimization: only reload non-volatiles if they were 291 * actually modified. */ 292 r = RESUME_GUEST_NV; 293 break; 294 case EMULATE_AGAIN: 295 r = RESUME_GUEST; 296 break; 297 case EMULATE_DO_MMIO: 298 vcpu->run->exit_reason = KVM_EXIT_MMIO; 299 /* We must reload nonvolatiles because "update" load/store 300 * instructions modify register state. */ 301 /* Future optimization: only reload non-volatiles if they were 302 * actually modified. */ 303 r = RESUME_HOST_NV; 304 break; 305 case EMULATE_FAIL: 306 { 307 ppc_inst_t last_inst; 308 309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 310 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n", 311 ppc_inst_val(last_inst)); 312 313 /* 314 * Injecting a Data Storage here is a bit more 315 * accurate since the instruction that caused the 316 * access could still be a valid one. 317 */ 318 if (!IS_ENABLED(CONFIG_BOOKE)) { 319 ulong dsisr = DSISR_BADACCESS; 320 321 if (vcpu->mmio_is_write) 322 dsisr |= DSISR_ISSTORE; 323 324 kvmppc_core_queue_data_storage(vcpu, 325 kvmppc_get_msr(vcpu) & SRR1_PREFIXED, 326 vcpu->arch.vaddr_accessed, dsisr); 327 } else { 328 /* 329 * BookE does not send a SIGBUS on a bad 330 * fault, so use a Program interrupt instead 331 * to avoid a fault loop. 332 */ 333 kvmppc_core_queue_program(vcpu, 0); 334 } 335 336 r = RESUME_GUEST; 337 break; 338 } 339 default: 340 WARN_ON(1); 341 r = RESUME_GUEST; 342 } 343 344 return r; 345 } 346 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 347 348 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 349 bool data) 350 { 351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 352 struct kvmppc_pte pte; 353 int r = -EINVAL; 354 355 vcpu->stat.st++; 356 357 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 358 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 359 size); 360 361 if ((!r) || (r == -EAGAIN)) 362 return r; 363 364 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 365 XLATE_WRITE, &pte); 366 if (r < 0) 367 return r; 368 369 *eaddr = pte.raddr; 370 371 if (!pte.may_write) 372 return -EPERM; 373 374 /* Magic page override */ 375 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 376 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 377 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 378 void *magic = vcpu->arch.shared; 379 magic += pte.eaddr & 0xfff; 380 memcpy(magic, ptr, size); 381 return EMULATE_DONE; 382 } 383 384 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 385 return EMULATE_DO_MMIO; 386 387 return EMULATE_DONE; 388 } 389 EXPORT_SYMBOL_GPL(kvmppc_st); 390 391 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 392 bool data) 393 { 394 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 395 struct kvmppc_pte pte; 396 int rc = -EINVAL; 397 398 vcpu->stat.ld++; 399 400 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 401 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 402 size); 403 404 if ((!rc) || (rc == -EAGAIN)) 405 return rc; 406 407 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 408 XLATE_READ, &pte); 409 if (rc) 410 return rc; 411 412 *eaddr = pte.raddr; 413 414 if (!pte.may_read) 415 return -EPERM; 416 417 if (!data && !pte.may_execute) 418 return -ENOEXEC; 419 420 /* Magic page override */ 421 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 422 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 423 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 424 void *magic = vcpu->arch.shared; 425 magic += pte.eaddr & 0xfff; 426 memcpy(ptr, magic, size); 427 return EMULATE_DONE; 428 } 429 430 kvm_vcpu_srcu_read_lock(vcpu); 431 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); 432 kvm_vcpu_srcu_read_unlock(vcpu); 433 if (rc) 434 return EMULATE_DO_MMIO; 435 436 return EMULATE_DONE; 437 } 438 EXPORT_SYMBOL_GPL(kvmppc_ld); 439 440 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 441 { 442 struct kvmppc_ops *kvm_ops = NULL; 443 int r; 444 445 /* 446 * if we have both HV and PR enabled, default is HV 447 */ 448 if (type == 0) { 449 if (kvmppc_hv_ops) 450 kvm_ops = kvmppc_hv_ops; 451 else 452 kvm_ops = kvmppc_pr_ops; 453 if (!kvm_ops) 454 goto err_out; 455 } else if (type == KVM_VM_PPC_HV) { 456 if (!kvmppc_hv_ops) 457 goto err_out; 458 kvm_ops = kvmppc_hv_ops; 459 } else if (type == KVM_VM_PPC_PR) { 460 if (!kvmppc_pr_ops) 461 goto err_out; 462 kvm_ops = kvmppc_pr_ops; 463 } else 464 goto err_out; 465 466 if (!try_module_get(kvm_ops->owner)) 467 return -ENOENT; 468 469 kvm->arch.kvm_ops = kvm_ops; 470 r = kvmppc_core_init_vm(kvm); 471 if (r) 472 module_put(kvm_ops->owner); 473 return r; 474 err_out: 475 return -EINVAL; 476 } 477 478 void kvm_arch_destroy_vm(struct kvm *kvm) 479 { 480 #ifdef CONFIG_KVM_XICS 481 /* 482 * We call kick_all_cpus_sync() to ensure that all 483 * CPUs have executed any pending IPIs before we 484 * continue and free VCPUs structures below. 485 */ 486 if (is_kvmppc_hv_enabled(kvm)) 487 kick_all_cpus_sync(); 488 #endif 489 490 kvm_destroy_vcpus(kvm); 491 492 mutex_lock(&kvm->lock); 493 494 kvmppc_core_destroy_vm(kvm); 495 496 mutex_unlock(&kvm->lock); 497 498 /* drop the module reference */ 499 module_put(kvm->arch.kvm_ops->owner); 500 } 501 502 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 503 { 504 int r; 505 /* Assume we're using HV mode when the HV module is loaded */ 506 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 507 508 if (kvm) { 509 /* 510 * Hooray - we know which VM type we're running on. Depend on 511 * that rather than the guess above. 512 */ 513 hv_enabled = is_kvmppc_hv_enabled(kvm); 514 } 515 516 switch (ext) { 517 #ifdef CONFIG_BOOKE 518 case KVM_CAP_PPC_BOOKE_SREGS: 519 case KVM_CAP_PPC_BOOKE_WATCHDOG: 520 case KVM_CAP_PPC_EPR: 521 #else 522 case KVM_CAP_PPC_SEGSTATE: 523 case KVM_CAP_PPC_HIOR: 524 case KVM_CAP_PPC_PAPR: 525 #endif 526 case KVM_CAP_PPC_UNSET_IRQ: 527 case KVM_CAP_PPC_IRQ_LEVEL: 528 case KVM_CAP_ENABLE_CAP: 529 case KVM_CAP_ONE_REG: 530 case KVM_CAP_IOEVENTFD: 531 case KVM_CAP_DEVICE_CTRL: 532 case KVM_CAP_IMMEDIATE_EXIT: 533 case KVM_CAP_SET_GUEST_DEBUG: 534 r = 1; 535 break; 536 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 537 case KVM_CAP_PPC_PAIRED_SINGLES: 538 case KVM_CAP_PPC_OSI: 539 case KVM_CAP_PPC_GET_PVINFO: 540 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 541 case KVM_CAP_SW_TLB: 542 #endif 543 /* We support this only for PR */ 544 r = !hv_enabled; 545 break; 546 #ifdef CONFIG_KVM_MPIC 547 case KVM_CAP_IRQ_MPIC: 548 r = 1; 549 break; 550 #endif 551 552 #ifdef CONFIG_PPC_BOOK3S_64 553 case KVM_CAP_SPAPR_TCE: 554 case KVM_CAP_SPAPR_TCE_64: 555 r = 1; 556 break; 557 case KVM_CAP_SPAPR_TCE_VFIO: 558 r = !!cpu_has_feature(CPU_FTR_HVMODE); 559 break; 560 case KVM_CAP_PPC_RTAS: 561 case KVM_CAP_PPC_FIXUP_HCALL: 562 case KVM_CAP_PPC_ENABLE_HCALL: 563 #ifdef CONFIG_KVM_XICS 564 case KVM_CAP_IRQ_XICS: 565 #endif 566 case KVM_CAP_PPC_GET_CPU_CHAR: 567 r = 1; 568 break; 569 #ifdef CONFIG_KVM_XIVE 570 case KVM_CAP_PPC_IRQ_XIVE: 571 /* 572 * We need XIVE to be enabled on the platform (implies 573 * a POWER9 processor) and the PowerNV platform, as 574 * nested is not yet supported. 