1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include <linux/string_choices.h>
15 #include "extent-tree.h"
16 #include "fs.h"
17 #include "messages.h"
18 #include "misc.h"
19 #include "free-space-cache.h"
20 #include "transaction.h"
21 #include "disk-io.h"
22 #include "extent_io.h"
23 #include "space-info.h"
24 #include "block-group.h"
25 #include "discard.h"
26 #include "subpage.h"
27 #include "inode-item.h"
28 #include "accessors.h"
29 #include "file-item.h"
30 #include "file.h"
31 #include "super.h"
32
33 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
34 #define MAX_CACHE_BYTES_PER_GIG SZ_64K
35 #define FORCE_EXTENT_THRESHOLD SZ_1M
36
37 static struct kmem_cache *btrfs_free_space_cachep;
38 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
39
40 struct btrfs_trim_range {
41 u64 start;
42 u64 bytes;
43 struct list_head list;
44 };
45
46 static int link_free_space(struct btrfs_free_space_ctl *ctl,
47 struct btrfs_free_space *info);
48 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
49 struct btrfs_free_space *info, bool update_stat);
50 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
51 struct btrfs_free_space *bitmap_info, u64 *offset,
52 u64 *bytes, bool for_alloc);
53 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
54 struct btrfs_free_space *bitmap_info);
55 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
56 struct btrfs_free_space *info, u64 offset,
57 u64 bytes, bool update_stats);
58
btrfs_crc32c_final(u32 crc,u8 * result)59 static void btrfs_crc32c_final(u32 crc, u8 *result)
60 {
61 put_unaligned_le32(~crc, result);
62 }
63
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)64 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
65 {
66 struct btrfs_free_space *info;
67 struct rb_node *node;
68
69 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
70 info = rb_entry(node, struct btrfs_free_space, offset_index);
71 if (!info->bitmap) {
72 unlink_free_space(ctl, info, true);
73 kmem_cache_free(btrfs_free_space_cachep, info);
74 } else {
75 free_bitmap(ctl, info);
76 }
77
78 cond_resched_lock(&ctl->tree_lock);
79 }
80 }
81
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)82 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
83 struct btrfs_path *path,
84 u64 offset)
85 {
86 struct btrfs_key key;
87 struct btrfs_key location;
88 struct btrfs_disk_key disk_key;
89 struct btrfs_free_space_header *header;
90 struct extent_buffer *leaf;
91 struct btrfs_inode *inode;
92 unsigned nofs_flag;
93 int ret;
94
95 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
96 key.type = 0;
97 key.offset = offset;
98
99 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
100 if (ret < 0)
101 return ERR_PTR(ret);
102 if (ret > 0) {
103 btrfs_release_path(path);
104 return ERR_PTR(-ENOENT);
105 }
106
107 leaf = path->nodes[0];
108 header = btrfs_item_ptr(leaf, path->slots[0],
109 struct btrfs_free_space_header);
110 btrfs_free_space_key(leaf, header, &disk_key);
111 btrfs_disk_key_to_cpu(&location, &disk_key);
112 btrfs_release_path(path);
113
114 /*
115 * We are often under a trans handle at this point, so we need to make
116 * sure NOFS is set to keep us from deadlocking.
117 */
118 nofs_flag = memalloc_nofs_save();
119 inode = btrfs_iget_path(location.objectid, root, path);
120 btrfs_release_path(path);
121 memalloc_nofs_restore(nofs_flag);
122 if (IS_ERR(inode))
123 return ERR_CAST(inode);
124
125 mapping_set_gfp_mask(inode->vfs_inode.i_mapping,
126 mapping_gfp_constraint(inode->vfs_inode.i_mapping,
127 ~(__GFP_FS | __GFP_HIGHMEM)));
128
129 return &inode->vfs_inode;
130 }
131
lookup_free_space_inode(struct btrfs_block_group * block_group,struct btrfs_path * path)132 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
133 struct btrfs_path *path)
134 {
135 struct btrfs_fs_info *fs_info = block_group->fs_info;
136 struct inode *inode = NULL;
137 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138
139 spin_lock(&block_group->lock);
140 if (block_group->inode)
141 inode = igrab(&block_group->inode->vfs_inode);
142 spin_unlock(&block_group->lock);
143 if (inode)
144 return inode;
145
146 inode = __lookup_free_space_inode(fs_info->tree_root, path,
147 block_group->start);
148 if (IS_ERR(inode))
149 return inode;
150
151 spin_lock(&block_group->lock);
152 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
153 btrfs_info(fs_info, "Old style space inode found, converting.");
154 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
155 BTRFS_INODE_NODATACOW;
156 block_group->disk_cache_state = BTRFS_DC_CLEAR;
157 }
158
159 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
160 block_group->inode = BTRFS_I(igrab(inode));
161 spin_unlock(&block_group->lock);
162
163 return inode;
164 }
165
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)166 static int __create_free_space_inode(struct btrfs_root *root,
167 struct btrfs_trans_handle *trans,
168 struct btrfs_path *path,
169 u64 ino, u64 offset)
170 {
171 struct btrfs_key key;
172 struct btrfs_disk_key disk_key;
173 struct btrfs_free_space_header *header;
174 struct btrfs_inode_item *inode_item;
175 struct extent_buffer *leaf;
176 /* We inline CRCs for the free disk space cache */
177 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
178 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
179 int ret;
180
181 ret = btrfs_insert_empty_inode(trans, root, path, ino);
182 if (ret)
183 return ret;
184
185 leaf = path->nodes[0];
186 inode_item = btrfs_item_ptr(leaf, path->slots[0],
187 struct btrfs_inode_item);
188 btrfs_item_key(leaf, &disk_key, path->slots[0]);
189 memzero_extent_buffer(leaf, (unsigned long)inode_item,
190 sizeof(*inode_item));
191 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
192 btrfs_set_inode_size(leaf, inode_item, 0);
193 btrfs_set_inode_nbytes(leaf, inode_item, 0);
194 btrfs_set_inode_uid(leaf, inode_item, 0);
195 btrfs_set_inode_gid(leaf, inode_item, 0);
196 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
197 btrfs_set_inode_flags(leaf, inode_item, flags);
198 btrfs_set_inode_nlink(leaf, inode_item, 1);
199 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
200 btrfs_set_inode_block_group(leaf, inode_item, offset);
201 btrfs_release_path(path);
202
203 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
204 key.type = 0;
205 key.offset = offset;
206 ret = btrfs_insert_empty_item(trans, root, path, &key,
207 sizeof(struct btrfs_free_space_header));
208 if (ret < 0) {
209 btrfs_release_path(path);
210 return ret;
211 }
212
213 leaf = path->nodes[0];
214 header = btrfs_item_ptr(leaf, path->slots[0],
215 struct btrfs_free_space_header);
216 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
217 btrfs_set_free_space_key(leaf, header, &disk_key);
218 btrfs_release_path(path);
219
220 return 0;
221 }
222
create_free_space_inode(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)223 int create_free_space_inode(struct btrfs_trans_handle *trans,
224 struct btrfs_block_group *block_group,
225 struct btrfs_path *path)
226 {
227 int ret;
228 u64 ino;
229
230 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
231 if (ret < 0)
232 return ret;
233
234 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
235 ino, block_group->start);
236 }
237
238 /*
239 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
240 * handles lookup, otherwise it takes ownership and iputs the inode.
241 * Don't reuse an inode pointer after passing it into this function.
242 */
btrfs_remove_free_space_inode(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_block_group * block_group)243 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
244 struct inode *inode,
245 struct btrfs_block_group *block_group)
246 {
247 BTRFS_PATH_AUTO_FREE(path);
248 struct btrfs_key key;
249 int ret = 0;
250
251 path = btrfs_alloc_path();
252 if (!path)
253 return -ENOMEM;
254
255 if (!inode)
256 inode = lookup_free_space_inode(block_group, path);
257 if (IS_ERR(inode)) {
258 if (PTR_ERR(inode) != -ENOENT)
259 ret = PTR_ERR(inode);
260 return ret;
261 }
262 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
263 if (ret) {
264 btrfs_add_delayed_iput(BTRFS_I(inode));
265 return ret;
266 }
267 clear_nlink(inode);
268 /* One for the block groups ref */
269 spin_lock(&block_group->lock);
270 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
271 block_group->inode = NULL;
272 spin_unlock(&block_group->lock);
273 iput(inode);
274 } else {
275 spin_unlock(&block_group->lock);
276 }
277 /* One for the lookup ref */
278 btrfs_add_delayed_iput(BTRFS_I(inode));
279
280 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
281 key.type = 0;
282 key.offset = block_group->start;
283 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
284 -1, 1);
285 if (ret) {
286 if (ret > 0)
287 ret = 0;
288 return ret;
289 }
290 return btrfs_del_item(trans, trans->fs_info->tree_root, path);
291 }
292
btrfs_truncate_free_space_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct inode * vfs_inode)293 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
294 struct btrfs_block_group *block_group,
295 struct inode *vfs_inode)
296 {
297 struct btrfs_truncate_control control = {
298 .inode = BTRFS_I(vfs_inode),
299 .new_size = 0,
300 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
301 .min_type = BTRFS_EXTENT_DATA_KEY,
302 .clear_extent_range = true,
303 };
304 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
305 struct btrfs_root *root = inode->root;
306 struct extent_state *cached_state = NULL;
307 int ret = 0;
308 bool locked = false;
309
310 if (block_group) {
311 struct btrfs_path *path = btrfs_alloc_path();
312
313 if (!path) {
314 ret = -ENOMEM;
315 goto fail;
316 }
317 locked = true;
318 mutex_lock(&trans->transaction->cache_write_mutex);
319 if (!list_empty(&block_group->io_list)) {
320 list_del_init(&block_group->io_list);
321
322 btrfs_wait_cache_io(trans, block_group, path);
323 btrfs_put_block_group(block_group);
324 }
325
326 /*
327 * now that we've truncated the cache away, its no longer
328 * setup or written
329 */
330 spin_lock(&block_group->lock);
331 block_group->disk_cache_state = BTRFS_DC_CLEAR;
332 spin_unlock(&block_group->lock);
333 btrfs_free_path(path);
334 }
335
336 btrfs_i_size_write(inode, 0);
337 truncate_pagecache(vfs_inode, 0);
338
339 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
340 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
341
342 /*
343 * We skip the throttling logic for free space cache inodes, so we don't
344 * need to check for -EAGAIN.
345 */
346 ret = btrfs_truncate_inode_items(trans, root, &control);
347
348 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
349 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
350
351 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
352 if (ret)
353 goto fail;
354
355 ret = btrfs_update_inode(trans, inode);
356
357 fail:
358 if (locked)
359 mutex_unlock(&trans->transaction->cache_write_mutex);
360 if (ret)
361 btrfs_abort_transaction(trans, ret);
362
363 return ret;
364 }
365
readahead_cache(struct inode * inode)366 static void readahead_cache(struct inode *inode)
367 {
368 struct file_ra_state ra;
369 unsigned long last_index;
370
371 file_ra_state_init(&ra, inode->i_mapping);
372 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
373
374 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
375 }
376
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,int write)377 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378 int write)
379 {
380 int num_pages;
381
382 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
383
384 /* Make sure we can fit our crcs and generation into the first page */
385 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
386 return -ENOSPC;
387
388 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
389
390 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
391 if (!io_ctl->pages)
392 return -ENOMEM;
393
394 io_ctl->num_pages = num_pages;
395 io_ctl->fs_info = inode_to_fs_info(inode);
396 io_ctl->inode = inode;
397
398 return 0;
399 }
400 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
401
io_ctl_free(struct btrfs_io_ctl * io_ctl)402 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
403 {
404 kfree(io_ctl->pages);
405 io_ctl->pages = NULL;
406 }
407
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)408 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
409 {
410 if (io_ctl->cur) {
411 io_ctl->cur = NULL;
412 io_ctl->orig = NULL;
413 }
414 }
415
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)416 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
417 {
418 ASSERT(io_ctl->index < io_ctl->num_pages);
419 io_ctl->page = io_ctl->pages[io_ctl->index++];
420 io_ctl->cur = page_address(io_ctl->page);
421 io_ctl->orig = io_ctl->cur;
422 io_ctl->size = PAGE_SIZE;
423 if (clear)
424 clear_page(io_ctl->cur);
425 }
426
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)427 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
428 {
429 int i;
430
431 io_ctl_unmap_page(io_ctl);
432
433 for (i = 0; i < io_ctl->num_pages; i++) {
434 if (io_ctl->pages[i]) {
435 btrfs_folio_clear_checked(io_ctl->fs_info,
436 page_folio(io_ctl->pages[i]),
437 page_offset(io_ctl->pages[i]),
438 PAGE_SIZE);
439 unlock_page(io_ctl->pages[i]);
440 put_page(io_ctl->pages[i]);
441 }
442 }
443 }
444
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,bool uptodate)445 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
446 {
447 struct folio *folio;
448 struct inode *inode = io_ctl->inode;
449 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
450 int i;
451
452 for (i = 0; i < io_ctl->num_pages; i++) {
453 int ret;
454
455 folio = __filemap_get_folio(inode->i_mapping, i,
456 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
457 mask);
458 if (IS_ERR(folio)) {
459 io_ctl_drop_pages(io_ctl);
460 return -ENOMEM;
461 }
462
463 ret = set_folio_extent_mapped(folio);
464 if (ret < 0) {
465 folio_unlock(folio);
466 folio_put(folio);
467 io_ctl_drop_pages(io_ctl);
468 return ret;
469 }
470
471 io_ctl->pages[i] = &folio->page;
472 if (uptodate && !folio_test_uptodate(folio)) {
473 btrfs_read_folio(NULL, folio);
474 folio_lock(folio);
475 if (folio->mapping != inode->i_mapping) {
476 btrfs_err(BTRFS_I(inode)->root->fs_info,
477 "free space cache page truncated");
478 io_ctl_drop_pages(io_ctl);
479 return -EIO;
480 }
481 if (!folio_test_uptodate(folio)) {
482 btrfs_err(BTRFS_I(inode)->root->fs_info,
483 "error reading free space cache");
484 io_ctl_drop_pages(io_ctl);
485 return -EIO;
486 }
487 }
488 }
489
490 for (i = 0; i < io_ctl->num_pages; i++)
491 clear_page_dirty_for_io(io_ctl->pages[i]);
492
493 return 0;
494 }
495
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)496 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
497 {
498 io_ctl_map_page(io_ctl, 1);
499
500 /*
501 * Skip the csum areas. If we don't check crcs then we just have a
502 * 64bit chunk at the front of the first page.
503 */
504 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
505 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
506
507 put_unaligned_le64(generation, io_ctl->cur);
508 io_ctl->cur += sizeof(u64);
509 }
510
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)511 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
512 {
513 u64 cache_gen;
514
515 /*
516 * Skip the crc area. If we don't check crcs then we just have a 64bit
517 * chunk at the front of the first page.
518 */
519 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
520 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
521
522 cache_gen = get_unaligned_le64(io_ctl->cur);
523 if (cache_gen != generation) {
524 btrfs_err_rl(io_ctl->fs_info,
525 "space cache generation (%llu) does not match inode (%llu)",
526 cache_gen, generation);
527 io_ctl_unmap_page(io_ctl);
528 return -EIO;
529 }
530 io_ctl->cur += sizeof(u64);
531 return 0;
532 }
533
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)534 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
535 {
536 u32 *tmp;
537 u32 crc = ~(u32)0;
538 unsigned offset = 0;
539
540 if (index == 0)
541 offset = sizeof(u32) * io_ctl->num_pages;
542
543 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
544 btrfs_crc32c_final(crc, (u8 *)&crc);
545 io_ctl_unmap_page(io_ctl);
546 tmp = page_address(io_ctl->pages[0]);
547 tmp += index;
548 *tmp = crc;
549 }
550
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)551 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
552 {
553 u32 *tmp, val;
554 u32 crc = ~(u32)0;
555 unsigned offset = 0;
556
557 if (index == 0)
558 offset = sizeof(u32) * io_ctl->num_pages;
559
560 tmp = page_address(io_ctl->pages[0]);
561 tmp += index;
562 val = *tmp;
563
564 io_ctl_map_page(io_ctl, 0);
565 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
566 btrfs_crc32c_final(crc, (u8 *)&crc);
567 if (val != crc) {
568 btrfs_err_rl(io_ctl->fs_info,
569 "csum mismatch on free space cache");
570 io_ctl_unmap_page(io_ctl);
571 return -EIO;
572 }
573
574 return 0;
575 }
576
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)577 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
578 void *bitmap)
579 {
580 struct btrfs_free_space_entry *entry;
581
582 if (!io_ctl->cur)
583 return -ENOSPC;
584
585 entry = io_ctl->cur;
586 put_unaligned_le64(offset, &entry->offset);
587 put_unaligned_le64(bytes, &entry->bytes);
588 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
589 BTRFS_FREE_SPACE_EXTENT;
590 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
591 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
592
593 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
594 return 0;
595
596 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
597
598 /* No more pages to map */
599 if (io_ctl->index >= io_ctl->num_pages)
600 return 0;
601
602 /* map the next page */
603 io_ctl_map_page(io_ctl, 1);
604 return 0;
605 }
606
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)607 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
608 {
609 if (!io_ctl->cur)
610 return -ENOSPC;
611
612 /*
613 * If we aren't at the start of the current page, unmap this one and
614 * map the next one if there is any left.
