xref: /linux/arch/powerpc/kvm/powerpc.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 #ifdef CONFIG_PPC_PSERIES
43 #include <asm/hvcall.h>
44 #include <asm/plpar_wrappers.h>
45 #endif
46 
47 #include "timing.h"
48 #include "irq.h"
49 #include "../mm/mmu_decl.h"
50 
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53 
54 struct kvmppc_ops *kvmppc_hv_ops;
55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
56 struct kvmppc_ops *kvmppc_pr_ops;
57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
58 
59 
60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
61 {
62 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
63 }
64 
65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
66 {
67 	return false;
68 }
69 
70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
71 {
72 	return 1;
73 }
74 
75 /*
76  * Common checks before entering the guest world.  Call with interrupts
77  * disabled.
78  *
79  * returns:
80  *
81  * == 1 if we're ready to go into guest state
82  * <= 0 if we need to go back to the host with return value
83  */
84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
85 {
86 	int r;
87 
88 	WARN_ON(irqs_disabled());
89 	hard_irq_disable();
90 
91 	while (true) {
92 		if (need_resched()) {
93 			local_irq_enable();
94 			cond_resched();
95 			hard_irq_disable();
96 			continue;
97 		}
98 
99 		if (signal_pending(current)) {
100 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
101 			vcpu->run->exit_reason = KVM_EXIT_INTR;
102 			r = -EINTR;
103 			break;
104 		}
105 
106 		vcpu->mode = IN_GUEST_MODE;
107 
108 		/*
109 		 * Reading vcpu->requests must happen after setting vcpu->mode,
110 		 * so we don't miss a request because the requester sees
111 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
112 		 * before next entering the guest (and thus doesn't IPI).
113 		 * This also orders the write to mode from any reads
114 		 * to the page tables done while the VCPU is running.
115 		 * Please see the comment in kvm_flush_remote_tlbs.
116 		 */
117 		smp_mb();
118 
119 		if (kvm_request_pending(vcpu)) {
120 			/* Make sure we process requests preemptable */
121 			local_irq_enable();
122 			trace_kvm_check_requests(vcpu);
123 			r = kvmppc_core_check_requests(vcpu);
124 			hard_irq_disable();
125 			if (r > 0)
126 				continue;
127 			break;
128 		}
129 
130 		if (kvmppc_core_prepare_to_enter(vcpu)) {
131 			/* interrupts got enabled in between, so we
132 			   are back at square 1 */
133 			continue;
134 		}
135 
136 		guest_enter_irqoff();
137 		return 1;
138 	}
139 
140 	/* return to host */
141 	local_irq_enable();
142 	return r;
143 }
144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
145 
146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
148 {
149 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
150 	int i;
151 
152 	shared->sprg0 = swab64(shared->sprg0);
153 	shared->sprg1 = swab64(shared->sprg1);
154 	shared->sprg2 = swab64(shared->sprg2);
155 	shared->sprg3 = swab64(shared->sprg3);
156 	shared->srr0 = swab64(shared->srr0);
157 	shared->srr1 = swab64(shared->srr1);
158 	shared->dar = swab64(shared->dar);
159 	shared->msr = swab64(shared->msr);
160 	shared->dsisr = swab32(shared->dsisr);
161 	shared->int_pending = swab32(shared->int_pending);
162 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
163 		shared->sr[i] = swab32(shared->sr[i]);
164 }
165 #endif
166 
167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
168 {
169 	int nr = kvmppc_get_gpr(vcpu, 11);
170 	int r;
171 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
172 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
173 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
174 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
175 	unsigned long r2 = 0;
176 
177 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
178 		/* 32 bit mode */
179 		param1 &= 0xffffffff;
180 		param2 &= 0xffffffff;
181 		param3 &= 0xffffffff;
182 		param4 &= 0xffffffff;
183 	}
184 
185 	switch (nr) {
186 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
187 	{
188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
189 		/* Book3S can be little endian, find it out here */
190 		int shared_big_endian = true;
191 		if (vcpu->arch.intr_msr & MSR_LE)
192 			shared_big_endian = false;
193 		if (shared_big_endian != vcpu->arch.shared_big_endian)
194 			kvmppc_swab_shared(vcpu);
195 		vcpu->arch.shared_big_endian = shared_big_endian;
196 #endif
197 
198 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
199 			/*
200 			 * Older versions of the Linux magic page code had
201 			 * a bug where they would map their trampoline code
202 			 * NX. If that's the case, remove !PR NX capability.
203 			 */
204 			vcpu->arch.disable_kernel_nx = true;
205 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
206 		}
207 
208 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
209 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
210 
211 #ifdef CONFIG_PPC_64K_PAGES
212 		/*
213 		 * Make sure our 4k magic page is in the same window of a 64k
214 		 * page within the guest and within the host's page.
215 		 */
216 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
217 		    ((ulong)vcpu->arch.shared & 0xf000)) {
218 			void *old_shared = vcpu->arch.shared;
219 			ulong shared = (ulong)vcpu->arch.shared;
220 			void *new_shared;
221 
222 			shared &= PAGE_MASK;
223 			shared |= vcpu->arch.magic_page_pa & 0xf000;
224 			new_shared = (void*)shared;
225 			memcpy(new_shared, old_shared, 0x1000);
226 			vcpu->arch.shared = new_shared;
227 		}
228 #endif
229 
230 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
231 
232 		r = EV_SUCCESS;
233 		break;
234 	}
235 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
236 		r = EV_SUCCESS;
237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
238 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
239 #endif
240 
241 		/* Second return value is in r4 */
242 		break;
243 	case EV_HCALL_TOKEN(EV_IDLE):
244 		r = EV_SUCCESS;
245 		kvm_vcpu_block(vcpu);
246 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
247 		break;
248 	default:
249 		r = EV_UNIMPLEMENTED;
250 		break;
