1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * AArch64 code 4 * 5 * Copyright (C) 2018, Red Hat, Inc. 6 */ 7 8 #include <linux/compiler.h> 9 #include <assert.h> 10 11 #include "guest_modes.h" 12 #include "kvm_util.h" 13 #include "processor.h" 14 #include "ucall_common.h" 15 16 #include <linux/bitfield.h> 17 #include <linux/sizes.h> 18 19 #define DEFAULT_ARM64_GUEST_STACK_VADDR_MIN 0xac0000 20 21 static vm_vaddr_t exception_handlers; 22 23 static uint64_t page_align(struct kvm_vm *vm, uint64_t v) 24 { 25 return (v + vm->page_size) & ~(vm->page_size - 1); 26 } 27 28 static uint64_t pgd_index(struct kvm_vm *vm, vm_vaddr_t gva) 29 { 30 unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift; 31 uint64_t mask = (1UL << (vm->va_bits - shift)) - 1; 32 33 return (gva >> shift) & mask; 34 } 35 36 static uint64_t pud_index(struct kvm_vm *vm, vm_vaddr_t gva) 37 { 38 unsigned int shift = 2 * (vm->page_shift - 3) + vm->page_shift; 39 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1; 40 41 TEST_ASSERT(vm->pgtable_levels == 4, 42 "Mode %d does not have 4 page table levels", vm->mode); 43 44 return (gva >> shift) & mask; 45 } 46 47 static uint64_t pmd_index(struct kvm_vm *vm, vm_vaddr_t gva) 48 { 49 unsigned int shift = (vm->page_shift - 3) + vm->page_shift; 50 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1; 51 52 TEST_ASSERT(vm->pgtable_levels >= 3, 53 "Mode %d does not have >= 3 page table levels", vm->mode); 54 55 return (gva >> shift) & mask; 56 } 57 58 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva) 59 { 60 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1; 61 return (gva >> vm->page_shift) & mask; 62 } 63 64 static inline bool use_lpa2_pte_format(struct kvm_vm *vm) 65 { 66 return (vm->page_size == SZ_4K || vm->page_size == SZ_16K) && 67 (vm->pa_bits > 48 || vm->va_bits > 48); 68 } 69 70 static uint64_t addr_pte(struct kvm_vm *vm, uint64_t pa, uint64_t attrs) 71 { 72 uint64_t pte; 73 74 if (use_lpa2_pte_format(vm)) { 75 pte = pa & PTE_ADDR_MASK_LPA2(vm->page_shift); 76 pte |= FIELD_GET(GENMASK(51, 50), pa) << PTE_ADDR_51_50_LPA2_SHIFT; 77 attrs &= ~PTE_ADDR_51_50_LPA2; 78 } else { 79 pte = pa & PTE_ADDR_MASK(vm->page_shift); 80 if (vm->page_shift == 16) 81 pte |= FIELD_GET(GENMASK(51, 48), pa) << PTE_ADDR_51_48_SHIFT; 82 } 83 pte |= attrs; 84 85 return pte; 86 } 87 88 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t pte) 89 { 90 uint64_t pa; 91 92 if (use_lpa2_pte_format(vm)) { 93 pa = pte & PTE_ADDR_MASK_LPA2(vm->page_shift); 94 pa |= FIELD_GET(PTE_ADDR_51_50_LPA2, pte) << 50; 95 } else { 96 pa = pte & PTE_ADDR_MASK(vm->page_shift); 97 if (vm->page_shift == 16) 98 pa |= FIELD_GET(PTE_ADDR_51_48, pte) << 48; 99 } 100 101 return pa; 102 } 103 104 static uint64_t ptrs_per_pgd(struct kvm_vm *vm) 105 { 106 unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift; 107 return 1 << (vm->va_bits - shift); 108 } 109 110 static uint64_t __maybe_unused ptrs_per_pte(struct kvm_vm *vm) 111 { 112 return 1 << (vm->page_shift - 3); 113 } 114 115 void virt_arch_pgd_alloc(struct kvm_vm *vm) 116 { 117 size_t nr_pages = page_align(vm, ptrs_per_pgd(vm) * 8) / vm->page_size; 118 119 if (vm->pgd_created) 120 return; 121 122 vm->pgd = vm_phy_pages_alloc(vm, nr_pages, 123 KVM_GUEST_PAGE_TABLE_MIN_PADDR, 124 vm->memslots[MEM_REGION_PT]); 125 vm->pgd_created = true; 126 } 127 128 static void _virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 129 uint64_t flags) 130 { 131 uint8_t attr_idx = flags & (PTE_ATTRINDX_MASK >> PTE_ATTRINDX_SHIFT); 132 uint64_t pg_attr; 133 uint64_t *ptep; 134 135 TEST_ASSERT((vaddr % vm->page_size) == 0, 136 "Virtual address not on page boundary,\n" 137 " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size); 138 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, 139 (vaddr >> vm->page_shift)), 140 "Invalid virtual address, vaddr: 0x%lx", vaddr); 141 TEST_ASSERT((paddr % vm->page_size) == 0, 142 "Physical address not on page boundary,\n" 143 " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size); 144 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 145 "Physical address beyond beyond maximum supported,\n" 146 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 147 paddr, vm->max_gfn, vm->page_size); 148 149 ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, vaddr) * 8; 150 if (!