615 */
616 if (io_ctl->cur != io_ctl->orig) {
617 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
618 if (io_ctl->index >= io_ctl->num_pages)
619 return -ENOSPC;
620 io_ctl_map_page(io_ctl, 0);
621 }
622
623 copy_page(io_ctl->cur, bitmap);
624 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
625 if (io_ctl->index < io_ctl->num_pages)
626 io_ctl_map_page(io_ctl, 0);
627 return 0;
628 }
629
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)630 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
631 {
632 /*
633 * If we're not on the boundary we know we've modified the page and we
634 * need to crc the page.
635 */
636 if (io_ctl->cur != io_ctl->orig)
637 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
638 else
639 io_ctl_unmap_page(io_ctl);
640
641 while (io_ctl->index < io_ctl->num_pages) {
642 io_ctl_map_page(io_ctl, 1);
643 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
644 }
645 }
646
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)647 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
648 struct btrfs_free_space *entry, u8 *type)
649 {
650 struct btrfs_free_space_entry *e;
651 int ret;
652
653 if (!io_ctl->cur) {
654 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
655 if (ret)
656 return ret;
657 }
658
659 e = io_ctl->cur;
660 entry->offset = get_unaligned_le64(&e->offset);
661 entry->bytes = get_unaligned_le64(&e->bytes);
662 *type = e->type;
663 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
664 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
665
666 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
667 return 0;
668
669 io_ctl_unmap_page(io_ctl);
670
671 return 0;
672 }
673
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)674 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
675 struct btrfs_free_space *entry)
676 {
677 int ret;
678
679 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
680 if (ret)
681 return ret;
682
683 copy_page(entry->bitmap, io_ctl->cur);
684 io_ctl_unmap_page(io_ctl);
685
686 return 0;
687 }
688
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)689 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
690 {
691 struct btrfs_block_group *block_group = ctl->block_group;
692 u64 max_bytes;
693 u64 bitmap_bytes;
694 u64 extent_bytes;
695 u64 size = block_group->length;
696 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
697 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
698
699 max_bitmaps = max_t(u64, max_bitmaps, 1);
700
701 if (ctl->total_bitmaps > max_bitmaps)
702 btrfs_err(block_group->fs_info,
703 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
704 block_group->start, block_group->length,
705 ctl->total_bitmaps, ctl->unit, max_bitmaps,
706 bytes_per_bg);
707 ASSERT(ctl->total_bitmaps <= max_bitmaps);
708
709 /*
710 * We are trying to keep the total amount of memory used per 1GiB of
711 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
712 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
713 * bitmaps, we may end up using more memory than this.
714 */
715 if (size < SZ_1G)
716 max_bytes = MAX_CACHE_BYTES_PER_GIG;
717 else
718 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
719
720 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
721
722 /*
723 * we want the extent entry threshold to always be at most 1/2 the max
724 * bytes we can have, or whatever is less than that.
725 */
726 extent_bytes = max_bytes - bitmap_bytes;
727 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
728
729 ctl->extents_thresh =
730 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
731 }
732
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)733 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
734 struct btrfs_free_space_ctl *ctl,
735 struct btrfs_path *path, u64 offset)
736 {
737 struct btrfs_fs_info *fs_info = root->fs_info;
738 struct btrfs_free_space_header *header;
739 struct extent_buffer *leaf;
740 struct btrfs_io_ctl io_ctl;
741 struct btrfs_key key;
742 struct btrfs_free_space *e, *n;
743 LIST_HEAD(bitmaps);
744 u64 num_entries;
745 u64 num_bitmaps;
746 u64 generation;
747 u8 type;
748 int ret = 0;
749
750 /* Nothing in the space cache, goodbye */
751 if (!i_size_read(inode))
752 return 0;
753
754 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
755 key.type = 0;
756 key.offset = offset;
757
758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
759 if (ret < 0)
760 return 0;
761 else if (ret > 0) {
762 btrfs_release_path(path);
763 return 0;
764 }
765
766 ret = -1;
767
768 leaf = path->nodes[0];
769 header = btrfs_item_ptr(leaf, path->slots[0],
770 struct btrfs_free_space_header);
771 num_entries = btrfs_free_space_entries(leaf, header);
772 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
773 generation = btrfs_free_space_generation(leaf, header);
774 btrfs_release_path(path);
775
776 if (!BTRFS_I(inode)->generation) {
777 btrfs_info(fs_info,
778 "the free space cache file (%llu) is invalid, skip it",
779 offset);
780 return 0;
781 }
782
783 if (BTRFS_I(inode)->generation != generation) {
784 btrfs_err(fs_info,
785 "free space inode generation (%llu) did not match free space cache generation (%llu)",
786 BTRFS_I(inode)->generation, generation);
787 return 0;
788 }
789
790 if (!num_entries)
791 return 0;
792
793 ret = io_ctl_init(&io_ctl, inode, 0);
794 if (ret)
795 return ret;
796
797 readahead_cache(inode);
798
799 ret = io_ctl_prepare_pages(&io_ctl, true);
800 if (ret)
801 goto out;
802
803 ret = io_ctl_check_crc(&io_ctl, 0);
804 if (ret)
805 goto free_cache;
806
807 ret = io_ctl_check_generation(&io_ctl, generation);
808 if (ret)
809 goto free_cache;
810
811 while (num_entries) {
812 e = kmem_cache_zalloc(btrfs_free_space_cachep,
813 GFP_NOFS);
814 if (!e) {
815 ret = -ENOMEM;
816 goto free_cache;
817 }
818
819 ret = io_ctl_read_entry(&io_ctl, e, &type);
820 if (ret) {
821 kmem_cache_free(btrfs_free_space_cachep, e);
822 goto free_cache;
823 }
824
825 if (!e->bytes) {
826 ret = -1;
827 kmem_cache_free(btrfs_free_space_cachep, e);
828 goto free_cache;
829 }
830
831 if (type == BTRFS_FREE_SPACE_EXTENT) {
832 spin_lock(&ctl->tree_lock);
833 ret = link_free_space(ctl, e);
834 spin_unlock(&ctl->tree_lock);
835 if (ret) {
836 btrfs_err(fs_info,
837 "Duplicate entries in free space cache, dumping");
838 kmem_cache_free(btrfs_free_space_cachep, e);
839 goto free_cache;
840 }
841 } else {
842 ASSERT(num_bitmaps);
843 num_bitmaps--;
844 e->bitmap = kmem_cache_zalloc(
845 btrfs_free_space_bitmap_cachep, GFP_NOFS);
846 if (!e->bitmap) {
847 ret = -ENOMEM;
848 kmem_cache_free(
849 btrfs_free_space_cachep, e);
850 goto free_cache;
851 }
852 spin_lock(&ctl->tree_lock);
853 ret = link_free_space(ctl, e);
854 if (ret) {
855 spin_unlock(&ctl->tree_lock);
856 btrfs_err(fs_info,
857 "Duplicate entries in free space cache, dumping");
858 kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
859 kmem_cache_free(btrfs_free_space_cachep, e);
860 goto free_cache;
861 }
862 ctl->total_bitmaps++;
863 recalculate_thresholds(ctl);
864 spin_unlock(&ctl->tree_lock);
865 list_add_tail(&e->list, &bitmaps);
866 }
867
868 num_entries--;
869 }
870
871 io_ctl_unmap_page(&io_ctl);
872
873 /*
874 * We add the bitmaps at the end of the entries in order that
875 * the bitmap entries are added to the cache.
876 */
877 list_for_each_entry_safe(e, n, &bitmaps, list) {
878 list_del_init(&e->list);
879 ret = io_ctl_read_bitmap(&io_ctl, e);
880 if (ret)
881 goto free_cache;
882 }
883
884 io_ctl_drop_pages(&io_ctl);
885 ret = 1;
886 out:
887 io_ctl_free(&io_ctl);
888 return ret;
889 free_cache:
890 io_ctl_drop_pages(&io_ctl);
891
892 spin_lock(&ctl->tree_lock);
893 __btrfs_remove_free_space_cache(ctl);
894 spin_unlock(&ctl->tree_lock);
895 goto out;
896 }
897
copy_free_space_cache(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)898 static int copy_free_space_cache(struct btrfs_block_group *block_group,
899 struct btrfs_free_space_ctl *ctl)
900 {
901 struct btrfs_free_space *info;
902 struct rb_node *n;
903 int ret = 0;
904
905 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
906 info = rb_entry(n, struct btrfs_free_space, offset_index);
907 if (!info->bitmap) {
908 const u64 offset = info->offset;
909 const u64 bytes = info->bytes;
910
911 unlink_free_space(ctl, info, true);
912 spin_unlock(&ctl->tree_lock);
913 kmem_cache_free(btrfs_free_space_cachep, info);
914 ret = btrfs_add_free_space(block_group, offset, bytes);
915 spin_lock(&ctl->tree_lock);
916 } else {
917 u64 offset = info->offset;
918 u64 bytes = ctl->unit;
919
920 ret = search_bitmap(ctl, info, &offset, &bytes, false);
921 if (ret == 0) {
922 bitmap_clear_bits(ctl, info, offset, bytes, true);
923 spin_unlock(&ctl->tree_lock);
924 ret = btrfs_add_free_space(block_group, offset,
925 bytes);
926 spin_lock(&ctl->tree_lock);
927 } else {
928 free_bitmap(ctl, info);
929 ret = 0;
930 }
931 }
932 cond_resched_lock(&ctl->tree_lock);
933 }
934 return ret;
935 }
936
937 static struct lock_class_key btrfs_free_space_inode_key;
938
load_free_space_cache(struct btrfs_block_group * block_group)939 int load_free_space_cache(struct btrfs_block_group *block_group)
940 {
941 struct btrfs_fs_info *fs_info = block_group->fs_info;
942 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
943 struct btrfs_free_space_ctl tmp_ctl = {};
944 struct inode *inode;
945 struct btrfs_path *path;
946 int ret = 0;
947 bool matched;
948 u64 used = block_group->used;
949
950 /*
951 * Because we could potentially discard our loaded free space, we want
952 * to load everything into a temporary structure first, and then if it's
953 * valid copy it all into the actual free space ctl.
954 */
955 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
956
957 /*
958 * If this block group has been marked to be cleared for one reason or
959 * another then we can't trust the on disk cache, so just return.
960 */
961 spin_lock(&block_group->lock);
962 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
963 spin_unlock(&block_group->lock);
964 return 0;
965 }
966 spin_unlock(&block_group->lock);
967
968 path = btrfs_alloc_path();
969 if (!path)
970 return 0;
971 path->search_commit_root = 1;
972 path->skip_locking = 1;
973
974 /*
975 * We must pass a path with search_commit_root set to btrfs_iget in
976 * order to avoid a deadlock when allocating extents for the tree root.
977 *
978 * When we are COWing an extent buffer from the tree root, when looking
979 * for a free extent, at extent-tree.c:find_free_extent(), we can find
980 * block group without its free space cache loaded. When we find one
981 * we must load its space cache which requires reading its free space
982 * cache's inode item from the root tree. If this inode item is located
983 * in the same leaf that we started COWing before, then we end up in
984 * deadlock on the extent buffer (trying to read lock it when we
985 * previously write locked it).
986 *
987 * It's safe to read the inode item using the commit root because
988 * block groups, once loaded, stay in memory forever (until they are
989 * removed) as well as their space caches once loaded. New block groups
990 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
991 * we will never try to read their inode item while the fs is mounted.
992 */
993 inode = lookup_free_space_inode(block_group, path);
994 if (IS_ERR(inode)) {
995 btrfs_free_path(path);
996 return 0;
997 }
998
999 /* We may have converted the inode and made the cache invalid. */
1000 spin_lock(&block_group->lock);
1001 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1002 spin_unlock(&block_group->lock);
1003 btrfs_free_path(path);
1004 goto out;
1005 }
1006 spin_unlock(&block_group->lock);
1007
1008 /*
1009 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1010 * free space inodes to prevent false positives related to locks for normal
1011 * inodes.
1012 */
1013 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1014 &btrfs_free_space_inode_key);
1015
1016 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1017 path, block_group->start);
1018 btrfs_free_path(path);
1019 if (ret <= 0)
1020 goto out;
1021
1022 matched = (tmp_ctl.free_space == (block_group->length - used -
1023 block_group->bytes_super));
1024
1025 if (matched) {
1026 spin_lock(&tmp_ctl.tree_lock);
1027 ret = copy_free_space_cache(block_group, &tmp_ctl);
1028 spin_unlock(&tmp_ctl.tree_lock);
1029 /*
1030 * ret == 1 means we successfully loaded the free space cache,
1031 * so we need to re-set it here.
1032 */
1033 if (ret == 0)
1034 ret = 1;
1035 } else {
1036 /*
1037 * We need to call the _locked variant so we don't try to update
1038 * the discard counters.
1039 */
1040 spin_lock(&tmp_ctl.tree_lock);
1041 __btrfs_remove_free_space_cache(&tmp_ctl);
1042 spin_unlock(&tmp_ctl.tree_lock);
1043 btrfs_warn(fs_info,
1044 "block group %llu has wrong amount of free space",
1045 block_group->start);
1046 ret = -1;
1047 }
1048 out:
1049 if (ret < 0) {
1050 /* This cache is bogus, make sure it gets cleared */
1051 spin_lock(&block_group->lock);
1052 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1053 spin_unlock(&block_group->lock);
1054 ret = 0;
1055
1056 btrfs_warn(fs_info,
1057 "failed to load free space cache for block group %llu, rebuilding it now",
1058 block_group->start);
1059 }
1060
1061 spin_lock(&ctl->tree_lock);
1062 btrfs_discard_update_discardable(block_group);
1063 spin_unlock(&ctl->tree_lock);
1064 iput(inode);
1065 return ret;
1066 }
1067
1068 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)1069 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1070 struct btrfs_free_space_ctl *ctl,
1071 struct btrfs_block_group *block_group,
1072 int *entries, int *bitmaps,
1073 struct list_head *bitmap_list)
1074 {
1075 int ret;
1076 struct btrfs_free_cluster *cluster = NULL;
1077 struct btrfs_free_cluster *cluster_locked = NULL;
1078 struct rb_node *node = rb_first(&ctl->free_space_offset);
1079 struct btrfs_trim_range *trim_entry;
1080
1081 /* Get the cluster for this block_group if it exists */
1082 if (block_group && !list_empty(&block_group->cluster_list)) {
1083 cluster = list_entry(block_group->cluster_list.next,
1084 struct btrfs_free_cluster,
1085 block_group_list);
1086 }
1087
1088 if (!node && cluster) {
1089 cluster_locked = cluster;
1090 spin_lock(&cluster_locked->lock);
1091 node = rb_first(&cluster->root);
1092 cluster = NULL;
1093 }
1094
1095 /* Write out the extent entries */
1096 while (node) {
1097 struct btrfs_free_space *e;
1098
1099 e = rb_entry(node, struct btrfs_free_space, offset_index);
1100 *entries += 1;
1101
1102 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1103 e->bitmap);
1104 if (ret)
1105 goto fail;
1106
1107 if (e->bitmap) {
1108 list_add_tail(&e->list, bitmap_list);
1109 *bitmaps += 1;
1110 }
1111 node = rb_next(node);
1112 if (!node && cluster) {
1113 node = rb_first(&cluster->root);
1114 cluster_locked = cluster;
1115 spin_lock(&cluster_locked->lock);
1116 cluster = NULL;
1117 }
1118 }
1119 if (cluster_locked) {
1120 spin_unlock(&cluster_locked->lock);
1121 cluster_locked = NULL;
1122 }
1123
1124 /*
1125 * Make sure we don't miss any range that was removed from our rbtree
1126 * because trimming is running. Otherwise after a umount+mount (or crash
1127 * after committing the transaction) we would leak free space and get
1128 * an inconsistent free space cache report from fsck.
