1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * AArch64 code
4 *
5 * Copyright (C) 2018, Red Hat, Inc.
6 */
7
8 #include <linux/compiler.h>
9 #include <assert.h>
10
11 #include "guest_modes.h"
12 #include "kvm_util.h"
13 #include "processor.h"
14 #include "ucall_common.h"
15
16 #include <linux/bitfield.h>
17 #include <linux/sizes.h>
18
19 #define DEFAULT_ARM64_GUEST_STACK_VADDR_MIN 0xac0000
20
21 static vm_vaddr_t exception_handlers;
22
page_align(struct kvm_vm * vm,uint64_t v)23 static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
24 {
25 return (v + vm->page_size) & ~(vm->page_size - 1);
26 }
27
pgd_index(struct kvm_vm * vm,vm_vaddr_t gva)28 static uint64_t pgd_index(struct kvm_vm *vm, vm_vaddr_t gva)
29 {
30 unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
31 uint64_t mask = (1UL << (vm->va_bits - shift)) - 1;
32
33 return (gva >> shift) & mask;
34 }
35
pud_index(struct kvm_vm * vm,vm_vaddr_t gva)36 static uint64_t pud_index(struct kvm_vm *vm, vm_vaddr_t gva)
37 {
38 unsigned int shift = 2 * (vm->page_shift - 3) + vm->page_shift;
39 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
40
41 TEST_ASSERT(vm->pgtable_levels == 4,
42 "Mode %d does not have 4 page table levels", vm->mode);
43
44 return (gva >> shift) & mask;
45 }
46
pmd_index(struct kvm_vm * vm,vm_vaddr_t gva)47 static uint64_t pmd_index(struct kvm_vm *vm, vm_vaddr_t gva)
48 {
49 unsigned int shift = (vm->page_shift - 3) + vm->page_shift;
50 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
51
52 TEST_ASSERT(vm->pgtable_levels >= 3,
53 "Mode %d does not have >= 3 page table levels", vm->mode);
54
55 return (gva >> shift) & mask;
56 }
57
pte_index(struct kvm_vm * vm,vm_vaddr_t gva)58 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva)
59 {
60 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
61 return (gva >> vm->page_shift) & mask;
62 }
63
use_lpa2_pte_format(struct kvm_vm * vm)64 static inline bool use_lpa2_pte_format(struct kvm_vm *vm)
65 {
66 return (vm->page_size == SZ_4K || vm->page_size == SZ_16K) &&
67 (vm->pa_bits > 48 || vm->va_bits > 48);
68 }
69
addr_pte(struct kvm_vm * vm,uint64_t pa,uint64_t attrs)70 static uint64_t addr_pte(struct kvm_vm *vm, uint64_t pa, uint64_t attrs)
71 {
72 uint64_t pte;
73
74 if (use_lpa2_pte_format(vm)) {
75 pte = pa & PTE_ADDR_MASK_LPA2(vm->page_shift);
76 pte |= FIELD_GET(GENMASK(51, 50), pa) << PTE_ADDR_51_50_LPA2_SHIFT;
77 attrs &= ~PTE_ADDR_51_50_LPA2;
78 } else {
79 pte = pa & PTE_ADDR_MASK(vm->page_shift);
80 if (vm->page_shift == 16)
81 pte |= FIELD_GET(GENMASK(51, 48), pa) << PTE_ADDR_51_48_SHIFT;
82 }
83 pte |= attrs;
84
85 return pte;
86 }
87
pte_addr(struct kvm_vm * vm,uint64_t pte)88 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t pte)
89 {
90 uint64_t pa;
91
92 if (use_lpa2_pte_format(vm)) {
93 pa = pte & PTE_ADDR_MASK_LPA2(vm->page_shift);
94 pa |= FIELD_GET(PTE_ADDR_51_50_LPA2, pte) << 50;
95 } else {
96 pa = pte & PTE_ADDR_MASK(vm->page_shift);
97 if (vm->page_shift == 16)
98 pa |= FIELD_GET(PTE_ADDR_51_48, pte) << 48;
99 }
100
101 return pa;
102 }
103
ptrs_per_pgd(struct kvm_vm * vm)104 static uint64_t ptrs_per_pgd(struct kvm_vm *vm)
105 {
106 unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
107 return 1 << (vm->va_bits - shift);
108 }
109
ptrs_per_pte(struct kvm_vm * vm)110 static uint64_t __maybe_unused ptrs_per_pte(struct kvm_vm *vm)
111 {
112 return 1 << (vm->page_shift - 3);
113 }
114
virt_arch_pgd_alloc(struct kvm_vm * vm)115 void virt_arch_pgd_alloc(struct kvm_vm *vm)
116 {
117 size_t nr_pages = page_align(vm, ptrs_per_pgd(vm) * 8) / vm->page_size;
118