575 */ 576 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 577 kvmppc_xive_native_supported(); 578 break; 579 #endif 580 581 #ifdef CONFIG_HAVE_KVM_IRQFD 582 case KVM_CAP_IRQFD_RESAMPLE: 583 r = !xive_enabled(); 584 break; 585 #endif 586 587 case KVM_CAP_PPC_ALLOC_HTAB: 588 r = hv_enabled; 589 break; 590 #endif /* CONFIG_PPC_BOOK3S_64 */ 591 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 592 case KVM_CAP_PPC_SMT: 593 r = 0; 594 if (kvm) { 595 if (kvm->arch.emul_smt_mode > 1) 596 r = kvm->arch.emul_smt_mode; 597 else 598 r = kvm->arch.smt_mode; 599 } else if (hv_enabled) { 600 if (cpu_has_feature(CPU_FTR_ARCH_300)) 601 r = 1; 602 else 603 r = threads_per_subcore; 604 } 605 break; 606 case KVM_CAP_PPC_SMT_POSSIBLE: 607 r = 1; 608 if (hv_enabled) { 609 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 610 r = ((threads_per_subcore << 1) - 1); 611 else 612 /* P9 can emulate dbells, so allow any mode */ 613 r = 8 | 4 | 2 | 1; 614 } 615 break; 616 case KVM_CAP_PPC_RMA: 617 r = 0; 618 break; 619 case KVM_CAP_PPC_HWRNG: 620 r = kvmppc_hwrng_present(); 621 break; 622 case KVM_CAP_PPC_MMU_RADIX: 623 r = !!(hv_enabled && radix_enabled()); 624 break; 625 case KVM_CAP_PPC_MMU_HASH_V3: 626 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible && 627 kvmppc_hv_ops->hash_v3_possible()); 628 break; 629 case KVM_CAP_PPC_NESTED_HV: 630 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 631 !kvmppc_hv_ops->enable_nested(NULL)); 632 break; 633 #endif 634 case KVM_CAP_SYNC_MMU: 635 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 636 r = hv_enabled; 637 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 638 r = 1; 639 #else 640 r = 0; 641 #endif 642 break; 643 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 644 case KVM_CAP_PPC_HTAB_FD: 645 r = hv_enabled; 646 break; 647 #endif 648 case KVM_CAP_NR_VCPUS: 649 /* 650 * Recommending a number of CPUs is somewhat arbitrary; we 651 * return the number of present CPUs for -HV (since a host 652 * will have secondary threads "offline"), and for other KVM 653 * implementations just count online CPUs. 654 */ 655 if (hv_enabled) 656 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS); 657 else 658 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 659 break; 660 case KVM_CAP_MAX_VCPUS: 661 r = KVM_MAX_VCPUS; 662 break; 663 case KVM_CAP_MAX_VCPU_ID: 664 r = KVM_MAX_VCPU_IDS; 665 break; 666 #ifdef CONFIG_PPC_BOOK3S_64 667 case KVM_CAP_PPC_GET_SMMU_INFO: 668 r = 1; 669 break; 670 case KVM_CAP_SPAPR_MULTITCE: 671 r = 1; 672 break; 673 case KVM_CAP_SPAPR_RESIZE_HPT: 674 r = !!hv_enabled; 675 break; 676 #endif 677 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 678 case KVM_CAP_PPC_FWNMI: 679 r = hv_enabled; 680 break; 681 #endif 682 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 683 case KVM_CAP_PPC_HTM: 684 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 685 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 686 break; 687 #endif 688 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 689 case KVM_CAP_PPC_SECURE_GUEST: 690 r = hv_enabled && kvmppc_hv_ops->enable_svm && 691 !kvmppc_hv_ops->enable_svm(NULL); 692 break; 693 case KVM_CAP_PPC_DAWR1: 694 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 && 695 !kvmppc_hv_ops->enable_dawr1(NULL)); 696 break; 697 case KVM_CAP_PPC_RPT_INVALIDATE: 698 r = 1; 699 break; 700 #endif 701 case KVM_CAP_PPC_AIL_MODE_3: 702 r = 0; 703 /* 704 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode. 705 * The POWER9s can support it if the guest runs in hash mode, 706 * but QEMU doesn't necessarily query the capability in time. 707 */ 708 if (hv_enabled) { 709 if (kvmhv_on_pseries()) { 710 if (pseries_reloc_on_exception()) 711 r = 1; 712 } else if (cpu_has_feature(CPU_FTR_ARCH_207S) && 713 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) { 714 r = 1; 715 } 716 } 717 break; 718 default: 719 r = 0; 720 break; 721 } 722 return r; 723 724 } 725 726 long kvm_arch_dev_ioctl(struct file *filp, 727 unsigned int ioctl, unsigned long arg) 728 { 729 return -EINVAL; 730 } 731 732 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 733 { 734 kvmppc_core_free_memslot(kvm, slot); 735 } 736 737 int kvm_arch_prepare_memory_region(struct kvm *kvm, 738 const struct kvm_memory_slot *old, 739 struct kvm_memory_slot *new, 740 enum kvm_mr_change change) 741 { 742 return kvmppc_core_prepare_memory_region(kvm, old, new, change); 743 } 744 745 void kvm_arch_commit_memory_region(struct kvm *kvm, 746 struct kvm_memory_slot *old, 747 const struct kvm_memory_slot *new, 748 enum kvm_mr_change change) 749 { 750 kvmppc_core_commit_memory_region(kvm, old, new, change); 751 } 752 753 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 754 struct kvm_memory_slot *slot) 755 { 756 kvmppc_core_flush_memslot(kvm, slot); 757 } 758 759 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 760 { 761 return 0; 762 } 763 764 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 765 { 766 struct kvm_vcpu *vcpu; 767 768 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 769 kvmppc_decrementer_func(vcpu); 770 771 return HRTIMER_NORESTART; 772 } 773 774 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 775 { 776 int err; 777 778 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 779 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 780 781 #ifdef CONFIG_KVM_EXIT_TIMING 782 mutex_init(&vcpu->arch.exit_timing_lock); 783 #endif 784 err = kvmppc_subarch_vcpu_init(vcpu); 785 if (err) 786 return err; 787 788 err = kvmppc_core_vcpu_create(vcpu); 789 if (err) 790 goto out_vcpu_uninit; 791 792 rcuwait_init(&vcpu->arch.wait); 793 vcpu->arch.waitp = &vcpu->arch.wait; 794 return 0; 795 796 out_vcpu_uninit: 797 kvmppc_subarch_vcpu_uninit(vcpu); 798 return err; 799 } 800 801 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 802 { 803 } 804 805 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 806 { 807 /* Make sure we're not using the vcpu anymore */ 808 hrtimer_cancel(&vcpu->arch.dec_timer); 809 810 switch (vcpu->arch.irq_type) { 811 case KVMPPC_IRQ_MPIC: 812 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 813 break; 814 case KVMPPC_IRQ_XICS: 815 if (xics_on_xive()) 816 kvmppc_xive_cleanup_vcpu(vcpu); 817 else 818 kvmppc_xics_free_icp(vcpu); 819 break; 820 case KVMPPC_IRQ_XIVE: 821 kvmppc_xive_native_cleanup_vcpu(vcpu); 822 break; 823 } 824 825 kvmppc_core_vcpu_free(vcpu); 826 827 kvmppc_subarch_vcpu_uninit(vcpu); 828 } 829 830 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 831 { 832 return kvmppc_core_pending_dec(vcpu); 833 } 834 835 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 836 { 837 #ifdef CONFIG_BOOKE 838 /* 839 * vrsave (formerly usprg0) isn't used by Linux, but may 840 * be used by the guest. 841 * 842 * On non-booke this is associated with Altivec and 843 * is handled by code in book3s.c. 844 */ 845 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 846 #endif 847 kvmppc_core_vcpu_load(vcpu, cpu); 848 } 849 850 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 851 { 852 kvmppc_core_vcpu_put(vcpu); 853 #ifdef CONFIG_BOOKE 854 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 855 #endif 856 } 857 858 /* 859 * irq_bypass_add_producer and irq_bypass_del_producer are only 860 * useful if the architecture supports PCI passthrough. 