251 	}
252 
253 	kvmppc_set_gpr(vcpu, 4, r2);
254 
255 	return r;
256 }
257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
258 
259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
260 {
261 	int r = false;
262 
263 	/* We have to know what CPU to virtualize */
264 	if (!vcpu->arch.pvr)
265 		goto out;
266 
267 	/* PAPR only works with book3s_64 */
268 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
269 		goto out;
270 
271 	/* HV KVM can only do PAPR mode for now */
272 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
273 		goto out;
274 
275 #ifdef CONFIG_KVM_BOOKE_HV
276 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
277 		goto out;
278 #endif
279 
280 	r = true;
281 
282 out:
283 	vcpu->arch.sane = r;
284 	return r ? 0 : -EINVAL;
285 }
286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
287 
288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
289 {
290 	enum emulation_result er;
291 	int r;
292 
293 	er = kvmppc_emulate_loadstore(vcpu);
294 	switch (er) {
295 	case EMULATE_DONE:
296 		/* Future optimization: only reload non-volatiles if they were
297 		 * actually modified. */
298 		r = RESUME_GUEST_NV;
299 		break;
300 	case EMULATE_AGAIN:
301 		r = RESUME_GUEST;
302 		break;
303 	case EMULATE_DO_MMIO:
304 		run->exit_reason = KVM_EXIT_MMIO;
305 		/* We must reload nonvolatiles because "update" load/store
306 		 * instructions modify register state. */
307 		/* Future optimization: only reload non-volatiles if they were
308 		 * actually modified. */
309 		r = RESUME_HOST_NV;
310 		break;
311 	case EMULATE_FAIL:
312 	{
313 		u32 last_inst;
314 
315 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
316 		/* XXX Deliver Program interrupt to guest. */
317 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
318 		r = RESUME_HOST;
319 		break;
320 	}
321 	default:
322 		WARN_ON(1);
323 		r = RESUME_GUEST;
324 	}
325 
326 	return r;
327 }
328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
329 
330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
331 	      bool data)
332 {
333 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
334 	struct kvmppc_pte pte;
335 	int r;
336 
337 	vcpu->stat.st++;
338 
339 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340 			 XLATE_WRITE, &pte);
341 	if (r < 0)
342 		return r;
343 
344 	*eaddr = pte.raddr;
345 
346 	if (!pte.may_write)
347 		return -EPERM;
348 
349 	/* Magic page override */
350 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353 		void *magic = vcpu->arch.shared;
354 		magic += pte.eaddr & 0xfff;
355 		memcpy(magic, ptr, size);
356 		return EMULATE_DONE;
357 	}
358 
359 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360 		return EMULATE_DO_MMIO;
361 
362 	return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365 
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367 		      bool data)
368 {
369 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370 	struct kvmppc_pte pte;
371 	int rc;
372 
373 	vcpu->stat.ld++;
374 
375 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
376 			  XLATE_READ, &pte);
377 	if (rc)
378 		return rc;
379 
380 	*eaddr = pte.raddr;
381 
382 	if (!pte.may_read)
383 		return -EPERM;
384 
385 	if (!data && !pte.may_execute)
386 		return -ENOEXEC;
387 
388 	/* Magic page override */
389 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
390 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
391 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
392 		void *magic = vcpu->arch.shared;
393 		magic += pte.eaddr & 0xfff;
394 		memcpy(ptr, magic, size);
395 		return EMULATE_DONE;
396 	}
397 
398 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
399 		return EMULATE_DO_MMIO;
400 
401 	return EMULATE_DONE;
402 }
403 EXPORT_SYMBOL_GPL(kvmppc_ld);
404 
405 int kvm_arch_hardware_enable(void)
406 {
407 	return 0;
408 }
409 
410 int kvm_arch_hardware_setup(void)
411 {
412 	return 0;
413 }
414 
415 void kvm_arch_check_processor_compat(void *rtn)
416 {
417 	*(int *)rtn = kvmppc_core_check_processor_compat();
418 }
419 
420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
421 {
422 	struct kvmppc_ops *kvm_ops = NULL;
423 	/*
424 	 * if we have both HV and PR enabled, default is HV
425 	 */
426 	if (type == 0) {
427 		if (kvmppc_hv_ops)
428 			kvm_ops = kvmppc_hv_ops;
429 		else
430 			kvm_ops = kvmppc_pr_ops;
431 		if (!kvm_ops)
432 			goto err_out;
433 	} else	if (type == KVM_VM_PPC_HV) {
434 		if (!kvmppc_hv_ops)
435 			goto err_out;
436 		kvm_ops = kvmppc_hv_ops;
437 	} else if (type == KVM_VM_PPC_PR) {
438 		if (!kvmppc_pr_ops)
439 			goto err_out;
440 		kvm_ops = kvmppc_pr_ops;
441 	} else
442 		goto err_out;
443 
444 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
445 		return -ENOENT;
446 
447 	kvm->arch.kvm_ops = kvm_ops;
448 	return kvmppc_core_init_vm(kvm);
449 err_out:
450 	return -EINVAL;
451 }
452 
453 bool kvm_arch_has_vcpu_debugfs(void)
454 {
455 	return false;
456 }
457 
458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
459 {
460 	return 0;
461 }
462 
463 void kvm_arch_destroy_vm(struct kvm *kvm)
464 {
465 	unsigned int i;
466 	struct kvm_vcpu *vcpu;
467 
468 #ifdef CONFIG_KVM_XICS
469 	/*
470 	 * We call kick_all_cpus_sync() to ensure that all
471 	 * CPUs have executed any pending IPIs before we
472 	 * continue and free VCPUs structures below.
473 	 */
474 	if (is_kvmppc_hv_enabled(kvm))
475 		kick_all_cpus_sync();
476 #endif
477 
478 	kvm_for_each_vcpu(i, vcpu, kvm)
479 		kvm_arch_vcpu_free(vcpu);
480 
481 	mutex_lock(&kvm->lock);
482 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
483 		kvm->vcpus[i] = NULL;
484 
485 	atomic_set(&kvm->online_vcpus, 0);
486 
487 	kvmppc_core_destroy_vm(kvm);
488 
489 	mutex_unlock(&kvm->lock);
490 
491 	/* drop the module reference */
492 	module_put(kvm->arch.kvm_ops->owner);
493 }
494 
495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
496 {
497 	int r;
498 	/* Assume we're using HV mode when the HV module is loaded */
499 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
500 
501 	if (kvm) {
502 		/*
503 		 * Hooray - we know which VM type we're running on. Depend on
504 		 * that rather than the guess above.