119 if (vm->pgd_created)
120 return;
121
122 vm->pgd = vm_phy_pages_alloc(vm, nr_pages,
123 KVM_GUEST_PAGE_TABLE_MIN_PADDR,
124 vm->memslots[MEM_REGION_PT]);
125 vm->pgd_created = true;
126 }
127
_virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,uint64_t flags)128 static void _virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
129 uint64_t flags)
130 {
131 uint8_t attr_idx = flags & (PTE_ATTRINDX_MASK >> PTE_ATTRINDX_SHIFT);
132 uint64_t pg_attr;
133 uint64_t *ptep;
134
135 TEST_ASSERT((vaddr % vm->page_size) == 0,
136 "Virtual address not on page boundary,\n"
137 " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
138 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
139 (vaddr >> vm->page_shift)),
140 "Invalid virtual address, vaddr: 0x%lx", vaddr);
141 TEST_ASSERT((paddr % vm->page_size) == 0,
142 "Physical address not on page boundary,\n"
143 " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
144 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
145 "Physical address beyond beyond maximum supported,\n"
146 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
147 paddr, vm->max_gfn, vm->page_size);
148
149 ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, vaddr) * 8;
150 if (!*ptep)
151 *ptep = addr_pte(vm, vm_alloc_page_table(vm),
152 PGD_TYPE_TABLE | PTE_VALID);
153
154 switch (vm->pgtable_levels) {
155 case 4:
156 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, vaddr) * 8;
157 if (!*ptep)
158 *ptep = addr_pte(vm, vm_alloc_page_table(vm),
159 PUD_TYPE_TABLE | PTE_VALID);
160 /* fall through */
161 case 3:
162 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, vaddr) * 8;
163 if (!*ptep)
164 *ptep = addr_pte(vm, vm_alloc_page_table(vm),
165 PMD_TYPE_TABLE | PTE_VALID);
166 /* fall through */
167 case 2:
168 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr) * 8;
169 break;
170 default:
171 TEST_FAIL("Page table levels must be 2, 3, or 4");
172 }
173
174 pg_attr = PTE_AF | PTE_ATTRINDX(attr_idx) | PTE_TYPE_PAGE | PTE_VALID;
175 if (!use_lpa2_pte_format(vm))
176 pg_attr |= PTE_SHARED;
177
178 *ptep = addr_pte(vm, paddr, pg_attr);
179 }
180
virt_arch_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)181 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
182 {
183 uint64_t attr_idx = MT_NORMAL;
184
185 _virt_pg_map(vm, vaddr, paddr, attr_idx);
186 }
187
virt_get_pte_hva(struct kvm_vm * vm,vm_vaddr_t gva)188 uint64_t *virt_get_pte_hva(struct kvm_vm *vm, vm_vaddr_t gva)
189 {
190 uint64_t *ptep;
191
192 if (!vm->pgd_created)
193 goto unmapped_gva;
194
195 ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, gva) * 8;
196 if (!ptep)
197 goto unmapped_gva;
198
199 switch (vm->pgtable_levels) {
200 case 4:
201 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, gva) * 8;
202 if (!ptep)
203 goto unmapped_gva;
204 /* fall through */
205 case 3:
206 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, gva) * 8;
207 if (!ptep)
208 goto unmapped_gva;
209 /* fall through */
210 case 2:
211 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva) * 8;
212 if (!ptep)
213 goto unmapped_gva;
214 break;
215 default:
216 TEST_FAIL("Page table levels must be 2, 3, or 4");
217 }
218
219 return ptep;
220
221 unmapped_gva:
222 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
223 exit(EXIT_FAILURE);
224 }
225
addr_arch_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)226 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
227 {
228 uint64_t *ptep = virt_get_pte_hva(vm, gva);
229
230 return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
231 }
232
