1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include <linux/string_choices.h>
15 #include "extent-tree.h"
16 #include "fs.h"
17 #include "messages.h"
18 #include "misc.h"
19 #include "free-space-cache.h"
20 #include "transaction.h"
21 #include "disk-io.h"
22 #include "extent_io.h"
23 #include "space-info.h"
24 #include "block-group.h"
25 #include "discard.h"
26 #include "subpage.h"
27 #include "inode-item.h"
28 #include "accessors.h"
29 #include "file-item.h"
30 #include "file.h"
31 #include "super.h"
32
33 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
34 #define MAX_CACHE_BYTES_PER_GIG SZ_64K
35 #define FORCE_EXTENT_THRESHOLD SZ_1M
36
37 static struct kmem_cache *btrfs_free_space_cachep;
38 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
39
40 struct btrfs_trim_range {
41 u64 start;
42 u64 bytes;
43 struct list_head list;
44 };
45
46 static int link_free_space(struct btrfs_free_space_ctl *ctl,
47 struct btrfs_free_space *info);
48 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
49 struct btrfs_free_space *info, bool update_stat);
50 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
51 struct btrfs_free_space *bitmap_info, u64 *offset,
52 u64 *bytes, bool for_alloc);
53 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
54 struct btrfs_free_space *bitmap_info);
55 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
56 struct btrfs_free_space *info, u64 offset,
57 u64 bytes, bool update_stats);
58
btrfs_crc32c_final(u32 crc,u8 * result)59 static void btrfs_crc32c_final(u32 crc, u8 *result)
60 {
61 put_unaligned_le32(~crc, result);
62 }
63
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)64 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
65 {
66 struct btrfs_free_space *info;
67 struct rb_node *node;
68
69 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
70 info = rb_entry(node, struct btrfs_free_space, offset_index);
71 if (!info->bitmap) {
72 unlink_free_space(ctl, info, true);
73 kmem_cache_free(btrfs_free_space_cachep, info);
74 } else {
75 free_bitmap(ctl, info);
76 }
77
78 cond_resched_lock(&ctl->tree_lock);
79 }
80 }
81
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)82 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
83 struct btrfs_path *path,
84 u64 offset)
85 {
86 struct btrfs_key key;
87 struct btrfs_key location;
88 struct btrfs_disk_key disk_key;
89 struct btrfs_free_space_header *header;
90 struct extent_buffer *leaf;
91 struct btrfs_inode *inode;
92 unsigned nofs_flag;
93 int ret;
94
95 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
96 key.type = 0;
97 key.offset = offset;
98
99 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
100 if (ret < 0)
101 return ERR_PTR(ret);
102 if (ret > 0) {
103 btrfs_release_path(path);
104 return ERR_PTR(-ENOENT);
105 }
106
107 leaf = path->nodes[0];
108 header = btrfs_item_ptr(leaf, path->slots[0],
109 struct btrfs_free_space_header);
110 btrfs_free_space_key(leaf, header, &disk_key);
111 btrfs_disk_key_to_cpu(&location, &disk_key);
112 btrfs_release_path(path);
113
114 /*
115 * We are often under a trans handle at this point, so we need to make
116 * sure NOFS is set to keep us from deadlocking.
117 */
118 nofs_flag = memalloc_nofs_save();
119 inode = btrfs_iget_path(location.objectid, root, path);
120 btrfs_release_path(path);
121 memalloc_nofs_restore(nofs_flag);
122 if (IS_ERR(inode))
123 return ERR_CAST(inode);
124
125 mapping_set_gfp_mask(inode->vfs_inode.i_mapping,
126 mapping_gfp_constraint(inode->vfs_inode.i_mapping,
127 ~(__GFP_FS | __GFP_HIGHMEM)));
128
129 return &inode->vfs_inode;
130 }
131
lookup_free_space_inode(struct btrfs_block_group * block_group,struct btrfs_path * path)132 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
133 struct btrfs_path *path)
134 {
135 struct btrfs_fs_info *fs_info = block_group->fs_info;
136 struct inode *inode = NULL;
137 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138
139 spin_lock(&block_group->lock);
140 if (block_group->inode)
141 inode = igrab(&block_group->inode->vfs_inode);
142 spin_unlock(&block_group->lock);
143 if (inode)
144 return inode;
145
146 inode = __lookup_free_space_inode(fs_info->tree_root, path,
147 block_group->start);
148 if (IS_ERR(inode))
149 return inode;
150
151 spin_lock(&block_group->lock);
152 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
153 btrfs_info(fs_info, "Old style space inode found, converting.");
154 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
155 BTRFS_INODE_NODATACOW;
156 block_group->disk_cache_state = BTRFS_DC_CLEAR;
157 }
158
159 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
160 block_group->inode = BTRFS_I(igrab(inode));
161 spin_unlock(&block_group->lock);
162
163 return inode;
164 }
165
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)166 static int __create_free_space_inode(struct btrfs_root *root,
167 struct btrfs_trans_handle *trans,
168 struct btrfs_path *path,
169 u64 ino, u64 offset)
170 {
171 struct btrfs_key key;
172 struct btrfs_disk_key disk_key;
173 struct btrfs_free_space_header *header;
174 struct btrfs_inode_item *inode_item;
175 struct extent_buffer *leaf;
176 /* We inline CRCs for the free disk space cache */
177 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
178 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
179 int ret;
180
181 ret = btrfs_insert_empty_inode(trans, root, path, ino);
182 if (ret)
183 return ret;
184
185 leaf = path->nodes[0];
186 inode_item = btrfs_item_ptr(leaf, path->slots[0],
187 struct btrfs_inode_item);
188 btrfs_item_key(leaf, &disk_key, path->slots[0]);
189 memzero_extent_buffer(leaf, (unsigned long)inode_item,
190 sizeof(*inode_item));
191 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
192 btrfs_set_inode_size(leaf, inode_item, 0);
193 btrfs_set_inode_nbytes(leaf, inode_item, 0);
194 btrfs_set_inode_uid(leaf, inode_item, 0);
195 btrfs_set_inode_gid(leaf, inode_item, 0);
196 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
197 btrfs_set_inode_flags(leaf, inode_item, flags);
198 btrfs_set_inode_nlink(leaf, inode_item, 1);
199 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
200 btrfs_set_inode_block_group(leaf, inode_item, offset);
201 btrfs_release_path(path);
202
203 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
204 key.type = 0;
205 key.offset = offset;
206 ret = btrfs_insert_empty_item(trans, root, path, &key,
207 sizeof(struct btrfs_free_space_header));
208 if (ret < 0) {
209 btrfs_release_path(path);
210 return ret;
211 }
212
213 leaf = path->nodes[0];
214 header = btrfs_item_ptr(leaf, path->slots[0],
215 struct btrfs_free_space_header);
216 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
217 btrfs_set_free_space_key(leaf, header, &disk_key);
218 btrfs_release_path(path);
219
220 return 0;
221 }
222
create_free_space_inode(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)223 int create_free_space_inode(struct btrfs_trans_handle *trans,
224 struct btrfs_block_group *block_group,
225 struct btrfs_path *path)
226 {
227 int ret;
228 u64 ino;
229
230 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
231 if (ret < 0)
232 return ret;
233
234 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
235 ino, block_group->start);
236 }
237
238 /*
239 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
240 * handles lookup, otherwise it takes ownership and iputs the inode.
241 * Don't reuse an inode pointer after passing it into this function.
242 */
btrfs_remove_free_space_inode(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_block_group * block_group)243 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
244 struct inode *inode,
245 struct btrfs_block_group *block_group)
246 {
247 BTRFS_PATH_AUTO_FREE(path);
248 struct btrfs_key key;
249 int ret = 0;
250
251 path = btrfs_alloc_path();
252 if (!path)
253 return -ENOMEM;
254
255 if (!inode)
256 inode = lookup_free_space_inode(block_group, path);
257 if (IS_ERR(inode)) {
258 if (PTR_ERR(inode) != -ENOENT)
259 ret = PTR_ERR(inode);
260 return ret;
261 }
262 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
263 if (ret) {
264 btrfs_add_delayed_iput(BTRFS_I(inode));
265 return ret;
266 }
267 clear_nlink(inode);
268 /* One for the block groups ref */
269 spin_lock(&block_group->lock);
270 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
271 block_group->inode = NULL;
272 spin_unlock(&block_group->lock);
273 iput(inode);
274 } else {
275 spin_unlock(&block_group->lock);
276 }
277 /* One for the lookup ref */
278 btrfs_add_delayed_iput(BTRFS_I(inode));
279
280 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
281 key.type = 0;
282 key.offset = block_group->start;
283 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
284 -1, 1);
285 if (ret) {
286 if (ret > 0)
287 ret = 0;
288 return ret;
289 }
290 return btrfs_del_item(trans, trans->fs_info->tree_root, path);
291 }
292
btrfs_truncate_free_space_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct inode * vfs_inode)293 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
294 struct btrfs_block_group *block_group,
295 struct inode *vfs_inode)
296 {
297 struct btrfs_truncate_control control = {
298 .inode = BTRFS_I(vfs_inode),
299 .new_size = 0,
300 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
301 .min_type = BTRFS_EXTENT_DATA_KEY,
302 .clear_extent_range = true,
303 };
304 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
305 struct btrfs_root *root = inode->root;
306 struct extent_state *cached_state = NULL;
307 int ret = 0;
308 bool locked = false;
309
310 if (block_group) {
311 BTRFS_PATH_AUTO_FREE(path);
312
313 path = btrfs_alloc_path();
314 if (!path) {
315 ret = -ENOMEM;
316 goto fail;
317 }
318 locked = true;
319 mutex_lock(&trans->transaction->cache_write_mutex);
320 if (!list_empty(&block_group->io_list)) {
321 list_del_init(&block_group->io_list);
322
323 btrfs_wait_cache_io(trans, block_group, path);
324 btrfs_put_block_group(block_group);
325 }
326
327 /*
328 * now that we've truncated the cache away, its no longer
329 * setup or written
330 */
331 spin_lock(&block_group->lock);
332 block_group->disk_cache_state = BTRFS_DC_CLEAR;
333 spin_unlock(&block_group->lock);
334 }
335
336 btrfs_i_size_write(inode, 0);
337 truncate_pagecache(vfs_inode, 0);
338
339 btrfs_lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
340 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
341
342 /*
343 * We skip the throttling logic for free space cache inodes, so we don't
344 * need to check for -EAGAIN.
345 */
346 ret = btrfs_truncate_inode_items(trans, root, &control);
347
348 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
349 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
350
351 btrfs_unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
352 if (ret)
353 goto fail;
354
355 ret = btrfs_update_inode(trans, inode);
356
357 fail:
358 if (locked)
359 mutex_unlock(&trans->transaction->cache_write_mutex);
360 if (ret)
361 btrfs_abort_transaction(trans, ret);
362
363 return ret;
364 }
365
readahead_cache(struct inode * inode)366 static void readahead_cache(struct inode *inode)
367 {
368 struct file_ra_state ra;
369 pgoff_t last_index;
370
371 file_ra_state_init(&ra, inode->i_mapping);
372 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
373
374 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
375 }
376
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,int write)377 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378 int write)
379 {
380 int num_pages;
381
382 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
383
384 /* Make sure we can fit our crcs and generation into the first page */
385 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
386 return -ENOSPC;
387
388 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
389
390 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
391 if (!io_ctl->pages)
392 return -ENOMEM;
393
394 io_ctl->num_pages = num_pages;
395 io_ctl->fs_info = inode_to_fs_info(inode);
396 io_ctl->inode = inode;
397
398 return 0;
399 }
400 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
401
io_ctl_free(struct btrfs_io_ctl * io_ctl)402 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
403 {
404 kfree(io_ctl->pages);
405 io_ctl->pages = NULL;
406 }
407
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)408 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
409 {
410 if (io_ctl->cur) {
411 io_ctl->cur = NULL;
412 io_ctl->orig = NULL;
413 }
414 }
415
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)416 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
417 {
418 ASSERT(io_ctl->index < io_ctl->num_pages);
419 io_ctl->page = io_ctl->pages[io_ctl->index++];
420 io_ctl->cur = page_address(io_ctl->page);
421 io_ctl->orig = io_ctl->cur;
422 io_ctl->size = PAGE_SIZE;
423 if (clear)
424 clear_page(io_ctl->cur);
425 }
426
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)427 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
428 {
429 int i;
430
431 io_ctl_unmap_page(io_ctl);
432
433 for (i = 0; i < io_ctl->num_pages; i++) {
434 if (io_ctl->pages[i]) {
435 btrfs_folio_clear_checked(io_ctl->fs_info,
436 page_folio(io_ctl->pages[i]),
437 page_offset(io_ctl->pages[i]),
438 PAGE_SIZE);
439 unlock_page(io_ctl->pages[i]);
440 put_page(io_ctl->pages[i]);
441 }
442 }
443 }
444
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,bool uptodate)445 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
446 {
447 struct folio *folio;
448 struct inode *inode = io_ctl->inode;
449 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
450 int i;
451
452 for (i = 0; i < io_ctl->num_pages; i++) {
453 int ret;
454
455 folio = __filemap_get_folio(inode->i_mapping, i,
456 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
457 mask);
458 if (IS_ERR(folio)) {
459 io_ctl_drop_pages(io_ctl);
460 return PTR_ERR(folio);
461 }
462
463 ret = set_folio_extent_mapped(folio);
464 if (ret < 0) {
465 folio_unlock(folio);
466 folio_put(folio);
467 io_ctl_drop_pages(io_ctl);
468 return ret;
469 }
470
471 io_ctl->pages[i] = &folio->page;
472 if (uptodate && !folio_test_uptodate(folio)) {
473 btrfs_read_folio(NULL, folio);
474 folio_lock(folio);
475 if (folio->mapping != inode->i_mapping) {
476 btrfs_err(BTRFS_I(inode)->root->fs_info,
477 "free space cache page truncated");
478 io_ctl_drop_pages(io_ctl);
479 return -EIO;
480 }
481 if (!folio_test_uptodate(folio)) {
482 btrfs_err(BTRFS_I(inode)->root->fs_info,
483 "error reading free space cache");
484 io_ctl_drop_pages(io_ctl);
485 return -EIO;
486 }
487 }
488 }
489
490 for (i = 0; i < io_ctl->num_pages; i++)
491 clear_page_dirty_for_io(io_ctl->pages[i]);
492
493 return 0;
494 }
495
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)496 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
497 {
498 io_ctl_map_page(io_ctl, 1);
499
500 /*
501 * Skip the csum areas. If we don't check crcs then we just have a
502 * 64bit chunk at the front of the first page.
503 */
504 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
505 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
506
507 put_unaligned_le64(generation, io_ctl->cur);
508 io_ctl->cur += sizeof(u64);
509 }
510
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)511 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
512 {
513 u64 cache_gen;
514
515 /*
516 * Skip the crc area. If we don't check crcs then we just have a 64bit
517 * chunk at the front of the first page.
518 */
519 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
520 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
521
522 cache_gen = get_unaligned_le64(io_ctl->cur);
523 if (cache_gen != generation) {
524 btrfs_err_rl(io_ctl->fs_info,
525 "space cache generation (%llu) does not match inode (%llu)",
526 cache_gen, generation);
527 io_ctl_unmap_page(io_ctl);
528 return -EIO;
529 }
530 io_ctl->cur += sizeof(u64);
531 return 0;
532 }
533
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)534 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
535 {
536 u32 *tmp;
537 u32 crc = ~(u32)0;
538 unsigned offset = 0;
539
540 if (index == 0)
541 offset = sizeof(u32) * io_ctl->num_pages;
542
543 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
544 btrfs_crc32c_final(crc, (u8 *)&crc);
545 io_ctl_unmap_page(io_ctl);
546 tmp = page_address(io_ctl->pages[0]);
547 tmp += index;
548 *tmp = crc;
549 }
550
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)551 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
552 {
553 u32 *tmp, val;
554 u32 crc = ~(u32)0;
555 unsigned offset = 0;
556
557 if (index == 0)
558 offset = sizeof(u32) * io_ctl->num_pages;
559
560 tmp = page_address(io_ctl->pages[0]);
561 tmp += index;
562 val = *tmp;
563
564 io_ctl_map_page(io_ctl, 0);
565 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
566 btrfs_crc32c_final(crc, (u8 *)&crc);
567 if (val != crc) {
568 btrfs_err_rl(io_ctl->fs_info,
569 "csum mismatch on free space cache");
570 io_ctl_unmap_page(io_ctl);
571 return -EIO;
572 }
573
574 return 0;
575 }
576
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)577 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
578 void *bitmap)
579 {
580 struct btrfs_free_space_entry *entry;
581
582 if (!io_ctl->cur)
583 return -ENOSPC;
584
585 entry = io_ctl->cur;
586 put_unaligned_le64(offset, &entry->offset);
587 put_unaligned_le64(bytes, &entry->bytes);
588 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
589 BTRFS_FREE_SPACE_EXTENT;
590 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
591 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
592
593 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
594 return 0;
595
596 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
597
598 /* No more pages to map */
599 if (io_ctl->index >= io_ctl->num_pages)
600 return 0;
601
602 /* map the next page */
603 io_ctl_map_page(io_ctl, 1);
604 return 0;
605 }
606
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)607 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
608 {
609 if (!io_ctl->cur)
610 return -ENOSPC;
611
612 /*
613 * If we aren't at the start of the current page, unmap this one and
614 * map the next one if there is any left.
