1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * thread-stack.c: Synthesize a thread's stack using call / return events 4 * Copyright (c) 2014, Intel Corporation. 5 */ 6 7 #include <linux/rbtree.h> 8 #include <linux/list.h> 9 #include <linux/log2.h> 10 #include <linux/zalloc.h> 11 #include <errno.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include "thread.h" 15 #include "event.h" 16 #include "machine.h" 17 #include "env.h" 18 #include "debug.h" 19 #include "symbol.h" 20 #include "comm.h" 21 #include "call-path.h" 22 #include "thread-stack.h" 23 24 #define STACK_GROWTH 2048 25 26 /* 27 * State of retpoline detection. 28 * 29 * RETPOLINE_NONE: no retpoline detection 30 * X86_RETPOLINE_POSSIBLE: x86 retpoline possible 31 * X86_RETPOLINE_DETECTED: x86 retpoline detected 32 */ 33 enum retpoline_state_t { 34 RETPOLINE_NONE, 35 X86_RETPOLINE_POSSIBLE, 36 X86_RETPOLINE_DETECTED, 37 }; 38 39 /** 40 * struct thread_stack_entry - thread stack entry. 41 * @ret_addr: return address 42 * @timestamp: timestamp (if known) 43 * @ref: external reference (e.g. db_id of sample) 44 * @branch_count: the branch count when the entry was created 45 * @insn_count: the instruction count when the entry was created 46 * @cyc_count the cycle count when the entry was created 47 * @db_id: id used for db-export 48 * @cp: call path 49 * @no_call: a 'call' was not seen 50 * @trace_end: a 'call' but trace ended 51 * @non_call: a branch but not a 'call' to the start of a different symbol 52 */ 53 struct thread_stack_entry { 54 u64 ret_addr; 55 u64 timestamp; 56 u64 ref; 57 u64 branch_count; 58 u64 insn_count; 59 u64 cyc_count; 60 u64 db_id; 61 struct call_path *cp; 62 bool no_call; 63 bool trace_end; 64 bool non_call; 65 }; 66 67 /** 68 * struct thread_stack - thread stack constructed from 'call' and 'return' 69 * branch samples. 70 * @stack: array that holds the stack 71 * @cnt: number of entries in the stack 72 * @sz: current maximum stack size 73 * @trace_nr: current trace number 74 * @branch_count: running branch count 75 * @insn_count: running instruction count 76 * @cyc_count running cycle count 77 * @kernel_start: kernel start address 78 * @last_time: last timestamp 79 * @crp: call/return processor 80 * @comm: current comm 81 * @arr_sz: size of array if this is the first element of an array 82 * @rstate: used to detect retpolines 83 * @br_stack_rb: branch stack (ring buffer) 84 * @br_stack_sz: maximum branch stack size 85 * @br_stack_pos: current position in @br_stack_rb 86 * @mispred_all: mark all branches as mispredicted 87 */ 88 struct thread_stack { 89 struct thread_stack_entry *stack; 90 size_t cnt; 91 size_t sz; 92 u64 trace_nr; 93 u64 branch_count; 94 u64 insn_count; 95 u64 cyc_count; 96 u64 kernel_start; 97 u64 last_time; 98 struct call_return_processor *crp; 99 struct comm *comm; 100 unsigned int arr_sz; 101 enum retpoline_state_t rstate; 102 struct branch_stack *br_stack_rb; 103 unsigned int br_stack_sz; 104 unsigned int br_stack_pos; 105 bool mispred_all; 106 }; 107 108 /* 109 * Assume pid == tid == 0 identifies the idle task as defined by 110 * perf_session__register_idle_thread(). The idle task is really 1 task per cpu, 111 * and therefore requires a stack for each cpu. 112 */ 113 static inline bool thread_stack__per_cpu(struct thread *thread) 114 { 115 return !(thread->tid || thread->pid_); 116 } 117 118 static int thread_stack__grow(struct thread_stack *ts) 119 { 120 struct thread_stack_entry *new_stack; 121 size_t sz, new_sz; 122 123 new_sz = ts->sz + STACK_GROWTH; 124 sz = new_sz * sizeof(struct thread_stack_entry); 125 126 new_stack = realloc(ts->stack, sz); 127 if (!new_stack) 128 return -ENOMEM; 129 130 ts->stack = new_stack; 131 ts->sz = new_sz; 132 133 return 0; 134 } 135 136 static int thread_stack__init(struct thread_stack *ts, struct thread *thread, 137 struct call_return_processor *crp, 138 bool callstack, unsigned int br_stack_sz) 139 { 140 int err; 141 142 if (callstack) { 143 err = thread_stack__grow(ts); 144 if (err) 145 return err; 146 } 147 148 if (br_stack_sz) { 149 size_t sz = sizeof(struct branch_stack); 150 151 sz += br_stack_sz * sizeof(struct branch_entry); 152 ts->br_stack_rb = zalloc(sz); 153 if (!ts->br_stack_rb) 154 return -ENOMEM; 155 ts->br_stack_sz = br_stack_sz; 156 } 157 158 if (thread->maps && maps__machine(thread->maps)) { 159 struct machine *machine = maps__machine(thread->maps); 160 const char *arch = perf_env__arch(machine->env); 161 162 ts->kernel_start = machine__kernel_start(machine); 163 if (!strcmp(arch, "x86")) 164 ts->rstate = X86_RETPOLINE_POSSIBLE; 165 } else { 166 ts->kernel_start = 1ULL << 63; 167 } 168 ts->crp = crp; 169 170 return 0; 171 } 172 173 static struct thread_stack *thread_stack__new(struct thread *thread, int cpu, 174 struct call_return_processor *crp, 175 bool callstack, 176 unsigned int br_stack_sz) 177 { 178 struct thread_stack *ts = thread->ts, *new_ts; 179 unsigned int old_sz = ts ? ts->arr_sz : 0; 180 unsigned int new_sz = 1; 181 182 if (thread_stack__per_cpu(thread) && cpu > 0) 183 new_sz = roundup_pow_of_two(cpu + 1); 184 185 if (!ts || new_sz > old_sz) { 186 new_ts = calloc(new_sz, sizeof(*ts)); 187 if (!new_ts) 188 return NULL; 189 if (ts) 190 memcpy(new_ts, ts, old_sz * sizeof(*ts)); 191 new_ts->arr_sz = new_sz; 192 zfree(&thread->ts); 193 thread->ts = new_ts; 194 ts = new_ts; 195 } 196 197 if (thread_stack__per_cpu(thread) && cpu > 0 && 198 (unsigned int)cpu < ts->arr_sz) 199 ts += cpu; 200 201 if (!ts->stack && 202 thread_stack__init(ts, thread, crp, callstack, br_stack_sz)) 203 return NULL; 204 205 return ts; 206 } 207 208 static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu) 209 { 210 struct thread_stack *ts = thread->ts; 211 212 if (cpu < 0) 213 cpu = 0; 214 215 if (!ts || (unsigned int)cpu >= ts->arr_sz) 216 return NULL; 217 218 ts += cpu; 219 220 if (!ts->stack) 221 return NULL; 222 223 return ts; 224 } 225 226 static inline struct thread_stack *thread__stack(struct thread *thread, 227 int cpu) 228 { 229 if (!thread) 230 return NULL; 231 232 if (thread_stack__per_cpu(thread)) 233 return thread__cpu_stack(thread, cpu); 234 235 return thread->ts; 236 } 237 238 static int thread_stack__push(struct thread_stack *ts, u64 ret_addr, 239 bool trace_end) 240 { 241 int err = 0; 242 243 if (ts->cnt == ts->sz) { 244 err = thread_stack__grow(ts); 245 if (err) { 246 pr_warning("Out of memory: discarding thread stack\n"); 247 ts->cnt = 0; 248 } 249 } 250 251 ts->stack[ts->cnt].trace_end = trace_end; 252 ts->stack[ts->cnt++].ret_addr = ret_addr; 253 254 return err; 255 } 256 257 static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr) 258 { 259 size_t i; 260 261 /* 262 * In some cases there may be functions which are not seen to return. 263 * For example when setjmp / longjmp has been used. Or the perf context 264 * switch in the kernel which doesn't stop and start tracing in exactly 265 * the same code path. When that happens the return address will be 266 * further down the stack. If the return address is not found at all, 267 * we assume the opposite (i.e. this is a return for a call that wasn't 268 * seen for some reason) and leave the stack alone. 269 */ 270 for (i = ts->cnt; i; ) { 271 if (ts->stack[--i].ret_addr == ret_addr) { 272 ts->cnt = i; 273 return; 274 } 275 } 276 } 277 278 static void thread_stack__pop_trace_end(struct thread_stack *ts) 279 { 280 size_t i; 281 282 for (i = ts->cnt; i; ) { 283 if (ts->stack[--i].trace_end) 284 ts->cnt = i; 285 else 286 return; 287 } 288 } 289 290 static bool thread_stack__in_kernel(struct thread_stack *ts) 291 { 292 if (!ts->cnt) 293 return false; 294 295 return ts->stack[ts->cnt - 1].cp->in_kernel; 296 } 297 298 static int thread_stack__call_return(struct thread *thread, 299 struct thread_stack *ts, size_t idx, 300 u64 timestamp, u64 ref, bool no_return) 301 { 302 struct call_return_processor *crp = ts->crp; 303 struct thread_stack_entry *tse; 304 struct call_return cr = { 305 .thread = thread, 306 .comm = ts->comm, 307 .db_id = 0, 308 }; 309 u64 *parent_db_id; 310 311 tse = &ts->stack[idx]; 312 cr.cp = tse->cp; 313 cr.call_time = tse->timestamp; 314 cr.return_time = timestamp; 315 cr.branch_count = ts->branch_count - tse->branch_count; 316 cr.insn_count = ts->insn_count - tse->insn_count; 317 cr.cyc_count = ts->cyc_count - tse->cyc_count; 318 cr.db_id = tse->db_id; 319 cr.call_ref = tse->ref; 320 cr.return_ref = ref; 321 if (tse->no_call) 322 cr.flags |= CALL_RETURN_NO_CALL; 323 if (no_return) 324 cr.flags |= CALL_RETURN_NO_RETURN; 325 if (tse->non_call) 326 cr.flags |= CALL_RETURN_NON_CALL; 327 328 /* 329 * The parent db_id must be assigned before exporting the child. Note 330 * it is not possible to export the parent first because its information 331 * is not yet complete because its 'return' has not yet been processed. 