1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright IBM Corp. 2007 16 * 17 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 19 */ 20 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/kvm_host.h> 24 #include <linux/vmalloc.h> 25 #include <linux/hrtimer.h> 26 #include <linux/sched/signal.h> 27 #include <linux/fs.h> 28 #include <linux/slab.h> 29 #include <linux/file.h> 30 #include <linux/module.h> 31 #include <linux/irqbypass.h> 32 #include <linux/kvm_irqfd.h> 33 #include <asm/cputable.h> 34 #include <linux/uaccess.h> 35 #include <asm/kvm_ppc.h> 36 #include <asm/cputhreads.h> 37 #include <asm/irqflags.h> 38 #include <asm/iommu.h> 39 #include <asm/switch_to.h> 40 #include <asm/xive.h> 41 #ifdef CONFIG_PPC_PSERIES 42 #include <asm/hvcall.h> 43 #include <asm/plpar_wrappers.h> 44 #endif 45 46 #include "timing.h" 47 #include "irq.h" 48 #include "../mm/mmu_decl.h" 49 50 #define CREATE_TRACE_POINTS 51 #include "trace.h" 52 53 struct kvmppc_ops *kvmppc_hv_ops; 54 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 55 struct kvmppc_ops *kvmppc_pr_ops; 56 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 57 58 59 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 60 { 61 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 62 } 63 64 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 65 { 66 return false; 67 } 68 69 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 70 { 71 return 1; 72 } 73 74 /* 75 * Common checks before entering the guest world. Call with interrupts 76 * disabled. 77 * 78 * returns: 79 * 80 * == 1 if we're ready to go into guest state 81 * <= 0 if we need to go back to the host with return value 82 */ 83 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 84 { 85 int r; 86 87 WARN_ON(irqs_disabled()); 88 hard_irq_disable(); 89 90 while (true) { 91 if (need_resched()) { 92 local_irq_enable(); 93 cond_resched(); 94 hard_irq_disable(); 95 continue; 96 } 97 98 if (signal_pending(current)) { 99 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 100 vcpu->run->exit_reason = KVM_EXIT_INTR; 101 r = -EINTR; 102 break; 103 } 104 105 vcpu->mode = IN_GUEST_MODE; 106 107 /* 108 * Reading vcpu->requests must happen after setting vcpu->mode, 109 * so we don't miss a request because the requester sees 110 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 111 * before next entering the guest (and thus doesn't IPI). 112 * This also orders the write to mode from any reads 113 * to the page tables done while the VCPU is running. 114 * Please see the comment in kvm_flush_remote_tlbs. 115 */ 116 smp_mb(); 117 118 if (kvm_request_pending(vcpu)) { 119 /* Make sure we process requests preemptable */ 120 local_irq_enable(); 121 trace_kvm_check_requests(vcpu); 122 r = kvmppc_core_check_requests(vcpu); 123 hard_irq_disable(); 124 if (r > 0) 125 continue; 126 break; 127 } 128 129 if (kvmppc_core_prepare_to_enter(vcpu)) { 130 /* interrupts got enabled in between, so we 131 are back at square 1 */ 132 continue; 133 } 134 135 guest_enter_irqoff(); 136 return 1; 137 } 138 139 /* return to host */ 140 local_irq_enable(); 141 return r; 142 } 143 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 144 145 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 146 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 147 { 148 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 149 int i; 150 151 shared->sprg0 = swab64(shared->sprg0); 152 shared->sprg1 = swab64(shared->sprg1); 153 shared->sprg2 = swab64(shared->sprg2); 154 shared->sprg3 = swab64(shared->sprg3); 155 shared->srr0 = swab64(shared->srr0); 156 shared->srr1 = swab64(shared->srr1); 157 shared->dar = swab64(shared->dar); 158 shared->msr = swab64(shared->msr); 159 shared->dsisr = swab32(shared->dsisr); 160 shared->int_pending = swab32(shared->int_pending); 161 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 162 shared->sr[i] = swab32(shared->sr[i]); 163 } 164 #endif 165 166 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 167 { 168 int nr = kvmppc_get_gpr(vcpu, 11); 169 int r; 170 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 171 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 172 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 173 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 174 unsigned long r2 = 0; 175 176 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 177 /* 32 bit mode */ 178 param1 &= 0xffffffff; 179 param2 &= 0xffffffff; 180 param3 &= 0xffffffff; 181 param4 &= 0xffffffff; 182 } 183 184 switch (nr) { 185 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 186 { 187 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 188 /* Book3S can be little endian, find it out here */ 189 int shared_big_endian = true; 190 if (vcpu->arch.intr_msr & MSR_LE) 191 shared_big_endian = false; 192 if (shared_big_endian != vcpu->arch.shared_big_endian) 193 kvmppc_swab_shared(vcpu); 194 vcpu->arch.shared_big_endian = shared_big_endian; 195 #endif 196 197 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 198 /* 199 * Older versions of the Linux magic page code had 200 * a bug where they would map their trampoline code 201 * NX. If that's the case, remove !PR NX capability. 202 */ 203 vcpu->arch.disable_kernel_nx = true; 204 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 205 } 206 207 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 208 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 209 210 #ifdef CONFIG_PPC_64K_PAGES 211 /* 212 * Make sure our 4k magic page is in the same window of a 64k 213 * page within the guest and within the host's page. 214 */ 215 if ((vcpu->arch.magic_page_pa & 0xf000) != 216 ((ulong)vcpu->arch.shared & 0xf000)) { 217 void *old_shared = vcpu->arch.shared; 218 ulong shared = (ulong)vcpu->arch.shared; 219 void *new_shared; 220 221 shared &= PAGE_MASK; 222 shared |= vcpu->arch.magic_page_pa & 0xf000; 223 new_shared = (void*)shared; 224 memcpy(new_shared, old_shared, 0x1000); 225 vcpu->arch.shared = new_shared; 226 } 227 #endif 228 229 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 230 231 r = EV_SUCCESS; 232 break; 233 } 234 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 235 r = EV_SUCCESS; 236 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 237 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 238 #endif 239 240 /* Second return value is in r4 */ 241 break; 242 case EV_HCALL_TOKEN(EV_IDLE): 243 r = EV_SUCCESS; 244 kvm_vcpu_block(vcpu); 245 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 246 break; 247 default: 248 r = EV_UNIMPLEMENTED; 249 break; 250 } 251 252 kvmppc_set_gpr(vcpu, 4, r2); 253 254 return r; 255 } 256 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 257 258 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 259 { 260 int r = false; 261 262 /* We have to know what CPU to virtualize */ 263 if (!vcpu->arch.pvr) 264 goto out; 265 266 /* PAPR only works with book3s_64 */ 267 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 268 goto out; 269 270 /* HV KVM can only do PAPR mode for now */ 271 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 272 goto out; 273 274 #ifdef CONFIG_KVM_BOOKE_HV 275 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 276 goto out; 277 #endif 278 279 r = true; 280 281 out: 282 vcpu->arch.sane = r; 283 return r ? 