615 */
616 if (io_ctl->cur != io_ctl->orig) {
617 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
618 if (io_ctl->index >= io_ctl->num_pages)
619 return -ENOSPC;
620 io_ctl_map_page(io_ctl, 0);
621 }
622
623 copy_page(io_ctl->cur, bitmap);
624 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
625 if (io_ctl->index < io_ctl->num_pages)
626 io_ctl_map_page(io_ctl, 0);
627 return 0;
628 }
629
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)630 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
631 {
632 /*
633 * If we're not on the boundary we know we've modified the page and we
634 * need to crc the page.
635 */
636 if (io_ctl->cur != io_ctl->orig)
637 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
638 else
639 io_ctl_unmap_page(io_ctl);
640
641 while (io_ctl->index < io_ctl->num_pages) {
642 io_ctl_map_page(io_ctl, 1);
643 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
644 }
645 }
646
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)647 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
648 struct btrfs_free_space *entry, u8 *type)
649 {
650 struct btrfs_free_space_entry *e;
651 int ret;
652
653 if (!io_ctl->cur) {
654 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
655 if (ret)
656 return ret;
657 }
658
659 e = io_ctl->cur;
660 entry->offset = get_unaligned_le64(&e->offset);
661 entry->bytes = get_unaligned_le64(&e->bytes);
662 *type = e->type;
663 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
664 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
665
666 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
667 return 0;
668
669 io_ctl_unmap_page(io_ctl);
670
671 return 0;
672 }
673
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)674 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
675 struct btrfs_free_space *entry)
676 {
677 int ret;
678
679 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
680 if (ret)
681 return ret;
682
683 copy_page(entry->bitmap, io_ctl->cur);
684 io_ctl_unmap_page(io_ctl);
685
686 return 0;
687 }
688
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)689 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
690 {
691 struct btrfs_block_group *block_group = ctl->block_group;
692 u64 max_bytes;
693 u64 bitmap_bytes;
694 u64 extent_bytes;
695 u64 size = block_group->length;
696 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
697 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
698
699 max_bitmaps = max_t(u64, max_bitmaps, 1);
700
701 if (ctl->total_bitmaps > max_bitmaps)
702 btrfs_err(block_group->fs_info,
703 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
704 block_group->start, block_group->length,
705 ctl->total_bitmaps, ctl->unit, max_bitmaps,
706 bytes_per_bg);
707 ASSERT(ctl->total_bitmaps <= max_bitmaps);
708
709 /*
710 * We are trying to keep the total amount of memory used per 1GiB of
711 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
712 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
713 * bitmaps, we may end up using more memory than this.
714 */
715 if (size < SZ_1G)
716 max_bytes = MAX_CACHE_BYTES_PER_GIG;
717 else
718 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
719
720 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
721
722 /*
723 * we want the extent entry threshold to always be at most 1/2 the max
724 * bytes we can have, or whatever is less than that.
725 */
726 extent_bytes = max_bytes - bitmap_bytes;
727 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
728
729 ctl->extents_thresh =
730 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
731 }
732
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)733 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
734 struct btrfs_free_space_ctl *ctl,
735 struct btrfs_path *path, u64 offset)
736 {
737 struct btrfs_fs_info *fs_info = root->fs_info;
738 struct btrfs_free_space_header *header;
739 struct extent_buffer *leaf;
740 struct btrfs_io_ctl io_ctl;
741 struct btrfs_key key;
742 struct btrfs_free_space *e, *n;
743 LIST_HEAD(bitmaps);
744 u64 num_entries;
745 u64 num_bitmaps;
746 u64 generation;
747 u8 type;
748 int ret = 0;
749
750 /* Nothing in the space cache, goodbye */
751 if (!i_size_read(inode))
752 return 0;
753
754 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
755 key.type = 0;
756 key.offset = offset;
757
758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
759 if (ret < 0)
760 return 0;
761 else if (ret > 0) {
762 btrfs_release_path(path);
763 return 0;
764 }
765
766 ret = -1;
767
768 leaf = path->nodes[0];
769 header = btrfs_item_ptr(leaf, path->slots[0],
770 struct btrfs_free_space_header);
771 num_entries = btrfs_free_space_entries(leaf, header);
772 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
773 generation = btrfs_free_space_generation(leaf, header);
774 btrfs_release_path(path);
775
776 if (!BTRFS_I(inode)->generation) {
777 btrfs_info(fs_info,
778 "the free space cache file (%llu) is invalid, skip it",
779 offset);
780 return 0;
781 }
782
783 if (BTRFS_I(inode)->generation != generation) {
784 btrfs_err(fs_info,
785 "free space inode generation (%llu) did not match free space cache generation (%llu)",
786 BTRFS_I(inode)->generation, generation);
787 return 0;
788 }
789
790 if (!num_entries)
791 return 0;
792
793 ret = io_ctl_init(&io_ctl, inode, 0);
794 if (ret)
795 return ret;
796
797 readahead_cache(inode);
798
799 ret = io_ctl_prepare_pages(&io_ctl, true);
800 if (ret)
801 goto out;
802
803 ret = io_ctl_check_crc(&io_ctl, 0);
804 if (ret)
805 goto free_cache;
806
807 ret = io_ctl_check_generation(&io_ctl, generation);
808 if (ret)
809 goto free_cache;
810
811 while (num_entries) {
812 e = kmem_cache_zalloc(btrfs_free_space_cachep,
813 GFP_NOFS);
814 if (!e) {
815 ret = -ENOMEM;
816 goto free_cache;
817 }
818
819 ret = io_ctl_read_entry(&io_ctl, e, &type);
820 if (ret) {
821 kmem_cache_free(btrfs_free_space_cachep, e);
822 goto free_cache;
823 }
824
825 if (!e->bytes) {
826 ret = -1;
827 kmem_cache_free(btrfs_free_space_cachep, e);
828 goto free_cache;
829 }
830
831 if (type == BTRFS_FREE_SPACE_EXTENT) {
832 spin_lock(&ctl->tree_lock);
833 ret = link_free_space(ctl, e);
834 spin_unlock(&ctl->tree_lock);
835 if (ret) {
836 btrfs_err(fs_info,
837 "Duplicate entries in free space cache, dumping");
838 kmem_cache_free(btrfs_free_space_cachep, e);
839 goto free_cache;
840 }
841 } else {
842 ASSERT(num_bitmaps);
843 num_bitmaps--;
844 e->bitmap = kmem_cache_zalloc(
845 btrfs_free_space_bitmap_cachep, GFP_NOFS);
846 if (!e->bitmap) {
847 ret = -ENOMEM;
848 kmem_cache_free(
849 btrfs_free_space_cachep, e);
850 goto free_cache;
851 }
852 spin_lock(&ctl->tree_lock);
853 ret = link_free_space(ctl, e);
854 if (ret) {
855 spin_unlock(&ctl->tree_lock);
856 btrfs_err(fs_info,
857 "Duplicate entries in free space cache, dumping");
858 kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
859 kmem_cache_free(btrfs_free_space_cachep, e);
860 goto free_cache;
861 }
862 ctl->total_bitmaps++;
863 recalculate_thresholds(ctl);
864 spin_unlock(&ctl->tree_lock);
865 list_add_tail(&e->list, &bitmaps);
866 }
867
868 num_entries--;
869 }
870
871 io_ctl_unmap_page(&io_ctl);
872
873 /*
874 * We add the bitmaps at the end of the entries in order that
875 * the bitmap entries are added to the cache.
876 */
877 list_for_each_entry_safe(e, n, &bitmaps, list) {
878 list_del_init(&e->list);
879 ret = io_ctl_read_bitmap(&io_ctl, e);
880 if (ret)
881 goto free_cache;
882 }
883
884 io_ctl_drop_pages(&io_ctl);
885 ret = 1;
886 out:
887 io_ctl_free(&io_ctl);
888 return ret;
889 free_cache:
890 io_ctl_drop_pages(&io_ctl);
891
892 spin_lock(&ctl->tree_lock);
893 __btrfs_remove_free_space_cache(ctl);
894 spin_unlock(&ctl->tree_lock);
895 goto out;
896 }
897
copy_free_space_cache(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)898 static int copy_free_space_cache(struct btrfs_block_group *block_group,
899 struct btrfs_free_space_ctl *ctl)
900 {
901 struct btrfs_free_space *info;
902 struct rb_node *n;
903 int ret = 0;
904
905 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
906 info = rb_entry(n, struct btrfs_free_space, offset_index);
907 if (!info->bitmap) {
908 const u64 offset = info->offset;
909 const u64 bytes = info->bytes;
910
911 unlink_free_space(ctl, info, true);
912 spin_unlock(&ctl->tree_lock);
913 kmem_cache_free(btrfs_free_space_cachep, info);
914 ret = btrfs_add_free_space(block_group, offset, bytes);
915 spin_lock(&ctl->tree_lock);
916 } else {
917 u64 offset = info->offset;
918 u64 bytes = ctl->unit;
919
920 ret = search_bitmap(ctl, info, &offset, &bytes, false);
921 if (ret == 0) {
922 bitmap_clear_bits(ctl, info, offset, bytes, true);
923 spin_unlock(&ctl->tree_lock);
924 ret = btrfs_add_free_space(block_group, offset,
925 bytes);
926 spin_lock(&ctl->tree_lock);
927 } else {
928 free_bitmap(ctl, info);
929 ret = 0;
930 }
931 }
932 cond_resched_lock(&ctl->tree_lock);
933 }
934 return ret;
935 }
936
937 static struct lock_class_key btrfs_free_space_inode_key;
938
load_free_space_cache(struct btrfs_block_group * block_group)939 int load_free_space_cache(struct btrfs_block_group *block_group)
940 {
941 struct btrfs_fs_info *fs_info = block_group->fs_info;
942 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
943 struct btrfs_free_space_ctl tmp_ctl = {};
944 struct inode *inode;
945 struct btrfs_path *path;
946 int ret = 0;
947 bool matched;
948 u64 used = block_group->used;
949
950 /*
951 * Because we could potentially discard our loaded free space, we want
952 * to load everything into a temporary structure first, and then if it's
953 * valid copy it all into the actual free space ctl.
954 */
955 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
956
957 /*
958 * If this block group has been marked to be cleared for one reason or
959 * another then we can't trust the on disk cache, so just return.
960 */
961 spin_lock(&block_group->lock);
962 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
963 spin_unlock(&block_group->lock);
964 return 0;
965 }
966 spin_unlock(&block_group->lock);
967
968 path = btrfs_alloc_path();
969 if (!path)
970 return 0;
971 path->search_commit_root = 1;
972 path->skip_locking = 1;
973
974 /*
975 * We must pass a path with search_commit_root set to btrfs_iget in
976 * order to avoid a deadlock when allocating extents for the tree root.
977 *
978 * When we are COWing an extent buffer from the tree root, when looking
979 * for a free extent, at extent-tree.c:find_free_extent(), we can find
980 * block group without its free space cache loaded. When we find one
981 * we must load its space cache which requires reading its free space
982 * cache's inode item from the root tree. If this inode item is located
983 * in the same leaf that we started COWing before, then we end up in
984 * deadlock on the extent buffer (trying to read lock it when we
985 * previously write locked it).
986 *
987 * It's safe to read the inode item using the commit root because
988 * block groups, once loaded, stay in memory forever (until they are
989 * removed) as well as their space caches once loaded. New block groups
990 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
991 * we will never try to read their inode item while the fs is mounted.
992 */
993 inode = lookup_free_space_inode(block_group, path);
994 if (IS_ERR(inode)) {
995 btrfs_free_path(path);
996 return 0;
997 }
998
999 /* We may have converted the inode and made the cache invalid. */
1000 spin_lock(&block_group->lock);
1001 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1002 spin_unlock(&block_group->lock);
1003 btrfs_free_path(path);
1004 goto out;
1005 }
1006 spin_unlock(&block_group->lock);
1007
1008 /*
1009 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1010 * free space inodes to prevent false positives related to locks for normal
1011 * inodes.
1012 */
1013 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1014 &btrfs_free_space_inode_key);
1015
1016 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1017 path, block_group->start);
1018 btrfs_free_path(path);
1019 if (ret <= 0)
1020 goto out;
1021
1022 matched = (tmp_ctl.free_space == (block_group->length - used -
1023 block_group->bytes_super));
1024
1025 if (matched) {
1026 spin_lock(&tmp_ctl.tree_lock);
1027 ret = copy_free_space_cache(block_group, &tmp_ctl);
1028 spin_unlock(&tmp_ctl.tree_lock);
1029 /*
1030 * ret == 1 means we successfully loaded the free space cache,
1031 * so we need to re-set it here.
1032 */
1033 if (ret == 0)
1034 ret = 1;
1035 } else {
1036 /*
1037 * We need to call the _locked variant so we don't try to update
1038 * the discard counters.
1039 */
1040 spin_lock(&tmp_ctl.tree_lock);
1041 __btrfs_remove_free_space_cache(&tmp_ctl);
1042 spin_unlock(&tmp_ctl.tree_lock);
1043 btrfs_warn(fs_info,
1044 "block group %llu has wrong amount of free space",
1045 block_group->start);
1046 ret = -1;
1047 }
1048 out:
1049 if (ret < 0) {
1050 /* This cache is bogus, make sure it gets cleared */
1051 spin_lock(&block_group->lock);
1052 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1053 spin_unlock(&block_group->lock);
1054 ret = 0;
1055
1056 btrfs_warn(fs_info,
1057 "failed to load free space cache for block group %llu, rebuilding it now",
1058 block_group->start);
1059 }
1060
1061 spin_lock(&ctl->tree_lock);
1062 btrfs_discard_update_discardable(block_group);
1063 spin_unlock(&ctl->tree_lock);
1064 iput(inode);
1065 return ret;
1066 }
1067
1068 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)1069 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1070 struct btrfs_free_space_ctl *ctl,
1071 struct btrfs_block_group *block_group,
1072 int *entries, int *bitmaps,
1073 struct list_head *bitmap_list)
1074 {
1075 int ret;
1076 struct btrfs_free_cluster *cluster = NULL;
1077 struct btrfs_free_cluster *cluster_locked = NULL;
1078 struct rb_node *node = rb_first(&ctl->free_space_offset);
1079 struct btrfs_trim_range *trim_entry;
1080
1081 /* Get the cluster for this block_group if it exists */
1082 if (block_group && !list_empty(&block_group->cluster_list)) {
1083 cluster = list_first_entry(&block_group->cluster_list,
1084 struct btrfs_free_cluster, block_group_list);
1085 }
1086
1087 if (!node && cluster) {
1088 cluster_locked = cluster;
1089 spin_lock(&cluster_locked->lock);
1090 node = rb_first(&cluster->root);
1091 cluster = NULL;
1092 }
1093
1094 /* Write out the extent entries */
1095 while (node) {
1096 struct btrfs_free_space *e;
1097
1098 e = rb_entry(node, struct btrfs_free_space, offset_index);
1099 *entries += 1;
1100
1101 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1102 e->bitmap);
1103 if (ret)
1104 goto fail;
1105
1106 if (e->bitmap) {
1107 list_add_tail(&e->list, bitmap_list);
1108 *bitmaps += 1;
1109 }
1110 node = rb_next(node);
1111 if (!node && cluster) {
1112 node = rb_first(&cluster->root);
1113 cluster_locked = cluster;
1114 spin_lock(&cluster_locked->lock);
1115 cluster = NULL;
1116 }
1117 }
1118 if (cluster_locked) {
1119 spin_unlock(&cluster_locked->lock);
1120 cluster_locked = NULL;
1121 }
1122
1123 /*
1124 * Make sure we don't miss any range that was removed from our rbtree
1125 * because trimming is running. Otherwise after a umount+mount (or crash
1126 * after committing the transaction) we would leak free space and get
1127 * an inconsistent free space cache report from fsck.
