xref: /linux/tools/testing/selftests/kvm/lib/arm64/processor.c (revision 1c9604ba234711ca759f1147f2fbc7a94a5a486d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * AArch64 code
4  *
5  * Copyright (C) 2018, Red Hat, Inc.
6  */
7 
8 #include <linux/compiler.h>
9 #include <assert.h>
10 
11 #include "guest_modes.h"
12 #include "kvm_util.h"
13 #include "processor.h"
14 #include "ucall_common.h"
15 #include "vgic.h"
16 
17 #include <linux/bitfield.h>
18 #include <linux/sizes.h>
19 
20 #define DEFAULT_ARM64_GUEST_STACK_VADDR_MIN	0xac0000
21 
22 static vm_vaddr_t exception_handlers;
23 
24 static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
25 {
26 	return (v + vm->page_size) & ~(vm->page_size - 1);
27 }
28 
29 static uint64_t pgd_index(struct kvm_vm *vm, vm_vaddr_t gva)
30 {
31 	unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
32 	uint64_t mask = (1UL << (vm->va_bits - shift)) - 1;
33 
34 	return (gva >> shift) & mask;
35 }
36 
37 static uint64_t pud_index(struct kvm_vm *vm, vm_vaddr_t gva)
38 {
39 	unsigned int shift = 2 * (vm->page_shift - 3) + vm->page_shift;
40 	uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
41 
42 	TEST_ASSERT(vm->pgtable_levels == 4,
43 		"Mode %d does not have 4 page table levels", vm->mode);
44 
45 	return (gva >> shift) & mask;
46 }
47 
48 static uint64_t pmd_index(struct kvm_vm *vm, vm_vaddr_t gva)
49 {
50 	unsigned int shift = (vm->page_shift - 3) + vm->page_shift;
51 	uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
52 
53 	TEST_ASSERT(vm->pgtable_levels >= 3,
54 		"Mode %d does not have >= 3 page table levels", vm->mode);
55 
56 	return (gva >> shift) & mask;
57 }
58 
59 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva)
60 {
61 	uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
62 	return (gva >> vm->page_shift) & mask;
63 }
64 
65 static inline bool use_lpa2_pte_format(struct kvm_vm *vm)
66 {
67 	return (vm->page_size == SZ_4K || vm->page_size == SZ_16K) &&
68 	    (vm->pa_bits > 48 || vm->va_bits > 48);
69 }
70 
71 static uint64_t addr_pte(struct kvm_vm *vm, uint64_t pa, uint64_t attrs)
72 {
73 	uint64_t pte;
74 
75 	if (use_lpa2_pte_format(vm)) {
76 		pte = pa & PTE_ADDR_MASK_LPA2(vm->page_shift);
77 		pte |= FIELD_GET(GENMASK(51, 50), pa) << PTE_ADDR_51_50_LPA2_SHIFT;
78 		attrs &= ~PTE_ADDR_51_50_LPA2;
79 	} else {
80 		pte = pa & PTE_ADDR_MASK(vm->page_shift);
81 		if (vm->page_shift == 16)
82 			pte |= FIELD_GET(GENMASK(51, 48), pa) << PTE_ADDR_51_48_SHIFT;
83 	}
84 	pte |= attrs;
85 
86 	return pte;
87 }
88 
89 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t pte)
90 {
91 	uint64_t pa;
92 
93 	if (use_lpa2_pte_format(vm)) {
94 		pa = pte & PTE_ADDR_MASK_LPA2(vm->page_shift);
95 		pa |= FIELD_GET(PTE_ADDR_51_50_LPA2, pte) << 50;
96 	} else {
97 		pa = pte & PTE_ADDR_MASK(vm->page_shift);
98 		if (vm->page_shift == 16)
99 			pa |= FIELD_GET(PTE_ADDR_51_48, pte) << 48;
100 	}
101 
102 	return pa;
103 }
104 
105 static uint64_t ptrs_per_pgd(struct kvm_vm *vm)
106 {
107 	unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
108 	return 1 << (vm->va_bits - shift);
109 }
110 
111 static uint64_t __maybe_unused ptrs_per_pte(struct kvm_vm *vm)
112 {
113 	return 1 << (vm->page_shift - 3);
114 }
115 
116 void virt_arch_pgd_alloc(struct kvm_vm *vm)
117 {
118 	size_t nr_pages = page_align(vm, ptrs_per_pgd(vm) * 8) / vm->page_size;
119 
120 	if (vm->pgd_created)
121 		return;
122 
123 	vm->pgd = vm_phy_pages_alloc(vm, nr_pages,
124 				     KVM_GUEST_PAGE_TABLE_MIN_PADDR,