0 : -EINVAL; 284 } 285 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 286 287 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 288 { 289 enum emulation_result er; 290 int r; 291 292 er = kvmppc_emulate_loadstore(vcpu); 293 switch (er) { 294 case EMULATE_DONE: 295 /* Future optimization: only reload non-volatiles if they were 296 * actually modified. */ 297 r = RESUME_GUEST_NV; 298 break; 299 case EMULATE_AGAIN: 300 r = RESUME_GUEST; 301 break; 302 case EMULATE_DO_MMIO: 303 run->exit_reason = KVM_EXIT_MMIO; 304 /* We must reload nonvolatiles because "update" load/store 305 * instructions modify register state. */ 306 /* Future optimization: only reload non-volatiles if they were 307 * actually modified. */ 308 r = RESUME_HOST_NV; 309 break; 310 case EMULATE_FAIL: 311 { 312 u32 last_inst; 313 314 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 315 /* XXX Deliver Program interrupt to guest. */ 316 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 317 r = RESUME_HOST; 318 break; 319 } 320 default: 321 WARN_ON(1); 322 r = RESUME_GUEST; 323 } 324 325 return r; 326 } 327 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 328 329 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 330 bool data) 331 { 332 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 333 struct kvmppc_pte pte; 334 int r = -EINVAL; 335 336 vcpu->stat.st++; 337 338 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 339 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 340 size); 341 342 if ((!r) || (r == -EAGAIN)) 343 return r; 344 345 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 346 XLATE_WRITE, &pte); 347 if (r < 0) 348 return r; 349 350 *eaddr = pte.raddr; 351 352 if (!pte.may_write) 353 return -EPERM; 354 355 /* Magic page override */ 356 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 357 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 358 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 359 void *magic = vcpu->arch.shared; 360 magic += pte.eaddr & 0xfff; 361 memcpy(magic, ptr, size); 362 return EMULATE_DONE; 363 } 364 365 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 366 return EMULATE_DO_MMIO; 367 368 return EMULATE_DONE; 369 } 370 EXPORT_SYMBOL_GPL(kvmppc_st); 371 372 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 373 bool data) 374 { 375 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 376 struct kvmppc_pte pte; 377 int rc = -EINVAL; 378 379 vcpu->stat.ld++; 380 381 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 382 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 383 size); 384 385 if ((!rc) || (rc == -EAGAIN)) 386 return rc; 387 388 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 389 XLATE_READ, &pte); 390 if (rc) 391 return rc; 392 393 *eaddr = pte.raddr; 394 395 if (!pte.may_read) 396 return -EPERM; 397 398 if (!data && !pte.may_execute) 399 return -ENOEXEC; 400 401 /* Magic page override */ 402 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 403 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 404 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 405 void *magic = vcpu->arch.shared; 406 magic += pte.eaddr & 0xfff; 407 memcpy(ptr, magic, size); 408 return EMULATE_DONE; 409 } 410 411 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 412 return EMULATE_DO_MMIO; 413 414 return EMULATE_DONE; 415 } 416 EXPORT_SYMBOL_GPL(kvmppc_ld); 417 418 int kvm_arch_hardware_enable(void) 419 { 420 return 0; 421 } 422 423 int kvm_arch_hardware_setup(void) 424 { 425 return 0; 426 } 427 428 void kvm_arch_check_processor_compat(void *rtn) 429 { 430 *(int *)rtn = kvmppc_core_check_processor_compat(); 431 } 432 433 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 434 { 435 struct kvmppc_ops *kvm_ops = NULL; 436 /* 437 * if we have both HV and PR enabled, default is HV 438 */ 439 if (type == 0) { 440 if (kvmppc_hv_ops) 441 kvm_ops = kvmppc_hv_ops; 442 else 443 kvm_ops = kvmppc_pr_ops; 444 if (!kvm_ops) 445 goto err_out; 446 } else if (type == KVM_VM_PPC_HV) { 447 if (!kvmppc_hv_ops) 448 goto err_out; 449 kvm_ops = kvmppc_hv_ops; 450 } else if (type == KVM_VM_PPC_PR) { 451 if (!kvmppc_pr_ops) 452 goto err_out; 453 kvm_ops = kvmppc_pr_ops; 454 } else 455 goto err_out; 456 457 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 458 return -ENOENT; 459 460 kvm->arch.kvm_ops = kvm_ops; 461 return kvmppc_core_init_vm(kvm); 462 err_out: 463 return -EINVAL; 464 } 465 466 bool kvm_arch_has_vcpu_debugfs(void) 467 { 468 return false; 469 } 470 471 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 472 { 473 return 0; 474 } 475 476 void kvm_arch_destroy_vm(struct kvm *kvm) 477 { 478 unsigned int i; 479 struct kvm_vcpu *vcpu; 480 481 #ifdef CONFIG_KVM_XICS 482 /* 483 * We call kick_all_cpus_sync() to ensure that all 484 * CPUs have executed any pending IPIs before we 485 * continue and free VCPUs structures below. 486 */ 487 if (is_kvmppc_hv_enabled(kvm)) 488 kick_all_cpus_sync(); 489 #endif 490 491 kvm_for_each_vcpu(i, vcpu, kvm) 492 kvm_arch_vcpu_free(vcpu); 493 494 mutex_lock(&kvm->lock); 495 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 496 kvm->vcpus[i] = NULL; 497 498 atomic_set(&kvm->online_vcpus, 0); 499 500 kvmppc_core_destroy_vm(kvm); 501 502 mutex_unlock(&kvm->lock); 503 504 /* drop the module reference */ 505 module_put(kvm->arch.kvm_ops->owner); 506 } 507 508 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 509 { 510 int r; 511 /* Assume we're using HV mode when the HV module is loaded */ 512 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 513 514 if (kvm) { 515 /* 516 * Hooray - we know which VM type we're running on. Depend on 517 * that rather than the guess above. 518 */ 519 hv_enabled = is_kvmppc_hv_enabled(kvm); 520 } 521 522 switch (ext) { 523 #ifdef CONFIG_BOOKE 524 case KVM_CAP_PPC_BOOKE_SREGS: 525 case KVM_CAP_PPC_BOOKE_WATCHDOG: 526 case KVM_CAP_PPC_EPR: 527 #else 528 case KVM_CAP_PPC_SEGSTATE: 529 case KVM_CAP_PPC_HIOR: 530 case KVM_CAP_PPC_PAPR: 531 #endif 532 case KVM_CAP_PPC_UNSET_IRQ: 533 case KVM_CAP_PPC_IRQ_LEVEL: 534 case KVM_CAP_ENABLE_CAP: 535 case KVM_CAP_ONE_REG: 536 case KVM_CAP_IOEVENTFD: 537 case KVM_CAP_DEVICE_CTRL: 538 case KVM_CAP_IMMEDIATE_EXIT: 539 r = 1; 540 break; 541 case KVM_CAP_PPC_PAIRED_SINGLES: 542 case KVM_CAP_PPC_OSI: 543 case KVM_CAP_PPC_GET_PVINFO: 544 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 545 case KVM_CAP_SW_TLB: 546 #endif 547 /* We support this only for PR */ 548 r = !hv_enabled; 549 break; 550 #ifdef CONFIG_KVM_MPIC 551 case KVM_CAP_IRQ_MPIC: 552 r = 1; 553 break; 554 #endif 555 556 #ifdef CONFIG_PPC_BOOK3S_64 557 case KVM_CAP_SPAPR_TCE: 558 case KVM_CAP_SPAPR_TCE_64: 559 r = 1; 560 break; 561 case KVM_CAP_SPAPR_TCE_VFIO: 562 r = !!cpu_has_feature(CPU_FTR_HVMODE); 563 break; 564 case KVM_CAP_PPC_RTAS: 565 case KVM_CAP_PPC_FIXUP_HCALL: 566 case KVM_CAP_PPC_ENABLE_HCALL: 567 #ifdef CONFIG_KVM_XICS 568 case KVM_CAP_IRQ_XICS: 569 #endif 570 case KVM_CAP_PPC_GET_CPU_CHAR: 571 r = 1; 572 break; 573 574 case KVM_CAP_PPC_ALLOC_HTAB: 575 r = hv_enabled; 576 break; 577 #endif /* CONFIG_PPC_BOOK3S_64 */ 578 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 579 case KVM_CAP_PPC_SMT: 580 r = 0; 581 if (kvm) { 582 if (kvm->arch.emul_smt_mode > 1) 583 r = kvm->arch.emul_smt_mode; 584 else 585 r = kvm->arch.smt_mode; 586 } else if (hv_enabled) { 587 if (cpu_has_feature(CPU_FTR_ARCH_300)) 588 r = 1; 589 else 590 r = threads_per_subcore; 591 } 592 break; 593 case KVM_CAP_PPC_SMT_POSSIBLE: 594 r = 1; 595 if (hv_enabled) { 596 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 597 r = ((threads_per_subcore << 1) - 1); 598 else 599 /* P9 can emulate dbells, so allow any mode */ 600 r = 8 | 4 | 2 | 1; 601 } 602 break; 603 case KVM_CAP_PPC_RMA: 604 r = 0; 605 break; 606 case KVM_CAP_PPC_HWRNG: 607 r = kvmppc_hwrng_present(); 608 break; 609 case KVM_CAP_PPC_MMU_RADIX: 610 r = !!