pte_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent,uint64_t page,int level)233 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level)
234 {
235 #ifdef DEBUG
236 static const char * const type[] = { "", "pud", "pmd", "pte" };
237 uint64_t pte, *ptep;
238
239 if (level == 4)
240 return;
241
242 for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
243 ptep = addr_gpa2hva(vm, pte);
244 if (!*ptep)
245 continue;
246 fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep);
247 pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level + 1);
248 }
249 #endif
250 }
251
virt_arch_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)252 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
253 {
254 int level = 4 - (vm->pgtable_levels - 1);
255 uint64_t pgd, *ptep;
256
257 if (!vm->pgd_created)
258 return;
259
260 for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pgd(vm) * 8; pgd += 8) {
261 ptep = addr_gpa2hva(vm, pgd);
262 if (!*ptep)
263 continue;
264 fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep);
265 pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level);
266 }
267 }
268
aarch64_vcpu_setup(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)269 void aarch64_vcpu_setup(struct kvm_vcpu *vcpu, struct kvm_vcpu_init *init)
270 {
271 struct kvm_vcpu_init default_init = { .target = -1, };
272 struct kvm_vm *vm = vcpu->vm;
273 uint64_t sctlr_el1, tcr_el1, ttbr0_el1;
274
275 if (!init)
276 init = &default_init;
277
278 if (init->target == -1) {
279 struct kvm_vcpu_init preferred;
280 vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &preferred);
281 init->target = preferred.target;
282 }
283
284 vcpu_ioctl(vcpu, KVM_ARM_VCPU_INIT, init);
285
286 /*
287 * Enable FP/ASIMD to avoid trapping when accessing Q0-Q15
288 * registers, which the variable argument list macros do.
289 */
290 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CPACR_EL1), 3 << 20);
291
292 sctlr_el1 = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1));
293 tcr_el1 = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1));
294
295 /* Configure base granule size */
296 switch (vm->mode) {
297 case VM_MODE_PXXV48_4K:
298 TEST_FAIL("AArch64 does not support 4K sized pages "
299 "with ANY-bit physical address ranges");
300 case VM_MODE_P52V48_64K:
301 case VM_MODE_P48V48_64K:
302 case VM_MODE_P40V48_64K:
303 case VM_MODE_P36V48_64K:
304 tcr_el1 |= TCR_TG0_64K;
305 break;
306 case VM_MODE_P52V48_16K:
307 case VM_MODE_P48V48_16K:
308 case VM_MODE_P40V48_16K:
309 case VM_MODE_P36V48_16K:
310 case VM_MODE_P36V47_16K:
311 tcr_el1 |= TCR_TG0_16K;
312 break;
313 case VM_MODE_P52V48_4K:
314 case VM_MODE_P48V48_4K:
315 case VM_MODE_P40V48_4K:
316 case VM_MODE_P36V48_4K:
317 tcr_el1 |= TCR_TG0_4K;
318 break;
319 default:
320 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
321 }
322
323 ttbr0_el1 = vm->pgd & GENMASK(47, vm->page_shift);
324
325 /* Configure output size */
326 switch (vm->mode) {
327 case VM_MODE_P52V48_4K:
328 case VM_MODE_P52V48_16K:
329 case VM_MODE_P52V48_64K:
330 tcr_el1 |= TCR_IPS_52_BITS;
331 ttbr0_el1 |= FIELD_GET(GENMASK(51, 48), vm->pgd) << 2;
332 break;
333 case VM_MODE_P48V48_4K:
334 case VM_MODE_P48V48_16K:
335 case VM_MODE_P48V48_64K:
336 tcr_el1 |= TCR_IPS_48_BITS;
337 break;
338 case VM_MODE_P40V48_4K:
339 case VM_MODE_P40V48_16K:
340 case VM_MODE_P40V48_64K:
341 tcr_el1 |= TCR_IPS_40_BITS;
342 break;
343 case VM_MODE_P36V48_4K:
344 case VM_MODE_P36V48_16K:
345 case VM_MODE_P36V48_64K:
346 case VM_MODE_P36V47_16K:
347 tcr_el1 |= TCR_IPS_36_BITS;
348 break;
349 default:
350 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