*ptep) 151 *ptep = addr_pte(vm, vm_alloc_page_table(vm), 152 PGD_TYPE_TABLE | PTE_VALID); 153 154 switch (vm->pgtable_levels) { 155 case 4: 156 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, vaddr) * 8; 157 if (!*ptep) 158 *ptep = addr_pte(vm, vm_alloc_page_table(vm), 159 PUD_TYPE_TABLE | PTE_VALID); 160 /* fall through */ 161 case 3: 162 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, vaddr) * 8; 163 if (!*ptep) 164 *ptep = addr_pte(vm, vm_alloc_page_table(vm), 165 PMD_TYPE_TABLE | PTE_VALID); 166 /* fall through */ 167 case 2: 168 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr) * 8; 169 break; 170 default: 171 TEST_FAIL("Page table levels must be 2, 3, or 4"); 172 } 173 174 pg_attr = PTE_AF | PTE_ATTRINDX(attr_idx) | PTE_TYPE_PAGE | PTE_VALID; 175 if (!use_lpa2_pte_format(vm)) 176 pg_attr |= PTE_SHARED; 177 178 *ptep = addr_pte(vm, paddr, pg_attr); 179 } 180 181 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 182 { 183 uint64_t attr_idx = MT_NORMAL; 184 185 _virt_pg_map(vm, vaddr, paddr, attr_idx); 186 } 187 188 uint64_t *virt_get_pte_hva_at_level(struct kvm_vm *vm, vm_vaddr_t gva, int level) 189 { 190 uint64_t *ptep; 191 192 if (!vm->pgd_created) 193 goto unmapped_gva; 194 195 ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, gva) * 8; 196 if (!ptep) 197 goto unmapped_gva; 198 if (level == 0) 199 return ptep; 200 201 switch (vm->pgtable_levels) { 202 case 4: 203 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, gva) * 8; 204 if (!ptep) 205 goto unmapped_gva; 206 if (level == 1) 207 break; 208 /* fall through */ 209 case 3: 210 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, gva) * 8; 211 if (!ptep) 212 goto unmapped_gva; 213 if (level == 2) 214 break; 215 /* fall through */ 216 case 2: 217 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva) * 8; 218 if (!ptep) 219 goto unmapped_gva; 220 break; 221 default: 222 TEST_FAIL("Page table levels must be 2, 3, or 4"); 223 } 224 225 return ptep; 226 227 unmapped_gva: 228 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva); 229 exit(EXIT_FAILURE); 230 } 231 232 uint64_t *virt_get_pte_hva(struct kvm_vm *vm, vm_vaddr_t gva) 233 { 234 return virt_get_pte_hva_at_level(vm, gva, 3); 235 } 236 237 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 238 { 239 uint64_t *ptep = virt_get_pte_hva(vm, gva); 240 241 return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1)); 242 } 243 244 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level) 245 { 246 #ifdef DEBUG 247 static const char * const type[] = { "", "pud", "pmd", "pte" }; 248 uint64_t pte, *ptep; 249 250 if (level == 4) 251 return; 252 253 for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) { 254 ptep = addr_gpa2hva(vm, pte); 255 if (!*ptep) 256 continue; 257 fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep); 258 pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level + 1); 259 } 260 #endif 261 } 262 263 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 264 { 265 int level = 4 - (vm->pgtable_levels - 1); 266 uint64_t pgd, *ptep; 267 268 if (!vm->pgd_created) 269 return; 270 271 for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pgd(vm) * 8; pgd += 8) { 272 ptep = addr_gpa2hva(vm, pgd); 273 if (!