(hv_enabled && radix_enabled()); 611 break; 612 case KVM_CAP_PPC_MMU_HASH_V3: 613 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) && 614 cpu_has_feature(CPU_FTR_HVMODE)); 615 break; 616 case KVM_CAP_PPC_NESTED_HV: 617 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 618 !kvmppc_hv_ops->enable_nested(NULL)); 619 break; 620 #endif 621 case KVM_CAP_SYNC_MMU: 622 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 623 r = hv_enabled; 624 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 625 r = 1; 626 #else 627 r = 0; 628 #endif 629 break; 630 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 631 case KVM_CAP_PPC_HTAB_FD: 632 r = hv_enabled; 633 break; 634 #endif 635 case KVM_CAP_NR_VCPUS: 636 /* 637 * Recommending a number of CPUs is somewhat arbitrary; we 638 * return the number of present CPUs for -HV (since a host 639 * will have secondary threads "offline"), and for other KVM 640 * implementations just count online CPUs. 641 */ 642 if (hv_enabled) 643 r = num_present_cpus(); 644 else 645 r = num_online_cpus(); 646 break; 647 case KVM_CAP_NR_MEMSLOTS: 648 r = KVM_USER_MEM_SLOTS; 649 break; 650 case KVM_CAP_MAX_VCPUS: 651 r = KVM_MAX_VCPUS; 652 break; 653 #ifdef CONFIG_PPC_BOOK3S_64 654 case KVM_CAP_PPC_GET_SMMU_INFO: 655 r = 1; 656 break; 657 case KVM_CAP_SPAPR_MULTITCE: 658 r = 1; 659 break; 660 case KVM_CAP_SPAPR_RESIZE_HPT: 661 r = !!hv_enabled; 662 break; 663 #endif 664 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 665 case KVM_CAP_PPC_FWNMI: 666 r = hv_enabled; 667 break; 668 #endif 669 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 670 case KVM_CAP_PPC_HTM: 671 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 672 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 673 break; 674 #endif 675 default: 676 r = 0; 677 break; 678 } 679 return r; 680 681 } 682 683 long kvm_arch_dev_ioctl(struct file *filp, 684 unsigned int ioctl, unsigned long arg) 685 { 686 return -EINVAL; 687 } 688 689 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 690 struct kvm_memory_slot *dont) 691 { 692 kvmppc_core_free_memslot(kvm, free, dont); 693 } 694 695 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 696 unsigned long npages) 697 { 698 return kvmppc_core_create_memslot(kvm, slot, npages); 699 } 700 701 int kvm_arch_prepare_memory_region(struct kvm *kvm, 702 struct kvm_memory_slot *memslot, 703 const struct kvm_userspace_memory_region *mem, 704 enum kvm_mr_change change) 705 { 706 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 707 } 708 709 void kvm_arch_commit_memory_region(struct kvm *kvm, 710 const struct kvm_userspace_memory_region *mem, 711 const struct kvm_memory_slot *old, 712 const struct kvm_memory_slot *new, 713 enum kvm_mr_change change) 714 { 715 kvmppc_core_commit_memory_region(kvm, mem, old, new, change); 716 } 717 718 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 719 struct kvm_memory_slot *slot) 720 { 721 kvmppc_core_flush_memslot(kvm, slot); 722 } 723 724 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 725 { 726 struct kvm_vcpu *vcpu; 727 vcpu = kvmppc_core_vcpu_create(kvm, id); 728 if (!IS_ERR(vcpu)) { 729 vcpu->arch.wqp = &vcpu->wq; 730 kvmppc_create_vcpu_debugfs(vcpu, id); 731 } 732 return vcpu; 733 } 734 735 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 736 { 737 } 738 739 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 740 { 741 /* Make sure we're not using the vcpu anymore */ 742 hrtimer_cancel(&vcpu->arch.dec_timer); 743 744 kvmppc_remove_vcpu_debugfs(vcpu); 745 746 switch (vcpu->arch.irq_type) { 747 case KVMPPC_IRQ_MPIC: 748 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 749 break; 750 case KVMPPC_IRQ_XICS: 751 if (xics_on_xive()) 752 kvmppc_xive_cleanup_vcpu(vcpu); 753 else 754 kvmppc_xics_free_icp(vcpu); 755 break; 756 } 757 758 kvmppc_core_vcpu_free(vcpu); 759 } 760 761 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 762 { 763 kvm_arch_vcpu_free(vcpu); 764 } 765 766 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 767 { 768 return kvmppc_core_pending_dec(vcpu); 769 } 770 771 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 772 { 773 struct kvm_vcpu *vcpu; 774 775 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 776 kvmppc_decrementer_func(vcpu); 777 778 return HRTIMER_NORESTART; 779 } 780 781 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 782 { 783 int ret; 784 785 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 786 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 787 vcpu->arch.dec_expires = get_tb(); 788 789 #ifdef CONFIG_KVM_EXIT_TIMING 790 mutex_init(&vcpu->arch.exit_timing_lock); 791 #endif 792 ret = kvmppc_subarch_vcpu_init(vcpu); 793 return ret; 794 } 795 796 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 797 { 798 kvmppc_mmu_destroy(vcpu); 799 kvmppc_subarch_vcpu_uninit(vcpu); 800 } 801 802 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 803 { 804 #ifdef CONFIG_BOOKE 805 /* 806 * vrsave (formerly usprg0) isn't used by Linux, but may 807 * be used by the guest. 808 * 809 * On non-booke this is associated with Altivec and 810 * is handled by code in book3s.c. 811 */ 812 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 813 #endif 814 kvmppc_core_vcpu_load(vcpu, cpu); 815 } 816 817 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 818 { 819 kvmppc_core_vcpu_put(vcpu); 820 #ifdef CONFIG_BOOKE 821 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 822 #endif 823 } 824 825 /* 826 * irq_bypass_add_producer and irq_bypass_del_producer are only 827 * useful if the architecture supports PCI passthrough. 828 * irq_bypass_stop and irq_bypass_start are not needed and so 829 * kvm_ops are not defined for them. 830 */ 831 bool kvm_arch_has_irq_bypass(void) 832 { 833 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 834 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 835 } 836 837 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 838 struct irq_bypass_producer *prod) 839 { 840 struct kvm_kernel_irqfd *irqfd = 841 container_of(cons, struct kvm_kernel_irqfd, consumer); 842 struct kvm *kvm = irqfd->kvm; 843 844 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 845 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 846 847 return 0; 848 } 849 850 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 851 struct irq_bypass_producer *prod) 852 { 853 struct kvm_kernel_irqfd *irqfd = 854 container_of(cons, struct kvm_kernel_irqfd, consumer); 855 struct kvm *kvm = irqfd->kvm; 856 857 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 858 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 859 } 860 861 #ifdef CONFIG_VSX 862 static inline int kvmppc_get_vsr_dword_offset(int index) 863 { 864 int offset; 865 866 if ((index != 0) && (index != 1)) 867 return -1; 868 869 #ifdef __BIG_ENDIAN 870 offset = index; 871 #else 872 offset = 1 - index; 873 #endif 874 875 return offset; 876 } 877 878 static inline int kvmppc_get_vsr_word_offset(int index) 879 { 880 int offset; 881 882 if ((index > 3) || (index < 0)) 883 return -1; 884 885 #ifdef __BIG_ENDIAN 886 offset = index; 887 #else 888 offset = 3 - index; 889 #endif 890 return offset; 891 } 892 893 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 894 u64 gpr) 895 { 896 union kvmppc_one_reg val; 897 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 898 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 899 900 if (offset == -1) 901 return; 902 903 if (index >= 32) { 904 val.vval = VCPU_VSX_VR(vcpu, index - 32); 905 val.vsxval[offset] = gpr; 906 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 907 } else { 908 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 909 } 910 } 911 912 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 913 u64 gpr) 914 { 915 union kvmppc_one_reg val; 916 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 917 918 if (index >= 32) { 919 val.vval = VCPU_VSX_VR(vcpu, index - 32); 920 val.vsxval[0] = gpr; 921 val.vsxval[1] = gpr; 922 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 923 } else { 924 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 925 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 926 } 927 } 928 929 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 930 u32 gpr) 931 { 932 union kvmppc_one_reg val; 933 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 934 935 if (index >= 32) { 936 val.vsx32val[0] = gpr; 937 val.vsx32val[1] = gpr; 938 val.vsx32val[2] = gpr; 939 val.vsx32val[3] = gpr; 940 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 941 } else { 942 val.vsx32val[0] = gpr; 943 val.vsx32val[1] = gpr; 944 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 945 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 946 } 947 } 948 949 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 950 u32 gpr32) 951 { 952 union kvmppc_one_reg val; 953 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 954 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 