1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright IBM Corp. 2007 16 * 17 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 19 */ 20 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/kvm_host.h> 24 #include <linux/vmalloc.h> 25 #include <linux/hrtimer.h> 26 #include <linux/sched/signal.h> 27 #include <linux/fs.h> 28 #include <linux/slab.h> 29 #include <linux/file.h> 30 #include <linux/module.h> 31 #include <linux/irqbypass.h> 32 #include <linux/kvm_irqfd.h> 33 #include <asm/cputable.h> 34 #include <linux/uaccess.h> 35 #include <asm/kvm_ppc.h> 36 #include <asm/tlbflush.h> 37 #include <asm/cputhreads.h> 38 #include <asm/irqflags.h> 39 #include <asm/iommu.h> 40 #include <asm/switch_to.h> 41 #include <asm/xive.h> 42 #ifdef CONFIG_PPC_PSERIES 43 #include <asm/hvcall.h> 44 #include <asm/plpar_wrappers.h> 45 #endif 46 47 #include "timing.h" 48 #include "irq.h" 49 #include "../mm/mmu_decl.h" 50 51 #define CREATE_TRACE_POINTS 52 #include "trace.h" 53 54 struct kvmppc_ops *kvmppc_hv_ops; 55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 56 struct kvmppc_ops *kvmppc_pr_ops; 57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 58 59 60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 61 { 62 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 63 } 64 65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 66 { 67 return false; 68 } 69 70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 71 { 72 return 1; 73 } 74 75 /* 76 * Common checks before entering the guest world. Call with interrupts 77 * disabled. 78 * 79 * returns: 80 * 81 * == 1 if we're ready to go into guest state 82 * <= 0 if we need to go back to the host with return value 83 */ 84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 85 { 86 int r; 87 88 WARN_ON(irqs_disabled()); 89 hard_irq_disable(); 90 91 while (true) { 92 if (need_resched()) { 93 local_irq_enable(); 94 cond_resched(); 95 hard_irq_disable(); 96 continue; 97 } 98 99 if (signal_pending(current)) { 100 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 101 vcpu->run->exit_reason = KVM_EXIT_INTR; 102 r = -EINTR; 103 break; 104 } 105 106 vcpu->mode = IN_GUEST_MODE; 107 108 /* 109 * Reading vcpu->requests must happen after setting vcpu->mode, 110 * so we don't miss a request because the requester sees 111 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 112 * before next entering the guest (and thus doesn't IPI). 113 * This also orders the write to mode from any reads 114 * to the page tables done while the VCPU is running. 115 * Please see the comment in kvm_flush_remote_tlbs. 116 */ 117 smp_mb(); 118 119 if (kvm_request_pending(vcpu)) { 120 /* Make sure we process requests preemptable */ 121 local_irq_enable(); 122 trace_kvm_check_requests(vcpu); 123 r = kvmppc_core_check_requests(vcpu); 124 hard_irq_disable(); 125 if (r > 0) 126 continue; 127 break; 128 } 129 130 if (kvmppc_core_prepare_to_enter(vcpu)) { 131 /* interrupts got enabled in between, so we 132 are back at square 1 */ 133 continue; 134 } 135 136 guest_enter_irqoff(); 137 return 1; 138 } 139 140 /* return to host */ 141 local_irq_enable(); 142 return r; 143 } 144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 145 146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 148 { 149 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 150 int i; 151 152 shared->sprg0 = swab64(shared->sprg0); 153 shared->sprg1 = swab64(shared->sprg1); 154 shared->sprg2 = swab64(shared->sprg2); 155 shared->sprg3 = swab64(shared->sprg3); 156 shared->srr0 = swab64(shared->srr0); 157 shared->srr1 = swab64(shared->srr1); 158 shared->dar = swab64(shared->dar); 159 shared->msr = swab64(shared->msr); 160 shared->dsisr = swab32(shared->dsisr); 161 shared->int_pending = swab32(shared->int_pending); 162 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 163 shared->sr[i] = swab32(shared->sr[i]); 164 } 165 #endif 166 167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 168 { 169 int nr = kvmppc_get_gpr(vcpu, 11); 170 int r; 171 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 172 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 173 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 174 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 175 unsigned long r2 = 0; 176 177 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 178 /* 32 bit mode */ 179 param1 &= 0xffffffff; 180 param2 &= 0xffffffff; 181 param3 &= 0xffffffff; 182 param4 &= 0xffffffff; 183 } 184 185 switch (nr) { 186 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 187 { 188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 189 /* Book3S can be little endian, find it out here */ 190 int shared_big_endian = true; 191 if (vcpu->arch.intr_msr & MSR_LE) 192 shared_big_endian = false; 193 if (shared_big_endian != vcpu->arch.shared_big_endian) 194 kvmppc_swab_shared(vcpu); 195 vcpu->arch.shared_big_endian = shared_big_endian; 196 #endif 197 198 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 199 /* 200 * Older versions of the Linux magic page code had 201 * a bug where they would map their trampoline code 202 * NX. If that's the case, remove !PR NX capability. 203 */ 204 vcpu->arch.disable_kernel_nx = true; 205 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 206 } 207 208 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 209 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 210 211 #ifdef CONFIG_PPC_64K_PAGES 212 /* 213 * Make sure our 4k magic page is in the same window of a 64k 214 * page within the guest and within the host's page. 215 */ 216 if ((vcpu->arch.magic_page_pa & 0xf000) != 217 ((ulong)vcpu->arch.shared & 0xf000)) { 218 void *old_shared = vcpu->arch.shared; 219 ulong shared = (ulong)vcpu->arch.shared; 220 void *new_shared; 221 222 shared &= PAGE_MASK; 223 shared |= vcpu->arch.magic_page_pa & 0xf000; 224 new_shared = (void*)shared; 225 memcpy(new_shared, old_shared, 0x1000); 226 vcpu->arch.shared = new_shared; 227 } 228 #endif 229 230 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 231 232 r = EV_SUCCESS; 233 break; 234 } 235 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 236 r = EV_SUCCESS; 237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 238 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 239 #endif 240 241 /* Second return value is in r4 */ 242 break; 243 case EV_HCALL_TOKEN(EV_IDLE): 244 r = EV_SUCCESS; 245 kvm_vcpu_block(vcpu); 246 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 247 break; 248 default: 249 r = EV_UNIMPLEMENTED; 250 break; 251 } 252 253 kvmppc_set_gpr(vcpu, 4, r2); 254 255 return r; 256 } 257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 258 259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 260 { 261 int r = false; 262 263 /* We have to know what CPU to virtualize */ 264 if (!vcpu->arch.pvr) 265 goto out; 266 267 /* PAPR only works with book3s_64 */ 268 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 269 goto out; 270 271 /* HV KVM can only do PAPR mode for now */ 272 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 273 goto out; 274 275 #ifdef CONFIG_KVM_BOOKE_HV 276 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 277 goto out; 278 #endif 279 280 r = true; 281 282 out: 283 vcpu->arch.sane = r; 284 return r ? 