1129 */
1130 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1131 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1132 trim_entry->bytes, NULL);
1133 if (ret)
1134 goto fail;
1135 *entries += 1;
1136 }
1137
1138 return 0;
1139 fail:
1140 if (cluster_locked)
1141 spin_unlock(&cluster_locked->lock);
1142 return -ENOSPC;
1143 }
1144
1145 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)1146 update_cache_item(struct btrfs_trans_handle *trans,
1147 struct btrfs_root *root,
1148 struct inode *inode,
1149 struct btrfs_path *path, u64 offset,
1150 int entries, int bitmaps)
1151 {
1152 struct btrfs_key key;
1153 struct btrfs_free_space_header *header;
1154 struct extent_buffer *leaf;
1155 int ret;
1156
1157 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1158 key.type = 0;
1159 key.offset = offset;
1160
1161 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1162 if (ret < 0) {
1163 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1164 EXTENT_DELALLOC, NULL);
1165 goto fail;
1166 }
1167 leaf = path->nodes[0];
1168 if (ret > 0) {
1169 struct btrfs_key found_key;
1170 ASSERT(path->slots[0]);
1171 path->slots[0]--;
1172 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1173 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1174 found_key.offset != offset) {
1175 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1176 inode->i_size - 1, EXTENT_DELALLOC,
1177 NULL);
1178 btrfs_release_path(path);
1179 goto fail;
1180 }
1181 }
1182
1183 BTRFS_I(inode)->generation = trans->transid;
1184 header = btrfs_item_ptr(leaf, path->slots[0],
1185 struct btrfs_free_space_header);
1186 btrfs_set_free_space_entries(leaf, header, entries);
1187 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1188 btrfs_set_free_space_generation(leaf, header, trans->transid);
1189 btrfs_release_path(path);
1190
1191 return 0;
1192
1193 fail:
1194 return -1;
1195 }
1196
write_pinned_extent_entries(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1197 static noinline_for_stack int write_pinned_extent_entries(
1198 struct btrfs_trans_handle *trans,
1199 struct btrfs_block_group *block_group,
1200 struct btrfs_io_ctl *io_ctl,
1201 int *entries)
1202 {
1203 u64 start, extent_start, extent_end, len;
1204 struct extent_io_tree *unpin = NULL;
1205 int ret;
1206
1207 if (!block_group)
1208 return 0;
1209
1210 /*
1211 * We want to add any pinned extents to our free space cache
1212 * so we don't leak the space
1213 *
1214 * We shouldn't have switched the pinned extents yet so this is the
1215 * right one
1216 */
1217 unpin = &trans->transaction->pinned_extents;
1218
1219 start = block_group->start;
1220
1221 while (start < block_group->start + block_group->length) {
1222 if (!find_first_extent_bit(unpin, start,
1223 &extent_start, &extent_end,
1224 EXTENT_DIRTY, NULL))
1225 return 0;
1226
1227 /* This pinned extent is out of our range */
1228 if (extent_start >= block_group->start + block_group->length)
1229 return 0;
1230
1231 extent_start = max(extent_start, start);
1232 extent_end = min(block_group->start + block_group->length,
1233 extent_end + 1);
1234 len = extent_end - extent_start;
1235
1236 *entries += 1;
1237 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1238 if (ret)
1239 return -ENOSPC;
1240
1241 start = extent_end;
1242 }
1243
1244 return 0;
1245 }
1246
1247 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1248 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1249 {
1250 struct btrfs_free_space *entry, *next;
1251 int ret;
1252
1253 /* Write out the bitmaps */
1254 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1255 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1256 if (ret)
1257 return -ENOSPC;
1258 list_del_init(&entry->list);
1259 }
1260
1261 return 0;
1262 }
1263
flush_dirty_cache(struct inode * inode)1264 static int flush_dirty_cache(struct inode *inode)
1265 {
1266 int ret;
1267
1268 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
1269 if (ret)
1270 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1271 EXTENT_DELALLOC, NULL);
1272
1273 return ret;
1274 }
1275
1276 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1277 cleanup_bitmap_list(struct list_head *bitmap_list)
1278 {
1279 struct btrfs_free_space *entry, *next;
1280
1281 list_for_each_entry_safe(entry, next, bitmap_list, list)
1282 list_del_init(&entry->list);
1283 }
1284
1285 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state)1286 cleanup_write_cache_enospc(struct inode *inode,
1287 struct btrfs_io_ctl *io_ctl,
1288 struct extent_state **cached_state)
1289 {
1290 io_ctl_drop_pages(io_ctl);
1291 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1292 cached_state);
1293 }
1294
__btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1295 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1296 struct btrfs_trans_handle *trans,
1297 struct btrfs_block_group *block_group,
1298 struct btrfs_io_ctl *io_ctl,
1299 struct btrfs_path *path, u64 offset)
1300 {
1301 int ret;
1302 struct inode *inode = io_ctl->inode;
1303
1304 if (!inode)
1305 return 0;
1306
1307 /* Flush the dirty pages in the cache file. */
1308 ret = flush_dirty_cache(inode);
1309 if (ret)
1310 goto out;
1311
1312 /* Update the cache item to tell everyone this cache file is valid. */
1313 ret = update_cache_item(trans, root, inode, path, offset,
1314 io_ctl->entries, io_ctl->bitmaps);
1315 out:
1316 if (ret) {
1317 invalidate_inode_pages2(inode->i_mapping);
1318 BTRFS_I(inode)->generation = 0;
1319 if (block_group)
1320 btrfs_debug(root->fs_info,
1321 "failed to write free space cache for block group %llu error %d",
1322 block_group->start, ret);
1323 }
1324 btrfs_update_inode(trans, BTRFS_I(inode));
1325
1326 if (block_group) {
1327 /* the dirty list is protected by the dirty_bgs_lock */
1328 spin_lock(&trans->transaction->dirty_bgs_lock);
1329
1330 /* the disk_cache_state is protected by the block group lock */
1331 spin_lock(&block_group->lock);
1332
1333 /*
1334 * only mark this as written if we didn't get put back on
1335 * the dirty list while waiting for IO. Otherwise our
1336 * cache state won't be right, and we won't get written again
1337 */
1338 if (!ret && list_empty(&block_group->dirty_list))
1339 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1340 else if (ret)
1341 block_group->disk_cache_state = BTRFS_DC_ERROR;
1342
1343 spin_unlock(&block_group->lock);
1344 spin_unlock(&trans->transaction->dirty_bgs_lock);
1345 io_ctl->inode = NULL;
1346 iput(inode);
1347 }
1348
1349 return ret;
1350
1351 }
1352
btrfs_wait_cache_io(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1353 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1354 struct btrfs_block_group *block_group,
1355 struct btrfs_path *path)
1356 {
1357 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1358 block_group, &block_group->io_ctl,
1359 path, block_group->start);
1360 }
1361
1362 /*
1363 * Write out cached info to an inode.
1364 *
1365 * @inode: freespace inode we are writing out
1366 * @ctl: free space cache we are going to write out
1367 * @block_group: block_group for this cache if it belongs to a block_group
1368 * @io_ctl: holds context for the io
1369 * @trans: the trans handle
1370 *
1371 * This function writes out a free space cache struct to disk for quick recovery
1372 * on mount. This will return 0 if it was successful in writing the cache out,
1373 * or an errno if it was not.
1374 */
__btrfs_write_out_cache(struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans)1375 static int __btrfs_write_out_cache(struct inode *inode,
1376 struct btrfs_free_space_ctl *ctl,
1377 struct btrfs_block_group *block_group,
1378 struct btrfs_io_ctl *io_ctl,
1379 struct btrfs_trans_handle *trans)
1380 {
1381 struct extent_state *cached_state = NULL;
1382 LIST_HEAD(bitmap_list);
1383 int entries = 0;
1384 int bitmaps = 0;
1385 int ret;
1386 int must_iput = 0;
1387 int i_size;
1388
1389 if (!i_size_read(inode))
1390 return -EIO;
1391
1392 WARN_ON(io_ctl->pages);
1393 ret = io_ctl_init(io_ctl, inode, 1);
1394 if (ret)
1395 return ret;
1396
1397 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1398 down_write(&block_group->data_rwsem);
1399 spin_lock(&block_group->lock);
1400 if (block_group->delalloc_bytes) {
1401 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1402 spin_unlock(&block_group->lock);
1403 up_write(&block_group->data_rwsem);
1404 BTRFS_I(inode)->generation = 0;
1405 ret = 0;
1406 must_iput = 1;
1407 goto out;
1408 }
1409 spin_unlock(&block_group->lock);
1410 }
1411
1412 /* Lock all pages first so we can lock the extent safely. */
1413 ret = io_ctl_prepare_pages(io_ctl, false);
1414 if (ret)
1415 goto out_unlock;
1416
1417 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1418 &cached_state);
1419
1420 io_ctl_set_generation(io_ctl, trans->transid);
1421
1422 mutex_lock(&ctl->cache_writeout_mutex);
1423 /* Write out the extent entries in the free space cache */
1424 spin_lock(&ctl->tree_lock);
1425 ret = write_cache_extent_entries(io_ctl, ctl,
1426 block_group, &entries, &bitmaps,
1427 &bitmap_list);
1428 if (ret)
1429 goto out_nospc_locked;
1430
1431 /*
1432 * Some spaces that are freed in the current transaction are pinned,
1433 * they will be added into free space cache after the transaction is
1434 * committed, we shouldn't lose them.
1435 *
1436 * If this changes while we are working we'll get added back to
1437 * the dirty list and redo it. No locking needed
1438 */
1439 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1440 if (ret)
1441 goto out_nospc_locked;
1442
1443 /*
1444 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1445 * locked while doing it because a concurrent trim can be manipulating
1446 * or freeing the bitmap.
1447 */
1448 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1449 spin_unlock(&ctl->tree_lock);
1450 mutex_unlock(&ctl->cache_writeout_mutex);
1451 if (ret)
1452 goto out_nospc;
1453
1454 /* Zero out the rest of the pages just to make sure */
1455 io_ctl_zero_remaining_pages(io_ctl);
1456
1457 /* Everything is written out, now we dirty the pages in the file. */
1458 i_size = i_size_read(inode);
1459 for (int i = 0; i < round_up(i_size, PAGE_SIZE) / PAGE_SIZE; i++) {
1460 u64 dirty_start = i * PAGE_SIZE;
1461 u64 dirty_len = min_t(u64, dirty_start + PAGE_SIZE, i_size) - dirty_start;
1462
1463 ret = btrfs_dirty_folio(BTRFS_I(inode), page_folio(io_ctl->pages[i]),
1464 dirty_start, dirty_len, &cached_state, false);
1465 if (ret < 0)
1466 goto out_nospc;
1467 }
1468
1469 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1470 up_write(&block_group->data_rwsem);
1471 /*
1472 * Release the pages and unlock the extent, we will flush
1473 * them out later
1474 */
1475 io_ctl_drop_pages(io_ctl);
1476 io_ctl_free(io_ctl);
1477
1478 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1479 &cached_state);
1480
1481 /*
1482 * at this point the pages are under IO and we're happy,
1483 * The caller is responsible for waiting on them and updating
1484 * the cache and the inode
1485 */
1486 io_ctl->entries = entries;
1487 io_ctl->bitmaps = bitmaps;
1488
1489 ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
1490 if (ret)
1491 goto out;
1492
1493 return 0;
1494
1495 out_nospc_locked:
1496 cleanup_bitmap_list(&bitmap_list);
1497 spin_unlock(&ctl->tree_lock);
1498 mutex_unlock(&ctl->cache_writeout_mutex);
1499
1500 out_nospc:
1501 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1502
1503 out_unlock:
1504 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1505 up_write(&block_group->data_rwsem);
1506
1507 out:
1508 io_ctl->inode = NULL;
1509 io_ctl_free(io_ctl);
1510 if (ret) {
1511 invalidate_inode_pages2(inode->i_mapping);
1512 BTRFS_I(inode)->generation = 0;
1513 }
1514 btrfs_update_inode(trans, BTRFS_I(inode));
1515 if (must_iput)
1516 iput(inode);
1517 return ret;
1518 }
1519
btrfs_write_out_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1520 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1521 struct btrfs_block_group *block_group,
1522 struct btrfs_path *path)
1523 {
1524 struct btrfs_fs_info *fs_info = trans->fs_info;
1525 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1526 struct inode *inode;
1527 int ret = 0;
1528
1529 spin_lock(&block_group->lock);
1530 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1531 spin_unlock(&block_group->lock);
1532 return 0;
1533 }
1534 spin_unlock(&block_group->lock);
1535
1536 inode = lookup_free_space_inode(block_group, path);
1537 if (IS_ERR(inode))
1538 return 0;
1539
1540 ret = __btrfs_write_out_cache(inode, ctl, block_group,
1541 &block_group->io_ctl, trans);
1542 if (ret) {
1543 btrfs_debug(fs_info,
1544 "failed to write free space cache for block group %llu error %d",
1545 block_group->start, ret);
1546 spin_lock(&block_group->lock);
1547 block_group->disk_cache_state = BTRFS_DC_ERROR;
1548 spin_unlock(&block_group->lock);
1549
1550 block_group->io_ctl.inode = NULL;
1551 iput(inode);
1552 }
1553
1554 /*
1555 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1556 * to wait for IO and put the inode
1557 */
1558
1559 return ret;
1560 }
1561
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1562 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1563 u64 offset)
1564 {
1565 ASSERT(offset >= bitmap_start);
1566 offset -= bitmap_start;
1567 return (unsigned long)(div_u64(offset, unit));
1568 }
1569
bytes_to_bits(u64 bytes,u32 unit)1570 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1571 {
1572 return (unsigned long)(div_u64(bytes, unit));
1573 }
1574
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1575 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1576 u64 offset)
1577 {
1578 u64 bitmap_start;
1579 u64 bytes_per_bitmap;
1580
1581 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1582 bitmap_start = offset - ctl->start;
1583 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1584 bitmap_start *= bytes_per_bitmap;
1585 bitmap_start += ctl->start;
1586
1587 return bitmap_start;
1588 }
1589
tree_insert_offset(struct btrfs_free_space_ctl * ctl,struct btrfs_free_cluster * cluster,struct btrfs_free_space * new_entry)1590 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1591 struct btrfs_free_cluster *cluster,
1592 struct btrfs_free_space *new_entry)
1593 {
1594 struct rb_root *root;
1595 struct rb_node **p;
1596 struct rb_node *parent = NULL;
1597
1598 lockdep_assert_held(&ctl->tree_lock);
1599
1600 if (cluster) {
1601 lockdep_assert_held(&cluster->lock);
1602 root = &cluster->root;
1603 } else {
1604 root = &ctl->free_space_offset;
1605 }
1606
1607 p = &root->rb_node;
1608
1609 while (*p) {
1610 struct btrfs_free_space *info;
1611
1612 parent = *p;
1613 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1614
1615 if (new_entry->offset < info->offset) {
1616 p = &(*p)->rb_left;
1617 } else if (new_entry->offset > info->offset) {
1618 p = &(*p)->rb_right;
1619 } else {
1620 /*
1621 * we could have a bitmap entry and an extent entry
1622 * share the same offset. If this is the case, we want
1623 * the extent entry to always be found first if we do a
1624 * linear search through the tree, since we want to have
1625 * the quickest allocation time, and allocating from an
1626 * extent is faster than allocating from a bitmap. So
1627 * if we're inserting a bitmap and we find an entry at
1628 * this offset, we want to go right, or after this entry
1629 * logically. If we are inserting an extent and we've
1630 * found a bitmap, we want to go left, or before
1631 * logically.