*ptep) 274 continue; 275 fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep); 276 pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level); 277 } 278 } 279 280 void aarch64_vcpu_setup(struct kvm_vcpu *vcpu, struct kvm_vcpu_init *init) 281 { 282 struct kvm_vcpu_init default_init = { .target = -1, }; 283 struct kvm_vm *vm = vcpu->vm; 284 uint64_t sctlr_el1, tcr_el1, ttbr0_el1; 285 286 if (!init) 287 init = &default_init; 288 289 if (init->target == -1) { 290 struct kvm_vcpu_init preferred; 291 vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &preferred); 292 init->target = preferred.target; 293 } 294 295 vcpu_ioctl(vcpu, KVM_ARM_VCPU_INIT, init); 296 297 /* 298 * Enable FP/ASIMD to avoid trapping when accessing Q0-Q15 299 * registers, which the variable argument list macros do. 300 */ 301 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CPACR_EL1), 3 << 20); 302 303 sctlr_el1 = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1)); 304 tcr_el1 = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1)); 305 306 /* Configure base granule size */ 307 switch (vm->mode) { 308 case VM_MODE_PXXV48_4K: 309 TEST_FAIL("AArch64 does not support 4K sized pages " 310 "with ANY-bit physical address ranges"); 311 case VM_MODE_P52V48_64K: 312 case VM_MODE_P48V48_64K: 313 case VM_MODE_P40V48_64K: 314 case VM_MODE_P36V48_64K: 315 tcr_el1 |= TCR_TG0_64K; 316 break; 317 case VM_MODE_P52V48_16K: 318 case VM_MODE_P48V48_16K: 319 case VM_MODE_P40V48_16K: 320 case VM_MODE_P36V48_16K: 321 case VM_MODE_P36V47_16K: 322 tcr_el1 |= TCR_TG0_16K; 323 break; 324 case VM_MODE_P52V48_4K: 325 case VM_MODE_P48V48_4K: 326 case VM_MODE_P40V48_4K: 327 case VM_MODE_P36V48_4K: 328 tcr_el1 |= TCR_TG0_4K; 329 break; 330 default: 331 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); 332 } 333 334 ttbr0_el1 = vm->pgd & GENMASK(47, vm->page_shift); 335 336 /* Configure output size */ 337 switch (vm->mode) { 338 case VM_MODE_P52V48_4K: 339 case VM_MODE_P52V48_16K: 340 case VM_MODE_P52V48_64K: 341 tcr_el1 |= TCR_IPS_52_BITS; 342 ttbr0_el1 |= FIELD_GET(GENMASK(51, 48), vm->pgd) << 2; 343 break; 344 case VM_MODE_P48V48_4K: 345 case VM_MODE_P48V48_16K: 346 case VM_MODE_P48V48_64K: 347 tcr_el1 |= TCR_IPS_48_BITS; 348 break; 349 case VM_MODE_P40V48_4K: 350 case VM_MODE_P40V48_16K: 351 case VM_MODE_P40V48_64K: 352 tcr_el1 |= TCR_IPS_40_BITS; 353 break; 354 case VM_MODE_P36V48_4K: 355 case VM_MODE_P36V48_16K: 356 case VM_MODE_P36V48_64K: 357 case VM_MODE_P36V47_16K: 358 tcr_el1 |= TCR_IPS_36_BITS; 359 break; 360 default: 361 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); 362 } 363 364 sctlr_el1 |= SCTLR_ELx_M | SCTLR_ELx_C | SCTLR_ELx_I; 365 366 tcr_el1 |= TCR_IRGN0_WBWA | TCR_ORGN0_WBWA | TCR_SH0_INNER; 367 tcr_el1 |= TCR_T0SZ(vm->va_bits); 368 if (use_lpa2_pte_format(vm)) 369 tcr_el1 |= TCR_DS; 370 371 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1), sctlr_el1); 372 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1), tcr_el1); 373 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MAIR_EL1), DEFAULT_MAIR_EL1); 374 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TTBR0_EL1), ttbr0_el1); 375 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TPIDR_EL1), vcpu->id); 376 } 377 378 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) 379 { 380 uint64_t pstate, pc; 381 382 pstate = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate)); 383 pc = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc)); 384 385 fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n", 386 indent, "", pstate, pc); 387 } 388 389 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code) 390 { 391 vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code); 392 } 393 394 static struct kvm_vcpu *__aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 395 struct kvm_vcpu_init *init) 396 { 397 size_t stack_size; 398 uint64_t stack_vaddr; 399 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id); 400 401 stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size : 402 vm->page_size; 403 stack_vaddr = __vm_vaddr_alloc(vm, stack_size, 