0 : -EINVAL; 285 } 286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 287 288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 289 { 290 enum emulation_result er; 291 int r; 292 293 er = kvmppc_emulate_loadstore(vcpu); 294 switch (er) { 295 case EMULATE_DONE: 296 /* Future optimization: only reload non-volatiles if they were 297 * actually modified. */ 298 r = RESUME_GUEST_NV; 299 break; 300 case EMULATE_AGAIN: 301 r = RESUME_GUEST; 302 break; 303 case EMULATE_DO_MMIO: 304 run->exit_reason = KVM_EXIT_MMIO; 305 /* We must reload nonvolatiles because "update" load/store 306 * instructions modify register state. */ 307 /* Future optimization: only reload non-volatiles if they were 308 * actually modified. */ 309 r = RESUME_HOST_NV; 310 break; 311 case EMULATE_FAIL: 312 { 313 u32 last_inst; 314 315 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 316 /* XXX Deliver Program interrupt to guest. */ 317 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 318 r = RESUME_HOST; 319 break; 320 } 321 default: 322 WARN_ON(1); 323 r = RESUME_GUEST; 324 } 325 326 return r; 327 } 328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 329 330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 331 bool data) 332 { 333 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 334 struct kvmppc_pte pte; 335 int r; 336 337 vcpu->stat.st++; 338 339 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 340 XLATE_WRITE, &pte); 341 if (r < 0) 342 return r; 343 344 *eaddr = pte.raddr; 345 346 if (!pte.may_write) 347 return -EPERM; 348 349 /* Magic page override */ 350 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 351 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 352 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 353 void *magic = vcpu->arch.shared; 354 magic += pte.eaddr & 0xfff; 355 memcpy(magic, ptr, size); 356 return EMULATE_DONE; 357 } 358 359 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 360 return EMULATE_DO_MMIO; 361 362 return EMULATE_DONE; 363 } 364 EXPORT_SYMBOL_GPL(kvmppc_st); 365 366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 367 bool data) 368 { 369 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 370 struct kvmppc_pte pte; 371 int rc; 372 373 vcpu->stat.ld++; 374 375 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 376 XLATE_READ, &pte); 377 if (rc) 378 return rc; 379 380 *eaddr = pte.raddr; 381 382 if (!pte.may_read) 383 return -EPERM; 384 385 if (!data && !pte.may_execute) 386 return -ENOEXEC; 387 388 /* Magic page override */ 389 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 390 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 391 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 392 void *magic = vcpu->arch.shared; 393 magic += pte.eaddr & 0xfff; 394 memcpy(ptr, magic, size); 395 return EMULATE_DONE; 396 } 397 398 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 399 return EMULATE_DO_MMIO; 400 401 return EMULATE_DONE; 402 } 403 EXPORT_SYMBOL_GPL(kvmppc_ld); 404 405 int kvm_arch_hardware_enable(void) 406 { 407 return 0; 408 } 409 410 int kvm_arch_hardware_setup(void) 411 { 412 return 0; 413 } 414 415 void kvm_arch_check_processor_compat(void *rtn) 416 { 417 *(int *)rtn = kvmppc_core_check_processor_compat(); 418 } 419 420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 421 { 422 struct kvmppc_ops *kvm_ops = NULL; 423 /* 424 * if we have both HV and PR enabled, default is HV 425 */ 426 if (type == 0) { 427 if (kvmppc_hv_ops) 428 kvm_ops = kvmppc_hv_ops; 429 else 430 kvm_ops = kvmppc_pr_ops; 431 if (!kvm_ops) 432 goto err_out; 433 } else if (type == KVM_VM_PPC_HV) { 434 if (!kvmppc_hv_ops) 435 goto err_out; 436 kvm_ops = kvmppc_hv_ops; 437 } else if (type == KVM_VM_PPC_PR) { 438 if (!kvmppc_pr_ops) 439 goto err_out; 440 kvm_ops = kvmppc_pr_ops; 441 } else 442 goto err_out; 443 444 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 445 return -ENOENT; 446 447 kvm->arch.kvm_ops = kvm_ops; 448 return kvmppc_core_init_vm(kvm); 449 err_out: 450 return -EINVAL; 451 } 452 453 bool kvm_arch_has_vcpu_debugfs(void) 454 { 455 return false; 456 } 457 458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 459 { 460 return 0; 461 } 462 463 void kvm_arch_destroy_vm(struct kvm *kvm) 464 { 465 unsigned int i; 466 struct kvm_vcpu *vcpu; 467 468 #ifdef CONFIG_KVM_XICS 469 /* 470 * We call kick_all_cpus_sync() to ensure that all 471 * CPUs have executed any pending IPIs before we 472 * continue and free VCPUs structures below. 473 */ 474 if (is_kvmppc_hv_enabled(kvm)) 475 kick_all_cpus_sync(); 476 #endif 477 478 kvm_for_each_vcpu(i, vcpu, kvm) 479 kvm_arch_vcpu_free(vcpu); 480 481 mutex_lock(&kvm->lock); 482 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 483 kvm->vcpus[i] = NULL; 484 485 atomic_set(&kvm->online_vcpus, 0); 486 487 kvmppc_core_destroy_vm(kvm); 488 489 mutex_unlock(&kvm->lock); 490 491 /* drop the module reference */ 492 module_put(kvm->arch.kvm_ops->owner); 493 } 494 495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 496 { 497 int r; 498 /* Assume we're using HV mode when the HV module is loaded */ 499 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 500 501 if (kvm) { 502 /* 503 * Hooray - we know which VM type we're running on. Depend on 504 * that rather than the guess above. 