xref: /linux/tools/perf/util/cpumap.c (revision a90e8608eb0ed93d31ac0feb055f77ce59512542)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <api/fs/fs.h>
3 #include "cpumap.h"
4 #include "debug.h"
5 #include "event.h"
6 #include <assert.h>
7 #include <dirent.h>
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <linux/bitmap.h>
11 #include "asm/bug.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/zalloc.h>
15 #include <internal/cpumap.h>
16 
17 static struct perf_cpu max_cpu_num;
18 static struct perf_cpu max_present_cpu_num;
19 static int max_node_num;
20 /**
21  * The numa node X as read from /sys/devices/system/node/nodeX indexed by the
22  * CPU number.
23  */
24 static int *cpunode_map;
25 
26 bool perf_record_cpu_map_data__test_bit(int i,
27 					const struct perf_record_cpu_map_data *data)
28 {
29 	int bit_word32 = i / 32;
30 	__u32 bit_mask32 = 1U << (i & 31);
31 	int bit_word64 = i / 64;
32 	__u64 bit_mask64 = ((__u64)1) << (i & 63);
33 
34 	return (data->mask32_data.long_size == 4)
35 		? (bit_word32 < data->mask32_data.nr) &&
36 		(data->mask32_data.mask[bit_word32] & bit_mask32) != 0
37 		: (bit_word64 < data->mask64_data.nr) &&
38 		(data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
39 }
40 
41 /* Read ith mask value from data into the given 64-bit sized bitmap */
42 static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
43 						    int i, unsigned long *bitmap)
44 {
45 #if __SIZEOF_LONG__ == 8
46 	if (data->mask32_data.long_size == 4)
47 		bitmap[0] = data->mask32_data.mask[i];
48 	else
49 		bitmap[0] = data->mask64_data.mask[i];
50 #else
51 	if (data->mask32_data.long_size == 4) {
52 		bitmap[0] = data->mask32_data.mask[i];
53 		bitmap[1] = 0;
54 	} else {
55 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
56 		bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
57 		bitmap[1] = (unsigned long)data->mask64_data.mask[i];
58 #else
59 		bitmap[0] = (unsigned long)data->mask64_data.mask[i];
60 		bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
61 #endif
62 	}
63 #endif
64 }
65 static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
66 {
67 	struct perf_cpu_map *map;
68 
69 	map = perf_cpu_map__empty_new(data->cpus_data.nr);
70 	if (map) {
71 		unsigned i;
72 
73 		for (i = 0; i < data->cpus_data.nr; i++) {
74 			/*
75 			 * Special treatment for -1, which is not real cpu number,
76 			 * and we need to use (int) -1 to initialize map[i],
77 			 * otherwise it would become 65535.
78 			 */
79 			if (data->cpus_data.cpu[i] == (u16) -1)
80 				RC_CHK_ACCESS(map)->map[i].cpu = -1;
81 			else
82 				RC_CHK_ACCESS(map)->map[i].cpu = (int) data->cpus_data.cpu[i];
83 		}
84 	}
85 
86 	return map;
87 }
88 
89 static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
90 {
91 	DECLARE_BITMAP(local_copy, 64);
92 	int weight = 0, mask_nr = data->mask32_data.nr;
93 	struct perf_cpu_map *map;
94 
95 	for (int i = 0; i < mask_nr; i++) {
96 		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
97 		weight += bitmap_weight(local_copy, 64);
98 	}
99 
100 	map = perf_cpu_map__empty_new(weight);
101 	if (!map)
102 		return NULL;
103 
104 	for (int i = 0, j = 0; i < mask_nr; i++) {
105 		int cpus_per_i = (i * data->mask32_data.long_size  * BITS_PER_BYTE);
106 		int cpu;
107 
108 		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
109 		for_each_set_bit(cpu, local_copy, 64)
110 			RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i;
111 	}
112 	return map;
113 
114 }
115 
116 static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
117 {
118 	struct perf_cpu_map *map;
119 	unsigned int i = 0;
120 
121 	map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
122 				data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
123 	if (!map)
124 		return NULL;
125 
126 	if (data->range_cpu_data.any_cpu)
127 		RC_CHK_ACCESS(map)->map[i++].cpu = -1;
128 
129 	for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
130 	     i++, cpu++)
131 		RC_CHK_ACCESS(map)->map[i].cpu = cpu;
132 
133 	return map;
134 }
135 
136 struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