125 				     vm->memslots[MEM_REGION_PT]);
126 	vm->pgd_created = true;
127 }
128 
129 static void _virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
130 			 uint64_t flags)
131 {
132 	uint8_t attr_idx = flags & (PTE_ATTRINDX_MASK >> PTE_ATTRINDX_SHIFT);
133 	uint64_t pg_attr;
134 	uint64_t *ptep;
135 
136 	TEST_ASSERT((vaddr % vm->page_size) == 0,
137 		"Virtual address not on page boundary,\n"
138 		"  vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
139 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
140 		(vaddr >> vm->page_shift)),
141 		"Invalid virtual address, vaddr: 0x%lx", vaddr);
142 	TEST_ASSERT((paddr % vm->page_size) == 0,
143 		"Physical address not on page boundary,\n"
144 		"  paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
145 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
146 		"Physical address beyond beyond maximum supported,\n"
147 		"  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
148 		paddr, vm->max_gfn, vm->page_size);
149 
150 	ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, vaddr) * 8;
151 	if (!*ptep)
152 		*ptep = addr_pte(vm, vm_alloc_page_table(vm),
153 				 PGD_TYPE_TABLE | PTE_VALID);
154 
155 	switch (vm->pgtable_levels) {
156 	case 4:
157 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, vaddr) * 8;
158 		if (!*ptep)
159 			*ptep = addr_pte(vm, vm_alloc_page_table(vm),
160 					 PUD_TYPE_TABLE | PTE_VALID);
161 		/* fall through */
162 	case 3:
163 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, vaddr) * 8;
164 		if (!*ptep)
165 			*ptep = addr_pte(vm, vm_alloc_page_table(vm),
166 					 PMD_TYPE_TABLE | PTE_VALID);
167 		/* fall through */
168 	case 2:
169 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr) * 8;
170 		break;
171 	default:
172 		TEST_FAIL("Page table levels must be 2, 3, or 4");
173 	}
174 
175 	pg_attr = PTE_AF | PTE_ATTRINDX(attr_idx) | PTE_TYPE_PAGE | PTE_VALID;
176 	if (!use_lpa2_pte_format(vm))
177 		pg_attr |= PTE_SHARED;
178 
179 	*ptep = addr_pte(vm, paddr, pg_attr);
180 }
181 
182 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
183 {
184 	uint64_t attr_idx = MT_NORMAL;
185 
186 	_virt_pg_map(vm, vaddr, paddr, attr_idx);
187 }
188 
189 uint64_t *virt_get_pte_hva(struct kvm_vm *vm, vm_vaddr_t gva)
190 {
191 	uint64_t *ptep;
192 
193 	if (!vm->pgd_created)
194 		goto unmapped_gva;
195 
196 	ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, gva) * 8;
197 	if (!ptep)
198 		goto unmapped_gva;
199 
200 	switch (vm->pgtable_levels) {
201 	case 4:
202 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, gva) * 8;
203 		if (!ptep)
204 			goto unmapped_gva;
205 		/* fall through */
206 	case 3:
207 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, gva) * 8;
208 		if (!ptep)
209 			goto unmapped_gva;
210 		/* fall through */
211 	case 2:
212 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva) * 8;
213 		if (!ptep)
214 			goto unmapped_gva;
215 		break;
216 	default:
217 		TEST_FAIL("Page table levels must be 2, 3, or 4");
218 	}
219 
220 	return ptep;
221 
222 unmapped_gva:
223 	TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
224 	exit(EXIT_FAILURE);
225 }
226 
227 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
228 {
229 	uint64_t *ptep = virt_get_pte_hva(vm, gva);
230 
231 	return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
232 }
233 
234 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level)
235 {
236 #ifdef DEBUG
237 	static const char * const type[] = { "", "pud", "pmd", "pte" };
238 	uint64_t pte, *ptep;
239 