505 		 */
506 		hv_enabled = is_kvmppc_hv_enabled(kvm);
507 	}
508 
509 	switch (ext) {
510 #ifdef CONFIG_BOOKE
511 	case KVM_CAP_PPC_BOOKE_SREGS:
512 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
513 	case KVM_CAP_PPC_EPR:
514 #else
515 	case KVM_CAP_PPC_SEGSTATE:
516 	case KVM_CAP_PPC_HIOR:
517 	case KVM_CAP_PPC_PAPR:
518 #endif
519 	case KVM_CAP_PPC_UNSET_IRQ:
520 	case KVM_CAP_PPC_IRQ_LEVEL:
521 	case KVM_CAP_ENABLE_CAP:
522 	case KVM_CAP_ENABLE_CAP_VM:
523 	case KVM_CAP_ONE_REG:
524 	case KVM_CAP_IOEVENTFD:
525 	case KVM_CAP_DEVICE_CTRL:
526 	case KVM_CAP_IMMEDIATE_EXIT:
527 		r = 1;
528 		break;
529 	case KVM_CAP_PPC_PAIRED_SINGLES:
530 	case KVM_CAP_PPC_OSI:
531 	case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533 	case KVM_CAP_SW_TLB:
534 #endif
535 		/* We support this only for PR */
536 		r = !hv_enabled;
537 		break;
538 #ifdef CONFIG_KVM_MPIC
539 	case KVM_CAP_IRQ_MPIC:
540 		r = 1;
541 		break;
542 #endif
543 
544 #ifdef CONFIG_PPC_BOOK3S_64
545 	case KVM_CAP_SPAPR_TCE:
546 	case KVM_CAP_SPAPR_TCE_64:
547 		/* fallthrough */
548 	case KVM_CAP_SPAPR_TCE_VFIO:
549 	case KVM_CAP_PPC_RTAS:
550 	case KVM_CAP_PPC_FIXUP_HCALL:
551 	case KVM_CAP_PPC_ENABLE_HCALL:
552 #ifdef CONFIG_KVM_XICS
553 	case KVM_CAP_IRQ_XICS:
554 #endif
555 	case KVM_CAP_PPC_GET_CPU_CHAR:
556 		r = 1;
557 		break;
558 
559 	case KVM_CAP_PPC_ALLOC_HTAB:
560 		r = hv_enabled;
561 		break;
562 #endif /* CONFIG_PPC_BOOK3S_64 */
563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
564 	case KVM_CAP_PPC_SMT:
565 		r = 0;
566 		if (kvm) {
567 			if (kvm->arch.emul_smt_mode > 1)
568 				r = kvm->arch.emul_smt_mode;
569 			else
570 				r = kvm->arch.smt_mode;
571 		} else if (hv_enabled) {
572 			if (cpu_has_feature(CPU_FTR_ARCH_300))
573 				r = 1;
574 			else
575 				r = threads_per_subcore;
576 		}
577 		break;
578 	case KVM_CAP_PPC_SMT_POSSIBLE:
579 		r = 1;
580 		if (hv_enabled) {
581 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
582 				r = ((threads_per_subcore << 1) - 1);
583 			else
584 				/* P9 can emulate dbells, so allow any mode */
585 				r = 8 | 4 | 2 | 1;
586 		}
587 		break;
588 	case KVM_CAP_PPC_RMA:
589 		r = 0;
590 		break;
591 	case KVM_CAP_PPC_HWRNG:
592 		r = kvmppc_hwrng_present();
593 		break;
594 	case KVM_CAP_PPC_MMU_RADIX:
595 		r = !!(hv_enabled && radix_enabled());
596 		break;
597 	case KVM_CAP_PPC_MMU_HASH_V3:
598 		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
599 		break;
600 #endif
601 	case KVM_CAP_SYNC_MMU:
602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603 		r = hv_enabled;
604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605 		r = 1;
606 #else
607 		r = 0;
608 #endif
609 		break;
610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611 	case KVM_CAP_PPC_HTAB_FD:
612 		r = hv_enabled;
613 		break;
614 #endif
615 	case KVM_CAP_NR_VCPUS:
616 		/*
617 		 * Recommending a number of CPUs is somewhat arbitrary; we
618 		 * return the number of present CPUs for -HV (since a host
619 		 * will have secondary threads "offline"), and for other KVM
620 		 * implementations just count online CPUs.
621 		 */
622 		if (hv_enabled)
623 			r = num_present_cpus();
624 		else
625 			r = num_online_cpus();
626 		break;
627 	case KVM_CAP_NR_MEMSLOTS:
628 		r = KVM_USER_MEM_SLOTS;
629 		break;
630 	case KVM_CAP_MAX_VCPUS:
631 		r = KVM_MAX_VCPUS;
632 		break;
633 #ifdef CONFIG_PPC_BOOK3S_64
634 	case KVM_CAP_PPC_GET_SMMU_INFO:
635 		r = 1;
636 		break;
637 	case KVM_CAP_SPAPR_MULTITCE:
638 		r = 1;
639 		break;
640 	case KVM_CAP_SPAPR_RESIZE_HPT:
641 		/* Disable this on POWER9 until code handles new HPTE format */
642 		r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
643 		break;
644 #endif
645 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
646 	case KVM_CAP_PPC_FWNMI:
647 		r = hv_enabled;
648 		break;
649 #endif
650 	case KVM_CAP_PPC_HTM:
651 		r = hv_enabled &&
652 		    (cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM_COMP);
653 		break;
654 	default:
655 		r = 0;
656 		break;
657 	}
658 	return r;
659 
660 }
661 
662 long kvm_arch_dev_ioctl(struct file *filp,
663                         unsigned int ioctl, unsigned long arg)
664 {
665 	return -EINVAL;
666 }
667 
668 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
669 			   struct kvm_memory_slot *dont)
670 {
671 	kvmppc_core_free_memslot(kvm, free, dont);
672 }
673 
674 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
675 			    unsigned long npages)
676 {
677 	return kvmppc_core_create_memslot(kvm, slot, npages);
678 }
679 
680 int kvm_arch_prepare_memory_region(struct kvm *kvm,
681 				   struct kvm_memory_slot *memslot,
682 				   const struct kvm_userspace_memory_region *mem,
683 				   enum kvm_mr_change change)
684 {
685 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
686 }
687 
688 void kvm_arch_commit_memory_region(struct kvm *kvm,
689 				   const struct kvm_userspace_memory_region *mem,
690 				   const struct kvm_memory_slot *old,
691 				   const struct kvm_memory_slot *new,
692 				   enum kvm_mr_change change)
693 {
694 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
695 }
696 
697 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
698 				   struct kvm_memory_slot *slot)
699 {
700 	kvmppc_core_flush_memslot(kvm, slot);
701 }
702 
703 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
704 {
705 	struct kvm_vcpu *vcpu;
706 	vcpu = kvmppc_core_vcpu_create(kvm, id);
707 	if (!IS_ERR(vcpu)) {
708 		vcpu->arch.wqp = &vcpu->wq;
709 		kvmppc_create_vcpu_debugfs(vcpu, id);
710 	}
711 	return vcpu;
712 }
713 
714 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
715 {
716 }
717 
718 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
719 {
720 	/* Make sure we're not using the vcpu anymore */
721 	hrtimer_cancel(&vcpu->arch.dec_timer);
722 
723 	kvmppc_remove_vcpu_debugfs(vcpu);
724 
725 	switch (vcpu->arch.irq_type) {
726 	case KVMPPC_IRQ_MPIC:
727 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
728 		break;
729 	case KVMPPC_IRQ_XICS:
730 		if (xive_enabled())
731 			kvmppc_xive_cleanup_vcpu(vcpu);
732 		else
733 			kvmppc_xics_free_icp(vcpu);
734 		break;
735 	}
736 
737 	kvmppc_core_vcpu_free(vcpu);
738 }
739 
740 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
741 {
742 	kvm_arch_vcpu_free(vcpu);
743 }
744 
745 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
746 {
747 	return kvmppc_core_pending_dec(vcpu);
748 }
749 
750 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
751 {
752 	struct kvm_vcpu *vcpu;
753 
754 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
755 	kvmppc_decrementer_func(vcpu);
756 
757 	return HRTIMER_NORESTART;
758 }
759 
760 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
761 {
762 	int ret;
763 
764 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
765 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
766 	vcpu->arch.dec_expires = ~(u64)0;
767 
768 #ifdef CONFIG_KVM_EXIT_TIMING
769 	mutex_init(&vcpu->arch.exit_timing_lock);
770 #endif
771 	ret = kvmppc_subarch_vcpu_init(vcpu);
772 	return ret;
773 }
774 
775 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
776 {
777 	kvmppc_mmu_destroy(vcpu);
778 	kvmppc_subarch_vcpu_uninit(vcpu);
779 }
780 
781 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
782 {
783 #ifdef CONFIG_BOOKE
784 	/*
785 	 * vrsave (formerly usprg0) isn't used by Linux, but may
786 	 * be used by the guest.