332 */ 333 parent_db_id = idx ? &(tse - 1)->db_id : NULL; 334 335 return crp->process(&cr, parent_db_id, crp->data); 336 } 337 338 static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts) 339 { 340 struct call_return_processor *crp = ts->crp; 341 int err; 342 343 if (!crp) { 344 ts->cnt = 0; 345 ts->br_stack_pos = 0; 346 if (ts->br_stack_rb) 347 ts->br_stack_rb->nr = 0; 348 return 0; 349 } 350 351 while (ts->cnt) { 352 err = thread_stack__call_return(thread, ts, --ts->cnt, 353 ts->last_time, 0, true); 354 if (err) { 355 pr_err("Error flushing thread stack!\n"); 356 ts->cnt = 0; 357 return err; 358 } 359 } 360 361 return 0; 362 } 363 364 int thread_stack__flush(struct thread *thread) 365 { 366 struct thread_stack *ts = thread->ts; 367 unsigned int pos; 368 int err = 0; 369 370 if (ts) { 371 for (pos = 0; pos < ts->arr_sz; pos++) { 372 int ret = __thread_stack__flush(thread, ts + pos); 373 374 if (ret) 375 err = ret; 376 } 377 } 378 379 return err; 380 } 381 382 static void thread_stack__update_br_stack(struct thread_stack *ts, u32 flags, 383 u64 from_ip, u64 to_ip) 384 { 385 struct branch_stack *bs = ts->br_stack_rb; 386 struct branch_entry *be; 387 388 if (!ts->br_stack_pos) 389 ts->br_stack_pos = ts->br_stack_sz; 390 391 ts->br_stack_pos -= 1; 392 393 be = &bs->entries[ts->br_stack_pos]; 394 be->from = from_ip; 395 be->to = to_ip; 396 be->flags.value = 0; 397 be->flags.abort = !!(flags & PERF_IP_FLAG_TX_ABORT); 398 be->flags.in_tx = !!(flags & PERF_IP_FLAG_IN_TX); 399 /* No support for mispredict */ 400 be->flags.mispred = ts->mispred_all; 401 402 if (bs->nr < ts->br_stack_sz) 403 bs->nr += 1; 404 } 405 406 int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip, 407 u64 to_ip, u16 insn_len, u64 trace_nr, bool callstack, 408 unsigned int br_stack_sz, bool mispred_all) 409 { 410 struct thread_stack *ts = thread__stack(thread, cpu); 411 412 if (!thread) 413 return -EINVAL; 414 415 if (!ts) { 416 ts = thread_stack__new(thread, cpu, NULL, callstack, br_stack_sz); 417 if (!ts) { 418 pr_warning("Out of memory: no thread stack\n"); 419 return -ENOMEM; 420 } 421 ts->trace_nr = trace_nr; 422 ts->mispred_all = mispred_all; 423 } 424 425 /* 426 * When the trace is discontinuous, the trace_nr changes. In that case 427 * the stack might be completely invalid. Better to report nothing than 428 * to report something misleading, so flush the stack. 429 */ 430 if (trace_nr != ts->trace_nr) { 431 if (ts->trace_nr) 432 __thread_stack__flush(thread, ts); 433 ts->trace_nr = trace_nr; 434 } 435 436 if (br_stack_sz) 437 thread_stack__update_br_stack(ts, flags, from_ip, to_ip); 438 439 /* 440 * Stop here if thread_stack__process() is in use, or not recording call 441 * stack. 442 */ 443 if (ts->crp || !callstack) 444 return 0; 445 446 if (flags & PERF_IP_FLAG_CALL) { 447 u64 ret_addr; 448 449 if (!to_ip) 450 return 0; 451 ret_addr = from_ip + insn_len; 452 if (ret_addr == to_ip) 453 return 0; /* Zero-length calls are excluded */ 454 return thread_stack__push(ts, ret_addr, 455 flags & PERF_IP_FLAG_TRACE_END); 456 } else if (flags & PERF_IP_FLAG_TRACE_BEGIN) { 457 /* 458 * If the caller did not change the trace number (which would 459 * have flushed the stack) then try to make sense of the stack. 