861 * irq_bypass_stop and irq_bypass_start are not needed and so 862 * kvm_ops are not defined for them. 863 */ 864 bool kvm_arch_has_irq_bypass(void) 865 { 866 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 867 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 868 } 869 870 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 871 struct irq_bypass_producer *prod) 872 { 873 struct kvm_kernel_irqfd *irqfd = 874 container_of(cons, struct kvm_kernel_irqfd, consumer); 875 struct kvm *kvm = irqfd->kvm; 876 877 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 878 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 879 880 return 0; 881 } 882 883 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 884 struct irq_bypass_producer *prod) 885 { 886 struct kvm_kernel_irqfd *irqfd = 887 container_of(cons, struct kvm_kernel_irqfd, consumer); 888 struct kvm *kvm = irqfd->kvm; 889 890 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 891 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 892 } 893 894 #ifdef CONFIG_VSX 895 static inline int kvmppc_get_vsr_dword_offset(int index) 896 { 897 int offset; 898 899 if ((index != 0) && (index != 1)) 900 return -1; 901 902 #ifdef __BIG_ENDIAN 903 offset = index; 904 #else 905 offset = 1 - index; 906 #endif 907 908 return offset; 909 } 910 911 static inline int kvmppc_get_vsr_word_offset(int index) 912 { 913 int offset; 914 915 if ((index > 3) || (index < 0)) 916 return -1; 917 918 #ifdef __BIG_ENDIAN 919 offset = index; 920 #else 921 offset = 3 - index; 922 #endif 923 return offset; 924 } 925 926 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 927 u64 gpr) 928 { 929 union kvmppc_one_reg val; 930 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 931 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 932 933 if (offset == -1) 934 return; 935 936 if (index >= 32) { 937 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval); 938 val.vsxval[offset] = gpr; 939 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval); 940 } else { 941 kvmppc_set_vsx_fpr(vcpu, index, offset, gpr); 942 } 943 } 944 945 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 946 u64 gpr) 947 { 948 union kvmppc_one_reg val; 949 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 950 951 if (index >= 32) { 952 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval); 953 val.vsxval[0] = gpr; 954 val.vsxval[1] = gpr; 955 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval); 956 } else { 957 kvmppc_set_vsx_fpr(vcpu, index, 0, gpr); 958 kvmppc_set_vsx_fpr(vcpu, index, 1, gpr); 959 } 960 } 961 962 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 963 u32 gpr) 964 { 965 union kvmppc_one_reg val; 966 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 967 968 if (index >= 32) { 969 val.vsx32val[0] = gpr; 970 val.vsx32val[1] = gpr; 971 val.vsx32val[2] = gpr; 972 val.vsx32val[3] = gpr; 973 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval); 974 } else { 975 val.vsx32val[0] = gpr; 976 val.vsx32val[1] = gpr; 977 kvmppc_set_vsx_fpr(vcpu, index, 0, val.vsxval[0]); 978 kvmppc_set_vsx_fpr(vcpu, index, 1, val.vsxval[0]); 979 } 980 } 981 982 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 983 u32 gpr32) 984 { 985 union kvmppc_one_reg val; 986 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 987 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 988 int dword_offset, word_offset; 989 990 if (offset == -1) 991 return; 992 993 if (index >= 32) { 994 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval); 995 val.vsx32val[offset] = gpr32; 996 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval); 997 } else { 998 dword_offset = offset / 2; 999 word_offset = offset % 2; 1000 val.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, index, dword_offset); 1001 val.vsx32val[word_offset] = gpr32; 1002 kvmppc_set_vsx_fpr(vcpu, index, dword_offset, val.vsxval[0]); 1003 } 1004 } 1005 #endif /* CONFIG_VSX */ 1006 1007 #ifdef CONFIG_ALTIVEC 1008 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 1009 int index, int element_size) 1010 { 1011 int offset; 1012 int elts = sizeof(vector128)/element_size; 1013 1014 if ((index < 0) || (index >= elts)) 1015 return -1; 1016 1017 if (kvmppc_need_byteswap(vcpu)) 1018 offset = elts - index - 1; 1019 else 1020 offset = index; 1021 1022 return offset; 1023 } 1024 1025 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 1026 int index) 1027 { 1028 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 1029 } 1030 1031 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 1032 int index) 1033 { 1034 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1035 } 1036 1037 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1038 int index) 1039 { 1040 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1041 } 1042 1043 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1044 int index) 1045 { 1046 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1047 } 1048 1049 1050 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1051 u64 gpr) 1052 { 1053 union kvmppc_one_reg val; 1054 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1055 vcpu->arch.mmio_vmx_offset); 1056 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1057 1058 if (offset == -1) 1059 return; 1060 1061 kvmppc_get_vsx_vr(vcpu, index, &val.vval); 1062 val.vsxval[offset] = gpr; 1063 kvmppc_set_vsx_vr(vcpu, index, &val.vval); 1064 } 1065 1066 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1067 u32 gpr32) 1068 { 1069 union kvmppc_one_reg val; 1070 int offset = kvmppc_get_vmx_word_offset(vcpu, 1071 vcpu->arch.mmio_vmx_offset); 1072 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1073 1074 if (offset == -1) 1075 return; 1076 1077 kvmppc_get_vsx_vr(vcpu, index, &val.vval); 1078 val.vsx32val[offset] = gpr32; 1079 kvmppc_set_vsx_vr(vcpu, index, &val.vval); 1080 } 1081 1082 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1083 u16 gpr16) 1084 { 1085 union kvmppc_one_reg val; 1086 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1087 vcpu->arch.mmio_vmx_offset); 1088 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1089 1090 if (offset == -1) 1091 return; 1092 1093 kvmppc_get_vsx_vr(vcpu, index, &val.vval); 1094 val.vsx16val[offset] = gpr16; 1095 kvmppc_set_vsx_vr(vcpu, index, &val.vval); 1096 } 1097 1098 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1099 u8 gpr8) 1100 { 1101 union kvmppc_one_reg val; 1102 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1103 vcpu->arch.mmio_vmx_offset); 1104 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1105 1106 if (offset == -1) 1107 return; 1108 1109 kvmppc_get_vsx_vr(vcpu, index, &val.vval); 1110 val.vsx8val[offset] = gpr8; 1111 kvmppc_set_vsx_vr(vcpu, index, &val.vval); 1112 } 1113 #endif /* CONFIG_ALTIVEC */ 1114 1115 #ifdef CONFIG_PPC_FPU 1116 static inline u64 sp_to_dp(u32 fprs) 1117 { 1118 u64 fprd; 1119 1120 preempt_disable(); 1121 enable_kernel_fp(); 1122 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs) 1123 : "fr0"); 1124 preempt_enable(); 1125 return fprd; 1126 } 1127 1128 static inline u32 dp_to_sp(u64 fprd) 1129 { 1130 u32 fprs; 1131 1132 preempt_disable(); 1133 enable_kernel_fp(); 1134 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd) 1135 : "fr0"); 1136 preempt_enable(); 1137 return fprs; 1138 } 1139 1140 #else 1141 #define sp_to_dp(x) (x) 1142 #define dp_to_sp(x) (x) 1143 #endif /* CONFIG_PPC_FPU */ 1144 1145 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) 1146 { 1147 struct kvm_run *run = vcpu->run; 1148 u64 gpr; 1149 1150 if (run->mmio.len > sizeof(gpr)) 1151 return; 1152 1153 if (!vcpu->arch.mmio_host_swabbed) { 1154 switch (run->mmio.len) { 1155 case 8: gpr = *(u64 *)run->mmio.data; break; 1156 case 4: gpr = *(u32 *)run->mmio.data; break; 1157 case 2: gpr = *(u16 *)run->mmio.data; break; 1158 case 1: gpr = *(u8 *)run->mmio.data; break; 1159 } 1160 } else { 1161 switch (run->mmio.len) { 1162 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1163 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1164 