1632 */
1633 if (new_entry->bitmap) {
1634 if (info->bitmap) {
1635 WARN_ON_ONCE(1);
1636 return -EEXIST;
1637 }
1638 p = &(*p)->rb_right;
1639 } else {
1640 if (!info->bitmap) {
1641 WARN_ON_ONCE(1);
1642 return -EEXIST;
1643 }
1644 p = &(*p)->rb_left;
1645 }
1646 }
1647 }
1648
1649 rb_link_node(&new_entry->offset_index, parent, p);
1650 rb_insert_color(&new_entry->offset_index, root);
1651
1652 return 0;
1653 }
1654
1655 /*
1656 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1657 * searched through the bitmap and figured out the largest ->max_extent_size,
1658 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1659 * allocator the wrong thing, we want to use the actual real max_extent_size
1660 * we've found already if it's larger, or we want to use ->bytes.
1661 *
1662 * This matters because find_free_space() will skip entries who's ->bytes is
1663 * less than the required bytes. So if we didn't search down this bitmap, we
1664 * may pick some previous entry that has a smaller ->max_extent_size than we
1665 * have. For example, assume we have two entries, one that has
1666 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1667 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1668 * call into find_free_space(), and return with max_extent_size == 4K, because
1669 * that first bitmap entry had ->max_extent_size set, but the second one did
1670 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1671 * 8K contiguous range.
1672 *
1673 * Consider the other case, we have 2 8K chunks in that second entry and still
1674 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1675 * allocator comes in it'll fully search our second bitmap, and this time it'll
1676 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1677 * right allocation the next loop through.
1678 */
get_max_extent_size(const struct btrfs_free_space * entry)1679 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1680 {
1681 if (entry->bitmap && entry->max_extent_size)
1682 return entry->max_extent_size;
1683 return entry->bytes;
1684 }
1685
1686 /*
1687 * We want the largest entry to be leftmost, so this is inverted from what you'd
1688 * normally expect.
1689 */
entry_less(struct rb_node * node,const struct rb_node * parent)1690 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1691 {
1692 const struct btrfs_free_space *entry, *exist;
1693
1694 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1695 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1696 return get_max_extent_size(exist) < get_max_extent_size(entry);
1697 }
1698
1699 /*
1700 * searches the tree for the given offset.
1701 *
1702 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1703 * want a section that has at least bytes size and comes at or after the given
1704 * offset.
1705 */
1706 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1707 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1708 u64 offset, int bitmap_only, int fuzzy)
1709 {
1710 struct rb_node *n = ctl->free_space_offset.rb_node;
1711 struct btrfs_free_space *entry = NULL, *prev = NULL;
1712
1713 lockdep_assert_held(&ctl->tree_lock);
1714
1715 /* find entry that is closest to the 'offset' */
1716 while (n) {
1717 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1718 prev = entry;
1719
1720 if (offset < entry->offset)
1721 n = n->rb_left;
1722 else if (offset > entry->offset)
1723 n = n->rb_right;
1724 else
1725 break;
1726
1727 entry = NULL;
1728 }
1729
1730 if (bitmap_only) {
1731 if (!entry)
1732 return NULL;
1733 if (entry->bitmap)
1734 return entry;
1735
1736 /*
1737 * bitmap entry and extent entry may share same offset,
1738 * in that case, bitmap entry comes after extent entry.
1739 */
1740 n = rb_next(n);
1741 if (!n)
1742 return NULL;
1743 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1744 if (entry->offset != offset)
1745 return NULL;
1746
1747 WARN_ON(!entry->bitmap);
1748 return entry;
1749 } else if (entry) {
1750 if (entry->bitmap) {
1751 /*
1752 * if previous extent entry covers the offset,
1753 * we should return it instead of the bitmap entry
1754 */
1755 n = rb_prev(&entry->offset_index);
1756 if (n) {
1757 prev = rb_entry(n, struct btrfs_free_space,
1758 offset_index);
1759 if (!prev->bitmap &&
1760 prev->offset + prev->bytes > offset)
1761 entry = prev;
1762 }
1763 }
1764 return entry;
1765 }
1766
1767 if (!prev)
1768 return NULL;
1769
1770 /* find last entry before the 'offset' */
1771 entry = prev;
1772 if (entry->offset > offset) {
1773 n = rb_prev(&entry->offset_index);
1774 if (n) {
1775 entry = rb_entry(n, struct btrfs_free_space,
1776 offset_index);
1777 ASSERT(entry->offset <= offset);
1778 } else {
1779 if (fuzzy)
1780 return entry;
1781 else
1782 return NULL;
1783 }
1784 }
1785
1786 if (entry->bitmap) {
1787 n = rb_prev(&entry->offset_index);
1788 if (n) {
1789 prev = rb_entry(n, struct btrfs_free_space,
1790 offset_index);
1791 if (!prev->bitmap &&
1792 prev->offset + prev->bytes > offset)
1793 return prev;
1794 }
1795 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1796 return entry;
1797 } else if (entry->offset + entry->bytes > offset)
1798 return entry;
1799
1800 if (!fuzzy)
1801 return NULL;
1802
1803 while (1) {
1804 n = rb_next(&entry->offset_index);
1805 if (!n)
1806 return NULL;
1807 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1808 if (entry->bitmap) {
1809 if (entry->offset + BITS_PER_BITMAP *
1810 ctl->unit > offset)
1811 break;
1812 } else {
1813 if (entry->offset + entry->bytes > offset)
1814 break;
1815 }
1816 }
1817 return entry;
1818 }
1819
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)1820 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1821 struct btrfs_free_space *info,
1822 bool update_stat)
1823 {
1824 lockdep_assert_held(&ctl->tree_lock);
1825
1826 rb_erase(&info->offset_index, &ctl->free_space_offset);
1827 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1828 ctl->free_extents--;
1829
1830 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1831 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1832 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1833 }
1834
1835 if (update_stat)
1836 ctl->free_space -= info->bytes;
1837 }
1838
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1839 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1840 struct btrfs_free_space *info)
1841 {
1842 int ret = 0;
1843
1844 lockdep_assert_held(&ctl->tree_lock);
1845
1846 ASSERT(info->bytes || info->bitmap);
1847 ret = tree_insert_offset(ctl, NULL, info);
1848 if (ret)
1849 return ret;
1850
1851 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1852
1853 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1854 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1855 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1856 }
1857
1858 ctl->free_space += info->bytes;
1859 ctl->free_extents++;
1860 return ret;
1861 }
1862
relink_bitmap_entry(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1863 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1864 struct btrfs_free_space *info)
1865 {
1866 ASSERT(info->bitmap);
1867
1868 /*
1869 * If our entry is empty it's because we're on a cluster and we don't
1870 * want to re-link it into our ctl bytes index.
1871 */
1872 if (RB_EMPTY_NODE(&info->bytes_index))
1873 return;
1874
1875 lockdep_assert_held(&ctl->tree_lock);
1876
1877 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1878 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1879 }
1880
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,bool update_stat)1881 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1882 struct btrfs_free_space *info,
1883 u64 offset, u64 bytes, bool update_stat)
1884 {
1885 unsigned long start, count, end;
1886 int extent_delta = -1;
1887
1888 start = offset_to_bit(info->offset, ctl->unit, offset);
1889 count = bytes_to_bits(bytes, ctl->unit);
1890 end = start + count;
1891 ASSERT(end <= BITS_PER_BITMAP);
1892
1893 bitmap_clear(info->bitmap, start, count);
1894
1895 info->bytes -= bytes;
1896 if (info->max_extent_size > ctl->unit)
1897 info->max_extent_size = 0;
1898
1899 relink_bitmap_entry(ctl, info);
1900
1901 if (start && test_bit(start - 1, info->bitmap))
1902 extent_delta++;
1903
1904 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1905 extent_delta++;
1906
1907 info->bitmap_extents += extent_delta;
1908 if (!btrfs_free_space_trimmed(info)) {
1909 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1910 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1911 }
1912
1913 if (update_stat)
1914 ctl->free_space -= bytes;
1915 }
1916
btrfs_bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1917 static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1918 struct btrfs_free_space *info, u64 offset,
1919 u64 bytes)
1920 {
1921 unsigned long start, count, end;
1922 int extent_delta = 1;
1923
1924 start = offset_to_bit(info->offset, ctl->unit, offset);
1925 count = bytes_to_bits(bytes, ctl->unit);
1926 end = start + count;
1927 ASSERT(end <= BITS_PER_BITMAP);
1928
1929 bitmap_set(info->bitmap, start, count);
1930
1931 /*
1932 * We set some bytes, we have no idea what the max extent size is
1933 * anymore.
1934 */
1935 info->max_extent_size = 0;
1936 info->bytes += bytes;
1937 ctl->free_space += bytes;
1938
1939 relink_bitmap_entry(ctl, info);
1940
1941 if (start && test_bit(start - 1, info->bitmap))
1942 extent_delta--;
1943
1944 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1945 extent_delta--;
1946
1947 info->bitmap_extents += extent_delta;
1948 if (!btrfs_free_space_trimmed(info)) {
1949 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1950 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1951 }
1952 }
1953
1954 /*
1955 * If we can not find suitable extent, we will use bytes to record
1956 * the size of the max extent.
1957 */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1958 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1959 struct btrfs_free_space *bitmap_info, u64 *offset,
1960 u64 *bytes, bool for_alloc)
1961 {
1962 unsigned long found_bits = 0;
1963 unsigned long max_bits = 0;
1964 unsigned long bits, i;
1965 unsigned long next_zero;
1966 unsigned long extent_bits;
1967
1968 /*
1969 * Skip searching the bitmap if we don't have a contiguous section that
1970 * is large enough for this allocation.
1971 */
1972 if (for_alloc &&
1973 bitmap_info->max_extent_size &&
1974 bitmap_info->max_extent_size < *bytes) {
1975 *bytes = bitmap_info->max_extent_size;
1976 return -1;
1977 }
1978
1979 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1980 max_t(u64, *offset, bitmap_info->offset));
1981 bits = bytes_to_bits(*bytes, ctl->unit);
1982
1983 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1984 if (for_alloc && bits == 1) {
1985 found_bits = 1;
1986 break;
1987 }
1988 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1989 BITS_PER_BITMAP, i);
1990 extent_bits = next_zero - i;
1991 if (extent_bits >= bits) {
1992 found_bits = extent_bits;
1993 break;
1994 } else if (extent_bits > max_bits) {
1995 max_bits = extent_bits;
1996 }
1997 i = next_zero;
1998 }
1999
2000 if (found_bits) {
2001 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2002 *bytes = (u64)(found_bits) * ctl->unit;
2003 return 0;
2004 }
2005
2006 *bytes = (u64)(max_bits) * ctl->unit;
2007 bitmap_info->max_extent_size = *bytes;
2008 relink_bitmap_entry(ctl, bitmap_info);
2009 return -1;
2010 }
2011
2012 /* Cache the size of the max extent in bytes */
2013 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size,bool use_bytes_index)2014 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2015 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2016 {
2017 struct btrfs_free_space *entry;
2018 struct rb_node *node;
2019 u64 tmp;
2020 u64 align_off;
2021 int ret;
2022
2023 if (!ctl->free_space_offset.rb_node)
2024 goto out;
2025 again:
2026 if (use_bytes_index) {
2027 node = rb_first_cached(&ctl->free_space_bytes);
2028 } else {
2029 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2030 0, 1);
2031 if (!entry)
2032 goto out;
2033 node = &entry->offset_index;
2034 }
2035
2036 for (; node; node = rb_next(node)) {
2037 if (use_bytes_index)
2038 entry = rb_entry(node, struct btrfs_free_space,
2039 bytes_index);
2040 else
2041 entry = rb_entry(node, struct btrfs_free_space,
2042 offset_index);
2043
2044 /*
2045 * If we are using the bytes index then all subsequent entries
2046 * in this tree are going to be < bytes, so simply set the max
2047 * extent size and exit the loop.
2048 *
2049 * If we're using the offset index then we need to keep going
2050 * through the rest of the tree.
2051 */
2052 if (entry->bytes < *bytes) {
2053 *max_extent_size = max(get_max_extent_size(entry),
2054 *max_extent_size);
2055 if (use_bytes_index)
2056 break;
2057 continue;
2058 }
2059
2060 /* make sure the space returned is big enough
2061 * to match our requested alignment
2062 */
2063 if (*bytes >= align) {
2064 tmp = entry->offset - ctl->start + align - 1;
2065 tmp = div64_u64(tmp, align);
2066 tmp = tmp * align + ctl->start;
2067 align_off = tmp - entry->offset;
2068 } else {
2069 align_off = 0;
2070 tmp = entry->offset;
2071 }
2072
2073 /*
2074 * We don't break here if we're using the bytes index because we
2075 * may have another entry that has the correct alignment that is
2076 * the right size, so we don't want to miss that possibility.
2077 * At worst this adds another loop through the logic, but if we
2078 * broke here we could prematurely ENOSPC.
2079 */
2080 if (entry->bytes < *bytes + align_off) {
2081 *max_extent_size = max(get_max_extent_size(entry),
2082 *max_extent_size);
2083 continue;
2084 }
2085
2086 if (entry->bitmap) {
2087 struct rb_node *old_next = rb_next(node);
2088 u64 size = *bytes;
2089
2090 ret = search_bitmap(ctl, entry, &tmp, &size, true);
2091 if (!ret) {
2092 *offset = tmp;
2093 *bytes = size;
2094 return entry;
2095 } else {
2096 *max_extent_size =
2097 max(get_max_extent_size(entry),
2098 *max_extent_size);
2099 }
2100
2101 /*
2102 * The bitmap may have gotten re-arranged in the space
2103 * index here because the max_extent_size may have been
2104 * updated. Start from the beginning again if this
2105 * happened.
2106 */
2107 if (use_bytes_index && old_next != rb_next(node))
2108 goto again;
2109 continue;
2110 }
2111
2112 *offset = tmp;
2113 *bytes = entry->bytes - align_off;
2114 return entry;
2115 }
2116 out:
2117 return NULL;
2118 }
2119
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)2120 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2121 struct btrfs_free_space *info, u64 offset)
2122 {
2123 info->offset = offset_to_bitmap(ctl, offset);
2124 info->bytes = 0;
2125 info->bitmap_extents = 0;
2126 INIT_LIST_HEAD(&info->list);
2127 link_free_space(ctl, info);
2128 ctl->total_bitmaps++;
2129 recalculate_thresholds(ctl);
2130 }
2131
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)2132 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2133 struct btrfs_free_space *bitmap_info)
2134 {
2135 /*
2136 * Normally when this is called, the bitmap is completely empty. However,
2137 * if we are blowing up the free space cache for one reason or another
2138 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2139 * we may leave stats on the table.
2140 */
2141 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2142 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2143 bitmap_info->bitmap_extents;
2144 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2145
2146 }
2147 unlink_free_space(ctl, bitmap_info, true);
2148 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2149 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2150 ctl->total_bitmaps--;
2151 recalculate_thresholds(ctl);
2152 }
2153
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)2154 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2155 struct btrfs_free_space *bitmap_info,
2156 u64 *offset, u64 *bytes)
2157 {
2158 u64 end;
2159 u64 search_start, search_bytes;
2160 int ret;
2161
2162 again:
2163 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2164
2165 /*
2166 * We need to search for bits in this bitmap. We could only cover some
2167 * of the extent in this bitmap thanks to how we add space, so we need
2168 * to search for as much as it as we can and clear that amount, and then
2169 * go searching for the next bit.
2170 */
2171 search_start = *offset;
2172 search_bytes = ctl->unit;
2173 search_bytes = min(search_bytes, end - search_start + 1);
2174 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2175 false);
2176 if (ret < 0 || search_start != *offset)
2177 return -EINVAL;
2178
2179 /* We may have found more bits than what we need */
2180 search_bytes = min(search_bytes, *bytes);
2181
2182 /* Cannot clear past the end of the bitmap */
2183 search_bytes = min(search_bytes, end - search_start + 1);
2184
2185 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2186 *offset += search_bytes;
2187 *bytes -= search_bytes;
2188
2189 if (*bytes) {
2190 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2191 if (!bitmap_info->bytes)
2192 free_bitmap(ctl, bitmap_info);
2193
2194 /*
2195 * no entry after this bitmap, but we still have bytes to
2196 * remove, so something has gone wrong.
2197 */
2198 if (!next)
2199 return -EINVAL;
2200
2201 bitmap_info = rb_entry(next, struct btrfs_free_space,
2202 offset_index);
2203
2204 /*
2205 * if the next entry isn't a bitmap we need to return to let the
2206 * extent stuff do its work.