505 */ 506 hv_enabled = is_kvmppc_hv_enabled(kvm); 507 } 508 509 switch (ext) { 510 #ifdef CONFIG_BOOKE 511 case KVM_CAP_PPC_BOOKE_SREGS: 512 case KVM_CAP_PPC_BOOKE_WATCHDOG: 513 case KVM_CAP_PPC_EPR: 514 #else 515 case KVM_CAP_PPC_SEGSTATE: 516 case KVM_CAP_PPC_HIOR: 517 case KVM_CAP_PPC_PAPR: 518 #endif 519 case KVM_CAP_PPC_UNSET_IRQ: 520 case KVM_CAP_PPC_IRQ_LEVEL: 521 case KVM_CAP_ENABLE_CAP: 522 case KVM_CAP_ENABLE_CAP_VM: 523 case KVM_CAP_ONE_REG: 524 case KVM_CAP_IOEVENTFD: 525 case KVM_CAP_DEVICE_CTRL: 526 case KVM_CAP_IMMEDIATE_EXIT: 527 r = 1; 528 break; 529 case KVM_CAP_PPC_PAIRED_SINGLES: 530 case KVM_CAP_PPC_OSI: 531 case KVM_CAP_PPC_GET_PVINFO: 532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 533 case KVM_CAP_SW_TLB: 534 #endif 535 /* We support this only for PR */ 536 r = !hv_enabled; 537 break; 538 #ifdef CONFIG_KVM_MPIC 539 case KVM_CAP_IRQ_MPIC: 540 r = 1; 541 break; 542 #endif 543 544 #ifdef CONFIG_PPC_BOOK3S_64 545 case KVM_CAP_SPAPR_TCE: 546 case KVM_CAP_SPAPR_TCE_64: 547 /* fallthrough */ 548 case KVM_CAP_SPAPR_TCE_VFIO: 549 case KVM_CAP_PPC_RTAS: 550 case KVM_CAP_PPC_FIXUP_HCALL: 551 case KVM_CAP_PPC_ENABLE_HCALL: 552 #ifdef CONFIG_KVM_XICS 553 case KVM_CAP_IRQ_XICS: 554 #endif 555 case KVM_CAP_PPC_GET_CPU_CHAR: 556 r = 1; 557 break; 558 559 case KVM_CAP_PPC_ALLOC_HTAB: 560 r = hv_enabled; 561 break; 562 #endif /* CONFIG_PPC_BOOK3S_64 */ 563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 564 case KVM_CAP_PPC_SMT: 565 r = 0; 566 if (kvm) { 567 if (kvm->arch.emul_smt_mode > 1) 568 r = kvm->arch.emul_smt_mode; 569 else 570 r = kvm->arch.smt_mode; 571 } else if (hv_enabled) { 572 if (cpu_has_feature(CPU_FTR_ARCH_300)) 573 r = 1; 574 else 575 r = threads_per_subcore; 576 } 577 break; 578 case KVM_CAP_PPC_SMT_POSSIBLE: 579 r = 1; 580 if (hv_enabled) { 581 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 582 r = ((threads_per_subcore << 1) - 1); 583 else 584 /* P9 can emulate dbells, so allow any mode */ 585 r = 8 | 4 | 2 | 1; 586 } 587 break; 588 case KVM_CAP_PPC_RMA: 589 r = 0; 590 break; 591 case KVM_CAP_PPC_HWRNG: 592 r = kvmppc_hwrng_present(); 593 break; 594 case KVM_CAP_PPC_MMU_RADIX: 595 r = !!(hv_enabled && radix_enabled()); 596 break; 597 case KVM_CAP_PPC_MMU_HASH_V3: 598 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300)); 599 break; 600 #endif 601 case KVM_CAP_SYNC_MMU: 602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 603 r = hv_enabled; 604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 605 r = 1; 606 #else 607 r = 0; 608 #endif 609 break; 610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 611 case KVM_CAP_PPC_HTAB_FD: 612 r = hv_enabled; 613 break; 614 #endif 615 case KVM_CAP_NR_VCPUS: 616 /* 617 * Recommending a number of CPUs is somewhat arbitrary; we 618 * return the number of present CPUs for -HV (since a host 619 * will have secondary threads "offline"), and for other KVM 620 * implementations just count online CPUs. 621 */ 622 if (hv_enabled) 623 r = num_present_cpus(); 624 else 625 r = num_online_cpus(); 626 break; 627 case KVM_CAP_NR_MEMSLOTS: 628 r = KVM_USER_MEM_SLOTS; 629 break; 630 case KVM_CAP_MAX_VCPUS: 631 r = KVM_MAX_VCPUS; 632 break; 633 #ifdef CONFIG_PPC_BOOK3S_64 634 case KVM_CAP_PPC_GET_SMMU_INFO: 635 r = 1; 636 break; 637 case KVM_CAP_SPAPR_MULTITCE: 638 r = 1; 639 break; 640 case KVM_CAP_SPAPR_RESIZE_HPT: 641 /* Disable this on POWER9 until code handles new HPTE format */ 642 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300); 643 break; 644 #endif 645 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 646 case KVM_CAP_PPC_FWNMI: 647 r = hv_enabled; 648 break; 649 #endif 650 case KVM_CAP_PPC_HTM: 651 r = hv_enabled && 652 (cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM_COMP); 653 break; 654 default: 655 r = 0; 656 break; 657 } 658 return r; 659 660 } 661 662 long kvm_arch_dev_ioctl(struct file *filp, 663 unsigned int ioctl, unsigned long arg) 664 { 665 return -EINVAL; 666 } 667 668 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 669 struct kvm_memory_slot *dont) 670 { 671 kvmppc_core_free_memslot(kvm, free, dont); 672 } 673 674 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 675 unsigned long npages) 676 { 677 return kvmppc_core_create_memslot(kvm, slot, npages); 678 } 679 680 int kvm_arch_prepare_memory_region(struct kvm *kvm, 681 struct kvm_memory_slot *memslot, 682 const struct kvm_userspace_memory_region *mem, 683 enum kvm_mr_change change) 684 { 685 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 686 } 687 688 void kvm_arch_commit_memory_region(struct kvm *kvm, 689 const struct kvm_userspace_memory_region *mem, 690 const struct kvm_memory_slot *old, 691 const struct kvm_memory_slot *new, 692 enum kvm_mr_change change) 693 { 694 kvmppc_core_commit_memory_region(kvm, mem, old, new); 695 } 696 697 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 698 struct kvm_memory_slot *slot) 699 { 700 kvmppc_core_flush_memslot(kvm, slot); 701 } 702 703 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 704 { 705 struct kvm_vcpu *vcpu; 706 vcpu = kvmppc_core_vcpu_create(kvm, id); 707 if (!IS_ERR(vcpu)) { 708 vcpu->arch.wqp = &vcpu->wq; 709 kvmppc_create_vcpu_debugfs(vcpu, id); 710 } 711 return vcpu; 712 } 713 714 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 715 { 716 } 717 718 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 719 { 720 /* Make sure we're not using the vcpu anymore */ 721 hrtimer_cancel(&vcpu->arch.dec_timer); 722 723 kvmppc_remove_vcpu_debugfs(vcpu); 724 725 switch (vcpu->arch.irq_type) { 726 case KVMPPC_IRQ_MPIC: 727 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 728 break; 729 case KVMPPC_IRQ_XICS: 730 if (xive_enabled()) 731 kvmppc_xive_cleanup_vcpu(vcpu); 732 else 733 kvmppc_xics_free_icp(vcpu); 734 break; 735 } 736 737 kvmppc_core_vcpu_free(vcpu); 738 } 739 740 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 741 { 742 kvm_arch_vcpu_free(vcpu); 743 } 744 745 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 746 { 747 return kvmppc_core_pending_dec(vcpu); 748 } 749 750 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 751 { 752 struct kvm_vcpu *vcpu; 753 754 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 755 kvmppc_decrementer_func(vcpu); 756 757 return HRTIMER_NORESTART; 758 } 759 760 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 761 { 762 int ret; 763 764 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 765 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 766 vcpu->arch.dec_expires = ~(u64)0; 767 768 #ifdef CONFIG_KVM_EXIT_TIMING 769 mutex_init(&vcpu->arch.exit_timing_lock); 770 #endif 771 ret = kvmppc_subarch_vcpu_init(vcpu); 772 return ret; 773 } 774 775 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 776 { 777 kvmppc_mmu_destroy(vcpu); 778 kvmppc_subarch_vcpu_uninit(vcpu); 779 } 780 781 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 782 { 783 #ifdef CONFIG_BOOKE 784 /* 785 * vrsave (formerly usprg0) isn't used by Linux, but may 786 * be used by the guest. 787 * 788 * On non-booke this is associated with Altivec and 789 * is handled by code in book3s.c. 790 */ 791 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 792 #endif 793 kvmppc_core_vcpu_load(vcpu, cpu); 794 } 795 796 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 797 { 798 kvmppc_core_vcpu_put(vcpu); 799 #ifdef CONFIG_BOOKE 800 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 801 #endif 802 } 803 804 /* 805 * irq_bypass_add_producer and irq_bypass_del_producer are only 806 * useful if the architecture supports PCI passthrough. 