787 	 *
788 	 * On non-booke this is associated with Altivec and
789 	 * is handled by code in book3s.c.
790 	 */
791 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
792 #endif
793 	kvmppc_core_vcpu_load(vcpu, cpu);
794 }
795 
796 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
797 {
798 	kvmppc_core_vcpu_put(vcpu);
799 #ifdef CONFIG_BOOKE
800 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
801 #endif
802 }
803 
804 /*
805  * irq_bypass_add_producer and irq_bypass_del_producer are only
806  * useful if the architecture supports PCI passthrough.
807  * irq_bypass_stop and irq_bypass_start are not needed and so
808  * kvm_ops are not defined for them.
809  */
810 bool kvm_arch_has_irq_bypass(void)
811 {
812 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
813 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
814 }
815 
816 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
817 				     struct irq_bypass_producer *prod)
818 {
819 	struct kvm_kernel_irqfd *irqfd =
820 		container_of(cons, struct kvm_kernel_irqfd, consumer);
821 	struct kvm *kvm = irqfd->kvm;
822 
823 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
824 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
825 
826 	return 0;
827 }
828 
829 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
830 				      struct irq_bypass_producer *prod)
831 {
832 	struct kvm_kernel_irqfd *irqfd =
833 		container_of(cons, struct kvm_kernel_irqfd, consumer);
834 	struct kvm *kvm = irqfd->kvm;
835 
836 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
837 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
838 }
839 
840 #ifdef CONFIG_VSX
841 static inline int kvmppc_get_vsr_dword_offset(int index)
842 {
843 	int offset;
844 
845 	if ((index != 0) && (index != 1))
846 		return -1;
847 
848 #ifdef __BIG_ENDIAN
849 	offset =  index;
850 #else
851 	offset = 1 - index;
852 #endif
853 
854 	return offset;
855 }
856 
857 static inline int kvmppc_get_vsr_word_offset(int index)
858 {
859 	int offset;
860 
861 	if ((index > 3) || (index < 0))
862 		return -1;
863 
864 #ifdef __BIG_ENDIAN
865 	offset = index;
866 #else
867 	offset = 3 - index;
868 #endif
869 	return offset;
870 }
871 
872 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
873 	u64 gpr)
874 {
875 	union kvmppc_one_reg val;
876 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
877 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
878 
879 	if (offset == -1)
880 		return;
881 
882 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
883 		val.vval = VCPU_VSX_VR(vcpu, index);
884 		val.vsxval[offset] = gpr;
885 		VCPU_VSX_VR(vcpu, index) = val.vval;
886 	} else {
887 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
888 	}
889 }
890 
891 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
892 	u64 gpr)
893 {
894 	union kvmppc_one_reg val;
895 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
896 
897 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
898 		val.vval = VCPU_VSX_VR(vcpu, index);
899 		val.vsxval[0] = gpr;
900 		val.vsxval[1] = gpr;
901 		VCPU_VSX_VR(vcpu, index) = val.vval;
902 	} else {
903 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
904 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
905 	}
906 }
907 
908 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
909 	u32 gpr32)
910 {
911 	union kvmppc_one_reg val;
912 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
913 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
914 	int dword_offset, word_offset;
915 
916 	if (offset == -1)
917 		return;
918 
919 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
920 		val.vval = VCPU_VSX_VR(vcpu, index);
921 		val.vsx32val[offset] = gpr32;
922 		VCPU_VSX_VR(vcpu, index) = val.vval;
923 	} else {
924 		dword_offset = offset / 2;
925 		word_offset = offset % 2;
926 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
927 		val.vsx32val[word_offset] = gpr32;
928 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
929 	}
930 }
931 #endif /* CONFIG_VSX */
932 
933 #ifdef CONFIG_PPC_FPU
934 static inline u64 sp_to_dp(u32 fprs)
935 {
936 	u64 fprd;
937 
938 	preempt_disable();
939 	enable_kernel_fp();
940 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
941 	     : "fr0");
942 	preempt_enable();
943 	return fprd;
944 }
945 
946 static inline u32 dp_to_sp(u64 fprd)
947 {
948 	u32 fprs;
949 
950 	preempt_disable();
951 	enable_kernel_fp();
952 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
953 	     : "fr0");
954 	preempt_enable();
955 	return fprs;
956 }
957 
958 #else
959 #define sp_to_dp(x)	(x)
960 #define dp_to_sp(x)	(x)
961 #endif /* CONFIG_PPC_FPU */
962 
963 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
964                                       struct kvm_run *run)
965 {
966 	u64 uninitialized_var(gpr);
967 
968 	if (run->mmio.len > sizeof(gpr)) {
969 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
970 		return;
971 	}
972 
973 	if (!vcpu->arch.mmio_host_swabbed) {
974 		switch (run->mmio.len) {
975 		case 8: gpr = *(u64 *)run->mmio.data; break;
976 		case 4: gpr = *(u32 *)run->mmio.data; break;
977 		case 2: gpr = *(u16 *)run->mmio.data; break;
978 		case 1: gpr = *(u8 *)run->mmio.data; break;
979 		}
980 	} else {
981 		switch (run->mmio.len) {
982 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
983 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
984 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
985 		case 1: gpr = *(u8 *)run->mmio.data; break;
986 		}
987 	}
988 
989 	/* conversion between single and double precision */
990 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
991 		gpr = sp_to_dp(gpr);
992 
993 	if (vcpu->arch.mmio_sign_extend) {
994 		switch (run->mmio.len) {
995 #ifdef CONFIG_PPC64
996 		case 4:
997 			gpr = (s64)(s32)gpr;
998 			break;
999 #endif
1000 		case 2:
1001 			gpr = (s64)(s16)gpr;
1002 			break;
1003 		case 1:
1004 			gpr = (s64)(s8)gpr;
1005 			break;
1006 		}
1007 	}
1008 
1009 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1010 	case KVM_MMIO_REG_GPR:
1011 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1012 		break;
1013 	case KVM_MMIO_REG_FPR:
1014 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1015 		break;
1016 #ifdef CONFIG_PPC_BOOK3S
1017 	case KVM_MMIO_REG_QPR:
1018 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1019 		break;
1020 	case KVM_MMIO_REG_FQPR:
1021 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1022 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1023 		break;
1024 #endif
1025 #ifdef CONFIG_VSX
1026 	case KVM_MMIO_REG_VSX:
1027 		if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1028 			kvmppc_set_vsr_dword(vcpu, gpr);