460 * Possibly, tracing began after returning to the current 461 * address, so try to pop that. Also, do not expect a call made 462 * when the trace ended, to return, so pop that. 463 */ 464 thread_stack__pop(ts, to_ip); 465 thread_stack__pop_trace_end(ts); 466 } else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) { 467 thread_stack__pop(ts, to_ip); 468 } 469 470 return 0; 471 } 472 473 void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr) 474 { 475 struct thread_stack *ts = thread__stack(thread, cpu); 476 477 if (!ts) 478 return; 479 480 if (trace_nr != ts->trace_nr) { 481 if (ts->trace_nr) 482 __thread_stack__flush(thread, ts); 483 ts->trace_nr = trace_nr; 484 } 485 } 486 487 static void __thread_stack__free(struct thread *thread, struct thread_stack *ts) 488 { 489 __thread_stack__flush(thread, ts); 490 zfree(&ts->stack); 491 zfree(&ts->br_stack_rb); 492 } 493 494 static void thread_stack__reset(struct thread *thread, struct thread_stack *ts) 495 { 496 unsigned int arr_sz = ts->arr_sz; 497 498 __thread_stack__free(thread, ts); 499 memset(ts, 0, sizeof(*ts)); 500 ts->arr_sz = arr_sz; 501 } 502 503 void thread_stack__free(struct thread *thread) 504 { 505 struct thread_stack *ts = thread->ts; 506 unsigned int pos; 507 508 if (ts) { 509 for (pos = 0; pos < ts->arr_sz; pos++) 510 __thread_stack__free(thread, ts + pos); 511 zfree(&thread->ts); 512 } 513 } 514 515 static inline u64 callchain_context(u64 ip, u64 kernel_start) 516 { 517 return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL; 518 } 519 520 void thread_stack__sample(struct thread *thread, int cpu, 521 struct ip_callchain *chain, 522 size_t sz, u64 ip, u64 kernel_start) 523 { 524 struct thread_stack *ts = thread__stack(thread, cpu); 525 u64 context = callchain_context(ip, kernel_start); 526 u64 last_context; 527 size_t i, j; 528 529 if (sz < 2) { 530 chain->nr = 0; 531 return; 532 } 533 534 chain->ips[0] = context; 535 chain->ips[1] = ip; 536 537 if (!ts) { 538 chain->nr = 2; 539 return; 540 } 541 542 last_context = context; 543 544 for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) { 545 ip = ts->stack[ts->cnt - j].ret_addr; 546 context = callchain_context(ip, kernel_start); 547 if (context != last_context) { 548 if (i >= sz - 1) 549 break; 550 chain->ips[i++] = context; 551 last_context = context; 552 } 553 chain->ips[i] = ip; 554 } 555 556 chain->nr = i; 557 } 558 559 /* 560 * Hardware sample records, created some time after the event occurred, need to 561 * have subsequent addresses removed from the call chain. 562 */ 563 void thread_stack__sample_late(struct thread *thread, int cpu, 564 struct ip_callchain *chain, size_t sz, 565 u64 sample_ip, u64 kernel_start) 566 { 567 struct thread_stack *ts = thread__stack(thread, cpu); 568 u64 sample_context = callchain_context(sample_ip, kernel_start); 569 u64 last_context, context, ip; 570 size_t nr = 0, j; 571 572 if (sz < 2) { 573 chain->nr = 0; 574 return; 575 } 576 577 if (!ts) 578 goto out; 579 580 /* 581 * When tracing kernel space, kernel addresses occur at the top of the 582 * call chain after the event occurred but before tracing stopped. 583 * Skip them. 584 */ 585 for (j = 1; j <= ts->cnt; j++) { 586 ip = ts->stack[ts->cnt - j].ret_addr; 587 context = callchain_context(ip, kernel_start); 588 if (context == PERF_CONTEXT_USER || 589 (context == sample_context && ip == sample_ip)) 590 break; 591 } 592 593 last_context = sample_ip; /* Use sample_ip as an invalid context */ 594 595 for (; nr < sz && j <= ts->cnt; nr++, j++) { 596 ip = ts->stack[ts->cnt - j].ret_addr; 597 context = callchain_context(ip, kernel_start); 598 if (context != last_context) { 599 if (nr >= sz - 1) 600 break; 601 chain->ips[nr++] = context; 602 last_context = context; 603 } 604 chain->ips[nr] = ip; 605 } 606 out: 607 if (nr) { 608 chain->nr = nr; 609 } else { 610 chain->ips[0] = sample_context; 611 chain->ips[1] = sample_ip; 612 chain->nr = 2; 613 } 614 } 615 616 void thread_stack__br_sample(struct thread *thread, int cpu, 617 struct branch_stack *dst, unsigned int sz) 618 { 619 struct thread_stack *ts = thread__stack(thread, cpu); 620 const size_t bsz = sizeof(struct branch_entry); 621 struct branch_stack *src; 622 struct branch_entry *be; 623 unsigned int nr; 624 625 dst->nr = 0; 626 627 if (!ts) 628 return; 629 630 src = ts->br_stack_rb; 631 if (!src->nr) 632 return; 633 634 dst->nr = min((unsigned int)src->nr, sz); 635 636 be = &dst->entries[0]; 637 nr = min(ts->br_stack_sz - ts->br_stack_pos, (unsigned int)dst->nr); 638 memcpy(be, &src->entries[ts->br_stack_pos], bsz * nr); 639 640 if (src->nr >= ts->br_stack_sz) { 641 sz -= nr; 642 be = &dst->entries[nr]; 643 nr = min(ts->br_stack_pos, sz); 644 memcpy(be, &src->entries[0], bsz * ts->br_stack_pos); 645 } 646 } 647 648 /* Start of user space branch entries */ 649 static bool us_start(struct branch_entry *be, u64 kernel_start, bool *start) 650 { 651 if (!