xref: /linux/fs/btrfs/free-space-cache.c (revision fd71def6d9abc5ae362fb9995d46049b7b0ed391)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include <linux/string_choices.h>
15 #include "extent-tree.h"
16 #include "fs.h"
17 #include "messages.h"
18 #include "misc.h"
19 #include "free-space-cache.h"
20 #include "transaction.h"
21 #include "disk-io.h"
22 #include "extent_io.h"
23 #include "space-info.h"
24 #include "block-group.h"
25 #include "discard.h"
26 #include "subpage.h"
27 #include "inode-item.h"
28 #include "accessors.h"
29 #include "file-item.h"
30 #include "file.h"
31 #include "super.h"
32 
33 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
34 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
35 #define FORCE_EXTENT_THRESHOLD	SZ_1M
36 
37 static struct kmem_cache *btrfs_free_space_cachep;
38 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
39 
40 struct btrfs_trim_range {
41 	u64 start;
42 	u64 bytes;
43 	struct list_head list;
44 };
45 
46 static int link_free_space(struct btrfs_free_space_ctl *ctl,
47 			   struct btrfs_free_space *info);
48 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
49 			      struct btrfs_free_space *info, bool update_stat);
50 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
51 			 struct btrfs_free_space *bitmap_info, u64 *offset,
52 			 u64 *bytes, bool for_alloc);
53 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
54 			struct btrfs_free_space *bitmap_info);
55 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
56 			      struct btrfs_free_space *info, u64 offset,
57 			      u64 bytes, bool update_stats);
58 
btrfs_crc32c_final(u32 crc,u8 * result)59 static void btrfs_crc32c_final(u32 crc, u8 *result)
60 {
61 	put_unaligned_le32(~crc, result);
62 }
63 
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)64 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
65 {
66 	struct btrfs_free_space *info;
67 	struct rb_node *node;
68 
69 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
70 		info = rb_entry(node, struct btrfs_free_space, offset_index);
71 		if (!info->bitmap) {
72 			unlink_free_space(ctl, info, true);
73 			kmem_cache_free(btrfs_free_space_cachep, info);
74 		} else {
75 			free_bitmap(ctl, info);
76 		}
77 
78 		cond_resched_lock(&ctl->tree_lock);
79 	}
80 }
81 
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)82 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
83 					       struct btrfs_path *path,
84 					       u64 offset)
85 {
86 	struct btrfs_key key;
87 	struct btrfs_key location;
88 	struct btrfs_disk_key disk_key;
89 	struct btrfs_free_space_header *header;
90 	struct extent_buffer *leaf;
91 	struct btrfs_inode *inode;
92 	unsigned nofs_flag;
93 	int ret;
94 
95 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
96 	key.type = 0;
97 	key.offset = offset;
98 
99 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
100 	if (ret < 0)
101 		return ERR_PTR(ret);
102 	if (ret > 0) {
103 		btrfs_release_path(path);
104 		return ERR_PTR(-ENOENT);
105 	}
106 
107 	leaf = path->nodes[0];
108 	header = btrfs_item_ptr(leaf, path->slots[0],
109 				struct btrfs_free_space_header);
110 	btrfs_free_space_key(leaf, header, &disk_key);
111 	btrfs_disk_key_to_cpu(&location, &disk_key);
112 	btrfs_release_path(path);
113 
114 	/*
115 	 * We are often under a trans handle at this point, so we need to make
116 	 * sure NOFS is set to keep us from deadlocking.
117 	 */
118 	nofs_flag = memalloc_nofs_save();
119 	inode = btrfs_iget_path(location.objectid, root, path);
120 	btrfs_release_path(path);
121 	memalloc_nofs_restore(nofs_flag);
122 	if (IS_ERR(inode))
123 		return ERR_CAST(inode);
124 
125 	mapping_set_gfp_mask(inode->vfs_inode.i_mapping,
126 			mapping_gfp_constraint(inode->vfs_inode.i_mapping,
127 			~(__GFP_FS | __GFP_HIGHMEM)));
128 
129 	return &inode->vfs_inode;
130 }
131 
lookup_free_space_inode(struct btrfs_block_group * block_group,struct btrfs_path * path)132 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
133 		struct btrfs_path *path)
134 {
135 	struct btrfs_fs_info *fs_info = block_group->fs_info;
136 	struct inode *inode = NULL;
137 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138 
139 	spin_lock(&block_group->lock);
140 	if (block_group->inode)
141 		inode = igrab(&block_group->inode->vfs_inode);
142 	spin_unlock(&block_group->lock);
143 	if (inode)
144 		return inode;
145 
146 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
147 					  block_group->start);
148 	if (IS_ERR(inode))
149 		return inode;
150 
151 	spin_lock(&block_group->lock);
152 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
153 		btrfs_info(fs_info, "Old style space inode found, converting.");
154 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
155 			BTRFS_INODE_NODATACOW;
156 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
157 	}
158 
159 	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
160 		block_group->inode = BTRFS_I(igrab(inode));
161 	spin_unlock(&block_group->lock);
162 
163 	return inode;
164 }
165 
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)166 static int __create_free_space_inode(struct btrfs_root *root,
167 				     struct btrfs_trans_handle *trans,
168 				     struct btrfs_path *path,
169 				     u64 ino, u64 offset)
170 {
171 	struct btrfs_key key;
172 	struct btrfs_disk_key disk_key;
173 	struct btrfs_free_space_header *header;
174 	struct btrfs_inode_item *inode_item;
175 	struct extent_buffer *leaf;
176 	/* We inline CRCs for the free disk space cache */
177 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
178 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
179 	int ret;
180 
181 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
182 	if (ret)
183 		return ret;
184 
185 	leaf = path->nodes[0];
186 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
187 				    struct btrfs_inode_item);
188 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
189 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
190 			     sizeof(*inode_item));
191 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
192 	btrfs_set_inode_size(leaf, inode_item, 0);
193 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
194 	btrfs_set_inode_uid(leaf, inode_item, 0);
195 	btrfs_set_inode_gid(leaf, inode_item, 0);
196 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
197 	btrfs_set_inode_flags(leaf, inode_item, flags);
198 	btrfs_set_inode_nlink(leaf, inode_item, 1);
199 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
200 	btrfs_set_inode_block_group(leaf, inode_item, offset);
201 	btrfs_release_path(path);
202 
203 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
204 	key.type = 0;
205 	key.offset = offset;
206 	ret = btrfs_insert_empty_item(trans, root, path, &key,
207 				      sizeof(struct btrfs_free_space_header));
208 	if (ret < 0) {
209 		btrfs_release_path(path);
210 		return ret;
211 	}
212 
213 	leaf = path->nodes[0];
214 	header = btrfs_item_ptr(leaf, path->slots[0],
215 				struct btrfs_free_space_header);
216 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
217 	btrfs_set_free_space_key(leaf, header, &disk_key);
218 	btrfs_release_path(path);
219 
220 	return 0;
221 }
222 
create_free_space_inode(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)223 int create_free_space_inode(struct btrfs_trans_handle *trans,
224 			    struct btrfs_block_group *block_group,
225 			    struct btrfs_path *path)
226 {
227 	int ret;
228 	u64 ino;
229 
230 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
231 	if (ret < 0)
232 		return ret;
233 
234 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
235 					 ino, block_group->start);
236 }
237 
238 /*
239  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
240  * handles lookup, otherwise it takes ownership and iputs the inode.
241  * Don't reuse an inode pointer after passing it into this function.
242  */
btrfs_remove_free_space_inode(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_block_group * block_group)243 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
244 				  struct inode *inode,
245 				  struct btrfs_block_group *block_group)
246 {
247 	BTRFS_PATH_AUTO_FREE(path);
248 	struct btrfs_key key;
249 	int ret = 0;
250 
251 	path = btrfs_alloc_path();
252 	if (!path)
253 		return -ENOMEM;
254 
255 	if (!inode)
256 		inode = lookup_free_space_inode(block_group, path);
257 	if (IS_ERR(inode)) {
258 		if (PTR_ERR(inode) != -ENOENT)
259 			ret = PTR_ERR(inode);
260 		return ret;
261 	}
262 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
263 	if (ret) {
264 		btrfs_add_delayed_iput(BTRFS_I(inode));
265 		return ret;
266 	}
267 	clear_nlink(inode);
268 	/* One for the block groups ref */
269 	spin_lock(&block_group->lock);
270 	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
271 		block_group->inode = NULL;
272 		spin_unlock(&block_group->lock);
273 		iput(inode);
274 	} else {
275 		spin_unlock(&block_group->lock);
276 	}
277 	/* One for the lookup ref */
278 	btrfs_add_delayed_iput(BTRFS_I(inode));
279 
280 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
281 	key.type = 0;
282 	key.offset = block_group->start;
283 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
284 				-1, 1);
285 	if (ret) {
286 		if (ret > 0)
287 			ret = 0;
288 		return ret;
289 	}
290 	return btrfs_del_item(trans, trans->fs_info->tree_root, path);
291 }
292 
btrfs_truncate_free_space_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct inode * vfs_inode)293 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
294 				    struct btrfs_block_group *block_group,
295 				    struct inode *vfs_inode)
296 {
297 	struct btrfs_truncate_control control = {
298 		.inode = BTRFS_I(vfs_inode),
299 		.new_size = 0,
300 		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
301 		.min_type = BTRFS_EXTENT_DATA_KEY,
302 		.clear_extent_range = true,
303 	};
304 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
305 	struct btrfs_root *root = inode->root;
306 	struct extent_state *cached_state = NULL;
307 	int ret = 0;
308 	bool locked = false;
309 
310 	if (block_group) {
311 		struct btrfs_path *path = btrfs_alloc_path();
312 
313 		if (!path) {
314 			ret = -ENOMEM;
315 			goto fail;
316 		}
317 		locked = true;
318 		mutex_lock(&trans->transaction->cache_write_mutex);
319 		if (!list_empty(&block_group->io_list)) {
320 			list_del_init(&block_group->io_list);
321 
322 			btrfs_wait_cache_io(trans, block_group, path);
323 			btrfs_put_block_group(block_group);
324 		}
325 
326 		/*
327 		 * now that we've truncated the cache away, its no longer
328 		 * setup or written
329 		 */
330 		spin_lock(&block_group->lock);
331 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
332 		spin_unlock(&block_group->lock);
333 		btrfs_free_path(path);
334 	}
335 
336 	btrfs_i_size_write(inode, 0);
337 	truncate_pagecache(vfs_inode, 0);
338 
339 	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
340 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
341 
342 	/*
343 	 * We skip the throttling logic for free space cache inodes, so we don't
344 	 * need to check for -EAGAIN.
345 	 */
346 	ret = btrfs_truncate_inode_items(trans, root, &control);
347 
348 	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
349 	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
350 
351 	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
352 	if (ret)
353 		goto fail;
354 
355 	ret = btrfs_update_inode(trans, inode);
356 
357 fail:
358 	if (locked)
359 		mutex_unlock(&trans->transaction->cache_write_mutex);
360 	if (ret)
361 		btrfs_abort_transaction(trans, ret);
362 
363 	return ret;
364 }
365 
readahead_cache(struct inode * inode)366 static void readahead_cache(struct inode *inode)
367 {
368 	struct file_ra_state ra;
369 	unsigned long last_index;
370 
371 	file_ra_state_init(&ra, inode->i_mapping);
372 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
373 
374 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
375 }
376 
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,int write)377 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378 		       int write)
379 {
380 	int num_pages;
381 
382 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
383 
384 	/* Make sure we can fit our crcs and generation into the first page */
385 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
386 		return -ENOSPC;
387 
388 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
389 
390 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
391 	if (!io_ctl->pages)
392 		return -ENOMEM;
393 
394 	io_ctl->num_pages = num_pages;
395 	io_ctl->fs_info = inode_to_fs_info(inode);
396 	io_ctl->inode = inode;
397 
398 	return 0;
399 }
400 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
401 
io_ctl_free(struct btrfs_io_ctl * io_ctl)402 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
403 {
404 	kfree(io_ctl->pages);
405 	io_ctl->pages = NULL;
406 }
407 
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)408 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
409 {
410 	if (io_ctl->cur) {
411 		io_ctl->cur = NULL;
412 		io_ctl->orig = NULL;
413 	}
414 }
415 
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)416 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
417 {
418 	ASSERT(io_ctl->index < io_ctl->num_pages);
419 	io_ctl->page = io_ctl->pages[io_ctl->index++];
420 	io_ctl->cur = page_address(io_ctl->page);
421 	io_ctl->orig = io_ctl->cur;
422 	io_ctl->size = PAGE_SIZE;
423 	if (clear)
424 		clear_page(io_ctl->cur);
425 }
426 
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)427 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
428 {
429 	int i;
430 
431 	io_ctl_unmap_page(io_ctl);
432 
433 	for (i = 0; i < io_ctl->num_pages; i++) {
434 		if (io_ctl->pages[i]) {
435 			btrfs_folio_clear_checked(io_ctl->fs_info,
436 					page_folio(io_ctl->pages[i]),
437 					page_offset(io_ctl->pages[i]),
438 					PAGE_SIZE);
439 			unlock_page(io_ctl->pages[i]);
440 			put_page(io_ctl->pages[i]);
441 		}
442 	}
443 }
444 
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,bool uptodate)445 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
446 {
447 	struct folio *folio;
448 	struct inode *inode = io_ctl->inode;
449 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
450 	int i;
451 
452 	for (i = 0; i < io_ctl->num_pages; i++) {
453 		int ret;
454 
455 		folio = __filemap_get_folio(inode->i_mapping, i,
456 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
457 					    mask);
458 		if (IS_ERR(folio)) {
459 			io_ctl_drop_pages(io_ctl);
460 			return -ENOMEM;
461 		}
462 
463 		ret = set_folio_extent_mapped(folio);
464 		if (ret < 0) {
465 			folio_unlock(folio);
466 			folio_put(folio);
467 			io_ctl_drop_pages(io_ctl);
468 			return ret;
469 		}
470 
471 		io_ctl->pages[i] = &folio->page;
472 		if (uptodate && !folio_test_uptodate(folio)) {
473 			btrfs_read_folio(NULL, folio);
474 			folio_lock(folio);
475 			if (folio->mapping != inode->i_mapping) {
476 				btrfs_err(BTRFS_I(inode)->root->fs_info,
477 					  "free space cache page truncated");
478 				io_ctl_drop_pages(io_ctl);
479 				return -EIO;
480 			}
481 			if (!folio_test_uptodate(folio)) {
482 				btrfs_err(BTRFS_I(inode)->root->fs_info,
483 					   "error reading free space cache");
484 				io_ctl_drop_pages(io_ctl);
485 				return -EIO;
486 			}
487 		}
488 	}
489 
490 	for (i = 0; i < io_ctl->num_pages; i++)
491 		clear_page_dirty_for_io(io_ctl->pages[i]);
492 
493 	return 0;
494 }
495 
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)496 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
497 {
498 	io_ctl_map_page(io_ctl, 1);
499 
500 	/*
501 	 * Skip the csum areas.  If we don't check crcs then we just have a
502 	 * 64bit chunk at the front of the first page.
503 	 */
504 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
505 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
506 
507 	put_unaligned_le64(generation, io_ctl->cur);
508 	io_ctl->cur += sizeof(u64);
509 }
510 
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)511 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
512 {
513 	u64 cache_gen;
514 
515 	/*
516 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
517 	 * chunk at the front of the first page.
518 	 */
519 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
520 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
521 
522 	cache_gen = get_unaligned_le64(io_ctl->cur);
523 	if (cache_gen != generation) {
524 		btrfs_err_rl(io_ctl->fs_info,
525 			"space cache generation (%llu) does not match inode (%llu)",
526 				cache_gen, generation);
527 		io_ctl_unmap_page(io_ctl);
528 		return -EIO;
529 	}
530 	io_ctl->cur += sizeof(u64);
531 	return 0;
532 }
533 
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)534 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
535 {
536 	u32 *tmp;
537 	u32 crc = ~(u32)0;
538 	unsigned offset = 0;
539 
540 	if (index == 0)
541 		offset = sizeof(u32) * io_ctl->num_pages;
542 
543 	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
544 	btrfs_crc32c_final(crc, (u8 *)&crc);
545 	io_ctl_unmap_page(io_ctl);
546 	tmp = page_address(io_ctl->pages[0]);
547 	tmp += index;
548 	*tmp = crc;
549 }
550 
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)551 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
552 {
553 	u32 *tmp, val;
554 	u32 crc = ~(u32)0;
555 	unsigned offset = 0;
556 
557 	if (index == 0)
558 		offset = sizeof(u32) * io_ctl->num_pages;
559 
560 	tmp = page_address(io_ctl->pages[0]);
561 	tmp += index;
562 	val = *tmp;
563 
564 	io_ctl_map_page(io_ctl, 0);
565 	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
566 	btrfs_crc32c_final(crc, (u8 *)&crc);
567 	if (val != crc) {
568 		btrfs_err_rl(io_ctl->fs_info,
569 			"csum mismatch on free space cache");
570 		io_ctl_unmap_page(io_ctl);
571 		return -EIO;
572 	}
573 
574 	return 0;
575 }
576 
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)577 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
578 			    void *bitmap)
579 {
580 	struct btrfs_free_space_entry *entry;
581 
582 	if (!io_ctl->cur)
583 		return -ENOSPC;
584 
585 	entry = io_ctl->cur;
586 	put_unaligned_le64(offset, &entry->offset);
587 	put_unaligned_le64(bytes, &entry->bytes);
588 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
589 		BTRFS_FREE_SPACE_EXTENT;
590 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
591 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
592 
593 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
594 		return 0;
595 
596 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
597 
598 	/* No more pages to map */
599 	if (io_ctl->index >= io_ctl->num_pages)
600 		return 0;
601 
602 	/* map the next page */
603 	io_ctl_map_page(io_ctl, 1);
604 	return 0;
605 }
606 
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)607 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
608 {
609 	if (!io_ctl->cur)
610 		return -ENOSPC;
611 
612 	/*
613 	 * If we aren't at the start of the current page, unmap this one and
614 	 * map the next one if there is any left.