1029 		else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1030 			kvmppc_set_vsr_word(vcpu, gpr);
1031 		else if (vcpu->arch.mmio_vsx_copy_type ==
1032 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1033 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1034 		break;
1035 #endif
1036 	default:
1037 		BUG();
1038 	}
1039 }
1040 
1041 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1042 				unsigned int rt, unsigned int bytes,
1043 				int is_default_endian, int sign_extend)
1044 {
1045 	int idx, ret;
1046 	bool host_swabbed;
1047 
1048 	/* Pity C doesn't have a logical XOR operator */
1049 	if (kvmppc_need_byteswap(vcpu)) {
1050 		host_swabbed = is_default_endian;
1051 	} else {
1052 		host_swabbed = !is_default_endian;
1053 	}
1054 
1055 	if (bytes > sizeof(run->mmio.data)) {
1056 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1057 		       run->mmio.len);
1058 	}
1059 
1060 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1061 	run->mmio.len = bytes;
1062 	run->mmio.is_write = 0;
1063 
1064 	vcpu->arch.io_gpr = rt;
1065 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1066 	vcpu->mmio_needed = 1;
1067 	vcpu->mmio_is_write = 0;
1068 	vcpu->arch.mmio_sign_extend = sign_extend;
1069 
1070 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1071 
1072 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1073 			      bytes, &run->mmio.data);
1074 
1075 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1076 
1077 	if (!ret) {
1078 		kvmppc_complete_mmio_load(vcpu, run);
1079 		vcpu->mmio_needed = 0;
1080 		return EMULATE_DONE;
1081 	}
1082 
1083 	return EMULATE_DO_MMIO;
1084 }
1085 
1086 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1087 		       unsigned int rt, unsigned int bytes,
1088 		       int is_default_endian)
1089 {
1090 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1091 }
1092 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1093 
1094 /* Same as above, but sign extends */
1095 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1096 			unsigned int rt, unsigned int bytes,
1097 			int is_default_endian)
1098 {
1099 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1100 }
1101 
1102 #ifdef CONFIG_VSX
1103 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1104 			unsigned int rt, unsigned int bytes,
1105 			int is_default_endian, int mmio_sign_extend)
1106 {
1107 	enum emulation_result emulated = EMULATE_DONE;
1108 
1109 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1110 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1111 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1112 		return EMULATE_FAIL;
1113 	}
1114 
1115 	while (vcpu->arch.mmio_vsx_copy_nums) {
1116 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1117 			is_default_endian, mmio_sign_extend);
1118 
1119 		if (emulated != EMULATE_DONE)
1120 			break;
1121 
1122 		vcpu->arch.paddr_accessed += run->mmio.len;
1123 
1124 		vcpu->arch.mmio_vsx_copy_nums--;
1125 		vcpu->arch.mmio_vsx_offset++;
1126 	}
1127 	return emulated;
1128 }
1129 #endif /* CONFIG_VSX */
1130 
1131 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1132 			u64 val, unsigned int bytes, int is_default_endian)
1133 {
1134 	void *data = run->mmio.data;
1135 	int idx, ret;
1136 	bool host_swabbed;
1137 
1138 	/* Pity C doesn't have a logical XOR operator */
1139 	if (kvmppc_need_byteswap(vcpu)) {
1140 		host_swabbed = is_default_endian;
1141 	} else {
1142 		host_swabbed = !is_default_endian;
1143 	}
1144 
1145 	if (bytes > sizeof(run->mmio.data)) {
1146 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1147 		       run->mmio.len);
1148 	}
1149 
1150 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1151 	run->mmio.len = bytes;
1152 	run->mmio.is_write = 1;
1153 	vcpu->mmio_needed = 1;
1154 	vcpu->mmio_is_write = 1;
1155 
1156 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1157 		val = dp_to_sp(val);
1158 
1159 	/* Store the value at the lowest bytes in 'data'. */
1160 	if (!host_swabbed) {
1161 		switch (bytes) {
1162 		case 8: *(u64 *)data = val; break;
1163 		case 4: *(u32 *)data = val; break;
1164 		case 2: *(u16 *)data = val; break;
1165 		case 1: *(u8  *)data = val; break;
1166 		}
1167 	} else {
1168 		switch (bytes) {
1169 		case 8: *(u64 *)data = swab64(val); break;
1170 		case 4: *(u32 *)data = swab32(val); break;
1171 		case 2: *(u16 *)data = swab16(val); break;
1172 		case 1: *(u8  *)data = val; break;
1173 		}
1174 	}
1175 
1176 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1177 
1178 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1179 			       bytes, &run->mmio.data);
1180 
1181 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1182 
1183 	if (!ret) {
1184 		vcpu->mmio_needed = 0;
1185 		return EMULATE_DONE;
1186 	}
1187 
1188 	return EMULATE_DO_MMIO;
1189 }
1190 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1191 
1192 #ifdef CONFIG_VSX
1193 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1194 {
1195 	u32 dword_offset, word_offset;
1196 	union kvmppc_one_reg reg;
1197 	int vsx_offset = 0;
1198 	int copy_type = vcpu->arch.mmio_vsx_copy_type;
1199 	int result = 0;
1200 
1201 	switch (copy_type) {
1202 	case KVMPPC_VSX_COPY_DWORD:
1203 		vsx_offset =
1204 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1205 
1206 		if (vsx_offset == -1) {
1207 			result = -1;
1208 			break;
1209 		}
1210 
1211 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1212 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1213 		} else {
1214 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1215 			*val = reg.vsxval[vsx_offset];
1216 		}
1217 		break;
1218 
1219 	case KVMPPC_VSX_COPY_WORD:
1220 		vsx_offset =
1221 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1222 
1223 		if (vsx_offset == -1) {
1224 			result = -1;
1225 			break;
1226 		}
1227 
1228 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1229 			dword_offset = vsx_offset / 2;
1230 			word_offset = vsx_offset % 2;
1231 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1232 			*val = reg.vsx32val[word_offset];
1233 		} else {
1234 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1235 			*val = reg.vsx32val[vsx_offset];
1236 		}
1237 		break;
1238 
1239 	default:
1240 		result = -1;
1241 		break;
1242 	}
1243 
1244 	return result;
1245 }
1246 
1247 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1248 			int rs, unsigned int bytes, int is_default_endian)
1249 {
1250 	u64 val;
1251 	enum emulation_result emulated = EMULATE_DONE;
1252 
1253 	vcpu->arch.io_gpr = rs;
1254 
1255 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1256 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1257 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1258 		return EMULATE_FAIL;
1259 	}
1260 
1261 	while (vcpu->arch.mmio_vsx_copy_nums) {