351 }
352
353 sctlr_el1 |= SCTLR_ELx_M | SCTLR_ELx_C | SCTLR_ELx_I;
354
355 tcr_el1 |= TCR_IRGN0_WBWA | TCR_ORGN0_WBWA | TCR_SH0_INNER;
356 tcr_el1 |= TCR_T0SZ(vm->va_bits);
357 if (use_lpa2_pte_format(vm))
358 tcr_el1 |= TCR_DS;
359
360 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1), sctlr_el1);
361 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1), tcr_el1);
362 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MAIR_EL1), DEFAULT_MAIR_EL1);
363 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TTBR0_EL1), ttbr0_el1);
364 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TPIDR_EL1), vcpu->id);
365 }
366
vcpu_arch_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)367 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
368 {
369 uint64_t pstate, pc;
370
371 pstate = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate));
372 pc = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc));
373
374 fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n",
375 indent, "", pstate, pc);
376 }
377
vcpu_arch_set_entry_point(struct kvm_vcpu * vcpu,void * guest_code)378 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
379 {
380 vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
381 }
382
__aarch64_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,struct kvm_vcpu_init * init)383 static struct kvm_vcpu *__aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
384 struct kvm_vcpu_init *init)
385 {
386 size_t stack_size;
387 uint64_t stack_vaddr;
388 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
389
390 stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size :
391 vm->page_size;
392 stack_vaddr = __vm_vaddr_alloc(vm, stack_size,
393 DEFAULT_ARM64_GUEST_STACK_VADDR_MIN,
394 MEM_REGION_DATA);
395
396 aarch64_vcpu_setup(vcpu, init);
397
398 vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), stack_vaddr + stack_size);
399 return vcpu;
400 }
401
aarch64_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,struct kvm_vcpu_init * init,void * guest_code)402 struct kvm_vcpu *aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
403 struct kvm_vcpu_init *init, void *guest_code)
404 {
405 struct kvm_vcpu *vcpu = __aarch64_vcpu_add(vm, vcpu_id, init);
406
407 vcpu_arch_set_entry_point(vcpu, guest_code);
408
409 return vcpu;
410 }
411
vm_arch_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)412 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
413 {
414 return __aarch64_vcpu_add(vm, vcpu_id, NULL);
415 }
416
vcpu_args_set(struct kvm_vcpu * vcpu,unsigned int num,...)417 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
418 {
419 va_list ap;
420 int i;
421
422 TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
423 " num: %u", num);
424
425 va_start(ap, num);
426
427 for (i = 0; i < num; i++) {
428 vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.regs[i]),
429 va_arg(ap, uint64_t));
430 }
431
432 va_end(ap);
433 }
434
kvm_exit_unexpected_exception(int vector,uint64_t ec,bool valid_ec)435 void kvm_exit_unexpected_exception(int vector, uint64_t ec, bool valid_ec)
436 {
437 ucall(UCALL_UNHANDLED, 3, vector, ec, valid_ec);
438 while (1)
439 ;
440 }
441
assert_on_unhandled_exception(struct kvm_vcpu * vcpu)442 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
443 {
444 struct ucall uc;
445
446 if (get_ucall(vcpu, &uc) != UCALL_UNHANDLED)
447 return;
448
449 if (uc.args[2]) /* valid_ec */ {
450 assert(VECTOR_IS_SYNC(uc.args[0]));
451 TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
452 uc.args[0], uc.args[1]);
453 } else {
454 assert(!VECTOR_IS_SYNC(uc.args[0]));