807 * irq_bypass_stop and irq_bypass_start are not needed and so 808 * kvm_ops are not defined for them. 809 */ 810 bool kvm_arch_has_irq_bypass(void) 811 { 812 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 813 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 814 } 815 816 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 817 struct irq_bypass_producer *prod) 818 { 819 struct kvm_kernel_irqfd *irqfd = 820 container_of(cons, struct kvm_kernel_irqfd, consumer); 821 struct kvm *kvm = irqfd->kvm; 822 823 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 824 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 825 826 return 0; 827 } 828 829 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 830 struct irq_bypass_producer *prod) 831 { 832 struct kvm_kernel_irqfd *irqfd = 833 container_of(cons, struct kvm_kernel_irqfd, consumer); 834 struct kvm *kvm = irqfd->kvm; 835 836 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 837 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 838 } 839 840 #ifdef CONFIG_VSX 841 static inline int kvmppc_get_vsr_dword_offset(int index) 842 { 843 int offset; 844 845 if ((index != 0) && (index != 1)) 846 return -1; 847 848 #ifdef __BIG_ENDIAN 849 offset = index; 850 #else 851 offset = 1 - index; 852 #endif 853 854 return offset; 855 } 856 857 static inline int kvmppc_get_vsr_word_offset(int index) 858 { 859 int offset; 860 861 if ((index > 3) || (index < 0)) 862 return -1; 863 864 #ifdef __BIG_ENDIAN 865 offset = index; 866 #else 867 offset = 3 - index; 868 #endif 869 return offset; 870 } 871 872 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 873 u64 gpr) 874 { 875 union kvmppc_one_reg val; 876 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 877 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 878 879 if (offset == -1) 880 return; 881 882 if (vcpu->arch.mmio_vsx_tx_sx_enabled) { 883 val.vval = VCPU_VSX_VR(vcpu, index); 884 val.vsxval[offset] = gpr; 885 VCPU_VSX_VR(vcpu, index) = val.vval; 886 } else { 887 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 888 } 889 } 890 891 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 892 u64 gpr) 893 { 894 union kvmppc_one_reg val; 895 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 896 897 if (vcpu->arch.mmio_vsx_tx_sx_enabled) { 898 val.vval = VCPU_VSX_VR(vcpu, index); 899 val.vsxval[0] = gpr; 900 val.vsxval[1] = gpr; 901 VCPU_VSX_VR(vcpu, index) = val.vval; 902 } else { 903 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 904 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 905 } 906 } 907 908 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 909 u32 gpr32) 910 { 911 union kvmppc_one_reg val; 912 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 913 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 914 int dword_offset, word_offset; 915 916 if (offset == -1) 917 return; 918 919 if (vcpu->arch.mmio_vsx_tx_sx_enabled) { 920 val.vval = VCPU_VSX_VR(vcpu, index); 921 val.vsx32val[offset] = gpr32; 922 VCPU_VSX_VR(vcpu, index) = val.vval; 923 } else { 924 dword_offset = offset / 2; 925 word_offset = offset % 2; 926 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 927 val.vsx32val[word_offset] = gpr32; 928 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 929 } 930 } 931 #endif /* CONFIG_VSX */ 932 933 #ifdef CONFIG_PPC_FPU 934 static inline u64 sp_to_dp(u32 fprs) 935 { 936 u64 fprd; 937 938 preempt_disable(); 939 enable_kernel_fp(); 940 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) 941 : "fr0"); 942 preempt_enable(); 943 return fprd; 944 } 945 946 static inline u32 dp_to_sp(u64 fprd) 947 { 948 u32 fprs; 949 950 preempt_disable(); 951 enable_kernel_fp(); 952 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) 953 : "fr0"); 954 preempt_enable(); 955 return fprs; 956 } 957 958 #else 959 #define sp_to_dp(x) (x) 960 #define dp_to_sp(x) (x) 961 #endif /* CONFIG_PPC_FPU */ 962 963 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 964 struct kvm_run *run) 965 { 966 u64 uninitialized_var(gpr); 967 968 if (run->mmio.len > sizeof(gpr)) { 969 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 970 return; 971 } 972 973 if (!vcpu->arch.mmio_host_swabbed) { 974 switch (run->mmio.len) { 975 case 8: gpr = *(u64 *)run->mmio.data; break; 976 case 4: gpr = *(u32 *)run->mmio.data; break; 977 case 2: gpr = *(u16 *)run->mmio.data; break; 978 case 1: gpr = *(u8 *)run->mmio.data; break; 979 } 980 } else { 981 switch (run->mmio.len) { 982 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 983 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 984 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 985 case 1: gpr = *(u8 *)run->mmio.data; break; 986 } 987 } 988 989 /* conversion between single and double precision */ 990 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 991 gpr = sp_to_dp(gpr); 992 993 if (vcpu->arch.mmio_sign_extend) { 994 switch (run->mmio.len) { 995 #ifdef CONFIG_PPC64 996 case 4: 997 gpr = (s64)(s32)gpr; 998 break; 999 #endif 1000 case 2: 1001 gpr = (s64)(s16)gpr; 1002 break; 1003 case 1: 1004 gpr = (s64)(s8)gpr; 1005 break; 1006 } 1007 } 1008 1009 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1010 case KVM_MMIO_REG_GPR: 1011 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1012 break; 1013 case KVM_MMIO_REG_FPR: 1014 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1015 break; 1016 #ifdef CONFIG_PPC_BOOK3S 1017 case KVM_MMIO_REG_QPR: 1018 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1019 break; 1020 case KVM_MMIO_REG_FQPR: 1021 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1022 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1023 break; 1024 #endif 1025 #ifdef CONFIG_VSX 1026 case KVM_MMIO_REG_VSX: 1027 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD) 1028 kvmppc_set_vsr_dword(vcpu, gpr); 1029 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD) 1030 kvmppc_set_vsr_word(vcpu, gpr); 1031 else if (vcpu->arch.mmio_vsx_copy_type == 1032 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1033 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1034 break; 1035 #endif 1036 default: 1037 BUG(); 1038 } 1039 } 1040 1041 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1042 unsigned int rt, unsigned int bytes, 1043 int is_default_endian, int sign_extend) 1044 { 1045 int idx, ret; 1046 bool host_swabbed; 1047 1048 /* Pity C doesn't have a logical XOR operator */ 1049 if (kvmppc_need_byteswap(vcpu)) { 1050 host_swabbed = is_default_endian; 1051 } else { 1052 host_swabbed = !is_default_endian; 1053 } 1054 1055 if (bytes > sizeof(run->mmio.data)) { 1056 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1057 run->mmio.len); 1058 } 1059 1060 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1061 run->mmio.len = bytes; 1062 run->mmio.is_write = 0; 1063 1064 vcpu->arch.io_gpr = rt; 1065 vcpu->arch.mmio_host_swabbed = host_swabbed; 1066 vcpu->mmio_needed = 1; 1067 vcpu->mmio_is_write = 0; 1068 vcpu->arch.mmio_sign_extend = sign_extend; 1069 1070 idx = srcu_read_lock(&vcpu->kvm->srcu); 1071 1072 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1073 bytes, &run->mmio.data); 1074 1075 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1076 1077 if (!ret) { 1078 kvmppc_complete_mmio_load(vcpu, run); 1079 vcpu->mmio_needed = 0; 1080 return EMULATE_DONE; 1081 } 1082 1083 return EMULATE_DO_MMIO; 1084 } 1085 1086 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1087 unsigned int rt, unsigned int bytes, 1088 int is_default_endian) 1089 { 1090 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 1091 } 1092 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1093 1094 /* Same as above, but sign extends */ 1095 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 1096 unsigned int rt, unsigned int bytes, 1097 int is_default_endian) 1098 { 1099 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 1100 } 1101 1102 #ifdef CONFIG_VSX 1103 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1104 unsigned int rt, unsigned int bytes, 1105 int is_default_endian, int mmio_sign_extend) 1106 { 1107 enum emulation_result emulated = EMULATE_DONE; 1108 1109 /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */ 1110 if ( (vcpu->arch.mmio_vsx_copy_nums > 4) || 1111 (vcpu->arch.mmio_vsx_copy_nums < 0) ) { 1112 return EMULATE_FAIL; 1113 } 1114 1115 while (vcpu->arch.mmio_vsx_copy_nums) { 1116 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1117 is_default_endian, mmio_sign_extend); 1118 1119 if (emulated != EMULATE_DONE) 1120 break; 1121 1122 vcpu->arch.paddr_accessed += run->mmio.len; 1123 1124 vcpu->arch.mmio_vsx_copy_nums--; 1125 vcpu->arch.mmio_vsx_offset++; 1126 } 1127 return emulated; 1128 } 1129 #endif /* CONFIG_VSX */ 1130 1131 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1132 u64 val, unsigned int bytes, int is_default_endian) 1133 { 1134 void *data = run->mmio.data; 1135 int idx, ret; 1136 bool host_swabbed; 1137 1138 /* Pity C doesn't have a logical XOR operator */ 1139 if (kvmppc_need_byteswap(vcpu)) { 1140 host_swabbed = is_default_endian; 1141 } else { 1142 host_swabbed = !is_default_endian; 1143 } 1144 1145 if (bytes > sizeof(run->mmio.data)) { 1146 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1147 run->mmio.len); 1148 } 1149 1150 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1151 run->mmio.len = bytes; 1152 run->mmio.is_write = 1; 1153 vcpu->mmio_needed = 1; 1154 vcpu->mmio_is_write = 1; 1155 1156 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1157 val = dp_to_sp(val); 1158 1159 /* Store the value at the lowest bytes in 'data'. */ 1160 if (!host_swabbed) { 1161 switch (bytes) { 1162 case 8: *(u64 *)data = val; break; 1163 case 4: *(u32 *)data = val; break; 1164 case 2: *(u16 *)data = val; break; 1165 case 1: *(u8 *)data = val; break; 1166 } 1167 } else { 1168 switch (bytes) { 1169 case 8: *(u64 *)data = swab64(val); break; 1170 case 4: *(u32 *)data = swab32(val); break; 1171 case 2: *(u16 *)data = swab16(val); break; 1172 case 1: *(u8 *)data = val; break; 1173 } 1174 } 1175 1176 idx = srcu_read_lock(&vcpu->kvm->srcu); 1177 1178 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1179 bytes, &run->mmio.data); 1180 1181 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1182 1183 if (!ret) { 1184 vcpu->mmio_needed = 0; 1185 return EMULATE_DONE; 1186 } 1187 1188 return EMULATE_DO_MMIO; 1189 } 1190 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1191 1192 #ifdef CONFIG_VSX 1193 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1194 { 1195 u32 dword_offset, word_offset; 1196 union kvmppc_one_reg reg; 1197 int vsx_offset = 0; 1198 int copy_type = vcpu->arch.mmio_vsx_copy_type; 1199 int result = 0; 1200 1201 switch (copy_type) { 1202 case KVMPPC_VSX_COPY_DWORD: 1203 vsx_offset = 1204 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1205 1206 if (vsx_offset == -1) { 1207 result = -1; 1208 break; 1209 } 1210 1211 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) { 1212 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1213 } else { 1214 reg.vval = VCPU_VSX_VR(vcpu, rs); 1215 *val = reg.vsxval[vsx_offset]; 1216 } 1217 break; 1218 1219 case KVMPPC_VSX_COPY_WORD: 1220 vsx_offset = 1221 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1222 1223 if (vsx_offset == -1) { 1224 result = -1; 1225 break; 1226 } 1227 1228 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) { 1229 dword_offset = vsx_offset / 2; 1230 word_offset = vsx_offset % 2; 1231 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1232 *val = reg.vsx32val[word_offset]; 1233 } else { 1234 reg.vval = VCPU_VSX_VR(vcpu, rs); 1235 *val = reg.vsx32val[vsx_offset]; 1236 } 1237 break; 1238 1239 default: 1240 result = -1; 1241 break; 1242 } 1243 1244 return result; 1245 } 1246 1247 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1248 int rs, unsigned int bytes, int is_default_endian) 1249 { 1250 u64 val; 1251 enum emulation_result emulated = EMULATE_DONE; 1252 1253 vcpu->arch.io_gpr = rs; 1254 1255 /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */ 1256 if ( (vcpu->arch.mmio_vsx_copy_nums > 4) || 1257 (vcpu->arch.mmio_vsx_copy_nums < 0) ) { 1258 return EMULATE_FAIL; 1259 } 1260 1261 while (vcpu->arch.mmio_vsx_copy_nums) { 1262 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1263 return EMULATE_FAIL; 1264 1265 emulated = kvmppc_handle_store(run, vcpu, 1266 val, bytes, is_default_endian); 1267 1268 if (emulated != EMULATE_DONE) 1269 break; 1270 1271 vcpu->arch.paddr_accessed += run->mmio.len; 1272 1273 vcpu->arch.mmio_vsx_copy_nums--; 1274 vcpu->arch.mmio_vsx_offset++; 1275 } 1276 1277 return emulated; 1278 } 1279 1280 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu, 1281 struct kvm_run *run) 1282 { 1283 enum emulation_result emulated = EMULATE_FAIL; 1284 int r; 1285 1286 vcpu->arch.paddr_accessed += run->mmio.len; 1287 1288 if (!vcpu->mmio_is_write) { 1289 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr, 1290 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1291 } else { 1292 emulated = kvmppc_handle_vsx_store(run, vcpu, 1293 vcpu->arch.io_gpr, run->mmio.len, 1); 1294 } 1295 1296 switch (emulated) { 1297 case EMULATE_DO_MMIO: 1298 run->exit_reason = KVM_EXIT_MMIO; 1299 r = RESUME_HOST; 1300 break; 1301 