1128 */
1129 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1130 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1131 trim_entry->bytes, NULL);
1132 if (ret)
1133 goto fail;
1134 *entries += 1;
1135 }
1136
1137 return 0;
1138 fail:
1139 if (cluster_locked)
1140 spin_unlock(&cluster_locked->lock);
1141 return -ENOSPC;
1142 }
1143
1144 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)1145 update_cache_item(struct btrfs_trans_handle *trans,
1146 struct btrfs_root *root,
1147 struct inode *inode,
1148 struct btrfs_path *path, u64 offset,
1149 int entries, int bitmaps)
1150 {
1151 struct btrfs_key key;
1152 struct btrfs_free_space_header *header;
1153 struct extent_buffer *leaf;
1154 int ret;
1155
1156 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1157 key.type = 0;
1158 key.offset = offset;
1159
1160 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1161 if (ret < 0) {
1162 btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1163 EXTENT_DELALLOC, NULL);
1164 goto fail;
1165 }
1166 leaf = path->nodes[0];
1167 if (ret > 0) {
1168 struct btrfs_key found_key;
1169 ASSERT(path->slots[0]);
1170 path->slots[0]--;
1171 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1172 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1173 found_key.offset != offset) {
1174 btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1175 inode->i_size - 1, EXTENT_DELALLOC,
1176 NULL);
1177 btrfs_release_path(path);
1178 goto fail;
1179 }
1180 }
1181
1182 BTRFS_I(inode)->generation = trans->transid;
1183 header = btrfs_item_ptr(leaf, path->slots[0],
1184 struct btrfs_free_space_header);
1185 btrfs_set_free_space_entries(leaf, header, entries);
1186 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1187 btrfs_set_free_space_generation(leaf, header, trans->transid);
1188 btrfs_release_path(path);
1189
1190 return 0;
1191
1192 fail:
1193 return -1;
1194 }
1195
write_pinned_extent_entries(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1196 static noinline_for_stack int write_pinned_extent_entries(
1197 struct btrfs_trans_handle *trans,
1198 struct btrfs_block_group *block_group,
1199 struct btrfs_io_ctl *io_ctl,
1200 int *entries)
1201 {
1202 u64 start, extent_start, extent_end, len;
1203 struct extent_io_tree *unpin = NULL;
1204 int ret;
1205
1206 if (!block_group)
1207 return 0;
1208
1209 /*
1210 * We want to add any pinned extents to our free space cache
1211 * so we don't leak the space
1212 *
1213 * We shouldn't have switched the pinned extents yet so this is the
1214 * right one
1215 */
1216 unpin = &trans->transaction->pinned_extents;
1217
1218 start = block_group->start;
1219
1220 while (start < block_group->start + block_group->length) {
1221 if (!btrfs_find_first_extent_bit(unpin, start,
1222 &extent_start, &extent_end,
1223 EXTENT_DIRTY, NULL))
1224 return 0;
1225
1226 /* This pinned extent is out of our range */
1227 if (extent_start >= block_group->start + block_group->length)
1228 return 0;
1229
1230 extent_start = max(extent_start, start);
1231 extent_end = min(block_group->start + block_group->length,
1232 extent_end + 1);
1233 len = extent_end - extent_start;
1234
1235 *entries += 1;
1236 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1237 if (ret)
1238 return -ENOSPC;
1239
1240 start = extent_end;
1241 }
1242
1243 return 0;
1244 }
1245
1246 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1247 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1248 {
1249 struct btrfs_free_space *entry, *next;
1250 int ret;
1251
1252 /* Write out the bitmaps */
1253 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1254 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1255 if (ret)
1256 return -ENOSPC;
1257 list_del_init(&entry->list);
1258 }
1259
1260 return 0;
1261 }
1262
flush_dirty_cache(struct inode * inode)1263 static int flush_dirty_cache(struct inode *inode)
1264 {
1265 int ret;
1266
1267 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
1268 if (ret)
1269 btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1270 EXTENT_DELALLOC, NULL);
1271
1272 return ret;
1273 }
1274
1275 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1276 cleanup_bitmap_list(struct list_head *bitmap_list)
1277 {
1278 struct btrfs_free_space *entry, *next;
1279
1280 list_for_each_entry_safe(entry, next, bitmap_list, list)
1281 list_del_init(&entry->list);
1282 }
1283
1284 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state)1285 cleanup_write_cache_enospc(struct inode *inode,
1286 struct btrfs_io_ctl *io_ctl,
1287 struct extent_state **cached_state)
1288 {
1289 io_ctl_drop_pages(io_ctl);
1290 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1291 cached_state);
1292 }
1293
__btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1294 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1295 struct btrfs_trans_handle *trans,
1296 struct btrfs_block_group *block_group,
1297 struct btrfs_io_ctl *io_ctl,
1298 struct btrfs_path *path, u64 offset)
1299 {
1300 int ret;
1301 struct inode *inode = io_ctl->inode;
1302
1303 if (!inode)
1304 return 0;
1305
1306 /* Flush the dirty pages in the cache file. */
1307 ret = flush_dirty_cache(inode);
1308 if (ret)
1309 goto out;
1310
1311 /* Update the cache item to tell everyone this cache file is valid. */
1312 ret = update_cache_item(trans, root, inode, path, offset,
1313 io_ctl->entries, io_ctl->bitmaps);
1314 out:
1315 if (ret) {
1316 invalidate_inode_pages2(inode->i_mapping);
1317 BTRFS_I(inode)->generation = 0;
1318 if (block_group)
1319 btrfs_debug(root->fs_info,
1320 "failed to write free space cache for block group %llu error %d",
1321 block_group->start, ret);
1322 }
1323 btrfs_update_inode(trans, BTRFS_I(inode));
1324
1325 if (block_group) {
1326 /* the dirty list is protected by the dirty_bgs_lock */
1327 spin_lock(&trans->transaction->dirty_bgs_lock);
1328
1329 /* the disk_cache_state is protected by the block group lock */
1330 spin_lock(&block_group->lock);
1331
1332 /*
1333 * only mark this as written if we didn't get put back on
1334 * the dirty list while waiting for IO. Otherwise our
1335 * cache state won't be right, and we won't get written again
1336 */
1337 if (!ret && list_empty(&block_group->dirty_list))
1338 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1339 else if (ret)
1340 block_group->disk_cache_state = BTRFS_DC_ERROR;
1341
1342 spin_unlock(&block_group->lock);
1343 spin_unlock(&trans->transaction->dirty_bgs_lock);
1344 io_ctl->inode = NULL;
1345 iput(inode);
1346 }
1347
1348 return ret;
1349
1350 }
1351
btrfs_wait_cache_io(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1352 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1353 struct btrfs_block_group *block_group,
1354 struct btrfs_path *path)
1355 {
1356 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1357 block_group, &block_group->io_ctl,
1358 path, block_group->start);
1359 }
1360
1361 /*
1362 * Write out cached info to an inode.
1363 *
1364 * @inode: freespace inode we are writing out
1365 * @ctl: free space cache we are going to write out
1366 * @block_group: block_group for this cache if it belongs to a block_group
1367 * @io_ctl: holds context for the io
1368 * @trans: the trans handle
1369 *
1370 * This function writes out a free space cache struct to disk for quick recovery
1371 * on mount. This will return 0 if it was successful in writing the cache out,
1372 * or an errno if it was not.
1373 */
__btrfs_write_out_cache(struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans)1374 static int __btrfs_write_out_cache(struct inode *inode,
1375 struct btrfs_free_space_ctl *ctl,
1376 struct btrfs_block_group *block_group,
1377 struct btrfs_io_ctl *io_ctl,
1378 struct btrfs_trans_handle *trans)
1379 {
1380 struct extent_state *cached_state = NULL;
1381 LIST_HEAD(bitmap_list);
1382 int entries = 0;
1383 int bitmaps = 0;
1384 int ret;
1385 int must_iput = 0;
1386 int i_size;
1387
1388 if (!i_size_read(inode))
1389 return -EIO;
1390
1391 WARN_ON(io_ctl->pages);
1392 ret = io_ctl_init(io_ctl, inode, 1);
1393 if (ret)
1394 return ret;
1395
1396 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1397 down_write(&block_group->data_rwsem);
1398 spin_lock(&block_group->lock);
1399 if (block_group->delalloc_bytes) {
1400 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1401 spin_unlock(&block_group->lock);
1402 up_write(&block_group->data_rwsem);
1403 BTRFS_I(inode)->generation = 0;
1404 ret = 0;
1405 must_iput = 1;
1406 goto out;
1407 }
1408 spin_unlock(&block_group->lock);
1409 }
1410
1411 /* Lock all pages first so we can lock the extent safely. */
1412 ret = io_ctl_prepare_pages(io_ctl, false);
1413 if (ret)
1414 goto out_unlock;
1415
1416 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1417 &cached_state);
1418
1419 io_ctl_set_generation(io_ctl, trans->transid);
1420
1421 mutex_lock(&ctl->cache_writeout_mutex);
1422 /* Write out the extent entries in the free space cache */
1423 spin_lock(&ctl->tree_lock);
1424 ret = write_cache_extent_entries(io_ctl, ctl,
1425 block_group, &entries, &bitmaps,
1426 &bitmap_list);
1427 if (ret)
1428 goto out_nospc_locked;
1429
1430 /*
1431 * Some spaces that are freed in the current transaction are pinned,
1432 * they will be added into free space cache after the transaction is
1433 * committed, we shouldn't lose them.
1434 *
1435 * If this changes while we are working we'll get added back to
1436 * the dirty list and redo it. No locking needed
1437 */
1438 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1439 if (ret)
1440 goto out_nospc_locked;
1441
1442 /*
1443 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1444 * locked while doing it because a concurrent trim can be manipulating
1445 * or freeing the bitmap.
1446 */
1447 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1448 spin_unlock(&ctl->tree_lock);
1449 mutex_unlock(&ctl->cache_writeout_mutex);
1450 if (ret)
1451 goto out_nospc;
1452
1453 /* Zero out the rest of the pages just to make sure */
1454 io_ctl_zero_remaining_pages(io_ctl);
1455
1456 /* Everything is written out, now we dirty the pages in the file. */
1457 i_size = i_size_read(inode);
1458 for (int i = 0; i < round_up(i_size, PAGE_SIZE) / PAGE_SIZE; i++) {
1459 u64 dirty_start = i * PAGE_SIZE;
1460 u64 dirty_len = min_t(u64, dirty_start + PAGE_SIZE, i_size) - dirty_start;
1461
1462 ret = btrfs_dirty_folio(BTRFS_I(inode), page_folio(io_ctl->pages[i]),
1463 dirty_start, dirty_len, &cached_state, false);
1464 if (ret < 0)
1465 goto out_nospc;
1466 }
1467
1468 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1469 up_write(&block_group->data_rwsem);
1470 /*
1471 * Release the pages and unlock the extent, we will flush
1472 * them out later
1473 */
1474 io_ctl_drop_pages(io_ctl);
1475 io_ctl_free(io_ctl);
1476
1477 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1478 &cached_state);
1479
1480 /*
1481 * at this point the pages are under IO and we're happy,
1482 * The caller is responsible for waiting on them and updating
1483 * the cache and the inode
1484 */
1485 io_ctl->entries = entries;
1486 io_ctl->bitmaps = bitmaps;
1487
1488 ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
1489 if (ret)
1490 goto out;
1491
1492 return 0;
1493
1494 out_nospc_locked:
1495 cleanup_bitmap_list(&bitmap_list);
1496 spin_unlock(&ctl->tree_lock);
1497 mutex_unlock(&ctl->cache_writeout_mutex);
1498
1499 out_nospc:
1500 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1501
1502 out_unlock:
1503 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1504 up_write(&block_group->data_rwsem);
1505
1506 out:
1507 io_ctl->inode = NULL;
1508 io_ctl_free(io_ctl);
1509 if (ret) {
1510 invalidate_inode_pages2(inode->i_mapping);
1511 BTRFS_I(inode)->generation = 0;
1512 }
1513 btrfs_update_inode(trans, BTRFS_I(inode));
1514 if (must_iput)
1515 iput(inode);
1516 return ret;
1517 }
1518
btrfs_write_out_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1519 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1520 struct btrfs_block_group *block_group,
1521 struct btrfs_path *path)
1522 {
1523 struct btrfs_fs_info *fs_info = trans->fs_info;
1524 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1525 struct inode *inode;
1526 int ret = 0;
1527
1528 spin_lock(&block_group->lock);
1529 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1530 spin_unlock(&block_group->lock);
1531 return 0;
1532 }
1533 spin_unlock(&block_group->lock);
1534
1535 inode = lookup_free_space_inode(block_group, path);
1536 if (IS_ERR(inode))
1537 return 0;
1538
1539 ret = __btrfs_write_out_cache(inode, ctl, block_group,
1540 &block_group->io_ctl, trans);
1541 if (ret) {
1542 btrfs_debug(fs_info,
1543 "failed to write free space cache for block group %llu error %d",
1544 block_group->start, ret);
1545 spin_lock(&block_group->lock);
1546 block_group->disk_cache_state = BTRFS_DC_ERROR;
1547 spin_unlock(&block_group->lock);
1548
1549 block_group->io_ctl.inode = NULL;
1550 iput(inode);
1551 }
1552
1553 /*
1554 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1555 * to wait for IO and put the inode
1556 */
1557
1558 return ret;
1559 }
1560
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1561 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1562 u64 offset)
1563 {
1564 ASSERT(offset >= bitmap_start);
1565 offset -= bitmap_start;
1566 return (unsigned long)(div_u64(offset, unit));
1567 }
1568
bytes_to_bits(u64 bytes,u32 unit)1569 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1570 {
1571 return (unsigned long)(div_u64(bytes, unit));
1572 }
1573
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1574 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1575 u64 offset)
1576 {
1577 u64 bitmap_start;
1578 u64 bytes_per_bitmap;
1579
1580 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1581 bitmap_start = offset - ctl->start;
1582 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1583 bitmap_start *= bytes_per_bitmap;
1584 bitmap_start += ctl->start;
1585
1586 return bitmap_start;
1587 }
1588
tree_insert_offset(struct btrfs_free_space_ctl * ctl,struct btrfs_free_cluster * cluster,struct btrfs_free_space * new_entry)1589 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1590 struct btrfs_free_cluster *cluster,
1591 struct btrfs_free_space *new_entry)
1592 {
1593 struct rb_root *root;
1594 struct rb_node **p;
1595 struct rb_node *parent = NULL;
1596
1597 lockdep_assert_held(&ctl->tree_lock);
1598
1599 if (cluster) {
1600 lockdep_assert_held(&cluster->lock);
1601 root = &cluster->root;
1602 } else {
1603 root = &ctl->free_space_offset;
1604 }
1605
1606 p = &root->rb_node;
1607
1608 while (*p) {
1609 struct btrfs_free_space *info;
1610
1611 parent = *p;
1612 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1613
1614 if (new_entry->offset < info->offset) {
1615 p = &(*p)->rb_left;
1616 } else if (new_entry->offset > info->offset) {
1617 p = &(*p)->rb_right;
1618 } else {
1619 /*
1620 * we could have a bitmap entry and an extent entry
1621 * share the same offset. If this is the case, we want
1622 * the extent entry to always be found first if we do a
1623 * linear search through the tree, since we want to have
1624 * the quickest allocation time, and allocating from an
1625 * extent is faster than allocating from a bitmap. So
1626 * if we're inserting a bitmap and we find an entry at
1627 * this offset, we want to go right, or after this entry
1628 * logically. If we are inserting an extent and we've
1629 * found a bitmap, we want to go left, or before
1630 * logically.