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1165 case 1: gpr = *(u8 *)run->mmio.data; break; 1166 } 1167 } 1168 1169 /* conversion between single and double precision */ 1170 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1171 gpr = sp_to_dp(gpr); 1172 1173 if (vcpu->arch.mmio_sign_extend) { 1174 switch (run->mmio.len) { 1175 #ifdef CONFIG_PPC64 1176 case 4: 1177 gpr = (s64)(s32)gpr; 1178 break; 1179 #endif 1180 case 2: 1181 gpr = (s64)(s16)gpr; 1182 break; 1183 case 1: 1184 gpr = (s64)(s8)gpr; 1185 break; 1186 } 1187 } 1188 1189 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1190 case KVM_MMIO_REG_GPR: 1191 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1192 break; 1193 case KVM_MMIO_REG_FPR: 1194 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1195 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1196 1197 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr); 1198 break; 1199 #ifdef CONFIG_PPC_BOOK3S 1200 case KVM_MMIO_REG_QPR: 1201 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1202 break; 1203 case KVM_MMIO_REG_FQPR: 1204 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr); 1205 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1206 break; 1207 #endif 1208 #ifdef CONFIG_VSX 1209 case KVM_MMIO_REG_VSX: 1210 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1211 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1212 1213 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1214 kvmppc_set_vsr_dword(vcpu, gpr); 1215 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1216 kvmppc_set_vsr_word(vcpu, gpr); 1217 else if (vcpu->arch.mmio_copy_type == 1218 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1219 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1220 else if (vcpu->arch.mmio_copy_type == 1221 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1222 kvmppc_set_vsr_word_dump(vcpu, gpr); 1223 break; 1224 #endif 1225 #ifdef CONFIG_ALTIVEC 1226 case KVM_MMIO_REG_VMX: 1227 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1228 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1229 1230 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1231 kvmppc_set_vmx_dword(vcpu, gpr); 1232 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1233 kvmppc_set_vmx_word(vcpu, gpr); 1234 else if (vcpu->arch.mmio_copy_type == 1235 KVMPPC_VMX_COPY_HWORD) 1236 kvmppc_set_vmx_hword(vcpu, gpr); 1237 else if (vcpu->arch.mmio_copy_type == 1238 KVMPPC_VMX_COPY_BYTE) 1239 kvmppc_set_vmx_byte(vcpu, gpr); 1240 break; 1241 #endif 1242 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1243 case KVM_MMIO_REG_NESTED_GPR: 1244 if (kvmppc_need_byteswap(vcpu)) 1245 gpr = swab64(gpr); 1246 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1247 sizeof(gpr)); 1248 break; 1249 #endif 1250 default: 1251 BUG(); 1252 } 1253 } 1254 1255 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, 1256 unsigned int rt, unsigned int bytes, 1257 int is_default_endian, int sign_extend) 1258 { 1259 struct kvm_run *run = vcpu->run; 1260 int idx, ret; 1261 bool host_swabbed; 1262 1263 /* Pity C doesn't have a logical XOR operator */ 1264 if (kvmppc_need_byteswap(vcpu)) { 1265 host_swabbed = is_default_endian; 1266 } else { 1267 host_swabbed = !is_default_endian; 1268 } 1269 1270 if (bytes > sizeof(run->mmio.data)) 1271 return EMULATE_FAIL; 1272 1273 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1274 run->mmio.len = bytes; 1275 run->mmio.is_write = 0; 1276 1277 vcpu->arch.io_gpr = rt; 1278 vcpu->arch.mmio_host_swabbed = host_swabbed; 1279 vcpu->mmio_needed = 1; 1280 vcpu->mmio_is_write = 0; 1281 vcpu->arch.mmio_sign_extend = sign_extend; 1282 1283 idx = srcu_read_lock(&vcpu->kvm->srcu); 1284 1285 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1286 bytes, &run->mmio.data); 1287 1288 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1289 1290 if (!ret) { 1291 kvmppc_complete_mmio_load(vcpu); 1292 vcpu->mmio_needed = 0; 1293 return EMULATE_DONE; 1294 } 1295 1296 return EMULATE_DO_MMIO; 1297 } 1298 1299 int kvmppc_handle_load(struct kvm_vcpu *vcpu, 1300 unsigned int rt, unsigned int bytes, 1301 int is_default_endian) 1302 { 1303 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); 1304 } 1305 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1306 1307 /* Same as above, but sign extends */ 1308 int kvmppc_handle_loads(struct kvm_vcpu *vcpu, 1309 unsigned int rt, unsigned int bytes, 1310 int is_default_endian) 1311 { 1312 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); 1313 } 1314 1315 #ifdef CONFIG_VSX 1316 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, 1317 unsigned int rt, unsigned int bytes, 1318 int is_default_endian, int mmio_sign_extend) 1319 { 1320 enum emulation_result emulated = EMULATE_DONE; 1321 1322 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1323 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1324 return EMULATE_FAIL; 1325 1326 while (vcpu->arch.mmio_vsx_copy_nums) { 1327 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1328 is_default_endian, mmio_sign_extend); 1329 1330 if (emulated != EMULATE_DONE) 1331 break; 1332 1333 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1334 1335 vcpu->arch.mmio_vsx_copy_nums--; 1336 vcpu->arch.mmio_vsx_offset++; 1337 } 1338 return emulated; 1339 } 1340 #endif /* CONFIG_VSX */ 1341 1342 int kvmppc_handle_store(struct kvm_vcpu *vcpu, 1343 u64 val, unsigned int bytes, int is_default_endian) 1344 { 1345 struct kvm_run *run = vcpu->run; 1346 void *data = run->mmio.data; 1347 int idx, ret; 1348 bool host_swabbed; 1349 1350 /* Pity C doesn't have a logical XOR operator */ 1351 if (kvmppc_need_byteswap(vcpu)) { 1352 host_swabbed = is_default_endian; 1353 } else { 1354 host_swabbed = !is_default_endian; 1355 } 1356 1357 if (bytes > sizeof(run->mmio.data)) 1358 return EMULATE_FAIL; 1359 1360 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1361 run->mmio.len = bytes; 1362 run->mmio.is_write = 1; 1363 vcpu->mmio_needed = 1; 1364 vcpu->mmio_is_write = 1; 1365 1366 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1367 val = dp_to_sp(val); 1368 1369 /* Store the value at the lowest bytes in 'data'. */ 1370 if (!host_swabbed) { 1371 switch (bytes) { 1372 case 8: *(u64 *)data = val; break; 1373 case 4: *(u32 *)data = val; break; 1374 case 2: *(u16 *)data = val; break; 1375 case 1: *(u8 *)data = val; break; 1376 } 1377 } else { 1378 switch (bytes) { 1379 case 8: *(u64 *)data = swab64(val); break; 1380 case 4: *(u32 *)data = swab32(val); break; 1381 case 2: *(u16 *)data = swab16(val); break; 1382 case 1: *(u8 *)data = val; break; 1383 } 1384 } 1385 1386 idx = srcu_read_lock(&vcpu->kvm->srcu); 1387 1388 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1389 bytes, &run->mmio.data); 1390 1391 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1392 1393 if (!ret) { 1394 vcpu->mmio_needed = 0; 1395 return EMULATE_DONE; 1396 } 1397 1398 return EMULATE_DO_MMIO; 1399 } 1400 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1401 1402 #ifdef CONFIG_VSX 1403 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1404 { 1405 u32 dword_offset, word_offset; 1406 union kvmppc_one_reg reg; 1407 int vsx_offset = 0; 1408 int copy_type = vcpu->arch.mmio_copy_type; 1409 int result = 0; 1410 1411 switch (copy_type) { 1412 case KVMPPC_VSX_COPY_DWORD: 1413 vsx_offset = 1414 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1415 1416 if (vsx_offset == -1) { 1417 result = -1; 1418 break; 1419 } 1420 1421 if (rs < 32) { 1422 *val = kvmppc_get_vsx_fpr(vcpu, rs, vsx_offset); 1423 } else { 1424 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval); 1425 *val = reg.vsxval[vsx_offset]; 1426 } 1427 break; 1428 1429 case KVMPPC_VSX_COPY_WORD: 1430 vsx_offset = 1431 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1432 1433 if (vsx_offset == -1) { 1434 result = -1; 1435 break; 1436 } 1437 1438 if (rs < 32) { 1439 dword_offset = vsx_offset / 2; 1440 word_offset = vsx_offset % 2; 1441 reg.