1262 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1263 			return EMULATE_FAIL;
1264 
1265 		emulated = kvmppc_handle_store(run, vcpu,
1266 			 val, bytes, is_default_endian);
1267 
1268 		if (emulated != EMULATE_DONE)
1269 			break;
1270 
1271 		vcpu->arch.paddr_accessed += run->mmio.len;
1272 
1273 		vcpu->arch.mmio_vsx_copy_nums--;
1274 		vcpu->arch.mmio_vsx_offset++;
1275 	}
1276 
1277 	return emulated;
1278 }
1279 
1280 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1281 			struct kvm_run *run)
1282 {
1283 	enum emulation_result emulated = EMULATE_FAIL;
1284 	int r;
1285 
1286 	vcpu->arch.paddr_accessed += run->mmio.len;
1287 
1288 	if (!vcpu->mmio_is_write) {
1289 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1290 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1291 	} else {
1292 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1293 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1294 	}
1295 
1296 	switch (emulated) {
1297 	case EMULATE_DO_MMIO:
1298 		run->exit_reason = KVM_EXIT_MMIO;
1299 		r = RESUME_HOST;
1300 		break;
1301 	case EMULATE_FAIL:
1302 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1303 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1304 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1305 		r = RESUME_HOST;
1306 		break;
1307 	default:
1308 		r = RESUME_GUEST;
1309 		break;
1310 	}
1311 	return r;
1312 }
1313 #endif /* CONFIG_VSX */
1314 
1315 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1316 {
1317 	int r = 0;
1318 	union kvmppc_one_reg val;
1319 	int size;
1320 
1321 	size = one_reg_size(reg->id);
1322 	if (size > sizeof(val))
1323 		return -EINVAL;
1324 
1325 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1326 	if (r == -EINVAL) {
1327 		r = 0;
1328 		switch (reg->id) {
1329 #ifdef CONFIG_ALTIVEC
1330 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1331 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1332 				r = -ENXIO;
1333 				break;
1334 			}
1335 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1336 			break;
1337 		case KVM_REG_PPC_VSCR:
1338 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1339 				r = -ENXIO;
1340 				break;
1341 			}
1342 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1343 			break;
1344 		case KVM_REG_PPC_VRSAVE:
1345 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1346 			break;
1347 #endif /* CONFIG_ALTIVEC */
1348 		default:
1349 			r = -EINVAL;
1350 			break;
1351 		}
1352 	}
1353 
1354 	if (r)
1355 		return r;
1356 
1357 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1358 		r = -EFAULT;
1359 
1360 	return r;
1361 }
1362 
1363 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1364 {
1365 	int r;
1366 	union kvmppc_one_reg val;
1367 	int size;
1368 
1369 	size = one_reg_size(reg->id);
1370 	if (size > sizeof(val))
1371 		return -EINVAL;
1372 
1373 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1374 		return -EFAULT;
1375 
1376 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1377 	if (r == -EINVAL) {
1378 		r = 0;
1379 		switch (reg->id) {
1380 #ifdef CONFIG_ALTIVEC
1381 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1382 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1383 				r = -ENXIO;
1384 				break;
1385 			}
1386 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1387 			break;
1388 		case KVM_REG_PPC_VSCR:
1389 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1390 				r = -ENXIO;
1391 				break;
1392 			}
1393 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1394 			break;
1395 		case KVM_REG_PPC_VRSAVE:
1396 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1397 				r = -ENXIO;
1398 				break;
1399 			}
1400 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1401 			break;
1402 #endif /* CONFIG_ALTIVEC */
1403 		default:
1404 			r = -EINVAL;
1405 			break;
1406 		}
1407 	}
1408 
1409 	return r;
1410 }
1411 
1412 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1413 {
1414 	int r;
1415 
1416 	if (vcpu->mmio_needed) {
1417 		vcpu->mmio_needed = 0;
1418 		if (!vcpu->mmio_is_write)
1419 			kvmppc_complete_mmio_load(vcpu, run);
1420 #ifdef CONFIG_VSX
1421 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1422 			vcpu->arch.mmio_vsx_copy_nums--;
1423 			vcpu->arch.mmio_vsx_offset++;
1424 		}
1425 
1426 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1427 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1428 			if (r == RESUME_HOST) {
1429 				vcpu->mmio_needed = 1;
1430 				return r;
1431 			}
1432 		}
1433 #endif
1434 	} else if (vcpu->arch.osi_needed) {
1435 		u64 *gprs = run->osi.gprs;
1436 		int i;
1437 
1438 		for (i = 0; i < 32; i++)
1439 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1440 		vcpu->arch.osi_needed = 0;
1441 	} else if (vcpu->arch.hcall_needed) {
1442 		int i;
1443 
1444 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1445 		for (i = 0; i < 9; ++i)
1446 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1447 		vcpu->arch.hcall_needed = 0;
1448 #ifdef CONFIG_BOOKE
1449 	} else if (vcpu->arch.epr_needed) {
1450 		kvmppc_set_epr(vcpu, run->epr.epr);
1451 		vcpu->arch.epr_needed = 0;
1452 #endif
1453 	}
1454 
1455 	kvm_sigset_activate(vcpu);
1456 
1457 	if (run->immediate_exit)
1458 		r = -EINTR;
1459 	else
1460 		r = kvmppc_vcpu_run(run, vcpu);
1461 
1462 	kvm_sigset_deactivate(vcpu);
1463 
1464 	return r;
1465 }
1466 
1467 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1468 {
1469 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1470 		kvmppc_core_dequeue_external(vcpu);
1471 		return 0;
1472 	}
1473 
1474 	kvmppc_core_queue_external(vcpu, irq);
1475 
1476 	kvm_vcpu_kick(vcpu);
1477 
1478 	return 0;
1479 }
1480 
1481 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1482 				     struct kvm_enable_cap *cap)
1483 {
1484 	int r;
1485 
1486 	if (cap->flags)
1487 		return -EINVAL;
1488 
1489 	switch (cap->cap) {
1490 	case KVM_CAP_PPC_OSI:
1491 		r = 0;
1492 		vcpu->arch.osi_enabled = true;
1493 		break;
1494 	case KVM_CAP_PPC_PAPR:
1495 		r = 0;
1496 		vcpu->arch.papr_enabled = true;
1497 		break;
1498 	case KVM_CAP_PPC_EPR:
1499 		r = 0;
1500 		if (cap->args[0])
1501 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1502 		else
1503 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1504 		break;
1505 #ifdef CONFIG_BOOKE
1506 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1507 		r = 0;
1508 		vcpu->arch.watchdog_enabled = true;
1509 		break;
1510 #endif
1511 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1512 	case KVM_CAP_SW_TLB: {
1513 		struct kvm_config_tlb cfg;
1514 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1515 
1516 		r = -EFAULT;
1517 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1518 			break;