615 	 */
616 	if (io_ctl->cur != io_ctl->orig) {
617 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
618 		if (io_ctl->index >= io_ctl->num_pages)
619 			return -ENOSPC;
620 		io_ctl_map_page(io_ctl, 0);
621 	}
622 
623 	copy_page(io_ctl->cur, bitmap);
624 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
625 	if (io_ctl->index < io_ctl->num_pages)
626 		io_ctl_map_page(io_ctl, 0);
627 	return 0;
628 }
629 
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)630 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
631 {
632 	/*
633 	 * If we're not on the boundary we know we've modified the page and we
634 	 * need to crc the page.
635 	 */
636 	if (io_ctl->cur != io_ctl->orig)
637 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
638 	else
639 		io_ctl_unmap_page(io_ctl);
640 
641 	while (io_ctl->index < io_ctl->num_pages) {
642 		io_ctl_map_page(io_ctl, 1);
643 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
644 	}
645 }
646 
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)647 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
648 			    struct btrfs_free_space *entry, u8 *type)
649 {
650 	struct btrfs_free_space_entry *e;
651 	int ret;
652 
653 	if (!io_ctl->cur) {
654 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
655 		if (ret)
656 			return ret;
657 	}
658 
659 	e = io_ctl->cur;
660 	entry->offset = get_unaligned_le64(&e->offset);
661 	entry->bytes = get_unaligned_le64(&e->bytes);
662 	*type = e->type;
663 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
664 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
665 
666 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
667 		return 0;
668 
669 	io_ctl_unmap_page(io_ctl);
670 
671 	return 0;
672 }
673 
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)674 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
675 			      struct btrfs_free_space *entry)
676 {
677 	int ret;
678 
679 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
680 	if (ret)
681 		return ret;
682 
683 	copy_page(entry->bitmap, io_ctl->cur);
684 	io_ctl_unmap_page(io_ctl);
685 
686 	return 0;
687 }
688 
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)689 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
690 {
691 	struct btrfs_block_group *block_group = ctl->block_group;
692 	u64 max_bytes;
693 	u64 bitmap_bytes;
694 	u64 extent_bytes;
695 	u64 size = block_group->length;
696 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
697 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
698 
699 	max_bitmaps = max_t(u64, max_bitmaps, 1);
700 
701 	if (ctl->total_bitmaps > max_bitmaps)
702 		btrfs_err(block_group->fs_info,
703 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
704 			  block_group->start, block_group->length,
705 			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
706 			  bytes_per_bg);
707 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
708 
709 	/*
710 	 * We are trying to keep the total amount of memory used per 1GiB of
711 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
712 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
713 	 * bitmaps, we may end up using more memory than this.
714 	 */
715 	if (size < SZ_1G)
716 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
717 	else
718 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
719 
720 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
721 
722 	/*
723 	 * we want the extent entry threshold to always be at most 1/2 the max
724 	 * bytes we can have, or whatever is less than that.
725 	 */
726 	extent_bytes = max_bytes - bitmap_bytes;
727 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
728 
729 	ctl->extents_thresh =
730 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
731 }
732 
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)733 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
734 				   struct btrfs_free_space_ctl *ctl,
735 				   struct btrfs_path *path, u64 offset)
736 {
737 	struct btrfs_fs_info *fs_info = root->fs_info;
738 	struct btrfs_free_space_header *header;
739 	struct extent_buffer *leaf;
740 	struct btrfs_io_ctl io_ctl;
741 	struct btrfs_key key;
742 	struct btrfs_free_space *e, *n;
743 	LIST_HEAD(bitmaps);
744 	u64 num_entries;
745 	u64 num_bitmaps;
746 	u64 generation;
747 	u8 type;
748 	int ret = 0;
749 
750 	/* Nothing in the space cache, goodbye */
751 	if (!i_size_read(inode))
752 		return 0;
753 
754 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
755 	key.type = 0;
756 	key.offset = offset;
757 
758 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
759 	if (ret < 0)
760 		return 0;
761 	else if (ret > 0) {
762 		btrfs_release_path(path);
763 		return 0;
764 	}
765 
766 	ret = -1;
767 
768 	leaf = path->nodes[0];
769 	header = btrfs_item_ptr(leaf, path->slots[0],
770 				struct btrfs_free_space_header);
771 	num_entries = btrfs_free_space_entries(leaf, header);
772 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
773 	generation = btrfs_free_space_generation(leaf, header);
774 	btrfs_release_path(path);
775 
776 	if (!BTRFS_I(inode)->generation) {
777 		btrfs_info(fs_info,
778 			   "the free space cache file (%llu) is invalid, skip it",
779 			   offset);
780 		return 0;
781 	}
782 
783 	if (BTRFS_I(inode)->generation != generation) {
784 		btrfs_err(fs_info,
785 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
786 			  BTRFS_I(inode)->generation, generation);
787 		return 0;
788 	}
789 
790 	if (!num_entries)
791 		return 0;
792 
793 	ret = io_ctl_init(&io_ctl, inode, 0);
794 	if (ret)
795 		return ret;
796 
797 	readahead_cache(inode);
798 
799 	ret = io_ctl_prepare_pages(&io_ctl, true);
800 	if (ret)
801 		goto out;
802 
803 	ret = io_ctl_check_crc(&io_ctl, 0);
804 	if (ret)
805 		goto free_cache;
806 
807 	ret = io_ctl_check_generation(&io_ctl, generation);
808 	if (ret)
809 		goto free_cache;
810 
811 	while (num_entries) {
812 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
813 				      GFP_NOFS);
814 		if (!e) {
815 			ret = -ENOMEM;
816 			goto free_cache;
817 		}
818 
819 		ret = io_ctl_read_entry(&io_ctl, e, &type);
820 		if (ret) {
821 			kmem_cache_free(btrfs_free_space_cachep, e);
822 			goto free_cache;
823 		}
824 
825 		if (!e->bytes) {
826 			ret = -1;
827 			kmem_cache_free(btrfs_free_space_cachep, e);
828 			goto free_cache;
829 		}
830 
831 		if (type == BTRFS_FREE_SPACE_EXTENT) {
832 			spin_lock(&ctl->tree_lock);
833 			ret = link_free_space(ctl, e);
834 			spin_unlock(&ctl->tree_lock);
835 			if (ret) {
836 				btrfs_err(fs_info,
837 					"Duplicate entries in free space cache, dumping");
838 				kmem_cache_free(btrfs_free_space_cachep, e);
839 				goto free_cache;
840 			}
841 		} else {
842 			ASSERT(num_bitmaps);
843 			num_bitmaps--;
844 			e->bitmap = kmem_cache_zalloc(
845 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
846 			if (!e->bitmap) {
847 				ret = -ENOMEM;
848 				kmem_cache_free(
849 					btrfs_free_space_cachep, e);
850 				goto free_cache;
851 			}
852 			spin_lock(&ctl->tree_lock);
853 			ret = link_free_space(ctl, e);
854 			if (ret) {
855 				spin_unlock(&ctl->tree_lock);
856 				btrfs_err(fs_info,
857 					"Duplicate entries in free space cache, dumping");
858 				kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
859 				kmem_cache_free(btrfs_free_space_cachep, e);
860 				goto free_cache;
861 			}
862 			ctl->total_bitmaps++;
863 			recalculate_thresholds(ctl);
864 			spin_unlock(&ctl->tree_lock);
865 			list_add_tail(&e->list, &bitmaps);
866 		}
867 
868 		num_entries--;
869 	}
870 
871 	io_ctl_unmap_page(&io_ctl);
872 
873 	/*
874 	 * We add the bitmaps at the end of the entries in order that
875 	 * the bitmap entries are added to the cache.
876 	 */
877 	list_for_each_entry_safe(e, n, &bitmaps, list) {
878 		list_del_init(&e->list);
879 		ret = io_ctl_read_bitmap(&io_ctl, e);
880 		if (ret)
881 			goto free_cache;
882 	}
883 
884 	io_ctl_drop_pages(&io_ctl);
885 	ret = 1;
886 out:
887 	io_ctl_free(&io_ctl);
888 	return ret;
889 free_cache:
890 	io_ctl_drop_pages(&io_ctl);
891 
892 	spin_lock(&ctl->tree_lock);
893 	__btrfs_remove_free_space_cache(ctl);
894 	spin_unlock(&ctl->tree_lock);
895 	goto out;
896 }
897 
copy_free_space_cache(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)898 static int copy_free_space_cache(struct btrfs_block_group *block_group,
899 				 struct btrfs_free_space_ctl *ctl)
900 {
901 	struct btrfs_free_space *info;
902 	struct rb_node *n;
903 	int ret = 0;
904 
905 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
906 		info = rb_entry(n, struct btrfs_free_space, offset_index);
907 		if (!info->bitmap) {
908 			const u64 offset = info->offset;
909 			const u64 bytes = info->bytes;
910 
911 			unlink_free_space(ctl, info, true);
912 			spin_unlock(&ctl->tree_lock);
913 			kmem_cache_free(btrfs_free_space_cachep, info);
914 			ret = btrfs_add_free_space(block_group, offset, bytes);
915 			spin_lock(&ctl->tree_lock);
916 		} else {
917 			u64 offset = info->offset;
918 			u64 bytes = ctl->unit;
919 
920 			ret = search_bitmap(ctl, info, &offset, &bytes, false);
921 			if (ret == 0) {
922 				bitmap_clear_bits(ctl, info, offset, bytes, true);
923 				spin_unlock(&ctl->tree_lock);
924 				ret = btrfs_add_free_space(block_group, offset,
925 							   bytes);
926 				spin_lock(&ctl->tree_lock);
927 			} else {
928 				free_bitmap(ctl, info);
929 				ret = 0;
930 			}
931 		}
932 		cond_resched_lock(&ctl->tree_lock);
933 	}
934 	return ret;
935 }
936 
937 static struct lock_class_key btrfs_free_space_inode_key;
938 
load_free_space_cache(struct btrfs_block_group * block_group)939 int load_free_space_cache(struct btrfs_block_group *block_group)
940 {
941 	struct btrfs_fs_info *fs_info = block_group->fs_info;
942 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
943 	struct btrfs_free_space_ctl tmp_ctl = {};
944 	struct inode *inode;
945 	struct btrfs_path *path;
946 	int ret = 0;
947 	bool matched;
948 	u64 used = block_group->used;
949 
950 	/*
951 	 * Because we could potentially discard our loaded free space, we want
952 	 * to load everything into a temporary structure first, and then if it's
953 	 * valid copy it all into the actual free space ctl.
954 	 */
955 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
956 
957 	/*
958 	 * If this block group has been marked to be cleared for one reason or
959 	 * another then we can't trust the on disk cache, so just return.
960 	 */
961 	spin_lock(&block_group->lock);
962 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
963 		spin_unlock(&block_group->lock);
964 		return 0;
965 	}
966 	spin_unlock(&block_group->lock);
967 
968 	path = btrfs_alloc_path();
969 	if (!path)
970 		return 0;
971 	path->search_commit_root = 1;
972 	path->skip_locking = 1;
973 
974 	/*
975 	 * We must pass a path with search_commit_root set to btrfs_iget in
976 	 * order to avoid a deadlock when allocating extents for the tree root.
977 	 *
978 	 * When we are COWing an extent buffer from the tree root, when looking
979 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
980 	 * block group without its free space cache loaded. When we find one
981 	 * we must load its space cache which requires reading its free space
982 	 * cache's inode item from the root tree. If this inode item is located
983 	 * in the same leaf that we started COWing before, then we end up in
984 	 * deadlock on the extent buffer (trying to read lock it when we
985 	 * previously write locked it).
986 	 *
987 	 * It's safe to read the inode item using the commit root because
988 	 * block groups, once loaded, stay in memory forever (until they are
989 	 * removed) as well as their space caches once loaded. New block groups
990 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
991 	 * we will never try to read their inode item while the fs is mounted.
992 	 */
993 	inode = lookup_free_space_inode(block_group, path);
994 	if (IS_ERR(inode)) {
995 		btrfs_free_path(path);
996 		return 0;
997 	}
998 
999 	/* We may have converted the inode and made the cache invalid. */
1000 	spin_lock(&block_group->lock);
1001 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1002 		spin_unlock(&block_group->lock);
1003 		btrfs_free_path(path);
1004 		goto out;
1005 	}
1006 	spin_unlock(&block_group->lock);
1007 
1008 	/*
1009 	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1010 	 * free space inodes to prevent false positives related to locks for normal
1011 	 * inodes.
1012 	 */
1013 	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1014 			  &btrfs_free_space_inode_key);
1015 
1016 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1017 				      path, block_group->start);
1018 	btrfs_free_path(path);
1019 	if (ret <= 0)
1020 		goto out;
1021 
1022 	matched = (tmp_ctl.free_space == (block_group->length - used -
1023 					  block_group->bytes_super));
1024 
1025 	if (matched) {
1026 		spin_lock(&tmp_ctl.tree_lock);
1027 		ret = copy_free_space_cache(block_group, &tmp_ctl);
1028 		spin_unlock(&tmp_ctl.tree_lock);
1029 		/*
1030 		 * ret == 1 means we successfully loaded the free space cache,
1031 		 * so we need to re-set it here.
1032 		 */
1033 		if (ret == 0)
1034 			ret = 1;
1035 	} else {
1036 		/*
1037 		 * We need to call the _locked variant so we don't try to update
1038 		 * the discard counters.
1039 		 */
1040 		spin_lock(&tmp_ctl.tree_lock);
1041 		__btrfs_remove_free_space_cache(&tmp_ctl);
1042 		spin_unlock(&tmp_ctl.tree_lock);
1043 		btrfs_warn(fs_info,
1044 			   "block group %llu has wrong amount of free space",
1045 			   block_group->start);
1046 		ret = -1;
1047 	}
1048 out:
1049 	if (ret < 0) {
1050 		/* This cache is bogus, make sure it gets cleared */
1051 		spin_lock(&block_group->lock);
1052 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1053 		spin_unlock(&block_group->lock);
1054 		ret = 0;
1055 
1056 		btrfs_warn(fs_info,
1057 			   "failed to load free space cache for block group %llu, rebuilding it now",
1058 			   block_group->start);
1059 	}
1060 
1061 	spin_lock(&ctl->tree_lock);
1062 	btrfs_discard_update_discardable(block_group);
1063 	spin_unlock(&ctl->tree_lock);
1064 	iput(inode);
1065 	return ret;
1066 }
1067 
1068 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)1069 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1070 			      struct btrfs_free_space_ctl *ctl,
1071 			      struct btrfs_block_group *block_group,
1072 			      int *entries, int *bitmaps,
1073 			      struct list_head *bitmap_list)
1074 {
1075 	int ret;
1076 	struct btrfs_free_cluster *cluster = NULL;
1077 	struct btrfs_free_cluster *cluster_locked = NULL;
1078 	struct rb_node *node = rb_first(&ctl->free_space_offset);
1079 	struct btrfs_trim_range *trim_entry;
1080 
1081 	/* Get the cluster for this block_group if it exists */
1082 	if (block_group && !list_empty(&block_group->cluster_list)) {
1083 		cluster = list_entry(block_group->cluster_list.next,
1084 				     struct btrfs_free_cluster,
1085 				     block_group_list);
1086 	}
1087 
1088 	if (!node && cluster) {
1089 		cluster_locked = cluster;
1090 		spin_lock(&cluster_locked->lock);
1091 		node = rb_first(&cluster->root);
1092 		cluster = NULL;
1093 	}
1094 
1095 	/* Write out the extent entries */
1096 	while (node) {
1097 		struct btrfs_free_space *e;
1098 
1099 		e = rb_entry(node, struct btrfs_free_space, offset_index);
1100 		*entries += 1;
1101 
1102 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1103 				       e->bitmap);
1104 		if (ret)
1105 			goto fail;
1106 
1107 		if (e->bitmap) {
1108 			list_add_tail(&e->list, bitmap_list);
1109 			*bitmaps += 1;
1110 		}
1111 		node = rb_next(node);
1112 		if (!node && cluster) {
1113 			node = rb_first(&cluster->root);
1114 			cluster_locked = cluster;
1115 			spin_lock(&cluster_locked->lock);
1116 			cluster = NULL;
1117 		}
1118 	}
1119 	if (cluster_locked) {
1120 		spin_unlock(&cluster_locked->lock);
1121 		cluster_locked = NULL;
1122 	}
1123 
1124 	/*
1125 	 * Make sure we don't miss any range that was removed from our rbtree
1126 	 * because trimming is running. Otherwise after a umount+mount (or crash
1127 	 * after committing the transaction) we would leak free space and get
1128 	 * an inconsistent free space cache report from fsck.