case EMULATE_FAIL: 1302 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1303 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1304 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1305 r = RESUME_HOST; 1306 break; 1307 default: 1308 r = RESUME_GUEST; 1309 break; 1310 } 1311 return r; 1312 } 1313 #endif /* CONFIG_VSX */ 1314 1315 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1316 { 1317 int r = 0; 1318 union kvmppc_one_reg val; 1319 int size; 1320 1321 size = one_reg_size(reg->id); 1322 if (size > sizeof(val)) 1323 return -EINVAL; 1324 1325 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1326 if (r == -EINVAL) { 1327 r = 0; 1328 switch (reg->id) { 1329 #ifdef CONFIG_ALTIVEC 1330 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1331 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1332 r = -ENXIO; 1333 break; 1334 } 1335 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1336 break; 1337 case KVM_REG_PPC_VSCR: 1338 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1339 r = -ENXIO; 1340 break; 1341 } 1342 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1343 break; 1344 case KVM_REG_PPC_VRSAVE: 1345 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1346 break; 1347 #endif /* CONFIG_ALTIVEC */ 1348 default: 1349 r = -EINVAL; 1350 break; 1351 } 1352 } 1353 1354 if (r) 1355 return r; 1356 1357 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1358 r = -EFAULT; 1359 1360 return r; 1361 } 1362 1363 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1364 { 1365 int r; 1366 union kvmppc_one_reg val; 1367 int size; 1368 1369 size = one_reg_size(reg->id); 1370 if (size > sizeof(val)) 1371 return -EINVAL; 1372 1373 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1374 return -EFAULT; 1375 1376 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1377 if (r == -EINVAL) { 1378 r = 0; 1379 switch (reg->id) { 1380 #ifdef CONFIG_ALTIVEC 1381 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1382 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1383 r = -ENXIO; 1384 break; 1385 } 1386 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1387 break; 1388 case KVM_REG_PPC_VSCR: 1389 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1390 r = -ENXIO; 1391 break; 1392 } 1393 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1394 break; 1395 case KVM_REG_PPC_VRSAVE: 1396 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1397 r = -ENXIO; 1398 break; 1399 } 1400 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1401 break; 1402 #endif /* CONFIG_ALTIVEC */ 1403 default: 1404 r = -EINVAL; 1405 break; 1406 } 1407 } 1408 1409 return r; 1410 } 1411 1412 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1413 { 1414 int r; 1415 1416 if (vcpu->mmio_needed) { 1417 vcpu->mmio_needed = 0; 1418 if (!vcpu->mmio_is_write) 1419 kvmppc_complete_mmio_load(vcpu, run); 1420 #ifdef CONFIG_VSX 1421 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1422 vcpu->arch.mmio_vsx_copy_nums--; 1423 vcpu->arch.mmio_vsx_offset++; 1424 } 1425 1426 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1427 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run); 1428 if (r == RESUME_HOST) { 1429 vcpu->mmio_needed = 1; 1430 return r; 1431 } 1432 } 1433 #endif 1434 } else if (vcpu->arch.osi_needed) { 1435 u64 *gprs = run->osi.gprs; 1436 int i; 1437 1438 for (i = 0; i < 32; i++) 1439 kvmppc_set_gpr(vcpu, i, gprs[i]); 1440 vcpu->arch.osi_needed = 0; 1441 } else if (vcpu->arch.hcall_needed) { 1442 int i; 1443 1444 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1445 for (i = 0; i < 9; ++i) 1446 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1447 vcpu->arch.hcall_needed = 0; 1448 #ifdef CONFIG_BOOKE 1449 } else if (vcpu->arch.epr_needed) { 1450 kvmppc_set_epr(vcpu, run->epr.epr); 1451 vcpu->arch.epr_needed = 0; 1452 #endif 1453 } 1454 1455 kvm_sigset_activate(vcpu); 1456 1457 if (run->immediate_exit) 1458 r = -EINTR; 1459 else 1460 r = kvmppc_vcpu_run(run, vcpu); 1461 1462 kvm_sigset_deactivate(vcpu); 1463 1464 return r; 1465 } 1466 1467 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1468 { 1469 if (irq->irq == KVM_INTERRUPT_UNSET) { 1470 kvmppc_core_dequeue_external(vcpu); 1471 return 0; 1472 } 1473 1474 kvmppc_core_queue_external(vcpu, irq); 1475 1476 kvm_vcpu_kick(vcpu); 1477 1478 return 0; 1479 } 1480 1481 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1482 struct kvm_enable_cap *cap) 1483 { 1484 int r; 1485 1486 if (cap->flags) 1487 return -EINVAL; 1488 1489 switch (cap->cap) { 1490 case KVM_CAP_PPC_OSI: 1491 r = 0; 1492 vcpu->arch.osi_enabled = true; 1493 break; 1494 case KVM_CAP_PPC_PAPR: 1495 r = 0; 1496 vcpu->arch.papr_enabled = true; 1497 break; 1498 case KVM_CAP_PPC_EPR: 1499 r = 0; 1500 if (cap->args[0]) 1501 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1502 else 1503 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1504 break; 1505 #ifdef CONFIG_BOOKE 1506 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1507 r = 0; 1508 vcpu->arch.watchdog_enabled = true; 1509 break; 1510 #endif 1511 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1512 case KVM_CAP_SW_TLB: { 1513 struct kvm_config_tlb cfg; 1514 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1515 1516 r = -EFAULT; 1517 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1518 break; 1519 1520 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1521 break; 1522 } 1523 #endif 1524 #ifdef CONFIG_KVM_MPIC 1525 case KVM_CAP_IRQ_MPIC: { 1526 struct fd f; 1527 struct kvm_device *dev; 1528 1529 r = -EBADF; 1530 f = fdget(cap->args[0]); 1531 if (!f.file) 1532 break; 1533 1534 r = -EPERM; 1535 dev = kvm_device_from_filp(f.file); 1536 if (dev) 1537 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1538 1539 fdput(f); 1540 break; 1541 } 1542 #endif 1543 #ifdef CONFIG_KVM_XICS 1544 case KVM_CAP_IRQ_XICS: { 1545 struct fd f; 1546 struct kvm_device *dev; 1547 1548 r = -EBADF; 1549 f = fdget(cap->args[0]); 1550 if (!f.file) 1551 break; 1552 1553 r = -EPERM; 1554 dev = kvm_device_from_filp(f.file); 1555 if (dev) { 1556 if (xive_enabled()) 1557 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1558 else 1559 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1560 } 1561 1562 fdput(f); 1563 break; 1564 } 1565 #endif /* CONFIG_KVM_XICS */ 1566 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1567 case KVM_CAP_PPC_FWNMI: 1568 r = -EINVAL; 1569 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1570 break; 1571 r = 0; 1572 vcpu->kvm->arch.fwnmi_enabled = true; 1573 break; 1574 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1575 default: 1576 r = -EINVAL; 1577 break; 1578 } 1579 1580 if (!r) 1581 r = kvmppc_sanity_check(vcpu); 1582 1583 return r; 1584 } 1585 1586 bool kvm_arch_intc_initialized(struct kvm *kvm) 1587 { 1588 #ifdef CONFIG_KVM_MPIC 1589 if (kvm->arch.mpic) 1590 return true; 1591 #endif 1592 #ifdef CONFIG_KVM_XICS 1593 if (kvm->arch.xics || kvm->arch.xive) 1594 return true; 1595 #endif 1596 return false; 1597 } 1598 1599 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1600 struct kvm_mp_state *mp_state) 1601 { 1602 return -EINVAL; 1603 } 1604 1605 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1606 struct kvm_mp_state *mp_state) 1607 { 1608 return -EINVAL; 1609 } 1610 1611 long kvm_arch_vcpu_ioctl(struct file *filp, 1612 unsigned int ioctl, unsigned long arg) 1613 { 1614 struct kvm_vcpu *vcpu = filp->private_data; 1615 void __user *argp = (void __user *)arg; 1616 long r; 1617 1618 switch (ioctl) { 1619 case KVM_INTERRUPT: { 1620 struct kvm_interrupt irq; 1621 r = -EFAULT; 1622 if (copy_from_user(&irq, argp, sizeof(irq))) 1623 goto out; 1624 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 1625 goto out; 1626 } 1627 1628 case KVM_ENABLE_CAP: 1629 { 1630 struct kvm_enable_cap cap; 1631 r = -EFAULT; 1632 if (copy_from_user(&cap, argp, sizeof(cap))) 1633 goto out; 1634 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 1635 break; 1636 } 1637 1638 case KVM_SET_ONE_REG: 1639 case KVM_GET_ONE_REG: 1640 { 1641 struct kvm_one_reg reg; 1642 r = -EFAULT; 1643 if (copy_from_user(®, argp, sizeof(reg))) 1644 goto out; 1645 if (ioctl == KVM_SET_ONE_REG) 1646 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 1647 else 1648 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 1649 break; 1650 } 1651 1652 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1653 case KVM_DIRTY_TLB: { 1654 struct kvm_dirty_tlb dirty; 1655 r = -EFAULT; 1656 if (copy_from_user(&dirty, argp, sizeof(dirty))) 1657 goto out; 1658 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 1659 break; 1660 } 1661 #endif 1662 default: 1663 r = -EINVAL; 1664 } 1665 1666 out: 1667 return r; 1668 } 1669 1670 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1671 { 1672 return VM_FAULT_SIGBUS; 1673 } 1674 1675 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 1676 { 1677 u32 inst_nop = 0x60000000; 1678 #ifdef CONFIG_KVM_BOOKE_HV 1679 u32 inst_sc1 = 0x44000022; 1680 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 1681 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 1682 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 1683 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1684 #else 1685 u32 inst_lis = 0x3c000000; 1686 u32 inst_ori = 0x60000000; 1687 u32 inst_sc = 0x44000002; 1688 u32 inst_imm_mask = 0xffff; 1689 1690 /* 1691 * The hypercall to get into KVM from within guest context is as 1692 * follows: 1693 * 1694 * lis r0, r0, KVM_SC_MAGIC_R0@h 1695 * ori r0, KVM_SC_MAGIC_R0@l 1696 * sc 1697 * nop 1698 */ 1699 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 1700 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 1701 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 1702 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1703 #endif 1704 1705 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 1706 1707 return 0; 1708 } 1709 1710 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 1711 bool line_status) 1712 { 1713 if (!irqchip_in_kernel(kvm)) 1714 return -ENXIO; 1715 1716 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1717 irq_event->irq, irq_event->level, 1718 line_status); 1719 return 0; 1720 } 1721 1722 1723 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1724 struct kvm_enable_cap *cap) 1725 { 1726 int r; 1727 1728 if (cap->flags) 1729 return -EINVAL; 1730 1731 switch (cap->cap) { 1732 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 1733 case KVM_CAP_PPC_ENABLE_HCALL: { 1734 unsigned long hcall = cap->args[0]; 1735 1736 r = -EINVAL; 1737 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 1738 cap->args[1] > 1) 1739 break; 1740 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 1741 break; 1742 if (cap->args[1]) 1743 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 1744 else 1745 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 1746 r = 0; 1747 break; 1748 } 1749 case KVM_CAP_PPC_SMT: { 1750 unsigned long mode = cap->args[0]; 1751 unsigned long flags = cap->args[1]; 1752 1753 r = -EINVAL; 1754 if (kvm->arch.kvm_ops->set_smt_mode) 1755 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 1756 break; 1757 } 1758 #endif 1759 default: 1760 r = -EINVAL; 1761 break; 1762 } 1763 1764 return r; 1765 } 1766 1767 #ifdef CONFIG_PPC_BOOK3S_64 1768 /* 1769 * These functions check whether the underlying hardware is safe 1770 * against attacks based on observing the effects of speculatively 1771 * executed instructions, and whether it supplies instructions for 1772 * use in workarounds. The information comes from firmware, either 1773 * via the device tree on powernv platforms or from an hcall on 1774 * pseries platforms. 1775 */ 1776 #ifdef CONFIG_PPC_PSERIES 1777 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 1778 { 1779 struct h_cpu_char_result c; 1780 unsigned long rc; 1781 1782 if (!machine_is(pseries)) 1783 return -ENOTTY; 1784 1785 rc = plpar_get_cpu_characteristics(&c); 1786 if (rc == H_SUCCESS) { 1787 cp->character = c.character; 1788 cp->behaviour = c.behaviour; 1789 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 1790 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 1791 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 1792 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 1793 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 1794 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 1795 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 1796 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 1797 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 1798 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 1799 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1800 } 1801 return 0; 1802 } 1803 #else 1804 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 1805 { 1806 return -ENOTTY; 1807 } 1808 #endif 1809 1810 static inline bool have_fw_feat(struct device_node *fw_features, 1811 const char *state, const char *name) 1812 { 1813 struct device_node *np; 1814 bool r = false; 1815 1816 np = of_get_child_by_name(fw_features, name); 1817 if (np) { 1818 r = of_property_read_bool(np, state); 1819 of_node_put(np); 1820 } 1821 return r; 1822 } 1823 1824 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 1825 { 1826 struct device_node *np, *fw_features; 1827 int r; 1828 1829 memset(cp, 0, sizeof(*cp)); 1830 r = pseries_get_cpu_char(cp); 