2207 */
2208 if (!bitmap_info->bitmap)
2209 return -EAGAIN;
2210
2211 /*
2212 * Ok the next item is a bitmap, but it may not actually hold
2213 * the information for the rest of this free space stuff, so
2214 * look for it, and if we don't find it return so we can try
2215 * everything over again.
2216 */
2217 search_start = *offset;
2218 search_bytes = ctl->unit;
2219 ret = search_bitmap(ctl, bitmap_info, &search_start,
2220 &search_bytes, false);
2221 if (ret < 0 || search_start != *offset)
2222 return -EAGAIN;
2223
2224 goto again;
2225 } else if (!bitmap_info->bytes)
2226 free_bitmap(ctl, bitmap_info);
2227
2228 return 0;
2229 }
2230
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2231 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2232 struct btrfs_free_space *info, u64 offset,
2233 u64 bytes, enum btrfs_trim_state trim_state)
2234 {
2235 u64 bytes_to_set = 0;
2236 u64 end;
2237
2238 /*
2239 * This is a tradeoff to make bitmap trim state minimal. We mark the
2240 * whole bitmap untrimmed if at any point we add untrimmed regions.
2241 */
2242 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2243 if (btrfs_free_space_trimmed(info)) {
2244 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2245 info->bitmap_extents;
2246 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2247 }
2248 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2249 }
2250
2251 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2252
2253 bytes_to_set = min(end - offset, bytes);
2254
2255 btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
2256
2257 return bytes_to_set;
2258
2259 }
2260
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2261 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2262 struct btrfs_free_space *info)
2263 {
2264 struct btrfs_block_group *block_group = ctl->block_group;
2265 struct btrfs_fs_info *fs_info = block_group->fs_info;
2266 bool forced = false;
2267
2268 #ifdef CONFIG_BTRFS_DEBUG
2269 if (btrfs_should_fragment_free_space(block_group))
2270 forced = true;
2271 #endif
2272
2273 /* This is a way to reclaim large regions from the bitmaps. */
2274 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2275 return false;
2276
2277 /*
2278 * If we are below the extents threshold then we can add this as an
2279 * extent, and don't have to deal with the bitmap
2280 */
2281 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2282 /*
2283 * If this block group has some small extents we don't want to
2284 * use up all of our free slots in the cache with them, we want
2285 * to reserve them to larger extents, however if we have plenty
2286 * of cache left then go ahead an dadd them, no sense in adding
2287 * the overhead of a bitmap if we don't have to.
2288 */
2289 if (info->bytes <= fs_info->sectorsize * 8) {
2290 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2291 return false;
2292 } else {
2293 return false;
2294 }
2295 }
2296
2297 /*
2298 * The original block groups from mkfs can be really small, like 8
2299 * megabytes, so don't bother with a bitmap for those entries. However
2300 * some block groups can be smaller than what a bitmap would cover but
2301 * are still large enough that they could overflow the 32k memory limit,
2302 * so allow those block groups to still be allowed to have a bitmap
2303 * entry.
2304 */
2305 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2306 return false;
2307
2308 return true;
2309 }
2310
2311 static const struct btrfs_free_space_op free_space_op = {
2312 .use_bitmap = use_bitmap,
2313 };
2314
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2315 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2316 struct btrfs_free_space *info)
2317 {
2318 struct btrfs_free_space *bitmap_info;
2319 struct btrfs_block_group *block_group = NULL;
2320 int added = 0;
2321 u64 bytes, offset, bytes_added;
2322 enum btrfs_trim_state trim_state;
2323 int ret;
2324
2325 bytes = info->bytes;
2326 offset = info->offset;
2327 trim_state = info->trim_state;
2328
2329 if (!ctl->op->use_bitmap(ctl, info))
2330 return 0;
2331
2332 if (ctl->op == &free_space_op)
2333 block_group = ctl->block_group;
2334 again:
2335 /*
2336 * Since we link bitmaps right into the cluster we need to see if we
2337 * have a cluster here, and if so and it has our bitmap we need to add
2338 * the free space to that bitmap.
2339 */
2340 if (block_group && !list_empty(&block_group->cluster_list)) {
2341 struct btrfs_free_cluster *cluster;
2342 struct rb_node *node;
2343 struct btrfs_free_space *entry;
2344
2345 cluster = list_entry(block_group->cluster_list.next,
2346 struct btrfs_free_cluster,
2347 block_group_list);
2348 spin_lock(&cluster->lock);
2349 node = rb_first(&cluster->root);
2350 if (!node) {
2351 spin_unlock(&cluster->lock);
2352 goto no_cluster_bitmap;
2353 }
2354
2355 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2356 if (!entry->bitmap) {
2357 spin_unlock(&cluster->lock);
2358 goto no_cluster_bitmap;
2359 }
2360
2361 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2362 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2363 bytes, trim_state);
2364 bytes -= bytes_added;
2365 offset += bytes_added;
2366 }
2367 spin_unlock(&cluster->lock);
2368 if (!bytes) {
2369 ret = 1;
2370 goto out;
2371 }
2372 }
2373
2374 no_cluster_bitmap:
2375 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2376 1, 0);
2377 if (!bitmap_info) {
2378 ASSERT(added == 0);
2379 goto new_bitmap;
2380 }
2381
2382 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2383 trim_state);
2384 bytes -= bytes_added;
2385 offset += bytes_added;
2386 added = 0;
2387
2388 if (!bytes) {
2389 ret = 1;
2390 goto out;
2391 } else
2392 goto again;
2393
2394 new_bitmap:
2395 if (info && info->bitmap) {
2396 add_new_bitmap(ctl, info, offset);
2397 added = 1;
2398 info = NULL;
2399 goto again;
2400 } else {
2401 spin_unlock(&ctl->tree_lock);
2402
2403 /* no pre-allocated info, allocate a new one */
2404 if (!info) {
2405 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2406 GFP_NOFS);
2407 if (!info) {
2408 spin_lock(&ctl->tree_lock);
2409 ret = -ENOMEM;
2410 goto out;
2411 }
2412 }
2413
2414 /* allocate the bitmap */
2415 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2416 GFP_NOFS);
2417 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2418 spin_lock(&ctl->tree_lock);
2419 if (!info->bitmap) {
2420 ret = -ENOMEM;
2421 goto out;
2422 }
2423 goto again;
2424 }
2425
2426 out:
2427 if (info) {
2428 if (info->bitmap)
2429 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2430 info->bitmap);
2431 kmem_cache_free(btrfs_free_space_cachep, info);
2432 }
2433
2434 return ret;
2435 }
2436
2437 /*
2438 * Free space merging rules:
2439 * 1) Merge trimmed areas together
2440 * 2) Let untrimmed areas coalesce with trimmed areas
2441 * 3) Always pull neighboring regions from bitmaps
2442 *
2443 * The above rules are for when we merge free space based on btrfs_trim_state.
2444 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2445 * same reason: to promote larger extent regions which makes life easier for
2446 * find_free_extent(). Rule 2 enables coalescing based on the common path
2447 * being returning free space from btrfs_finish_extent_commit(). So when free
2448 * space is trimmed, it will prevent aggregating trimmed new region and
2449 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2450 * and provide find_free_extent() with the largest extents possible hoping for
2451 * the reuse path.
2452 */
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2453 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2454 struct btrfs_free_space *info, bool update_stat)
2455 {
2456 struct btrfs_free_space *left_info = NULL;
2457 struct btrfs_free_space *right_info;
2458 bool merged = false;
2459 u64 offset = info->offset;
2460 u64 bytes = info->bytes;
2461 const bool is_trimmed = btrfs_free_space_trimmed(info);
2462 struct rb_node *right_prev = NULL;
2463
2464 /*
2465 * first we want to see if there is free space adjacent to the range we
2466 * are adding, if there is remove that struct and add a new one to
2467 * cover the entire range
2468 */
2469 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2470 if (right_info)
2471 right_prev = rb_prev(&right_info->offset_index);
2472
2473 if (right_prev)
2474 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2475 else if (!right_info)
2476 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2477
2478 /* See try_merge_free_space() comment. */
2479 if (right_info && !right_info->bitmap &&
2480 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2481 unlink_free_space(ctl, right_info, update_stat);
2482 info->bytes += right_info->bytes;
2483 kmem_cache_free(btrfs_free_space_cachep, right_info);
2484 merged = true;
2485 }
2486
2487 /* See try_merge_free_space() comment. */
2488 if (left_info && !left_info->bitmap &&
2489 left_info->offset + left_info->bytes == offset &&
2490 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2491 unlink_free_space(ctl, left_info, update_stat);
2492 info->offset = left_info->offset;
2493 info->bytes += left_info->bytes;
2494 kmem_cache_free(btrfs_free_space_cachep, left_info);
2495 merged = true;
2496 }
2497
2498 return merged;
2499 }
2500
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2501 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2502 struct btrfs_free_space *info,
2503 bool update_stat)
2504 {
2505 struct btrfs_free_space *bitmap;
2506 unsigned long i;
2507 unsigned long j;
2508 const u64 end = info->offset + info->bytes;
2509 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2510 u64 bytes;
2511
2512 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2513 if (!bitmap)
2514 return false;
2515
2516 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2517 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2518 if (j == i)
2519 return false;
2520 bytes = (j - i) * ctl->unit;
2521 info->bytes += bytes;
2522
2523 /* See try_merge_free_space() comment. */
2524 if (!btrfs_free_space_trimmed(bitmap))
2525 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2526
2527 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2528
2529 if (!bitmap->bytes)
2530 free_bitmap(ctl, bitmap);
2531
2532 return true;
2533 }
2534
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2535 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2536 struct btrfs_free_space *info,
2537 bool update_stat)
2538 {
2539 struct btrfs_free_space *bitmap;
2540 u64 bitmap_offset;
2541 unsigned long i;
2542 unsigned long j;
2543 unsigned long prev_j;
2544 u64 bytes;
2545
2546 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2547 /* If we're on a boundary, try the previous logical bitmap. */
2548 if (bitmap_offset == info->offset) {
2549 if (info->offset == 0)
2550 return false;
2551 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2552 }
2553
2554 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2555 if (!bitmap)
2556 return false;
2557
2558 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2559 j = 0;
2560 prev_j = (unsigned long)-1;
2561 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2562 if (j > i)
2563 break;
2564 prev_j = j;
2565 }
2566 if (prev_j == i)
2567 return false;
2568
2569 if (prev_j == (unsigned long)-1)
2570 bytes = (i + 1) * ctl->unit;
2571 else
2572 bytes = (i - prev_j) * ctl->unit;
2573
2574 info->offset -= bytes;
2575 info->bytes += bytes;
2576
2577 /* See try_merge_free_space() comment. */
2578 if (!btrfs_free_space_trimmed(bitmap))
2579 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2580
2581 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2582
2583 if (!bitmap->bytes)
2584 free_bitmap(ctl, bitmap);
2585
2586 return true;
2587 }
2588
2589 /*
2590 * We prefer always to allocate from extent entries, both for clustered and
2591 * non-clustered allocation requests. So when attempting to add a new extent
2592 * entry, try to see if there's adjacent free space in bitmap entries, and if
2593 * there is, migrate that space from the bitmaps to the extent.
2594 * Like this we get better chances of satisfying space allocation requests
2595 * because we attempt to satisfy them based on a single cache entry, and never
2596 * on 2 or more entries - even if the entries represent a contiguous free space
2597 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2598 * ends).
2599 */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2600 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2601 struct btrfs_free_space *info,
2602 bool update_stat)
2603 {
2604 /*
2605 * Only work with disconnected entries, as we can change their offset,
2606 * and must be extent entries.
2607 */
2608 ASSERT(!info->bitmap);
2609 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2610
2611 if (ctl->total_bitmaps > 0) {
2612 bool stole_end;
2613 bool stole_front = false;
2614
2615 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2616 if (ctl->total_bitmaps > 0)
2617 stole_front = steal_from_bitmap_to_front(ctl, info,
2618 update_stat);
2619
2620 if (stole_end || stole_front)
2621 try_merge_free_space(ctl, info, update_stat);
2622 }
2623 }
2624
__btrfs_add_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2625 static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2626 u64 offset, u64 bytes,
2627 enum btrfs_trim_state trim_state)
2628 {
2629 struct btrfs_fs_info *fs_info = block_group->fs_info;
2630 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2631 struct btrfs_free_space *info;
2632 int ret = 0;
2633 u64 filter_bytes = bytes;
2634
2635 ASSERT(!btrfs_is_zoned(fs_info));
2636
2637 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2638 if (!info)
2639 return -ENOMEM;
2640
2641 info->offset = offset;
2642 info->bytes = bytes;
2643 info->trim_state = trim_state;
2644 RB_CLEAR_NODE(&info->offset_index);
2645 RB_CLEAR_NODE(&info->bytes_index);
2646
2647 spin_lock(&ctl->tree_lock);
2648
2649 if (try_merge_free_space(ctl, info, true))
2650 goto link;
2651
2652 /*
2653 * There was no extent directly to the left or right of this new
2654 * extent then we know we're going to have to allocate a new extent, so
2655 * before we do that see if we need to drop this into a bitmap
2656 */
2657 ret = insert_into_bitmap(ctl, info);
2658 if (ret < 0) {
2659 goto out;
2660 } else if (ret) {
2661 ret = 0;
2662 goto out;
2663 }
2664 link:
2665 /*
2666 * Only steal free space from adjacent bitmaps if we're sure we're not
2667 * going to add the new free space to existing bitmap entries - because
2668 * that would mean unnecessary work that would be reverted. Therefore
2669 * attempt to steal space from bitmaps if we're adding an extent entry.
2670 */
2671 steal_from_bitmap(ctl, info, true);
2672
2673 filter_bytes = max(filter_bytes, info->bytes);
2674
2675 ret = link_free_space(ctl, info);
2676 if (ret)
2677 kmem_cache_free(btrfs_free_space_cachep, info);
2678 out:
2679 btrfs_discard_update_discardable(block_group);
2680 spin_unlock(&ctl->tree_lock);
2681
2682 if (ret) {
2683 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2684 ASSERT(ret != -EEXIST);
2685 }
2686
2687 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2688 btrfs_discard_check_filter(block_group, filter_bytes);
2689 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2690 }
2691
2692 return ret;
2693 }
2694
__btrfs_add_free_space_zoned(struct btrfs_block_group * block_group,u64 bytenr,u64 size,bool used)2695 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2696 u64 bytenr, u64 size, bool used)
2697 {
2698 struct btrfs_space_info *sinfo = block_group->space_info;
2699 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2700 u64 offset = bytenr - block_group->start;
2701 u64 to_free, to_unusable;
2702 int bg_reclaim_threshold = 0;
2703 bool initial;
2704 u64 reclaimable_unusable;
2705
2706 spin_lock(&block_group->lock);
2707
2708 initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
2709 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2710 if (!initial)
2711 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2712
2713 if (!used)
2714 to_free = size;
2715 else if (initial)
2716 to_free = block_group->zone_capacity;
2717 else if (offset >= block_group->alloc_offset)
2718 to_free = size;
2719 else if (offset + size <= block_group->alloc_offset)
2720 to_free = 0;
2721 else
2722 to_free = offset + size - block_group->alloc_offset;
2723 to_unusable = size - to_free;
2724
2725 spin_lock(&ctl->tree_lock);
2726 ctl->free_space += to_free;
2727 spin_unlock(&ctl->tree_lock);
2728 /*
2729 * If the block group is read-only, we should account freed space into
2730 * bytes_readonly.