240 	if (level == 4)
241 		return;
242 
243 	for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
244 		ptep = addr_gpa2hva(vm, pte);
245 		if (!*ptep)
246 			continue;
247 		fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep);
248 		pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level + 1);
249 	}
250 #endif
251 }
252 
253 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
254 {
255 	int level = 4 - (vm->pgtable_levels - 1);
256 	uint64_t pgd, *ptep;
257 
258 	if (!vm->pgd_created)
259 		return;
260 
261 	for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pgd(vm) * 8; pgd += 8) {
262 		ptep = addr_gpa2hva(vm, pgd);
263 		if (!*ptep)
264 			continue;
265 		fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep);
266 		pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level);
267 	}
268 }
269 
270 void aarch64_vcpu_setup(struct kvm_vcpu *vcpu, struct kvm_vcpu_init *init)
271 {
272 	struct kvm_vcpu_init default_init = { .target = -1, };
273 	struct kvm_vm *vm = vcpu->vm;
274 	uint64_t sctlr_el1, tcr_el1, ttbr0_el1;
275 
276 	if (!init)
277 		init = &default_init;
278 
279 	if (init->target == -1) {
280 		struct kvm_vcpu_init preferred;
281 		vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &preferred);
282 		init->target = preferred.target;
283 	}
284 
285 	vcpu_ioctl(vcpu, KVM_ARM_VCPU_INIT, init);
286 	vcpu->init = *init;
287 
288 	/*
289 	 * Enable FP/ASIMD to avoid trapping when accessing Q0-Q15
290 	 * registers, which the variable argument list macros do.
291 	 */
292 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_CPACR_EL1), 3 << 20);
293 
294 	sctlr_el1 = vcpu_get_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SCTLR_EL1));
295 	tcr_el1 = vcpu_get_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TCR_EL1));
296 
297 	/* Configure base granule size */
298 	switch (vm->mode) {
299 	case VM_MODE_PXXV48_4K:
300 		TEST_FAIL("AArch64 does not support 4K sized pages "
301 			  "with ANY-bit physical address ranges");
302 	case VM_MODE_P52V48_64K:
303 	case VM_MODE_P48V48_64K:
304 	case VM_MODE_P40V48_64K:
305 	case VM_MODE_P36V48_64K:
306 		tcr_el1 |= TCR_TG0_64K;
307 		break;
308 	case VM_MODE_P52V48_16K:
309 	case VM_MODE_P48V48_16K:
310 	case VM_MODE_P40V48_16K:
311 	case VM_MODE_P36V48_16K:
312 	case VM_MODE_P36V47_16K:
313 		tcr_el1 |= TCR_TG0_16K;
314 		break;
315 	case VM_MODE_P52V48_4K:
316 	case VM_MODE_P48V48_4K:
317 	case VM_MODE_P40V48_4K:
318 	case VM_MODE_P36V48_4K:
319 		tcr_el1 |= TCR_TG0_4K;
320 		break;
321 	default:
322 		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
323 	}
324 
325 	ttbr0_el1 = vm->pgd & GENMASK(47, vm->page_shift);
326 
327 	/* Configure output size */
328 	switch (vm->mode) {
329 	case VM_MODE_P52V48_4K:
330 	case VM_MODE_P52V48_16K:
331 	case VM_MODE_P52V48_64K:
332 		tcr_el1 |= TCR_IPS_52_BITS;
333 		ttbr0_el1 |= FIELD_GET(GENMASK(51, 48), vm->pgd) << 2;
334 		break;
335 	case VM_MODE_P48V48_4K:
336 	case VM_MODE_P48V48_16K:
337 	case VM_MODE_P48V48_64K:
338 		tcr_el1 |= TCR_IPS_48_BITS;
339 		break;
340 	case VM_MODE_P40V48_4K:
341 	case VM_MODE_P40V48_16K:
342 	case VM_MODE_P40V48_64K:
343 		tcr_el1 |= TCR_IPS_40_BITS;
344 		break;
345 	case VM_MODE_P36V48_4K:
346 	case VM_MODE_P36V48_16K:
347 	case VM_MODE_P36V48_64K:
348 	case VM_MODE_P36V47_16K:
349 		tcr_el1 |= TCR_IPS_36_BITS;
350 		break;
351 	default:
352 		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
353 	}
354 
355 	sctlr_el1 |= SCTLR_ELx_M | SCTLR_ELx_C | SCTLR_ELx_I;
356 