955 int dword_offset, word_offset; 956 957 if (offset == -1) 958 return; 959 960 if (index >= 32) { 961 val.vval = VCPU_VSX_VR(vcpu, index - 32); 962 val.vsx32val[offset] = gpr32; 963 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 964 } else { 965 dword_offset = offset / 2; 966 word_offset = offset % 2; 967 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 968 val.vsx32val[word_offset] = gpr32; 969 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 970 } 971 } 972 #endif /* CONFIG_VSX */ 973 974 #ifdef CONFIG_ALTIVEC 975 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 976 int index, int element_size) 977 { 978 int offset; 979 int elts = sizeof(vector128)/element_size; 980 981 if ((index < 0) || (index >= elts)) 982 return -1; 983 984 if (kvmppc_need_byteswap(vcpu)) 985 offset = elts - index - 1; 986 else 987 offset = index; 988 989 return offset; 990 } 991 992 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 993 int index) 994 { 995 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 996 } 997 998 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 999 int index) 1000 { 1001 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1002 } 1003 1004 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1005 int index) 1006 { 1007 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1008 } 1009 1010 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1011 int index) 1012 { 1013 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1014 } 1015 1016 1017 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1018 u64 gpr) 1019 { 1020 union kvmppc_one_reg val; 1021 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1022 vcpu->arch.mmio_vmx_offset); 1023 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1024 1025 if (offset == -1) 1026 return; 1027 1028 val.vval = VCPU_VSX_VR(vcpu, index); 1029 val.vsxval[offset] = gpr; 1030 VCPU_VSX_VR(vcpu, index) = val.vval; 1031 } 1032 1033 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1034 u32 gpr32) 1035 { 1036 union kvmppc_one_reg val; 1037 int offset = kvmppc_get_vmx_word_offset(vcpu, 1038 vcpu->arch.mmio_vmx_offset); 1039 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1040 1041 if (offset == -1) 1042 return; 1043 1044 val.vval = VCPU_VSX_VR(vcpu, index); 1045 val.vsx32val[offset] = gpr32; 1046 VCPU_VSX_VR(vcpu, index) = val.vval; 1047 } 1048 1049 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1050 u16 gpr16) 1051 { 1052 union kvmppc_one_reg val; 1053 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1054 vcpu->arch.mmio_vmx_offset); 1055 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1056 1057 if (offset == -1) 1058 return; 1059 1060 val.vval = VCPU_VSX_VR(vcpu, index); 1061 val.vsx16val[offset] = gpr16; 1062 VCPU_VSX_VR(vcpu, index) = val.vval; 1063 } 1064 1065 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1066 u8 gpr8) 1067 { 1068 union kvmppc_one_reg val; 1069 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1070 vcpu->arch.mmio_vmx_offset); 1071 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1072 1073 if (offset == -1) 1074 return; 1075 1076 val.vval = VCPU_VSX_VR(vcpu, index); 1077 val.vsx8val[offset] = gpr8; 1078 VCPU_VSX_VR(vcpu, index) = val.vval; 1079 } 1080 #endif /* CONFIG_ALTIVEC */ 1081 1082 #ifdef CONFIG_PPC_FPU 1083 static inline u64 sp_to_dp(u32 fprs) 1084 { 1085 u64 fprd; 1086 1087 preempt_disable(); 1088 enable_kernel_fp(); 1089 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) 1090 : "fr0"); 1091 preempt_enable(); 1092 return fprd; 1093 } 1094 1095 static inline u32 dp_to_sp(u64 fprd) 1096 { 1097 u32 fprs; 1098 1099 preempt_disable(); 1100 enable_kernel_fp(); 1101 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) 1102 : "fr0"); 1103 preempt_enable(); 1104 return fprs; 1105 } 1106 1107 #else 1108 #define sp_to_dp(x) (x) 1109 #define dp_to_sp(x) (x) 1110 #endif /* CONFIG_PPC_FPU */ 1111 1112 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 1113 struct kvm_run *run) 1114 { 1115 u64 uninitialized_var(gpr); 1116 1117 if (run->mmio.len > sizeof(gpr)) { 1118 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1119 return; 1120 } 1121 1122 if (!vcpu->arch.mmio_host_swabbed) { 1123 switch (run->mmio.len) { 1124 case 8: gpr = *(u64 *)run->mmio.data; break; 1125 case 4: gpr = *(u32 *)run->mmio.data; break; 1126 case 2: gpr = *(u16 *)run->mmio.data; break; 1127 case 1: gpr = *(u8 *)run->mmio.data; break; 1128 } 1129 } else { 1130 switch (run->mmio.len) { 1131 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1132 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1133 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1134 case 1: gpr = *(u8 *)run->mmio.data; break; 1135 } 1136 } 1137 1138 /* conversion between single and double precision */ 1139 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1140 gpr = sp_to_dp(gpr); 1141 1142 if (vcpu->arch.mmio_sign_extend) { 1143 switch (run->mmio.len) { 1144 #ifdef CONFIG_PPC64 1145 case 4: 1146 gpr = (s64)(s32)gpr; 1147 break; 1148 #endif 1149 case 2: 1150 gpr = (s64)(s16)gpr; 1151 break; 1152 case 1: 1153 gpr = (s64)(s8)gpr; 1154 break; 1155 } 1156 } 1157 1158 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1159 case KVM_MMIO_REG_GPR: 1160 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1161 break; 1162 case KVM_MMIO_REG_FPR: 1163 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1164 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1165 1166 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1167 break; 1168 #ifdef CONFIG_PPC_BOOK3S 1169 case KVM_MMIO_REG_QPR: 1170 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1171 break; 1172 case KVM_MMIO_REG_FQPR: 1173 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1174 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1175 break; 1176 #endif 1177 #ifdef CONFIG_VSX 1178 case KVM_MMIO_REG_VSX: 1179 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1180 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1181 1182 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1183 kvmppc_set_vsr_dword(vcpu, gpr); 1184 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1185 kvmppc_set_vsr_word(vcpu, gpr); 1186 else if (vcpu->arch.mmio_copy_type == 1187 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1188 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1189 else if (vcpu->arch.mmio_copy_type == 1190 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1191 kvmppc_set_vsr_word_dump(vcpu, gpr); 1192 break; 1193 #endif 1194 #ifdef CONFIG_ALTIVEC 1195 case KVM_MMIO_REG_VMX: 1196 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1197 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1198 1199 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1200 kvmppc_set_vmx_dword(vcpu, gpr); 1201 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1202 kvmppc_set_vmx_word(vcpu, gpr); 1203 else if (vcpu->arch.mmio_copy_type == 1204 KVMPPC_VMX_COPY_HWORD) 1205 kvmppc_set_vmx_hword(vcpu, gpr); 1206 else if (vcpu->arch.mmio_copy_type == 1207 KVMPPC_VMX_COPY_BYTE) 1208 kvmppc_set_vmx_byte(vcpu, gpr); 1209 break; 1210 #endif 1211 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1212 case KVM_MMIO_REG_NESTED_GPR: 1213 if (kvmppc_need_byteswap(vcpu)) 1214 gpr = swab64(gpr); 1215 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1216 sizeof(gpr)); 1217 break; 1218 #endif 1219 default: 1220 BUG(); 1221 } 1222 } 1223 1224 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1225 unsigned int rt, unsigned int bytes, 1226 int is_default_endian, int sign_extend) 1227 { 1228 int idx, ret; 1229 bool host_swabbed; 1230 1231 /* Pity C doesn't have a logical XOR operator */ 1232 if (kvmppc_need_byteswap(vcpu)) { 1233 host_swabbed = is_default_endian; 1234 } else { 1235 host_swabbed = !is_default_endian; 1236 } 1237 1238 if (bytes > sizeof(run->mmio.data)) { 1239 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1240 run->mmio.len); 1241 } 1242 1243 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1244 