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, rs, dword_offset); 1442 *val = reg.vsx32val[word_offset]; 1443 } else { 1444 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval); 1445 *val = reg.vsx32val[vsx_offset]; 1446 } 1447 break; 1448 1449 default: 1450 result = -1; 1451 break; 1452 } 1453 1454 return result; 1455 } 1456 1457 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, 1458 int rs, unsigned int bytes, int is_default_endian) 1459 { 1460 u64 val; 1461 enum emulation_result emulated = EMULATE_DONE; 1462 1463 vcpu->arch.io_gpr = rs; 1464 1465 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1466 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1467 return EMULATE_FAIL; 1468 1469 while (vcpu->arch.mmio_vsx_copy_nums) { 1470 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1471 return EMULATE_FAIL; 1472 1473 emulated = kvmppc_handle_store(vcpu, 1474 val, bytes, is_default_endian); 1475 1476 if (emulated != EMULATE_DONE) 1477 break; 1478 1479 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1480 1481 vcpu->arch.mmio_vsx_copy_nums--; 1482 vcpu->arch.mmio_vsx_offset++; 1483 } 1484 1485 return emulated; 1486 } 1487 1488 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) 1489 { 1490 struct kvm_run *run = vcpu->run; 1491 enum emulation_result emulated = EMULATE_FAIL; 1492 int r; 1493 1494 vcpu->arch.paddr_accessed += run->mmio.len; 1495 1496 if (!vcpu->mmio_is_write) { 1497 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, 1498 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1499 } else { 1500 emulated = kvmppc_handle_vsx_store(vcpu, 1501 vcpu->arch.io_gpr, run->mmio.len, 1); 1502 } 1503 1504 switch (emulated) { 1505 case EMULATE_DO_MMIO: 1506 run->exit_reason = KVM_EXIT_MMIO; 1507 r = RESUME_HOST; 1508 break; 1509 case EMULATE_FAIL: 1510 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1511 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1512 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1513 r = RESUME_HOST; 1514 break; 1515 default: 1516 r = RESUME_GUEST; 1517 break; 1518 } 1519 return r; 1520 } 1521 #endif /* CONFIG_VSX */ 1522 1523 #ifdef CONFIG_ALTIVEC 1524 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, 1525 unsigned int rt, unsigned int bytes, int is_default_endian) 1526 { 1527 enum emulation_result emulated = EMULATE_DONE; 1528 1529 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1530 return EMULATE_FAIL; 1531 1532 while (vcpu->arch.mmio_vmx_copy_nums) { 1533 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1534 is_default_endian, 0); 1535 1536 if (emulated != EMULATE_DONE) 1537 break; 1538 1539 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1540 vcpu->arch.mmio_vmx_copy_nums--; 1541 vcpu->arch.mmio_vmx_offset++; 1542 } 1543 1544 return emulated; 1545 } 1546 1547 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1548 { 1549 union kvmppc_one_reg reg; 1550 int vmx_offset = 0; 1551 int result = 0; 1552 1553 vmx_offset = 1554 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1555 1556 if (vmx_offset == -1) 1557 return -1; 1558 1559 kvmppc_get_vsx_vr(vcpu, index, ®.vval); 1560 *val = reg.vsxval[vmx_offset]; 1561 1562 return result; 1563 } 1564 1565 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1566 { 1567 union kvmppc_one_reg reg; 1568 int vmx_offset = 0; 1569 int result = 0; 1570 1571 vmx_offset = 1572 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1573 1574 if (vmx_offset == -1) 1575 return -1; 1576 1577 kvmppc_get_vsx_vr(vcpu, index, ®.vval); 1578 *val = reg.vsx32val[vmx_offset]; 1579 1580 return result; 1581 } 1582 1583 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1584 { 1585 union kvmppc_one_reg reg; 1586 int vmx_offset = 0; 1587 int result = 0; 1588 1589 vmx_offset = 1590 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1591 1592 if (vmx_offset == -1) 1593 return -1; 1594 1595 kvmppc_get_vsx_vr(vcpu, index, ®.vval); 1596 *val = reg.vsx16val[vmx_offset]; 1597 1598 return result; 1599 } 1600 1601 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1602 { 1603 union kvmppc_one_reg reg; 1604 int vmx_offset = 0; 1605 int result = 0; 1606 1607 vmx_offset = 1608 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1609 1610 if (vmx_offset == -1) 1611 return -1; 1612 1613 kvmppc_get_vsx_vr(vcpu, index, ®.vval); 1614 *val = reg.vsx8val[vmx_offset]; 1615 1616 return result; 1617 } 1618 1619 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, 1620 unsigned int rs, unsigned int bytes, int is_default_endian) 1621 { 1622 u64 val = 0; 1623 unsigned int index = rs & KVM_MMIO_REG_MASK; 1624 enum emulation_result emulated = EMULATE_DONE; 1625 1626 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1627 return EMULATE_FAIL; 1628 1629 vcpu->arch.io_gpr = rs; 1630 1631 while (vcpu->arch.mmio_vmx_copy_nums) { 1632 switch (vcpu->arch.mmio_copy_type) { 1633 case KVMPPC_VMX_COPY_DWORD: 1634 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1635 return EMULATE_FAIL; 1636 1637 break; 1638 case KVMPPC_VMX_COPY_WORD: 1639 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1640 return EMULATE_FAIL; 1641 break; 1642 case KVMPPC_VMX_COPY_HWORD: 1643 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1644 return EMULATE_FAIL; 1645 break; 1646 case KVMPPC_VMX_COPY_BYTE: 1647 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1648 return EMULATE_FAIL; 1649 break; 1650 default: 1651 return EMULATE_FAIL; 1652 } 1653 1654 emulated = kvmppc_handle_store(vcpu, val, bytes, 1655 is_default_endian); 1656 if (emulated != EMULATE_DONE) 1657 break; 1658 1659 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1660 vcpu->arch.mmio_vmx_copy_nums--; 1661 vcpu->arch.mmio_vmx_offset++; 1662 } 1663 1664 return emulated; 1665 } 1666 1667 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) 1668 { 1669 struct kvm_run *run = vcpu->run; 1670 enum emulation_result emulated = EMULATE_FAIL; 1671 int r; 1672 1673 vcpu->arch.paddr_accessed += run->mmio.len; 1674 1675 if (!vcpu->mmio_is_write) { 1676 emulated = kvmppc_handle_vmx_load(vcpu, 1677 vcpu->arch.io_gpr, run->mmio.len, 1); 1678 } else { 1679 emulated = kvmppc_handle_vmx_store(vcpu, 1680 vcpu->arch.io_gpr, run->mmio.len, 1); 1681 } 1682 1683 switch (emulated) { 1684 case EMULATE_DO_MMIO: 1685 run->exit_reason = KVM_EXIT_MMIO; 1686 r = RESUME_HOST; 1687 break; 1688 case EMULATE_FAIL: 1689 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1690 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1691 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1692 r = RESUME_HOST; 1693 break; 1694 default: 1695 r = RESUME_GUEST; 1696 break; 1697 } 1698 return r; 1699 } 1700 #endif /* CONFIG_ALTIVEC */ 1701 1702 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1703 { 1704 int r = 0; 1705 union kvmppc_one_reg val; 1706 int size; 1707 1708 size = one_reg_size(reg->id); 1709 if (size > sizeof(val)) 1710 return -EINVAL; 1711 1712 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1713 if (r == -EINVAL) { 1714 r = 0; 1715 switch (reg->id) { 1716 #ifdef CONFIG_ALTIVEC 1717 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1718 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1719 r = -ENXIO; 1720 break; 1721 } 1722 kvmppc_get_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval); 1723 break; 1724 case KVM_REG_PPC_VSCR: 1725 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1726 r = -ENXIO; 1727 break; 1728 } 1729 val = get_reg_val(reg->id, kvmppc_get_vscr(vcpu)); 1730 break; 1731 case KVM_REG_PPC_VRSAVE: 1732 val = get_reg_val(reg->id, kvmppc_get_vrsave(vcpu)); 1733 break; 1734 #endif /* CONFIG_ALTIVEC */ 1735 default: 1736 r = -EINVAL; 1737 break; 1738 } 1739 } 1740 1741 if (r) 1742 return r; 1743 1744 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1745 r = -EFAULT; 1746 1747 return r; 1748 } 1749 1750 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1751 { 1752 int r; 1753 union kvmppc_one_reg val; 1754 int size; 1755 1756 size = one_reg_size(reg->id); 1757 if (size > sizeof(val)) 1758 return -EINVAL; 1759 1760 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1761 return -EFAULT; 1762 1763 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1764 if (r == -EINVAL) { 1765 r = 0; 1766 switch (reg->id) { 1767 #ifdef CONFIG_ALTIVEC 1768 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1769 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1770 r = -ENXIO; 1771 break; 1772 } 1773 kvmppc_set_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval); 1774 break; 1775 case KVM_REG_PPC_VSCR: 1776 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1777 r = -ENXIO; 1778 break; 1779 } 1780 kvmppc_set_vscr(vcpu, set_reg_val(reg->id, val)); 1781 break; 1782 case KVM_REG_PPC_VRSAVE: 1783 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1784 r = -ENXIO; 1785 break; 1786 } 1787 kvmppc_set_vrsave(vcpu, set_reg_val(reg->id, val)); 1788 break; 1789 #endif /* CONFIG_ALTIVEC */ 1790 default: 1791 r = -EINVAL; 1792 break; 1793 } 1794 } 1795 1796 return r; 1797 } 1798 1799 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1800 { 1801 struct kvm_run *run = vcpu->run; 1802 int r; 1803 1804 vcpu_load(vcpu); 1805 1806 if (vcpu->mmio_needed) { 1807 vcpu->mmio_needed = 0; 1808 if (!vcpu->mmio_is_write) 1809 kvmppc_complete_mmio_load(vcpu); 1810 #ifdef CONFIG_VSX 1811 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1812 vcpu->arch.mmio_vsx_copy_nums--; 1813 vcpu->arch.mmio_vsx_offset++; 1814 } 1815 1816 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1817 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); 1818 if (r == RESUME_HOST) { 1819 vcpu->mmio_needed = 1; 1820 goto out; 1821 } 1822 } 1823 #endif 1824 #ifdef CONFIG_ALTIVEC 1825 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1826 vcpu->arch.mmio_vmx_copy_nums--; 1827 vcpu->arch.mmio_vmx_offset++; 1828 } 1829 1830 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1831 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); 1832 if (r == RESUME_HOST) { 1833 vcpu->mmio_needed = 1; 1834 goto out; 1835 } 1836 } 1837 #endif 1838 } else if (vcpu->arch.osi_needed) { 1839 u64 *gprs = run->osi.gprs; 1840 int i; 1841 1842 for (i = 0; i < 32; i++) 1843 kvmppc_set_gpr(vcpu, i, gprs[i]); 1844 vcpu->arch.osi_needed = 0; 1845 } else if (vcpu->arch.hcall_needed) { 1846 int i; 1847 1848 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1849 for (i = 0; i < 9; ++i) 1850 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1851 vcpu->arch.hcall_needed = 0; 1852 #ifdef CONFIG_BOOKE 1853 } else if (vcpu->arch.epr_needed) { 1854 kvmppc_set_epr(vcpu, run->epr.epr); 1855 vcpu->arch.epr_needed = 0; 1856 #endif 1857 } 1858 1859 kvm_sigset_activate(vcpu); 1860 1861 if (run->immediate_exit) 1862 r = -EINTR; 1863 else 1864 r = kvmppc_vcpu_run(vcpu); 1865 1866 kvm_sigset_deactivate(vcpu); 1867 1868 #ifdef CONFIG_ALTIVEC 1869 out: 1870 #endif 1871 1872 /* 1873 * We're already returning to userspace, don't pass the 1874 * RESUME_HOST flags along. 1875 */ 1876 if (r > 0) 1877 r = 0; 1878 1879 vcpu_put(vcpu); 1880 return r; 1881 } 1882 1883 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1884 { 1885 if (irq->irq == KVM_INTERRUPT_UNSET) { 1886 kvmppc_core_dequeue_external(vcpu); 1887 return 0; 1888 } 1889 1890 kvmppc_core_queue_external(vcpu, irq); 1891 1892 kvm_vcpu_kick(vcpu); 1893 1894 return 0; 1895 } 1896 1897 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1898 struct kvm_enable_cap *cap) 1899 { 1900 int r; 1901 1902 if (cap->flags) 1903 return -EINVAL; 1904 1905 switch (cap->cap) { 1906 case KVM_CAP_PPC_OSI: 1907 r = 0; 1908 vcpu->arch.osi_enabled = true; 1909 break; 1910 case KVM_CAP_PPC_PAPR: 1911 r = 0; 1912 vcpu->arch.papr_enabled = true; 1913 break; 1914 case KVM_CAP_PPC_EPR: 1915 r = 0; 1916 if (cap->args[0]) 1917 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1918 else 1919 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1920 break; 1921 #ifdef CONFIG_BOOKE 1922 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1923 r = 0; 1924 vcpu->arch.watchdog_enabled = true; 1925 break; 1926 #endif 1927 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1928 case KVM_CAP_SW_TLB: { 1929 struct kvm_config_tlb cfg; 1930 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1931 1932 r = -EFAULT; 1933 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1934 break; 1935 1936 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1937 break; 1938 } 1939 #endif 1940 #ifdef CONFIG_KVM_MPIC 1941 case KVM_CAP_IRQ_MPIC: { 1942 struct fd f; 1943 struct kvm_device *dev; 1944 1945 r = -EBADF; 1946 f = fdget(cap->args[0]); 1947 if (!f.file) 1948 break; 1949 1950 r = -EPERM; 1951 dev = kvm_device_from_filp(f.file); 1952 if (dev) 1953 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1954 1955 fdput(f); 1956 break; 1957 } 1958 #endif 1959 #ifdef CONFIG_KVM_XICS 1960 case KVM_CAP_IRQ_XICS: { 1961 struct fd f; 1962 struct kvm_device *dev; 1963 1964 r = -EBADF; 1965 f = fdget(cap->args[0]); 1966 if (!f.file) 1967 break; 1968 1969 r = -EPERM; 1970 dev = kvm_device_from_filp(f.file); 1971 if (dev) { 1972 if (xics_on_xive()) 1973 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1974 else 1975 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1976 } 1977 1978 fdput(f); 1979 break; 1980 } 1981 #endif /* CONFIG_KVM_XICS */ 1982 #ifdef CONFIG_KVM_XIVE 1983 case KVM_CAP_PPC_IRQ_XIVE: { 1984 struct fd f; 1985 struct kvm_device *dev; 1986 1987 r = -EBADF; 1988 f = fdget(cap->args[0]); 1989 if (!f.file) 1990 break; 1991 1992 r = -ENXIO; 1993 if (!xive_enabled()) 1994 break; 1995 1996 r = -EPERM; 1997 dev = kvm_device_from_filp(f.file); 1998 if (dev) 1999 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 2000 cap->args[1]); 2001 2002 fdput(f); 2003 break; 2004 } 2005 #endif /* CONFIG_KVM_XIVE */ 2006 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 2007 case KVM_CAP_PPC_FWNMI: 2008 r = -EINVAL; 2009 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 2010 break; 2011 r = 0; 2012 vcpu->kvm->arch.fwnmi_enabled = true; 2013 break; 2014 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 2015 default: 2016 r = -EINVAL; 2017 break; 2018 } 2019 2020 if (!r) 2021 r = kvmppc_sanity_check(vcpu); 2022 2023 return r; 2024 } 2025 2026 bool kvm_arch_intc_initialized(struct kvm *kvm) 2027 { 2028 #ifdef CONFIG_KVM_MPIC 2029 if (kvm->arch.mpic) 2030 return true; 2031 #endif 2032 #ifdef CONFIG_KVM_XICS 2033 if (kvm->arch.xics || kvm->arch.xive) 2034 return true; 2035 #endif 2036 return false; 