2731 */
2732 if (!block_group->ro) {
2733 block_group->zone_unusable += to_unusable;
2734 WARN_ON(block_group->zone_unusable > block_group->length);
2735 }
2736 if (!used) {
2737 block_group->alloc_offset -= size;
2738 }
2739
2740 reclaimable_unusable = block_group->zone_unusable -
2741 (block_group->length - block_group->zone_capacity);
2742 /* All the region is now unusable. Mark it as unused and reclaim */
2743 if (block_group->zone_unusable == block_group->length) {
2744 btrfs_mark_bg_unused(block_group);
2745 } else if (bg_reclaim_threshold &&
2746 reclaimable_unusable >=
2747 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2748 btrfs_mark_bg_to_reclaim(block_group);
2749 }
2750
2751 spin_unlock(&block_group->lock);
2752
2753 return 0;
2754 }
2755
btrfs_add_free_space(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2756 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2757 u64 bytenr, u64 size)
2758 {
2759 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2760
2761 if (btrfs_is_zoned(block_group->fs_info))
2762 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2763 true);
2764
2765 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2766 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2767
2768 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2769 }
2770
btrfs_add_free_space_unused(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2771 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2772 u64 bytenr, u64 size)
2773 {
2774 if (btrfs_is_zoned(block_group->fs_info))
2775 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2776 false);
2777
2778 return btrfs_add_free_space(block_group, bytenr, size);
2779 }
2780
2781 /*
2782 * This is a subtle distinction because when adding free space back in general,
2783 * we want it to be added as untrimmed for async. But in the case where we add
2784 * it on loading of a block group, we want to consider it trimmed.
2785 */
btrfs_add_free_space_async_trimmed(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2786 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2787 u64 bytenr, u64 size)
2788 {
2789 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2790
2791 if (btrfs_is_zoned(block_group->fs_info))
2792 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2793 true);
2794
2795 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2796 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2797 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2798
2799 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2800 }
2801
btrfs_remove_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes)2802 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2803 u64 offset, u64 bytes)
2804 {
2805 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2806 struct btrfs_free_space *info;
2807 int ret;
2808 bool re_search = false;
2809
2810 if (btrfs_is_zoned(block_group->fs_info)) {
2811 /*
2812 * This can happen with conventional zones when replaying log.
2813 * Since the allocation info of tree-log nodes are not recorded
2814 * to the extent-tree, calculate_alloc_pointer() failed to
2815 * advance the allocation pointer after last allocated tree log
2816 * node blocks.
2817 *
2818 * This function is called from
2819 * btrfs_pin_extent_for_log_replay() when replaying the log.
2820 * Advance the pointer not to overwrite the tree-log nodes.
2821 */
2822 if (block_group->start + block_group->alloc_offset <
2823 offset + bytes) {
2824 block_group->alloc_offset =
2825 offset + bytes - block_group->start;
2826 }
2827 return 0;
2828 }
2829
2830 spin_lock(&ctl->tree_lock);
2831
2832 again:
2833 ret = 0;
2834 if (!bytes)
2835 goto out_lock;
2836
2837 info = tree_search_offset(ctl, offset, 0, 0);
2838 if (!info) {
2839 /*
2840 * oops didn't find an extent that matched the space we wanted
2841 * to remove, look for a bitmap instead
2842 */
2843 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2844 1, 0);
2845 if (!info) {
2846 /*
2847 * If we found a partial bit of our free space in a
2848 * bitmap but then couldn't find the other part this may
2849 * be a problem, so WARN about it.
2850 */
2851 WARN_ON(re_search);
2852 goto out_lock;
2853 }
2854 }
2855
2856 re_search = false;
2857 if (!info->bitmap) {
2858 unlink_free_space(ctl, info, true);
2859 if (offset == info->offset) {
2860 u64 to_free = min(bytes, info->bytes);
2861
2862 info->bytes -= to_free;
2863 info->offset += to_free;
2864 if (info->bytes) {
2865 ret = link_free_space(ctl, info);
2866 WARN_ON(ret);
2867 } else {
2868 kmem_cache_free(btrfs_free_space_cachep, info);
2869 }
2870
2871 offset += to_free;
2872 bytes -= to_free;
2873 goto again;
2874 } else {
2875 u64 old_end = info->bytes + info->offset;
2876
2877 info->bytes = offset - info->offset;
2878 ret = link_free_space(ctl, info);
2879 WARN_ON(ret);
2880 if (ret)
2881 goto out_lock;
2882
2883 /* Not enough bytes in this entry to satisfy us */
2884 if (old_end < offset + bytes) {
2885 bytes -= old_end - offset;
2886 offset = old_end;
2887 goto again;
2888 } else if (old_end == offset + bytes) {
2889 /* all done */
2890 goto out_lock;
2891 }
2892 spin_unlock(&ctl->tree_lock);
2893
2894 ret = __btrfs_add_free_space(block_group,
2895 offset + bytes,
2896 old_end - (offset + bytes),
2897 info->trim_state);
2898 WARN_ON(ret);
2899 goto out;
2900 }
2901 }
2902
2903 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2904 if (ret == -EAGAIN) {
2905 re_search = true;
2906 goto again;
2907 }
2908 out_lock:
2909 btrfs_discard_update_discardable(block_group);
2910 spin_unlock(&ctl->tree_lock);
2911 out:
2912 return ret;
2913 }
2914
btrfs_dump_free_space(struct btrfs_block_group * block_group,u64 bytes)2915 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2916 u64 bytes)
2917 {
2918 struct btrfs_fs_info *fs_info = block_group->fs_info;
2919 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2920 struct btrfs_free_space *info;
2921 struct rb_node *n;
2922 int count = 0;
2923
2924 /*
2925 * Zoned btrfs does not use free space tree and cluster. Just print
2926 * out the free space after the allocation offset.
2927 */
2928 if (btrfs_is_zoned(fs_info)) {
2929 btrfs_info(fs_info, "free space %llu active %d",
2930 block_group->zone_capacity - block_group->alloc_offset,
2931 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2932 &block_group->runtime_flags));
2933 return;
2934 }
2935
2936 spin_lock(&ctl->tree_lock);
2937 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2938 info = rb_entry(n, struct btrfs_free_space, offset_index);
2939 if (info->bytes >= bytes && !block_group->ro)
2940 count++;
2941 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2942 info->offset, info->bytes, str_yes_no(info->bitmap));
2943 }
2944 spin_unlock(&ctl->tree_lock);
2945 btrfs_info(fs_info, "block group has cluster?: %s",
2946 str_no_yes(list_empty(&block_group->cluster_list)));
2947 btrfs_info(fs_info,
2948 "%d free space entries at or bigger than %llu bytes",
2949 count, bytes);
2950 }
2951
btrfs_init_free_space_ctl(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)2952 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2953 struct btrfs_free_space_ctl *ctl)
2954 {
2955 struct btrfs_fs_info *fs_info = block_group->fs_info;
2956
2957 spin_lock_init(&ctl->tree_lock);
2958 ctl->unit = fs_info->sectorsize;
2959 ctl->start = block_group->start;
2960 ctl->block_group = block_group;
2961 ctl->op = &free_space_op;
2962 ctl->free_space_bytes = RB_ROOT_CACHED;
2963 INIT_LIST_HEAD(&ctl->trimming_ranges);
2964 mutex_init(&ctl->cache_writeout_mutex);
2965
2966 /*
2967 * we only want to have 32k of ram per block group for keeping
2968 * track of free space, and if we pass 1/2 of that we want to
2969 * start converting things over to using bitmaps
2970 */
2971 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2972 }
2973
2974 /*
2975 * for a given cluster, put all of its extents back into the free
2976 * space cache. If the block group passed doesn't match the block group
2977 * pointed to by the cluster, someone else raced in and freed the
2978 * cluster already. In that case, we just return without changing anything
2979 */
__btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)2980 static void __btrfs_return_cluster_to_free_space(
2981 struct btrfs_block_group *block_group,
2982 struct btrfs_free_cluster *cluster)
2983 {
2984 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2985 struct rb_node *node;
2986
2987 lockdep_assert_held(&ctl->tree_lock);
2988
2989 spin_lock(&cluster->lock);
2990 if (cluster->block_group != block_group) {
2991 spin_unlock(&cluster->lock);
2992 return;
2993 }
2994
2995 cluster->block_group = NULL;
2996 cluster->window_start = 0;
2997 list_del_init(&cluster->block_group_list);
2998
2999 node = rb_first(&cluster->root);
3000 while (node) {
3001 struct btrfs_free_space *entry;
3002
3003 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3004 node = rb_next(&entry->offset_index);
3005 rb_erase(&entry->offset_index, &cluster->root);
3006 RB_CLEAR_NODE(&entry->offset_index);
3007
3008 if (!entry->bitmap) {
3009 /* Merging treats extents as if they were new */
3010 if (!btrfs_free_space_trimmed(entry)) {
3011 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3012 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3013 entry->bytes;
3014 }
3015
3016 try_merge_free_space(ctl, entry, false);
3017 steal_from_bitmap(ctl, entry, false);
3018
3019 /* As we insert directly, update these statistics */
3020 if (!btrfs_free_space_trimmed(entry)) {
3021 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3022 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3023 entry->bytes;
3024 }
3025 }
3026 tree_insert_offset(ctl, NULL, entry);
3027 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3028 entry_less);
3029 }
3030 cluster->root = RB_ROOT;
3031 spin_unlock(&cluster->lock);
3032 btrfs_put_block_group(block_group);
3033 }
3034
btrfs_remove_free_space_cache(struct btrfs_block_group * block_group)3035 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3036 {
3037 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3038 struct btrfs_free_cluster *cluster;
3039 struct list_head *head;
3040
3041 spin_lock(&ctl->tree_lock);
3042 while ((head = block_group->cluster_list.next) !=
3043 &block_group->cluster_list) {
3044 cluster = list_entry(head, struct btrfs_free_cluster,
3045 block_group_list);
3046
3047 WARN_ON(cluster->block_group != block_group);
3048 __btrfs_return_cluster_to_free_space(block_group, cluster);
3049
3050 cond_resched_lock(&ctl->tree_lock);
3051 }
3052 __btrfs_remove_free_space_cache(ctl);
3053 btrfs_discard_update_discardable(block_group);
3054 spin_unlock(&ctl->tree_lock);
3055
3056 }
3057
3058 /*
3059 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3060 */
btrfs_is_free_space_trimmed(struct btrfs_block_group * block_group)3061 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3062 {
3063 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3064 struct btrfs_free_space *info;
3065 struct rb_node *node;
3066 bool ret = true;
3067
3068 spin_lock(&ctl->tree_lock);
3069 node = rb_first(&ctl->free_space_offset);
3070
3071 while (node) {
3072 info = rb_entry(node, struct btrfs_free_space, offset_index);
3073
3074 if (!btrfs_free_space_trimmed(info)) {
3075 ret = false;
3076 break;
3077 }
3078
3079 node = rb_next(node);
3080 }
3081
3082 spin_unlock(&ctl->tree_lock);
3083 return ret;
3084 }
3085
btrfs_find_space_for_alloc(struct btrfs_block_group * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)3086 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3087 u64 offset, u64 bytes, u64 empty_size,
3088 u64 *max_extent_size)
3089 {
3090 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3091 struct btrfs_discard_ctl *discard_ctl =
3092 &block_group->fs_info->discard_ctl;
3093 struct btrfs_free_space *entry = NULL;
3094 u64 bytes_search = bytes + empty_size;
3095 u64 ret = 0;
3096 u64 align_gap = 0;
3097 u64 align_gap_len = 0;
3098 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3099 bool use_bytes_index = (offset == block_group->start);
3100
3101 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3102
3103 spin_lock(&ctl->tree_lock);
3104 entry = find_free_space(ctl, &offset, &bytes_search,
3105 block_group->full_stripe_len, max_extent_size,
3106 use_bytes_index);
3107 if (!entry)
3108 goto out;
3109
3110 ret = offset;
3111 if (entry->bitmap) {
3112 bitmap_clear_bits(ctl, entry, offset, bytes, true);
3113
3114 if (!btrfs_free_space_trimmed(entry))
3115 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3116
3117 if (!entry->bytes)
3118 free_bitmap(ctl, entry);
3119 } else {
3120 unlink_free_space(ctl, entry, true);
3121 align_gap_len = offset - entry->offset;
3122 align_gap = entry->offset;
3123 align_gap_trim_state = entry->trim_state;
3124
3125 if (!btrfs_free_space_trimmed(entry))
3126 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3127
3128 entry->offset = offset + bytes;
3129 WARN_ON(entry->bytes < bytes + align_gap_len);
3130
3131 entry->bytes -= bytes + align_gap_len;
3132 if (!entry->bytes)
3133 kmem_cache_free(btrfs_free_space_cachep, entry);
3134 else
3135 link_free_space(ctl, entry);
3136 }
3137 out:
3138 btrfs_discard_update_discardable(block_group);
3139 spin_unlock(&ctl->tree_lock);
3140
3141 if (align_gap_len)
3142 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
3143 align_gap_trim_state);
3144 return ret;
3145 }
3146
3147 /*
3148 * given a cluster, put all of its extents back into the free space
3149 * cache. If a block group is passed, this function will only free
3150 * a cluster that belongs to the passed block group.
3151 *
3152 * Otherwise, it'll get a reference on the block group pointed to by the
3153 * cluster and remove the cluster from it.
3154 */
btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)3155 void btrfs_return_cluster_to_free_space(
3156 struct btrfs_block_group *block_group,
3157 struct btrfs_free_cluster *cluster)
3158 {
3159 struct btrfs_free_space_ctl *ctl;
3160
3161 /* first, get a safe pointer to the block group */
3162 spin_lock(&cluster->lock);
3163 if (!block_group) {
3164 block_group = cluster->block_group;
3165 if (!block_group) {
3166 spin_unlock(&cluster->lock);
3167 return;
3168 }
3169 } else if (cluster->block_group != block_group) {
3170 /* someone else has already freed it don't redo their work */
3171 spin_unlock(&cluster->lock);
3172 return;
3173 }
3174 btrfs_get_block_group(block_group);
3175 spin_unlock(&cluster->lock);
3176
3177 ctl = block_group->free_space_ctl;
3178
3179 /* now return any extents the cluster had on it */
3180 spin_lock(&ctl->tree_lock);
3181 __btrfs_return_cluster_to_free_space(block_group, cluster);
3182 spin_unlock(&ctl->tree_lock);
3183
3184 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3185
3186 /* finally drop our ref */
3187 btrfs_put_block_group(block_group);
3188 }
3189
btrfs_alloc_from_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)3190 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3191 struct btrfs_free_cluster *cluster,
3192 struct btrfs_free_space *entry,
3193 u64 bytes, u64 min_start,
3194 u64 *max_extent_size)
3195 {
3196 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3197 int err;
3198 u64 search_start = cluster->window_start;
3199 u64 search_bytes = bytes;
3200 u64 ret = 0;
3201
3202 search_start = min_start;
3203 search_bytes = bytes;
3204
3205 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3206 if (err) {
3207 *max_extent_size = max(get_max_extent_size(entry),
3208 *max_extent_size);
3209 return 0;
3210 }
3211
3212 ret = search_start;
3213 bitmap_clear_bits(ctl, entry, ret, bytes, false);
3214
3215 return ret;
3216 }
3217
3218 /*
3219 * given a cluster, try to allocate 'bytes' from it, returns 0
3220 * if it couldn't find anything suitably large, or a logical disk offset
3221 * if things worked out
3222 */
btrfs_alloc_from_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)3223 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3224 struct btrfs_free_cluster *cluster, u64 bytes,
3225 u64 min_start, u64 *max_extent_size)
3226 {
3227 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3228 struct btrfs_discard_ctl *discard_ctl =
3229 &block_group->fs_info->discard_ctl;
3230 struct btrfs_free_space *entry = NULL;
3231 struct rb_node *node;
3232 u64 ret = 0;
3233
3234 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3235
3236 spin_lock(&cluster->lock);
3237 if (bytes > cluster->max_size)
3238 goto out;
3239
3240 if (cluster->block_group != block_group)
3241 goto out;
3242
3243 node = rb_first(&cluster->root);
3244 if (!node)
3245 goto out;
3246
3247 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3248 while (1) {
3249 if (entry->bytes < bytes)
3250 *max_extent_size = max(get_max_extent_size(entry),
3251 *max_extent_size);
3252
3253 if (entry->bytes < bytes ||
3254 (!entry->bitmap && entry->offset < min_start)) {
3255 node = rb_next(&entry->offset_index);
3256 if (!node)
3257 break;
3258 entry = rb_entry(node, struct btrfs_free_space,
3259 offset_index);
3260 continue;
3261 }
3262
3263 if (entry->bitmap) {
3264 ret = btrfs_alloc_from_bitmap(block_group,
3265 cluster, entry, bytes,
3266 cluster->window_start,
3267 max_extent_size);
3268 if (ret == 0) {
3269 node = rb_next(&entry->offset_index);
3270 if (!node)
3271 break;
3272 entry = rb_entry(node, struct btrfs_free_space,
3273 offset_index);
3274 continue;
3275 }
3276 cluster->window_start += bytes;
3277 } else {
3278 ret = entry->offset;
3279
3280 entry->offset += bytes;
3281 entry->bytes -= bytes;
3282 }
3283
3284 break;
3285 }
3286 out:
3287 spin_unlock(&cluster->lock);
3288
3289 if (!ret)
3290 return 0;
3291
3292 spin_lock(&ctl->tree_lock);
3293
3294 if (!btrfs_free_space_trimmed(entry))
3295 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3296
3297 ctl->free_space -= bytes;
3298 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3299 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3300
3301 spin_lock(&cluster->lock);
3302 if (entry->bytes == 0) {
3303 rb_erase(&entry->offset_index, &cluster->root);
3304 ctl->free_extents--;
3305 if (entry->bitmap) {
3306 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3307 entry->bitmap);
3308 ctl->total_bitmaps--;
3309 recalculate_thresholds(ctl);
3310 } else if (!btrfs_free_space_trimmed(entry)) {
3311 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3312 }
3313 kmem_cache_free(btrfs_free_space_cachep, entry);
3314 }
3315
3316 spin_unlock(&cluster->lock);
3317 spin_unlock(&ctl->tree_lock);
3318
3319 return ret;
3320 }
3321
btrfs_bitmap_cluster(struct btrfs_block_group * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3322 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3323 struct btrfs_free_space *entry,
3324 struct btrfs_free_cluster *cluster,
3325 u64 offset, u64 bytes,
3326 u64 cont1_bytes, u64 min_bytes)
3327 {
3328 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3329 unsigned long next_zero;
3330 unsigned long i;
3331 unsigned long want_bits;
3332 unsigned long min_bits;
3333 unsigned long found_bits;
3334 unsigned long max_bits = 0;
3335 unsigned long start = 0;
3336 unsigned long total_found = 0;
3337 int ret;
3338
3339 lockdep_assert_held(&ctl->tree_lock);
3340
3341 i = offset_to_bit(entry->offset, ctl->unit,
3342 max_t(u64, offset, entry->offset));
3343 want_bits = bytes_to_bits(bytes, ctl->unit);
3344 min_bits = bytes_to_bits(min_bytes, ctl->unit);
3345
3346 /*
3347 * Don't bother looking for a cluster in this bitmap if it's heavily
3348 * fragmented.