1631 */
1632 if (new_entry->bitmap) {
1633 if (info->bitmap) {
1634 WARN_ON_ONCE(1);
1635 return -EEXIST;
1636 }
1637 p = &(*p)->rb_right;
1638 } else {
1639 if (!info->bitmap) {
1640 WARN_ON_ONCE(1);
1641 return -EEXIST;
1642 }
1643 p = &(*p)->rb_left;
1644 }
1645 }
1646 }
1647
1648 rb_link_node(&new_entry->offset_index, parent, p);
1649 rb_insert_color(&new_entry->offset_index, root);
1650
1651 return 0;
1652 }
1653
1654 /*
1655 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1656 * searched through the bitmap and figured out the largest ->max_extent_size,
1657 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1658 * allocator the wrong thing, we want to use the actual real max_extent_size
1659 * we've found already if it's larger, or we want to use ->bytes.
1660 *
1661 * This matters because find_free_space() will skip entries who's ->bytes is
1662 * less than the required bytes. So if we didn't search down this bitmap, we
1663 * may pick some previous entry that has a smaller ->max_extent_size than we
1664 * have. For example, assume we have two entries, one that has
1665 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1666 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1667 * call into find_free_space(), and return with max_extent_size == 4K, because
1668 * that first bitmap entry had ->max_extent_size set, but the second one did
1669 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1670 * 8K contiguous range.
1671 *
1672 * Consider the other case, we have 2 8K chunks in that second entry and still
1673 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1674 * allocator comes in it'll fully search our second bitmap, and this time it'll
1675 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1676 * right allocation the next loop through.
1677 */
get_max_extent_size(const struct btrfs_free_space * entry)1678 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1679 {
1680 if (entry->bitmap && entry->max_extent_size)
1681 return entry->max_extent_size;
1682 return entry->bytes;
1683 }
1684
1685 /*
1686 * We want the largest entry to be leftmost, so this is inverted from what you'd
1687 * normally expect.
1688 */
entry_less(struct rb_node * node,const struct rb_node * parent)1689 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1690 {
1691 const struct btrfs_free_space *entry, *exist;
1692
1693 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1694 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1695 return get_max_extent_size(exist) < get_max_extent_size(entry);
1696 }
1697
1698 /*
1699 * searches the tree for the given offset.
1700 *
1701 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1702 * want a section that has at least bytes size and comes at or after the given
1703 * offset.
1704 */
1705 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1706 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1707 u64 offset, int bitmap_only, int fuzzy)
1708 {
1709 struct rb_node *n = ctl->free_space_offset.rb_node;
1710 struct btrfs_free_space *entry = NULL, *prev = NULL;
1711
1712 lockdep_assert_held(&ctl->tree_lock);
1713
1714 /* find entry that is closest to the 'offset' */
1715 while (n) {
1716 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1717 prev = entry;
1718
1719 if (offset < entry->offset)
1720 n = n->rb_left;
1721 else if (offset > entry->offset)
1722 n = n->rb_right;
1723 else
1724 break;
1725
1726 entry = NULL;
1727 }
1728
1729 if (bitmap_only) {
1730 if (!entry)
1731 return NULL;
1732 if (entry->bitmap)
1733 return entry;
1734
1735 /*
1736 * bitmap entry and extent entry may share same offset,
1737 * in that case, bitmap entry comes after extent entry.
1738 */
1739 n = rb_next(n);
1740 if (!n)
1741 return NULL;
1742 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1743 if (entry->offset != offset)
1744 return NULL;
1745
1746 WARN_ON(!entry->bitmap);
1747 return entry;
1748 } else if (entry) {
1749 if (entry->bitmap) {
1750 /*
1751 * if previous extent entry covers the offset,
1752 * we should return it instead of the bitmap entry
1753 */
1754 n = rb_prev(&entry->offset_index);
1755 if (n) {
1756 prev = rb_entry(n, struct btrfs_free_space,
1757 offset_index);
1758 if (!prev->bitmap &&
1759 prev->offset + prev->bytes > offset)
1760 entry = prev;
1761 }
1762 }
1763 return entry;
1764 }
1765
1766 if (!prev)
1767 return NULL;
1768
1769 /* find last entry before the 'offset' */
1770 entry = prev;
1771 if (entry->offset > offset) {
1772 n = rb_prev(&entry->offset_index);
1773 if (n) {
1774 entry = rb_entry(n, struct btrfs_free_space,
1775 offset_index);
1776 ASSERT(entry->offset <= offset);
1777 } else {
1778 if (fuzzy)
1779 return entry;
1780 else
1781 return NULL;
1782 }
1783 }
1784
1785 if (entry->bitmap) {
1786 n = rb_prev(&entry->offset_index);
1787 if (n) {
1788 prev = rb_entry(n, struct btrfs_free_space,
1789 offset_index);
1790 if (!prev->bitmap &&
1791 prev->offset + prev->bytes > offset)
1792 return prev;
1793 }
1794 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1795 return entry;
1796 } else if (entry->offset + entry->bytes > offset)
1797 return entry;
1798
1799 if (!fuzzy)
1800 return NULL;
1801
1802 while (1) {
1803 n = rb_next(&entry->offset_index);
1804 if (!n)
1805 return NULL;
1806 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1807 if (entry->bitmap) {
1808 if (entry->offset + BITS_PER_BITMAP *
1809 ctl->unit > offset)
1810 break;
1811 } else {
1812 if (entry->offset + entry->bytes > offset)
1813 break;
1814 }
1815 }
1816 return entry;
1817 }
1818
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)1819 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1820 struct btrfs_free_space *info,
1821 bool update_stat)
1822 {
1823 lockdep_assert_held(&ctl->tree_lock);
1824
1825 rb_erase(&info->offset_index, &ctl->free_space_offset);
1826 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1827 ctl->free_extents--;
1828
1829 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1830 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1831 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1832 }
1833
1834 if (update_stat)
1835 ctl->free_space -= info->bytes;
1836 }
1837
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1838 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1839 struct btrfs_free_space *info)
1840 {
1841 int ret = 0;
1842
1843 lockdep_assert_held(&ctl->tree_lock);
1844
1845 ASSERT(info->bytes || info->bitmap);
1846 ret = tree_insert_offset(ctl, NULL, info);
1847 if (ret)
1848 return ret;
1849
1850 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1851
1852 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1853 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1854 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1855 }
1856
1857 ctl->free_space += info->bytes;
1858 ctl->free_extents++;
1859 return ret;
1860 }
1861
relink_bitmap_entry(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1862 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1863 struct btrfs_free_space *info)
1864 {
1865 ASSERT(info->bitmap);
1866
1867 /*
1868 * If our entry is empty it's because we're on a cluster and we don't
1869 * want to re-link it into our ctl bytes index.
1870 */
1871 if (RB_EMPTY_NODE(&info->bytes_index))
1872 return;
1873
1874 lockdep_assert_held(&ctl->tree_lock);
1875
1876 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1877 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1878 }
1879
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,bool update_stat)1880 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1881 struct btrfs_free_space *info,
1882 u64 offset, u64 bytes, bool update_stat)
1883 {
1884 unsigned long start, count, end;
1885 int extent_delta = -1;
1886
1887 start = offset_to_bit(info->offset, ctl->unit, offset);
1888 count = bytes_to_bits(bytes, ctl->unit);
1889 end = start + count;
1890 ASSERT(end <= BITS_PER_BITMAP);
1891
1892 bitmap_clear(info->bitmap, start, count);
1893
1894 info->bytes -= bytes;
1895 if (info->max_extent_size > ctl->unit)
1896 info->max_extent_size = 0;
1897
1898 relink_bitmap_entry(ctl, info);
1899
1900 if (start && test_bit(start - 1, info->bitmap))
1901 extent_delta++;
1902
1903 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1904 extent_delta++;
1905
1906 info->bitmap_extents += extent_delta;
1907 if (!btrfs_free_space_trimmed(info)) {
1908 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1909 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1910 }
1911
1912 if (update_stat)
1913 ctl->free_space -= bytes;
1914 }
1915
btrfs_bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1916 static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1917 struct btrfs_free_space *info, u64 offset,
1918 u64 bytes)
1919 {
1920 unsigned long start, count, end;
1921 int extent_delta = 1;
1922
1923 start = offset_to_bit(info->offset, ctl->unit, offset);
1924 count = bytes_to_bits(bytes, ctl->unit);
1925 end = start + count;
1926 ASSERT(end <= BITS_PER_BITMAP);
1927
1928 bitmap_set(info->bitmap, start, count);
1929
1930 /*
1931 * We set some bytes, we have no idea what the max extent size is
1932 * anymore.
1933 */
1934 info->max_extent_size = 0;
1935 info->bytes += bytes;
1936 ctl->free_space += bytes;
1937
1938 relink_bitmap_entry(ctl, info);
1939
1940 if (start && test_bit(start - 1, info->bitmap))
1941 extent_delta--;
1942
1943 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1944 extent_delta--;
1945
1946 info->bitmap_extents += extent_delta;
1947 if (!btrfs_free_space_trimmed(info)) {
1948 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1949 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1950 }
1951 }
1952
1953 /*
1954 * If we can not find suitable extent, we will use bytes to record
1955 * the size of the max extent.
1956 */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1957 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1958 struct btrfs_free_space *bitmap_info, u64 *offset,
1959 u64 *bytes, bool for_alloc)
1960 {
1961 unsigned long found_bits = 0;
1962 unsigned long max_bits = 0;
1963 unsigned long bits, i;
1964 unsigned long next_zero;
1965 unsigned long extent_bits;
1966
1967 /*
1968 * Skip searching the bitmap if we don't have a contiguous section that
1969 * is large enough for this allocation.
1970 */
1971 if (for_alloc &&
1972 bitmap_info->max_extent_size &&
1973 bitmap_info->max_extent_size < *bytes) {
1974 *bytes = bitmap_info->max_extent_size;
1975 return -1;
1976 }
1977
1978 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1979 max_t(u64, *offset, bitmap_info->offset));
1980 bits = bytes_to_bits(*bytes, ctl->unit);
1981
1982 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1983 if (for_alloc && bits == 1) {
1984 found_bits = 1;
1985 break;
1986 }
1987 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1988 BITS_PER_BITMAP, i);
1989 extent_bits = next_zero - i;
1990 if (extent_bits >= bits) {
1991 found_bits = extent_bits;
1992 break;
1993 } else if (extent_bits > max_bits) {
1994 max_bits = extent_bits;
1995 }
1996 i = next_zero;
1997 }
1998
1999 if (found_bits) {
2000 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2001 *bytes = (u64)(found_bits) * ctl->unit;
2002 return 0;
2003 }
2004
2005 *bytes = (u64)(max_bits) * ctl->unit;
2006 bitmap_info->max_extent_size = *bytes;
2007 relink_bitmap_entry(ctl, bitmap_info);
2008 return -1;
2009 }
2010
2011 /* Cache the size of the max extent in bytes */
2012 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size,bool use_bytes_index)2013 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2014 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2015 {
2016 struct btrfs_free_space *entry;
2017 struct rb_node *node;
2018 u64 tmp;
2019 u64 align_off;
2020 int ret;
2021
2022 if (!ctl->free_space_offset.rb_node)
2023 goto out;
2024 again:
2025 if (use_bytes_index) {
2026 node = rb_first_cached(&ctl->free_space_bytes);
2027 } else {
2028 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2029 0, 1);
2030 if (!entry)
2031 goto out;
2032 node = &entry->offset_index;
2033 }
2034
2035 for (; node; node = rb_next(node)) {
2036 if (use_bytes_index)
2037 entry = rb_entry(node, struct btrfs_free_space,
2038 bytes_index);
2039 else
2040 entry = rb_entry(node, struct btrfs_free_space,
2041 offset_index);
2042
2043 /*
2044 * If we are using the bytes index then all subsequent entries
2045 * in this tree are going to be < bytes, so simply set the max
2046 * extent size and exit the loop.
2047 *
2048 * If we're using the offset index then we need to keep going
2049 * through the rest of the tree.
2050 */
2051 if (entry->bytes < *bytes) {
2052 *max_extent_size = max(get_max_extent_size(entry),
2053 *max_extent_size);
2054 if (use_bytes_index)
2055 break;
2056 continue;
2057 }
2058
2059 /* make sure the space returned is big enough
2060 * to match our requested alignment
2061 */
2062 if (*bytes >= align) {
2063 tmp = entry->offset - ctl->start + align - 1;
2064 tmp = div64_u64(tmp, align);
2065 tmp = tmp * align + ctl->start;
2066 align_off = tmp - entry->offset;
2067 } else {
2068 align_off = 0;
2069 tmp = entry->offset;
2070 }
2071
2072 /*
2073 * We don't break here if we're using the bytes index because we
2074 * may have another entry that has the correct alignment that is
2075 * the right size, so we don't want to miss that possibility.
2076 * At worst this adds another loop through the logic, but if we
2077 * broke here we could prematurely ENOSPC.
2078 */
2079 if (entry->bytes < *bytes + align_off) {
2080 *max_extent_size = max(get_max_extent_size(entry),
2081 *max_extent_size);
2082 continue;
2083 }
2084
2085 if (entry->bitmap) {
2086 struct rb_node *old_next = rb_next(node);
2087 u64 size = *bytes;
2088
2089 ret = search_bitmap(ctl, entry, &tmp, &size, true);
2090 if (!ret) {
2091 *offset = tmp;
2092 *bytes = size;
2093 return entry;
2094 } else {
2095 *max_extent_size =
2096 max(get_max_extent_size(entry),
2097 *max_extent_size);
2098 }
2099
2100 /*
2101 * The bitmap may have gotten re-arranged in the space
2102 * index here because the max_extent_size may have been
2103 * updated. Start from the beginning again if this
2104 * happened.
2105 */
2106 if (use_bytes_index && old_next != rb_next(node))
2107 goto again;
2108 continue;
2109 }
2110
2111 *offset = tmp;
2112 *bytes = entry->bytes - align_off;
2113 return entry;
2114 }
2115 out:
2116 return NULL;
2117 }
2118
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)2119 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2120 struct btrfs_free_space *info, u64 offset)
2121 {
2122 info->offset = offset_to_bitmap(ctl, offset);
2123 info->bytes = 0;
2124 info->bitmap_extents = 0;
2125 INIT_LIST_HEAD(&info->list);
2126 link_free_space(ctl, info);
2127 ctl->total_bitmaps++;
2128 recalculate_thresholds(ctl);
2129 }
2130
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)2131 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2132 struct btrfs_free_space *bitmap_info)
2133 {
2134 /*
2135 * Normally when this is called, the bitmap is completely empty. However,
2136 * if we are blowing up the free space cache for one reason or another
2137 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2138 * we may leave stats on the table.
2139 */
2140 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2141 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2142 bitmap_info->bitmap_extents;
2143 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2144
2145 }
2146 unlink_free_space(ctl, bitmap_info, true);
2147 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2148 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2149 ctl->total_bitmaps--;
2150 recalculate_thresholds(ctl);
2151 }
2152
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)2153 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2154 struct btrfs_free_space *bitmap_info,
2155 u64 *offset, u64 *bytes)
2156 {
2157 u64 end;
2158 u64 search_start, search_bytes;
2159 int ret;
2160
2161 again:
2162 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2163
2164 /*
2165 * We need to search for bits in this bitmap. We could only cover some
2166 * of the extent in this bitmap thanks to how we add space, so we need
2167 * to search for as much as it as we can and clear that amount, and then
2168 * go searching for the next bit.
2169 */
2170 search_start = *offset;
2171 search_bytes = ctl->unit;
2172 search_bytes = min(search_bytes, end - search_start + 1);
2173 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2174 false);
2175 if (ret < 0 || search_start != *offset)
2176 return -EINVAL;
2177
2178 /* We may have found more bits than what we need */
2179 search_bytes = min(search_bytes, *bytes);
2180
2181 /* Cannot clear past the end of the bitmap */
2182 search_bytes = min(search_bytes, end - search_start + 1);
2183
2184 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2185 *offset += search_bytes;
2186 *bytes -= search_bytes;
2187
2188 if (*bytes) {
2189 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2190 if (!bitmap_info->bytes)
2191 free_bitmap(ctl, bitmap_info);
2192
2193 /*
2194 * no entry after this bitmap, but we still have bytes to
2195 * remove, so something has gone wrong.
2196 */
2197 if (!next)
2198 return -EINVAL;
2199
2200 bitmap_info = rb_entry(next, struct btrfs_free_space,
2201 offset_index);
2202
2203 /*
2204 * if the next entry isn't a bitmap we need to return to let the
2205 * extent stuff do its work.