2037 } 2038 2039 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2040 struct kvm_mp_state *mp_state) 2041 { 2042 return -EINVAL; 2043 } 2044 2045 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2046 struct kvm_mp_state *mp_state) 2047 { 2048 return -EINVAL; 2049 } 2050 2051 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2052 unsigned int ioctl, unsigned long arg) 2053 { 2054 struct kvm_vcpu *vcpu = filp->private_data; 2055 void __user *argp = (void __user *)arg; 2056 2057 if (ioctl == KVM_INTERRUPT) { 2058 struct kvm_interrupt irq; 2059 if (copy_from_user(&irq, argp, sizeof(irq))) 2060 return -EFAULT; 2061 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2062 } 2063 return -ENOIOCTLCMD; 2064 } 2065 2066 long kvm_arch_vcpu_ioctl(struct file *filp, 2067 unsigned int ioctl, unsigned long arg) 2068 { 2069 struct kvm_vcpu *vcpu = filp->private_data; 2070 void __user *argp = (void __user *)arg; 2071 long r; 2072 2073 switch (ioctl) { 2074 case KVM_ENABLE_CAP: 2075 { 2076 struct kvm_enable_cap cap; 2077 r = -EFAULT; 2078 if (copy_from_user(&cap, argp, sizeof(cap))) 2079 goto out; 2080 vcpu_load(vcpu); 2081 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2082 vcpu_put(vcpu); 2083 break; 2084 } 2085 2086 case KVM_SET_ONE_REG: 2087 case KVM_GET_ONE_REG: 2088 { 2089 struct kvm_one_reg reg; 2090 r = -EFAULT; 2091 if (copy_from_user(®, argp, sizeof(reg))) 2092 goto out; 2093 if (ioctl == KVM_SET_ONE_REG) 2094 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2095 else 2096 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2097 break; 2098 } 2099 2100 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2101 case KVM_DIRTY_TLB: { 2102 struct kvm_dirty_tlb dirty; 2103 r = -EFAULT; 2104 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2105 goto out; 2106 vcpu_load(vcpu); 2107 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2108 vcpu_put(vcpu); 2109 break; 2110 } 2111 #endif 2112 default: 2113 r = -EINVAL; 2114 } 2115 2116 out: 2117 return r; 2118 } 2119 2120 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2121 { 2122 return VM_FAULT_SIGBUS; 2123 } 2124 2125 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2126 { 2127 u32 inst_nop = 0x60000000; 2128 #ifdef CONFIG_KVM_BOOKE_HV 2129 u32 inst_sc1 = 0x44000022; 2130 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2131 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2132 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2133 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2134 #else 2135 u32 inst_lis = 0x3c000000; 2136 u32 inst_ori = 0x60000000; 2137 u32 inst_sc = 0x44000002; 2138 u32 inst_imm_mask = 0xffff; 2139 2140 /* 2141 * The hypercall to get into KVM from within guest context is as 2142 * follows: 2143 * 2144 * lis r0, r0, KVM_SC_MAGIC_R0@h 2145 * ori r0, KVM_SC_MAGIC_R0@l 2146 * sc 2147 * nop 2148 */ 2149 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2150 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2151 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2152 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2153 #endif 2154 2155 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2156 2157 return 0; 2158 } 2159 2160 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2161 { 2162 int ret = 0; 2163 2164 #ifdef CONFIG_KVM_MPIC 2165 ret = ret || (kvm->arch.mpic != NULL); 2166 #endif 2167 #ifdef CONFIG_KVM_XICS 2168 ret = ret || (kvm->arch.xics != NULL); 2169 ret = ret || (kvm->arch.xive != NULL); 2170 #endif 2171 smp_rmb(); 2172 return ret; 2173 } 2174 2175 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2176 bool line_status) 2177 { 2178 if (!kvm_arch_irqchip_in_kernel(kvm)) 2179 return -ENXIO; 2180 2181 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2182 irq_event->irq, irq_event->level, 2183 line_status); 2184 return 0; 2185 } 2186 2187 2188 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2189 struct kvm_enable_cap *cap) 2190 { 2191 int r; 2192 2193 if (cap->flags) 2194 return -EINVAL; 2195 2196 switch (cap->cap) { 2197 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2198 case KVM_CAP_PPC_ENABLE_HCALL: { 2199 unsigned long hcall = cap->args[0]; 2200 2201 r = -EINVAL; 2202 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2203 cap->args[1] > 1) 2204 break; 2205 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2206 break; 2207 if (cap->args[1]) 2208 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2209 else 2210 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2211 r = 0; 2212 break; 2213 } 2214 case KVM_CAP_PPC_SMT: { 2215 unsigned long mode = cap->args[0]; 2216 unsigned long flags = cap->args[1]; 2217 2218 r = -EINVAL; 2219 if (kvm->arch.kvm_ops->set_smt_mode) 2220 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2221 break; 2222 } 2223 2224 case KVM_CAP_PPC_NESTED_HV: 2225 r = -EINVAL; 2226 if (!is_kvmppc_hv_enabled(kvm) || 2227 !kvm->arch.kvm_ops->enable_nested) 2228 break; 2229 r = kvm->arch.kvm_ops->enable_nested(kvm); 2230 break; 2231 #endif 2232 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2233 case KVM_CAP_PPC_SECURE_GUEST: 2234 r = -EINVAL; 2235 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2236 break; 2237 r = kvm->arch.kvm_ops->enable_svm(kvm); 2238 break; 2239 case KVM_CAP_PPC_DAWR1: 2240 r = -EINVAL; 2241 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1) 2242 break; 2243 r = kvm->arch.kvm_ops->enable_dawr1(kvm); 2244 break; 2245 #endif 2246 default: 2247 r = -EINVAL; 2248 break; 2249 } 2250 2251 return r; 2252 } 2253 2254 #ifdef CONFIG_PPC_BOOK3S_64 2255 /* 2256 * These functions check whether the underlying hardware is safe 2257 * against attacks based on observing the effects of speculatively 2258 * executed instructions, and whether it supplies instructions for 2259 * use in workarounds. The information comes from firmware, either 2260 * via the device tree on powernv platforms or from an hcall on 2261 * pseries platforms. 2262 */ 2263 #ifdef CONFIG_PPC_PSERIES 2264 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2265 { 2266 struct h_cpu_char_result c; 2267 unsigned long rc; 2268 2269 if (!machine_is(pseries)) 2270 return -ENOTTY; 2271 2272 rc = plpar_get_cpu_characteristics(&c); 2273 if (rc == H_SUCCESS) { 2274 cp->character = c.character; 2275 cp->behaviour = c.behaviour; 2276 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2277 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2278 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2279 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2280 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2281 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2282 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2283 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2284 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2285 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2286 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2287 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2288 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2289 } 2290 return 0; 2291 } 2292 #else 2293 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2294 { 2295 return -ENOTTY; 2296 } 2297 #endif 2298 2299 static inline bool have_fw_feat(struct device_node *fw_features, 2300 const char *state, const char *name) 2301 { 2302 struct device_node *np; 2303 bool r = false; 2304 2305 np = of_get_child_by_name(fw_features, name); 2306 if (np) { 2307 r = of_property_read_bool(np, state); 