404 DEFAULT_ARM64_GUEST_STACK_VADDR_MIN, 405 MEM_REGION_DATA); 406 407 aarch64_vcpu_setup(vcpu, init); 408 409 vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), stack_vaddr + stack_size); 410 return vcpu; 411 } 412 413 struct kvm_vcpu *aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 414 struct kvm_vcpu_init *init, void *guest_code) 415 { 416 struct kvm_vcpu *vcpu = __aarch64_vcpu_add(vm, vcpu_id, init); 417 418 vcpu_arch_set_entry_point(vcpu, guest_code); 419 420 return vcpu; 421 } 422 423 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 424 { 425 return __aarch64_vcpu_add(vm, vcpu_id, NULL); 426 } 427 428 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...) 429 { 430 va_list ap; 431 int i; 432 433 TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n" 434 " num: %u", num); 435 436 va_start(ap, num); 437 438 for (i = 0; i < num; i++) { 439 vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.regs[i]), 440 va_arg(ap, uint64_t)); 441 } 442 443 va_end(ap); 444 } 445 446 void kvm_exit_unexpected_exception(int vector, uint64_t ec, bool valid_ec) 447 { 448 ucall(UCALL_UNHANDLED, 3, vector, ec, valid_ec); 449 while (1) 450 ; 451 } 452 453 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu) 454 { 455 struct ucall uc; 456 457 if (get_ucall(vcpu, &uc) != UCALL_UNHANDLED) 458 return; 459 460 if (uc.args[2]) /* valid_ec */ { 461 assert(VECTOR_IS_SYNC(uc.args[0])); 462 TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)", 463 uc.args[0], uc.args[1]); 464 } else { 465 assert(!VECTOR_IS_SYNC(uc.args[0])); 466 TEST_FAIL("Unexpected exception (vector:0x%lx)", 467 uc.args[0]); 468 } 469 } 470 471 struct handlers { 472 handler_fn exception_handlers[VECTOR_NUM][ESR_ELx_EC_MAX + 1]; 473 }; 474 475 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu) 476 { 477 extern char vectors; 478 479 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_VBAR_EL1), (uint64_t)&vectors); 480 } 481 482 void route_exception(struct ex_regs *regs, int vector) 483 { 484 struct handlers *handlers = (struct handlers *)exception_handlers; 485 bool valid_ec; 486 int ec = 0; 487 488 switch (vector) { 489 case VECTOR_SYNC_CURRENT: 490 case VECTOR_SYNC_LOWER_64: 491 ec = ESR_ELx_EC(read_sysreg(esr_el1)); 492 valid_ec = true; 493 break; 494 case VECTOR_IRQ_CURRENT: 495 case VECTOR_IRQ_LOWER_64: 496 case VECTOR_FIQ_CURRENT: 497 case VECTOR_FIQ_LOWER_64: 498 case VECTOR_ERROR_CURRENT: 499 case VECTOR_ERROR_LOWER_64: 500 ec = 0; 501 valid_ec = false; 502 break; 503 default: 504 valid_ec = false; 505 goto unexpected_exception; 506 } 507 508 if (handlers && handlers->exception_handlers[vector][ec]) 509 return handlers->exception_handlers[vector][ec](regs); 510 511 unexpected_exception: 512 kvm_exit_unexpected_exception(vector, ec, valid_ec); 513 } 514 515 void vm_init_descriptor_tables(struct kvm_vm *vm) 516 { 517 vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers), 518 vm->page_size, MEM_REGION_DATA); 519 520 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; 521 } 522 523 void vm_install_sync_handler(struct kvm_vm *vm, int vector, int ec, 524 void (*handler)(struct ex_regs *)) 525 { 526 struct handlers *handlers = addr_gva2hva(vm, vm->handlers); 527 528 assert(VECTOR_IS_SYNC(vector)); 529 assert(vector < VECTOR_NUM); 530 assert(ec <= ESR_ELx_EC_MAX); 531 handlers->exception_handlers[vector][ec] = handler; 532 } 533 534 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 535 void (*handler)(struct ex_regs *)) 536 { 537 struct handlers *handlers = addr_gva2hva(vm, vm->handlers); 538 539 assert(!VECTOR_IS_SYNC(vector)); 540 assert(vector < VECTOR_NUM); 541 handlers->exception_handlers[vector][0] = handler; 542 } 543 544 uint32_t guest_get_vcpuid(void) 545 { 546 return read_sysreg(tpidr_el1); 547 } 548 549 static uint32_t max_ipa_for_page_size(uint32_t vm_ipa, uint32_t gran, 550 uint32_t not_sup_val, uint32_t