*start) 652 *start = be->to && be->to < kernel_start; 653 654 return *start; 655 } 656 657 /* 658 * Start of branch entries after the ip fell in between 2 branches, or user 659 * space branch entries. 660 */ 661 static bool ks_start(struct branch_entry *be, u64 sample_ip, u64 kernel_start, 662 bool *start, struct branch_entry *nb) 663 { 664 if (!*start) { 665 *start = (nb && sample_ip >= be->to && sample_ip <= nb->from) || 666 be->from < kernel_start || 667 (be->to && be->to < kernel_start); 668 } 669 670 return *start; 671 } 672 673 /* 674 * Hardware sample records, created some time after the event occurred, need to 675 * have subsequent addresses removed from the branch stack. 676 */ 677 void thread_stack__br_sample_late(struct thread *thread, int cpu, 678 struct branch_stack *dst, unsigned int sz, 679 u64 ip, u64 kernel_start) 680 { 681 struct thread_stack *ts = thread__stack(thread, cpu); 682 struct branch_entry *d, *s, *spos, *ssz; 683 struct branch_stack *src; 684 unsigned int nr = 0; 685 bool start = false; 686 687 dst->nr = 0; 688 689 if (!ts) 690 return; 691 692 src = ts->br_stack_rb; 693 if (!src->nr) 694 return; 695 696 spos = &src->entries[ts->br_stack_pos]; 697 ssz = &src->entries[ts->br_stack_sz]; 698 699 d = &dst->entries[0]; 700 s = spos; 701 702 if (ip < kernel_start) { 703 /* 704 * User space sample: start copying branch entries when the 705 * branch is in user space. 706 */ 707 for (s = spos; s < ssz && nr < sz; s++) { 708 if (us_start(s, kernel_start, &start)) { 709 *d++ = *s; 710 nr += 1; 711 } 712 } 713 714 if (src->nr >= ts->br_stack_sz) { 715 for (s = &src->entries[0]; s < spos && nr < sz; s++) { 716 if (us_start(s, kernel_start, &start)) { 717 *d++ = *s; 718 nr += 1; 719 } 720 } 721 } 722 } else { 723 struct branch_entry *nb = NULL; 724 725 /* 726 * Kernel space sample: start copying branch entries when the ip 727 * falls in between 2 branches (or the branch is in user space 728 * because then the start must have been missed). 729 */ 730 for (s = spos; s < ssz && nr < sz; s++) { 731 if (ks_start(s, ip, kernel_start, &start, nb)) { 732 *d++ = *s; 733 nr += 1; 734 } 735 nb = s; 736 } 737 738 if (src->nr >= ts->br_stack_sz) { 739 for (s = &src->entries[0]; s < spos && nr < sz; s++) { 740 if (ks_start(s, ip, kernel_start, &start, nb)) { 741 *d++ = *s; 742 nr += 1; 743 } 744 nb = s; 745 } 746 } 747 } 748 749 dst->nr = nr; 750 } 751 752 struct call_return_processor * 753 call_return_processor__new(int (*process)(struct call_return *cr, u64 *parent_db_id, void *data), 754 void *data) 755 { 756 struct call_return_processor *crp; 757 758 crp = zalloc(sizeof(struct call_return_processor)); 759 if (!crp) 760 return NULL; 761 crp->cpr = call_path_root__new(); 762 if (!crp->cpr) 763 goto out_free; 764 crp->process = process; 765 crp->data = data; 766 return crp; 767 768 out_free: 769 free(crp); 770 return NULL; 771 } 772 773 void call_return_processor__free(struct call_return_processor *crp) 774 { 775 if (crp) { 776 call_path_root__free(crp->cpr); 777 free(crp); 778 } 779 } 780 781 static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr, 782 u64 timestamp, u64 ref, struct call_path *cp, 783 bool no_call, bool trace_end) 784 { 785 struct thread_stack_entry *tse; 786 int err; 787 788 if (!cp) 789 return -ENOMEM; 790 791 if (ts->cnt == ts->sz) { 792 err = thread_stack__grow(ts); 793 if (err) 794 return err; 795 } 796 797 tse = &ts->stack[ts->cnt++]; 798 tse->ret_addr = ret_addr; 799 tse->timestamp = timestamp; 800 tse->ref = ref; 801 tse->branch_count = ts->branch_count; 802 tse->insn_count = ts->insn_count; 803 tse->cyc_count = ts->cyc_count; 804 tse->cp = cp; 805 tse->no_call = no_call; 806 tse->trace_end = trace_end; 807 