1831 if (r != -ENOTTY) 1832 return r; 1833 1834 np = of_find_node_by_name(NULL, "ibm,opal"); 1835 if (np) { 1836 fw_features = of_get_child_by_name(np, "fw-features"); 1837 of_node_put(np); 1838 if (!fw_features) 1839 return 0; 1840 if (have_fw_feat(fw_features, "enabled", 1841 "inst-spec-barrier-ori31,31,0")) 1842 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 1843 if (have_fw_feat(fw_features, "enabled", 1844 "fw-bcctrl-serialized")) 1845 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 1846 if (have_fw_feat(fw_features, "enabled", 1847 "inst-l1d-flush-ori30,30,0")) 1848 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 1849 if (have_fw_feat(fw_features, "enabled", 1850 "inst-l1d-flush-trig2")) 1851 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 1852 if (have_fw_feat(fw_features, "enabled", 1853 "fw-l1d-thread-split")) 1854 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 1855 if (have_fw_feat(fw_features, "enabled", 1856 "fw-count-cache-disabled")) 1857 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 1858 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 1859 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 1860 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 1861 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 1862 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 1863 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 1864 1865 if (have_fw_feat(fw_features, "enabled", 1866 "speculation-policy-favor-security")) 1867 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 1868 if (!have_fw_feat(fw_features, "disabled", 1869 "needs-l1d-flush-msr-pr-0-to-1")) 1870 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 1871 if (!have_fw_feat(fw_features, "disabled", 1872 "needs-spec-barrier-for-bound-checks")) 1873 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1874 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 1875 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 1876 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1877 1878 of_node_put(fw_features); 1879 } 1880 1881 return 0; 1882 } 1883 #endif 1884 1885 long kvm_arch_vm_ioctl(struct file *filp, 1886 unsigned int ioctl, unsigned long arg) 1887 { 1888 struct kvm *kvm __maybe_unused = filp->private_data; 1889 void __user *argp = (void __user *)arg; 1890 long r; 1891 1892 switch (ioctl) { 1893 case KVM_PPC_GET_PVINFO: { 1894 struct kvm_ppc_pvinfo pvinfo; 1895 memset(&pvinfo, 0, sizeof(pvinfo)); 1896 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 1897 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 1898 r = -EFAULT; 1899 goto out; 1900 } 1901 1902 break; 1903 } 1904 case KVM_ENABLE_CAP: 1905 { 1906 struct kvm_enable_cap cap; 1907 r = -EFAULT; 1908 if (copy_from_user(&cap, argp, sizeof(cap))) 1909 goto out; 1910 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 1911 break; 1912 } 1913 #ifdef CONFIG_SPAPR_TCE_IOMMU 1914 case KVM_CREATE_SPAPR_TCE_64: { 1915 struct kvm_create_spapr_tce_64 create_tce_64; 1916 1917 r = -EFAULT; 1918 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 1919 goto out; 1920 if (create_tce_64.flags) { 1921 r = -EINVAL; 1922 goto out; 1923 } 1924 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 1925 goto out; 1926 } 1927 case KVM_CREATE_SPAPR_TCE: { 1928 struct kvm_create_spapr_tce create_tce; 1929 struct kvm_create_spapr_tce_64 create_tce_64; 1930 1931 r = -EFAULT; 1932 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 1933 goto out; 1934 1935 create_tce_64.liobn = create_tce.liobn; 1936 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 1937 create_tce_64.offset = 0; 1938 create_tce_64.size = create_tce.window_size >> 1939 IOMMU_PAGE_SHIFT_4K; 1940 create_tce_64.flags = 0; 1941 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 1942 goto out; 1943 } 1944 #endif 1945 #ifdef CONFIG_PPC_BOOK3S_64 1946 case KVM_PPC_GET_SMMU_INFO: { 1947 struct kvm_ppc_smmu_info info; 1948 struct kvm *kvm = filp->private_data; 1949 1950 memset(&info, 0, sizeof(info)); 1951 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 1952 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 1953 r = -EFAULT; 1954 break; 1955 } 1956 case KVM_PPC_RTAS_DEFINE_TOKEN: { 1957 struct kvm *kvm = filp->private_data; 1958 1959 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 1960 break; 1961 } 1962 case KVM_PPC_CONFIGURE_V3_MMU: { 1963 struct kvm *kvm = filp->private_data; 1964 struct kvm_ppc_mmuv3_cfg cfg; 1965 1966 r = -EINVAL; 1967 if (!kvm->arch.kvm_ops->configure_mmu) 1968 goto out; 1969 r = -EFAULT; 1970 if (copy_from_user(&cfg, argp, sizeof(cfg))) 1971 goto out; 1972 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 1973 break; 1974 } 1975 case KVM_PPC_GET_RMMU_INFO: { 1976 struct kvm *kvm = filp->private_data; 1977 struct kvm_ppc_rmmu_info info; 1978 1979 r = -EINVAL; 1980 if (!kvm->arch.kvm_ops->get_rmmu_info) 1981 goto out; 1982 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 1983 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 1984 r = -EFAULT; 1985 break; 1986 } 1987 case KVM_PPC_GET_CPU_CHAR: { 1988 struct kvm_ppc_cpu_char cpuchar; 1989 1990 r = kvmppc_get_cpu_char(&cpuchar); 1991 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 1992 r = -EFAULT; 1993 break; 1994 } 1995 default: { 1996 struct kvm *kvm = filp->private_data; 1997 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 1998 } 1999 #else /* CONFIG_PPC_BOOK3S_64 */ 2000 default: 2001 r = -ENOTTY; 2002 #endif 2003 } 2004 out: 2005 return r; 2006 } 2007 2008 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2009 static unsigned long nr_lpids; 2010 2011 long kvmppc_alloc_lpid(void) 2012 { 2013 long lpid; 2014 2015 do { 2016 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2017 if (lpid >= nr_lpids) { 2018 pr_err("%s: No LPIDs free\n", __func__); 2019 return -ENOMEM; 2020 } 2021 } while (test_and_set_bit(lpid, lpid_inuse)); 2022 2023 return lpid; 2024 } 2025 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2026 2027 void kvmppc_claim_lpid(long lpid) 2028 { 2029 set_bit(lpid, lpid_inuse); 2030 } 2031 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2032 2033 void kvmppc_free_lpid(long lpid) 2034 { 2035 clear_bit(lpid, lpid_inuse); 2036 } 2037 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2038 2039 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2040 { 2041 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2042 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2043 } 2044 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2045 2046 int kvm_arch_init(void *opaque) 2047 { 2048 return 0; 2049 } 2050 2051 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2052