run->mmio.len = bytes; 1245 run->mmio.is_write = 0; 1246 1247 vcpu->arch.io_gpr = rt; 1248 vcpu->arch.mmio_host_swabbed = host_swabbed; 1249 vcpu->mmio_needed = 1; 1250 vcpu->mmio_is_write = 0; 1251 vcpu->arch.mmio_sign_extend = sign_extend; 1252 1253 idx = srcu_read_lock(&vcpu->kvm->srcu); 1254 1255 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1256 bytes, &run->mmio.data); 1257 1258 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1259 1260 if (!ret) { 1261 kvmppc_complete_mmio_load(vcpu, run); 1262 vcpu->mmio_needed = 0; 1263 return EMULATE_DONE; 1264 } 1265 1266 return EMULATE_DO_MMIO; 1267 } 1268 1269 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1270 unsigned int rt, unsigned int bytes, 1271 int is_default_endian) 1272 { 1273 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 1274 } 1275 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1276 1277 /* Same as above, but sign extends */ 1278 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 1279 unsigned int rt, unsigned int bytes, 1280 int is_default_endian) 1281 { 1282 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 1283 } 1284 1285 #ifdef CONFIG_VSX 1286 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1287 unsigned int rt, unsigned int bytes, 1288 int is_default_endian, int mmio_sign_extend) 1289 { 1290 enum emulation_result emulated = EMULATE_DONE; 1291 1292 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1293 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1294 return EMULATE_FAIL; 1295 1296 while (vcpu->arch.mmio_vsx_copy_nums) { 1297 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1298 is_default_endian, mmio_sign_extend); 1299 1300 if (emulated != EMULATE_DONE) 1301 break; 1302 1303 vcpu->arch.paddr_accessed += run->mmio.len; 1304 1305 vcpu->arch.mmio_vsx_copy_nums--; 1306 vcpu->arch.mmio_vsx_offset++; 1307 } 1308 return emulated; 1309 } 1310 #endif /* CONFIG_VSX */ 1311 1312 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1313 u64 val, unsigned int bytes, int is_default_endian) 1314 { 1315 void *data = run->mmio.data; 1316 int idx, ret; 1317 bool host_swabbed; 1318 1319 /* Pity C doesn't have a logical XOR operator */ 1320 if (kvmppc_need_byteswap(vcpu)) { 1321 host_swabbed = is_default_endian; 1322 } else { 1323 host_swabbed = !is_default_endian; 1324 } 1325 1326 if (bytes > sizeof(run->mmio.data)) { 1327 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1328 run->mmio.len); 1329 } 1330 1331 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1332 run->mmio.len = bytes; 1333 run->mmio.is_write = 1; 1334 vcpu->mmio_needed = 1; 1335 vcpu->mmio_is_write = 1; 1336 1337 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1338 val = dp_to_sp(val); 1339 1340 /* Store the value at the lowest bytes in 'data'. */ 1341 if (!host_swabbed) { 1342 switch (bytes) { 1343 case 8: *(u64 *)data = val; break; 1344 case 4: *(u32 *)data = val; break; 1345 case 2: *(u16 *)data = val; break; 1346 case 1: *(u8 *)data = val; break; 1347 } 1348 } else { 1349 switch (bytes) { 1350 case 8: *(u64 *)data = swab64(val); break; 1351 case 4: *(u32 *)data = swab32(val); break; 1352 case 2: *(u16 *)data = swab16(val); break; 1353 case 1: *(u8 *)data = val; break; 1354 } 1355 } 1356 1357 idx = srcu_read_lock(&vcpu->kvm->srcu); 1358 1359 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1360 bytes, &run->mmio.data); 1361 1362 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1363 1364 if (!ret) { 1365 vcpu->mmio_needed = 0; 1366 return EMULATE_DONE; 1367 } 1368 1369 return EMULATE_DO_MMIO; 1370 } 1371 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1372 1373 #ifdef CONFIG_VSX 1374 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1375 { 1376 u32 dword_offset, word_offset; 1377 union kvmppc_one_reg reg; 1378 int vsx_offset = 0; 1379 int copy_type = vcpu->arch.mmio_copy_type; 1380 int result = 0; 1381 1382 switch (copy_type) { 1383 case KVMPPC_VSX_COPY_DWORD: 1384 vsx_offset = 1385 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1386 1387 if (vsx_offset == -1) { 1388 result = -1; 1389 break; 1390 } 1391 1392 if (rs < 32) { 1393 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1394 } else { 1395 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1396 *val = reg.vsxval[vsx_offset]; 1397 } 1398 break; 1399 1400 case KVMPPC_VSX_COPY_WORD: 1401 vsx_offset = 1402 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1403 1404 if (vsx_offset == -1) { 1405 result = -1; 1406 break; 1407 } 1408 1409 if (rs < 32) { 1410 dword_offset = vsx_offset / 2; 1411 word_offset = vsx_offset % 2; 1412 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1413 *val = reg.vsx32val[word_offset]; 1414 } else { 1415 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1416 *val = reg.vsx32val[vsx_offset]; 1417 } 1418 break; 1419 1420 default: 1421 result = -1; 1422 break; 1423 } 1424 1425 return result; 1426 } 1427 1428 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1429 int rs, unsigned int bytes, int is_default_endian) 1430 { 1431 u64 val; 1432 enum emulation_result emulated = EMULATE_DONE; 1433 1434 vcpu->arch.io_gpr = rs; 1435 1436 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1437 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1438 return EMULATE_FAIL; 1439 1440 while (vcpu->arch.mmio_vsx_copy_nums) { 1441 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1442 return EMULATE_FAIL; 1443 1444 emulated = kvmppc_handle_store(run, vcpu, 1445 val, bytes, is_default_endian); 1446 1447 if (emulated != EMULATE_DONE) 1448 break; 1449 1450 vcpu->arch.paddr_accessed += run->mmio.len; 1451 1452 vcpu->arch.mmio_vsx_copy_nums--; 1453 vcpu->arch.mmio_vsx_offset++; 1454 } 1455 1456 return emulated; 1457 } 1458 1459 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu, 1460 struct kvm_run *run) 1461 { 1462 enum emulation_result emulated = EMULATE_FAIL; 1463 int r; 1464 1465 vcpu->arch.paddr_accessed += run->mmio.len; 1466 1467 if (!vcpu->mmio_is_write) { 1468 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr, 1469 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1470 } else { 1471 emulated = kvmppc_handle_vsx_store(run, vcpu, 1472 vcpu->arch.io_gpr, run->mmio.len, 1); 1473 } 1474 1475 switch (emulated) { 1476 case EMULATE_DO_MMIO: 1477 run->exit_reason = KVM_EXIT_MMIO; 1478 r = RESUME_HOST; 1479 break; 1480 case EMULATE_FAIL: 1481 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1482 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1483 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1484 r = RESUME_HOST; 1485 break; 1486 default: 1487 r = RESUME_GUEST; 1488 break; 1489 } 1490 return r; 1491 } 1492 #endif /* CONFIG_VSX */ 1493 1494 #ifdef CONFIG_ALTIVEC 1495 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1496 unsigned int rt, unsigned int bytes, int is_default_endian) 1497 { 1498 enum emulation_result emulated = EMULATE_DONE; 1499 1500 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1501 return EMULATE_FAIL; 1502 1503 while (vcpu->arch.mmio_vmx_copy_nums) { 1504 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1505 is_default_endian, 0); 1506 1507 if (emulated != EMULATE_DONE) 1508 break; 1509 1510 vcpu->arch.paddr_accessed += run->mmio.len; 1511 vcpu->arch.mmio_vmx_copy_nums--; 1512 vcpu->arch.mmio_vmx_offset++; 1513 } 1514 1515 return emulated; 1516 } 1517 1518 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1519 { 1520 union kvmppc_one_reg reg; 1521 int vmx_offset = 0; 1522 int result = 0; 1523 1524 vmx_offset = 1525 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1526 1527 if (vmx_offset == -1) 1528 return -1; 1529 1530 reg.vval = VCPU_VSX_VR(vcpu, index); 1531 *val = reg.vsxval[vmx_offset]; 1532 1533 return result; 1534 } 1535 1536 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1537 { 1538 union kvmppc_one_reg reg; 1539 int vmx_offset = 0; 1540 int result = 0; 1541 1542 vmx_offset = 1543 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1544 1545 if (vmx_offset == -1) 1546 return -1; 1547 1548 reg.vval = VCPU_VSX_VR(vcpu, index); 