455 TEST_FAIL("Unexpected exception (vector:0x%lx)",
456 uc.args[0]);
457 }
458 }
459
460 struct handlers {
461 handler_fn exception_handlers[VECTOR_NUM][ESR_ELx_EC_MAX + 1];
462 };
463
vcpu_init_descriptor_tables(struct kvm_vcpu * vcpu)464 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
465 {
466 extern char vectors;
467
468 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_VBAR_EL1), (uint64_t)&vectors);
469 }
470
route_exception(struct ex_regs * regs,int vector)471 void route_exception(struct ex_regs *regs, int vector)
472 {
473 struct handlers *handlers = (struct handlers *)exception_handlers;
474 bool valid_ec;
475 int ec = 0;
476
477 switch (vector) {
478 case VECTOR_SYNC_CURRENT:
479 case VECTOR_SYNC_LOWER_64:
480 ec = ESR_ELx_EC(read_sysreg(esr_el1));
481 valid_ec = true;
482 break;
483 case VECTOR_IRQ_CURRENT:
484 case VECTOR_IRQ_LOWER_64:
485 case VECTOR_FIQ_CURRENT:
486 case VECTOR_FIQ_LOWER_64:
487 case VECTOR_ERROR_CURRENT:
488 case VECTOR_ERROR_LOWER_64:
489 ec = 0;
490 valid_ec = false;
491 break;
492 default:
493 valid_ec = false;
494 goto unexpected_exception;
495 }
496
497 if (handlers && handlers->exception_handlers[vector][ec])
498 return handlers->exception_handlers[vector][ec](regs);
499
500 unexpected_exception:
501 kvm_exit_unexpected_exception(vector, ec, valid_ec);
502 }
503
vm_init_descriptor_tables(struct kvm_vm * vm)504 void vm_init_descriptor_tables(struct kvm_vm *vm)
505 {
506 vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers),
507 vm->page_size, MEM_REGION_DATA);
508
509 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
510 }
511
vm_install_sync_handler(struct kvm_vm * vm,int vector,int ec,void (* handler)(struct ex_regs *))512 void vm_install_sync_handler(struct kvm_vm *vm, int vector, int ec,
513 void (*handler)(struct ex_regs *))
514 {
515 struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
516
517 assert(VECTOR_IS_SYNC(vector));
518 assert(vector < VECTOR_NUM);
519 assert(ec <= ESR_ELx_EC_MAX);
520 handlers->exception_handlers[vector][ec] = handler;
521 }
522
vm_install_exception_handler(struct kvm_vm * vm,int vector,void (* handler)(struct ex_regs *))523 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
524 void (*handler)(struct ex_regs *))
525 {
526 struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
527
528 assert(!VECTOR_IS_SYNC(vector));
529 assert(vector < VECTOR_NUM);
530 handlers->exception_handlers[vector][0] = handler;
531 }
532
guest_get_vcpuid(void)533 uint32_t guest_get_vcpuid(void)
534 {
535 return read_sysreg(tpidr_el1);
536 }
537
max_ipa_for_page_size(uint32_t vm_ipa,uint32_t gran,uint32_t not_sup_val,uint32_t ipa52_min_val)538 static uint32_t max_ipa_for_page_size(uint32_t vm_ipa, uint32_t gran,
539 uint32_t not_sup_val, uint32_t ipa52_min_val)
540 {
541 if (gran == not_sup_val)
542 return 0;
543 else if (gran >= ipa52_min_val && vm_ipa >= 52)
544 return 52;
545 else
546 return min(vm_ipa, 48U);
547 }
548
aarch64_get_supported_page_sizes(uint32_t ipa,uint32_t * ipa4k,uint32_t * ipa16k,uint32_t * ipa64k)549 void aarch64_get_supported_page_sizes(uint32_t ipa, uint32_t *ipa4k,
550 uint32_t *ipa16k, uint32_t *ipa64k)
551 {
552 struct kvm_vcpu_init preferred_init;
553 int kvm_fd, vm_fd, vcpu_fd, err;
554 uint64_t val;
555 uint32_t gran;
556 struct kvm_one_reg reg = {
557 .id = KVM_ARM64_SYS_REG(SYS_ID_AA64MMFR0_EL1),
558 .addr = (uint64_t)&val,
559 };
560
561 kvm_fd = open_kvm_dev_path_or_exit();
562 vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, (void *)(unsigned long)ipa);
563 TEST_ASSERT(vm_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm_fd));