2206 */
2207 if (!bitmap_info->bitmap)
2208 return -EAGAIN;
2209
2210 /*
2211 * Ok the next item is a bitmap, but it may not actually hold
2212 * the information for the rest of this free space stuff, so
2213 * look for it, and if we don't find it return so we can try
2214 * everything over again.
2215 */
2216 search_start = *offset;
2217 search_bytes = ctl->unit;
2218 ret = search_bitmap(ctl, bitmap_info, &search_start,
2219 &search_bytes, false);
2220 if (ret < 0 || search_start != *offset)
2221 return -EAGAIN;
2222
2223 goto again;
2224 } else if (!bitmap_info->bytes)
2225 free_bitmap(ctl, bitmap_info);
2226
2227 return 0;
2228 }
2229
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2230 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2231 struct btrfs_free_space *info, u64 offset,
2232 u64 bytes, enum btrfs_trim_state trim_state)
2233 {
2234 u64 bytes_to_set = 0;
2235 u64 end;
2236
2237 /*
2238 * This is a tradeoff to make bitmap trim state minimal. We mark the
2239 * whole bitmap untrimmed if at any point we add untrimmed regions.
2240 */
2241 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2242 if (btrfs_free_space_trimmed(info)) {
2243 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2244 info->bitmap_extents;
2245 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2246 }
2247 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2248 }
2249
2250 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2251
2252 bytes_to_set = min(end - offset, bytes);
2253
2254 btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
2255
2256 return bytes_to_set;
2257
2258 }
2259
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2260 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2261 struct btrfs_free_space *info)
2262 {
2263 struct btrfs_block_group *block_group = ctl->block_group;
2264 struct btrfs_fs_info *fs_info = block_group->fs_info;
2265 bool forced = false;
2266
2267 #ifdef CONFIG_BTRFS_DEBUG
2268 if (btrfs_should_fragment_free_space(block_group))
2269 forced = true;
2270 #endif
2271
2272 /* This is a way to reclaim large regions from the bitmaps. */
2273 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2274 return false;
2275
2276 /*
2277 * If we are below the extents threshold then we can add this as an
2278 * extent, and don't have to deal with the bitmap
2279 */
2280 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2281 /*
2282 * If this block group has some small extents we don't want to
2283 * use up all of our free slots in the cache with them, we want
2284 * to reserve them to larger extents, however if we have plenty
2285 * of cache left then go ahead an dadd them, no sense in adding
2286 * the overhead of a bitmap if we don't have to.
2287 */
2288 if (info->bytes <= fs_info->sectorsize * 8) {
2289 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2290 return false;
2291 } else {
2292 return false;
2293 }
2294 }
2295
2296 /*
2297 * The original block groups from mkfs can be really small, like 8
2298 * megabytes, so don't bother with a bitmap for those entries. However
2299 * some block groups can be smaller than what a bitmap would cover but
2300 * are still large enough that they could overflow the 32k memory limit,
2301 * so allow those block groups to still be allowed to have a bitmap
2302 * entry.
2303 */
2304 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2305 return false;
2306
2307 return true;
2308 }
2309
2310 static const struct btrfs_free_space_op free_space_op = {
2311 .use_bitmap = use_bitmap,
2312 };
2313
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2314 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2315 struct btrfs_free_space *info)
2316 {
2317 struct btrfs_free_space *bitmap_info;
2318 struct btrfs_block_group *block_group = NULL;
2319 int added = 0;
2320 u64 bytes, offset, bytes_added;
2321 enum btrfs_trim_state trim_state;
2322 int ret;
2323
2324 bytes = info->bytes;
2325 offset = info->offset;
2326 trim_state = info->trim_state;
2327
2328 if (!ctl->op->use_bitmap(ctl, info))
2329 return 0;
2330
2331 if (ctl->op == &free_space_op)
2332 block_group = ctl->block_group;
2333 again:
2334 /*
2335 * Since we link bitmaps right into the cluster we need to see if we
2336 * have a cluster here, and if so and it has our bitmap we need to add
2337 * the free space to that bitmap.
2338 */
2339 if (block_group && !list_empty(&block_group->cluster_list)) {
2340 struct btrfs_free_cluster *cluster;
2341 struct rb_node *node;
2342 struct btrfs_free_space *entry;
2343
2344 cluster = list_first_entry(&block_group->cluster_list,
2345 struct btrfs_free_cluster, block_group_list);
2346 spin_lock(&cluster->lock);
2347 node = rb_first(&cluster->root);
2348 if (!node) {
2349 spin_unlock(&cluster->lock);
2350 goto no_cluster_bitmap;
2351 }
2352
2353 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2354 if (!entry->bitmap) {
2355 spin_unlock(&cluster->lock);
2356 goto no_cluster_bitmap;
2357 }
2358
2359 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2360 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2361 bytes, trim_state);
2362 bytes -= bytes_added;
2363 offset += bytes_added;
2364 }
2365 spin_unlock(&cluster->lock);
2366 if (!bytes) {
2367 ret = 1;
2368 goto out;
2369 }
2370 }
2371
2372 no_cluster_bitmap:
2373 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2374 1, 0);
2375 if (!bitmap_info) {
2376 ASSERT(added == 0);
2377 goto new_bitmap;
2378 }
2379
2380 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2381 trim_state);
2382 bytes -= bytes_added;
2383 offset += bytes_added;
2384 added = 0;
2385
2386 if (!bytes) {
2387 ret = 1;
2388 goto out;
2389 } else
2390 goto again;
2391
2392 new_bitmap:
2393 if (info && info->bitmap) {
2394 add_new_bitmap(ctl, info, offset);
2395 added = 1;
2396 info = NULL;
2397 goto again;
2398 } else {
2399 spin_unlock(&ctl->tree_lock);
2400
2401 /* no pre-allocated info, allocate a new one */
2402 if (!info) {
2403 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2404 GFP_NOFS);
2405 if (!info) {
2406 spin_lock(&ctl->tree_lock);
2407 ret = -ENOMEM;
2408 goto out;
2409 }
2410 }
2411
2412 /* allocate the bitmap */
2413 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2414 GFP_NOFS);
2415 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2416 spin_lock(&ctl->tree_lock);
2417 if (!info->bitmap) {
2418 ret = -ENOMEM;
2419 goto out;
2420 }
2421 goto again;
2422 }
2423
2424 out:
2425 if (info) {
2426 if (info->bitmap)
2427 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2428 info->bitmap);
2429 kmem_cache_free(btrfs_free_space_cachep, info);
2430 }
2431
2432 return ret;
2433 }
2434
2435 /*
2436 * Free space merging rules:
2437 * 1) Merge trimmed areas together
2438 * 2) Let untrimmed areas coalesce with trimmed areas
2439 * 3) Always pull neighboring regions from bitmaps
2440 *
2441 * The above rules are for when we merge free space based on btrfs_trim_state.
2442 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2443 * same reason: to promote larger extent regions which makes life easier for
2444 * find_free_extent(). Rule 2 enables coalescing based on the common path
2445 * being returning free space from btrfs_finish_extent_commit(). So when free
2446 * space is trimmed, it will prevent aggregating trimmed new region and
2447 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2448 * and provide find_free_extent() with the largest extents possible hoping for
2449 * the reuse path.
2450 */
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2451 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2452 struct btrfs_free_space *info, bool update_stat)
2453 {
2454 struct btrfs_free_space *left_info = NULL;
2455 struct btrfs_free_space *right_info;
2456 bool merged = false;
2457 u64 offset = info->offset;
2458 u64 bytes = info->bytes;
2459 const bool is_trimmed = btrfs_free_space_trimmed(info);
2460 struct rb_node *right_prev = NULL;
2461
2462 /*
2463 * first we want to see if there is free space adjacent to the range we
2464 * are adding, if there is remove that struct and add a new one to
2465 * cover the entire range
2466 */
2467 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2468 if (right_info)
2469 right_prev = rb_prev(&right_info->offset_index);
2470
2471 if (right_prev)
2472 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2473 else if (!right_info)
2474 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2475
2476 /* See try_merge_free_space() comment. */
2477 if (right_info && !right_info->bitmap &&
2478 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2479 unlink_free_space(ctl, right_info, update_stat);
2480 info->bytes += right_info->bytes;
2481 kmem_cache_free(btrfs_free_space_cachep, right_info);
2482 merged = true;
2483 }
2484
2485 /* See try_merge_free_space() comment. */
2486 if (left_info && !left_info->bitmap &&
2487 left_info->offset + left_info->bytes == offset &&
2488 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2489 unlink_free_space(ctl, left_info, update_stat);
2490 info->offset = left_info->offset;
2491 info->bytes += left_info->bytes;
2492 kmem_cache_free(btrfs_free_space_cachep, left_info);
2493 merged = true;
2494 }
2495
2496 return merged;
2497 }
2498
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2499 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2500 struct btrfs_free_space *info,
2501 bool update_stat)
2502 {
2503 struct btrfs_free_space *bitmap;
2504 unsigned long i;
2505 unsigned long j;
2506 const u64 end = info->offset + info->bytes;
2507 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2508 u64 bytes;
2509
2510 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2511 if (!bitmap)
2512 return false;
2513
2514 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2515 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2516 if (j == i)
2517 return false;
2518 bytes = (j - i) * ctl->unit;
2519 info->bytes += bytes;
2520
2521 /* See try_merge_free_space() comment. */
2522 if (!btrfs_free_space_trimmed(bitmap))
2523 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2524
2525 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2526
2527 if (!bitmap->bytes)
2528 free_bitmap(ctl, bitmap);
2529
2530 return true;
2531 }
2532
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2533 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2534 struct btrfs_free_space *info,
2535 bool update_stat)
2536 {
2537 struct btrfs_free_space *bitmap;
2538 u64 bitmap_offset;
2539 unsigned long i;
2540 unsigned long j;
2541 unsigned long prev_j;
2542 u64 bytes;
2543
2544 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2545 /* If we're on a boundary, try the previous logical bitmap. */
2546 if (bitmap_offset == info->offset) {
2547 if (info->offset == 0)
2548 return false;
2549 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2550 }
2551
2552 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2553 if (!bitmap)
2554 return false;
2555
2556 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2557 j = 0;
2558 prev_j = (unsigned long)-1;
2559 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2560 if (j > i)
2561 break;
2562 prev_j = j;
2563 }
2564 if (prev_j == i)
2565 return false;
2566
2567 if (prev_j == (unsigned long)-1)
2568 bytes = (i + 1) * ctl->unit;
2569 else
2570 bytes = (i - prev_j) * ctl->unit;
2571
2572 info->offset -= bytes;
2573 info->bytes += bytes;
2574
2575 /* See try_merge_free_space() comment. */
2576 if (!btrfs_free_space_trimmed(bitmap))
2577 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2578
2579 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2580
2581 if (!bitmap->bytes)
2582 free_bitmap(ctl, bitmap);
2583
2584 return true;
2585 }
2586
2587 /*
2588 * We prefer always to allocate from extent entries, both for clustered and
2589 * non-clustered allocation requests. So when attempting to add a new extent
2590 * entry, try to see if there's adjacent free space in bitmap entries, and if
2591 * there is, migrate that space from the bitmaps to the extent.
2592 * Like this we get better chances of satisfying space allocation requests
2593 * because we attempt to satisfy them based on a single cache entry, and never
2594 * on 2 or more entries - even if the entries represent a contiguous free space
2595 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2596 * ends).
2597 */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2598 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2599 struct btrfs_free_space *info,
2600 bool update_stat)
2601 {
2602 /*
2603 * Only work with disconnected entries, as we can change their offset,
2604 * and must be extent entries.
2605 */
2606 ASSERT(!info->bitmap);
2607 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2608
2609 if (ctl->total_bitmaps > 0) {
2610 bool stole_end;
2611 bool stole_front = false;
2612
2613 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2614 if (ctl->total_bitmaps > 0)
2615 stole_front = steal_from_bitmap_to_front(ctl, info,
2616 update_stat);
2617
2618 if (stole_end || stole_front)
2619 try_merge_free_space(ctl, info, update_stat);
2620 }
2621 }
2622
__btrfs_add_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2623 static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2624 u64 offset, u64 bytes,
2625 enum btrfs_trim_state trim_state)
2626 {
2627 struct btrfs_fs_info *fs_info = block_group->fs_info;
2628 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2629 struct btrfs_free_space *info;
2630 int ret = 0;
2631 u64 filter_bytes = bytes;
2632
2633 ASSERT(!btrfs_is_zoned(fs_info));
2634
2635 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2636 if (!info)
2637 return -ENOMEM;
2638
2639 info->offset = offset;
2640 info->bytes = bytes;
2641 info->trim_state = trim_state;
2642 RB_CLEAR_NODE(&info->offset_index);
2643 RB_CLEAR_NODE(&info->bytes_index);
2644
2645 spin_lock(&ctl->tree_lock);
2646
2647 if (try_merge_free_space(ctl, info, true))
2648 goto link;
2649
2650 /*
2651 * There was no extent directly to the left or right of this new
2652 * extent then we know we're going to have to allocate a new extent, so
2653 * before we do that see if we need to drop this into a bitmap
2654 */
2655 ret = insert_into_bitmap(ctl, info);
2656 if (ret < 0) {
2657 goto out;
2658 } else if (ret) {
2659 ret = 0;
2660 goto out;
2661 }
2662 link:
2663 /*
2664 * Only steal free space from adjacent bitmaps if we're sure we're not
2665 * going to add the new free space to existing bitmap entries - because
2666 * that would mean unnecessary work that would be reverted. Therefore
2667 * attempt to steal space from bitmaps if we're adding an extent entry.
2668 */
2669 steal_from_bitmap(ctl, info, true);
2670
2671 filter_bytes = max(filter_bytes, info->bytes);
2672
2673 ret = link_free_space(ctl, info);
2674 if (ret)
2675 kmem_cache_free(btrfs_free_space_cachep, info);
2676 out:
2677 btrfs_discard_update_discardable(block_group);
2678 spin_unlock(&ctl->tree_lock);
2679
2680 if (ret) {
2681 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2682 ASSERT(ret != -EEXIST);
2683 }
2684
2685 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2686 btrfs_discard_check_filter(block_group, filter_bytes);
2687 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2688 }
2689
2690 return ret;
2691 }
2692
__btrfs_add_free_space_zoned(struct btrfs_block_group * block_group,u64 bytenr,u64 size,bool used)2693 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2694 u64 bytenr, u64 size, bool used)
2695 {
2696 struct btrfs_space_info *sinfo = block_group->space_info;
2697 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2698 u64 offset = bytenr - block_group->start;
2699 u64 to_free, to_unusable;
2700 int bg_reclaim_threshold = 0;
2701 bool initial;
2702 u64 reclaimable_unusable;
2703
2704 spin_lock(&block_group->lock);
2705
2706 initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
2707 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2708 if (!initial)
2709 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2710
2711 if (!used)
2712 to_free = size;
2713 else if (initial)
2714 to_free = block_group->zone_capacity;
2715 else if (offset >= block_group->alloc_offset)
2716 to_free = size;
2717 else if (offset + size <= block_group->alloc_offset)
2718 to_free = 0;
2719 else
2720 to_free = offset + size - block_group->alloc_offset;
2721 to_unusable = size - to_free;
2722
2723 spin_lock(&ctl->tree_lock);
2724 ctl->free_space += to_free;
2725 spin_unlock(&ctl->tree_lock);
2726 /*
2727 * If the block group is read-only, we should account freed space into
2728 * bytes_readonly.