tse->non_call = false; 808 tse->db_id = 0; 809 810 return 0; 811 } 812 813 static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts, 814 u64 ret_addr, u64 timestamp, u64 ref, 815 struct symbol *sym) 816 { 817 int err; 818 819 if (!ts->cnt) 820 return 1; 821 822 if (ts->cnt == 1) { 823 struct thread_stack_entry *tse = &ts->stack[0]; 824 825 if (tse->cp->sym == sym) 826 return thread_stack__call_return(thread, ts, --ts->cnt, 827 timestamp, ref, false); 828 } 829 830 if (ts->stack[ts->cnt - 1].ret_addr == ret_addr && 831 !ts->stack[ts->cnt - 1].non_call) { 832 return thread_stack__call_return(thread, ts, --ts->cnt, 833 timestamp, ref, false); 834 } else { 835 size_t i = ts->cnt - 1; 836 837 while (i--) { 838 if (ts->stack[i].ret_addr != ret_addr || 839 ts->stack[i].non_call) 840 continue; 841 i += 1; 842 while (ts->cnt > i) { 843 err = thread_stack__call_return(thread, ts, 844 --ts->cnt, 845 timestamp, ref, 846 true); 847 if (err) 848 return err; 849 } 850 return thread_stack__call_return(thread, ts, --ts->cnt, 851 timestamp, ref, false); 852 } 853 } 854 855 return 1; 856 } 857 858 static int thread_stack__bottom(struct thread_stack *ts, 859 struct perf_sample *sample, 860 struct addr_location *from_al, 861 struct addr_location *to_al, u64 ref) 862 { 863 struct call_path_root *cpr = ts->crp->cpr; 864 struct call_path *cp; 865 struct symbol *sym; 866 u64 ip; 867 868 if (sample->ip) { 869 ip = sample->ip; 870 sym = from_al->sym; 871 } else if (sample->addr) { 872 ip = sample->addr; 873 sym = to_al->sym; 874 } else { 875 return 0; 876 } 877 878 cp = call_path__findnew(cpr, &cpr->call_path, sym, ip, 879 ts->kernel_start); 880 881 return thread_stack__push_cp(ts, ip, sample->time, ref, cp, 882 true, false); 883 } 884 885 static int thread_stack__pop_ks(struct thread *thread, struct thread_stack *ts, 886 struct perf_sample *sample, u64 ref) 887 { 888 u64 tm = sample->time; 889 int err; 890 891 /* Return to userspace, so pop all kernel addresses */ 892 while (thread_stack__in_kernel(ts)) { 893 err = thread_stack__call_return(thread, ts, --ts->cnt, 894 tm, ref, true); 895 if (err) 896 return err; 897 } 898 899 return 0; 900 } 901 902 static int thread_stack__no_call_return(struct thread *thread, 903 struct thread_stack *ts, 904 struct perf_sample *sample, 905 struct addr_location *from_al, 906 struct addr_location *to_al, u64 ref) 907 { 908 struct call_path_root *cpr = ts->crp->cpr; 909 struct call_path *root = &cpr->call_path; 910 struct symbol *fsym = from_al->sym; 911 struct symbol *tsym = to_al->sym; 912 struct call_path *cp, *parent; 913 u64 ks = ts->kernel_start; 914 u64 addr = sample->addr; 915 u64 tm = sample->time; 916 u64 ip = sample->ip; 917 int err; 918 919 if (ip >= ks && addr < ks) { 920 /* Return to userspace, so pop all kernel addresses */ 921 err = thread_stack__pop_ks(thread, ts, sample, ref); 922 if (err) 923 return err; 924 925 /* If the stack is empty, push the userspace address */ 926 if (!ts->cnt) { 927 cp = call_path__findnew(cpr, root, tsym, addr, ks); 928 return thread_stack__push_cp(ts, 0, tm, ref, cp, true, 929 false); 930 } 931 } else if (thread_stack__in_kernel(ts) && ip < ks) { 932 /* Return to userspace, so pop all kernel addresses */ 933 err = thread_stack__pop_ks(thread, ts, sample, ref); 934 if (err) 935 return err; 936 } 937 938 if (ts->cnt) 939 parent = ts->stack[ts->cnt - 1].cp; 940 else 941 parent = root; 942 943 if (parent->sym == from_al->sym) { 944 /* 945 * At the bottom of the stack, assume the missing 'call' was 946 * before the trace started. So, pop the current symbol and push 947 * the 'to' symbol. 948 */ 949 if (ts->cnt == 1) { 950 err = thread_stack__call_return(thread, ts, --ts->cnt, 951 tm, ref, false); 952 if (err) 953 return err; 954 } 955 956 if (!ts->cnt) { 957 cp = call_path__findnew(cpr, root, tsym, addr, ks); 958 959 return thread_stack__push_cp(ts, addr, tm, ref, cp, 960 true, false); 961 } 962 963 /* 964 * Otherwise assume the 'return' is being used as a jump (e.g. 965 * retpoline) and just push the 'to' symbol. 