1519 
1520 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1521 		break;
1522 	}
1523 #endif
1524 #ifdef CONFIG_KVM_MPIC
1525 	case KVM_CAP_IRQ_MPIC: {
1526 		struct fd f;
1527 		struct kvm_device *dev;
1528 
1529 		r = -EBADF;
1530 		f = fdget(cap->args[0]);
1531 		if (!f.file)
1532 			break;
1533 
1534 		r = -EPERM;
1535 		dev = kvm_device_from_filp(f.file);
1536 		if (dev)
1537 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1538 
1539 		fdput(f);
1540 		break;
1541 	}
1542 #endif
1543 #ifdef CONFIG_KVM_XICS
1544 	case KVM_CAP_IRQ_XICS: {
1545 		struct fd f;
1546 		struct kvm_device *dev;
1547 
1548 		r = -EBADF;
1549 		f = fdget(cap->args[0]);
1550 		if (!f.file)
1551 			break;
1552 
1553 		r = -EPERM;
1554 		dev = kvm_device_from_filp(f.file);
1555 		if (dev) {
1556 			if (xive_enabled())
1557 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1558 			else
1559 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1560 		}
1561 
1562 		fdput(f);
1563 		break;
1564 	}
1565 #endif /* CONFIG_KVM_XICS */
1566 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1567 	case KVM_CAP_PPC_FWNMI:
1568 		r = -EINVAL;
1569 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1570 			break;
1571 		r = 0;
1572 		vcpu->kvm->arch.fwnmi_enabled = true;
1573 		break;
1574 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1575 	default:
1576 		r = -EINVAL;
1577 		break;
1578 	}
1579 
1580 	if (!r)
1581 		r = kvmppc_sanity_check(vcpu);
1582 
1583 	return r;
1584 }
1585 
1586 bool kvm_arch_intc_initialized(struct kvm *kvm)
1587 {
1588 #ifdef CONFIG_KVM_MPIC
1589 	if (kvm->arch.mpic)
1590 		return true;
1591 #endif
1592 #ifdef CONFIG_KVM_XICS
1593 	if (kvm->arch.xics || kvm->arch.xive)
1594 		return true;
1595 #endif
1596 	return false;
1597 }
1598 
1599 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1600                                     struct kvm_mp_state *mp_state)
1601 {
1602 	return -EINVAL;
1603 }
1604 
1605 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1606                                     struct kvm_mp_state *mp_state)
1607 {
1608 	return -EINVAL;
1609 }
1610 
1611 long kvm_arch_vcpu_ioctl(struct file *filp,
1612                          unsigned int ioctl, unsigned long arg)
1613 {
1614 	struct kvm_vcpu *vcpu = filp->private_data;
1615 	void __user *argp = (void __user *)arg;
1616 	long r;
1617 
1618 	switch (ioctl) {
1619 	case KVM_INTERRUPT: {
1620 		struct kvm_interrupt irq;
1621 		r = -EFAULT;
1622 		if (copy_from_user(&irq, argp, sizeof(irq)))
1623 			goto out;
1624 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1625 		goto out;
1626 	}
1627 
1628 	case KVM_ENABLE_CAP:
1629 	{
1630 		struct kvm_enable_cap cap;
1631 		r = -EFAULT;
1632 		if (copy_from_user(&cap, argp, sizeof(cap)))
1633 			goto out;
1634 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1635 		break;
1636 	}
1637 
1638 	case KVM_SET_ONE_REG:
1639 	case KVM_GET_ONE_REG:
1640 	{
1641 		struct kvm_one_reg reg;
1642 		r = -EFAULT;
1643 		if (copy_from_user(&reg, argp, sizeof(reg)))
1644 			goto out;
1645 		if (ioctl == KVM_SET_ONE_REG)
1646 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1647 		else
1648 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1649 		break;
1650 	}
1651 
1652 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1653 	case KVM_DIRTY_TLB: {
1654 		struct kvm_dirty_tlb dirty;
1655 		r = -EFAULT;
1656 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
1657 			goto out;
1658 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1659 		break;
1660 	}
1661 #endif
1662 	default:
1663 		r = -EINVAL;
1664 	}
1665 
1666 out:
1667 	return r;
1668 }
1669 
1670 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1671 {
1672 	return VM_FAULT_SIGBUS;
1673 }
1674 
1675 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1676 {
1677 	u32 inst_nop = 0x60000000;
1678 #ifdef CONFIG_KVM_BOOKE_HV
1679 	u32 inst_sc1 = 0x44000022;
1680 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1681 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1682 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1683 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1684 #else
1685 	u32 inst_lis = 0x3c000000;
1686 	u32 inst_ori = 0x60000000;
1687 	u32 inst_sc = 0x44000002;
1688 	u32 inst_imm_mask = 0xffff;
1689 
1690 	/*
1691 	 * The hypercall to get into KVM from within guest context is as
1692 	 * follows:
1693 	 *
1694 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
1695 	 *    ori r0, KVM_SC_MAGIC_R0@l
1696 	 *    sc
1697 	 *    nop
1698 	 */
1699 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1700 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1701 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1702 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1703 #endif
1704 
1705 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1706 
1707 	return 0;
1708 }
1709 
1710 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1711 			  bool line_status)
1712 {
1713 	if (!irqchip_in_kernel(kvm))
1714 		return -ENXIO;
1715 
1716 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1717 					irq_event->irq, irq_event->level,
1718 					line_status);
1719 	return 0;
1720 }
1721 
1722 
1723 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1724 				   struct kvm_enable_cap *cap)
1725 {
1726 	int r;
1727 
1728 	if (cap->flags)
1729 		return -EINVAL;
1730 
1731 	switch (cap->cap) {
1732 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1733 	case KVM_CAP_PPC_ENABLE_HCALL: {
1734 		unsigned long hcall = cap->args[0];
1735 
1736 		r = -EINVAL;
1737 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1738 		    cap->args[1] > 1)
1739 			break;
1740 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1741 			break;
1742 		if (cap->args[1])
1743 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1744 		else
1745 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1746 		r = 0;
1747 		break;
1748 	}
1749 	case KVM_CAP_PPC_SMT: {
1750 		unsigned long mode = cap->args[0];
1751 		unsigned long flags = cap->args[1];
1752 
1753 		r = -EINVAL;
1754 		if (kvm->arch.kvm_ops->set_smt_mode)
1755 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1756 		break;
1757 	}
1758 #endif
1759 	default:
1760 		r = -EINVAL;
1761 		break;
1762 	}
1763 
1764 	return r;
1765 }
1766 
1767 #ifdef CONFIG_PPC_BOOK3S_64
1768 /*
1769  * These functions check whether the underlying hardware is safe
1770  * against attacks based on observing the effects of speculatively
1771  * executed instructions, and whether it supplies instructions for
1772  * use in workarounds.  The information comes from firmware, either
1773  * via the device tree on powernv platforms or from an hcall on
1774  * pseries platforms.