2308 of_node_put(np); 2309 } 2310 return r; 2311 } 2312 2313 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2314 { 2315 struct device_node *np, *fw_features; 2316 int r; 2317 2318 memset(cp, 0, sizeof(*cp)); 2319 r = pseries_get_cpu_char(cp); 2320 if (r != -ENOTTY) 2321 return r; 2322 2323 np = of_find_node_by_name(NULL, "ibm,opal"); 2324 if (np) { 2325 fw_features = of_get_child_by_name(np, "fw-features"); 2326 of_node_put(np); 2327 if (!fw_features) 2328 return 0; 2329 if (have_fw_feat(fw_features, "enabled", 2330 "inst-spec-barrier-ori31,31,0")) 2331 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2332 if (have_fw_feat(fw_features, "enabled", 2333 "fw-bcctrl-serialized")) 2334 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2335 if (have_fw_feat(fw_features, "enabled", 2336 "inst-l1d-flush-ori30,30,0")) 2337 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2338 if (have_fw_feat(fw_features, "enabled", 2339 "inst-l1d-flush-trig2")) 2340 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2341 if (have_fw_feat(fw_features, "enabled", 2342 "fw-l1d-thread-split")) 2343 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2344 if (have_fw_feat(fw_features, "enabled", 2345 "fw-count-cache-disabled")) 2346 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2347 if (have_fw_feat(fw_features, "enabled", 2348 "fw-count-cache-flush-bcctr2,0,0")) 2349 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2350 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2351 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2352 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2353 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2354 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2355 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2356 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2357 2358 if (have_fw_feat(fw_features, "enabled", 2359 "speculation-policy-favor-security")) 2360 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2361 if (!have_fw_feat(fw_features, "disabled", 2362 "needs-l1d-flush-msr-pr-0-to-1")) 2363 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2364 if (!have_fw_feat(fw_features, "disabled", 2365 "needs-spec-barrier-for-bound-checks")) 2366 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2367 if (have_fw_feat(fw_features, "enabled", 2368 "needs-count-cache-flush-on-context-switch")) 2369 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2370 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2371 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2372 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2373 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2374 2375 of_node_put(fw_features); 2376 } 2377 2378 return 0; 2379 } 2380 #endif 2381 2382 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 2383 { 2384 struct kvm *kvm __maybe_unused = filp->private_data; 2385 void __user *argp = (void __user *)arg; 2386 int r; 2387 2388 switch (ioctl) { 2389 case KVM_PPC_GET_PVINFO: { 2390 struct kvm_ppc_pvinfo pvinfo; 2391 memset(&pvinfo, 0, sizeof(pvinfo)); 2392 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2393 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2394 r = -EFAULT; 2395 goto out; 2396 } 2397 2398 break; 2399 } 2400 #ifdef CONFIG_SPAPR_TCE_IOMMU 2401 case KVM_CREATE_SPAPR_TCE_64: { 2402 struct kvm_create_spapr_tce_64 create_tce_64; 2403 2404 r = -EFAULT; 2405 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2406 goto out; 2407 if (create_tce_64.flags) { 2408 r = -EINVAL; 2409 goto out; 2410 } 2411 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2412 goto out; 2413 } 2414 case KVM_CREATE_SPAPR_TCE: { 2415 struct kvm_create_spapr_tce create_tce; 2416 struct kvm_create_spapr_tce_64 create_tce_64; 2417 2418 r = -EFAULT; 2419 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2420 goto out; 2421 2422 create_tce_64.liobn = create_tce.liobn; 2423 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2424 create_tce_64.offset = 0; 2425 create_tce_64.size = create_tce.window_size >> 2426 IOMMU_PAGE_SHIFT_4K; 2427 create_tce_64.flags = 0; 2428 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2429 goto out; 2430 } 2431 #endif 2432 #ifdef CONFIG_PPC_BOOK3S_64 2433 case KVM_PPC_GET_SMMU_INFO: { 2434 struct kvm_ppc_smmu_info info; 2435 struct kvm *kvm = filp->private_data; 2436 2437 memset(&info, 0, sizeof(info)); 2438 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2439 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2440 r = -EFAULT; 2441 break; 2442 } 2443 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2444 struct kvm *kvm = filp->private_data; 2445 2446 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2447 break; 2448 } 2449 case KVM_PPC_CONFIGURE_V3_MMU: { 2450 struct kvm *kvm = filp->private_data; 2451 struct kvm_ppc_mmuv3_cfg cfg; 2452 2453 r = -EINVAL; 2454 if (!kvm->arch.kvm_ops->configure_mmu) 2455 goto out; 2456 r = -EFAULT; 2457 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2458 goto out; 2459 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2460 break; 2461 } 2462 case KVM_PPC_GET_RMMU_INFO: { 2463 struct kvm *kvm = filp->private_data; 2464 struct kvm_ppc_rmmu_info info; 2465 2466 r = -EINVAL; 2467 if (!kvm->arch.kvm_ops->get_rmmu_info) 2468 goto out; 2469 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2470 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2471 r = -EFAULT; 2472 break; 2473 } 2474 case KVM_PPC_GET_CPU_CHAR: { 2475 struct kvm_ppc_cpu_char cpuchar; 2476 2477 r = kvmppc_get_cpu_char(&cpuchar); 2478 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2479 r = -EFAULT; 2480 break; 2481 } 2482 case KVM_PPC_SVM_OFF: { 2483 struct kvm *kvm = filp->private_data; 2484 2485 r = 0; 2486 if (!kvm->arch.kvm_ops->svm_off) 2487 goto out; 2488 2489 r = kvm->arch.kvm_ops->svm_off(kvm); 2490 break; 2491 } 2492 default: { 2493 struct kvm *kvm = filp->private_data; 2494 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2495 } 2496 #else /* CONFIG_PPC_BOOK3S_64 */ 2497 default: 2498 r = -ENOTTY; 2499 #endif 2500 } 2501 out: 2502 return r; 2503 } 2504 2505 static DEFINE_IDA(lpid_inuse); 2506 static unsigned long nr_lpids; 2507 2508 long kvmppc_alloc_lpid(void) 2509 { 2510 int lpid; 2511 2512 /* The host LPID must always be 0 (allocation starts at 1) */ 2513 lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL); 2514 if (lpid < 0) { 2515 if (lpid == -ENOMEM) 2516 pr_err("%s: Out of memory\n", __func__); 2517 else 2518 pr_err("%s: No LPIDs free\n", __func__); 2519 return -ENOMEM; 2520 } 2521 2522 return lpid; 2523 } 2524 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2525 2526 void kvmppc_free_lpid(long lpid) 2527 { 2528 ida_free(&lpid_inuse, lpid); 2529 } 2530 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2531 2532 /* nr_lpids_param includes the host LPID */ 2533 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2534 { 2535 nr_lpids = nr_lpids_param; 2536 } 2537 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2538 2539 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2540 2541 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2542 { 2543 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs) 2544 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry); 2545 } 2546 2547 int kvm_arch_create_vm_debugfs(struct kvm *kvm) 2548 { 2549 if (kvm->arch.kvm_ops->create_vm_debugfs) 2550 kvm->arch.kvm_ops->create_vm_debugfs(kvm); 2551 return 0; 2552 } 2553