966 */ 967 cp = call_path__findnew(cpr, parent, tsym, addr, ks); 968 969 err = thread_stack__push_cp(ts, 0, tm, ref, cp, true, false); 970 if (!err) 971 ts->stack[ts->cnt - 1].non_call = true; 972 973 return err; 974 } 975 976 /* 977 * Assume 'parent' has not yet returned, so push 'to', and then push and 978 * pop 'from'. 979 */ 980 981 cp = call_path__findnew(cpr, parent, tsym, addr, ks); 982 983 err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false); 984 if (err) 985 return err; 986 987 cp = call_path__findnew(cpr, cp, fsym, ip, ks); 988 989 err = thread_stack__push_cp(ts, ip, tm, ref, cp, true, false); 990 if (err) 991 return err; 992 993 return thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, false); 994 } 995 996 static int thread_stack__trace_begin(struct thread *thread, 997 struct thread_stack *ts, u64 timestamp, 998 u64 ref) 999 { 1000 struct thread_stack_entry *tse; 1001 int err; 1002 1003 if (!ts->cnt) 1004 return 0; 1005 1006 /* Pop trace end */ 1007 tse = &ts->stack[ts->cnt - 1]; 1008 if (tse->trace_end) { 1009 err = thread_stack__call_return(thread, ts, --ts->cnt, 1010 timestamp, ref, false); 1011 if (err) 1012 return err; 1013 } 1014 1015 return 0; 1016 } 1017 1018 static int thread_stack__trace_end(struct thread_stack *ts, 1019 struct perf_sample *sample, u64 ref) 1020 { 1021 struct call_path_root *cpr = ts->crp->cpr; 1022 struct call_path *cp; 1023 u64 ret_addr; 1024 1025 /* No point having 'trace end' on the bottom of the stack */ 1026 if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref)) 1027 return 0; 1028 1029 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0, 1030 ts->kernel_start); 1031 1032 ret_addr = sample->ip + sample->insn_len; 1033 1034 return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp, 1035 false, true); 1036 } 1037 1038 static bool is_x86_retpoline(const char *name) 1039 { 1040 const char *p = strstr(name, "__x86_indirect_thunk_"); 1041 1042 return p == name || !strcmp(name, "__indirect_thunk_start"); 1043 } 1044 1045 /* 1046 * x86 retpoline functions pollute the call graph. This function removes them. 1047 * This does not handle function return thunks, nor is there any improvement 1048 * for the handling of inline thunks or extern thunks. 1049 */ 1050 static int thread_stack__x86_retpoline(struct thread_stack *ts, 1051 struct perf_sample *sample, 1052 struct addr_location *to_al) 1053 { 1054 struct thread_stack_entry *tse = &ts->stack[ts->cnt - 1]; 1055 struct call_path_root *cpr = ts->crp->cpr; 1056 struct symbol *sym = tse->cp->sym; 1057 struct symbol *tsym = to_al->sym; 1058 struct call_path *cp; 1059 1060 if (sym && is_x86_retpoline(sym->name)) { 1061 /* 1062 * This is a x86 retpoline fn. It pollutes the call graph by 1063 * showing up everywhere there is an indirect branch, but does 1064 * not itself mean anything. Here the top-of-stack is removed, 1065 * by decrementing the stack count, and then further down, the 1066 * resulting top-of-stack is replaced with the actual target. 1067 * The result is that the retpoline functions will no longer 1068 * appear in the call graph. Note this only affects the call 1069 * graph, since all the original branches are left unchanged. 1070 */ 1071 ts->cnt -= 1; 1072 sym = ts->stack[ts->cnt - 2].cp->sym; 1073 if (sym && sym == tsym && to_al->addr != tsym->start) { 1074 /* 1075 * Target is back to the middle of the symbol we came 1076 * from so assume it is an indirect jmp and forget it 1077 * altogether. 1078 */ 1079 ts->cnt -= 1; 1080 return 0; 1081 } 1082 } else if (sym && sym == tsym) { 1083 /* 1084 * Target is back to the symbol we came from so assume it is an 1085 * indirect jmp and forget it altogether. 