1129 	 */
1130 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1131 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1132 				       trim_entry->bytes, NULL);
1133 		if (ret)
1134 			goto fail;
1135 		*entries += 1;
1136 	}
1137 
1138 	return 0;
1139 fail:
1140 	if (cluster_locked)
1141 		spin_unlock(&cluster_locked->lock);
1142 	return -ENOSPC;
1143 }
1144 
1145 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)1146 update_cache_item(struct btrfs_trans_handle *trans,
1147 		  struct btrfs_root *root,
1148 		  struct inode *inode,
1149 		  struct btrfs_path *path, u64 offset,
1150 		  int entries, int bitmaps)
1151 {
1152 	struct btrfs_key key;
1153 	struct btrfs_free_space_header *header;
1154 	struct extent_buffer *leaf;
1155 	int ret;
1156 
1157 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1158 	key.type = 0;
1159 	key.offset = offset;
1160 
1161 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1162 	if (ret < 0) {
1163 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1164 				 EXTENT_DELALLOC, NULL);
1165 		goto fail;
1166 	}
1167 	leaf = path->nodes[0];
1168 	if (ret > 0) {
1169 		struct btrfs_key found_key;
1170 		ASSERT(path->slots[0]);
1171 		path->slots[0]--;
1172 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1173 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1174 		    found_key.offset != offset) {
1175 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1176 					 inode->i_size - 1, EXTENT_DELALLOC,
1177 					 NULL);
1178 			btrfs_release_path(path);
1179 			goto fail;
1180 		}
1181 	}
1182 
1183 	BTRFS_I(inode)->generation = trans->transid;
1184 	header = btrfs_item_ptr(leaf, path->slots[0],
1185 				struct btrfs_free_space_header);
1186 	btrfs_set_free_space_entries(leaf, header, entries);
1187 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1188 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1189 	btrfs_release_path(path);
1190 
1191 	return 0;
1192 
1193 fail:
1194 	return -1;
1195 }
1196 
write_pinned_extent_entries(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1197 static noinline_for_stack int write_pinned_extent_entries(
1198 			    struct btrfs_trans_handle *trans,
1199 			    struct btrfs_block_group *block_group,
1200 			    struct btrfs_io_ctl *io_ctl,
1201 			    int *entries)
1202 {
1203 	u64 start, extent_start, extent_end, len;
1204 	struct extent_io_tree *unpin = NULL;
1205 	int ret;
1206 
1207 	if (!block_group)
1208 		return 0;
1209 
1210 	/*
1211 	 * We want to add any pinned extents to our free space cache
1212 	 * so we don't leak the space
1213 	 *
1214 	 * We shouldn't have switched the pinned extents yet so this is the
1215 	 * right one
1216 	 */
1217 	unpin = &trans->transaction->pinned_extents;
1218 
1219 	start = block_group->start;
1220 
1221 	while (start < block_group->start + block_group->length) {
1222 		if (!find_first_extent_bit(unpin, start,
1223 					   &extent_start, &extent_end,
1224 					   EXTENT_DIRTY, NULL))
1225 			return 0;
1226 
1227 		/* This pinned extent is out of our range */
1228 		if (extent_start >= block_group->start + block_group->length)
1229 			return 0;
1230 
1231 		extent_start = max(extent_start, start);
1232 		extent_end = min(block_group->start + block_group->length,
1233 				 extent_end + 1);
1234 		len = extent_end - extent_start;
1235 
1236 		*entries += 1;
1237 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1238 		if (ret)
1239 			return -ENOSPC;
1240 
1241 		start = extent_end;
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1248 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1249 {
1250 	struct btrfs_free_space *entry, *next;
1251 	int ret;
1252 
1253 	/* Write out the bitmaps */
1254 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1255 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1256 		if (ret)
1257 			return -ENOSPC;
1258 		list_del_init(&entry->list);
1259 	}
1260 
1261 	return 0;
1262 }
1263 
flush_dirty_cache(struct inode * inode)1264 static int flush_dirty_cache(struct inode *inode)
1265 {
1266 	int ret;
1267 
1268 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
1269 	if (ret)
1270 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1271 				 EXTENT_DELALLOC, NULL);
1272 
1273 	return ret;
1274 }
1275 
1276 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1277 cleanup_bitmap_list(struct list_head *bitmap_list)
1278 {
1279 	struct btrfs_free_space *entry, *next;
1280 
1281 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1282 		list_del_init(&entry->list);
1283 }
1284 
1285 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state)1286 cleanup_write_cache_enospc(struct inode *inode,
1287 			   struct btrfs_io_ctl *io_ctl,
1288 			   struct extent_state **cached_state)
1289 {
1290 	io_ctl_drop_pages(io_ctl);
1291 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1292 		      cached_state);
1293 }
1294 
__btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1295 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1296 				 struct btrfs_trans_handle *trans,
1297 				 struct btrfs_block_group *block_group,
1298 				 struct btrfs_io_ctl *io_ctl,
1299 				 struct btrfs_path *path, u64 offset)
1300 {
1301 	int ret;
1302 	struct inode *inode = io_ctl->inode;
1303 
1304 	if (!inode)
1305 		return 0;
1306 
1307 	/* Flush the dirty pages in the cache file. */
1308 	ret = flush_dirty_cache(inode);
1309 	if (ret)
1310 		goto out;
1311 
1312 	/* Update the cache item to tell everyone this cache file is valid. */
1313 	ret = update_cache_item(trans, root, inode, path, offset,
1314 				io_ctl->entries, io_ctl->bitmaps);
1315 out:
1316 	if (ret) {
1317 		invalidate_inode_pages2(inode->i_mapping);
1318 		BTRFS_I(inode)->generation = 0;
1319 		if (block_group)
1320 			btrfs_debug(root->fs_info,
1321 	  "failed to write free space cache for block group %llu error %d",
1322 				  block_group->start, ret);
1323 	}
1324 	btrfs_update_inode(trans, BTRFS_I(inode));
1325 
1326 	if (block_group) {
1327 		/* the dirty list is protected by the dirty_bgs_lock */
1328 		spin_lock(&trans->transaction->dirty_bgs_lock);
1329 
1330 		/* the disk_cache_state is protected by the block group lock */
1331 		spin_lock(&block_group->lock);
1332 
1333 		/*
1334 		 * only mark this as written if we didn't get put back on
1335 		 * the dirty list while waiting for IO.   Otherwise our
1336 		 * cache state won't be right, and we won't get written again
1337 		 */
1338 		if (!ret && list_empty(&block_group->dirty_list))
1339 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1340 		else if (ret)
1341 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1342 
1343 		spin_unlock(&block_group->lock);
1344 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1345 		io_ctl->inode = NULL;
1346 		iput(inode);
1347 	}
1348 
1349 	return ret;
1350 
1351 }
1352 
btrfs_wait_cache_io(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1353 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1354 			struct btrfs_block_group *block_group,
1355 			struct btrfs_path *path)
1356 {
1357 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1358 				     block_group, &block_group->io_ctl,
1359 				     path, block_group->start);
1360 }
1361 
1362 /*
1363  * Write out cached info to an inode.
1364  *
1365  * @inode:       freespace inode we are writing out
1366  * @ctl:         free space cache we are going to write out
1367  * @block_group: block_group for this cache if it belongs to a block_group
1368  * @io_ctl:      holds context for the io
1369  * @trans:       the trans handle
1370  *
1371  * This function writes out a free space cache struct to disk for quick recovery
1372  * on mount.  This will return 0 if it was successful in writing the cache out,
1373  * or an errno if it was not.
1374  */
__btrfs_write_out_cache(struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans)1375 static int __btrfs_write_out_cache(struct inode *inode,
1376 				   struct btrfs_free_space_ctl *ctl,
1377 				   struct btrfs_block_group *block_group,
1378 				   struct btrfs_io_ctl *io_ctl,
1379 				   struct btrfs_trans_handle *trans)
1380 {
1381 	struct extent_state *cached_state = NULL;
1382 	LIST_HEAD(bitmap_list);
1383 	int entries = 0;
1384 	int bitmaps = 0;
1385 	int ret;
1386 	int must_iput = 0;
1387 	int i_size;
1388 
1389 	if (!i_size_read(inode))
1390 		return -EIO;
1391 
1392 	WARN_ON(io_ctl->pages);
1393 	ret = io_ctl_init(io_ctl, inode, 1);
1394 	if (ret)
1395 		return ret;
1396 
1397 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1398 		down_write(&block_group->data_rwsem);
1399 		spin_lock(&block_group->lock);
1400 		if (block_group->delalloc_bytes) {
1401 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1402 			spin_unlock(&block_group->lock);
1403 			up_write(&block_group->data_rwsem);
1404 			BTRFS_I(inode)->generation = 0;
1405 			ret = 0;
1406 			must_iput = 1;
1407 			goto out;
1408 		}
1409 		spin_unlock(&block_group->lock);
1410 	}
1411 
1412 	/* Lock all pages first so we can lock the extent safely. */
1413 	ret = io_ctl_prepare_pages(io_ctl, false);
1414 	if (ret)
1415 		goto out_unlock;
1416 
1417 	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1418 		    &cached_state);
1419 
1420 	io_ctl_set_generation(io_ctl, trans->transid);
1421 
1422 	mutex_lock(&ctl->cache_writeout_mutex);
1423 	/* Write out the extent entries in the free space cache */
1424 	spin_lock(&ctl->tree_lock);
1425 	ret = write_cache_extent_entries(io_ctl, ctl,
1426 					 block_group, &entries, &bitmaps,
1427 					 &bitmap_list);
1428 	if (ret)
1429 		goto out_nospc_locked;
1430 
1431 	/*
1432 	 * Some spaces that are freed in the current transaction are pinned,
1433 	 * they will be added into free space cache after the transaction is
1434 	 * committed, we shouldn't lose them.
1435 	 *
1436 	 * If this changes while we are working we'll get added back to
1437 	 * the dirty list and redo it.  No locking needed
1438 	 */
1439 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1440 	if (ret)
1441 		goto out_nospc_locked;
1442 
1443 	/*
1444 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1445 	 * locked while doing it because a concurrent trim can be manipulating
1446 	 * or freeing the bitmap.
1447 	 */
1448 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1449 	spin_unlock(&ctl->tree_lock);
1450 	mutex_unlock(&ctl->cache_writeout_mutex);
1451 	if (ret)
1452 		goto out_nospc;
1453 
1454 	/* Zero out the rest of the pages just to make sure */
1455 	io_ctl_zero_remaining_pages(io_ctl);
1456 
1457 	/* Everything is written out, now we dirty the pages in the file. */
1458 	i_size = i_size_read(inode);
1459 	for (int i = 0; i < round_up(i_size, PAGE_SIZE) / PAGE_SIZE; i++) {
1460 		u64 dirty_start = i * PAGE_SIZE;
1461 		u64 dirty_len = min_t(u64, dirty_start + PAGE_SIZE, i_size) - dirty_start;
1462 
1463 		ret = btrfs_dirty_folio(BTRFS_I(inode), page_folio(io_ctl->pages[i]),
1464 					dirty_start, dirty_len, &cached_state, false);
1465 		if (ret < 0)
1466 			goto out_nospc;
1467 	}
1468 
1469 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1470 		up_write(&block_group->data_rwsem);
1471 	/*
1472 	 * Release the pages and unlock the extent, we will flush
1473 	 * them out later
1474 	 */
1475 	io_ctl_drop_pages(io_ctl);
1476 	io_ctl_free(io_ctl);
1477 
1478 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1479 		      &cached_state);
1480 
1481 	/*
1482 	 * at this point the pages are under IO and we're happy,
1483 	 * The caller is responsible for waiting on them and updating
1484 	 * the cache and the inode
1485 	 */
1486 	io_ctl->entries = entries;
1487 	io_ctl->bitmaps = bitmaps;
1488 
1489 	ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
1490 	if (ret)
1491 		goto out;
1492 
1493 	return 0;
1494 
1495 out_nospc_locked:
1496 	cleanup_bitmap_list(&bitmap_list);
1497 	spin_unlock(&ctl->tree_lock);
1498 	mutex_unlock(&ctl->cache_writeout_mutex);
1499 
1500 out_nospc:
1501 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1502 
1503 out_unlock:
1504 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1505 		up_write(&block_group->data_rwsem);
1506 
1507 out:
1508 	io_ctl->inode = NULL;
1509 	io_ctl_free(io_ctl);
1510 	if (ret) {
1511 		invalidate_inode_pages2(inode->i_mapping);
1512 		BTRFS_I(inode)->generation = 0;
1513 	}
1514 	btrfs_update_inode(trans, BTRFS_I(inode));
1515 	if (must_iput)
1516 		iput(inode);
1517 	return ret;
1518 }
1519 
btrfs_write_out_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1520 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1521 			  struct btrfs_block_group *block_group,
1522 			  struct btrfs_path *path)
1523 {
1524 	struct btrfs_fs_info *fs_info = trans->fs_info;
1525 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1526 	struct inode *inode;
1527 	int ret = 0;
1528 
1529 	spin_lock(&block_group->lock);
1530 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1531 		spin_unlock(&block_group->lock);
1532 		return 0;
1533 	}
1534 	spin_unlock(&block_group->lock);
1535 
1536 	inode = lookup_free_space_inode(block_group, path);
1537 	if (IS_ERR(inode))
1538 		return 0;
1539 
1540 	ret = __btrfs_write_out_cache(inode, ctl, block_group,
1541 				      &block_group->io_ctl, trans);
1542 	if (ret) {
1543 		btrfs_debug(fs_info,
1544 	  "failed to write free space cache for block group %llu error %d",
1545 			  block_group->start, ret);
1546 		spin_lock(&block_group->lock);
1547 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1548 		spin_unlock(&block_group->lock);
1549 
1550 		block_group->io_ctl.inode = NULL;
1551 		iput(inode);
1552 	}
1553 
1554 	/*
1555 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1556 	 * to wait for IO and put the inode
1557 	 */
1558 
1559 	return ret;
1560 }
1561 
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1562 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1563 					  u64 offset)
1564 {
1565 	ASSERT(offset >= bitmap_start);
1566 	offset -= bitmap_start;
1567 	return (unsigned long)(div_u64(offset, unit));
1568 }
1569 
bytes_to_bits(u64 bytes,u32 unit)1570 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1571 {
1572 	return (unsigned long)(div_u64(bytes, unit));
1573 }
1574 
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1575 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1576 				   u64 offset)
1577 {
1578 	u64 bitmap_start;
1579 	u64 bytes_per_bitmap;
1580 
1581 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1582 	bitmap_start = offset - ctl->start;
1583 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1584 	bitmap_start *= bytes_per_bitmap;
1585 	bitmap_start += ctl->start;
1586 
1587 	return bitmap_start;
1588 }
1589 
tree_insert_offset(struct btrfs_free_space_ctl * ctl,struct btrfs_free_cluster * cluster,struct btrfs_free_space * new_entry)1590 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1591 			      struct btrfs_free_cluster *cluster,
1592 			      struct btrfs_free_space *new_entry)
1593 {
1594 	struct rb_root *root;
1595 	struct rb_node **p;
1596 	struct rb_node *parent = NULL;
1597 
1598 	lockdep_assert_held(&ctl->tree_lock);
1599 
1600 	if (cluster) {
1601 		lockdep_assert_held(&cluster->lock);
1602 		root = &cluster->root;
1603 	} else {
1604 		root = &ctl->free_space_offset;
1605 	}
1606 
1607 	p = &root->rb_node;
1608 
1609 	while (*p) {
1610 		struct btrfs_free_space *info;
1611 
1612 		parent = *p;
1613 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1614 
1615 		if (new_entry->offset < info->offset) {
1616 			p = &(*p)->rb_left;
1617 		} else if (new_entry->offset > info->offset) {
1618 			p = &(*p)->rb_right;
1619 		} else {
1620 			/*
1621 			 * we could have a bitmap entry and an extent entry
1622 			 * share the same offset.  If this is the case, we want
1623 			 * the extent entry to always be found first if we do a
1624 			 * linear search through the tree, since we want to have
1625 			 * the quickest allocation time, and allocating from an
1626 			 * extent is faster than allocating from a bitmap.  So
1627 			 * if we're inserting a bitmap and we find an entry at
1628 			 * this offset, we want to go right, or after this entry
1629 			 * logically.  If we are inserting an extent and we've
1630 			 * found a bitmap, we want to go left, or before
1631 			 * logically.