137 {
138 	switch (data->type) {
139 	case PERF_CPU_MAP__CPUS:
140 		return cpu_map__from_entries(data);
141 	case PERF_CPU_MAP__MASK:
142 		return cpu_map__from_mask(data);
143 	case PERF_CPU_MAP__RANGE_CPUS:
144 		return cpu_map__from_range(data);
145 	default:
146 		pr_err("cpu_map__new_data unknown type %d\n", data->type);
147 		return NULL;
148 	}
149 }
150 
151 size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
152 {
153 #define BUFSIZE 1024
154 	char buf[BUFSIZE];
155 
156 	cpu_map__snprint(map, buf, sizeof(buf));
157 	return fprintf(fp, "%s\n", buf);
158 #undef BUFSIZE
159 }
160 
161 struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
162 {
163 	struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr);
164 
165 	if (cpus != NULL) {
166 		for (int i = 0; i < nr; i++)
167 			RC_CHK_ACCESS(cpus)->map[i].cpu = -1;
168 	}
169 
170 	return cpus;
171 }
172 
173 struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
174 {
175 	struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
176 
177 	if (cpus != NULL) {
178 		int i;
179 
180 		cpus->nr = nr;
181 		for (i = 0; i < nr; i++)
182 			cpus->map[i] = aggr_cpu_id__empty();
183 
184 		refcount_set(&cpus->refcnt, 1);
185 	}
186 
187 	return cpus;
188 }
189 
190 static int cpu__get_topology_int(int cpu, const char *name, int *value)
191 {
192 	char path[PATH_MAX];
193 
194 	snprintf(path, PATH_MAX,
195 		"devices/system/cpu/cpu%d/topology/%s", cpu, name);
196 
197 	return sysfs__read_int(path, value);
198 }
199 
200 int cpu__get_socket_id(struct perf_cpu cpu)
201 {
202 	int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
203 	return ret ?: value;
204 }
205 
206 struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
207 {
208 	struct aggr_cpu_id id = aggr_cpu_id__empty();
209 
210 	id.socket = cpu__get_socket_id(cpu);
211 	return id;
212 }
213 
214 static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
215 {
216 	struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
217 	struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
218 
219 	if (a->node != b->node)
220 		return a->node - b->node;
221 	else if (a->socket != b->socket)
222 		return a->socket - b->socket;
223 	else if (a->die != b->die)
224 		return a->die - b->die;
225 	else if (a->core != b->core)
226 		return a->core - b->core;
227 	else
228 		return a->thread_idx - b->thread_idx;
229 }
230 
231 struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
232 				       aggr_cpu_id_get_t get_id,
233 				       void *data, bool needs_sort)
234 {
235 	int idx;
236 	struct perf_cpu cpu;
237 	struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus));
238 
239 	if (!c)
240 		return NULL;
241 
242 	/* Reset size as it may only be partially filled */
243 	c->nr = 0;
244 
245 	perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
246 		bool duplicate = false;
247 		struct aggr_cpu_id cpu_id = get_id(cpu, data);
248 
249 		for (int j = 0; j < c->nr; j++) {
250 			if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
251 				duplicate = true;
252 				break;
253 			}
254 		}
255 		if (!duplicate) {
256 			c->map[c->nr] = cpu_id;
257 			c->nr++;
258 		}
259 	}
260 	/* Trim. */
261 	if (c->nr != perf_cpu_map__nr(cpus)) {
262 		struct cpu_aggr_map *trimmed_c =
263 			realloc(c,
264 				sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
265 
266 		if (trimmed_c)
267 			c = trimmed_c;
268 	}
269 
270 	/* ensure we process id in increasing order */
271 	if (needs_sort)
272 		qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
273 
274 	return c;
275 
276 }
277 
278 int cpu__get_die_id(struct perf_cpu cpu)
279 {
280 	int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
281 
282 	return ret ?: value;
283 }
284 
285 struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
286 {
287 	struct aggr_cpu_id id;
288 	int die;
289 
290 	die = cpu__get_die_id(cpu);
291 	/* There is no die_id on legacy system. */
292 	if (die == -1)
293 		die = 0;
294 
295 	/*
296 	 * die_id is relative to socket, so start
297 	 * with the socket ID and then add die to
298 	 * make a unique ID.