357 	tcr_el1 |= TCR_IRGN0_WBWA | TCR_ORGN0_WBWA | TCR_SH0_INNER;
358 	tcr_el1 |= TCR_T0SZ(vm->va_bits);
359 	if (use_lpa2_pte_format(vm))
360 		tcr_el1 |= TCR_DS;
361 
362 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SCTLR_EL1), sctlr_el1);
363 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TCR_EL1), tcr_el1);
364 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_MAIR_EL1), DEFAULT_MAIR_EL1);
365 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TTBR0_EL1), ttbr0_el1);
366 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TPIDR_EL1), vcpu->id);
367 }
368 
369 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
370 {
371 	uint64_t pstate, pc;
372 
373 	pstate = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate));
374 	pc = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc));
375 
376 	fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n",
377 		indent, "", pstate, pc);
378 }
379 
380 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
381 {
382 	vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
383 }
384 
385 static struct kvm_vcpu *__aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
386 					   struct kvm_vcpu_init *init)
387 {
388 	size_t stack_size;
389 	uint64_t stack_vaddr;
390 	struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
391 
392 	stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size :
393 					     vm->page_size;
394 	stack_vaddr = __vm_vaddr_alloc(vm, stack_size,
395 				       DEFAULT_ARM64_GUEST_STACK_VADDR_MIN,
396 				       MEM_REGION_DATA);
397 
398 	aarch64_vcpu_setup(vcpu, init);
399 
400 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SP_EL1), stack_vaddr + stack_size);
401 	return vcpu;
402 }
403 
404 struct kvm_vcpu *aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
405 				  struct kvm_vcpu_init *init, void *guest_code)
406 {
407 	struct kvm_vcpu *vcpu = __aarch64_vcpu_add(vm, vcpu_id, init);
408 
409 	vcpu_arch_set_entry_point(vcpu, guest_code);
410 
411 	return vcpu;
412 }
413 
414 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
415 {
416 	return __aarch64_vcpu_add(vm, vcpu_id, NULL);
417 }
418 
419 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
420 {
421 	va_list ap;
422 	int i;
423 
424 	TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
425 		    "  num: %u", num);
426 
427 	va_start(ap, num);
428 
429 	for (i = 0; i < num; i++) {
430 		vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.regs[i]),
431 			     va_arg(ap, uint64_t));
432 	}
433 
434 	va_end(ap);
435 }
436 
437 void kvm_exit_unexpected_exception(int vector, uint64_t ec, bool valid_ec)
438 {
439 	ucall(UCALL_UNHANDLED, 3, vector, ec, valid_ec);
440 	while (1)
441 		;
442 }
443 
444 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
445 {
446 	struct ucall uc;
447 
448 	if (get_ucall(vcpu, &uc) != UCALL_UNHANDLED)
449 		return;
450 
451 	if (uc.args[2]) /* valid_ec */ {
452 		assert(VECTOR_IS_SYNC(uc.args[0]));
453 		TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
454 			  uc.args[0], uc.args[1]);
455 	} else {
456 		assert(!VECTOR_IS_SYNC(uc.args[0]));
457 		TEST_FAIL("Unexpected exception (vector:0x%lx)",
458 			  uc.args[0]);
459 	}
460 }
461 
462 struct handlers {
463 	handler_fn exception_handlers[VECTOR_NUM][ESR_ELx_EC_MAX + 1];
464 };
465 
466 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
467 {
468 	extern char vectors;
469 
470 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_VBAR_EL1), (uint64_t)&vectors);
471 }
472 
473 void route_exception(struct ex_regs *regs, int vector)