1632 			 */
1633 			if (new_entry->bitmap) {
1634 				if (info->bitmap) {
1635 					WARN_ON_ONCE(1);
1636 					return -EEXIST;
1637 				}
1638 				p = &(*p)->rb_right;
1639 			} else {
1640 				if (!info->bitmap) {
1641 					WARN_ON_ONCE(1);
1642 					return -EEXIST;
1643 				}
1644 				p = &(*p)->rb_left;
1645 			}
1646 		}
1647 	}
1648 
1649 	rb_link_node(&new_entry->offset_index, parent, p);
1650 	rb_insert_color(&new_entry->offset_index, root);
1651 
1652 	return 0;
1653 }
1654 
1655 /*
1656  * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1657  * searched through the bitmap and figured out the largest ->max_extent_size,
1658  * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1659  * allocator the wrong thing, we want to use the actual real max_extent_size
1660  * we've found already if it's larger, or we want to use ->bytes.
1661  *
1662  * This matters because find_free_space() will skip entries who's ->bytes is
1663  * less than the required bytes.  So if we didn't search down this bitmap, we
1664  * may pick some previous entry that has a smaller ->max_extent_size than we
1665  * have.  For example, assume we have two entries, one that has
1666  * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1667  * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1668  *  call into find_free_space(), and return with max_extent_size == 4K, because
1669  *  that first bitmap entry had ->max_extent_size set, but the second one did
1670  *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1671  *  8K contiguous range.
1672  *
1673  *  Consider the other case, we have 2 8K chunks in that second entry and still
1674  *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1675  *  allocator comes in it'll fully search our second bitmap, and this time it'll
1676  *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1677  *  right allocation the next loop through.
1678  */
get_max_extent_size(const struct btrfs_free_space * entry)1679 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1680 {
1681 	if (entry->bitmap && entry->max_extent_size)
1682 		return entry->max_extent_size;
1683 	return entry->bytes;
1684 }
1685 
1686 /*
1687  * We want the largest entry to be leftmost, so this is inverted from what you'd
1688  * normally expect.
1689  */
entry_less(struct rb_node * node,const struct rb_node * parent)1690 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1691 {
1692 	const struct btrfs_free_space *entry, *exist;
1693 
1694 	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1695 	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1696 	return get_max_extent_size(exist) < get_max_extent_size(entry);
1697 }
1698 
1699 /*
1700  * searches the tree for the given offset.
1701  *
1702  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1703  * want a section that has at least bytes size and comes at or after the given
1704  * offset.
1705  */
1706 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1707 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1708 		   u64 offset, int bitmap_only, int fuzzy)
1709 {
1710 	struct rb_node *n = ctl->free_space_offset.rb_node;
1711 	struct btrfs_free_space *entry = NULL, *prev = NULL;
1712 
1713 	lockdep_assert_held(&ctl->tree_lock);
1714 
1715 	/* find entry that is closest to the 'offset' */
1716 	while (n) {
1717 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1718 		prev = entry;
1719 
1720 		if (offset < entry->offset)
1721 			n = n->rb_left;
1722 		else if (offset > entry->offset)
1723 			n = n->rb_right;
1724 		else
1725 			break;
1726 
1727 		entry = NULL;
1728 	}
1729 
1730 	if (bitmap_only) {
1731 		if (!entry)
1732 			return NULL;
1733 		if (entry->bitmap)
1734 			return entry;
1735 
1736 		/*
1737 		 * bitmap entry and extent entry may share same offset,
1738 		 * in that case, bitmap entry comes after extent entry.
1739 		 */
1740 		n = rb_next(n);
1741 		if (!n)
1742 			return NULL;
1743 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1744 		if (entry->offset != offset)
1745 			return NULL;
1746 
1747 		WARN_ON(!entry->bitmap);
1748 		return entry;
1749 	} else if (entry) {
1750 		if (entry->bitmap) {
1751 			/*
1752 			 * if previous extent entry covers the offset,
1753 			 * we should return it instead of the bitmap entry
1754 			 */
1755 			n = rb_prev(&entry->offset_index);
1756 			if (n) {
1757 				prev = rb_entry(n, struct btrfs_free_space,
1758 						offset_index);
1759 				if (!prev->bitmap &&
1760 				    prev->offset + prev->bytes > offset)
1761 					entry = prev;
1762 			}
1763 		}
1764 		return entry;
1765 	}
1766 
1767 	if (!prev)
1768 		return NULL;
1769 
1770 	/* find last entry before the 'offset' */
1771 	entry = prev;
1772 	if (entry->offset > offset) {
1773 		n = rb_prev(&entry->offset_index);
1774 		if (n) {
1775 			entry = rb_entry(n, struct btrfs_free_space,
1776 					offset_index);
1777 			ASSERT(entry->offset <= offset);
1778 		} else {
1779 			if (fuzzy)
1780 				return entry;
1781 			else
1782 				return NULL;
1783 		}
1784 	}
1785 
1786 	if (entry->bitmap) {
1787 		n = rb_prev(&entry->offset_index);
1788 		if (n) {
1789 			prev = rb_entry(n, struct btrfs_free_space,
1790 					offset_index);
1791 			if (!prev->bitmap &&
1792 			    prev->offset + prev->bytes > offset)
1793 				return prev;
1794 		}
1795 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1796 			return entry;
1797 	} else if (entry->offset + entry->bytes > offset)
1798 		return entry;
1799 
1800 	if (!fuzzy)
1801 		return NULL;
1802 
1803 	while (1) {
1804 		n = rb_next(&entry->offset_index);
1805 		if (!n)
1806 			return NULL;
1807 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1808 		if (entry->bitmap) {
1809 			if (entry->offset + BITS_PER_BITMAP *
1810 			    ctl->unit > offset)
1811 				break;
1812 		} else {
1813 			if (entry->offset + entry->bytes > offset)
1814 				break;
1815 		}
1816 	}
1817 	return entry;
1818 }
1819 
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)1820 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1821 				     struct btrfs_free_space *info,
1822 				     bool update_stat)
1823 {
1824 	lockdep_assert_held(&ctl->tree_lock);
1825 
1826 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1827 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1828 	ctl->free_extents--;
1829 
1830 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1831 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1832 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1833 	}
1834 
1835 	if (update_stat)
1836 		ctl->free_space -= info->bytes;
1837 }
1838 
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1839 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1840 			   struct btrfs_free_space *info)
1841 {
1842 	int ret = 0;
1843 
1844 	lockdep_assert_held(&ctl->tree_lock);
1845 
1846 	ASSERT(info->bytes || info->bitmap);
1847 	ret = tree_insert_offset(ctl, NULL, info);
1848 	if (ret)
1849 		return ret;
1850 
1851 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1852 
1853 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1854 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1855 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1856 	}
1857 
1858 	ctl->free_space += info->bytes;
1859 	ctl->free_extents++;
1860 	return ret;
1861 }
1862 
relink_bitmap_entry(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1863 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1864 				struct btrfs_free_space *info)
1865 {
1866 	ASSERT(info->bitmap);
1867 
1868 	/*
1869 	 * If our entry is empty it's because we're on a cluster and we don't
1870 	 * want to re-link it into our ctl bytes index.
1871 	 */
1872 	if (RB_EMPTY_NODE(&info->bytes_index))
1873 		return;
1874 
1875 	lockdep_assert_held(&ctl->tree_lock);
1876 
1877 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1878 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1879 }
1880 
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,bool update_stat)1881 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1882 				     struct btrfs_free_space *info,
1883 				     u64 offset, u64 bytes, bool update_stat)
1884 {
1885 	unsigned long start, count, end;
1886 	int extent_delta = -1;
1887 
1888 	start = offset_to_bit(info->offset, ctl->unit, offset);
1889 	count = bytes_to_bits(bytes, ctl->unit);
1890 	end = start + count;
1891 	ASSERT(end <= BITS_PER_BITMAP);
1892 
1893 	bitmap_clear(info->bitmap, start, count);
1894 
1895 	info->bytes -= bytes;
1896 	if (info->max_extent_size > ctl->unit)
1897 		info->max_extent_size = 0;
1898 
1899 	relink_bitmap_entry(ctl, info);
1900 
1901 	if (start && test_bit(start - 1, info->bitmap))
1902 		extent_delta++;
1903 
1904 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1905 		extent_delta++;
1906 
1907 	info->bitmap_extents += extent_delta;
1908 	if (!btrfs_free_space_trimmed(info)) {
1909 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1910 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1911 	}
1912 
1913 	if (update_stat)
1914 		ctl->free_space -= bytes;
1915 }
1916 
btrfs_bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1917 static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1918 				  struct btrfs_free_space *info, u64 offset,
1919 				  u64 bytes)
1920 {
1921 	unsigned long start, count, end;
1922 	int extent_delta = 1;
1923 
1924 	start = offset_to_bit(info->offset, ctl->unit, offset);
1925 	count = bytes_to_bits(bytes, ctl->unit);
1926 	end = start + count;
1927 	ASSERT(end <= BITS_PER_BITMAP);
1928 
1929 	bitmap_set(info->bitmap, start, count);
1930 
1931 	/*
1932 	 * We set some bytes, we have no idea what the max extent size is
1933 	 * anymore.
1934 	 */
1935 	info->max_extent_size = 0;
1936 	info->bytes += bytes;
1937 	ctl->free_space += bytes;
1938 
1939 	relink_bitmap_entry(ctl, info);
1940 
1941 	if (start && test_bit(start - 1, info->bitmap))
1942 		extent_delta--;
1943 
1944 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1945 		extent_delta--;
1946 
1947 	info->bitmap_extents += extent_delta;
1948 	if (!btrfs_free_space_trimmed(info)) {
1949 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1950 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1951 	}
1952 }
1953 
1954 /*
1955  * If we can not find suitable extent, we will use bytes to record
1956  * the size of the max extent.
1957  */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1958 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1959 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1960 			 u64 *bytes, bool for_alloc)
1961 {
1962 	unsigned long found_bits = 0;
1963 	unsigned long max_bits = 0;
1964 	unsigned long bits, i;
1965 	unsigned long next_zero;
1966 	unsigned long extent_bits;
1967 
1968 	/*
1969 	 * Skip searching the bitmap if we don't have a contiguous section that
1970 	 * is large enough for this allocation.
1971 	 */
1972 	if (for_alloc &&
1973 	    bitmap_info->max_extent_size &&
1974 	    bitmap_info->max_extent_size < *bytes) {
1975 		*bytes = bitmap_info->max_extent_size;
1976 		return -1;
1977 	}
1978 
1979 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1980 			  max_t(u64, *offset, bitmap_info->offset));
1981 	bits = bytes_to_bits(*bytes, ctl->unit);
1982 
1983 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1984 		if (for_alloc && bits == 1) {
1985 			found_bits = 1;
1986 			break;
1987 		}
1988 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1989 					       BITS_PER_BITMAP, i);
1990 		extent_bits = next_zero - i;
1991 		if (extent_bits >= bits) {
1992 			found_bits = extent_bits;
1993 			break;
1994 		} else if (extent_bits > max_bits) {
1995 			max_bits = extent_bits;
1996 		}
1997 		i = next_zero;
1998 	}
1999 
2000 	if (found_bits) {
2001 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2002 		*bytes = (u64)(found_bits) * ctl->unit;
2003 		return 0;
2004 	}
2005 
2006 	*bytes = (u64)(max_bits) * ctl->unit;
2007 	bitmap_info->max_extent_size = *bytes;
2008 	relink_bitmap_entry(ctl, bitmap_info);
2009 	return -1;
2010 }
2011 
2012 /* Cache the size of the max extent in bytes */
2013 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size,bool use_bytes_index)2014 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2015 		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2016 {
2017 	struct btrfs_free_space *entry;
2018 	struct rb_node *node;
2019 	u64 tmp;
2020 	u64 align_off;
2021 	int ret;
2022 
2023 	if (!ctl->free_space_offset.rb_node)
2024 		goto out;
2025 again:
2026 	if (use_bytes_index) {
2027 		node = rb_first_cached(&ctl->free_space_bytes);
2028 	} else {
2029 		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2030 					   0, 1);
2031 		if (!entry)
2032 			goto out;
2033 		node = &entry->offset_index;
2034 	}
2035 
2036 	for (; node; node = rb_next(node)) {
2037 		if (use_bytes_index)
2038 			entry = rb_entry(node, struct btrfs_free_space,
2039 					 bytes_index);
2040 		else
2041 			entry = rb_entry(node, struct btrfs_free_space,
2042 					 offset_index);
2043 
2044 		/*
2045 		 * If we are using the bytes index then all subsequent entries
2046 		 * in this tree are going to be < bytes, so simply set the max
2047 		 * extent size and exit the loop.
2048 		 *
2049 		 * If we're using the offset index then we need to keep going
2050 		 * through the rest of the tree.
2051 		 */
2052 		if (entry->bytes < *bytes) {
2053 			*max_extent_size = max(get_max_extent_size(entry),
2054 					       *max_extent_size);
2055 			if (use_bytes_index)
2056 				break;
2057 			continue;
2058 		}
2059 
2060 		/* make sure the space returned is big enough
2061 		 * to match our requested alignment
2062 		 */
2063 		if (*bytes >= align) {
2064 			tmp = entry->offset - ctl->start + align - 1;
2065 			tmp = div64_u64(tmp, align);
2066 			tmp = tmp * align + ctl->start;
2067 			align_off = tmp - entry->offset;
2068 		} else {
2069 			align_off = 0;
2070 			tmp = entry->offset;
2071 		}
2072 
2073 		/*
2074 		 * We don't break here if we're using the bytes index because we
2075 		 * may have another entry that has the correct alignment that is
2076 		 * the right size, so we don't want to miss that possibility.
2077 		 * At worst this adds another loop through the logic, but if we
2078 		 * broke here we could prematurely ENOSPC.
2079 		 */
2080 		if (entry->bytes < *bytes + align_off) {
2081 			*max_extent_size = max(get_max_extent_size(entry),
2082 					       *max_extent_size);
2083 			continue;
2084 		}
2085 
2086 		if (entry->bitmap) {
2087 			struct rb_node *old_next = rb_next(node);
2088 			u64 size = *bytes;
2089 
2090 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2091 			if (!ret) {
2092 				*offset = tmp;
2093 				*bytes = size;
2094 				return entry;
2095 			} else {
2096 				*max_extent_size =
2097 					max(get_max_extent_size(entry),
2098 					    *max_extent_size);
2099 			}
2100 
2101 			/*
2102 			 * The bitmap may have gotten re-arranged in the space
2103 			 * index here because the max_extent_size may have been
2104 			 * updated.  Start from the beginning again if this
2105 			 * happened.
2106 			 */
2107 			if (use_bytes_index && old_next != rb_next(node))
2108 				goto again;
2109 			continue;
2110 		}
2111 
2112 		*offset = tmp;
2113 		*bytes = entry->bytes - align_off;
2114 		return entry;
2115 	}
2116 out:
2117 	return NULL;
2118 }
2119 
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)2120 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2121 			   struct btrfs_free_space *info, u64 offset)
2122 {
2123 	info->offset = offset_to_bitmap(ctl, offset);
2124 	info->bytes = 0;
2125 	info->bitmap_extents = 0;
2126 	INIT_LIST_HEAD(&info->list);
2127 	link_free_space(ctl, info);
2128 	ctl->total_bitmaps++;
2129 	recalculate_thresholds(ctl);
2130 }
2131 
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)2132 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2133 			struct btrfs_free_space *bitmap_info)
2134 {
2135 	/*
2136 	 * Normally when this is called, the bitmap is completely empty. However,
2137 	 * if we are blowing up the free space cache for one reason or another
2138 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2139 	 * we may leave stats on the table.
2140 	 */
2141 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2142 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2143 			bitmap_info->bitmap_extents;
2144 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2145 
2146 	}
2147 	unlink_free_space(ctl, bitmap_info, true);
2148 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2149 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2150 	ctl->total_bitmaps--;
2151 	recalculate_thresholds(ctl);
2152 }
2153 
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)2154 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2155 			      struct btrfs_free_space *bitmap_info,
2156 			      u64 *offset, u64 *bytes)
2157 {
2158 	u64 end;
2159 	u64 search_start, search_bytes;
2160 	int ret;
2161 
2162 again:
2163 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2164 
2165 	/*
2166 	 * We need to search for bits in this bitmap.  We could only cover some
2167 	 * of the extent in this bitmap thanks to how we add space, so we need
2168 	 * to search for as much as it as we can and clear that amount, and then
2169 	 * go searching for the next bit.
2170 	 */
2171 	search_start = *offset;
2172 	search_bytes = ctl->unit;
2173 	search_bytes = min(search_bytes, end - search_start + 1);
2174 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2175 			    false);
2176 	if (ret < 0 || search_start != *offset)
2177 		return -EINVAL;
2178 
2179 	/* We may have found more bits than what we need */
2180 	search_bytes = min(search_bytes, *bytes);
2181 
2182 	/* Cannot clear past the end of the bitmap */
2183 	search_bytes = min(search_bytes, end - search_start + 1);
2184 
2185 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2186 	*offset += search_bytes;
2187 	*bytes -= search_bytes;
2188 
2189 	if (*bytes) {
2190 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2191 		if (!bitmap_info->bytes)
2192 			free_bitmap(ctl, bitmap_info);
2193 
2194 		/*
2195 		 * no entry after this bitmap, but we still have bytes to
2196 		 * remove, so something has gone wrong.