564
565 vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0);
566 TEST_ASSERT(vcpu_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu_fd));
567
568 err = ioctl(vm_fd, KVM_ARM_PREFERRED_TARGET, &preferred_init);
569 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_PREFERRED_TARGET, err));
570 err = ioctl(vcpu_fd, KVM_ARM_VCPU_INIT, &preferred_init);
571 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_VCPU_INIT, err));
572
573 err = ioctl(vcpu_fd, KVM_GET_ONE_REG, ®);
574 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd));
575
576 gran = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_TGRAN4), val);
577 *ipa4k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN4_NI,
578 ID_AA64MMFR0_EL1_TGRAN4_52_BIT);
579
580 gran = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_TGRAN64), val);
581 *ipa64k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN64_NI,
582 ID_AA64MMFR0_EL1_TGRAN64_IMP);
583
584 gran = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_TGRAN16), val);
585 *ipa16k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN16_NI,
586 ID_AA64MMFR0_EL1_TGRAN16_52_BIT);
587
588 close(vcpu_fd);
589 close(vm_fd);
590 close(kvm_fd);
591 }
592
593 #define __smccc_call(insn, function_id, arg0, arg1, arg2, arg3, arg4, arg5, \
594 arg6, res) \
595 asm volatile("mov w0, %w[function_id]\n" \
596 "mov x1, %[arg0]\n" \
597 "mov x2, %[arg1]\n" \
598 "mov x3, %[arg2]\n" \
599 "mov x4, %[arg3]\n" \
600 "mov x5, %[arg4]\n" \
601 "mov x6, %[arg5]\n" \
602 "mov x7, %[arg6]\n" \
603 #insn "#0\n" \
604 "mov %[res0], x0\n" \
605 "mov %[res1], x1\n" \
606 "mov %[res2], x2\n" \
607 "mov %[res3], x3\n" \
608 : [res0] "=r"(res->a0), [res1] "=r"(res->a1), \
609 [res2] "=r"(res->a2), [res3] "=r"(res->a3) \
610 : [function_id] "r"(function_id), [arg0] "r"(arg0), \
611 [arg1] "r"(arg1), [arg2] "r"(arg2), [arg3] "r"(arg3), \
612 [arg4] "r"(arg4), [arg5] "r"(arg5), [arg6] "r"(arg6) \
613 : "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7")
614
615
smccc_hvc(uint32_t function_id,uint64_t arg0,uint64_t arg1,uint64_t arg2,uint64_t arg3,uint64_t arg4,uint64_t arg5,uint64_t arg6,struct arm_smccc_res * res)616 void smccc_hvc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
617 uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
618 uint64_t arg6, struct arm_smccc_res *res)
619 {
620 __smccc_call(hvc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
621 arg6, res);
622 }
623
smccc_smc(uint32_t function_id,uint64_t arg0,uint64_t arg1,uint64_t arg2,uint64_t arg3,uint64_t arg4,uint64_t arg5,uint64_t arg6,struct arm_smccc_res * res)624 void smccc_smc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
625 uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
626 uint64_t arg6, struct arm_smccc_res *res)
627 {
628 __smccc_call(smc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
629 arg6, res);
630 }
631
kvm_selftest_arch_init(void)632 void kvm_selftest_arch_init(void)
633 {
634 /*
635 * arm64 doesn't have a true default mode, so start by computing the
636 * available IPA space and page sizes early.
637 */
638 guest_modes_append_default();
639 }
640
vm_vaddr_populate_bitmap(struct kvm_vm * vm)641 void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
642 {
643 /*
644 * arm64 selftests use only TTBR0_EL1, meaning that the valid VA space
645 * is [0, 2^(64 - TCR_EL1.T0SZ)).
646 */
647 sparsebit_set_num(vm->vpages_valid, 0,
648 (1ULL << vm->va_bits) >> vm->page_shift);
649 }
650
651 /* Helper to call wfi instruction. */
wfi(void)652 void wfi(void)
653 {
654 asm volatile("wfi");
655 }
656