299 	 */
300 	id = aggr_cpu_id__socket(cpu, data);
301 	if (aggr_cpu_id__is_empty(&id))
302 		return id;
303 
304 	id.die = die;
305 	return id;
306 }
307 
308 int cpu__get_core_id(struct perf_cpu cpu)
309 {
310 	int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
311 	return ret ?: value;
312 }
313 
314 struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
315 {
316 	struct aggr_cpu_id id;
317 	int core = cpu__get_core_id(cpu);
318 
319 	/* aggr_cpu_id__die returns a struct with socket and die set. */
320 	id = aggr_cpu_id__die(cpu, data);
321 	if (aggr_cpu_id__is_empty(&id))
322 		return id;
323 
324 	/*
325 	 * core_id is relative to socket and die, we need a global id.
326 	 * So we combine the result from cpu_map__get_die with the core id
327 	 */
328 	id.core = core;
329 	return id;
330 
331 }
332 
333 struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
334 {
335 	struct aggr_cpu_id id;
336 
337 	/* aggr_cpu_id__core returns a struct with socket, die and core set. */
338 	id = aggr_cpu_id__core(cpu, data);
339 	if (aggr_cpu_id__is_empty(&id))
340 		return id;
341 
342 	id.cpu = cpu;
343 	return id;
344 
345 }
346 
347 struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
348 {
349 	struct aggr_cpu_id id = aggr_cpu_id__empty();
350 
351 	id.node = cpu__get_node(cpu);
352 	return id;
353 }
354 
355 struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
356 {
357 	struct aggr_cpu_id id = aggr_cpu_id__empty();
358 
359 	/* it always aggregates to the cpu 0 */
360 	cpu.cpu = 0;
361 	id.cpu = cpu;
362 	return id;
363 }
364 
365 /* setup simple routines to easily access node numbers given a cpu number */
366 static int get_max_num(char *path, int *max)
367 {
368 	size_t num;
369 	char *buf;
370 	int err = 0;
371 
372 	if (filename__read_str(path, &buf, &num))
373 		return -1;
374 
375 	buf[num] = '\0';
376 
377 	/* start on the right, to find highest node num */
378 	while (--num) {
379 		if ((buf[num] == ',') || (buf[num] == '-')) {
380 			num++;
381 			break;
382 		}
383 	}
384 	if (sscanf(&buf[num], "%d", max) < 1) {
385 		err = -1;
386 		goto out;
387 	}
388 
389 	/* convert from 0-based to 1-based */
390 	(*max)++;
391 
392 out:
393 	free(buf);
394 	return err;
395 }
396 
397 /* Determine highest possible cpu in the system for sparse allocation */
398 static void set_max_cpu_num(void)
399 {
400 	const char *mnt;
401 	char path[PATH_MAX];
402 	int ret = -1;
403 
404 	/* set up default */
405 	max_cpu_num.cpu = 4096;
406 	max_present_cpu_num.cpu = 4096;
407 
408 	mnt = sysfs__mountpoint();
409 	if (!mnt)
410 		goto out;
411 
412 	/* get the highest possible cpu number for a sparse allocation */
413 	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
414 	if (ret >= PATH_MAX) {
415 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
416 		goto out;
417 	}
418 
419 	ret = get_max_num(path, &max_cpu_num.cpu);
420 	if (ret)
421 		goto out;
422 
423 	/* get the highest present cpu number for a sparse allocation */
424 	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
425 	if (ret >= PATH_MAX) {
426 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
427 		goto out;
428 	}
429 
430 	ret = get_max_num(path, &max_present_cpu_num.cpu);