2197 		 */
2198 		if (!next)
2199 			return -EINVAL;
2200 
2201 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2202 				       offset_index);
2203 
2204 		/*
2205 		 * if the next entry isn't a bitmap we need to return to let the
2206 		 * extent stuff do its work.
2207 		 */
2208 		if (!bitmap_info->bitmap)
2209 			return -EAGAIN;
2210 
2211 		/*
2212 		 * Ok the next item is a bitmap, but it may not actually hold
2213 		 * the information for the rest of this free space stuff, so
2214 		 * look for it, and if we don't find it return so we can try
2215 		 * everything over again.
2216 		 */
2217 		search_start = *offset;
2218 		search_bytes = ctl->unit;
2219 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2220 				    &search_bytes, false);
2221 		if (ret < 0 || search_start != *offset)
2222 			return -EAGAIN;
2223 
2224 		goto again;
2225 	} else if (!bitmap_info->bytes)
2226 		free_bitmap(ctl, bitmap_info);
2227 
2228 	return 0;
2229 }
2230 
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2231 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2232 			       struct btrfs_free_space *info, u64 offset,
2233 			       u64 bytes, enum btrfs_trim_state trim_state)
2234 {
2235 	u64 bytes_to_set = 0;
2236 	u64 end;
2237 
2238 	/*
2239 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2240 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2241 	 */
2242 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2243 		if (btrfs_free_space_trimmed(info)) {
2244 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2245 				info->bitmap_extents;
2246 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2247 		}
2248 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2249 	}
2250 
2251 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2252 
2253 	bytes_to_set = min(end - offset, bytes);
2254 
2255 	btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
2256 
2257 	return bytes_to_set;
2258 
2259 }
2260 
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2261 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2262 		      struct btrfs_free_space *info)
2263 {
2264 	struct btrfs_block_group *block_group = ctl->block_group;
2265 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2266 	bool forced = false;
2267 
2268 #ifdef CONFIG_BTRFS_DEBUG
2269 	if (btrfs_should_fragment_free_space(block_group))
2270 		forced = true;
2271 #endif
2272 
2273 	/* This is a way to reclaim large regions from the bitmaps. */
2274 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2275 		return false;
2276 
2277 	/*
2278 	 * If we are below the extents threshold then we can add this as an
2279 	 * extent, and don't have to deal with the bitmap
2280 	 */
2281 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2282 		/*
2283 		 * If this block group has some small extents we don't want to
2284 		 * use up all of our free slots in the cache with them, we want
2285 		 * to reserve them to larger extents, however if we have plenty
2286 		 * of cache left then go ahead an dadd them, no sense in adding
2287 		 * the overhead of a bitmap if we don't have to.
2288 		 */
2289 		if (info->bytes <= fs_info->sectorsize * 8) {
2290 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2291 				return false;
2292 		} else {
2293 			return false;
2294 		}
2295 	}
2296 
2297 	/*
2298 	 * The original block groups from mkfs can be really small, like 8
2299 	 * megabytes, so don't bother with a bitmap for those entries.  However
2300 	 * some block groups can be smaller than what a bitmap would cover but
2301 	 * are still large enough that they could overflow the 32k memory limit,
2302 	 * so allow those block groups to still be allowed to have a bitmap
2303 	 * entry.
2304 	 */
2305 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2306 		return false;
2307 
2308 	return true;
2309 }
2310 
2311 static const struct btrfs_free_space_op free_space_op = {
2312 	.use_bitmap		= use_bitmap,
2313 };
2314 
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2315 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2316 			      struct btrfs_free_space *info)
2317 {
2318 	struct btrfs_free_space *bitmap_info;
2319 	struct btrfs_block_group *block_group = NULL;
2320 	int added = 0;
2321 	u64 bytes, offset, bytes_added;
2322 	enum btrfs_trim_state trim_state;
2323 	int ret;
2324 
2325 	bytes = info->bytes;
2326 	offset = info->offset;
2327 	trim_state = info->trim_state;
2328 
2329 	if (!ctl->op->use_bitmap(ctl, info))
2330 		return 0;
2331 
2332 	if (ctl->op == &free_space_op)
2333 		block_group = ctl->block_group;
2334 again:
2335 	/*
2336 	 * Since we link bitmaps right into the cluster we need to see if we
2337 	 * have a cluster here, and if so and it has our bitmap we need to add
2338 	 * the free space to that bitmap.
2339 	 */
2340 	if (block_group && !list_empty(&block_group->cluster_list)) {
2341 		struct btrfs_free_cluster *cluster;
2342 		struct rb_node *node;
2343 		struct btrfs_free_space *entry;
2344 
2345 		cluster = list_entry(block_group->cluster_list.next,
2346 				     struct btrfs_free_cluster,
2347 				     block_group_list);
2348 		spin_lock(&cluster->lock);
2349 		node = rb_first(&cluster->root);
2350 		if (!node) {
2351 			spin_unlock(&cluster->lock);
2352 			goto no_cluster_bitmap;
2353 		}
2354 
2355 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2356 		if (!entry->bitmap) {
2357 			spin_unlock(&cluster->lock);
2358 			goto no_cluster_bitmap;
2359 		}
2360 
2361 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2362 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2363 							  bytes, trim_state);
2364 			bytes -= bytes_added;
2365 			offset += bytes_added;
2366 		}
2367 		spin_unlock(&cluster->lock);
2368 		if (!bytes) {
2369 			ret = 1;
2370 			goto out;
2371 		}
2372 	}
2373 
2374 no_cluster_bitmap:
2375 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2376 					 1, 0);
2377 	if (!bitmap_info) {
2378 		ASSERT(added == 0);
2379 		goto new_bitmap;
2380 	}
2381 
2382 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2383 					  trim_state);
2384 	bytes -= bytes_added;
2385 	offset += bytes_added;
2386 	added = 0;
2387 
2388 	if (!bytes) {
2389 		ret = 1;
2390 		goto out;
2391 	} else
2392 		goto again;
2393 
2394 new_bitmap:
2395 	if (info && info->bitmap) {
2396 		add_new_bitmap(ctl, info, offset);
2397 		added = 1;
2398 		info = NULL;
2399 		goto again;
2400 	} else {
2401 		spin_unlock(&ctl->tree_lock);
2402 
2403 		/* no pre-allocated info, allocate a new one */
2404 		if (!info) {
2405 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2406 						 GFP_NOFS);
2407 			if (!info) {
2408 				spin_lock(&ctl->tree_lock);
2409 				ret = -ENOMEM;
2410 				goto out;
2411 			}
2412 		}
2413 
2414 		/* allocate the bitmap */
2415 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2416 						 GFP_NOFS);
2417 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2418 		spin_lock(&ctl->tree_lock);
2419 		if (!info->bitmap) {
2420 			ret = -ENOMEM;
2421 			goto out;
2422 		}
2423 		goto again;
2424 	}
2425 
2426 out:
2427 	if (info) {
2428 		if (info->bitmap)
2429 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2430 					info->bitmap);
2431 		kmem_cache_free(btrfs_free_space_cachep, info);
2432 	}
2433 
2434 	return ret;
2435 }
2436 
2437 /*
2438  * Free space merging rules:
2439  *  1) Merge trimmed areas together
2440  *  2) Let untrimmed areas coalesce with trimmed areas
2441  *  3) Always pull neighboring regions from bitmaps
2442  *
2443  * The above rules are for when we merge free space based on btrfs_trim_state.
2444  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2445  * same reason: to promote larger extent regions which makes life easier for
2446  * find_free_extent().  Rule 2 enables coalescing based on the common path
2447  * being returning free space from btrfs_finish_extent_commit().  So when free
2448  * space is trimmed, it will prevent aggregating trimmed new region and
2449  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2450  * and provide find_free_extent() with the largest extents possible hoping for
2451  * the reuse path.
2452  */
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2453 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2454 			  struct btrfs_free_space *info, bool update_stat)
2455 {
2456 	struct btrfs_free_space *left_info = NULL;
2457 	struct btrfs_free_space *right_info;
2458 	bool merged = false;
2459 	u64 offset = info->offset;
2460 	u64 bytes = info->bytes;
2461 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2462 	struct rb_node *right_prev = NULL;
2463 
2464 	/*
2465 	 * first we want to see if there is free space adjacent to the range we
2466 	 * are adding, if there is remove that struct and add a new one to
2467 	 * cover the entire range
2468 	 */
2469 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2470 	if (right_info)
2471 		right_prev = rb_prev(&right_info->offset_index);
2472 
2473 	if (right_prev)
2474 		left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2475 	else if (!right_info)
2476 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2477 
2478 	/* See try_merge_free_space() comment. */
2479 	if (right_info && !right_info->bitmap &&
2480 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2481 		unlink_free_space(ctl, right_info, update_stat);
2482 		info->bytes += right_info->bytes;
2483 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2484 		merged = true;
2485 	}
2486 
2487 	/* See try_merge_free_space() comment. */
2488 	if (left_info && !left_info->bitmap &&
2489 	    left_info->offset + left_info->bytes == offset &&
2490 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2491 		unlink_free_space(ctl, left_info, update_stat);
2492 		info->offset = left_info->offset;
2493 		info->bytes += left_info->bytes;
2494 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2495 		merged = true;
2496 	}
2497 
2498 	return merged;
2499 }
2500 
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2501 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2502 				     struct btrfs_free_space *info,
2503 				     bool update_stat)
2504 {
2505 	struct btrfs_free_space *bitmap;
2506 	unsigned long i;
2507 	unsigned long j;
2508 	const u64 end = info->offset + info->bytes;
2509 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2510 	u64 bytes;
2511 
2512 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2513 	if (!bitmap)
2514 		return false;
2515 
2516 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2517 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2518 	if (j == i)
2519 		return false;
2520 	bytes = (j - i) * ctl->unit;
2521 	info->bytes += bytes;
2522 
2523 	/* See try_merge_free_space() comment. */
2524 	if (!btrfs_free_space_trimmed(bitmap))
2525 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2526 
2527 	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2528 
2529 	if (!bitmap->bytes)
2530 		free_bitmap(ctl, bitmap);
2531 
2532 	return true;
2533 }
2534 
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2535 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2536 				       struct btrfs_free_space *info,
2537 				       bool update_stat)
2538 {
2539 	struct btrfs_free_space *bitmap;
2540 	u64 bitmap_offset;
2541 	unsigned long i;
2542 	unsigned long j;
2543 	unsigned long prev_j;
2544 	u64 bytes;
2545 
2546 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2547 	/* If we're on a boundary, try the previous logical bitmap. */
2548 	if (bitmap_offset == info->offset) {
2549 		if (info->offset == 0)
2550 			return false;
2551 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2552 	}
2553 
2554 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2555 	if (!bitmap)
2556 		return false;
2557 
2558 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2559 	j = 0;
2560 	prev_j = (unsigned long)-1;
2561 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2562 		if (j > i)
2563 			break;
2564 		prev_j = j;
2565 	}
2566 	if (prev_j == i)
2567 		return false;
2568 
2569 	if (prev_j == (unsigned long)-1)
2570 		bytes = (i + 1) * ctl->unit;
2571 	else
2572 		bytes = (i - prev_j) * ctl->unit;
2573 
2574 	info->offset -= bytes;
2575 	info->bytes += bytes;
2576 
2577 	/* See try_merge_free_space() comment. */
2578 	if (!btrfs_free_space_trimmed(bitmap))
2579 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2580 
2581 	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2582 
2583 	if (!bitmap->bytes)
2584 		free_bitmap(ctl, bitmap);
2585 
2586 	return true;
2587 }
2588 
2589 /*
2590  * We prefer always to allocate from extent entries, both for clustered and
2591  * non-clustered allocation requests. So when attempting to add a new extent
2592  * entry, try to see if there's adjacent free space in bitmap entries, and if
2593  * there is, migrate that space from the bitmaps to the extent.
2594  * Like this we get better chances of satisfying space allocation requests
2595  * because we attempt to satisfy them based on a single cache entry, and never
2596  * on 2 or more entries - even if the entries represent a contiguous free space
2597  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2598  * ends).
2599  */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2600 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2601 			      struct btrfs_free_space *info,
2602 			      bool update_stat)
2603 {
2604 	/*
2605 	 * Only work with disconnected entries, as we can change their offset,
2606 	 * and must be extent entries.
2607 	 */
2608 	ASSERT(!info->bitmap);
2609 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2610 
2611 	if (ctl->total_bitmaps > 0) {
2612 		bool stole_end;
2613 		bool stole_front = false;
2614 
2615 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2616 		if (ctl->total_bitmaps > 0)
2617 			stole_front = steal_from_bitmap_to_front(ctl, info,
2618 								 update_stat);
2619 
2620 		if (stole_end || stole_front)
2621 			try_merge_free_space(ctl, info, update_stat);
2622 	}
2623 }
2624 
__btrfs_add_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2625 static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2626 			   u64 offset, u64 bytes,
2627 			   enum btrfs_trim_state trim_state)
2628 {
2629 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2630 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2631 	struct btrfs_free_space *info;
2632 	int ret = 0;
2633 	u64 filter_bytes = bytes;
2634 
2635 	ASSERT(!btrfs_is_zoned(fs_info));
2636 
2637 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2638 	if (!info)
2639 		return -ENOMEM;
2640 
2641 	info->offset = offset;
2642 	info->bytes = bytes;
2643 	info->trim_state = trim_state;
2644 	RB_CLEAR_NODE(&info->offset_index);
2645 	RB_CLEAR_NODE(&info->bytes_index);
2646 
2647 	spin_lock(&ctl->tree_lock);
2648 
2649 	if (try_merge_free_space(ctl, info, true))
2650 		goto link;
2651 
2652 	/*
2653 	 * There was no extent directly to the left or right of this new
2654 	 * extent then we know we're going to have to allocate a new extent, so
2655 	 * before we do that see if we need to drop this into a bitmap
2656 	 */
2657 	ret = insert_into_bitmap(ctl, info);
2658 	if (ret < 0) {
2659 		goto out;
2660 	} else if (ret) {
2661 		ret = 0;
2662 		goto out;
2663 	}
2664 link:
2665 	/*
2666 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2667 	 * going to add the new free space to existing bitmap entries - because
2668 	 * that would mean unnecessary work that would be reverted. Therefore
2669 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2670 	 */
2671 	steal_from_bitmap(ctl, info, true);
2672 
2673 	filter_bytes = max(filter_bytes, info->bytes);
2674 
2675 	ret = link_free_space(ctl, info);
2676 	if (ret)
2677 		kmem_cache_free(btrfs_free_space_cachep, info);
2678 out:
2679 	btrfs_discard_update_discardable(block_group);
2680 	spin_unlock(&ctl->tree_lock);
2681 
2682 	if (ret) {
2683 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2684 		ASSERT(ret != -EEXIST);
2685 	}
2686 
2687 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2688 		btrfs_discard_check_filter(block_group, filter_bytes);
2689 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2690 	}
2691 
2692 	return ret;
2693 }
2694 
__btrfs_add_free_space_zoned(struct btrfs_block_group * block_group,u64 bytenr,u64 size,bool used)2695 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2696 					u64 bytenr, u64 size, bool used)
2697 {
2698 	struct btrfs_space_info *sinfo = block_group->space_info;
2699 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2700 	u64 offset = bytenr - block_group->start;
2701 	u64 to_free, to_unusable;
2702 	int bg_reclaim_threshold = 0;
2703 	bool initial;
2704 	u64 reclaimable_unusable;
2705 
2706 	spin_lock(&block_group->lock);
2707 
2708 	initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
2709 	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2710 	if (!initial)
2711 		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2712 
2713 	if (!used)
2714 		to_free = size;
2715 	else if (initial)
2716 		to_free = block_group->zone_capacity;
2717 	else if (offset >= block_group->alloc_offset)
2718 		to_free = size;
2719 	else if (offset + size <= block_group->alloc_offset)
2720 		to_free = 0;
2721 	else
2722 		to_free = offset + size - block_group->alloc_offset;
2723 	to_unusable = size - to_free;
2724 
2725 	spin_lock(&ctl->tree_lock);
2726 	ctl->free_space += to_free;
2727 	spin_unlock(&ctl->tree_lock);
2728 	/*
2729 	 * If the block group is read-only, we should account freed space into
2730 	 * bytes_readonly.