1775  */
1776 #ifdef CONFIG_PPC_PSERIES
1777 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1778 {
1779 	struct h_cpu_char_result c;
1780 	unsigned long rc;
1781 
1782 	if (!machine_is(pseries))
1783 		return -ENOTTY;
1784 
1785 	rc = plpar_get_cpu_characteristics(&c);
1786 	if (rc == H_SUCCESS) {
1787 		cp->character = c.character;
1788 		cp->behaviour = c.behaviour;
1789 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1790 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1791 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1792 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1793 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1794 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
1795 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
1796 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1797 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1798 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1799 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1800 	}
1801 	return 0;
1802 }
1803 #else
1804 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1805 {
1806 	return -ENOTTY;
1807 }
1808 #endif
1809 
1810 static inline bool have_fw_feat(struct device_node *fw_features,
1811 				const char *state, const char *name)
1812 {
1813 	struct device_node *np;
1814 	bool r = false;
1815 
1816 	np = of_get_child_by_name(fw_features, name);
1817 	if (np) {
1818 		r = of_property_read_bool(np, state);
1819 		of_node_put(np);
1820 	}
1821 	return r;
1822 }
1823 
1824 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1825 {
1826 	struct device_node *np, *fw_features;
1827 	int r;
1828 
1829 	memset(cp, 0, sizeof(*cp));
1830 	r = pseries_get_cpu_char(cp);
1831 	if (r != -ENOTTY)
1832 		return r;
1833 
1834 	np = of_find_node_by_name(NULL, "ibm,opal");
1835 	if (np) {
1836 		fw_features = of_get_child_by_name(np, "fw-features");
1837 		of_node_put(np);
1838 		if (!fw_features)
1839 			return 0;
1840 		if (have_fw_feat(fw_features, "enabled",
1841 				 "inst-spec-barrier-ori31,31,0"))
1842 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
1843 		if (have_fw_feat(fw_features, "enabled",
1844 				 "fw-bcctrl-serialized"))
1845 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
1846 		if (have_fw_feat(fw_features, "enabled",
1847 				 "inst-l1d-flush-ori30,30,0"))
1848 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
1849 		if (have_fw_feat(fw_features, "enabled",
1850 				 "inst-l1d-flush-trig2"))
1851 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
1852 		if (have_fw_feat(fw_features, "enabled",
1853 				 "fw-l1d-thread-split"))
1854 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
1855 		if (have_fw_feat(fw_features, "enabled",
1856 				 "fw-count-cache-disabled"))
1857 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1858 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1859 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1860 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1861 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1862 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1863 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1864 
1865 		if (have_fw_feat(fw_features, "enabled",
1866 				 "speculation-policy-favor-security"))
1867 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
1868 		if (!have_fw_feat(fw_features, "disabled",
1869 				  "needs-l1d-flush-msr-pr-0-to-1"))
1870 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
1871 		if (!have_fw_feat(fw_features, "disabled",
1872 				  "needs-spec-barrier-for-bound-checks"))
1873 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1874 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1875 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1876 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1877 
1878 		of_node_put(fw_features);
1879 	}
1880 
1881 	return 0;
1882 }
1883 #endif
1884 
1885 long kvm_arch_vm_ioctl(struct file *filp,
1886                        unsigned int ioctl, unsigned long arg)
1887 {
1888 	struct kvm *kvm __maybe_unused = filp->private_data;
1889 	void __user *argp = (void __user *)arg;
1890 	long r;
1891 
1892 	switch (ioctl) {
1893 	case KVM_PPC_GET_PVINFO: {
1894 		struct kvm_ppc_pvinfo pvinfo;
1895 		memset(&pvinfo, 0, sizeof(pvinfo));
1896 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1897 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1898 			r = -EFAULT;
1899 			goto out;
1900 		}
1901 
1902 		break;
1903 	}
1904 	case KVM_ENABLE_CAP:
1905 	{
1906 		struct kvm_enable_cap cap;
1907 		r = -EFAULT;
1908 		if (copy_from_user(&cap, argp, sizeof(cap)))
1909 			goto out;
1910 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1911 		break;
1912 	}
1913 #ifdef CONFIG_SPAPR_TCE_IOMMU
1914 	case KVM_CREATE_SPAPR_TCE_64: {
1915 		struct kvm_create_spapr_tce_64 create_tce_64;
1916 
1917 		r = -EFAULT;
1918 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1919 			goto out;
1920 		if (create_tce_64.flags) {
1921 			r = -EINVAL;
1922 			goto out;
1923 		}
1924 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1925 		goto out;
1926 	}
1927 	case KVM_CREATE_SPAPR_TCE: {
1928 		struct kvm_create_spapr_tce create_tce;
1929 		struct kvm_create_spapr_tce_64 create_tce_64;
1930 
1931 		r = -EFAULT;
1932 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1933 			goto out;
1934 
1935 		create_tce_64.liobn = create_tce.liobn;
1936 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1937 		create_tce_64.offset = 0;
1938 		create_tce_64.size = create_tce.window_size >>
1939 				IOMMU_PAGE_SHIFT_4K;
1940 		create_tce_64.flags = 0;
1941 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1942 		goto out;
1943 	}
1944 #endif
1945 #ifdef CONFIG_PPC_BOOK3S_64
1946 	case KVM_PPC_GET_SMMU_INFO: {
1947 		struct kvm_ppc_smmu_info info;
1948 		struct kvm *kvm = filp->private_data;
1949 
1950 		memset(&info, 0, sizeof(info));
1951 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1952 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1953 			r = -EFAULT;
1954 		break;
1955 	}
1956 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
1957 		struct kvm *kvm = filp->private_data;
1958 
1959 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1960 		break;
1961 	}
1962 	case KVM_PPC_CONFIGURE_V3_MMU: {
1963 		struct kvm *kvm = filp->private_data;
1964 		struct kvm_ppc_mmuv3_cfg cfg;
1965 
1966 		r = -EINVAL;
1967 		if (!kvm->arch.kvm_ops->configure_mmu)
1968 			goto out;
1969 		r = -EFAULT;
1970 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
1971 			goto out;
1972 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1973 		break;
1974 	}
1975 	case KVM_PPC_GET_RMMU_INFO: {
1976 		struct kvm *kvm = filp->private_data;
1977 		struct kvm_ppc_rmmu_info info;
1978 
1979 		r = -EINVAL;
1980 		if (!kvm->arch.kvm_ops->get_rmmu_info)
1981 			goto out;
1982 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1983 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1984 			r = -EFAULT;
1985 		break;
1986 	}
1987 	case KVM_PPC_GET_CPU_CHAR: {
1988 		struct kvm_ppc_cpu_char cpuchar;
1989 
1990 		r = kvmppc_get_cpu_char(&cpuchar);
1991 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
1992 			r = -EFAULT;
1993 		break;
1994 	}
1995 	default: {
1996 		struct kvm *kvm = filp->private_data;
1997 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1998 	}
1999 #else /* CONFIG_PPC_BOOK3S_64 */
2000 	default:
2001 		r = -ENOTTY;
2002 #endif
2003 	}
2004 out:
2005 	return r;
2006 }
2007 
2008 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2009 static unsigned long nr_lpids;
2010 
2011 long kvmppc_alloc_lpid(void)
2012 {
2013 	long lpid;
2014 
2015 	do {
2016 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2017 		if (lpid >= nr_lpids) {
2018 			pr_err("%s: No LPIDs free\n", __func__);
2019 			return -ENOMEM;
2020 		}
2021 	} while (test_and_set_bit(lpid, lpid_inuse));
2022 
2023 	return lpid;
2024 }
2025 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2026 
2027 void kvmppc_claim_lpid(long lpid)
2028 {
2029 	set_bit(lpid, lpid_inuse);
2030 }
2031 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2032 
2033 void kvmppc_free_lpid(long lpid)
2034 {
2035 	clear_bit(lpid, lpid_inuse);
2036 }
2037 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2038 
2039 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2040 {
2041 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2042 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
2043 }
2044 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2045 
2046 int kvm_arch_init(void *opaque)
2047 {
2048 	return 0;
2049 }
2050 
2051 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2052