1086 */ 1087 ts->cnt -= 1; 1088 return 0; 1089 } 1090 1091 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 2].cp, tsym, 1092 sample->addr, ts->kernel_start); 1093 if (!cp) 1094 return -ENOMEM; 1095 1096 /* Replace the top-of-stack with the actual target */ 1097 ts->stack[ts->cnt - 1].cp = cp; 1098 1099 return 0; 1100 } 1101 1102 int thread_stack__process(struct thread *thread, struct comm *comm, 1103 struct perf_sample *sample, 1104 struct addr_location *from_al, 1105 struct addr_location *to_al, u64 ref, 1106 struct call_return_processor *crp) 1107 { 1108 struct thread_stack *ts = thread__stack(thread, sample->cpu); 1109 enum retpoline_state_t rstate; 1110 int err = 0; 1111 1112 if (ts && !ts->crp) { 1113 /* Supersede thread_stack__event() */ 1114 thread_stack__reset(thread, ts); 1115 ts = NULL; 1116 } 1117 1118 if (!ts) { 1119 ts = thread_stack__new(thread, sample->cpu, crp, true, 0); 1120 if (!ts) 1121 return -ENOMEM; 1122 ts->comm = comm; 1123 } 1124 1125 rstate = ts->rstate; 1126 if (rstate == X86_RETPOLINE_DETECTED) 1127 ts->rstate = X86_RETPOLINE_POSSIBLE; 1128 1129 /* Flush stack on exec */ 1130 if (ts->comm != comm && thread->pid_ == thread->tid) { 1131 err = __thread_stack__flush(thread, ts); 1132 if (err) 1133 return err; 1134 ts->comm = comm; 1135 } 1136 1137 /* If the stack is empty, put the current symbol on the stack */ 1138 if (!ts->cnt) { 1139 err = thread_stack__bottom(ts, sample, from_al, to_al, ref); 1140 if (err) 1141 return err; 1142 } 1143 1144 ts->branch_count += 1; 1145 ts->insn_count += sample->insn_cnt; 1146 ts->cyc_count += sample->cyc_cnt; 1147 ts->last_time = sample->time; 1148 1149 if (sample->flags & PERF_IP_FLAG_CALL) { 1150 bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END; 1151 struct call_path_root *cpr = ts->crp->cpr; 1152 struct call_path *cp; 1153 u64 ret_addr; 1154 1155 if (!sample->ip || !sample->addr) 1156 return 0; 1157 1158 ret_addr = sample->ip + sample->insn_len; 1159 if (ret_addr == sample->addr) 1160 return 0; /* Zero-length calls are excluded */ 1161 1162 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, 1163 to_al->sym, sample->addr, 1164 ts->kernel_start); 1165 err = thread_stack__push_cp(ts, ret_addr, sample->time, ref, 1166 cp, false, trace_end); 1167 1168 /* 1169 * A call to the same symbol but not the start of the symbol, 1170 * may be the start of a x86 retpoline. 1171 */ 1172 if (!err && rstate == X86_RETPOLINE_POSSIBLE && to_al->sym && 1173 from_al->sym == to_al->sym && 1174 to_al->addr != to_al->sym->start) 1175 ts->rstate = X86_RETPOLINE_DETECTED; 1176 1177 } else if (sample->flags & PERF_IP_FLAG_RETURN) { 1178 if (!sample->addr) { 1179 u32 return_from_kernel = PERF_IP_FLAG_SYSCALLRET | 1180 PERF_IP_FLAG_INTERRUPT; 1181 1182 if (!(sample->flags & return_from_kernel)) 1183 return 0; 1184 1185 /* Pop kernel stack */ 1186 return thread_stack__pop_ks(thread, ts, sample, ref); 1187 } 1188 1189 if (!sample->ip) 1190 return 0; 1191 1192 /* x86 retpoline 'return' doesn't match the stack */ 1193 if (rstate == X86_RETPOLINE_DETECTED && ts->cnt > 2 && 1194 ts->stack[ts->cnt - 1].ret_addr != sample->addr) 1195 return thread_stack__x86_retpoline(ts, sample, to_al); 1196 1197 err = thread_stack__pop_cp(thread, ts, sample->addr, 1198 sample->time, ref, from_al->sym); 1199 if (err) { 1200 if (err < 0) 1201 return err; 1202 err = thread_stack__no_call_return(thread, ts, sample, 1203 from_al, to_al, ref); 1204 } 1205 } else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) { 1206 err = thread_stack__trace_begin(thread, ts, sample->time, ref); 1207 } else if (sample->flags & PERF_IP_FLAG_TRACE_END) { 1208 err = thread_stack__trace_end(ts, sample, ref); 1209 } else if (sample->flags & PERF_IP_FLAG_BRANCH && 1210 from_al->sym != to_al->sym && to_al->sym && 1211 to_al->addr == to_al->sym->start) { 1212 struct call_path_root *cpr = ts->crp->cpr; 1213 struct call_path *cp; 1214 1215 /* 1216 * The compiler might optimize a call/ret combination by making 1217 * it a jmp. Make that visible by recording on the stack a 1218 * branch to the start of a different symbol. Note, that means 1219 * when a ret pops the stack, all jmps must be popped off first. 1220 */ 1221 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, 1222 to_al->sym, sample->addr, 1223 ts->kernel_start); 1224 err = thread_stack__push_cp(ts, 0, sample->time, ref, cp, false, 1225 false); 1226 if (!err) 1227 ts->stack[ts->cnt - 1].non_call = true; 1228 } 1229 1230 return err; 1231 } 1232 1233 size_t thread_stack__depth(struct thread *thread, int cpu) 1234 { 1235 struct thread_stack *ts = thread__stack(thread, cpu); 1236 1237 if (!ts) 1238 return 0; 1239 return ts->cnt; 1240 } 1241