2729 */
2730 if (!block_group->ro) {
2731 block_group->zone_unusable += to_unusable;
2732 WARN_ON(block_group->zone_unusable > block_group->length);
2733 }
2734 if (!used) {
2735 block_group->alloc_offset -= size;
2736 }
2737
2738 reclaimable_unusable = block_group->zone_unusable -
2739 (block_group->length - block_group->zone_capacity);
2740 /* All the region is now unusable. Mark it as unused and reclaim */
2741 if (block_group->zone_unusable == block_group->length) {
2742 btrfs_mark_bg_unused(block_group);
2743 } else if (bg_reclaim_threshold &&
2744 reclaimable_unusable >=
2745 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2746 btrfs_mark_bg_to_reclaim(block_group);
2747 }
2748
2749 spin_unlock(&block_group->lock);
2750
2751 return 0;
2752 }
2753
btrfs_add_free_space(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2754 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2755 u64 bytenr, u64 size)
2756 {
2757 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2758
2759 if (btrfs_is_zoned(block_group->fs_info))
2760 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2761 true);
2762
2763 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2764 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2765
2766 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2767 }
2768
btrfs_add_free_space_unused(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2769 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2770 u64 bytenr, u64 size)
2771 {
2772 if (btrfs_is_zoned(block_group->fs_info))
2773 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2774 false);
2775
2776 return btrfs_add_free_space(block_group, bytenr, size);
2777 }
2778
2779 /*
2780 * This is a subtle distinction because when adding free space back in general,
2781 * we want it to be added as untrimmed for async. But in the case where we add
2782 * it on loading of a block group, we want to consider it trimmed.
2783 */
btrfs_add_free_space_async_trimmed(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2784 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2785 u64 bytenr, u64 size)
2786 {
2787 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2788
2789 if (btrfs_is_zoned(block_group->fs_info))
2790 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2791 true);
2792
2793 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2794 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2795 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2796
2797 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2798 }
2799
btrfs_remove_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes)2800 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2801 u64 offset, u64 bytes)
2802 {
2803 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2804 struct btrfs_free_space *info;
2805 int ret;
2806 bool re_search = false;
2807
2808 if (btrfs_is_zoned(block_group->fs_info)) {
2809 /*
2810 * This can happen with conventional zones when replaying log.
2811 * Since the allocation info of tree-log nodes are not recorded
2812 * to the extent-tree, calculate_alloc_pointer() failed to
2813 * advance the allocation pointer after last allocated tree log
2814 * node blocks.
2815 *
2816 * This function is called from
2817 * btrfs_pin_extent_for_log_replay() when replaying the log.
2818 * Advance the pointer not to overwrite the tree-log nodes.
2819 */
2820 if (block_group->start + block_group->alloc_offset <
2821 offset + bytes) {
2822 block_group->alloc_offset =
2823 offset + bytes - block_group->start;
2824 }
2825 return 0;
2826 }
2827
2828 spin_lock(&ctl->tree_lock);
2829
2830 again:
2831 ret = 0;
2832 if (!bytes)
2833 goto out_lock;
2834
2835 info = tree_search_offset(ctl, offset, 0, 0);
2836 if (!info) {
2837 /*
2838 * oops didn't find an extent that matched the space we wanted
2839 * to remove, look for a bitmap instead
2840 */
2841 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2842 1, 0);
2843 if (!info) {
2844 /*
2845 * If we found a partial bit of our free space in a
2846 * bitmap but then couldn't find the other part this may
2847 * be a problem, so WARN about it.
2848 */
2849 WARN_ON(re_search);
2850 goto out_lock;
2851 }
2852 }
2853
2854 re_search = false;
2855 if (!info->bitmap) {
2856 unlink_free_space(ctl, info, true);
2857 if (offset == info->offset) {
2858 u64 to_free = min(bytes, info->bytes);
2859
2860 info->bytes -= to_free;
2861 info->offset += to_free;
2862 if (info->bytes) {
2863 ret = link_free_space(ctl, info);
2864 WARN_ON(ret);
2865 } else {
2866 kmem_cache_free(btrfs_free_space_cachep, info);
2867 }
2868
2869 offset += to_free;
2870 bytes -= to_free;
2871 goto again;
2872 } else {
2873 u64 old_end = info->bytes + info->offset;
2874
2875 info->bytes = offset - info->offset;
2876 ret = link_free_space(ctl, info);
2877 WARN_ON(ret);
2878 if (ret)
2879 goto out_lock;
2880
2881 /* Not enough bytes in this entry to satisfy us */
2882 if (old_end < offset + bytes) {
2883 bytes -= old_end - offset;
2884 offset = old_end;
2885 goto again;
2886 } else if (old_end == offset + bytes) {
2887 /* all done */
2888 goto out_lock;
2889 }
2890 spin_unlock(&ctl->tree_lock);
2891
2892 ret = __btrfs_add_free_space(block_group,
2893 offset + bytes,
2894 old_end - (offset + bytes),
2895 info->trim_state);
2896 WARN_ON(ret);
2897 goto out;
2898 }
2899 }
2900
2901 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2902 if (ret == -EAGAIN) {
2903 re_search = true;
2904 goto again;
2905 }
2906 out_lock:
2907 btrfs_discard_update_discardable(block_group);
2908 spin_unlock(&ctl->tree_lock);
2909 out:
2910 return ret;
2911 }
2912
btrfs_dump_free_space(struct btrfs_block_group * block_group,u64 bytes)2913 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2914 u64 bytes)
2915 {
2916 struct btrfs_fs_info *fs_info = block_group->fs_info;
2917 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2918 struct btrfs_free_space *info;
2919 struct rb_node *n;
2920 int count = 0;
2921
2922 /*
2923 * Zoned btrfs does not use free space tree and cluster. Just print
2924 * out the free space after the allocation offset.
2925 */
2926 if (btrfs_is_zoned(fs_info)) {
2927 btrfs_info(fs_info, "free space %llu active %d",
2928 block_group->zone_capacity - block_group->alloc_offset,
2929 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2930 &block_group->runtime_flags));
2931 return;
2932 }
2933
2934 spin_lock(&ctl->tree_lock);
2935 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2936 info = rb_entry(n, struct btrfs_free_space, offset_index);
2937 if (info->bytes >= bytes && !block_group->ro)
2938 count++;
2939 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2940 info->offset, info->bytes, str_yes_no(info->bitmap));
2941 }
2942 spin_unlock(&ctl->tree_lock);
2943 btrfs_info(fs_info, "block group has cluster?: %s",
2944 str_no_yes(list_empty(&block_group->cluster_list)));
2945 btrfs_info(fs_info,
2946 "%d free space entries at or bigger than %llu bytes",
2947 count, bytes);
2948 }
2949
btrfs_init_free_space_ctl(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)2950 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2951 struct btrfs_free_space_ctl *ctl)
2952 {
2953 struct btrfs_fs_info *fs_info = block_group->fs_info;
2954
2955 spin_lock_init(&ctl->tree_lock);
2956 ctl->unit = fs_info->sectorsize;
2957 ctl->start = block_group->start;
2958 ctl->block_group = block_group;
2959 ctl->op = &free_space_op;
2960 ctl->free_space_bytes = RB_ROOT_CACHED;
2961 INIT_LIST_HEAD(&ctl->trimming_ranges);
2962 mutex_init(&ctl->cache_writeout_mutex);
2963
2964 /*
2965 * we only want to have 32k of ram per block group for keeping
2966 * track of free space, and if we pass 1/2 of that we want to
2967 * start converting things over to using bitmaps
2968 */
2969 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2970 }
2971
2972 /*
2973 * for a given cluster, put all of its extents back into the free
2974 * space cache. If the block group passed doesn't match the block group
2975 * pointed to by the cluster, someone else raced in and freed the
2976 * cluster already. In that case, we just return without changing anything
2977 */
__btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)2978 static void __btrfs_return_cluster_to_free_space(
2979 struct btrfs_block_group *block_group,
2980 struct btrfs_free_cluster *cluster)
2981 {
2982 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2983 struct rb_node *node;
2984
2985 lockdep_assert_held(&ctl->tree_lock);
2986
2987 spin_lock(&cluster->lock);
2988 if (cluster->block_group != block_group) {
2989 spin_unlock(&cluster->lock);
2990 return;
2991 }
2992
2993 cluster->block_group = NULL;
2994 cluster->window_start = 0;
2995 list_del_init(&cluster->block_group_list);
2996
2997 node = rb_first(&cluster->root);
2998 while (node) {
2999 struct btrfs_free_space *entry;
3000
3001 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3002 node = rb_next(&entry->offset_index);
3003 rb_erase(&entry->offset_index, &cluster->root);
3004 RB_CLEAR_NODE(&entry->offset_index);
3005
3006 if (!entry->bitmap) {
3007 /* Merging treats extents as if they were new */
3008 if (!btrfs_free_space_trimmed(entry)) {
3009 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3010 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3011 entry->bytes;
3012 }
3013
3014 try_merge_free_space(ctl, entry, false);
3015 steal_from_bitmap(ctl, entry, false);
3016
3017 /* As we insert directly, update these statistics */
3018 if (!btrfs_free_space_trimmed(entry)) {
3019 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3020 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3021 entry->bytes;
3022 }
3023 }
3024 tree_insert_offset(ctl, NULL, entry);
3025 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3026 entry_less);
3027 }
3028 cluster->root = RB_ROOT;
3029 spin_unlock(&cluster->lock);
3030 btrfs_put_block_group(block_group);
3031 }
3032
btrfs_remove_free_space_cache(struct btrfs_block_group * block_group)3033 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3034 {
3035 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3036 struct btrfs_free_cluster *cluster;
3037 struct list_head *head;
3038
3039 spin_lock(&ctl->tree_lock);
3040 while ((head = block_group->cluster_list.next) !=
3041 &block_group->cluster_list) {
3042 cluster = list_entry(head, struct btrfs_free_cluster,
3043 block_group_list);
3044
3045 WARN_ON(cluster->block_group != block_group);
3046 __btrfs_return_cluster_to_free_space(block_group, cluster);
3047
3048 cond_resched_lock(&ctl->tree_lock);
3049 }
3050 __btrfs_remove_free_space_cache(ctl);
3051 btrfs_discard_update_discardable(block_group);
3052 spin_unlock(&ctl->tree_lock);
3053
3054 }
3055
3056 /*
3057 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3058 */
btrfs_is_free_space_trimmed(struct btrfs_block_group * block_group)3059 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3060 {
3061 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3062 struct btrfs_free_space *info;
3063 struct rb_node *node;
3064 bool ret = true;
3065
3066 spin_lock(&ctl->tree_lock);
3067 node = rb_first(&ctl->free_space_offset);
3068
3069 while (node) {
3070 info = rb_entry(node, struct btrfs_free_space, offset_index);
3071
3072 if (!btrfs_free_space_trimmed(info)) {
3073 ret = false;
3074 break;
3075 }
3076
3077 node = rb_next(node);
3078 }
3079
3080 spin_unlock(&ctl->tree_lock);
3081 return ret;
3082 }
3083
btrfs_find_space_for_alloc(struct btrfs_block_group * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)3084 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3085 u64 offset, u64 bytes, u64 empty_size,
3086 u64 *max_extent_size)
3087 {
3088 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3089 struct btrfs_discard_ctl *discard_ctl =
3090 &block_group->fs_info->discard_ctl;
3091 struct btrfs_free_space *entry = NULL;
3092 u64 bytes_search = bytes + empty_size;
3093 u64 ret = 0;
3094 u64 align_gap = 0;
3095 u64 align_gap_len = 0;
3096 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3097 bool use_bytes_index = (offset == block_group->start);
3098
3099 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3100
3101 spin_lock(&ctl->tree_lock);
3102 entry = find_free_space(ctl, &offset, &bytes_search,
3103 block_group->full_stripe_len, max_extent_size,
3104 use_bytes_index);
3105 if (!entry)
3106 goto out;
3107
3108 ret = offset;
3109 if (entry->bitmap) {
3110 bitmap_clear_bits(ctl, entry, offset, bytes, true);
3111
3112 if (!btrfs_free_space_trimmed(entry))
3113 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3114
3115 if (!entry->bytes)
3116 free_bitmap(ctl, entry);
3117 } else {
3118 unlink_free_space(ctl, entry, true);
3119 align_gap_len = offset - entry->offset;
3120 align_gap = entry->offset;
3121 align_gap_trim_state = entry->trim_state;
3122
3123 if (!btrfs_free_space_trimmed(entry))
3124 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3125
3126 entry->offset = offset + bytes;
3127 WARN_ON(entry->bytes < bytes + align_gap_len);
3128
3129 entry->bytes -= bytes + align_gap_len;
3130 if (!entry->bytes)
3131 kmem_cache_free(btrfs_free_space_cachep, entry);
3132 else
3133 link_free_space(ctl, entry);
3134 }
3135 out:
3136 btrfs_discard_update_discardable(block_group);
3137 spin_unlock(&ctl->tree_lock);
3138
3139 if (align_gap_len)
3140 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
3141 align_gap_trim_state);
3142 return ret;
3143 }
3144
3145 /*
3146 * given a cluster, put all of its extents back into the free space
3147 * cache. If a block group is passed, this function will only free
3148 * a cluster that belongs to the passed block group.
3149 *
3150 * Otherwise, it'll get a reference on the block group pointed to by the
3151 * cluster and remove the cluster from it.
3152 */
btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)3153 void btrfs_return_cluster_to_free_space(
3154 struct btrfs_block_group *block_group,
3155 struct btrfs_free_cluster *cluster)
3156 {
3157 struct btrfs_free_space_ctl *ctl;
3158
3159 /* first, get a safe pointer to the block group */
3160 spin_lock(&cluster->lock);
3161 if (!block_group) {
3162 block_group = cluster->block_group;
3163 if (!block_group) {
3164 spin_unlock(&cluster->lock);
3165 return;
3166 }
3167 } else if (cluster->block_group != block_group) {
3168 /* someone else has already freed it don't redo their work */
3169 spin_unlock(&cluster->lock);
3170 return;
3171 }
3172 btrfs_get_block_group(block_group);
3173 spin_unlock(&cluster->lock);
3174
3175 ctl = block_group->free_space_ctl;
3176
3177 /* now return any extents the cluster had on it */
3178 spin_lock(&ctl->tree_lock);
3179 __btrfs_return_cluster_to_free_space(block_group, cluster);
3180 spin_unlock(&ctl->tree_lock);
3181
3182 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3183
3184 /* finally drop our ref */
3185 btrfs_put_block_group(block_group);
3186 }
3187
btrfs_alloc_from_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)3188 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3189 struct btrfs_free_cluster *cluster,
3190 struct btrfs_free_space *entry,
3191 u64 bytes, u64 min_start,
3192 u64 *max_extent_size)
3193 {
3194 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3195 int ret2;
3196 u64 search_start = cluster->window_start;
3197 u64 search_bytes = bytes;
3198 u64 ret = 0;
3199
3200 search_start = min_start;
3201 search_bytes = bytes;
3202
3203 ret2 = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3204 if (ret2) {
3205 *max_extent_size = max(get_max_extent_size(entry),
3206 *max_extent_size);
3207 return 0;
3208 }
3209
3210 ret = search_start;
3211 bitmap_clear_bits(ctl, entry, ret, bytes, false);
3212
3213 return ret;
3214 }
3215
3216 /*
3217 * given a cluster, try to allocate 'bytes' from it, returns 0
3218 * if it couldn't find anything suitably large, or a logical disk offset
3219 * if things worked out
3220 */
btrfs_alloc_from_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)3221 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3222 struct btrfs_free_cluster *cluster, u64 bytes,
3223 u64 min_start, u64 *max_extent_size)
3224 {
3225 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3226 struct btrfs_discard_ctl *discard_ctl =
3227 &block_group->fs_info->discard_ctl;
3228 struct btrfs_free_space *entry = NULL;
3229 struct rb_node *node;
3230 u64 ret = 0;
3231
3232 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3233
3234 spin_lock(&cluster->lock);
3235 if (bytes > cluster->max_size)
3236 goto out;
3237
3238 if (cluster->block_group != block_group)
3239 goto out;
3240
3241 node = rb_first(&cluster->root);
3242 if (!node)
3243 goto out;
3244
3245 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3246 while (1) {
3247 if (entry->bytes < bytes)
3248 *max_extent_size = max(get_max_extent_size(entry),
3249 *max_extent_size);
3250
3251 if (entry->bytes < bytes ||
3252 (!entry->bitmap && entry->offset < min_start)) {
3253 node = rb_next(&entry->offset_index);
3254 if (!node)
3255 break;
3256 entry = rb_entry(node, struct btrfs_free_space,
3257 offset_index);
3258 continue;
3259 }
3260
3261 if (entry->bitmap) {
3262 ret = btrfs_alloc_from_bitmap(block_group,
3263 cluster, entry, bytes,
3264 cluster->window_start,
3265 max_extent_size);
3266 if (ret == 0) {
3267 node = rb_next(&entry->offset_index);
3268 if (!node)
3269 break;
3270 entry = rb_entry(node, struct btrfs_free_space,
3271 offset_index);
3272 continue;
3273 }
3274 cluster->window_start += bytes;
3275 } else {
3276 ret = entry->offset;
3277
3278 entry->offset += bytes;
3279 entry->bytes -= bytes;
3280 }
3281
3282 break;
3283 }
3284 out:
3285 spin_unlock(&cluster->lock);
3286
3287 if (!ret)
3288 return 0;
3289
3290 spin_lock(&ctl->tree_lock);
3291
3292 if (!btrfs_free_space_trimmed(entry))
3293 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3294
3295 ctl->free_space -= bytes;
3296 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3297 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3298
3299 spin_lock(&cluster->lock);
3300 if (entry->bytes == 0) {
3301 rb_erase(&entry->offset_index, &cluster->root);
3302 ctl->free_extents--;
3303 if (entry->bitmap) {
3304 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3305 entry->bitmap);
3306 ctl->total_bitmaps--;
3307 recalculate_thresholds(ctl);
3308 } else if (!btrfs_free_space_trimmed(entry)) {
3309 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3310 }
3311 kmem_cache_free(btrfs_free_space_cachep, entry);
3312 }
3313
3314 spin_unlock(&cluster->lock);
3315 spin_unlock(&ctl->tree_lock);
3316
3317 return ret;
3318 }
3319
btrfs_bitmap_cluster(struct btrfs_block_group * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3320 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3321 struct btrfs_free_space *entry,
3322 struct btrfs_free_cluster *cluster,
3323 u64 offset, u64 bytes,
3324 u64 cont1_bytes, u64 min_bytes)
3325 {
3326 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3327 unsigned long next_zero;
3328 unsigned long i;
3329 unsigned long want_bits;
3330 unsigned long min_bits;
3331 unsigned long found_bits;
3332 unsigned long max_bits = 0;
3333 unsigned long start = 0;
3334 unsigned long total_found = 0;
3335 int ret;
3336
3337 lockdep_assert_held(&ctl->tree_lock);
3338
3339 i = offset_to_bit(entry->offset, ctl->unit,
3340 max_t(u64, offset, entry->offset));
3341 want_bits = bytes_to_bits(bytes, ctl->unit);
3342 min_bits = bytes_to_bits(min_bytes, ctl->unit);
3343
3344 /*
3345 * Don't bother looking for a cluster in this bitmap if it's heavily
3346 * fragmented.