2731 	 */
2732 	if (!block_group->ro) {
2733 		block_group->zone_unusable += to_unusable;
2734 		WARN_ON(block_group->zone_unusable > block_group->length);
2735 	}
2736 	if (!used) {
2737 		block_group->alloc_offset -= size;
2738 	}
2739 
2740 	reclaimable_unusable = block_group->zone_unusable -
2741 			       (block_group->length - block_group->zone_capacity);
2742 	/* All the region is now unusable. Mark it as unused and reclaim */
2743 	if (block_group->zone_unusable == block_group->length) {
2744 		btrfs_mark_bg_unused(block_group);
2745 	} else if (bg_reclaim_threshold &&
2746 		   reclaimable_unusable >=
2747 		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2748 		btrfs_mark_bg_to_reclaim(block_group);
2749 	}
2750 
2751 	spin_unlock(&block_group->lock);
2752 
2753 	return 0;
2754 }
2755 
btrfs_add_free_space(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2756 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2757 			 u64 bytenr, u64 size)
2758 {
2759 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2760 
2761 	if (btrfs_is_zoned(block_group->fs_info))
2762 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2763 						    true);
2764 
2765 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2766 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2767 
2768 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2769 }
2770 
btrfs_add_free_space_unused(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2771 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2772 				u64 bytenr, u64 size)
2773 {
2774 	if (btrfs_is_zoned(block_group->fs_info))
2775 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2776 						    false);
2777 
2778 	return btrfs_add_free_space(block_group, bytenr, size);
2779 }
2780 
2781 /*
2782  * This is a subtle distinction because when adding free space back in general,
2783  * we want it to be added as untrimmed for async. But in the case where we add
2784  * it on loading of a block group, we want to consider it trimmed.
2785  */
btrfs_add_free_space_async_trimmed(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2786 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2787 				       u64 bytenr, u64 size)
2788 {
2789 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2790 
2791 	if (btrfs_is_zoned(block_group->fs_info))
2792 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2793 						    true);
2794 
2795 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2796 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2797 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2798 
2799 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2800 }
2801 
btrfs_remove_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes)2802 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2803 			    u64 offset, u64 bytes)
2804 {
2805 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2806 	struct btrfs_free_space *info;
2807 	int ret;
2808 	bool re_search = false;
2809 
2810 	if (btrfs_is_zoned(block_group->fs_info)) {
2811 		/*
2812 		 * This can happen with conventional zones when replaying log.
2813 		 * Since the allocation info of tree-log nodes are not recorded
2814 		 * to the extent-tree, calculate_alloc_pointer() failed to
2815 		 * advance the allocation pointer after last allocated tree log
2816 		 * node blocks.
2817 		 *
2818 		 * This function is called from
2819 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2820 		 * Advance the pointer not to overwrite the tree-log nodes.
2821 		 */
2822 		if (block_group->start + block_group->alloc_offset <
2823 		    offset + bytes) {
2824 			block_group->alloc_offset =
2825 				offset + bytes - block_group->start;
2826 		}
2827 		return 0;
2828 	}
2829 
2830 	spin_lock(&ctl->tree_lock);
2831 
2832 again:
2833 	ret = 0;
2834 	if (!bytes)
2835 		goto out_lock;
2836 
2837 	info = tree_search_offset(ctl, offset, 0, 0);
2838 	if (!info) {
2839 		/*
2840 		 * oops didn't find an extent that matched the space we wanted
2841 		 * to remove, look for a bitmap instead
2842 		 */
2843 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2844 					  1, 0);
2845 		if (!info) {
2846 			/*
2847 			 * If we found a partial bit of our free space in a
2848 			 * bitmap but then couldn't find the other part this may
2849 			 * be a problem, so WARN about it.
2850 			 */
2851 			WARN_ON(re_search);
2852 			goto out_lock;
2853 		}
2854 	}
2855 
2856 	re_search = false;
2857 	if (!info->bitmap) {
2858 		unlink_free_space(ctl, info, true);
2859 		if (offset == info->offset) {
2860 			u64 to_free = min(bytes, info->bytes);
2861 
2862 			info->bytes -= to_free;
2863 			info->offset += to_free;
2864 			if (info->bytes) {
2865 				ret = link_free_space(ctl, info);
2866 				WARN_ON(ret);
2867 			} else {
2868 				kmem_cache_free(btrfs_free_space_cachep, info);
2869 			}
2870 
2871 			offset += to_free;
2872 			bytes -= to_free;
2873 			goto again;
2874 		} else {
2875 			u64 old_end = info->bytes + info->offset;
2876 
2877 			info->bytes = offset - info->offset;
2878 			ret = link_free_space(ctl, info);
2879 			WARN_ON(ret);
2880 			if (ret)
2881 				goto out_lock;
2882 
2883 			/* Not enough bytes in this entry to satisfy us */
2884 			if (old_end < offset + bytes) {
2885 				bytes -= old_end - offset;
2886 				offset = old_end;
2887 				goto again;
2888 			} else if (old_end == offset + bytes) {
2889 				/* all done */
2890 				goto out_lock;
2891 			}
2892 			spin_unlock(&ctl->tree_lock);
2893 
2894 			ret = __btrfs_add_free_space(block_group,
2895 						     offset + bytes,
2896 						     old_end - (offset + bytes),
2897 						     info->trim_state);
2898 			WARN_ON(ret);
2899 			goto out;
2900 		}
2901 	}
2902 
2903 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2904 	if (ret == -EAGAIN) {
2905 		re_search = true;
2906 		goto again;
2907 	}
2908 out_lock:
2909 	btrfs_discard_update_discardable(block_group);
2910 	spin_unlock(&ctl->tree_lock);
2911 out:
2912 	return ret;
2913 }
2914 
btrfs_dump_free_space(struct btrfs_block_group * block_group,u64 bytes)2915 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2916 			   u64 bytes)
2917 {
2918 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2919 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2920 	struct btrfs_free_space *info;
2921 	struct rb_node *n;
2922 	int count = 0;
2923 
2924 	/*
2925 	 * Zoned btrfs does not use free space tree and cluster. Just print
2926 	 * out the free space after the allocation offset.
2927 	 */
2928 	if (btrfs_is_zoned(fs_info)) {
2929 		btrfs_info(fs_info, "free space %llu active %d",
2930 			   block_group->zone_capacity - block_group->alloc_offset,
2931 			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2932 				    &block_group->runtime_flags));
2933 		return;
2934 	}
2935 
2936 	spin_lock(&ctl->tree_lock);
2937 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2938 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2939 		if (info->bytes >= bytes && !block_group->ro)
2940 			count++;
2941 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2942 			   info->offset, info->bytes, str_yes_no(info->bitmap));
2943 	}
2944 	spin_unlock(&ctl->tree_lock);
2945 	btrfs_info(fs_info, "block group has cluster?: %s",
2946 	       str_no_yes(list_empty(&block_group->cluster_list)));
2947 	btrfs_info(fs_info,
2948 		   "%d free space entries at or bigger than %llu bytes",
2949 		   count, bytes);
2950 }
2951 
btrfs_init_free_space_ctl(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)2952 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2953 			       struct btrfs_free_space_ctl *ctl)
2954 {
2955 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2956 
2957 	spin_lock_init(&ctl->tree_lock);
2958 	ctl->unit = fs_info->sectorsize;
2959 	ctl->start = block_group->start;
2960 	ctl->block_group = block_group;
2961 	ctl->op = &free_space_op;
2962 	ctl->free_space_bytes = RB_ROOT_CACHED;
2963 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2964 	mutex_init(&ctl->cache_writeout_mutex);
2965 
2966 	/*
2967 	 * we only want to have 32k of ram per block group for keeping
2968 	 * track of free space, and if we pass 1/2 of that we want to
2969 	 * start converting things over to using bitmaps
2970 	 */
2971 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2972 }
2973 
2974 /*
2975  * for a given cluster, put all of its extents back into the free
2976  * space cache.  If the block group passed doesn't match the block group
2977  * pointed to by the cluster, someone else raced in and freed the
2978  * cluster already.  In that case, we just return without changing anything
2979  */
__btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)2980 static void __btrfs_return_cluster_to_free_space(
2981 			     struct btrfs_block_group *block_group,
2982 			     struct btrfs_free_cluster *cluster)
2983 {
2984 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2985 	struct rb_node *node;
2986 
2987 	lockdep_assert_held(&ctl->tree_lock);
2988 
2989 	spin_lock(&cluster->lock);
2990 	if (cluster->block_group != block_group) {
2991 		spin_unlock(&cluster->lock);
2992 		return;
2993 	}
2994 
2995 	cluster->block_group = NULL;
2996 	cluster->window_start = 0;
2997 	list_del_init(&cluster->block_group_list);
2998 
2999 	node = rb_first(&cluster->root);
3000 	while (node) {
3001 		struct btrfs_free_space *entry;
3002 
3003 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3004 		node = rb_next(&entry->offset_index);
3005 		rb_erase(&entry->offset_index, &cluster->root);
3006 		RB_CLEAR_NODE(&entry->offset_index);
3007 
3008 		if (!entry->bitmap) {
3009 			/* Merging treats extents as if they were new */
3010 			if (!btrfs_free_space_trimmed(entry)) {
3011 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
3012 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3013 					entry->bytes;
3014 			}
3015 
3016 			try_merge_free_space(ctl, entry, false);
3017 			steal_from_bitmap(ctl, entry, false);
3018 
3019 			/* As we insert directly, update these statistics */
3020 			if (!btrfs_free_space_trimmed(entry)) {
3021 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3022 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3023 					entry->bytes;
3024 			}
3025 		}
3026 		tree_insert_offset(ctl, NULL, entry);
3027 		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3028 			      entry_less);
3029 	}
3030 	cluster->root = RB_ROOT;
3031 	spin_unlock(&cluster->lock);
3032 	btrfs_put_block_group(block_group);
3033 }
3034 
btrfs_remove_free_space_cache(struct btrfs_block_group * block_group)3035 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3036 {
3037 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3038 	struct btrfs_free_cluster *cluster;
3039 	struct list_head *head;
3040 
3041 	spin_lock(&ctl->tree_lock);
3042 	while ((head = block_group->cluster_list.next) !=
3043 	       &block_group->cluster_list) {
3044 		cluster = list_entry(head, struct btrfs_free_cluster,
3045 				     block_group_list);
3046 
3047 		WARN_ON(cluster->block_group != block_group);
3048 		__btrfs_return_cluster_to_free_space(block_group, cluster);
3049 
3050 		cond_resched_lock(&ctl->tree_lock);
3051 	}
3052 	__btrfs_remove_free_space_cache(ctl);
3053 	btrfs_discard_update_discardable(block_group);
3054 	spin_unlock(&ctl->tree_lock);
3055 
3056 }
3057 
3058 /*
3059  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3060  */
btrfs_is_free_space_trimmed(struct btrfs_block_group * block_group)3061 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3062 {
3063 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3064 	struct btrfs_free_space *info;
3065 	struct rb_node *node;
3066 	bool ret = true;
3067 
3068 	spin_lock(&ctl->tree_lock);
3069 	node = rb_first(&ctl->free_space_offset);
3070 
3071 	while (node) {
3072 		info = rb_entry(node, struct btrfs_free_space, offset_index);
3073 
3074 		if (!btrfs_free_space_trimmed(info)) {
3075 			ret = false;
3076 			break;
3077 		}
3078 
3079 		node = rb_next(node);
3080 	}
3081 
3082 	spin_unlock(&ctl->tree_lock);
3083 	return ret;
3084 }
3085 
btrfs_find_space_for_alloc(struct btrfs_block_group * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)3086 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3087 			       u64 offset, u64 bytes, u64 empty_size,
3088 			       u64 *max_extent_size)
3089 {
3090 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3091 	struct btrfs_discard_ctl *discard_ctl =
3092 					&block_group->fs_info->discard_ctl;
3093 	struct btrfs_free_space *entry = NULL;
3094 	u64 bytes_search = bytes + empty_size;
3095 	u64 ret = 0;
3096 	u64 align_gap = 0;
3097 	u64 align_gap_len = 0;
3098 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3099 	bool use_bytes_index = (offset == block_group->start);
3100 
3101 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3102 
3103 	spin_lock(&ctl->tree_lock);
3104 	entry = find_free_space(ctl, &offset, &bytes_search,
3105 				block_group->full_stripe_len, max_extent_size,
3106 				use_bytes_index);
3107 	if (!entry)
3108 		goto out;
3109 
3110 	ret = offset;
3111 	if (entry->bitmap) {
3112 		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3113 
3114 		if (!btrfs_free_space_trimmed(entry))
3115 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3116 
3117 		if (!entry->bytes)
3118 			free_bitmap(ctl, entry);
3119 	} else {
3120 		unlink_free_space(ctl, entry, true);
3121 		align_gap_len = offset - entry->offset;
3122 		align_gap = entry->offset;
3123 		align_gap_trim_state = entry->trim_state;
3124 
3125 		if (!btrfs_free_space_trimmed(entry))
3126 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3127 
3128 		entry->offset = offset + bytes;
3129 		WARN_ON(entry->bytes < bytes + align_gap_len);
3130 
3131 		entry->bytes -= bytes + align_gap_len;
3132 		if (!entry->bytes)
3133 			kmem_cache_free(btrfs_free_space_cachep, entry);
3134 		else
3135 			link_free_space(ctl, entry);
3136 	}
3137 out:
3138 	btrfs_discard_update_discardable(block_group);
3139 	spin_unlock(&ctl->tree_lock);
3140 
3141 	if (align_gap_len)
3142 		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3143 				       align_gap_trim_state);
3144 	return ret;
3145 }
3146 
3147 /*
3148  * given a cluster, put all of its extents back into the free space
3149  * cache.  If a block group is passed, this function will only free
3150  * a cluster that belongs to the passed block group.
3151  *
3152  * Otherwise, it'll get a reference on the block group pointed to by the
3153  * cluster and remove the cluster from it.
3154  */
btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)3155 void btrfs_return_cluster_to_free_space(
3156 			       struct btrfs_block_group *block_group,
3157 			       struct btrfs_free_cluster *cluster)
3158 {
3159 	struct btrfs_free_space_ctl *ctl;
3160 
3161 	/* first, get a safe pointer to the block group */
3162 	spin_lock(&cluster->lock);
3163 	if (!block_group) {
3164 		block_group = cluster->block_group;
3165 		if (!block_group) {
3166 			spin_unlock(&cluster->lock);
3167 			return;
3168 		}
3169 	} else if (cluster->block_group != block_group) {
3170 		/* someone else has already freed it don't redo their work */
3171 		spin_unlock(&cluster->lock);
3172 		return;
3173 	}
3174 	btrfs_get_block_group(block_group);
3175 	spin_unlock(&cluster->lock);
3176 
3177 	ctl = block_group->free_space_ctl;
3178 
3179 	/* now return any extents the cluster had on it */
3180 	spin_lock(&ctl->tree_lock);
3181 	__btrfs_return_cluster_to_free_space(block_group, cluster);
3182 	spin_unlock(&ctl->tree_lock);
3183 
3184 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3185 
3186 	/* finally drop our ref */
3187 	btrfs_put_block_group(block_group);
3188 }
3189 
btrfs_alloc_from_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)3190 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3191 				   struct btrfs_free_cluster *cluster,
3192 				   struct btrfs_free_space *entry,
3193 				   u64 bytes, u64 min_start,
3194 				   u64 *max_extent_size)
3195 {
3196 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3197 	int err;
3198 	u64 search_start = cluster->window_start;
3199 	u64 search_bytes = bytes;
3200 	u64 ret = 0;
3201 
3202 	search_start = min_start;
3203 	search_bytes = bytes;
3204 
3205 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3206 	if (err) {
3207 		*max_extent_size = max(get_max_extent_size(entry),
3208 				       *max_extent_size);
3209 		return 0;
3210 	}
3211 
3212 	ret = search_start;
3213 	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3214 
3215 	return ret;
3216 }
3217 
3218 /*
3219  * given a cluster, try to allocate 'bytes' from it, returns 0
3220  * if it couldn't find anything suitably large, or a logical disk offset
3221  * if things worked out
3222  */
btrfs_alloc_from_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)3223 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3224 			     struct btrfs_free_cluster *cluster, u64 bytes,
3225 			     u64 min_start, u64 *max_extent_size)
3226 {
3227 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3228 	struct btrfs_discard_ctl *discard_ctl =
3229 					&block_group->fs_info->discard_ctl;
3230 	struct btrfs_free_space *entry = NULL;
3231 	struct rb_node *node;
3232 	u64 ret = 0;
3233 
3234 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3235 
3236 	spin_lock(&cluster->lock);
3237 	if (bytes > cluster->max_size)
3238 		goto out;
3239 
3240 	if (cluster->block_group != block_group)
3241 		goto out;
3242 
3243 	node = rb_first(&cluster->root);
3244 	if (!node)
3245 		goto out;
3246 
3247 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3248 	while (1) {
3249 		if (entry->bytes < bytes)
3250 			*max_extent_size = max(get_max_extent_size(entry),
3251 					       *max_extent_size);
3252 
3253 		if (entry->bytes < bytes ||
3254 		    (!entry->bitmap && entry->offset < min_start)) {
3255 			node = rb_next(&entry->offset_index);
3256 			if (!node)
3257 				break;
3258 			entry = rb_entry(node, struct btrfs_free_space,
3259 					 offset_index);
3260 			continue;
3261 		}
3262 
3263 		if (entry->bitmap) {
3264 			ret = btrfs_alloc_from_bitmap(block_group,
3265 						      cluster, entry, bytes,
3266 						      cluster->window_start,
3267 						      max_extent_size);
3268 			if (ret == 0) {
3269 				node = rb_next(&entry->offset_index);
3270 				if (!node)
3271 					break;
3272 				entry = rb_entry(node, struct btrfs_free_space,
3273 						 offset_index);
3274 				continue;
3275 			}
3276 			cluster->window_start += bytes;
3277 		} else {
3278 			ret = entry->offset;
3279 
3280 			entry->offset += bytes;
3281 			entry->bytes -= bytes;
3282 		}
3283 
3284 		break;
3285 	}
3286 out:
3287 	spin_unlock(&cluster->lock);
3288 
3289 	if (!ret)
3290 		return 0;
3291 
3292 	spin_lock(&ctl->tree_lock);
3293 
3294 	if (!btrfs_free_space_trimmed(entry))
3295 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3296 
3297 	ctl->free_space -= bytes;
3298 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3299 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3300 
3301 	spin_lock(&cluster->lock);
3302 	if (entry->bytes == 0) {
3303 		rb_erase(&entry->offset_index, &cluster->root);
3304 		ctl->free_extents--;
3305 		if (entry->bitmap) {
3306 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3307 					entry->bitmap);
3308 			ctl->total_bitmaps--;
3309 			recalculate_thresholds(ctl);
3310 		} else if (!btrfs_free_space_trimmed(entry)) {
3311 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3312 		}
3313 		kmem_cache_free(btrfs_free_space_cachep, entry);
3314 	}
3315 
3316 	spin_unlock(&cluster->lock);
3317 	spin_unlock(&ctl->tree_lock);
3318 
3319 	return ret;
3320 }
3321 
btrfs_bitmap_cluster(struct btrfs_block_group * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3322 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3323 				struct btrfs_free_space *entry,
3324 				struct btrfs_free_cluster *cluster,
3325 				u64 offset, u64 bytes,
3326 				u64 cont1_bytes, u64 min_bytes)
3327 {
3328 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3329 	unsigned long next_zero;
3330 	unsigned long i;
3331 	unsigned long want_bits;
3332 	unsigned long min_bits;
3333 	unsigned long found_bits;
3334 	unsigned long max_bits = 0;
3335 	unsigned long start = 0;
3336 	unsigned long total_found = 0;
3337 	int ret;
3338 
3339 	lockdep_assert_held(&ctl->tree_lock);
3340 
3341 	i = offset_to_bit(entry->offset, ctl->unit,
3342 			  max_t(u64, offset, entry->offset));
3343 	want_bits = bytes_to_bits(bytes, ctl->unit);
3344 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3345 
3346 	/*
3347 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3348 	 * fragmented.