1549 *val = reg.vsx32val[vmx_offset]; 1550 1551 return result; 1552 } 1553 1554 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1555 { 1556 union kvmppc_one_reg reg; 1557 int vmx_offset = 0; 1558 int result = 0; 1559 1560 vmx_offset = 1561 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1562 1563 if (vmx_offset == -1) 1564 return -1; 1565 1566 reg.vval = VCPU_VSX_VR(vcpu, index); 1567 *val = reg.vsx16val[vmx_offset]; 1568 1569 return result; 1570 } 1571 1572 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1573 { 1574 union kvmppc_one_reg reg; 1575 int vmx_offset = 0; 1576 int result = 0; 1577 1578 vmx_offset = 1579 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1580 1581 if (vmx_offset == -1) 1582 return -1; 1583 1584 reg.vval = VCPU_VSX_VR(vcpu, index); 1585 *val = reg.vsx8val[vmx_offset]; 1586 1587 return result; 1588 } 1589 1590 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1591 unsigned int rs, unsigned int bytes, int is_default_endian) 1592 { 1593 u64 val = 0; 1594 unsigned int index = rs & KVM_MMIO_REG_MASK; 1595 enum emulation_result emulated = EMULATE_DONE; 1596 1597 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1598 return EMULATE_FAIL; 1599 1600 vcpu->arch.io_gpr = rs; 1601 1602 while (vcpu->arch.mmio_vmx_copy_nums) { 1603 switch (vcpu->arch.mmio_copy_type) { 1604 case KVMPPC_VMX_COPY_DWORD: 1605 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1606 return EMULATE_FAIL; 1607 1608 break; 1609 case KVMPPC_VMX_COPY_WORD: 1610 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1611 return EMULATE_FAIL; 1612 break; 1613 case KVMPPC_VMX_COPY_HWORD: 1614 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1615 return EMULATE_FAIL; 1616 break; 1617 case KVMPPC_VMX_COPY_BYTE: 1618 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1619 return EMULATE_FAIL; 1620 break; 1621 default: 1622 return EMULATE_FAIL; 1623 } 1624 1625 emulated = kvmppc_handle_store(run, vcpu, val, bytes, 1626 is_default_endian); 1627 if (emulated != EMULATE_DONE) 1628 break; 1629 1630 vcpu->arch.paddr_accessed += run->mmio.len; 1631 vcpu->arch.mmio_vmx_copy_nums--; 1632 vcpu->arch.mmio_vmx_offset++; 1633 } 1634 1635 return emulated; 1636 } 1637 1638 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu, 1639 struct kvm_run *run) 1640 { 1641 enum emulation_result emulated = EMULATE_FAIL; 1642 int r; 1643 1644 vcpu->arch.paddr_accessed += run->mmio.len; 1645 1646 if (!vcpu->mmio_is_write) { 1647 emulated = kvmppc_handle_vmx_load(run, vcpu, 1648 vcpu->arch.io_gpr, run->mmio.len, 1); 1649 } else { 1650 emulated = kvmppc_handle_vmx_store(run, vcpu, 1651 vcpu->arch.io_gpr, run->mmio.len, 1); 1652 } 1653 1654 switch (emulated) { 1655 case EMULATE_DO_MMIO: 1656 run->exit_reason = KVM_EXIT_MMIO; 1657 r = RESUME_HOST; 1658 break; 1659 case EMULATE_FAIL: 1660 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1661 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1662 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1663 r = RESUME_HOST; 1664 break; 1665 default: 1666 r = RESUME_GUEST; 1667 break; 1668 } 1669 return r; 1670 } 1671 #endif /* CONFIG_ALTIVEC */ 1672 1673 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1674 { 1675 int r = 0; 1676 union kvmppc_one_reg val; 1677 int size; 1678 1679 size = one_reg_size(reg->id); 1680 if (size > sizeof(val)) 1681 return -EINVAL; 1682 1683 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1684 if (r == -EINVAL) { 1685 r = 0; 1686 switch (reg->id) { 1687 #ifdef CONFIG_ALTIVEC 1688 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1689 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1690 r = -ENXIO; 1691 break; 1692 } 1693 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1694 break; 1695 case KVM_REG_PPC_VSCR: 1696 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1697 r = -ENXIO; 1698 break; 1699 } 1700 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1701 break; 1702 case KVM_REG_PPC_VRSAVE: 1703 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1704 break; 1705 #endif /* CONFIG_ALTIVEC */ 1706 default: 1707 r = -EINVAL; 1708 break; 1709 } 1710 } 1711 1712 if (r) 1713 return r; 1714 1715 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1716 r = -EFAULT; 1717 1718 return r; 1719 } 1720 1721 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1722 { 1723 int r; 1724 union kvmppc_one_reg val; 1725 int size; 1726 1727 size = one_reg_size(reg->id); 1728 if (size > sizeof(val)) 1729 return -EINVAL; 1730 1731 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1732 return -EFAULT; 1733 1734 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1735 if (r == -EINVAL) { 1736 r = 0; 1737 switch (reg->id) { 1738 #ifdef CONFIG_ALTIVEC 1739 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1740 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1741 r = -ENXIO; 1742 break; 1743 } 1744 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1745 break; 1746 case KVM_REG_PPC_VSCR: 1747 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1748 r = -ENXIO; 1749 break; 1750 } 1751 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1752 break; 1753 case KVM_REG_PPC_VRSAVE: 1754 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1755 r = -ENXIO; 1756 break; 1757 } 1758 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1759 break; 1760 #endif /* CONFIG_ALTIVEC */ 1761 default: 1762 r = -EINVAL; 1763 break; 1764 } 1765 } 1766 1767 return r; 1768 } 1769 1770 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1771 { 1772 int r; 1773 1774 vcpu_load(vcpu); 1775 1776 if (vcpu->mmio_needed) { 1777 vcpu->mmio_needed = 0; 1778 if (!vcpu->mmio_is_write) 1779 kvmppc_complete_mmio_load(vcpu, run); 1780 #ifdef CONFIG_VSX 1781 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1782 vcpu->arch.mmio_vsx_copy_nums--; 1783 vcpu->arch.mmio_vsx_offset++; 1784 } 1785 1786 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1787 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run); 1788 if (r == RESUME_HOST) { 1789 vcpu->mmio_needed = 1; 1790 goto out; 1791 } 1792 } 1793 #endif 1794 #ifdef CONFIG_ALTIVEC 1795 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1796 vcpu->arch.mmio_vmx_copy_nums--; 1797 vcpu->arch.mmio_vmx_offset++; 1798 } 1799 1800 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1801 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run); 1802 if (r == RESUME_HOST) { 1803 vcpu->mmio_needed = 1; 1804 goto out; 1805 } 1806 } 1807 #endif 1808 } else if (vcpu->arch.osi_needed) { 1809 u64 *gprs = run->osi.gprs; 1810 int i; 1811 1812 for (i = 0; i < 32; i++) 1813 kvmppc_set_gpr(vcpu, i, gprs[i]); 1814 vcpu->arch.osi_needed = 0; 1815 } else if (vcpu->arch.hcall_needed) { 1816 int i; 1817 1818 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1819 for (i = 0; i < 9; ++i) 1820 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1821 vcpu->arch.hcall_needed = 0; 1822 #ifdef CONFIG_BOOKE 1823 } else if (vcpu->arch.epr_needed) { 1824 kvmppc_set_epr(vcpu, run->epr.epr); 1825 vcpu->arch.epr_needed = 0; 1826 #endif 1827 } 1828 1829 kvm_sigset_activate(vcpu); 1830 1831 if (run->immediate_exit) 1832 r = -EINTR; 1833 else 1834 r = kvmppc_vcpu_run(run, vcpu); 1835 1836 kvm_sigset_deactivate(vcpu); 1837 1838 #ifdef CONFIG_ALTIVEC 1839 out: 1840 #endif 1841 vcpu_put(vcpu); 1842 return r; 1843 } 1844 1845 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1846 { 1847 if (irq->irq == KVM_INTERRUPT_UNSET) { 1848 kvmppc_core_dequeue_external(vcpu); 1849 return 0; 1850 } 1851 1852 kvmppc_core_queue_external(vcpu, irq); 1853 1854 kvm_vcpu_kick(vcpu); 1855 1856 return 0; 1857 } 1858 1859 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1860 struct kvm_enable_cap *cap) 1861 { 1862 int r; 1863 1864 if (cap->flags) 1865 return -EINVAL; 1866 1867 switch (cap->cap) { 1868 case KVM_CAP_PPC_OSI: 1869 r = 0; 1870 vcpu->arch.osi_enabled = true; 1871 break; 1872 case KVM_CAP_PPC_PAPR: 1873 r = 0; 1874 vcpu->arch.papr_enabled = true; 1875 break; 1876 case KVM_CAP_PPC_EPR: 1877 r = 0; 1878 if (cap->args[0]) 1879 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1880 else 1881 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1882 break; 1883 #ifdef CONFIG_BOOKE 1884 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1885 r = 0; 1886 vcpu->arch.watchdog_enabled = true; 1887 break; 1888 #endif 1889 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1890 case KVM_CAP_SW_TLB: { 1891 struct kvm_config_tlb cfg; 1892 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1893 1894 r = -EFAULT; 1895 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1896 break; 1897 1898 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1899 break; 1900 } 1901 #endif 1902 #ifdef CONFIG_KVM_MPIC 1903 case KVM_CAP_IRQ_MPIC: { 1904 struct fd f; 1905 struct kvm_device *dev; 1906 1907 r = -EBADF; 1908 f = fdget(cap->args[0]); 1909 if (!f.file) 1910 break; 1911 1912 r = -EPERM; 1913 dev = kvm_device_from_filp(f.file); 1914 if (dev) 1915 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1916 1917 fdput(f); 1918 break; 1919 } 1920 #endif 1921 #ifdef CONFIG_KVM_XICS 1922 case KVM_CAP_IRQ_XICS: { 1923 struct fd f; 1924 struct kvm_device *dev; 1925 1926 r = -EBADF; 1927 f = fdget(cap->args[0]); 1928 if (!f.file) 1929 break; 1930 1931 r = -EPERM; 1932 dev = kvm_device_from_filp(f.file); 1933 if (dev) { 1934 if (xics_on_xive()) 1935 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1936 else 1937 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1938 } 1939 1940 fdput(f); 1941 break; 1942 } 1943 #endif /* CONFIG_KVM_XICS */ 1944 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1945 case KVM_CAP_PPC_FWNMI: 1946 r = -EINVAL; 1947 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1948 break; 1949 r = 0; 1950 vcpu->kvm->arch.fwnmi_enabled = true; 1951 break; 1952 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1953 default: 1954 r = -EINVAL; 1955 break; 1956 } 1957 1958 if (!r) 1959 r = kvmppc_sanity_check(vcpu); 1960 1961 return r; 1962 } 1963 1964 bool kvm_arch_intc_initialized(struct kvm *kvm) 1965 { 1966 #ifdef CONFIG_KVM_MPIC 1967 if (kvm->arch.mpic) 1968 return true; 1969 #endif 1970 #ifdef CONFIG_KVM_XICS 1971 if (kvm->arch.xics || kvm->arch.xive) 1972 return true; 1973 #endif 1974 return false; 1975 } 1976 1977 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1978 struct kvm_mp_state *mp_state) 1979 { 1980 return -EINVAL; 1981 } 1982 1983 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1984 struct kvm_mp_state *mp_state) 1985 { 1986 return -EINVAL; 1987 } 1988 1989 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1990 unsigned int ioctl, unsigned long arg) 1991 { 1992 struct kvm_vcpu *vcpu = filp->private_data; 1993 void __user *argp = (void __user *)arg; 1994 1995 if (ioctl == KVM_INTERRUPT) { 1996 struct kvm_interrupt irq; 1997 if (copy_from_user(&irq, argp, sizeof(irq))) 1998 return -EFAULT; 1999 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2000 } 2001 return -ENOIOCTLCMD; 2002 } 2003 2004 long kvm_arch_vcpu_ioctl(struct file *filp, 2005 unsigned int ioctl, unsigned long arg) 2006 { 2007 struct kvm_vcpu *vcpu = filp->private_data; 2008 void __user *argp = (void __user *)arg; 2009 long r; 2010 2011 switch (ioctl) { 2012 case KVM_ENABLE_CAP: 2013 { 2014 struct kvm_enable_cap cap; 2015 r = -EFAULT; 2016 vcpu_load(vcpu); 2017 if (copy_from_user(&cap, argp, sizeof(cap))) 2018 goto out; 2019 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2020 vcpu_put(vcpu); 2021 break; 2022 } 2023 2024 case KVM_SET_ONE_REG: 2025 case KVM_GET_ONE_REG: 2026 { 2027 struct kvm_one_reg reg; 2028 r = -EFAULT; 2029 if (copy_from_user(®, argp, sizeof(reg))) 2030 goto out; 2031 if (ioctl == KVM_SET_ONE_REG) 2032 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2033 else 2034 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2035 break; 2036 } 2037 2038 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2039 case KVM_DIRTY_TLB: { 2040 struct kvm_dirty_tlb dirty; 2041 r = -EFAULT; 2042 vcpu_load(vcpu); 2043 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2044 goto out; 2045 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2046 vcpu_put(vcpu); 2047 break; 2048 } 2049 #endif 2050 default: 2051 r = -EINVAL; 2052 } 2053 2054 out: 2055 return r; 2056 } 2057 2058 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2059 { 2060 return VM_FAULT_SIGBUS; 2061 } 2062 2063 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2064 { 2065 u32 inst_nop = 0x60000000; 2066 #ifdef CONFIG_KVM_BOOKE_HV 2067 u32 inst_sc1 = 0x44000022; 2068 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2069 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2070 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2071 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2072 #else 2073 u32 inst_lis = 0x3c000000; 2074 u32 inst_ori = 0x60000000; 2075 u32 inst_sc = 0x44000002; 2076 u32 inst_imm_mask = 0xffff; 2077 2078 /* 2079 * The hypercall to get into KVM from within guest context is as 2080 * follows: 2081 * 2082 * lis r0, r0, KVM_SC_MAGIC_R0@h 2083 * ori r0, KVM_SC_MAGIC_R0@l 2084 * sc 2085 * nop 2086 */ 2087 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2088 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2089 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2090 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2091 #endif 2092 2093 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2094 2095 return 0; 2096 } 2097 2098 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2099 bool line_status) 2100 { 2101 if (!irqchip_in_kernel(kvm)) 2102 return -ENXIO; 2103 2104 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2105 irq_event->irq, irq_event->level, 2106 line_status); 2107 return 0; 2108 } 2109 2110 2111 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2112 struct kvm_enable_cap *cap) 2113 { 2114 int r; 2115 2116 if (cap->flags) 2117 return -EINVAL; 2118 2119 switch (cap->cap) { 2120 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2121 case KVM_CAP_PPC_ENABLE_HCALL: { 2122 unsigned long hcall = cap->args[0]; 2123 2124 r = -EINVAL; 2125 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2126 cap->args[1] > 1) 2127 break; 2128 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2129 break; 2130 if (cap->args[1]) 2131 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2132 else 2133 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2134 r = 0; 2135 break; 2136 } 2137 case KVM_CAP_PPC_SMT: { 2138 unsigned long mode = cap->args[0]; 2139 unsigned long flags = cap->args[1]; 2140 2141 r = -EINVAL; 2142 if (kvm->arch.kvm_ops->set_smt_mode) 2143 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2144 break; 2145 } 2146 2147 case KVM_CAP_PPC_NESTED_HV: 2148 r = -EINVAL; 2149 if (!is_kvmppc_hv_enabled(kvm) || 2150 !kvm->arch.kvm_ops->enable_nested) 2151 break; 2152 r = kvm->arch.kvm_ops->enable_nested(kvm); 2153 break; 2154 #endif 2155 default: 2156 r = -EINVAL; 2157 break; 2158 } 2159 2160 return r; 2161 } 2162 2163 #ifdef CONFIG_PPC_BOOK3S_64 2164 /* 2165 * These functions check whether the underlying hardware is safe 2166 * against attacks based on observing the effects of speculatively 2167 * executed instructions, and whether it supplies instructions for 2168 * use in workarounds. The information comes from firmware, either 2169 * via the device tree on powernv platforms or from an hcall on 2170 * pseries platforms. 