431 
432 out:
433 	if (ret)
434 		pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
435 }
436 
437 /* Determine highest possible node in the system for sparse allocation */
438 static void set_max_node_num(void)
439 {
440 	const char *mnt;
441 	char path[PATH_MAX];
442 	int ret = -1;
443 
444 	/* set up default */
445 	max_node_num = 8;
446 
447 	mnt = sysfs__mountpoint();
448 	if (!mnt)
449 		goto out;
450 
451 	/* get the highest possible cpu number for a sparse allocation */
452 	ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
453 	if (ret >= PATH_MAX) {
454 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
455 		goto out;
456 	}
457 
458 	ret = get_max_num(path, &max_node_num);
459 
460 out:
461 	if (ret)
462 		pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
463 }
464 
465 int cpu__max_node(void)
466 {
467 	if (unlikely(!max_node_num))
468 		set_max_node_num();
469 
470 	return max_node_num;
471 }
472 
473 struct perf_cpu cpu__max_cpu(void)
474 {
475 	if (unlikely(!max_cpu_num.cpu))
476 		set_max_cpu_num();
477 
478 	return max_cpu_num;
479 }
480 
481 struct perf_cpu cpu__max_present_cpu(void)
482 {
483 	if (unlikely(!max_present_cpu_num.cpu))
484 		set_max_cpu_num();
485 
486 	return max_present_cpu_num;
487 }
488 
489 
490 int cpu__get_node(struct perf_cpu cpu)
491 {
492 	if (unlikely(cpunode_map == NULL)) {
493 		pr_debug("cpu_map not initialized\n");
494 		return -1;
495 	}
496 
497 	return cpunode_map[cpu.cpu];
498 }
499 
500 static int init_cpunode_map(void)
501 {
502 	int i;
503 
504 	set_max_cpu_num();
505 	set_max_node_num();
506 
507 	cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
508 	if (!cpunode_map) {
509 		pr_err("%s: calloc failed\n", __func__);
510 		return -1;
511 	}
512 
513 	for (i = 0; i < max_cpu_num.cpu; i++)
514 		cpunode_map[i] = -1;
515 
516 	return 0;
517 }
518 
519 int cpu__setup_cpunode_map(void)
520 {
521 	struct dirent *dent1, *dent2;
522 	DIR *dir1, *dir2;
523 	unsigned int cpu, mem;
524 	char buf[PATH_MAX];
525 	char path[PATH_MAX];
526 	const char *mnt;
527 	int n;
528 
529 	/* initialize globals */
530 	if (init_cpunode_map())
531 		return -1;
532 
533 	mnt = sysfs__mountpoint();
534 	if (!mnt)
535 		return 0;
536 
537 	n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
538 	if (n >= PATH_MAX) {
539 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
540 		return -1;
541 	}
542 
543 	dir1 = opendir(path);
544 	if (!dir1)
545 		return 0;
546 
547 	/* walk tree and setup map */
548 	while ((dent1 = readdir(dir1)) != NULL) {
549 		if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
550 			continue;
551 
552 		n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
553 		if (n >= PATH_MAX) {
554 			pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
555 			continue;
556 		}
557 
558 		dir2 = opendir(buf);
559 		if (!dir2)
560 			continue;
561 		while ((dent2 = readdir(dir2)) != NULL) {
562 			if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
563 				continue;
564 			cpunode_map[cpu] = mem;
565 		}
566 		closedir(dir2);
567 	}
568 	closedir(dir1);
569 	return 0;
570 }
571 
572 size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
573 {