3349 	 */
3350 	if (entry->max_extent_size &&
3351 	    entry->max_extent_size < cont1_bytes)
3352 		return -ENOSPC;
3353 again:
3354 	found_bits = 0;
3355 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3356 		next_zero = find_next_zero_bit(entry->bitmap,
3357 					       BITS_PER_BITMAP, i);
3358 		if (next_zero - i >= min_bits) {
3359 			found_bits = next_zero - i;
3360 			if (found_bits > max_bits)
3361 				max_bits = found_bits;
3362 			break;
3363 		}
3364 		if (next_zero - i > max_bits)
3365 			max_bits = next_zero - i;
3366 		i = next_zero;
3367 	}
3368 
3369 	if (!found_bits) {
3370 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3371 		return -ENOSPC;
3372 	}
3373 
3374 	if (!total_found) {
3375 		start = i;
3376 		cluster->max_size = 0;
3377 	}
3378 
3379 	total_found += found_bits;
3380 
3381 	if (cluster->max_size < found_bits * ctl->unit)
3382 		cluster->max_size = found_bits * ctl->unit;
3383 
3384 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3385 		i = next_zero + 1;
3386 		goto again;
3387 	}
3388 
3389 	cluster->window_start = start * ctl->unit + entry->offset;
3390 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3391 	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3392 
3393 	/*
3394 	 * We need to know if we're currently on the normal space index when we
3395 	 * manipulate the bitmap so that we know we need to remove and re-insert
3396 	 * it into the space_index tree.  Clear the bytes_index node here so the
3397 	 * bitmap manipulation helpers know not to mess with the space_index
3398 	 * until this bitmap entry is added back into the normal cache.
3399 	 */
3400 	RB_CLEAR_NODE(&entry->bytes_index);
3401 
3402 	ret = tree_insert_offset(ctl, cluster, entry);
3403 	ASSERT(!ret); /* -EEXIST; Logic error */
3404 
3405 	trace_btrfs_setup_cluster(block_group, cluster,
3406 				  total_found * ctl->unit, 1);
3407 	return 0;
3408 }
3409 
3410 /*
3411  * This searches the block group for just extents to fill the cluster with.
3412  * Try to find a cluster with at least bytes total bytes, at least one
3413  * extent of cont1_bytes, and other clusters of at least min_bytes.
3414  */
3415 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3416 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3417 			struct btrfs_free_cluster *cluster,
3418 			struct list_head *bitmaps, u64 offset, u64 bytes,
3419 			u64 cont1_bytes, u64 min_bytes)
3420 {
3421 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3422 	struct btrfs_free_space *first = NULL;
3423 	struct btrfs_free_space *entry = NULL;
3424 	struct btrfs_free_space *last;
3425 	struct rb_node *node;
3426 	u64 window_free;
3427 	u64 max_extent;
3428 	u64 total_size = 0;
3429 
3430 	lockdep_assert_held(&ctl->tree_lock);
3431 
3432 	entry = tree_search_offset(ctl, offset, 0, 1);
3433 	if (!entry)
3434 		return -ENOSPC;
3435 
3436 	/*
3437 	 * We don't want bitmaps, so just move along until we find a normal
3438 	 * extent entry.
3439 	 */
3440 	while (entry->bitmap || entry->bytes < min_bytes) {
3441 		if (entry->bitmap && list_empty(&entry->list))
3442 			list_add_tail(&entry->list, bitmaps);
3443 		node = rb_next(&entry->offset_index);
3444 		if (!node)
3445 			return -ENOSPC;
3446 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3447 	}
3448 
3449 	window_free = entry->bytes;
3450 	max_extent = entry->bytes;
3451 	first = entry;
3452 	last = entry;
3453 
3454 	for (node = rb_next(&entry->offset_index); node;
3455 	     node = rb_next(&entry->offset_index)) {
3456 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3457 
3458 		if (entry->bitmap) {
3459 			if (list_empty(&entry->list))
3460 				list_add_tail(&entry->list, bitmaps);
3461 			continue;
3462 		}
3463 
3464 		if (entry->bytes < min_bytes)
3465 			continue;
3466 
3467 		last = entry;
3468 		window_free += entry->bytes;
3469 		if (entry->bytes > max_extent)
3470 			max_extent = entry->bytes;
3471 	}
3472 
3473 	if (window_free < bytes || max_extent < cont1_bytes)
3474 		return -ENOSPC;
3475 
3476 	cluster->window_start = first->offset;
3477 
3478 	node = &first->offset_index;
3479 
3480 	/*
3481 	 * now we've found our entries, pull them out of the free space
3482 	 * cache and put them into the cluster rbtree
3483 	 */
3484 	do {
3485 		int ret;
3486 
3487 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3488 		node = rb_next(&entry->offset_index);
3489 		if (entry->bitmap || entry->bytes < min_bytes)
3490 			continue;
3491 
3492 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3493 		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3494 		ret = tree_insert_offset(ctl, cluster, entry);
3495 		total_size += entry->bytes;
3496 		ASSERT(!ret); /* -EEXIST; Logic error */
3497 	} while (node && entry != last);
3498 
3499 	cluster->max_size = max_extent;
3500 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3501 	return 0;
3502 }
3503 
3504 /*
3505  * This specifically looks for bitmaps that may work in the cluster, we assume
3506  * that we have already failed to find extents that will work.
3507  */
3508 static noinline int
setup_cluster_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3509 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3510 		     struct btrfs_free_cluster *cluster,
3511 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3512 		     u64 cont1_bytes, u64 min_bytes)
3513 {
3514 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3515 	struct btrfs_free_space *entry = NULL;
3516 	int ret = -ENOSPC;
3517 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3518 
3519 	if (ctl->total_bitmaps == 0)
3520 		return -ENOSPC;
3521 
3522 	/*
3523 	 * The bitmap that covers offset won't be in the list unless offset
3524 	 * is just its start offset.
3525 	 */
3526 	if (!list_empty(bitmaps))
3527 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3528 
3529 	if (!entry || entry->offset != bitmap_offset) {
3530 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3531 		if (entry && list_empty(&entry->list))
3532 			list_add(&entry->list, bitmaps);
3533 	}
3534 
3535 	list_for_each_entry(entry, bitmaps, list) {
3536 		if (entry->bytes < bytes)
3537 			continue;
3538 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3539 					   bytes, cont1_bytes, min_bytes);
3540 		if (!ret)
3541 			return 0;
3542 	}
3543 
3544 	/*
3545 	 * The bitmaps list has all the bitmaps that record free space
3546 	 * starting after offset, so no more search is required.
3547 	 */
3548 	return -ENOSPC;
3549 }
3550 
3551 /*
3552  * here we try to find a cluster of blocks in a block group.  The goal
3553  * is to find at least bytes+empty_size.
3554  * We might not find them all in one contiguous area.
3555  *
3556  * returns zero and sets up cluster if things worked out, otherwise
3557  * it returns -enospc
3558  */
btrfs_find_space_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3559 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3560 			     struct btrfs_free_cluster *cluster,
3561 			     u64 offset, u64 bytes, u64 empty_size)
3562 {
3563 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3564 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3565 	struct btrfs_free_space *entry, *tmp;
3566 	LIST_HEAD(bitmaps);
3567 	u64 min_bytes;
3568 	u64 cont1_bytes;
3569 	int ret;
3570 
3571 	/*
3572 	 * Choose the minimum extent size we'll require for this
3573 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3574 	 * For metadata, allow allocates with smaller extents.  For
3575 	 * data, keep it dense.
3576 	 */
3577 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3578 		cont1_bytes = bytes + empty_size;
3579 		min_bytes = cont1_bytes;
3580 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3581 		cont1_bytes = bytes;
3582 		min_bytes = fs_info->sectorsize;
3583 	} else {
3584 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3585 		min_bytes = fs_info->sectorsize;
3586 	}
3587 
3588 	spin_lock(&ctl->tree_lock);
3589 
3590 	/*
3591 	 * If we know we don't have enough space to make a cluster don't even
3592 	 * bother doing all the work to try and find one.
3593 	 */
3594 	if (ctl->free_space < bytes) {
3595 		spin_unlock(&ctl->tree_lock);
3596 		return -ENOSPC;
3597 	}
3598 
3599 	spin_lock(&cluster->lock);
3600 
3601 	/* someone already found a cluster, hooray */
3602 	if (cluster->block_group) {
3603 		ret = 0;
3604 		goto out;
3605 	}
3606 
3607 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3608 				 min_bytes);
3609 
3610 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3611 				      bytes + empty_size,
3612 				      cont1_bytes, min_bytes);
3613 	if (ret)
3614 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3615 					   offset, bytes + empty_size,
3616 					   cont1_bytes, min_bytes);
3617 
3618 	/* Clear our temporary list */
3619 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3620 		list_del_init(&entry->list);
3621 
3622 	if (!ret) {
3623 		btrfs_get_block_group(block_group);
3624 		list_add_tail(&cluster->block_group_list,
3625 			      &block_group->cluster_list);
3626 		cluster->block_group = block_group;
3627 	} else {
3628 		trace_btrfs_failed_cluster_setup(block_group);
3629 	}
3630 out:
3631 	spin_unlock(&cluster->lock);
3632 	spin_unlock(&ctl->tree_lock);
3633 
3634 	return ret;
3635 }
3636 
3637 /*
3638  * simple code to zero out a cluster
3639  */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3640 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3641 {
3642 	spin_lock_init(&cluster->lock);
3643 	spin_lock_init(&cluster->refill_lock);
3644 	cluster->root = RB_ROOT;
3645 	cluster->max_size = 0;
3646 	cluster->fragmented = false;
3647 	INIT_LIST_HEAD(&cluster->block_group_list);
3648 	cluster->block_group = NULL;
3649 }
3650 
do_trimming(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,enum btrfs_trim_state reserved_trim_state,struct btrfs_trim_range * trim_entry)3651 static int do_trimming(struct btrfs_block_group *block_group,
3652 		       u64 *total_trimmed, u64 start, u64 bytes,
3653 		       u64 reserved_start, u64 reserved_bytes,
3654 		       enum btrfs_trim_state reserved_trim_state,
3655 		       struct btrfs_trim_range *trim_entry)
3656 {
3657 	struct btrfs_space_info *space_info = block_group->space_info;
3658 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3659 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3660 	int ret;
3661 	int update = 0;
3662 	const u64 end = start + bytes;
3663 	const u64 reserved_end = reserved_start + reserved_bytes;
3664 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3665 	u64 trimmed = 0;
3666 
3667 	spin_lock(&space_info->lock);
3668 	spin_lock(&block_group->lock);
3669 	if (!block_group->ro) {
3670 		block_group->reserved += reserved_bytes;
3671 		space_info->bytes_reserved += reserved_bytes;
3672 		update = 1;
3673 	}
3674 	spin_unlock(&block_group->lock);
3675 	spin_unlock(&space_info->lock);
3676 
3677 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3678 	if (!ret) {
3679 		*total_trimmed += trimmed;
3680 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3681 	}
3682 
3683 	mutex_lock(&ctl->cache_writeout_mutex);
3684 	if (reserved_start < start)
3685 		__btrfs_add_free_space(block_group, reserved_start,
3686 				       start - reserved_start,
3687 				       reserved_trim_state);
3688 	if (end < reserved_end)
3689 		__btrfs_add_free_space(block_group, end, reserved_end - end,
3690 				       reserved_trim_state);
3691 	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3692 	list_del(&trim_entry->list);
3693 	mutex_unlock(&ctl->cache_writeout_mutex);
3694 
3695 	if (update) {
3696 		spin_lock(&space_info->lock);
3697 		spin_lock(&block_group->lock);
3698 		if (block_group->ro)
3699 			space_info->bytes_readonly += reserved_bytes;
3700 		block_group->reserved -= reserved_bytes;
3701 		space_info->bytes_reserved -= reserved_bytes;
3702 		spin_unlock(&block_group->lock);
3703 		spin_unlock(&space_info->lock);
3704 	}
3705 
3706 	return ret;
3707 }
3708 
3709 /*
3710  * If @async is set, then we will trim 1 region and return.
3711  */
trim_no_bitmap(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,bool async)3712 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3713 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3714 			  bool async)
3715 {
3716 	struct btrfs_discard_ctl *discard_ctl =
3717 					&block_group->fs_info->discard_ctl;
3718 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3719 	struct btrfs_free_space *entry;
3720 	struct rb_node *node;
3721 	int ret = 0;
3722 	u64 extent_start;
3723 	u64 extent_bytes;
3724 	enum btrfs_trim_state extent_trim_state;
3725 	u64 bytes;
3726 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3727 
3728 	while (start < end) {
3729 		struct btrfs_trim_range trim_entry;
3730 
3731 		mutex_lock(&ctl->cache_writeout_mutex);
3732 		spin_lock(&ctl->tree_lock);
3733 
3734 		if (ctl->free_space < minlen)
3735 			goto out_unlock;
3736 
3737 		entry = tree_search_offset(ctl, start, 0, 1);
3738 		if (!entry)
3739 			goto out_unlock;
3740 
3741 		/* Skip bitmaps and if async, already trimmed entries */
3742 		while (entry->bitmap ||
3743 		       (async && btrfs_free_space_trimmed(entry))) {
3744 			node = rb_next(&entry->offset_index);
3745 			if (!node)
3746 				goto out_unlock;
3747 			entry = rb_entry(node, struct btrfs_free_space,
3748 					 offset_index);
3749 		}
3750 
3751 		if (entry->offset >= end)
3752 			goto out_unlock;
3753 
3754 		extent_start = entry->offset;
3755 		extent_bytes = entry->bytes;
3756 		extent_trim_state = entry->trim_state;
3757 		if (async) {
3758 			start = entry->offset;
3759 			bytes = entry->bytes;
3760 			if (bytes < minlen) {
3761 				spin_unlock(&ctl->tree_lock);
3762 				mutex_unlock(&ctl->cache_writeout_mutex);
3763 				goto next;
3764 			}
3765 			unlink_free_space(ctl, entry, true);
3766 			/*
3767 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3768 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3769 			 * X when we come back around.  So trim it now.