3349 */
3350 if (entry->max_extent_size &&
3351 entry->max_extent_size < cont1_bytes)
3352 return -ENOSPC;
3353 again:
3354 found_bits = 0;
3355 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3356 next_zero = find_next_zero_bit(entry->bitmap,
3357 BITS_PER_BITMAP, i);
3358 if (next_zero - i >= min_bits) {
3359 found_bits = next_zero - i;
3360 if (found_bits > max_bits)
3361 max_bits = found_bits;
3362 break;
3363 }
3364 if (next_zero - i > max_bits)
3365 max_bits = next_zero - i;
3366 i = next_zero;
3367 }
3368
3369 if (!found_bits) {
3370 entry->max_extent_size = (u64)max_bits * ctl->unit;
3371 return -ENOSPC;
3372 }
3373
3374 if (!total_found) {
3375 start = i;
3376 cluster->max_size = 0;
3377 }
3378
3379 total_found += found_bits;
3380
3381 if (cluster->max_size < found_bits * ctl->unit)
3382 cluster->max_size = found_bits * ctl->unit;
3383
3384 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3385 i = next_zero + 1;
3386 goto again;
3387 }
3388
3389 cluster->window_start = start * ctl->unit + entry->offset;
3390 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3391 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3392
3393 /*
3394 * We need to know if we're currently on the normal space index when we
3395 * manipulate the bitmap so that we know we need to remove and re-insert
3396 * it into the space_index tree. Clear the bytes_index node here so the
3397 * bitmap manipulation helpers know not to mess with the space_index
3398 * until this bitmap entry is added back into the normal cache.
3399 */
3400 RB_CLEAR_NODE(&entry->bytes_index);
3401
3402 ret = tree_insert_offset(ctl, cluster, entry);
3403 ASSERT(!ret); /* -EEXIST; Logic error */
3404
3405 trace_btrfs_setup_cluster(block_group, cluster,
3406 total_found * ctl->unit, 1);
3407 return 0;
3408 }
3409
3410 /*
3411 * This searches the block group for just extents to fill the cluster with.
3412 * Try to find a cluster with at least bytes total bytes, at least one
3413 * extent of cont1_bytes, and other clusters of at least min_bytes.
3414 */
3415 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3416 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3417 struct btrfs_free_cluster *cluster,
3418 struct list_head *bitmaps, u64 offset, u64 bytes,
3419 u64 cont1_bytes, u64 min_bytes)
3420 {
3421 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3422 struct btrfs_free_space *first = NULL;
3423 struct btrfs_free_space *entry = NULL;
3424 struct btrfs_free_space *last;
3425 struct rb_node *node;
3426 u64 window_free;
3427 u64 max_extent;
3428 u64 total_size = 0;
3429
3430 lockdep_assert_held(&ctl->tree_lock);
3431
3432 entry = tree_search_offset(ctl, offset, 0, 1);
3433 if (!entry)
3434 return -ENOSPC;
3435
3436 /*
3437 * We don't want bitmaps, so just move along until we find a normal
3438 * extent entry.
3439 */
3440 while (entry->bitmap || entry->bytes < min_bytes) {
3441 if (entry->bitmap && list_empty(&entry->list))
3442 list_add_tail(&entry->list, bitmaps);
3443 node = rb_next(&entry->offset_index);
3444 if (!node)
3445 return -ENOSPC;
3446 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3447 }
3448
3449 window_free = entry->bytes;
3450 max_extent = entry->bytes;
3451 first = entry;
3452 last = entry;
3453
3454 for (node = rb_next(&entry->offset_index); node;
3455 node = rb_next(&entry->offset_index)) {
3456 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3457
3458 if (entry->bitmap) {
3459 if (list_empty(&entry->list))
3460 list_add_tail(&entry->list, bitmaps);
3461 continue;
3462 }
3463
3464 if (entry->bytes < min_bytes)
3465 continue;
3466
3467 last = entry;
3468 window_free += entry->bytes;
3469 if (entry->bytes > max_extent)
3470 max_extent = entry->bytes;
3471 }
3472
3473 if (window_free < bytes || max_extent < cont1_bytes)
3474 return -ENOSPC;
3475
3476 cluster->window_start = first->offset;
3477
3478 node = &first->offset_index;
3479
3480 /*
3481 * now we've found our entries, pull them out of the free space
3482 * cache and put them into the cluster rbtree
3483 */
3484 do {
3485 int ret;
3486
3487 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3488 node = rb_next(&entry->offset_index);
3489 if (entry->bitmap || entry->bytes < min_bytes)
3490 continue;
3491
3492 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3493 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3494 ret = tree_insert_offset(ctl, cluster, entry);
3495 total_size += entry->bytes;
3496 ASSERT(!ret); /* -EEXIST; Logic error */
3497 } while (node && entry != last);
3498
3499 cluster->max_size = max_extent;
3500 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3501 return 0;
3502 }
3503
3504 /*
3505 * This specifically looks for bitmaps that may work in the cluster, we assume
3506 * that we have already failed to find extents that will work.
3507 */
3508 static noinline int
setup_cluster_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3509 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3510 struct btrfs_free_cluster *cluster,
3511 struct list_head *bitmaps, u64 offset, u64 bytes,
3512 u64 cont1_bytes, u64 min_bytes)
3513 {
3514 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3515 struct btrfs_free_space *entry = NULL;
3516 int ret = -ENOSPC;
3517 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3518
3519 if (ctl->total_bitmaps == 0)
3520 return -ENOSPC;
3521
3522 /*
3523 * The bitmap that covers offset won't be in the list unless offset
3524 * is just its start offset.
3525 */
3526 if (!list_empty(bitmaps))
3527 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3528
3529 if (!entry || entry->offset != bitmap_offset) {
3530 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3531 if (entry && list_empty(&entry->list))
3532 list_add(&entry->list, bitmaps);
3533 }
3534
3535 list_for_each_entry(entry, bitmaps, list) {
3536 if (entry->bytes < bytes)
3537 continue;
3538 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3539 bytes, cont1_bytes, min_bytes);
3540 if (!ret)
3541 return 0;
3542 }
3543
3544 /*
3545 * The bitmaps list has all the bitmaps that record free space
3546 * starting after offset, so no more search is required.
3547 */
3548 return -ENOSPC;
3549 }
3550
3551 /*
3552 * here we try to find a cluster of blocks in a block group. The goal
3553 * is to find at least bytes+empty_size.
3554 * We might not find them all in one contiguous area.
3555 *
3556 * returns zero and sets up cluster if things worked out, otherwise
3557 * it returns -enospc
3558 */
btrfs_find_space_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3559 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3560 struct btrfs_free_cluster *cluster,
3561 u64 offset, u64 bytes, u64 empty_size)
3562 {
3563 struct btrfs_fs_info *fs_info = block_group->fs_info;
3564 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3565 struct btrfs_free_space *entry, *tmp;
3566 LIST_HEAD(bitmaps);
3567 u64 min_bytes;
3568 u64 cont1_bytes;
3569 int ret;
3570
3571 /*
3572 * Choose the minimum extent size we'll require for this
3573 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3574 * For metadata, allow allocates with smaller extents. For
3575 * data, keep it dense.
3576 */
3577 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3578 cont1_bytes = bytes + empty_size;
3579 min_bytes = cont1_bytes;
3580 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3581 cont1_bytes = bytes;
3582 min_bytes = fs_info->sectorsize;
3583 } else {
3584 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3585 min_bytes = fs_info->sectorsize;
3586 }
3587
3588 spin_lock(&ctl->tree_lock);
3589
3590 /*
3591 * If we know we don't have enough space to make a cluster don't even
3592 * bother doing all the work to try and find one.
3593 */
3594 if (ctl->free_space < bytes) {
3595 spin_unlock(&ctl->tree_lock);
3596 return -ENOSPC;
3597 }
3598
3599 spin_lock(&cluster->lock);
3600
3601 /* someone already found a cluster, hooray */
3602 if (cluster->block_group) {
3603 ret = 0;
3604 goto out;
3605 }
3606
3607 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3608 min_bytes);
3609
3610 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3611 bytes + empty_size,
3612 cont1_bytes, min_bytes);
3613 if (ret)
3614 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3615 offset, bytes + empty_size,
3616 cont1_bytes, min_bytes);
3617
3618 /* Clear our temporary list */
3619 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3620 list_del_init(&entry->list);
3621
3622 if (!ret) {
3623 btrfs_get_block_group(block_group);
3624 list_add_tail(&cluster->block_group_list,
3625 &block_group->cluster_list);
3626 cluster->block_group = block_group;
3627 } else {
3628 trace_btrfs_failed_cluster_setup(block_group);
3629 }
3630 out:
3631 spin_unlock(&cluster->lock);
3632 spin_unlock(&ctl->tree_lock);
3633
3634 return ret;
3635 }
3636
3637 /*
3638 * simple code to zero out a cluster
3639 */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3640 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3641 {
3642 spin_lock_init(&cluster->lock);
3643 spin_lock_init(&cluster->refill_lock);
3644 cluster->root = RB_ROOT;
3645 cluster->max_size = 0;
3646 cluster->fragmented = false;
3647 INIT_LIST_HEAD(&cluster->block_group_list);
3648 cluster->block_group = NULL;
3649 }
3650
do_trimming(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,enum btrfs_trim_state reserved_trim_state,struct btrfs_trim_range * trim_entry)3651 static int do_trimming(struct btrfs_block_group *block_group,
3652 u64 *total_trimmed, u64 start, u64 bytes,
3653 u64 reserved_start, u64 reserved_bytes,
3654 enum btrfs_trim_state reserved_trim_state,
3655 struct btrfs_trim_range *trim_entry)
3656 {
3657 struct btrfs_space_info *space_info = block_group->space_info;
3658 struct btrfs_fs_info *fs_info = block_group->fs_info;
3659 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3660 int ret;
3661 int update = 0;
3662 const u64 end = start + bytes;
3663 const u64 reserved_end = reserved_start + reserved_bytes;
3664 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3665 u64 trimmed = 0;
3666
3667 spin_lock(&space_info->lock);
3668 spin_lock(&block_group->lock);
3669 if (!block_group->ro) {
3670 block_group->reserved += reserved_bytes;
3671 space_info->bytes_reserved += reserved_bytes;
3672 update = 1;
3673 }
3674 spin_unlock(&block_group->lock);
3675 spin_unlock(&space_info->lock);
3676
3677 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3678 if (!ret) {
3679 *total_trimmed += trimmed;
3680 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3681 }
3682
3683 mutex_lock(&ctl->cache_writeout_mutex);
3684 if (reserved_start < start)
3685 __btrfs_add_free_space(block_group, reserved_start,
3686 start - reserved_start,
3687 reserved_trim_state);
3688 if (end < reserved_end)
3689 __btrfs_add_free_space(block_group, end, reserved_end - end,
3690 reserved_trim_state);
3691 __btrfs_add_free_space(block_group, start, bytes, trim_state);
3692 list_del(&trim_entry->list);
3693 mutex_unlock(&ctl->cache_writeout_mutex);
3694
3695 if (update) {
3696 spin_lock(&space_info->lock);
3697 spin_lock(&block_group->lock);
3698 if (block_group->ro)
3699 space_info->bytes_readonly += reserved_bytes;
3700 block_group->reserved -= reserved_bytes;
3701 space_info->bytes_reserved -= reserved_bytes;
3702 spin_unlock(&block_group->lock);
3703 spin_unlock(&space_info->lock);
3704 }
3705
3706 return ret;
3707 }
3708
3709 /*
3710 * If @async is set, then we will trim 1 region and return.
3711 */
trim_no_bitmap(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,bool async)3712 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3713 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3714 bool async)
3715 {
3716 struct btrfs_discard_ctl *discard_ctl =
3717 &block_group->fs_info->discard_ctl;
3718 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3719 struct btrfs_free_space *entry;
3720 struct rb_node *node;
3721 int ret = 0;
3722 u64 extent_start;
3723 u64 extent_bytes;
3724 enum btrfs_trim_state extent_trim_state;
3725 u64 bytes;
3726 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3727
3728 while (start < end) {
3729 struct btrfs_trim_range trim_entry;
3730
3731 mutex_lock(&ctl->cache_writeout_mutex);
3732 spin_lock(&ctl->tree_lock);
3733
3734 if (ctl->free_space < minlen)
3735 goto out_unlock;
3736
3737 entry = tree_search_offset(ctl, start, 0, 1);
3738 if (!entry)
3739 goto out_unlock;
3740
3741 /* Skip bitmaps and if async, already trimmed entries */
3742 while (entry->bitmap ||
3743 (async && btrfs_free_space_trimmed(entry))) {
3744 node = rb_next(&entry->offset_index);
3745 if (!node)
3746 goto out_unlock;
3747 entry = rb_entry(node, struct btrfs_free_space,
3748 offset_index);
3749 }
3750
3751 if (entry->offset >= end)
3752 goto out_unlock;
3753
3754 extent_start = entry->offset;
3755 extent_bytes = entry->bytes;
3756 extent_trim_state = entry->trim_state;
3757 if (async) {
3758 start = entry->offset;
3759 bytes = entry->bytes;
3760 if (bytes < minlen) {
3761 spin_unlock(&ctl->tree_lock);
3762 mutex_unlock(&ctl->cache_writeout_mutex);
3763 goto next;
3764 }
3765 unlink_free_space(ctl, entry, true);
3766 /*
3767 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3768 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3769 * X when we come back around. So trim it now.