ipa52_min_val) 551 { 552 if (gran == not_sup_val) 553 return 0; 554 else if (gran >= ipa52_min_val && vm_ipa >= 52) 555 return 52; 556 else 557 return min(vm_ipa, 48U); 558 } 559 560 void aarch64_get_supported_page_sizes(uint32_t ipa, uint32_t *ipa4k, 561 uint32_t *ipa16k, uint32_t *ipa64k) 562 { 563 struct kvm_vcpu_init preferred_init; 564 int kvm_fd, vm_fd, vcpu_fd, err; 565 uint64_t val; 566 uint32_t gran; 567 struct kvm_one_reg reg = { 568 .id = KVM_ARM64_SYS_REG(SYS_ID_AA64MMFR0_EL1), 569 .addr = (uint64_t)&val, 570 }; 571 572 kvm_fd = open_kvm_dev_path_or_exit(); 573 vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, (void *)(unsigned long)ipa); 574 TEST_ASSERT(vm_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm_fd)); 575 576 vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0); 577 TEST_ASSERT(vcpu_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu_fd)); 578 579 err = ioctl(vm_fd, KVM_ARM_PREFERRED_TARGET, &preferred_init); 580 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_PREFERRED_TARGET, err)); 581 err = ioctl(vcpu_fd, KVM_ARM_VCPU_INIT, &preferred_init); 582 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_VCPU_INIT, err)); 583 584 err = ioctl(vcpu_fd, KVM_GET_ONE_REG, ®); 585 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd)); 586 587 gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN4, val); 588 *ipa4k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN4_NI, 589 ID_AA64MMFR0_EL1_TGRAN4_52_BIT); 590 591 gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN64, val); 592 *ipa64k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN64_NI, 593 ID_AA64MMFR0_EL1_TGRAN64_IMP); 594 595 gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN16, val); 596 *ipa16k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN16_NI, 597 ID_AA64MMFR0_EL1_TGRAN16_52_BIT); 598 599 close(vcpu_fd); 600 close(vm_fd); 601 close(kvm_fd); 602 } 603 604 #define __smccc_call(insn, function_id, arg0, arg1, arg2, arg3, arg4, arg5, \ 605 arg6, res) \ 606 asm volatile("mov w0, %w[function_id]\n" \ 607 "mov x1, %[arg0]\n" \ 608 "mov x2, %[arg1]\n" \ 609 "mov x3, %[arg2]\n" \ 610 "mov x4, %[arg3]\n" \ 611 "mov x5, %[arg4]\n" \ 612 "mov x6, %[arg5]\n" \ 613 "mov x7, %[arg6]\n" \ 614 #insn "#0\n" \ 615 "mov %[res0], x0\n" \ 616 "mov %[res1], x1\n" \ 617 "mov %[res2], x2\n" \ 618 "mov %[res3], x3\n" \ 619 : [res0] "=r"(res->a0), [res1] "=r"(res->a1), \ 620 [res2] "=r"(res->a2), [res3] "=r"(res->a3) \ 621 : [function_id] "r"(function_id), [arg0] "r"(arg0), \ 622 [arg1] "r"(arg1), [arg2] "r"(arg2), [arg3] "r"(arg3), \ 623 [arg4] "r"(arg4), [arg5] "r"(arg5), [arg6] "r"(arg6) \ 624 : "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7") 625 626 627 void smccc_hvc(uint32_t function_id, uint64_t arg0, uint64_t arg1, 628 uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, 629 uint64_t arg6, struct arm_smccc_res *res) 630 { 631 __smccc_call(hvc, function_id, arg0, arg1, arg2, arg3, arg4, arg5, 632 arg6, res); 633 } 634 635 void smccc_smc(uint32_t function_id, uint64_t arg0, uint64_t arg1, 636 uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5, 637 uint64_t arg6, struct arm_smccc_res *res) 638 { 639 __smccc_call(smc, function_id, arg0, arg1, arg2, arg3, arg4, arg5, 640 arg6, res); 641 } 642 643 void kvm_selftest_arch_init(void) 644 { 645 /* 646 * arm64 doesn't have a true default mode, so start by computing the 647 * available IPA space and page sizes early. 648 */ 649 guest_modes_append_default(); 650 } 651 652 void vm_vaddr_populate_bitmap(struct kvm_vm *vm) 653 { 654 /* 655 * arm64 selftests use only TTBR0_EL1, meaning that the valid VA space 656 * is [0, 2^(64 - TCR_EL1.T0SZ)). 657 */ 658 sparsebit_set_num(vm->vpages_valid, 0, 659 (1ULL << vm->va_bits) >> vm->page_shift); 660 } 661 662 /* Helper to call wfi instruction. */ 663 void wfi(void) 664 { 665 asm volatile("wfi"); 666 } 667