3770 			 */
3771 			if (max_discard_size &&
3772 			    bytes >= (max_discard_size +
3773 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3774 				bytes = max_discard_size;
3775 				extent_bytes = max_discard_size;
3776 				entry->offset += max_discard_size;
3777 				entry->bytes -= max_discard_size;
3778 				link_free_space(ctl, entry);
3779 			} else {
3780 				kmem_cache_free(btrfs_free_space_cachep, entry);
3781 			}
3782 		} else {
3783 			start = max(start, extent_start);
3784 			bytes = min(extent_start + extent_bytes, end) - start;
3785 			if (bytes < minlen) {
3786 				spin_unlock(&ctl->tree_lock);
3787 				mutex_unlock(&ctl->cache_writeout_mutex);
3788 				goto next;
3789 			}
3790 
3791 			unlink_free_space(ctl, entry, true);
3792 			kmem_cache_free(btrfs_free_space_cachep, entry);
3793 		}
3794 
3795 		spin_unlock(&ctl->tree_lock);
3796 		trim_entry.start = extent_start;
3797 		trim_entry.bytes = extent_bytes;
3798 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3799 		mutex_unlock(&ctl->cache_writeout_mutex);
3800 
3801 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3802 				  extent_start, extent_bytes, extent_trim_state,
3803 				  &trim_entry);
3804 		if (ret) {
3805 			block_group->discard_cursor = start + bytes;
3806 			break;
3807 		}
3808 next:
3809 		start += bytes;
3810 		block_group->discard_cursor = start;
3811 		if (async && *total_trimmed)
3812 			break;
3813 
3814 		if (btrfs_trim_interrupted()) {
3815 			ret = -ERESTARTSYS;
3816 			break;
3817 		}
3818 
3819 		cond_resched();
3820 	}
3821 
3822 	return ret;
3823 
3824 out_unlock:
3825 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3826 	spin_unlock(&ctl->tree_lock);
3827 	mutex_unlock(&ctl->cache_writeout_mutex);
3828 
3829 	return ret;
3830 }
3831 
3832 /*
3833  * If we break out of trimming a bitmap prematurely, we should reset the
3834  * trimming bit.  In a rather contrieved case, it's possible to race here so
3835  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3836  *
3837  * start = start of bitmap
3838  * end = near end of bitmap
3839  *
3840  * Thread 1:			Thread 2:
3841  * trim_bitmaps(start)
3842  *				trim_bitmaps(end)
3843  *				end_trimming_bitmap()
3844  * reset_trimming_bitmap()
3845  */
reset_trimming_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)3846 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3847 {
3848 	struct btrfs_free_space *entry;
3849 
3850 	spin_lock(&ctl->tree_lock);
3851 	entry = tree_search_offset(ctl, offset, 1, 0);
3852 	if (entry) {
3853 		if (btrfs_free_space_trimmed(entry)) {
3854 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3855 				entry->bitmap_extents;
3856 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3857 		}
3858 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3859 	}
3860 
3861 	spin_unlock(&ctl->tree_lock);
3862 }
3863 
end_trimming_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * entry)3864 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3865 				struct btrfs_free_space *entry)
3866 {
3867 	if (btrfs_free_space_trimming_bitmap(entry)) {
3868 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3869 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3870 			entry->bitmap_extents;
3871 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3872 	}
3873 }
3874 
3875 /*
3876  * If @async is set, then we will trim 1 region and return.
3877  */
trim_bitmaps(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)3878 static int trim_bitmaps(struct btrfs_block_group *block_group,
3879 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3880 			u64 maxlen, bool async)
3881 {
3882 	struct btrfs_discard_ctl *discard_ctl =
3883 					&block_group->fs_info->discard_ctl;
3884 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3885 	struct btrfs_free_space *entry;
3886 	int ret = 0;
3887 	int ret2;
3888 	u64 bytes;
3889 	u64 offset = offset_to_bitmap(ctl, start);
3890 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3891 
3892 	while (offset < end) {
3893 		bool next_bitmap = false;
3894 		struct btrfs_trim_range trim_entry;
3895 
3896 		mutex_lock(&ctl->cache_writeout_mutex);
3897 		spin_lock(&ctl->tree_lock);
3898 
3899 		if (ctl->free_space < minlen) {
3900 			block_group->discard_cursor =
3901 				btrfs_block_group_end(block_group);
3902 			spin_unlock(&ctl->tree_lock);
3903 			mutex_unlock(&ctl->cache_writeout_mutex);
3904 			break;
3905 		}
3906 
3907 		entry = tree_search_offset(ctl, offset, 1, 0);
3908 		/*
3909 		 * Bitmaps are marked trimmed lossily now to prevent constant
3910 		 * discarding of the same bitmap (the reason why we are bound
3911 		 * by the filters).  So, retrim the block group bitmaps when we
3912 		 * are preparing to punt to the unused_bgs list.  This uses
3913 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3914 		 * which is the only discard index which sets minlen to 0.
3915 		 */
3916 		if (!entry || (async && minlen && start == offset &&
3917 			       btrfs_free_space_trimmed(entry))) {
3918 			spin_unlock(&ctl->tree_lock);
3919 			mutex_unlock(&ctl->cache_writeout_mutex);
3920 			next_bitmap = true;
3921 			goto next;
3922 		}
3923 
3924 		/*
3925 		 * Async discard bitmap trimming begins at by setting the start
3926 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3927 		 * start of the bitmap.  This lets us know we are fully
3928 		 * scanning the bitmap rather than only some portion of it.
3929 		 */
3930 		if (start == offset)
3931 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3932 
3933 		bytes = minlen;
3934 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3935 		if (ret2 || start >= end) {
3936 			/*
3937 			 * We lossily consider a bitmap trimmed if we only skip
3938 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3939 			 */
3940 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3941 				end_trimming_bitmap(ctl, entry);
3942 			else
3943 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3944 			spin_unlock(&ctl->tree_lock);
3945 			mutex_unlock(&ctl->cache_writeout_mutex);
3946 			next_bitmap = true;
3947 			goto next;
3948 		}
3949 
3950 		/*
3951 		 * We already trimmed a region, but are using the locking above
3952 		 * to reset the trim_state.
3953 		 */
3954 		if (async && *total_trimmed) {
3955 			spin_unlock(&ctl->tree_lock);
3956 			mutex_unlock(&ctl->cache_writeout_mutex);
3957 			goto out;
3958 		}
3959 
3960 		bytes = min(bytes, end - start);
3961 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3962 			spin_unlock(&ctl->tree_lock);
3963 			mutex_unlock(&ctl->cache_writeout_mutex);
3964 			goto next;
3965 		}
3966 
3967 		/*
3968 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3969 		 * If X < @minlen, we won't trim X when we come back around.
3970 		 * So trim it now.  We differ here from trimming extents as we
3971 		 * don't keep individual state per bit.
3972 		 */
3973 		if (async &&
3974 		    max_discard_size &&
3975 		    bytes > (max_discard_size + minlen))
3976 			bytes = max_discard_size;
3977 
3978 		bitmap_clear_bits(ctl, entry, start, bytes, true);
3979 		if (entry->bytes == 0)
3980 			free_bitmap(ctl, entry);
3981 
3982 		spin_unlock(&ctl->tree_lock);
3983 		trim_entry.start = start;
3984 		trim_entry.bytes = bytes;
3985 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3986 		mutex_unlock(&ctl->cache_writeout_mutex);
3987 
3988 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3989 				  start, bytes, 0, &trim_entry);
3990 		if (ret) {
3991 			reset_trimming_bitmap(ctl, offset);
3992 			block_group->discard_cursor =
3993 				btrfs_block_group_end(block_group);
3994 			break;
3995 		}
3996 next:
3997 		if (next_bitmap) {
3998 			offset += BITS_PER_BITMAP * ctl->unit;
3999 			start = offset;
4000 		} else {
4001 			start += bytes;
4002 		}
4003 		block_group->discard_cursor = start;
4004 
4005 		if (btrfs_trim_interrupted()) {
4006 			if (start != offset)
4007 				reset_trimming_bitmap(ctl, offset);
4008 			ret = -ERESTARTSYS;
4009 			break;
4010 		}
4011 
4012 		cond_resched();
4013 	}
4014 
4015 	if (offset >= end)
4016 		block_group->discard_cursor = end;
4017 
4018 out:
4019 	return ret;
4020 }
4021 
btrfs_trim_block_group(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)4022 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4023 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4024 {
4025 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4026 	int ret;
4027 	u64 rem = 0;
4028 
4029 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4030 
4031 	*trimmed = 0;
4032 
4033 	spin_lock(&block_group->lock);
4034 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4035 		spin_unlock(&block_group->lock);
4036 		return 0;
4037 	}
4038 	btrfs_freeze_block_group(block_group);
4039 	spin_unlock(&block_group->lock);
4040 
4041 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4042 	if (ret)
4043 		goto out;
4044 
4045 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4046 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4047 	/* If we ended in the middle of a bitmap, reset the trimming flag */
4048 	if (rem)
4049 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4050 out:
4051 	btrfs_unfreeze_block_group(block_group);
4052 	return ret;
4053 }
4054 
btrfs_trim_block_group_extents(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,bool async)4055 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4056 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4057 				   bool async)
4058 {
4059 	int ret;
4060 
4061 	*trimmed = 0;
4062 
4063 	spin_lock(&block_group->lock);
4064 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4065 		spin_unlock(&block_group->lock);
4066 		return 0;
4067 	}
4068 	btrfs_freeze_block_group(block_group);
4069 	spin_unlock(&block_group->lock);
4070 
4071 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4072 	btrfs_unfreeze_block_group(block_group);
4073 
4074 	return ret;
4075 }
4076 
btrfs_trim_block_group_bitmaps(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)4077 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4078 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4079 				   u64 maxlen, bool async)
4080 {
4081 	int ret;
4082 
4083 	*trimmed = 0;
4084 
4085 	spin_lock(&block_group->lock);
4086 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4087 		spin_unlock(&block_group->lock);
4088 		return 0;
4089 	}
4090 	btrfs_freeze_block_group(block_group);
4091 	spin_unlock(&block_group->lock);
4092 
4093 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4094 			   async);
4095 
4096 	btrfs_unfreeze_block_group(block_group);
4097 
4098 	return ret;
4099 }
4100 
btrfs_free_space_cache_v1_active(struct btrfs_fs_info * fs_info)4101 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4102 {
4103 	return btrfs_super_cache_generation(fs_info->super_copy);
4104 }
4105 
cleanup_free_space_cache_v1(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans)4106 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4107 				       struct btrfs_trans_handle *trans)
4108 {
4109 	struct btrfs_block_group *block_group;
4110 	struct rb_node *node;
4111 	int ret = 0;
4112 
4113 	btrfs_info(fs_info, "cleaning free space cache v1");
4114 
4115 	node = rb_first_cached(&fs_info->block_group_cache_tree);
4116 	while (node) {
4117 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4118 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4119 		if (ret)
4120 			goto out;
4121 		node = rb_next(node);
4122 	}
4123 out:
4124 	return ret;
4125 }
4126 
btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info * fs_info,bool active)4127 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4128 {
4129 	struct btrfs_trans_handle *trans;
4130 	int ret;
4131 
4132 	/*
4133 	 * update_super_roots will appropriately set or unset
4134 	 * super_copy->cache_generation based on SPACE_CACHE and
4135 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4136 	 * transaction commit whether we are enabling space cache v1 and don't
4137 	 * have any other work to do, or are disabling it and removing free
4138 	 * space inodes.
4139 	 */
4140 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4141 	if (IS_ERR(trans))
4142 		return PTR_ERR(trans);
4143 
4144 	if (!active) {
4145 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4146 		ret = cleanup_free_space_cache_v1(fs_info, trans);
4147 		if (ret) {
4148 			btrfs_abort_transaction(trans, ret);
4149 			btrfs_end_transaction(trans);
4150 			goto out;
4151 		}
4152 	}
4153 
4154 	ret = btrfs_commit_transaction(trans);
4155 out:
4156 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4157 
4158 	return ret;
4159 }
4160 
btrfs_free_space_init(void)4161 int __init btrfs_free_space_init(void)
4162 {
4163 	btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4164 	if (!btrfs_free_space_cachep)
4165 		return -ENOMEM;
4166 
4167 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4168 							PAGE_SIZE, PAGE_SIZE,
4169 							0, NULL);
4170 	if (!btrfs_free_space_bitmap_cachep) {
4171 		kmem_cache_destroy(btrfs_free_space_cachep);
4172 		return -ENOMEM;
4173 	}
4174 
4175 	return 0;
4176 }
4177 
btrfs_free_space_exit(void)4178 void __cold btrfs_free_space_exit(void)
4179 {
4180 	kmem_cache_destroy(btrfs_free_space_cachep);
4181 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4182 }
4183 
4184 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4185 /*
4186  * Use this if you need to make a bitmap or extent entry specifically, it
4187  * doesn't do any of the merging that add_free_space does, this acts a lot like
4188  * how the free space cache loading stuff works, so you can get really weird
4189  * configurations.
4190  */
test_add_free_space_entry(struct btrfs_block_group * cache,u64 offset,u64 bytes,bool bitmap)4191 int test_add_free_space_entry(struct btrfs_block_group *cache,
4192 			      u64 offset, u64 bytes, bool bitmap)
4193 {
4194 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4195 	struct btrfs_free_space *info = NULL, *bitmap_info;
4196 	void *map = NULL;
4197 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4198 	u64 bytes_added;
4199 	int ret;
4200 
4201 again:
4202 	if (!info) {
4203 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4204 		if (!info)
4205 			return -ENOMEM;
4206 	}
4207 
4208 	if (!bitmap) {
4209 		spin_lock(&ctl->tree_lock);
4210 		info->offset = offset;
4211 		info->bytes = bytes;
4212 		info->max_extent_size = 0;
4213 		ret = link_free_space(ctl, info);
4214 		spin_unlock(&ctl->tree_lock);
4215 		if (ret)
4216 			kmem_cache_free(btrfs_free_space_cachep, info);
4217 		return ret;
4218 	}
4219 
4220 	if (!map) {
4221 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4222 		if (!map) {
4223 			kmem_cache_free(btrfs_free_space_cachep, info);
4224 			return -ENOMEM;
4225 		}
4226 	}
4227 
4228 	spin_lock(&ctl->tree_lock);
4229 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4230 					 1, 0);
4231 	if (!bitmap_info) {
4232 		info->bitmap = map;
4233 		map = NULL;
4234 		add_new_bitmap(ctl, info, offset);
4235 		bitmap_info = info;
4236 		info = NULL;
4237 	}
4238 
4239 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4240 					  trim_state);
4241 
4242 	bytes -= bytes_added;
4243 	offset += bytes_added;
4244 	spin_unlock(&ctl->tree_lock);
4245 
4246 	if (bytes)
4247 		goto again;
4248 
4249 	if (info)
4250 		kmem_cache_free(btrfs_free_space_cachep, info);
4251 	if (map)
4252 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4253 	return 0;
4254 }
4255 
4256 /*
4257  * Checks to see if the given range is in the free space cache.  This is really
4258  * just used to check the absence of space, so if there is free space in the
4259  * range at all we will return 1.
4260  */
test_check_exists(struct btrfs_block_group * cache,u64 offset,u64 bytes)4261 int test_check_exists(struct btrfs_block_group *cache,
4262 		      u64 offset, u64 bytes)
4263 {
4264 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4265 	struct btrfs_free_space *info;
4266 	int ret = 0;
4267 
4268 	spin_lock(&ctl->tree_lock);
4269 	info = tree_search_offset(ctl, offset, 0, 0);
4270 	if (!info) {
4271 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4272 					  1, 0);
4273 		if (!info)
4274 			goto out;
4275 	}
4276 
4277 have_info:
4278 	if (info->bitmap) {
4279 		u64 bit_off, bit_bytes;
4280 		struct rb_node *n;
4281 		struct btrfs_free_space *tmp;
4282 
4283 		bit_off = offset;
4284 		bit_bytes = ctl->unit;
4285 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4286 		if (!ret) {
4287 			if (bit_off == offset) {
4288 				ret = 1;
4289 				goto out;
4290 			} else if (bit_off > offset &&
4291 				   offset + bytes > bit_off) {
4292 				ret = 1;
4293 				goto out;
4294 			}
4295 		}
4296 
4297 		n = rb_prev(&info->offset_index);
4298 		while (n) {
4299 			tmp = rb_entry(n, struct btrfs_free_space,
4300 				       offset_index);
4301 			if (tmp->offset + tmp->bytes < offset)
4302 				break;
4303 			if (offset + bytes < tmp->offset) {
4304 				n = rb_prev(&tmp->offset_index);
4305 				continue;
4306 			}
4307 			info = tmp;
4308 			goto have_info;
4309 		}
4310 
4311 		n = rb_next(&info->offset_index);
4312 		while (n) {
4313 			tmp = rb_entry(n, struct btrfs_free_space,
4314 				       offset_index);
4315 			if (offset + bytes < tmp->offset)
4316 				break;
4317 			if (tmp->offset + tmp->bytes < offset) {
4318 				n = rb_next(&tmp->offset_index);
4319 				continue;
4320 			}
4321 			info = tmp;
4322 			goto have_info;
4323 		}
4324 
4325 		ret = 0;
4326 		goto out;
4327 	}
4328 
4329 	if (info->offset == offset) {
4330 		ret = 1;
4331 		goto out;
4332 	}
4333 
4334 	if (offset > info->offset && offset < info->offset + info->bytes)
4335 		ret = 1;
4336 out:
4337 	spin_unlock(&ctl->tree_lock);
4338 	return ret;
4339 }
4340 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4341