3770 */
3771 if (max_discard_size &&
3772 bytes >= (max_discard_size +
3773 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3774 bytes = max_discard_size;
3775 extent_bytes = max_discard_size;
3776 entry->offset += max_discard_size;
3777 entry->bytes -= max_discard_size;
3778 link_free_space(ctl, entry);
3779 } else {
3780 kmem_cache_free(btrfs_free_space_cachep, entry);
3781 }
3782 } else {
3783 start = max(start, extent_start);
3784 bytes = min(extent_start + extent_bytes, end) - start;
3785 if (bytes < minlen) {
3786 spin_unlock(&ctl->tree_lock);
3787 mutex_unlock(&ctl->cache_writeout_mutex);
3788 goto next;
3789 }
3790
3791 unlink_free_space(ctl, entry, true);
3792 kmem_cache_free(btrfs_free_space_cachep, entry);
3793 }
3794
3795 spin_unlock(&ctl->tree_lock);
3796 trim_entry.start = extent_start;
3797 trim_entry.bytes = extent_bytes;
3798 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3799 mutex_unlock(&ctl->cache_writeout_mutex);
3800
3801 ret = do_trimming(block_group, total_trimmed, start, bytes,
3802 extent_start, extent_bytes, extent_trim_state,
3803 &trim_entry);
3804 if (ret) {
3805 block_group->discard_cursor = start + bytes;
3806 break;
3807 }
3808 next:
3809 start += bytes;
3810 block_group->discard_cursor = start;
3811 if (async && *total_trimmed)
3812 break;
3813
3814 if (btrfs_trim_interrupted()) {
3815 ret = -ERESTARTSYS;
3816 break;
3817 }
3818
3819 cond_resched();
3820 }
3821
3822 return ret;
3823
3824 out_unlock:
3825 block_group->discard_cursor = btrfs_block_group_end(block_group);
3826 spin_unlock(&ctl->tree_lock);
3827 mutex_unlock(&ctl->cache_writeout_mutex);
3828
3829 return ret;
3830 }
3831
3832 /*
3833 * If we break out of trimming a bitmap prematurely, we should reset the
3834 * trimming bit. In a rather contrieved case, it's possible to race here so
3835 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3836 *
3837 * start = start of bitmap
3838 * end = near end of bitmap
3839 *
3840 * Thread 1: Thread 2:
3841 * trim_bitmaps(start)
3842 * trim_bitmaps(end)
3843 * end_trimming_bitmap()
3844 * reset_trimming_bitmap()
3845 */
reset_trimming_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)3846 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3847 {
3848 struct btrfs_free_space *entry;
3849
3850 spin_lock(&ctl->tree_lock);
3851 entry = tree_search_offset(ctl, offset, 1, 0);
3852 if (entry) {
3853 if (btrfs_free_space_trimmed(entry)) {
3854 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3855 entry->bitmap_extents;
3856 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3857 }
3858 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3859 }
3860
3861 spin_unlock(&ctl->tree_lock);
3862 }
3863
end_trimming_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * entry)3864 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3865 struct btrfs_free_space *entry)
3866 {
3867 if (btrfs_free_space_trimming_bitmap(entry)) {
3868 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3869 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3870 entry->bitmap_extents;
3871 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3872 }
3873 }
3874
3875 /*
3876 * If @async is set, then we will trim 1 region and return.
3877 */
trim_bitmaps(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)3878 static int trim_bitmaps(struct btrfs_block_group *block_group,
3879 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3880 u64 maxlen, bool async)
3881 {
3882 struct btrfs_discard_ctl *discard_ctl =
3883 &block_group->fs_info->discard_ctl;
3884 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3885 struct btrfs_free_space *entry;
3886 int ret = 0;
3887 int ret2;
3888 u64 bytes;
3889 u64 offset = offset_to_bitmap(ctl, start);
3890 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3891
3892 while (offset < end) {
3893 bool next_bitmap = false;
3894 struct btrfs_trim_range trim_entry;
3895
3896 mutex_lock(&ctl->cache_writeout_mutex);
3897 spin_lock(&ctl->tree_lock);
3898
3899 if (ctl->free_space < minlen) {
3900 block_group->discard_cursor =
3901 btrfs_block_group_end(block_group);
3902 spin_unlock(&ctl->tree_lock);
3903 mutex_unlock(&ctl->cache_writeout_mutex);
3904 break;
3905 }
3906
3907 entry = tree_search_offset(ctl, offset, 1, 0);
3908 /*
3909 * Bitmaps are marked trimmed lossily now to prevent constant
3910 * discarding of the same bitmap (the reason why we are bound
3911 * by the filters). So, retrim the block group bitmaps when we
3912 * are preparing to punt to the unused_bgs list. This uses
3913 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3914 * which is the only discard index which sets minlen to 0.
3915 */
3916 if (!entry || (async && minlen && start == offset &&
3917 btrfs_free_space_trimmed(entry))) {
3918 spin_unlock(&ctl->tree_lock);
3919 mutex_unlock(&ctl->cache_writeout_mutex);
3920 next_bitmap = true;
3921 goto next;
3922 }
3923
3924 /*
3925 * Async discard bitmap trimming begins at by setting the start
3926 * to be key.objectid and the offset_to_bitmap() aligns to the
3927 * start of the bitmap. This lets us know we are fully
3928 * scanning the bitmap rather than only some portion of it.
3929 */
3930 if (start == offset)
3931 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3932
3933 bytes = minlen;
3934 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3935 if (ret2 || start >= end) {
3936 /*
3937 * We lossily consider a bitmap trimmed if we only skip
3938 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3939 */
3940 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3941 end_trimming_bitmap(ctl, entry);
3942 else
3943 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3944 spin_unlock(&ctl->tree_lock);
3945 mutex_unlock(&ctl->cache_writeout_mutex);
3946 next_bitmap = true;
3947 goto next;
3948 }
3949
3950 /*
3951 * We already trimmed a region, but are using the locking above
3952 * to reset the trim_state.
3953 */
3954 if (async && *total_trimmed) {
3955 spin_unlock(&ctl->tree_lock);
3956 mutex_unlock(&ctl->cache_writeout_mutex);
3957 goto out;
3958 }
3959
3960 bytes = min(bytes, end - start);
3961 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3962 spin_unlock(&ctl->tree_lock);
3963 mutex_unlock(&ctl->cache_writeout_mutex);
3964 goto next;
3965 }
3966
3967 /*
3968 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3969 * If X < @minlen, we won't trim X when we come back around.
3970 * So trim it now. We differ here from trimming extents as we
3971 * don't keep individual state per bit.
3972 */
3973 if (async &&
3974 max_discard_size &&
3975 bytes > (max_discard_size + minlen))
3976 bytes = max_discard_size;
3977
3978 bitmap_clear_bits(ctl, entry, start, bytes, true);
3979 if (entry->bytes == 0)
3980 free_bitmap(ctl, entry);
3981
3982 spin_unlock(&ctl->tree_lock);
3983 trim_entry.start = start;
3984 trim_entry.bytes = bytes;
3985 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3986 mutex_unlock(&ctl->cache_writeout_mutex);
3987
3988 ret = do_trimming(block_group, total_trimmed, start, bytes,
3989 start, bytes, 0, &trim_entry);
3990 if (ret) {
3991 reset_trimming_bitmap(ctl, offset);
3992 block_group->discard_cursor =
3993 btrfs_block_group_end(block_group);
3994 break;
3995 }
3996 next:
3997 if (next_bitmap) {
3998 offset += BITS_PER_BITMAP * ctl->unit;
3999 start = offset;
4000 } else {
4001 start += bytes;
4002 }
4003 block_group->discard_cursor = start;
4004
4005 if (btrfs_trim_interrupted()) {
4006 if (start != offset)
4007 reset_trimming_bitmap(ctl, offset);
4008 ret = -ERESTARTSYS;
4009 break;
4010 }
4011
4012 cond_resched();
4013 }
4014
4015 if (offset >= end)
4016 block_group->discard_cursor = end;
4017
4018 out:
4019 return ret;
4020 }
4021
btrfs_trim_block_group(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)4022 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4023 u64 *trimmed, u64 start, u64 end, u64 minlen)
4024 {
4025 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4026 int ret;
4027 u64 rem = 0;
4028
4029 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4030
4031 *trimmed = 0;
4032
4033 spin_lock(&block_group->lock);
4034 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4035 spin_unlock(&block_group->lock);
4036 return 0;
4037 }
4038 btrfs_freeze_block_group(block_group);
4039 spin_unlock(&block_group->lock);
4040
4041 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4042 if (ret)
4043 goto out;
4044
4045 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4046 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4047 /* If we ended in the middle of a bitmap, reset the trimming flag */
4048 if (rem)
4049 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4050 out:
4051 btrfs_unfreeze_block_group(block_group);
4052 return ret;
4053 }
4054
btrfs_trim_block_group_extents(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,bool async)4055 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4056 u64 *trimmed, u64 start, u64 end, u64 minlen,
4057 bool async)
4058 {
4059 int ret;
4060
4061 *trimmed = 0;
4062
4063 spin_lock(&block_group->lock);
4064 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4065 spin_unlock(&block_group->lock);
4066 return 0;
4067 }
4068 btrfs_freeze_block_group(block_group);
4069 spin_unlock(&block_group->lock);
4070
4071 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4072 btrfs_unfreeze_block_group(block_group);
4073
4074 return ret;
4075 }
4076
btrfs_trim_block_group_bitmaps(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)4077 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4078 u64 *trimmed, u64 start, u64 end, u64 minlen,
4079 u64 maxlen, bool async)
4080 {
4081 int ret;
4082
4083 *trimmed = 0;
4084
4085 spin_lock(&block_group->lock);
4086 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4087 spin_unlock(&block_group->lock);
4088 return 0;
4089 }
4090 btrfs_freeze_block_group(block_group);
4091 spin_unlock(&block_group->lock);
4092
4093 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4094 async);
4095
4096 btrfs_unfreeze_block_group(block_group);
4097
4098 return ret;
4099 }
4100
btrfs_free_space_cache_v1_active(struct btrfs_fs_info * fs_info)4101 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4102 {
4103 return btrfs_super_cache_generation(fs_info->super_copy);
4104 }
4105
cleanup_free_space_cache_v1(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans)4106 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4107 struct btrfs_trans_handle *trans)
4108 {
4109 struct btrfs_block_group *block_group;
4110 struct rb_node *node;
4111 int ret = 0;
4112
4113 btrfs_info(fs_info, "cleaning free space cache v1");
4114
4115 node = rb_first_cached(&fs_info->block_group_cache_tree);
4116 while (node) {
4117 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4118 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4119 if (ret)
4120 goto out;
4121 node = rb_next(node);
4122 }
4123 out:
4124 return ret;
4125 }
4126
btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info * fs_info,bool active)4127 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4128 {
4129 struct btrfs_trans_handle *trans;
4130 int ret;
4131
4132 /*
4133 * update_super_roots will appropriately set or unset
4134 * super_copy->cache_generation based on SPACE_CACHE and
4135 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4136 * transaction commit whether we are enabling space cache v1 and don't
4137 * have any other work to do, or are disabling it and removing free
4138 * space inodes.
4139 */
4140 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4141 if (IS_ERR(trans))
4142 return PTR_ERR(trans);
4143
4144 if (!active) {
4145 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4146 ret = cleanup_free_space_cache_v1(fs_info, trans);
4147 if (ret) {
4148 btrfs_abort_transaction(trans, ret);
4149 btrfs_end_transaction(trans);
4150 goto out;
4151 }
4152 }
4153
4154 ret = btrfs_commit_transaction(trans);
4155 out:
4156 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4157
4158 return ret;
4159 }
4160
btrfs_free_space_init(void)4161 int __init btrfs_free_space_init(void)
4162 {
4163 btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4164 if (!btrfs_free_space_cachep)
4165 return -ENOMEM;
4166
4167 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4168 PAGE_SIZE, PAGE_SIZE,
4169 0, NULL);
4170 if (!btrfs_free_space_bitmap_cachep) {
4171 kmem_cache_destroy(btrfs_free_space_cachep);
4172 return -ENOMEM;
4173 }
4174
4175 return 0;
4176 }
4177
btrfs_free_space_exit(void)4178 void __cold btrfs_free_space_exit(void)
4179 {
4180 kmem_cache_destroy(btrfs_free_space_cachep);
4181 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4182 }
4183
4184 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4185 /*
4186 * Use this if you need to make a bitmap or extent entry specifically, it
4187 * doesn't do any of the merging that add_free_space does, this acts a lot like
4188 * how the free space cache loading stuff works, so you can get really weird
4189 * configurations.
4190 */
test_add_free_space_entry(struct btrfs_block_group * cache,u64 offset,u64 bytes,bool bitmap)4191 int test_add_free_space_entry(struct btrfs_block_group *cache,
4192 u64 offset, u64 bytes, bool bitmap)
4193 {
4194 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4195 struct btrfs_free_space *info = NULL, *bitmap_info;
4196 void *map = NULL;
4197 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4198 u64 bytes_added;
4199 int ret;
4200
4201 again:
4202 if (!info) {
4203 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4204 if (!info)
4205 return -ENOMEM;
4206 }
4207
4208 if (!bitmap) {
4209 spin_lock(&ctl->tree_lock);
4210 info->offset = offset;
4211 info->bytes = bytes;
4212 info->max_extent_size = 0;
4213 ret = link_free_space(ctl, info);
4214 spin_unlock(&ctl->tree_lock);
4215 if (ret)
4216 kmem_cache_free(btrfs_free_space_cachep, info);
4217 return ret;
4218 }
4219
4220 if (!map) {
4221 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4222 if (!map) {
4223 kmem_cache_free(btrfs_free_space_cachep, info);
4224 return -ENOMEM;
4225 }
4226 }
4227
4228 spin_lock(&ctl->tree_lock);
4229 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4230 1, 0);
4231 if (!bitmap_info) {
4232 info->bitmap = map;
4233 map = NULL;
4234 add_new_bitmap(ctl, info, offset);
4235 bitmap_info = info;
4236 info = NULL;
4237 }
4238
4239 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4240 trim_state);
4241
4242 bytes -= bytes_added;
4243 offset += bytes_added;
4244 spin_unlock(&ctl->tree_lock);
4245
4246 if (bytes)
4247 goto again;
4248
4249 if (info)
4250 kmem_cache_free(btrfs_free_space_cachep, info);
4251 if (map)
4252 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4253 return 0;
4254 }
4255
4256 /*
4257 * Checks to see if the given range is in the free space cache. This is really
4258 * just used to check the absence of space, so if there is free space in the
4259 * range at all we will return 1.
4260 */
test_check_exists(struct btrfs_block_group * cache,u64 offset,u64 bytes)4261 int test_check_exists(struct btrfs_block_group *cache,
4262 u64 offset, u64 bytes)
4263 {
4264 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4265 struct btrfs_free_space *info;
4266 int ret = 0;
4267
4268 spin_lock(&ctl->tree_lock);
4269 info = tree_search_offset(ctl, offset, 0, 0);
4270 if (!info) {
4271 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4272 1, 0);
4273 if (!info)
4274 goto out;
4275 }
4276
4277 have_info:
4278 if (info->bitmap) {
4279 u64 bit_off, bit_bytes;
4280 struct rb_node *n;
4281 struct btrfs_free_space *tmp;
4282
4283 bit_off = offset;
4284 bit_bytes = ctl->unit;
4285 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4286 if (!ret) {
4287 if (bit_off == offset) {
4288 ret = 1;
4289 goto out;
4290 } else if (bit_off > offset &&
4291 offset + bytes > bit_off) {
4292 ret = 1;
4293 goto out;
4294 }
4295 }
4296
4297 n = rb_prev(&info->offset_index);
4298 while (n) {
4299 tmp = rb_entry(n, struct btrfs_free_space,
4300 offset_index);
4301 if (tmp->offset + tmp->bytes < offset)
4302 break;
4303 if (offset + bytes < tmp->offset) {
4304 n = rb_prev(&tmp->offset_index);
4305 continue;
4306 }
4307 info = tmp;
4308 goto have_info;
4309 }
4310
4311 n = rb_next(&info->offset_index);
4312 while (n) {
4313 tmp = rb_entry(n, struct btrfs_free_space,
4314 offset_index);
4315 if (offset + bytes < tmp->offset)
4316 break;
4317 if (tmp->offset + tmp->bytes < offset) {
4318 n = rb_next(&tmp->offset_index);
4319 continue;
4320 }
4321 info = tmp;
4322 goto have_info;
4323 }
4324
4325 ret = 0;
4326 goto out;
4327 }
4328
4329 if (info->offset == offset) {
4330 ret = 1;
4331 goto out;
4332 }
4333
4334 if (offset > info->offset && offset < info->offset + info->bytes)
4335 ret = 1;
4336 out:
4337 spin_unlock(&ctl->tree_lock);
4338 return ret;
4339 }
4340 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4341