3347 */
3348 if (entry->max_extent_size &&
3349 entry->max_extent_size < cont1_bytes)
3350 return -ENOSPC;
3351 again:
3352 found_bits = 0;
3353 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3354 next_zero = find_next_zero_bit(entry->bitmap,
3355 BITS_PER_BITMAP, i);
3356 if (next_zero - i >= min_bits) {
3357 found_bits = next_zero - i;
3358 if (found_bits > max_bits)
3359 max_bits = found_bits;
3360 break;
3361 }
3362 if (next_zero - i > max_bits)
3363 max_bits = next_zero - i;
3364 i = next_zero;
3365 }
3366
3367 if (!found_bits) {
3368 entry->max_extent_size = (u64)max_bits * ctl->unit;
3369 return -ENOSPC;
3370 }
3371
3372 if (!total_found) {
3373 start = i;
3374 cluster->max_size = 0;
3375 }
3376
3377 total_found += found_bits;
3378
3379 if (cluster->max_size < found_bits * ctl->unit)
3380 cluster->max_size = found_bits * ctl->unit;
3381
3382 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3383 i = next_zero + 1;
3384 goto again;
3385 }
3386
3387 cluster->window_start = start * ctl->unit + entry->offset;
3388 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3389 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3390
3391 /*
3392 * We need to know if we're currently on the normal space index when we
3393 * manipulate the bitmap so that we know we need to remove and re-insert
3394 * it into the space_index tree. Clear the bytes_index node here so the
3395 * bitmap manipulation helpers know not to mess with the space_index
3396 * until this bitmap entry is added back into the normal cache.
3397 */
3398 RB_CLEAR_NODE(&entry->bytes_index);
3399
3400 ret = tree_insert_offset(ctl, cluster, entry);
3401 ASSERT(!ret); /* -EEXIST; Logic error */
3402
3403 trace_btrfs_setup_cluster(block_group, cluster,
3404 total_found * ctl->unit, 1);
3405 return 0;
3406 }
3407
3408 /*
3409 * This searches the block group for just extents to fill the cluster with.
3410 * Try to find a cluster with at least bytes total bytes, at least one
3411 * extent of cont1_bytes, and other clusters of at least min_bytes.
3412 */
3413 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3414 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3415 struct btrfs_free_cluster *cluster,
3416 struct list_head *bitmaps, u64 offset, u64 bytes,
3417 u64 cont1_bytes, u64 min_bytes)
3418 {
3419 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3420 struct btrfs_free_space *first = NULL;
3421 struct btrfs_free_space *entry = NULL;
3422 struct btrfs_free_space *last;
3423 struct rb_node *node;
3424 u64 window_free;
3425 u64 max_extent;
3426 u64 total_size = 0;
3427
3428 lockdep_assert_held(&ctl->tree_lock);
3429
3430 entry = tree_search_offset(ctl, offset, 0, 1);
3431 if (!entry)
3432 return -ENOSPC;
3433
3434 /*
3435 * We don't want bitmaps, so just move along until we find a normal
3436 * extent entry.
3437 */
3438 while (entry->bitmap || entry->bytes < min_bytes) {
3439 if (entry->bitmap && list_empty(&entry->list))
3440 list_add_tail(&entry->list, bitmaps);
3441 node = rb_next(&entry->offset_index);
3442 if (!node)
3443 return -ENOSPC;
3444 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3445 }
3446
3447 window_free = entry->bytes;
3448 max_extent = entry->bytes;
3449 first = entry;
3450 last = entry;
3451
3452 for (node = rb_next(&entry->offset_index); node;
3453 node = rb_next(&entry->offset_index)) {
3454 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3455
3456 if (entry->bitmap) {
3457 if (list_empty(&entry->list))
3458 list_add_tail(&entry->list, bitmaps);
3459 continue;
3460 }
3461
3462 if (entry->bytes < min_bytes)
3463 continue;
3464
3465 last = entry;
3466 window_free += entry->bytes;
3467 if (entry->bytes > max_extent)
3468 max_extent = entry->bytes;
3469 }
3470
3471 if (window_free < bytes || max_extent < cont1_bytes)
3472 return -ENOSPC;
3473
3474 cluster->window_start = first->offset;
3475
3476 node = &first->offset_index;
3477
3478 /*
3479 * now we've found our entries, pull them out of the free space
3480 * cache and put them into the cluster rbtree
3481 */
3482 do {
3483 int ret;
3484
3485 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3486 node = rb_next(&entry->offset_index);
3487 if (entry->bitmap || entry->bytes < min_bytes)
3488 continue;
3489
3490 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3491 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3492 ret = tree_insert_offset(ctl, cluster, entry);
3493 total_size += entry->bytes;
3494 ASSERT(!ret); /* -EEXIST; Logic error */
3495 } while (node && entry != last);
3496
3497 cluster->max_size = max_extent;
3498 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3499 return 0;
3500 }
3501
3502 /*
3503 * This specifically looks for bitmaps that may work in the cluster, we assume
3504 * that we have already failed to find extents that will work.
3505 */
3506 static noinline int
setup_cluster_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3507 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3508 struct btrfs_free_cluster *cluster,
3509 struct list_head *bitmaps, u64 offset, u64 bytes,
3510 u64 cont1_bytes, u64 min_bytes)
3511 {
3512 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3513 struct btrfs_free_space *entry = NULL;
3514 int ret = -ENOSPC;
3515 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3516
3517 if (ctl->total_bitmaps == 0)
3518 return -ENOSPC;
3519
3520 /*
3521 * The bitmap that covers offset won't be in the list unless offset
3522 * is just its start offset.
3523 */
3524 if (!list_empty(bitmaps))
3525 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3526
3527 if (!entry || entry->offset != bitmap_offset) {
3528 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3529 if (entry && list_empty(&entry->list))
3530 list_add(&entry->list, bitmaps);
3531 }
3532
3533 list_for_each_entry(entry, bitmaps, list) {
3534 if (entry->bytes < bytes)
3535 continue;
3536 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3537 bytes, cont1_bytes, min_bytes);
3538 if (!ret)
3539 return 0;
3540 }
3541
3542 /*
3543 * The bitmaps list has all the bitmaps that record free space
3544 * starting after offset, so no more search is required.
3545 */
3546 return -ENOSPC;
3547 }
3548
3549 /*
3550 * here we try to find a cluster of blocks in a block group. The goal
3551 * is to find at least bytes+empty_size.
3552 * We might not find them all in one contiguous area.
3553 *
3554 * returns zero and sets up cluster if things worked out, otherwise
3555 * it returns -enospc
3556 */
btrfs_find_space_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3557 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3558 struct btrfs_free_cluster *cluster,
3559 u64 offset, u64 bytes, u64 empty_size)
3560 {
3561 struct btrfs_fs_info *fs_info = block_group->fs_info;
3562 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3563 struct btrfs_free_space *entry, *tmp;
3564 LIST_HEAD(bitmaps);
3565 u64 min_bytes;
3566 u64 cont1_bytes;
3567 int ret;
3568
3569 /*
3570 * Choose the minimum extent size we'll require for this
3571 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3572 * For metadata, allow allocates with smaller extents. For
3573 * data, keep it dense.
3574 */
3575 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3576 cont1_bytes = bytes + empty_size;
3577 min_bytes = cont1_bytes;
3578 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3579 cont1_bytes = bytes;
3580 min_bytes = fs_info->sectorsize;
3581 } else {
3582 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3583 min_bytes = fs_info->sectorsize;
3584 }
3585
3586 spin_lock(&ctl->tree_lock);
3587
3588 /*
3589 * If we know we don't have enough space to make a cluster don't even
3590 * bother doing all the work to try and find one.
3591 */
3592 if (ctl->free_space < bytes) {
3593 spin_unlock(&ctl->tree_lock);
3594 return -ENOSPC;
3595 }
3596
3597 spin_lock(&cluster->lock);
3598
3599 /* someone already found a cluster, hooray */
3600 if (cluster->block_group) {
3601 ret = 0;
3602 goto out;
3603 }
3604
3605 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3606 min_bytes);
3607
3608 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3609 bytes + empty_size,
3610 cont1_bytes, min_bytes);
3611 if (ret)
3612 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3613 offset, bytes + empty_size,
3614 cont1_bytes, min_bytes);
3615
3616 /* Clear our temporary list */
3617 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3618 list_del_init(&entry->list);
3619
3620 if (!ret) {
3621 btrfs_get_block_group(block_group);
3622 list_add_tail(&cluster->block_group_list,
3623 &block_group->cluster_list);
3624 cluster->block_group = block_group;
3625 } else {
3626 trace_btrfs_failed_cluster_setup(block_group);
3627 }
3628 out:
3629 spin_unlock(&cluster->lock);
3630 spin_unlock(&ctl->tree_lock);
3631
3632 return ret;
3633 }
3634
3635 /*
3636 * simple code to zero out a cluster
3637 */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3638 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3639 {
3640 spin_lock_init(&cluster->lock);
3641 spin_lock_init(&cluster->refill_lock);
3642 cluster->root = RB_ROOT;
3643 cluster->max_size = 0;
3644 cluster->fragmented = false;
3645 INIT_LIST_HEAD(&cluster->block_group_list);
3646 cluster->block_group = NULL;
3647 }
3648
do_trimming(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,enum btrfs_trim_state reserved_trim_state,struct btrfs_trim_range * trim_entry)3649 static int do_trimming(struct btrfs_block_group *block_group,
3650 u64 *total_trimmed, u64 start, u64 bytes,
3651 u64 reserved_start, u64 reserved_bytes,
3652 enum btrfs_trim_state reserved_trim_state,
3653 struct btrfs_trim_range *trim_entry)
3654 {
3655 struct btrfs_space_info *space_info = block_group->space_info;
3656 struct btrfs_fs_info *fs_info = block_group->fs_info;
3657 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3658 int ret;
3659 int update = 0;
3660 const u64 end = start + bytes;
3661 const u64 reserved_end = reserved_start + reserved_bytes;
3662 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3663 u64 trimmed = 0;
3664
3665 spin_lock(&space_info->lock);
3666 spin_lock(&block_group->lock);
3667 if (!block_group->ro) {
3668 block_group->reserved += reserved_bytes;
3669 space_info->bytes_reserved += reserved_bytes;
3670 update = 1;
3671 }
3672 spin_unlock(&block_group->lock);
3673 spin_unlock(&space_info->lock);
3674
3675 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3676 if (!ret) {
3677 *total_trimmed += trimmed;
3678 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3679 }
3680
3681 mutex_lock(&ctl->cache_writeout_mutex);
3682 if (reserved_start < start)
3683 __btrfs_add_free_space(block_group, reserved_start,
3684 start - reserved_start,
3685 reserved_trim_state);
3686 if (end < reserved_end)
3687 __btrfs_add_free_space(block_group, end, reserved_end - end,
3688 reserved_trim_state);
3689 __btrfs_add_free_space(block_group, start, bytes, trim_state);
3690 list_del(&trim_entry->list);
3691 mutex_unlock(&ctl->cache_writeout_mutex);
3692
3693 if (update) {
3694 spin_lock(&space_info->lock);
3695 spin_lock(&block_group->lock);
3696 if (block_group->ro)
3697 space_info->bytes_readonly += reserved_bytes;
3698 block_group->reserved -= reserved_bytes;
3699 space_info->bytes_reserved -= reserved_bytes;
3700 spin_unlock(&block_group->lock);
3701 spin_unlock(&space_info->lock);
3702 }
3703
3704 return ret;
3705 }
3706
3707 /*
3708 * If @async is set, then we will trim 1 region and return.
3709 */
trim_no_bitmap(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,bool async)3710 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3711 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3712 bool async)
3713 {
3714 struct btrfs_discard_ctl *discard_ctl =
3715 &block_group->fs_info->discard_ctl;
3716 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3717 struct btrfs_free_space *entry;
3718 struct rb_node *node;
3719 int ret = 0;
3720 u64 extent_start;
3721 u64 extent_bytes;
3722 enum btrfs_trim_state extent_trim_state;
3723 u64 bytes;
3724 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3725
3726 while (start < end) {
3727 struct btrfs_trim_range trim_entry;
3728
3729 mutex_lock(&ctl->cache_writeout_mutex);
3730 spin_lock(&ctl->tree_lock);
3731
3732 if (ctl->free_space < minlen)
3733 goto out_unlock;
3734
3735 entry = tree_search_offset(ctl, start, 0, 1);
3736 if (!entry)
3737 goto out_unlock;
3738
3739 /* Skip bitmaps and if async, already trimmed entries */
3740 while (entry->bitmap ||
3741 (async && btrfs_free_space_trimmed(entry))) {
3742 node = rb_next(&entry->offset_index);
3743 if (!node)
3744 goto out_unlock;
3745 entry = rb_entry(node, struct btrfs_free_space,
3746 offset_index);
3747 }
3748
3749 if (entry->offset >= end)
3750 goto out_unlock;
3751
3752 extent_start = entry->offset;
3753 extent_bytes = entry->bytes;
3754 extent_trim_state = entry->trim_state;
3755 if (async) {
3756 start = entry->offset;
3757 bytes = entry->bytes;
3758 if (bytes < minlen) {
3759 spin_unlock(&ctl->tree_lock);
3760 mutex_unlock(&ctl->cache_writeout_mutex);
3761 goto next;
3762 }
3763 unlink_free_space(ctl, entry, true);
3764 /*
3765 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3766 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3767 * X when we come back around. So trim it now.