574 	int i, start = -1;
575 	bool first = true;
576 	size_t ret = 0;
577 
578 #define COMMA first ? "" : ","
579 
580 	for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) {
581 		struct perf_cpu cpu = { .cpu = INT_MAX };
582 		bool last = i == perf_cpu_map__nr(map);
583 
584 		if (!last)
585 			cpu = perf_cpu_map__cpu(map, i);
586 
587 		if (start == -1) {
588 			start = i;
589 			if (last) {
590 				ret += snprintf(buf + ret, size - ret,
591 						"%s%d", COMMA,
592 						perf_cpu_map__cpu(map, i).cpu);
593 			}
594 		} else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) {
595 			int end = i - 1;
596 
597 			if (start == end) {
598 				ret += snprintf(buf + ret, size - ret,
599 						"%s%d", COMMA,
600 						perf_cpu_map__cpu(map, start).cpu);
601 			} else {
602 				ret += snprintf(buf + ret, size - ret,
603 						"%s%d-%d", COMMA,
604 						perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu);
605 			}
606 			first = false;
607 			start = i;
608 		}
609 	}
610 
611 #undef COMMA
612 
613 	pr_debug2("cpumask list: %s\n", buf);
614 	return ret;
615 }
616 
617 static char hex_char(unsigned char val)
618 {
619 	if (val < 10)
620 		return val + '0';
621 	if (val < 16)
622 		return val - 10 + 'a';
623 	return '?';
624 }
625 
626 size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
627 {
628 	int i, cpu;
629 	char *ptr = buf;
630 	unsigned char *bitmap;
631 	struct perf_cpu last_cpu = perf_cpu_map__cpu(map, perf_cpu_map__nr(map) - 1);
632 
633 	if (buf == NULL)
634 		return 0;
635 
636 	bitmap = zalloc(last_cpu.cpu / 8 + 1);
637 	if (bitmap == NULL) {
638 		buf[0] = '\0';
639 		return 0;
640 	}
641 
642 	for (i = 0; i < perf_cpu_map__nr(map); i++) {
643 		cpu = perf_cpu_map__cpu(map, i).cpu;
644 		bitmap[cpu / 8] |= 1 << (cpu % 8);
645 	}
646 
647 	for (cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
648 		unsigned char bits = bitmap[cpu / 8];
649 
650 		if (cpu % 8)
651 			bits >>= 4;
652 		else
653 			bits &= 0xf;
654 
655 		*ptr++ = hex_char(bits);
656 		if ((cpu % 32) == 0 && cpu > 0)
657 			*ptr++ = ',';
658 	}
659 	*ptr = '\0';
660 	free(bitmap);
661 
662 	buf[size - 1] = '\0';
663 	return ptr - buf;
664 }
665 
666 const struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
667 {
668 	static const struct perf_cpu_map *online = NULL;
669 
670 	if (!online)
671 		online = perf_cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */
672 
673 	return online;
674 }
675 
676 bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
677 {
678 	return a->thread_idx == b->thread_idx &&
679 		a->node == b->node &&
680 		a->socket == b->socket &&
681 		a->die == b->die &&
682 		a->core == b->core &&
683 		a->cpu.cpu == b->cpu.cpu;
684 }
685 
686 bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
687 {
688 	return a->thread_idx == -1 &&
689 		a->node == -1 &&
690 		a->socket == -1 &&
691 		a->die == -1 &&
692 		a->core == -1 &&
693 		a->cpu.cpu == -1;
694 }
695 
696 struct aggr_cpu_id aggr_cpu_id__empty(void)
697 {
698 	struct aggr_cpu_id ret = {
699 		.thread_idx = -1,
700 		.node = -1,
701 		.socket = -1,
702 		.die = -1,
703 		.core = -1,
704 		.cpu = (struct perf_cpu){ .cpu = -1 },
705 	};
706 	return ret;
707 }
708