474 {
475 	struct handlers *handlers = (struct handlers *)exception_handlers;
476 	bool valid_ec;
477 	int ec = 0;
478 
479 	switch (vector) {
480 	case VECTOR_SYNC_CURRENT:
481 	case VECTOR_SYNC_LOWER_64:
482 		ec = ESR_ELx_EC(read_sysreg(esr_el1));
483 		valid_ec = true;
484 		break;
485 	case VECTOR_IRQ_CURRENT:
486 	case VECTOR_IRQ_LOWER_64:
487 	case VECTOR_FIQ_CURRENT:
488 	case VECTOR_FIQ_LOWER_64:
489 	case VECTOR_ERROR_CURRENT:
490 	case VECTOR_ERROR_LOWER_64:
491 		ec = 0;
492 		valid_ec = false;
493 		break;
494 	default:
495 		valid_ec = false;
496 		goto unexpected_exception;
497 	}
498 
499 	if (handlers && handlers->exception_handlers[vector][ec])
500 		return handlers->exception_handlers[vector][ec](regs);
501 
502 unexpected_exception:
503 	kvm_exit_unexpected_exception(vector, ec, valid_ec);
504 }
505 
506 void vm_init_descriptor_tables(struct kvm_vm *vm)
507 {
508 	vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers),
509 					vm->page_size, MEM_REGION_DATA);
510 
511 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
512 }
513 
514 void vm_install_sync_handler(struct kvm_vm *vm, int vector, int ec,
515 			 void (*handler)(struct ex_regs *))
516 {
517 	struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
518 
519 	assert(VECTOR_IS_SYNC(vector));
520 	assert(vector < VECTOR_NUM);
521 	assert(ec <= ESR_ELx_EC_MAX);
522 	handlers->exception_handlers[vector][ec] = handler;
523 }
524 
525 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
526 			 void (*handler)(struct ex_regs *))
527 {
528 	struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
529 
530 	assert(!VECTOR_IS_SYNC(vector));
531 	assert(vector < VECTOR_NUM);
532 	handlers->exception_handlers[vector][0] = handler;
533 }
534 
535 uint32_t guest_get_vcpuid(void)
536 {
537 	return read_sysreg(tpidr_el1);
538 }
539 
540 static uint32_t max_ipa_for_page_size(uint32_t vm_ipa, uint32_t gran,
541 				uint32_t not_sup_val, uint32_t ipa52_min_val)
542 {
543 	if (gran == not_sup_val)
544 		return 0;
545 	else if (gran >= ipa52_min_val && vm_ipa >= 52)
546 		return 52;
547 	else
548 		return min(vm_ipa, 48U);
549 }
550 
551 void aarch64_get_supported_page_sizes(uint32_t ipa, uint32_t *ipa4k,
552 					uint32_t *ipa16k, uint32_t *ipa64k)
553 {
554 	struct kvm_vcpu_init preferred_init;
555 	int kvm_fd, vm_fd, vcpu_fd, err;
556 	uint64_t val;
557 	uint32_t gran;
558 	struct kvm_one_reg reg = {
559 		.id	= KVM_ARM64_SYS_REG(SYS_ID_AA64MMFR0_EL1),
560 		.addr	= (uint64_t)&val,
561 	};
562 
563 	kvm_fd = open_kvm_dev_path_or_exit();
564 	vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, (void *)(unsigned long)ipa);
565 	TEST_ASSERT(vm_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm_fd));
566 
567 	vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0);
568 	TEST_ASSERT(vcpu_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu_fd));
569 
570 	err = ioctl(vm_fd, KVM_ARM_PREFERRED_TARGET, &preferred_init);
571 	TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_PREFERRED_TARGET, err));
572 	err = ioctl(vcpu_fd, KVM_ARM_VCPU_INIT, &preferred_init);
573 	TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_VCPU_INIT, err));
574 
575 	err = ioctl(vcpu_fd, KVM_GET_ONE_REG, &reg);
576 	TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd));
577 
578 	gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN4, val);
579 	*ipa4k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN4_NI,
580 					ID_AA64MMFR0_EL1_TGRAN4_52_BIT);
581 
582 	gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN64, val);