3768 */
3769 if (max_discard_size &&
3770 bytes >= (max_discard_size +
3771 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3772 bytes = max_discard_size;
3773 extent_bytes = max_discard_size;
3774 entry->offset += max_discard_size;
3775 entry->bytes -= max_discard_size;
3776 link_free_space(ctl, entry);
3777 } else {
3778 kmem_cache_free(btrfs_free_space_cachep, entry);
3779 }
3780 } else {
3781 start = max(start, extent_start);
3782 bytes = min(extent_start + extent_bytes, end) - start;
3783 if (bytes < minlen) {
3784 spin_unlock(&ctl->tree_lock);
3785 mutex_unlock(&ctl->cache_writeout_mutex);
3786 goto next;
3787 }
3788
3789 unlink_free_space(ctl, entry, true);
3790 kmem_cache_free(btrfs_free_space_cachep, entry);
3791 }
3792
3793 spin_unlock(&ctl->tree_lock);
3794 trim_entry.start = extent_start;
3795 trim_entry.bytes = extent_bytes;
3796 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3797 mutex_unlock(&ctl->cache_writeout_mutex);
3798
3799 ret = do_trimming(block_group, total_trimmed, start, bytes,
3800 extent_start, extent_bytes, extent_trim_state,
3801 &trim_entry);
3802 if (ret) {
3803 block_group->discard_cursor = start + bytes;
3804 break;
3805 }
3806 next:
3807 start += bytes;
3808 block_group->discard_cursor = start;
3809 if (async && *total_trimmed)
3810 break;
3811
3812 if (btrfs_trim_interrupted()) {
3813 ret = -ERESTARTSYS;
3814 break;
3815 }
3816
3817 cond_resched();
3818 }
3819
3820 return ret;
3821
3822 out_unlock:
3823 block_group->discard_cursor = btrfs_block_group_end(block_group);
3824 spin_unlock(&ctl->tree_lock);
3825 mutex_unlock(&ctl->cache_writeout_mutex);
3826
3827 return ret;
3828 }
3829
3830 /*
3831 * If we break out of trimming a bitmap prematurely, we should reset the
3832 * trimming bit. In a rather contrieved case, it's possible to race here so
3833 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3834 *
3835 * start = start of bitmap
3836 * end = near end of bitmap
3837 *
3838 * Thread 1: Thread 2:
3839 * trim_bitmaps(start)
3840 * trim_bitmaps(end)
3841 * end_trimming_bitmap()
3842 * reset_trimming_bitmap()
3843 */
reset_trimming_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)3844 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3845 {
3846 struct btrfs_free_space *entry;
3847
3848 spin_lock(&ctl->tree_lock);
3849 entry = tree_search_offset(ctl, offset, 1, 0);
3850 if (entry) {
3851 if (btrfs_free_space_trimmed(entry)) {
3852 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3853 entry->bitmap_extents;
3854 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3855 }
3856 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3857 }
3858
3859 spin_unlock(&ctl->tree_lock);
3860 }
3861
end_trimming_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * entry)3862 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3863 struct btrfs_free_space *entry)
3864 {
3865 if (btrfs_free_space_trimming_bitmap(entry)) {
3866 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3867 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3868 entry->bitmap_extents;
3869 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3870 }
3871 }
3872
3873 /*
3874 * If @async is set, then we will trim 1 region and return.
3875 */
trim_bitmaps(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)3876 static int trim_bitmaps(struct btrfs_block_group *block_group,
3877 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3878 u64 maxlen, bool async)
3879 {
3880 struct btrfs_discard_ctl *discard_ctl =
3881 &block_group->fs_info->discard_ctl;
3882 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3883 struct btrfs_free_space *entry;
3884 int ret = 0;
3885 int ret2;
3886 u64 bytes;
3887 u64 offset = offset_to_bitmap(ctl, start);
3888 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3889
3890 while (offset < end) {
3891 bool next_bitmap = false;
3892 struct btrfs_trim_range trim_entry;
3893
3894 mutex_lock(&ctl->cache_writeout_mutex);
3895 spin_lock(&ctl->tree_lock);
3896
3897 if (ctl->free_space < minlen) {
3898 block_group->discard_cursor =
3899 btrfs_block_group_end(block_group);
3900 spin_unlock(&ctl->tree_lock);
3901 mutex_unlock(&ctl->cache_writeout_mutex);
3902 break;
3903 }
3904
3905 entry = tree_search_offset(ctl, offset, 1, 0);
3906 /*
3907 * Bitmaps are marked trimmed lossily now to prevent constant
3908 * discarding of the same bitmap (the reason why we are bound
3909 * by the filters). So, retrim the block group bitmaps when we
3910 * are preparing to punt to the unused_bgs list. This uses
3911 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3912 * which is the only discard index which sets minlen to 0.
3913 */
3914 if (!entry || (async && minlen && start == offset &&
3915 btrfs_free_space_trimmed(entry))) {
3916 spin_unlock(&ctl->tree_lock);
3917 mutex_unlock(&ctl->cache_writeout_mutex);
3918 next_bitmap = true;
3919 goto next;
3920 }
3921
3922 /*
3923 * Async discard bitmap trimming begins at by setting the start
3924 * to be key.objectid and the offset_to_bitmap() aligns to the
3925 * start of the bitmap. This lets us know we are fully
3926 * scanning the bitmap rather than only some portion of it.
3927 */
3928 if (start == offset)
3929 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3930
3931 bytes = minlen;
3932 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3933 if (ret2 || start >= end) {
3934 /*
3935 * We lossily consider a bitmap trimmed if we only skip
3936 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3937 */
3938 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3939 end_trimming_bitmap(ctl, entry);
3940 else
3941 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3942 spin_unlock(&ctl->tree_lock);
3943 mutex_unlock(&ctl->cache_writeout_mutex);
3944 next_bitmap = true;
3945 goto next;
3946 }
3947
3948 /*
3949 * We already trimmed a region, but are using the locking above
3950 * to reset the trim_state.
3951 */
3952 if (async && *total_trimmed) {
3953 spin_unlock(&ctl->tree_lock);
3954 mutex_unlock(&ctl->cache_writeout_mutex);
3955 goto out;
3956 }
3957
3958 bytes = min(bytes, end - start);
3959 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3960 spin_unlock(&ctl->tree_lock);
3961 mutex_unlock(&ctl->cache_writeout_mutex);
3962 goto next;
3963 }
3964
3965 /*
3966 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3967 * If X < @minlen, we won't trim X when we come back around.
3968 * So trim it now. We differ here from trimming extents as we
3969 * don't keep individual state per bit.
3970 */
3971 if (async &&
3972 max_discard_size &&
3973 bytes > (max_discard_size + minlen))
3974 bytes = max_discard_size;
3975
3976 bitmap_clear_bits(ctl, entry, start, bytes, true);
3977 if (entry->bytes == 0)
3978 free_bitmap(ctl, entry);
3979
3980 spin_unlock(&ctl->tree_lock);
3981 trim_entry.start = start;
3982 trim_entry.bytes = bytes;
3983 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3984 mutex_unlock(&ctl->cache_writeout_mutex);
3985
3986 ret = do_trimming(block_group, total_trimmed, start, bytes,
3987 start, bytes, 0, &trim_entry);
3988 if (ret) {
3989 reset_trimming_bitmap(ctl, offset);
3990 block_group->discard_cursor =
3991 btrfs_block_group_end(block_group);
3992 break;
3993 }
3994 next:
3995 if (next_bitmap) {
3996 offset += BITS_PER_BITMAP * ctl->unit;
3997 start = offset;
3998 } else {
3999 start += bytes;
4000 }
4001 block_group->discard_cursor = start;
4002
4003 if (btrfs_trim_interrupted()) {
4004 if (start != offset)
4005 reset_trimming_bitmap(ctl, offset);
4006 ret = -ERESTARTSYS;
4007 break;
4008 }
4009
4010 cond_resched();
4011 }
4012
4013 if (offset >= end)
4014 block_group->discard_cursor = end;
4015
4016 out:
4017 return ret;
4018 }
4019
btrfs_trim_block_group(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)4020 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4021 u64 *trimmed, u64 start, u64 end, u64 minlen)
4022 {
4023 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4024 int ret;
4025 u64 rem = 0;
4026
4027 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4028
4029 *trimmed = 0;
4030
4031 spin_lock(&block_group->lock);
4032 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4033 spin_unlock(&block_group->lock);
4034 return 0;
4035 }
4036 btrfs_freeze_block_group(block_group);
4037 spin_unlock(&block_group->lock);
4038
4039 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4040 if (ret)
4041 goto out;
4042
4043 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4044 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4045 /* If we ended in the middle of a bitmap, reset the trimming flag */
4046 if (rem)
4047 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4048 out:
4049 btrfs_unfreeze_block_group(block_group);
4050 return ret;
4051 }
4052
btrfs_trim_block_group_extents(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,bool async)4053 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4054 u64 *trimmed, u64 start, u64 end, u64 minlen,
4055 bool async)
4056 {
4057 int ret;
4058
4059 *trimmed = 0;
4060
4061 spin_lock(&block_group->lock);
4062 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4063 spin_unlock(&block_group->lock);
4064 return 0;
4065 }
4066 btrfs_freeze_block_group(block_group);
4067 spin_unlock(&block_group->lock);
4068
4069 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4070 btrfs_unfreeze_block_group(block_group);
4071
4072 return ret;
4073 }
4074
btrfs_trim_block_group_bitmaps(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)4075 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4076 u64 *trimmed, u64 start, u64 end, u64 minlen,
4077 u64 maxlen, bool async)
4078 {
4079 int ret;
4080
4081 *trimmed = 0;
4082
4083 spin_lock(&block_group->lock);
4084 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4085 spin_unlock(&block_group->lock);
4086 return 0;
4087 }
4088 btrfs_freeze_block_group(block_group);
4089 spin_unlock(&block_group->lock);
4090
4091 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4092 async);
4093
4094 btrfs_unfreeze_block_group(block_group);
4095
4096 return ret;
4097 }
4098
btrfs_free_space_cache_v1_active(struct btrfs_fs_info * fs_info)4099 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4100 {
4101 return btrfs_super_cache_generation(fs_info->super_copy);
4102 }
4103
cleanup_free_space_cache_v1(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans)4104 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4105 struct btrfs_trans_handle *trans)
4106 {
4107 struct btrfs_block_group *block_group;
4108 struct rb_node *node;
4109 int ret = 0;
4110
4111 btrfs_info(fs_info, "cleaning free space cache v1");
4112
4113 node = rb_first_cached(&fs_info->block_group_cache_tree);
4114 while (node) {
4115 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4116 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4117 if (ret)
4118 goto out;
4119 node = rb_next(node);
4120 }
4121 out:
4122 return ret;
4123 }
4124
btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info * fs_info,bool active)4125 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4126 {
4127 struct btrfs_trans_handle *trans;
4128 int ret;
4129
4130 /*
4131 * update_super_roots will appropriately set or unset
4132 * super_copy->cache_generation based on SPACE_CACHE and
4133 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4134 * transaction commit whether we are enabling space cache v1 and don't
4135 * have any other work to do, or are disabling it and removing free
4136 * space inodes.
4137 */
4138 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4139 if (IS_ERR(trans))
4140 return PTR_ERR(trans);
4141
4142 if (!active) {
4143 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4144 ret = cleanup_free_space_cache_v1(fs_info, trans);
4145 if (ret) {
4146 btrfs_abort_transaction(trans, ret);
4147 btrfs_end_transaction(trans);
4148 goto out;
4149 }
4150 }
4151
4152 ret = btrfs_commit_transaction(trans);
4153 out:
4154 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4155
4156 return ret;
4157 }
4158
btrfs_free_space_init(void)4159 int __init btrfs_free_space_init(void)
4160 {
4161 btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4162 if (!btrfs_free_space_cachep)
4163 return -ENOMEM;
4164
4165 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4166 PAGE_SIZE, PAGE_SIZE,
4167 0, NULL);
4168 if (!btrfs_free_space_bitmap_cachep) {
4169 kmem_cache_destroy(btrfs_free_space_cachep);
4170 return -ENOMEM;
4171 }
4172
4173 return 0;
4174 }
4175
btrfs_free_space_exit(void)4176 void __cold btrfs_free_space_exit(void)
4177 {
4178 kmem_cache_destroy(btrfs_free_space_cachep);
4179 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4180 }
4181
4182 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4183 /*
4184 * Use this if you need to make a bitmap or extent entry specifically, it
4185 * doesn't do any of the merging that add_free_space does, this acts a lot like
4186 * how the free space cache loading stuff works, so you can get really weird
4187 * configurations.
4188 */
test_add_free_space_entry(struct btrfs_block_group * cache,u64 offset,u64 bytes,bool bitmap)4189 int test_add_free_space_entry(struct btrfs_block_group *cache,
4190 u64 offset, u64 bytes, bool bitmap)
4191 {
4192 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4193 struct btrfs_free_space *info = NULL, *bitmap_info;
4194 void *map = NULL;
4195 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4196 u64 bytes_added;
4197 int ret;
4198
4199 again:
4200 if (!info) {
4201 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4202 if (!info)
4203 return -ENOMEM;
4204 }
4205
4206 if (!bitmap) {
4207 spin_lock(&ctl->tree_lock);
4208 info->offset = offset;
4209 info->bytes = bytes;
4210 info->max_extent_size = 0;
4211 ret = link_free_space(ctl, info);
4212 spin_unlock(&ctl->tree_lock);
4213 if (ret)
4214 kmem_cache_free(btrfs_free_space_cachep, info);
4215 return ret;
4216 }
4217
4218 if (!map) {
4219 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4220 if (!map) {
4221 kmem_cache_free(btrfs_free_space_cachep, info);
4222 return -ENOMEM;
4223 }
4224 }
4225
4226 spin_lock(&ctl->tree_lock);
4227 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4228 1, 0);
4229 if (!bitmap_info) {
4230 info->bitmap = map;
4231 map = NULL;
4232 add_new_bitmap(ctl, info, offset);
4233 bitmap_info = info;
4234 info = NULL;
4235 }
4236
4237 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4238 trim_state);
4239
4240 bytes -= bytes_added;
4241 offset += bytes_added;
4242 spin_unlock(&ctl->tree_lock);
4243
4244 if (bytes)
4245 goto again;
4246
4247 if (info)
4248 kmem_cache_free(btrfs_free_space_cachep, info);
4249 if (map)
4250 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4251 return 0;
4252 }
4253
4254 /*
4255 * Checks to see if the given range is in the free space cache. This is really
4256 * just used to check the absence of space, so if there is free space in the
4257 * range at all we will return 1.
4258 */
test_check_exists(struct btrfs_block_group * cache,u64 offset,u64 bytes)4259 int test_check_exists(struct btrfs_block_group *cache,
4260 u64 offset, u64 bytes)
4261 {
4262 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4263 struct btrfs_free_space *info;
4264 int ret = 0;
4265
4266 spin_lock(&ctl->tree_lock);
4267 info = tree_search_offset(ctl, offset, 0, 0);
4268 if (!info) {
4269 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4270 1, 0);
4271 if (!info)
4272 goto out;
4273 }
4274
4275 have_info:
4276 if (info->bitmap) {
4277 u64 bit_off, bit_bytes;
4278 struct rb_node *n;
4279 struct btrfs_free_space *tmp;
4280
4281 bit_off = offset;
4282 bit_bytes = ctl->unit;
4283 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4284 if (!ret) {
4285 if (bit_off == offset) {
4286 ret = 1;
4287 goto out;
4288 } else if (bit_off > offset &&
4289 offset + bytes > bit_off) {
4290 ret = 1;
4291 goto out;
4292 }
4293 }
4294
4295 n = rb_prev(&info->offset_index);
4296 while (n) {
4297 tmp = rb_entry(n, struct btrfs_free_space,
4298 offset_index);
4299 if (tmp->offset + tmp->bytes < offset)
4300 break;
4301 if (offset + bytes < tmp->offset) {
4302 n = rb_prev(&tmp->offset_index);
4303 continue;
4304 }
4305 info = tmp;
4306 goto have_info;
4307 }
4308
4309 n = rb_next(&info->offset_index);
4310 while (n) {
4311 tmp = rb_entry(n, struct btrfs_free_space,
4312 offset_index);
4313 if (offset + bytes < tmp->offset)
4314 break;
4315 if (tmp->offset + tmp->bytes < offset) {
4316 n = rb_next(&tmp->offset_index);
4317 continue;
4318 }
4319 info = tmp;
4320 goto have_info;
4321 }
4322
4323 ret = 0;
4324 goto out;
4325 }
4326
4327 if (info->offset == offset) {
4328 ret = 1;
4329 goto out;
4330 }
4331
4332 if (offset > info->offset && offset < info->offset + info->bytes)
4333 ret = 1;
4334 out:
4335 spin_unlock(&ctl->tree_lock);
4336 return ret;
4337 }
4338 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4339