2171 */ 2172 #ifdef CONFIG_PPC_PSERIES 2173 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2174 { 2175 struct h_cpu_char_result c; 2176 unsigned long rc; 2177 2178 if (!machine_is(pseries)) 2179 return -ENOTTY; 2180 2181 rc = plpar_get_cpu_characteristics(&c); 2182 if (rc == H_SUCCESS) { 2183 cp->character = c.character; 2184 cp->behaviour = c.behaviour; 2185 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2186 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2187 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2188 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2189 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2190 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2191 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2192 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2193 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2194 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2195 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2196 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2197 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2198 } 2199 return 0; 2200 } 2201 #else 2202 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2203 { 2204 return -ENOTTY; 2205 } 2206 #endif 2207 2208 static inline bool have_fw_feat(struct device_node *fw_features, 2209 const char *state, const char *name) 2210 { 2211 struct device_node *np; 2212 bool r = false; 2213 2214 np = of_get_child_by_name(fw_features, name); 2215 if (np) { 2216 r = of_property_read_bool(np, state); 2217 of_node_put(np); 2218 } 2219 return r; 2220 } 2221 2222 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2223 { 2224 struct device_node *np, *fw_features; 2225 int r; 2226 2227 memset(cp, 0, sizeof(*cp)); 2228 r = pseries_get_cpu_char(cp); 2229 if (r != -ENOTTY) 2230 return r; 2231 2232 np = of_find_node_by_name(NULL, "ibm,opal"); 2233 if (np) { 2234 fw_features = of_get_child_by_name(np, "fw-features"); 2235 of_node_put(np); 2236 if (!fw_features) 2237 return 0; 2238 if (have_fw_feat(fw_features, "enabled", 2239 "inst-spec-barrier-ori31,31,0")) 2240 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2241 if (have_fw_feat(fw_features, "enabled", 2242 "fw-bcctrl-serialized")) 2243 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2244 if (have_fw_feat(fw_features, "enabled", 2245 "inst-l1d-flush-ori30,30,0")) 2246 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2247 if (have_fw_feat(fw_features, "enabled", 2248 "inst-l1d-flush-trig2")) 2249 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2250 if (have_fw_feat(fw_features, "enabled", 2251 "fw-l1d-thread-split")) 2252 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2253 if (have_fw_feat(fw_features, "enabled", 2254 "fw-count-cache-disabled")) 2255 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2256 if (have_fw_feat(fw_features, "enabled", 2257 "fw-count-cache-flush-bcctr2,0,0")) 2258 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2259 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2260 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2261 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2262 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2263 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2264 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2265 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2266 2267 if (have_fw_feat(fw_features, "enabled", 2268 "speculation-policy-favor-security")) 2269 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2270 if (!have_fw_feat(fw_features, "disabled", 2271 "needs-l1d-flush-msr-pr-0-to-1")) 2272 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2273 if (!have_fw_feat(fw_features, "disabled", 2274 "needs-spec-barrier-for-bound-checks")) 2275 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2276 if (have_fw_feat(fw_features, "enabled", 2277 "needs-count-cache-flush-on-context-switch")) 2278 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2279 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2280 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2281 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2282 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2283 2284 of_node_put(fw_features); 2285 } 2286 2287 return 0; 2288 } 2289 #endif 2290 2291 long kvm_arch_vm_ioctl(struct file *filp, 2292 unsigned int ioctl, unsigned long arg) 2293 { 2294 struct kvm *kvm __maybe_unused = filp->private_data; 2295 void __user *argp = (void __user *)arg; 2296 long r; 2297 2298 switch (ioctl) { 2299 case KVM_PPC_GET_PVINFO: { 2300 struct kvm_ppc_pvinfo pvinfo; 2301 memset(&pvinfo, 0, sizeof(pvinfo)); 2302 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2303 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2304 r = -EFAULT; 2305 goto out; 2306 } 2307 2308 break; 2309 } 2310 #ifdef CONFIG_SPAPR_TCE_IOMMU 2311 case KVM_CREATE_SPAPR_TCE_64: { 2312 struct kvm_create_spapr_tce_64 create_tce_64; 2313 2314 r = -EFAULT; 2315 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2316 goto out; 2317 if (create_tce_64.flags) { 2318 r = -EINVAL; 2319 goto out; 2320 } 2321 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2322 goto out; 2323 } 2324 case KVM_CREATE_SPAPR_TCE: { 2325 struct kvm_create_spapr_tce create_tce; 2326 struct kvm_create_spapr_tce_64 create_tce_64; 2327 2328 r = -EFAULT; 2329 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2330 goto out; 2331 2332 create_tce_64.liobn = create_tce.liobn; 2333 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2334 create_tce_64.offset = 0; 2335 create_tce_64.size = create_tce.window_size >> 2336 IOMMU_PAGE_SHIFT_4K; 2337 create_tce_64.flags = 0; 2338 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2339 goto out; 2340 } 2341 #endif 2342 #ifdef CONFIG_PPC_BOOK3S_64 2343 case KVM_PPC_GET_SMMU_INFO: { 2344 struct kvm_ppc_smmu_info info; 2345 struct kvm *kvm = filp->private_data; 2346 2347 memset(&info, 0, sizeof(info)); 2348 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2349 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2350 r = -EFAULT; 2351 break; 2352 } 2353 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2354 struct kvm *kvm = filp->private_data; 2355 2356 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2357 break; 2358 } 2359 case KVM_PPC_CONFIGURE_V3_MMU: { 2360 struct kvm *kvm = filp->private_data; 2361 struct kvm_ppc_mmuv3_cfg cfg; 2362 2363 r = -EINVAL; 2364 if (!kvm->arch.kvm_ops->configure_mmu) 2365 goto out; 2366 r = -EFAULT; 2367 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2368 goto out; 2369 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2370 break; 2371 } 2372 case KVM_PPC_GET_RMMU_INFO: { 2373 struct kvm *kvm = filp->private_data; 2374 struct kvm_ppc_rmmu_info info; 2375 2376 r = -EINVAL; 2377 if (!kvm->arch.kvm_ops->get_rmmu_info) 2378 goto out; 2379 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2380 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2381 r = -EFAULT; 2382 break; 2383 } 2384 case KVM_PPC_GET_CPU_CHAR: { 2385 struct kvm_ppc_cpu_char cpuchar; 2386 2387 r = kvmppc_get_cpu_char(&cpuchar); 2388 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2389 r = -EFAULT; 2390 break; 2391 } 2392 default: { 2393 struct kvm *kvm = filp->private_data; 2394 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2395 } 2396 #else /* CONFIG_PPC_BOOK3S_64 */ 2397 default: 2398 r = -ENOTTY; 2399 #endif 2400 } 2401 out: 2402 return r; 2403 } 2404 2405 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2406 static unsigned long nr_lpids; 2407 2408 long kvmppc_alloc_lpid(void) 2409 { 2410 long lpid; 2411 2412 do { 2413 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2414 if (lpid >= nr_lpids) { 2415 pr_err("%s: No LPIDs free\n", __func__); 2416 return -ENOMEM; 2417 } 2418 } while (test_and_set_bit(lpid, lpid_inuse)); 2419 2420 return lpid; 2421 } 2422 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2423 2424 void kvmppc_claim_lpid(long lpid) 2425 { 2426 set_bit(lpid, lpid_inuse); 2427 } 2428 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2429 2430 void kvmppc_free_lpid(long lpid) 2431 { 2432 clear_bit(lpid, lpid_inuse); 2433 } 2434 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2435 2436 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2437 { 2438 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2439 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2440 } 2441 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2442 2443 int kvm_arch_init(void *opaque) 2444 { 2445 return 0; 2446 } 2447 2448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2449