583 	*ipa64k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN64_NI,
584 					ID_AA64MMFR0_EL1_TGRAN64_IMP);
585 
586 	gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN16, val);
587 	*ipa16k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN16_NI,
588 					ID_AA64MMFR0_EL1_TGRAN16_52_BIT);
589 
590 	close(vcpu_fd);
591 	close(vm_fd);
592 	close(kvm_fd);
593 }
594 
595 #define __smccc_call(insn, function_id, arg0, arg1, arg2, arg3, arg4, arg5,	\
596 		     arg6, res)							\
597 	asm volatile("mov   w0, %w[function_id]\n"				\
598 		     "mov   x1, %[arg0]\n"					\
599 		     "mov   x2, %[arg1]\n"					\
600 		     "mov   x3, %[arg2]\n"					\
601 		     "mov   x4, %[arg3]\n"					\
602 		     "mov   x5, %[arg4]\n"					\
603 		     "mov   x6, %[arg5]\n"					\
604 		     "mov   x7, %[arg6]\n"					\
605 		     #insn  "#0\n"						\
606 		     "mov   %[res0], x0\n"					\
607 		     "mov   %[res1], x1\n"					\
608 		     "mov   %[res2], x2\n"					\
609 		     "mov   %[res3], x3\n"					\
610 		     : [res0] "=r"(res->a0), [res1] "=r"(res->a1),		\
611 		       [res2] "=r"(res->a2), [res3] "=r"(res->a3)		\
612 		     : [function_id] "r"(function_id), [arg0] "r"(arg0),	\
613 		       [arg1] "r"(arg1), [arg2] "r"(arg2), [arg3] "r"(arg3),	\
614 		       [arg4] "r"(arg4), [arg5] "r"(arg5), [arg6] "r"(arg6)	\
615 		     : "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7")
616 
617 
618 void smccc_hvc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
619 	       uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
620 	       uint64_t arg6, struct arm_smccc_res *res)
621 {
622 	__smccc_call(hvc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
623 		     arg6, res);
624 }
625 
626 void smccc_smc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
627 	       uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
628 	       uint64_t arg6, struct arm_smccc_res *res)
629 {
630 	__smccc_call(smc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
631 		     arg6, res);
632 }
633 
634 void kvm_selftest_arch_init(void)
635 {
636 	/*
637 	 * arm64 doesn't have a true default mode, so start by computing the
638 	 * available IPA space and page sizes early.
639 	 */
640 	guest_modes_append_default();
641 }
642 
643 void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
644 {
645 	/*
646 	 * arm64 selftests use only TTBR0_EL1, meaning that the valid VA space
647 	 * is [0, 2^(64 - TCR_EL1.T0SZ)).
648 	 */
649 	sparsebit_set_num(vm->vpages_valid, 0,
650 			  (1ULL << vm->va_bits) >> vm->page_shift);
651 }
652 
653 /* Helper to call wfi instruction. */
654 void wfi(void)
655 {
656 	asm volatile("wfi");
657 }
658 
659 static bool request_mte;
660 static bool request_vgic = true;
661 
662 void test_wants_mte(void)
663 {
664 	request_mte = true;
665 }
666 
667 void test_disable_default_vgic(void)
668 {
669 	request_vgic = false;
670 }
671 
672 void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
673 {
674 	if (request_mte && vm_check_cap(vm, KVM_CAP_ARM_MTE))
675 		vm_enable_cap(vm, KVM_CAP_ARM_MTE, 0);
676 
677 	if (request_vgic && kvm_supports_vgic_v3()) {
678 		vm->arch.gic_fd = __vgic_v3_setup(vm, nr_vcpus, 64);
679 		vm->arch.has_gic = true;
680 	}
681 }
682 
683 void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm)
684 {
685 	if (vm->arch.has_gic)
686 		__vgic_v3_init(vm->arch.gic_fd);
687 }
688 
689 void kvm_arch_vm_release(struct kvm_vm *vm)
690 {
691 	if (vm->arch.has_gic)
692 		close(vm->arch.gic_fd);
693 }
694